1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196 |
- //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
- // and generates target-independent LLVM-IR. Legalization of the IR is done
- // in the codegen. However, the vectorizes uses (will use) the codegen
- // interfaces to generate IR that is likely to result in an optimal binary.
- //
- // The loop vectorizer combines consecutive loop iteration into a single
- // 'wide' iteration. After this transformation the index is incremented
- // by the SIMD vector width, and not by one.
- //
- // This pass has three parts:
- // 1. The main loop pass that drives the different parts.
- // 2. LoopVectorizationLegality - A unit that checks for the legality
- // of the vectorization.
- // 3. InnerLoopVectorizer - A unit that performs the actual
- // widening of instructions.
- // 4. LoopVectorizationCostModel - A unit that checks for the profitability
- // of vectorization. It decides on the optimal vector width, which
- // can be one, if vectorization is not profitable.
- //
- //===----------------------------------------------------------------------===//
- //
- // The reduction-variable vectorization is based on the paper:
- // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
- //
- // Variable uniformity checks are inspired by:
- // Karrenberg, R. and Hack, S. Whole Function Vectorization.
- //
- // Other ideas/concepts are from:
- // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
- //
- // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
- // Vectorizing Compilers.
- //
- //===----------------------------------------------------------------------===//
- #define LV_NAME "loop-vectorize"
- #define DEBUG_TYPE LV_NAME
- #include "llvm/Transforms/Vectorize.h"
- #include "llvm/ADT/DenseMap.h"
- #include "llvm/ADT/MapVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AliasSetTracker.h"
- #include "llvm/Analysis/Dominators.h"
- #include "llvm/Analysis/LoopInfo.h"
- #include "llvm/Analysis/LoopIterator.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/ScalarEvolutionExpander.h"
- #include "llvm/Analysis/ScalarEvolutionExpressions.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Analysis/Verifier.h"
- #include "llvm/IR/Constants.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DerivedTypes.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/Instructions.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/Type.h"
- #include "llvm/IR/Value.h"
- #include "llvm/Pass.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Transforms/Utils/BasicBlockUtils.h"
- #include "llvm/Transforms/Utils/Local.h"
- #include <algorithm>
- #include <map>
- using namespace llvm;
- static cl::opt<unsigned>
- VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
- cl::desc("Sets the SIMD width. Zero is autoselect."));
- static cl::opt<unsigned>
- VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
- cl::desc("Sets the vectorization unroll count. "
- "Zero is autoselect."));
- static cl::opt<bool>
- EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
- cl::desc("Enable if-conversion during vectorization."));
- /// We don't vectorize loops with a known constant trip count below this number.
- static const unsigned TinyTripCountVectorThreshold = 16;
- /// We don't unroll loops with a known constant trip count below this number.
- static const unsigned TinyTripCountUnrollThreshold = 128;
- /// When performing a runtime memory check, do not check more than this
- /// number of pointers. Notice that the check is quadratic!
- static const unsigned RuntimeMemoryCheckThreshold = 4;
- namespace {
- // Forward declarations.
- class LoopVectorizationLegality;
- class LoopVectorizationCostModel;
- /// InnerLoopVectorizer vectorizes loops which contain only one basic
- /// block to a specified vectorization factor (VF).
- /// This class performs the widening of scalars into vectors, or multiple
- /// scalars. This class also implements the following features:
- /// * It inserts an epilogue loop for handling loops that don't have iteration
- /// counts that are known to be a multiple of the vectorization factor.
- /// * It handles the code generation for reduction variables.
- /// * Scalarization (implementation using scalars) of un-vectorizable
- /// instructions.
- /// InnerLoopVectorizer does not perform any vectorization-legality
- /// checks, and relies on the caller to check for the different legality
- /// aspects. The InnerLoopVectorizer relies on the
- /// LoopVectorizationLegality class to provide information about the induction
- /// and reduction variables that were found to a given vectorization factor.
- class InnerLoopVectorizer {
- public:
- InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
- DominatorTree *DT, DataLayout *DL, unsigned VecWidth,
- unsigned UnrollFactor)
- : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), VF(VecWidth),
- UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
- OldInduction(0), WidenMap(UnrollFactor) {}
- // Perform the actual loop widening (vectorization).
- void vectorize(LoopVectorizationLegality *Legal) {
- // Create a new empty loop. Unlink the old loop and connect the new one.
- createEmptyLoop(Legal);
- // Widen each instruction in the old loop to a new one in the new loop.
- // Use the Legality module to find the induction and reduction variables.
- vectorizeLoop(Legal);
- // Register the new loop and update the analysis passes.
- updateAnalysis();
- }
- private:
- /// A small list of PHINodes.
- typedef SmallVector<PHINode*, 4> PhiVector;
- /// When we unroll loops we have multiple vector values for each scalar.
- /// This data structure holds the unrolled and vectorized values that
- /// originated from one scalar instruction.
- typedef SmallVector<Value*, 2> VectorParts;
- /// Add code that checks at runtime if the accessed arrays overlap.
- /// Returns the comparator value or NULL if no check is needed.
- Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
- Instruction *Loc);
- /// Create an empty loop, based on the loop ranges of the old loop.
- void createEmptyLoop(LoopVectorizationLegality *Legal);
- /// Copy and widen the instructions from the old loop.
- void vectorizeLoop(LoopVectorizationLegality *Legal);
- /// A helper function that computes the predicate of the block BB, assuming
- /// that the header block of the loop is set to True. It returns the *entry*
- /// mask for the block BB.
- VectorParts createBlockInMask(BasicBlock *BB);
- /// A helper function that computes the predicate of the edge between SRC
- /// and DST.
- VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
- /// A helper function to vectorize a single BB within the innermost loop.
- void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
- PhiVector *PV);
- /// Insert the new loop to the loop hierarchy and pass manager
- /// and update the analysis passes.
