123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405 |
- #!/usr/bin/env python
- """A shuffle-select vector fuzz tester.
- This is a python program to fuzz test the LLVM shufflevector and select
- instructions. It generates a function with a random sequnece of shufflevectors
- while optionally attaching it with a select instruction (regular or zero merge),
- maintaining the element mapping accumulated across the function. It then
- generates a main function which calls it with a different value in each element
- and checks that the result matches the expected mapping.
- Take the output IR printed to stdout, compile it to an executable using whatever
- set of transforms you want to test, and run the program. If it crashes, it found
- a bug (an error message with the expected and actual result is printed).
- """
- from __future__ import print_function
- import random
- import uuid
- import argparse
- # Possibility of one undef index in generated mask for shufflevector instruction
- SHUF_UNDEF_POS = 0.15
- # Possibility of one undef index in generated mask for select instruction
- SEL_UNDEF_POS = 0.15
- # Possibility of adding a select instruction to the result of a shufflevector
- ADD_SEL_POS = 0.4
- # If we are adding a select instruction, this is the possibility of a
- # merge-select instruction (1 - MERGE_SEL_POS = possibility of zero-merge-select
- # instruction.
- MERGE_SEL_POS = 0.5
- test_template = r'''
- define internal fastcc {ty} @test({inputs}) noinline nounwind {{
- entry:
- {instructions}
- ret {ty} {last_name}
- }}
- '''
- error_template = r'''@error.{lane} = private unnamed_addr global [64 x i8] c"FAIL: lane {lane}, expected {exp}, found %d\0A{padding}"'''
- main_template = r'''
- define i32 @main() {{
- entry:
- ; Create a scratch space to print error messages.
- %str = alloca [64 x i8]
- %str.ptr = getelementptr inbounds [64 x i8], [64 x i8]* %str, i32 0, i32 0
- ; Build the input vector and call the test function.
- %v = call fastcc {ty} @test({inputs})
- br label %test.0
- {check_die}
- }}
- declare i32 @strlen(i8*)
- declare i32 @write(i32, i8*, i32)
- declare i32 @sprintf(i8*, i8*, ...)
- declare void @llvm.trap() noreturn nounwind
- '''
- check_template = r'''
- test.{lane}:
- %v.{lane} = extractelement {ty} %v, i32 {lane}
- %cmp.{lane} = {i_f}cmp {ordered}ne {scalar_ty} %v.{lane}, {exp}
- br i1 %cmp.{lane}, label %die.{lane}, label %test.{n_lane}
- '''
- undef_check_template = r'''
- test.{lane}:
- ; Skip this lane, its value is undef.
- br label %test.{n_lane}
- '''
- die_template = r'''
- die.{lane}:
- ; Capture the actual value and print an error message.
- call i32 (i8*, i8*, ...) @sprintf(i8* %str.ptr, i8* getelementptr inbounds ([64 x i8], [64 x i8]* @error.{lane}, i32 0, i32 0), {scalar_ty} %v.{lane})
- %length.{lane} = call i32 @strlen(i8* %str.ptr)
- call i32 @write(i32 2, i8* %str.ptr, i32 %length.{lane})
- call void @llvm.trap()
- unreachable
- '''
- class Type:
- def __init__(self, is_float, elt_width, elt_num):
- self.is_float = is_float # Boolean
- self.elt_width = elt_width # Integer
- self.elt_num = elt_num # Integer
- def dump(self):
- if self.is_float:
- str_elt = 'float' if self.elt_width == 32 else 'double'
- else:
- str_elt = 'i' + str(self.elt_width)
- if self.elt_num == 1:
- return str_elt
- else:
- return '<' + str(self.elt_num) + ' x ' + str_elt + '>'
- def get_scalar_type(self):
- return Type(self.is_float, self.elt_width, 1)
- # Class to represent any value (variable) that can be used.
- class Value:
- def __init__(self, name, ty, value = None):
- self.ty = ty # Type
- self.name = name # String
- self.value = value # list of integers or floating points
- # Class to represent an IR instruction (shuffle/select).