- void updateAnalysis();
- /// This instruction is un-vectorizable. Implement it as a sequence
- /// of scalars.
- void scalarizeInstruction(Instruction *Instr);
- /// Create a broadcast instruction. This method generates a broadcast
- /// instruction (shuffle) for loop invariant values and for the induction
- /// value. If this is the induction variable then we extend it to N, N+1, ...
- /// this is needed because each iteration in the loop corresponds to a SIMD
- /// element.
- Value *getBroadcastInstrs(Value *V);
- /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
- /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
- /// The sequence starts at StartIndex.
- Value *getConsecutiveVector(Value* Val, unsigned StartIdx, bool Negate);
- /// When we go over instructions in the basic block we rely on previous
- /// values within the current basic block or on loop invariant values.
- /// When we widen (vectorize) values we place them in the map. If the values
- /// are not within the map, they have to be loop invariant, so we simply
- /// broadcast them into a vector.
- VectorParts &getVectorValue(Value *V);
- /// Generate a shuffle sequence that will reverse the vector Vec.
- Value *reverseVector(Value *Vec);
- /// This is a helper class that holds the vectorizer state. It maps scalar
- /// instructions to vector instructions. When the code is 'unrolled' then
- /// then a single scalar value is mapped to multiple vector parts. The parts
- /// are stored in the VectorPart type.
- struct ValueMap {
- /// C'tor. UnrollFactor controls the number of vectors ('parts') that
- /// are mapped.
- ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
- /// \return True if 'Key' is saved in the Value Map.
- bool has(Value *Key) { return MapStoreage.count(Key); }
- /// Initializes a new entry in the map. Sets all of the vector parts to the
- /// save value in 'Val'.
- /// \return A reference to a vector with splat values.
- VectorParts &splat(Value *Key, Value *Val) {
- MapStoreage[Key].clear();
- MapStoreage[Key].append(UF, Val);
- return MapStoreage[Key];
- }
- ///\return A reference to the value that is stored at 'Key'.
- VectorParts &get(Value *Key) {
- if (!has(Key))
- MapStoreage[Key].resize(UF);
- return MapStoreage[Key];
- }
- /// The unroll factor. Each entry in the map stores this number of vector
- /// elements.
- unsigned UF;
- /// Map storage. We use std::map and not DenseMap because insertions to a
- /// dense map invalidates its iterators.
- std::map<Value*, VectorParts> MapStoreage;
- };
- /// The original loop.
- Loop *OrigLoop;
- /// Scev analysis to use.
- ScalarEvolution *SE;
- /// Loop Info.
- LoopInfo *LI;
- /// Dominator Tree.
- DominatorTree *DT;
- /// Data Layout.
- DataLayout *DL;
- /// The vectorization SIMD factor to use. Each vector will have this many
- /// vector elements.
- unsigned VF;
- /// The vectorization unroll factor to use. Each scalar is vectorized to this
- /// many different vector instructions.
- unsigned UF;
- /// The builder that we use
- IRBuilder<> Builder;
- // --- Vectorization state ---
- /// The vector-loop preheader.
- BasicBlock *LoopVectorPreHeader;
- /// The scalar-loop preheader.
- BasicBlock *LoopScalarPreHeader;
- /// Middle Block between the vector and the scalar.
- BasicBlock *LoopMiddleBlock;
- ///The ExitBlock of the scalar loop.
- BasicBlock *LoopExitBlock;
- ///The vector loop body.
- BasicBlock *LoopVectorBody;
- ///The scalar loop body.
- BasicBlock *LoopScalarBody;
- /// A list of all bypass blocks. The first block is the entry of the loop.
- SmallVector<BasicBlock *, 4> LoopBypassBlocks;
- /// The new Induction variable which was added to the new block.
- PHINode *Induction;
- /// The induction variable of the old basic block.
- PHINode *OldInduction;
- /// Maps scalars to widened vectors.
- ValueMap WidenMap;
- };
- /// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
- /// to what vectorization factor.
- /// This class does not look at the profitability of vectorization, only the
- /// legality. This class has two main kinds of checks:
- /// * Memory checks - The code in canVectorizeMemory checks if vectorization
- /// will change the order of memory accesses in a way that will change the
- /// correctness of the program.
- /// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
- /// checks for a number of different conditions, such as the availability of a
- /// single induction variable, that all types are supported and vectorize-able,
- /// etc. This code reflects the capabilities of InnerLoopVectorizer.
- /// This class is also used by InnerLoopVectorizer for identifying
- /// induction variable and the different reduction variables.
- class LoopVectorizationLegality {
- public:
- LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
- DominatorTree *DT)
- : TheLoop(L), SE(SE), DL(DL), DT(DT), Induction(0) {}
- /// This enum represents the kinds of reductions that we support.
- enum ReductionKind {
- RK_NoReduction, ///< Not a reduction.
- RK_IntegerAdd, ///< Sum of integers.
- RK_IntegerMult, ///< Product of integers.
- RK_IntegerOr, ///< Bitwise or logical OR of numbers.
- RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
- RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
- RK_FloatAdd, ///< Sum of floats.
- RK_FloatMult ///< Product of floats.
- };
- /// This enum represents the kinds of inductions that we support.
- enum InductionKind {
- IK_NoInduction, ///< Not an induction variable.
- IK_IntInduction, ///< Integer induction variable. Step = 1.
- IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
- IK_PtrInduction ///< Pointer induction variable. Step = sizeof(elem).
- };
- /// This POD struct holds information about reduction variables.
- struct ReductionDescriptor {
- ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
- Kind(RK_NoReduction) {}
- ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K)
- : StartValue(Start), LoopExitInstr(Exit), Kind(K) {}
- // The starting value of the reduction.
- // It does not have to be zero!
- Value *StartValue;
- // The instruction who's value is used outside the loop.
- Instruction *LoopExitInstr;
- // The kind of the reduction.
- ReductionKind Kind;
- };
- // This POD struct holds information about the memory runtime legality
- // check that a group of pointers do not overlap.
- struct RuntimePointerCheck {
- RuntimePointerCheck() : Need(false) {}
- /// Reset the state of the pointer runtime information.
- void reset() {
- Need = false;
- Pointers.clear();
- Starts.clear();
- Ends.clear();
- }
- /// Insert a pointer and calculate the start and end SCEVs.
- void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr);
- /// This flag indicates if we need to add the runtime check.
- bool Need;
- /// Holds the pointers that we need to check.
- SmallVector<Value*, 2> Pointers;
- /// Holds the pointer value at the beginning of the loop.
- SmallVector<const SCEV*, 2> Starts;
- /// Holds the pointer value at the end of the loop.
- SmallVector<const SCEV*, 2> Ends;
- };
- /// A POD for saving information about induction variables.
- struct InductionInfo {
- InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
- InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
- /// Start value.
- Value *StartValue;
- /// Induction kind.
- InductionKind IK;
- };
- /// ReductionList contains the reduction descriptors for all
- /// of the reductions that were found in the loop.
- typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
- /// InductionList saves induction variables and maps them to the
- /// induction descriptor.
- typedef MapVector<PHINode*, InductionInfo> InductionList;
- /// Returns true if it is legal to vectorize this loop.
- /// This does not mean that it is profitable to vectorize this
- /// loop, only that it is legal to do so.
- bool canVectorize();
- /// Returns the Induction variable.
- PHINode *getInduction() { return Induction; }
- /// Returns the reduction variables found in the loop.
- ReductionList *getReductionVars() { return &Reductions; }
- /// Returns the induction variables found in the loop.
- InductionList *getInductionVars() { return &Inductions; }
- /// Returns True if V is an induction variable in this loop.
- bool isInductionVariable(const Value *V);
- /// Return true if the block BB needs to be predicated in order for the loop
- /// to be vectorized.
- bool blockNeedsPredication(BasicBlock *BB);
- /// Check if this pointer is consecutive when vectorizing. This happens
- /// when the last index of the GEP is the induction variable, or that the
- /// pointer itself is an induction variable.
- /// This check allows us to vectorize A[idx] into a wide load/store.
- /// Returns:
- /// 0 - Stride is unknown or non consecutive.
- /// 1 - Address is consecutive.
- /// -1 - Address is consecutive, and decreasing.
- int isConsecutivePtr(Value *Ptr);
- /// Returns true if the value V is uniform within the loop.
- bool isUniform(Value *V);
- /// Returns true if this instruction will remain scalar after vectorization.
- bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
- /// Returns the information that we collected about runtime memory check.
- RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
- private:
- /// Check if a single basic block loop is vectorizable.
- /// At this point we know that this is a loop with a constant trip count
- /// and we only need to check individual instructions.
- bool canVectorizeInstrs();
- /// When we vectorize loops we may change the order in which
- /// we read and write from memory. This method checks if it is
- /// legal to vectorize the code, considering only memory constrains.
- /// Returns true if the loop is vectorizable
- bool canVectorizeMemory();
- /// Return true if we can vectorize this loop using the IF-conversion
- /// transformation.
- bool canVectorizeWithIfConvert();
- /// Collect the variables that need to stay uniform after vectorization.
- void collectLoopUniforms();
- /// Return true if all of the instructions in the block can be speculatively
- /// executed.
- bool blockCanBePredicated(BasicBlock *BB);
- /// Returns True, if 'Phi' is the kind of reduction variable for type
- /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
- bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
- /// Returns true if the instruction I can be a reduction variable of type
- /// 'Kind'.
- bool isReductionInstr(Instruction *I, ReductionKind Kind);
- /// Returns the induction kind of Phi. This function may return NoInduction
- /// if the PHI is not an induction variable.
- InductionKind isInductionVariable(PHINode *Phi);
- /// Return true if can compute the address bounds of Ptr within the loop.
- bool hasComputableBounds(Value *Ptr);
- /// The loop that we evaluate.
- Loop *TheLoop;
- /// Scev analysis.
- ScalarEvolution *SE;
- /// DataLayout analysis.
- DataLayout *DL;
- // Dominators.
- DominatorTree *DT;
- // --- vectorization state --- //
- /// Holds the integer induction variable. This is the counter of the
- /// loop.
- PHINode *Induction;
- /// Holds the reduction variables.
- ReductionList Reductions;
- /// Holds all of the induction variables that we found in the loop.
- /// Notice that inductions don't need to start at zero and that induction
- /// variables can be pointers.
- InductionList Inductions;
- /// Allowed outside users. This holds the reduction
- /// vars which can be accessed from outside the loop.
- SmallPtrSet<Value*, 4> AllowedExit;
- /// This set holds the variables which are known to be uniform after
- /// vectorization.
- SmallPtrSet<Instruction*, 4> Uniforms;
- /// We need to check that all of the pointers in this list are disjoint
- /// at runtime.
- RuntimePointerCheck PtrRtCheck;
- };
- /// LoopVectorizationCostModel - estimates the expected speedups due to
- /// vectorization.
- /// In many cases vectorization is not profitable. This can happen because of
- /// a number of reasons. In this class we mainly attempt to predict the
- /// expected speedup/slowdowns due to the supported instruction set. We use the
- /// TargetTransformInfo to query the different backends for the cost of
- /// different operations.
- class LoopVectorizationCostModel {
- public:
- LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
- LoopVectorizationLegality *Legal,
- const TargetTransformInfo &TTI)
- : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI) {}
- /// \return The most profitable vectorization factor and the cost of that VF.