- class Instruction(Value):
- def __init__(self, name, ty, op0, op1, mask):
- Value.__init__(self, name, ty)
- self.op0 = op0 # Value
- self.op1 = op1 # Value
- self.mask = mask # list of integers
- def dump(self): pass
- def calc_value(self): pass
- # Class to represent an IR shuffle instruction
- class ShufInstr(Instruction):
- shuf_template = ' {name} = shufflevector {ty} {op0}, {ty} {op1}, <{num} x i32> {mask}\n'
- def __init__(self, name, ty, op0, op1, mask):
- Instruction.__init__(self, '%shuf' + name, ty, op0, op1, mask)
- def dump(self):
- str_mask = [('i32 ' + str(idx)) if idx != -1 else 'i32 undef' for idx in self.mask]
- str_mask = '<' + (', ').join(str_mask) + '>'
- return self.shuf_template.format(name = self.name, ty = self.ty.dump(), op0 = self.op0.name,
- op1 = self.op1.name, num = self.ty.elt_num, mask = str_mask)
- def calc_value(self):
- if self.value != None:
- print('Trying to calculate the value of a shuffle instruction twice')
- exit(1)
- result = []
- for i in range(len(self.mask)):
- index = self.mask[i]
- if index < self.ty.elt_num and index >= 0:
- result.append(self.op0.value[index])
- elif index >= self.ty.elt_num:
- index = index % self.ty.elt_num
- result.append(self.op1.value[index])
- else: # -1 => undef
- result.append(-1)
- self.value = result
- # Class to represent an IR select instruction
- class SelectInstr(Instruction):
- sel_template = ' {name} = select <{num} x i1> {mask}, {ty} {op0}, {ty} {op1}\n'
- def __init__(self, name, ty, op0, op1, mask):
- Instruction.__init__(self, '%sel' + name, ty, op0, op1, mask)
- def dump(self):
- str_mask = [('i1 ' + str(idx)) if idx != -1 else 'i1 undef' for idx in self.mask]
- str_mask = '<' + (', ').join(str_mask) + '>'
- return self.sel_template.format(name = self.name, ty = self.ty.dump(), op0 = self.op0.name,
- op1 = self.op1.name, num = self.ty.elt_num, mask = str_mask)
- def calc_value(self):
- if self.value != None:
- print('Trying to calculate the value of a select instruction twice')
- exit(1)
- result = []
- for i in range(len(self.mask)):
- index = self.mask[i]
- if index == 1:
- result.append(self.op0.value[i])
- elif index == 0:
- result.append(self.op1.value[i])
- else: # -1 => undef
- result.append(-1)
- self.value = result
- # Returns a list of Values initialized with actual numbers according to the
- # provided type
- def gen_inputs(ty, num):
- inputs = []
- for i in range(num):
- inp = []
- for j in range(ty.elt_num):
- if ty.is_float:
- inp.append(float(i*ty.elt_num + j))
- else:
- inp.append((i*ty.elt_num + j) % (1 << ty.elt_width))
- inputs.append(Value('%inp' + str(i), ty, inp))
- return inputs
- # Returns a random vector type to be tested
- # In case one of the dimensions (scalar type/number of elements) is provided,
- # fill the blank dimension and return appropriate Type object.
- def get_random_type(ty, num_elts):
- if ty != None:
- if ty == 'i8':
- is_float = False
- width = 8
- elif ty == 'i16':
- is_float = False
- width = 16
- elif ty == 'i32':
- is_float = False
- width = 32
- elif ty == 'i64':
- is_float = False
- width = 64
- elif ty == 'f32':
- is_float = True
- width = 32
- elif ty == 'f64':
- is_float = True
- width = 64
- int_elt_widths = [8, 16, 32, 64]
- float_elt_widths = [32, 64]
- if num_elts == None:
- num_elts = random.choice(range(2, 65))
- if ty == None:
- # 1 for integer type, 0 for floating-point
- if random.randint(0,1):
- is_float = False
- width = random.choice(int_elt_widths)
- else:
- is_float = True
- width = random.choice(float_elt_widths)
- return Type(is_float, width, num_elts)
- # Generate mask for shufflevector IR instruction, with SHUF_UNDEF_POS possibility
- # of one undef index.
- def gen_shuf_mask(ty):
- mask = []
- for i in range(ty.elt_num):
- if SHUF_UNDEF_POS/ty.elt_num > random.random():
- mask.append(-1)
- else:
- mask.append(random.randint(0, ty.elt_num*2 - 1))
- return mask
- # Generate mask for select IR instruction, with SEL_UNDEF_POS possibility
- # of one undef index.
- def gen_sel_mask(ty):
- mask = []
- for i in range(ty.elt_num):
- if SEL_UNDEF_POS/ty.elt_num > random.random():
- mask.append(-1)
- else:
- mask.append(random.randint(0, 1))
- return mask
- # Generate shuffle instructions with optional select instruction after.
- def gen_insts(inputs, ty):
- int_zero_init = Value('zeroinitializer', ty, [0]*ty.elt_num)
- float_zero_init = Value('zeroinitializer', ty, [0.0]*ty.elt_num)
- insts = []
- name_idx = 0
- while len(inputs) > 1:
- # Choose 2 available Values - remove them from inputs list.