- /// This method checks every power of two up to VF. If UserVF is not ZERO
- /// then this vectorization factor will be selected if vectorization is
- /// possible.
- std::pair<unsigned, unsigned>
- selectVectorizationFactor(bool OptForSize, unsigned UserVF);
- /// \returns The size (in bits) of the widest type in the code that
- /// needs to be vectorized. We ignore values that remain scalar such as
- /// 64 bit loop indices.
- unsigned getWidestType();
- /// \return The most profitable unroll factor.
- /// If UserUF is non-zero then this method finds the best unroll-factor
- /// based on register pressure and other parameters.
- /// VF and LoopCost are the selected vectorization factor and the cost of the
- /// selected VF.
- unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
- unsigned LoopCost);
- /// \brief A struct that represents some properties of the register usage
- /// of a loop.
- struct RegisterUsage {
- /// Holds the number of loop invariant values that are used in the loop.
- unsigned LoopInvariantRegs;
- /// Holds the maximum number of concurrent live intervals in the loop.
- unsigned MaxLocalUsers;
- /// Holds the number of instructions in the loop.
- unsigned NumInstructions;
- };
- /// \return information about the register usage of the loop.
- RegisterUsage calculateRegisterUsage();
- private:
- /// Returns the expected execution cost. The unit of the cost does
- /// not matter because we use the 'cost' units to compare different
- /// vector widths. The cost that is returned is *not* normalized by
- /// the factor width.
- unsigned expectedCost(unsigned VF);
- /// Returns the execution time cost of an instruction for a given vector
- /// width. Vector width of one means scalar.
- unsigned getInstructionCost(Instruction *I, unsigned VF);
- /// A helper function for converting Scalar types to vector types.
- /// If the incoming type is void, we return void. If the VF is 1, we return
- /// the scalar type.
- static Type* ToVectorTy(Type *Scalar, unsigned VF);
- /// The loop that we evaluate.
- Loop *TheLoop;
- /// Scev analysis.
- ScalarEvolution *SE;
- /// Loop Info analysis.
- LoopInfo *LI;
- /// Vectorization legality.
- LoopVectorizationLegality *Legal;
- /// Vector target information.
- const TargetTransformInfo &TTI;
- };
- /// The LoopVectorize Pass.
- struct LoopVectorize : public LoopPass {
- /// Pass identification, replacement for typeid
- static char ID;
- explicit LoopVectorize() : LoopPass(ID) {
- initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
- }
- ScalarEvolution *SE;
- DataLayout *DL;
- LoopInfo *LI;
- TargetTransformInfo *TTI;
- DominatorTree *DT;
- virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
- // We only vectorize innermost loops.
- if (!L->empty())
- return false;
- SE = &getAnalysis<ScalarEvolution>();
- DL = getAnalysisIfAvailable<DataLayout>();
- LI = &getAnalysis<LoopInfo>();
- TTI = &getAnalysis<TargetTransformInfo>();
- DT = &getAnalysis<DominatorTree>();
- DEBUG(dbgs() << "LV: Checking a loop in \"" <<
- L->getHeader()->getParent()->getName() << "\"\n");
- // Check if it is legal to vectorize the loop.
- LoopVectorizationLegality LVL(L, SE, DL, DT);
- if (!LVL.canVectorize()) {
- DEBUG(dbgs() << "LV: Not vectorizing.\n");
- return false;
- }
- // Use the cost model.
- LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI);
- // Check the function attribues to find out if this function should be
- // optimized for size.
- Function *F = L->getHeader()->getParent();
- Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
- Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
- unsigned FnIndex = AttributeSet::FunctionIndex;
- bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
- bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
- if (NoFloat) {
- DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
- "attribute is used.\n");
- return false;
- }
- // Select the optimal vectorization factor.
- std::pair<unsigned, unsigned> VFPair;
- VFPair = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
- // Select the unroll factor.
- unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll,
- VFPair.first, VFPair.second);
- unsigned VF = VFPair.first;
- if (VF == 1) {
- DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
- return false;
- }
- DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ") in "<<
- F->getParent()->getModuleIdentifier()<<"\n");
- DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
- // If we decided that it is *legal* to vectorizer the loop then do it.
- InnerLoopVectorizer LB(L, SE, LI, DT, DL, VF, UF);
- LB.vectorize(&LVL);
- DEBUG(verifyFunction(*L->getHeader()->getParent()));
- return true;
- }
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- LoopPass::getAnalysisUsage(AU);
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequiredID(LCSSAID);
- AU.addRequired<DominatorTree>();
- AU.addRequired<LoopInfo>();
- AU.addRequired<ScalarEvolution>();
- AU.addRequired<TargetTransformInfo>();
- AU.addPreserved<LoopInfo>();
- AU.addPreserved<DominatorTree>();
- }
- };
- } // end anonymous namespace
- //===----------------------------------------------------------------------===//
- // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
- // LoopVectorizationCostModel.
- //===----------------------------------------------------------------------===//
- void
- LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
- Loop *Lp, Value *Ptr) {
- const SCEV *Sc = SE->getSCEV(Ptr);
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
- assert(AR && "Invalid addrec expression");
- const SCEV *Ex = SE->getExitCount(Lp, Lp->getLoopLatch());
- const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
- Pointers.push_back(Ptr);
- Starts.push_back(AR->getStart());
- Ends.push_back(ScEnd);
- }
- Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
- // Save the current insertion location.
- Instruction *Loc = Builder.GetInsertPoint();
- // We need to place the broadcast of invariant variables outside the loop.
- Instruction *Instr = dyn_cast<Instruction>(V);
- bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
- bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
- // Place the code for broadcasting invariant variables in the new preheader.
- if (Invariant)
- Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
- // Broadcast the scalar into all locations in the vector.
- Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
- // Restore the builder insertion point.