- [idx0, idx1] = sorted(random.sample(range(len(inputs)), 2))
- op0 = inputs[idx0]
- op1 = inputs[idx1]
- # Create the shuffle instruction.
- shuf_mask = gen_shuf_mask(ty)
- shuf_inst = ShufInstr(str(name_idx), ty, op0, op1, shuf_mask)
- shuf_inst.calc_value()
- # Add the new shuffle instruction to the list of instructions.
- insts.append(shuf_inst)
- # Optionally, add select instruction with the result of the previous shuffle.
- if random.random() < ADD_SEL_POS:
- # Either blending with a random Value or with an all-zero vector.
- if random.random() < MERGE_SEL_POS:
- op2 = random.choice(inputs)
- else:
- op2 = float_zero_init if ty.is_float else int_zero_init
- select_mask = gen_sel_mask(ty)
- select_inst = SelectInstr(str(name_idx), ty, shuf_inst, op2, select_mask)
- select_inst.calc_value()
- # Add the select instructions to the list of instructions and to the available Values.
- insts.append(select_inst)
- inputs.append(select_inst)
- else:
- # If the shuffle instruction is not followed by select, add it to the available Values.
- inputs.append(shuf_inst)
- del inputs[idx1]
- del inputs[idx0]
- name_idx += 1
- return insts
- def main():
- parser = argparse.ArgumentParser(description=__doc__)
- parser.add_argument('--seed', default=str(uuid.uuid4()),
- help='A string used to seed the RNG')
- parser.add_argument('--max-num-inputs', type=int, default=20,
- help='Specify the maximum number of vector inputs for the test. (default: 20)')
- parser.add_argument('--min-num-inputs', type=int, default=10,
- help='Specify the minimum number of vector inputs for the test. (default: 10)')
- parser.add_argument('--type', default=None,
- help='''
- Choose specific type to be tested.
- i8, i16, i32, i64, f32 or f64.
- (default: random)''')
- parser.add_argument('--num-elts', default=None, type=int,
- help='Choose specific number of vector elements to be tested. (default: random)')
- args = parser.parse_args()
- print('; The seed used for this test is ' + args.seed)
- assert args.min_num_inputs < args.max_num_inputs , "Minimum value greater than maximum."
- assert args.type in [None, 'i8', 'i16', 'i32', 'i64', 'f32', 'f64'], "Illegal type."
- assert args.num_elts == None or args.num_elts > 0, "num_elts must be a positive integer."
- random.seed(args.seed)
- ty = get_random_type(args.type, args.num_elts)
- inputs = gen_inputs(ty, random.randint(args.min_num_inputs, args.max_num_inputs))
- inputs_str = (', ').join([inp.ty.dump() + ' ' + inp.name for inp in inputs])
- inputs_values = [inp.value for inp in inputs]
- insts = gen_insts(inputs, ty)
- assert len(inputs) == 1, "Only one value should be left after generating phase"
- res = inputs[0]
- # print the actual test function by dumping the generated instructions.
- insts_str = ''.join([inst.dump() for inst in insts])
- print(test_template.format(ty = ty.dump(), inputs = inputs_str,
- instructions = insts_str, last_name = res.name))
- # Print the error message templates as global strings
- for i in range(len(res.value)):
- pad = ''.join(['\\00']*(31 - len(str(i)) - len(str(res.value[i]))))
- print(error_template.format(lane = str(i), exp = str(res.value[i]),
- padding = pad))
- # Prepare the runtime checks and failure handlers.
- scalar_ty = ty.get_scalar_type()
- check_die = ''
- i_f = 'f' if ty.is_float else 'i'
- ordered = 'o' if ty.is_float else ''
- for i in range(len(res.value)):
- if res.value[i] != -1:
- # Emit runtime check for each non-undef expected value.
- check_die += check_template.format(lane = str(i), n_lane = str(i+1),
- ty = ty.dump(), i_f = i_f, scalar_ty = scalar_ty.dump(),
- exp = str(res.value[i]), ordered = ordered)
- # Emit failure handler for each runtime check with proper error message
- check_die += die_template.format(lane = str(i), scalar_ty = scalar_ty.dump())
- else:
- # Ignore lanes with undef result
- check_die += undef_check_template.format(lane = str(i), n_lane = str(i+1))
- check_die += '\ntest.' + str(len(res.value)) + ':\n'
- check_die += ' ret i32 0'
- # Prepare the input values passed to the test function.
- inputs_values = [', '.join([scalar_ty.dump() + ' ' + str(i) for i in inp]) for inp in inputs_values]
- inputs = ', '.join([ty.dump() + ' <' + inp + '>' for inp in inputs_values])
- print(main_template.format(ty = ty.dump(), inputs = inputs, check_die = check_die))
- if __name__ == '__main__':
- main()
|