- if (Invariant)
- Builder.SetInsertPoint(Loc);
- return Shuf;
- }
- Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, unsigned StartIdx,
- bool Negate) {
- assert(Val->getType()->isVectorTy() && "Must be a vector");
- assert(Val->getType()->getScalarType()->isIntegerTy() &&
- "Elem must be an integer");
- // Create the types.
- Type *ITy = Val->getType()->getScalarType();
- VectorType *Ty = cast<VectorType>(Val->getType());
- int VLen = Ty->getNumElements();
- SmallVector<Constant*, 8> Indices;
- // Create a vector of consecutive numbers from zero to VF.
- for (int i = 0; i < VLen; ++i) {
- int Idx = Negate ? (-i): i;
- Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx));
- }
- // Add the consecutive indices to the vector value.
- Constant *Cv = ConstantVector::get(Indices);
- assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
- return Builder.CreateAdd(Val, Cv, "induction");
- }
- int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
- assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
- // If this value is a pointer induction variable we know it is consecutive.
- PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
- if (Phi && Inductions.count(Phi)) {
- InductionInfo II = Inductions[Phi];
- if (IK_PtrInduction == II.IK)
- return 1;
- }
- GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
- if (!Gep)
- return 0;
- unsigned NumOperands = Gep->getNumOperands();
- Value *LastIndex = Gep->getOperand(NumOperands - 1);
- // Check that all of the gep indices are uniform except for the last.
- for (unsigned i = 0; i < NumOperands - 1; ++i)
- if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
- return 0;
- // We can emit wide load/stores only if the last index is the induction
- // variable.
- const SCEV *Last = SE->getSCEV(LastIndex);
- if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
- const SCEV *Step = AR->getStepRecurrence(*SE);
- // The memory is consecutive because the last index is consecutive
- // and all other indices are loop invariant.
- if (Step->isOne())
- return 1;
- if (Step->isAllOnesValue())
- return -1;
- }
- return 0;
- }
- bool LoopVectorizationLegality::isUniform(Value *V) {
- return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
- }
- InnerLoopVectorizer::VectorParts&
- InnerLoopVectorizer::getVectorValue(Value *V) {
- assert(V != Induction && "The new induction variable should not be used.");
- assert(!V->getType()->isVectorTy() && "Can't widen a vector");
- // If we have this scalar in the map, return it.
- if (WidenMap.has(V))
- return WidenMap.get(V);
- // If this scalar is unknown, assume that it is a constant or that it is
- // loop invariant. Broadcast V and save the value for future uses.
- Value *B = getBroadcastInstrs(V);
- WidenMap.splat(V, B);
- return WidenMap.get(V);
- }
- Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
- assert(Vec->getType()->isVectorTy() && "Invalid type");
- SmallVector<Constant*, 8> ShuffleMask;
- for (unsigned i = 0; i < VF; ++i)
- ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
- return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
- ConstantVector::get(ShuffleMask),
- "reverse");
- }
- void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
- assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
- // Holds vector parameters or scalars, in case of uniform vals.
- SmallVector<VectorParts, 4> Params;
- // Find all of the vectorized parameters.
- for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
- Value *SrcOp = Instr->getOperand(op);
- // If we are accessing the old induction variable, use the new one.
- if (SrcOp == OldInduction) {
- Params.push_back(getVectorValue(SrcOp));
- continue;
- }
- // Try using previously calculated values.
- Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
- // If the src is an instruction that appeared earlier in the basic block
- // then it should already be vectorized.
- if (SrcInst && OrigLoop->contains(SrcInst)) {
- assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
- // The parameter is a vector value from earlier.
- Params.push_back(WidenMap.get(SrcInst));
- } else {
- // The parameter is a scalar from outside the loop. Maybe even a constant.
- VectorParts Scalars;
- Scalars.append(UF, SrcOp);
- Params.push_back(Scalars);
- }
- }
- assert(Params.size() == Instr->getNumOperands() &&
- "Invalid number of operands");
- // Does this instruction return a value ?
- bool IsVoidRetTy = Instr->getType()->isVoidTy();
- Value *UndefVec = IsVoidRetTy ? 0 :
- UndefValue::get(VectorType::get(Instr->getType(), VF));
- // Create a new entry in the WidenMap and initialize it to Undef or Null.
- VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
- // For each scalar that we create:
- for (unsigned Width = 0; Width < VF; ++Width) {
- // For each vector unroll 'part':
- for (unsigned Part = 0; Part < UF; ++Part) {
- Instruction *Cloned = Instr->clone();
- if (!IsVoidRetTy)
- Cloned->setName(Instr->getName() + ".cloned");
- // Replace the operands of the cloned instrucions with extracted scalars.
- for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
- Value *Op = Params[op][Part];
- // Param is a vector. Need to extract the right lane.
- if (Op->getType()->isVectorTy())
- Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
- Cloned->setOperand(op, Op);
- }
- // Place the cloned scalar in the new loop.
- Builder.Insert(Cloned);
- // If the original scalar returns a value we need to place it in a vector
- // so that future users will be able to use it.
- if (!IsVoidRetTy)
- VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
- Builder.getInt32(Width));
- }
- }
- }
- Instruction *
- InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
- Instruction *Loc) {
- LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
- Legal->getRuntimePointerCheck();
- if (!PtrRtCheck->Need)
- return NULL;
- Instruction *MemoryRuntimeCheck = 0;
- unsigned NumPointers = PtrRtCheck->Pointers.size();
- SmallVector<Value* , 2> Starts;
- SmallVector<Value* , 2> Ends;
- SCEVExpander Exp(*SE, "induction");
- // Use this type for pointer arithmetic.
- Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
- for (unsigned i = 0; i < NumPointers; ++i) {
- Value *Ptr = PtrRtCheck->Pointers[i];
- const SCEV *Sc = SE->getSCEV(Ptr);
- if (SE->isLoopInvariant(Sc, OrigLoop)) {
- DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
- *Ptr <<"\n");
- Starts.push_back(Ptr);
- Ends.push_back(Ptr);
- } else {
- DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
- Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
- Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
- Starts.push_back(Start);
- Ends.push_back(End);
- }
- }
- for (unsigned i = 0; i < NumPointers; ++i) {
- for (unsigned j = i+1; j < NumPointers; ++j) {
- Instruction::CastOps Op = Instruction::BitCast;
- Value *Start0 = CastInst::Create(Op, Starts[i], PtrArithTy, "bc", Loc);
- Value *Start1 = CastInst::Create(Op, Starts[j], PtrArithTy, "bc", Loc);
- Value *End0 = CastInst::Create(Op, Ends[i], PtrArithTy, "bc", Loc);
- Value *End1 = CastInst::Create(Op, Ends[j], PtrArithTy, "bc", Loc);
- Value *Cmp0 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
- Start0, End1, "bound0", Loc);
- Value *Cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
- Start1, End0, "bound1", Loc);
- Instruction *IsConflict = BinaryOperator::Create(Instruction::And, Cmp0,
- Cmp1, "found.conflict",
- Loc);
- if (MemoryRuntimeCheck)
- MemoryRuntimeCheck = BinaryOperator::Create(Instruction::Or,
- MemoryRuntimeCheck,
- IsConflict,
- "conflict.rdx", Loc);
- else
- MemoryRuntimeCheck = IsConflict;
- }
- }
- return MemoryRuntimeCheck;
- }
- void
- InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
- /*
- In this function we generate a new loop. The new loop will contain
- the vectorized instructions while the old loop will continue to run the
- scalar remainder.
- [ ] <-- vector loop bypass (may consist of multiple blocks).
- / |
- / v
- | [ ] <-- vector pre header.
- | |
- | v
- | [ ] \
- | [ ]_| <-- vector loop.
- | |
- \ v
- >[ ] <--- middle-block.
- / |
- / v
- | [ ] <--- new preheader.
- | |
- | v
- | [ ] \
- | [ ]_| <-- old scalar loop to handle remainder.
- \ |
- \ v
- >[ ] <-- exit block.
- ...
- */
- BasicBlock *OldBasicBlock = OrigLoop->getHeader();
- BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
- BasicBlock *ExitBlock = OrigLoop->getExitBlock();
- assert(ExitBlock && "Must have an exit block");
- // Some loops have a single integer induction variable, while other loops
- // don't. One example is c++ iterators that often have multiple pointer
- // induction variables. In the code below we also support a case where we
- // don't have a single induction variable.
- OldInduction = Legal->getInduction();
- Type *IdxTy = OldInduction ? OldInduction->getType() :
- DL->getIntPtrType(SE->getContext());
- // Find the loop boundaries.
- const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getLoopLatch());
- assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
- // Get the total trip count from the count by adding 1.
- ExitCount = SE->getAddExpr(ExitCount,
- SE->getConstant(ExitCount->getType(), 1));
- // Expand the trip count and place the new instructions in the preheader.
- // Notice that the pre-header does not change, only the loop body.
- SCEVExpander Exp(*SE, "induction");
- // Count holds the overall loop count (N).
- Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
- BypassBlock->getTerminator());
- // The loop index does not have to start at Zero. Find the original start
- // value from the induction PHI node. If we don't have an induction variable
- // then we know that it starts at zero.
- Value *StartIdx = OldInduction ?
- OldInduction->getIncomingValueForBlock(BypassBlock):
- ConstantInt::get(IdxTy, 0);
- assert(BypassBlock && "Invalid loop structure");
- LoopBypassBlocks.push_back(BypassBlock);
- // Split the single block loop into the two loop structure described above.
- BasicBlock *VectorPH =
- BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
- BasicBlock *VecBody =
- VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
- BasicBlock *MiddleBlock =
- VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
- BasicBlock *ScalarPH =
- MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
- // This is the location in which we add all of the logic for bypassing
- // the new vector loop.
- Instruction *Loc = BypassBlock->getTerminator();
- // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
- // inside the loop.
- Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
- // Generate the induction variable.
- Induction = Builder.CreatePHI(IdxTy, 2, "index");
- // The loop step is equal to the vectorization factor (num of SIMD elements)
- // times the unroll factor (num of SIMD instructions).
- Constant *Step = ConstantInt::get(IdxTy, VF * UF);
- // We may need to extend the index in case there is a type mismatch.
- // We know that the count starts at zero and does not overflow.
- unsigned IdxTyBW = IdxTy->getScalarSizeInBits();
- if (Count->getType() != IdxTy) {
- // The exit count can be of pointer type. Convert it to the correct
- // integer type.
- if (ExitCount->getType()->isPointerTy())
- Count = CastInst::CreatePointerCast(Count, IdxTy, "ptrcnt.to.int", Loc);
- else if (IdxTyBW < Count->getType()->getScalarSizeInBits())
- Count = CastInst::CreateTruncOrBitCast(Count, IdxTy, "tr.cnt", Loc);
- else
- Count = CastInst::CreateZExtOrBitCast(Count, IdxTy, "zext.cnt", Loc);
- }
- // Add the start index to the loop count to get the new end index.
- Value *IdxEnd = BinaryOperator::CreateAdd(Count, StartIdx, "end.idx", Loc);
- // Now we need to generate the expression for N - (N % VF), which is
- // the part that the vectorized body will execute.
- Value *R = BinaryOperator::CreateURem(Count, Step, "n.mod.vf", Loc);
- Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc);
- Value *IdxEndRoundDown = BinaryOperator::CreateAdd(CountRoundDown, StartIdx,
- "end.idx.rnd.down", Loc);
- // Now, compare the new count to zero. If it is zero skip the vector loop and
- // jump to the scalar loop.
- Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
- IdxEndRoundDown,
- StartIdx,
- "cmp.zero", Loc);
- // Generate the code that checks in runtime if arrays overlap. We put the
- // checks into a separate block to make the more common case of few elements
- // faster.
- if (Instruction *MemoryRuntimeCheck = addRuntimeCheck(Legal, Loc)) {
- // Create a new block containing the memory check.
- BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemoryRuntimeCheck,
- "vector.memcheck");
- LoopBypassBlocks.push_back(CheckBlock);
- // Replace the branch into the memory check block with a conditional branch
- // for the "few elements case".
- Instruction *OldTerm = BypassBlock->getTerminator();
- BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
- OldTerm->eraseFromParent();
- Cmp = MemoryRuntimeCheck;
- assert(Loc == CheckBlock->getTerminator());
- }
- BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc);
- // Remove the old terminator.
- Loc->eraseFromParent();
- // We are going to resume the execution of the scalar loop.
- // Go over all of the induction variables that we found and fix the
- // PHIs that are left in the scalar version of the loop.
- // The starting values of PHI nodes depend on the counter of the last
- // iteration in the vectorized loop.
- // If we come from a bypass edge then we need to start from the original
- // start value.
- // This variable saves the new starting index for the scalar loop.
- PHINode *ResumeIndex = 0;
- LoopVectorizationLegality::InductionList::iterator I, E;
- LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
- for (I = List->begin(), E = List->end(); I != E; ++I) {
- PHINode *OrigPhi = I->first;
- LoopVectorizationLegality::InductionInfo II = I->second;
- PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val",
- MiddleBlock->getTerminator());
- Value *EndValue = 0;
- switch (II.IK) {
- case LoopVectorizationLegality::IK_NoInduction:
- llvm_unreachable("Unknown induction");
- case LoopVectorizationLegality::IK_IntInduction: {
- // Handle the integer induction counter:
- assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
- assert(OrigPhi == OldInduction && "Unknown integer PHI");
- // We know what the end value is.
- EndValue = IdxEndRoundDown;
- // We also know which PHI node holds it.
- ResumeIndex = ResumeVal;
- break;
- }
- case LoopVectorizationLegality::IK_ReverseIntInduction: {
- // Convert the CountRoundDown variable to the PHI size.
- unsigned CRDSize = CountRoundDown->getType()->getScalarSizeInBits();
- unsigned IISize = II.StartValue->getType()->getScalarSizeInBits();
- Value *CRD = CountRoundDown;
- if (CRDSize > IISize)
- CRD = CastInst::Create(Instruction::Trunc, CountRoundDown,
- II.StartValue->getType(), "tr.crd",
- LoopBypassBlocks.back()->getTerminator());
- else if (CRDSize < IISize)
- CRD = CastInst::Create(Instruction::SExt, CountRoundDown,
- II.StartValue->getType(),
- "sext.crd",
- LoopBypassBlocks.back()->getTerminator());
- // Handle reverse integer induction counter:
- EndValue =
- BinaryOperator::CreateSub(II.StartValue, CRD, "rev.ind.end",
- LoopBypassBlocks.back()->getTerminator());
- break;
- }
- case LoopVectorizationLegality::IK_PtrInduction: {
- // For pointer induction variables, calculate the offset using
- // the end index.
- EndValue =
- GetElementPtrInst::Create(II.StartValue, CountRoundDown, "ptr.ind.end",
- LoopBypassBlocks.back()->getTerminator());
- break;
- }
- }// end of case
- // The new PHI merges the original incoming value, in case of a bypass,
- // or the value at the end of the vectorized loop.
- for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
- ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
- ResumeVal->addIncoming(EndValue, VecBody);
- // Fix the scalar body counter (PHI node).
- unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
- OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
- }
- // If we are generating a new induction variable then we also need to
- // generate the code that calculates the exit value. This value is not
- // simply the end of the counter because we may skip the vectorized body
- // in case of a runtime check.
- if (!OldInduction){
- assert(!ResumeIndex && "Unexpected resume value found");
- ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
- MiddleBlock->getTerminator());
- for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
- ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
- ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
- }
- // Make sure that we found the index where scalar loop needs to continue.
- assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
- "Invalid resume Index");
- // Add a check in the middle block to see if we have completed
- // all of the iterations in the first vector loop.
- // If (N - N%VF) == N, then we *don't* need to run the remainder.
- Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
- ResumeIndex, "cmp.n",
- MiddleBlock->getTerminator());
- BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
- // Remove the old terminator.
- MiddleBlock->getTerminator()->eraseFromParent();
- // Create i+1 and fill the PHINode.
- Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
- Induction->addIncoming(StartIdx, VectorPH);
- Induction->addIncoming(NextIdx, VecBody);
- // Create the compare.
- Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
- Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
- // Now we have two terminators. Remove the old one from the block.
- VecBody->getTerminator()->eraseFromParent();
- // Get ready to start creating new instructions into the vectorized body.
- Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
- // Create and register the new vector loop.
- Loop* Lp = new Loop();
- Loop *ParentLoop = OrigLoop->getParentLoop();
- // Insert the new loop into the loop nest and register the new basic blocks.
- if (ParentLoop) {
- ParentLoop->addChildLoop(Lp);
- for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
- ParentLoop->addBasicBlockToLoop(LoopBypassBlocks[I], LI->getBase());
- ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
- ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
- ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
- } else {
- LI->addTopLevelLoop(Lp);
- }
- Lp->addBasicBlockToLoop(VecBody, LI->getBase());
- // Save the state.
- LoopVectorPreHeader = VectorPH;
- LoopScalarPreHeader = ScalarPH;
- LoopMiddleBlock = MiddleBlock;
- LoopExitBlock = ExitBlock;
- LoopVectorBody = VecBody;
- LoopScalarBody = OldBasicBlock;
- }
- /// This function returns the identity element (or neutral element) for
- /// the operation K.
- static Constant*
- getReductionIdentity(LoopVectorizationLegality::ReductionKind K, Type *Tp) {
- switch (K) {
- case LoopVectorizationLegality:: RK_IntegerXor:
- case LoopVectorizationLegality:: RK_IntegerAdd:
- case LoopVectorizationLegality:: RK_IntegerOr:
- // Adding, Xoring, Oring zero to a number does not change it.
- return ConstantInt::get(Tp, 0);
- case LoopVectorizationLegality:: RK_IntegerMult:
- // Multiplying a number by 1 does not change it.
- return ConstantInt::get(Tp, 1);
- case LoopVectorizationLegality:: RK_IntegerAnd:
- // AND-ing a number with an all-1 value does not change it.
- return ConstantInt::get(Tp, -1, true);
- case LoopVectorizationLegality:: RK_FloatMult:
- // Multiplying a number by 1 does not change it.
- return ConstantFP::get(Tp, 1.0L);
- case LoopVectorizationLegality:: RK_FloatAdd:
- // Adding zero to a number does not change it.
- return ConstantFP::get(Tp, 0.0L);
- default:
- llvm_unreachable("Unknown reduction kind");
- }
- }
- static bool
- isTriviallyVectorizableIntrinsic(Instruction *Inst) {
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
- if (!II)
- return false;
- switch (II->getIntrinsicID()) {
- case Intrinsic::sqrt:
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::log:
- case Intrinsic::log10:
- case Intrinsic::log2:
- case Intrinsic::fabs:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::pow:
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- return true;
- default:
- return false;
- }
- return false;
- }
- /// This function translates the reduction kind to an LLVM binary operator.
- static Instruction::BinaryOps
- getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
- switch (Kind) {
- case LoopVectorizationLegality::RK_IntegerAdd:
- return Instruction::Add;
- case LoopVectorizationLegality::RK_IntegerMult:
- return Instruction::Mul;
- case LoopVectorizationLegality::RK_IntegerOr:
- return Instruction::Or;
- case LoopVectorizationLegality::RK_IntegerAnd:
- return Instruction::And;
- case LoopVectorizationLegality::RK_IntegerXor:
- return Instruction::Xor;
- case LoopVectorizationLegality::RK_FloatMult:
- return Instruction::FMul;
- case LoopVectorizationLegality::RK_FloatAdd:
- return Instruction::FAdd;
- default:
- llvm_unreachable("Unknown reduction operation");
- }
- }
- void
- InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
- //===------------------------------------------------===//
- //
- // Notice: any optimization or new instruction that go
- // into the code below should be also be implemented in
- // the cost-model.
- //
- //===------------------------------------------------===//
- BasicBlock &BB = *OrigLoop->getHeader();
- Constant *Zero =
- ConstantInt::get(IntegerType::getInt32Ty(BB.getContext()), 0);
- // In order to support reduction variables we need to be able to vectorize
- // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
- // stages. First, we create a new vector PHI node with no incoming edges.
- // We use this value when we vectorize all of the instructions that use the
- // PHI. Next, after all of the instructions in the block are complete we
- // add the new incoming edges to the PHI. At this point all of the
- // instructions in the basic block are vectorized, so we can use them to
- // construct the PHI.
- PhiVector RdxPHIsToFix;
- // Scan the loop in a topological order to ensure that defs are vectorized
- // before users.
- LoopBlocksDFS DFS(OrigLoop);
- DFS.perform(LI);
- // Vectorize all of the blocks in the original loop.
- for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
- be = DFS.endRPO(); bb != be; ++bb)
- vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
- // At this point every instruction in the original loop is widened to
- // a vector form. We are almost done. Now, we need to fix the PHI nodes
- // that we vectorized. The PHI nodes are currently empty because we did
- // not want to introduce cycles. Notice that the remaining PHI nodes
- // that we need to fix are reduction variables.
- // Create the 'reduced' values for each of the induction vars.
- // The reduced values are the vector values that we scalarize and combine
- // after the loop is finished.
- for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
- it != e; ++it) {
- PHINode *RdxPhi = *it;
- assert(RdxPhi && "Unable to recover vectorized PHI");
- // Find the reduction variable descriptor.
- assert(Legal->getReductionVars()->count(RdxPhi) &&
- "Unable to find the reduction variable");
- LoopVectorizationLegality::ReductionDescriptor RdxDesc =
- (*Legal->getReductionVars())[RdxPhi];
- // We need to generate a reduction vector from the incoming scalar.
- // To do so, we need to generate the 'identity' vector and overide
- // one of the elements with the incoming scalar reduction. We need
- // to do it in the vector-loop preheader.
- Builder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
- // This is the vector-clone of the value that leaves the loop.
- VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
- Type *VecTy = VectorExit[0]->getType();
- // Find the reduction identity variable. Zero for addition, or, xor,
- // one for multiplication, -1 for And.
- Constant *Iden = getReductionIdentity(RdxDesc.Kind, VecTy->getScalarType());
- Constant *Identity = ConstantVector::getSplat(VF, Iden);
- // This vector is the Identity vector where the first element is the
- // incoming scalar reduction.
- Value *VectorStart = Builder.CreateInsertElement(Identity,
- RdxDesc.StartValue, Zero);
- // Fix the vector-loop phi.
- // We created the induction variable so we know that the
- // preheader is the first entry.
- BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
- // Reductions do not have to start at zero. They can start with
- // any loop invariant values.
- VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
- BasicBlock *Latch = OrigLoop->getLoopLatch();
- Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
- VectorParts &Val = getVectorValue(LoopVal);
- for (unsigned part = 0; part < UF; ++part) {
- // Make sure to add the reduction stat value only to the
- // first unroll part.
- Value *StartVal = (part == 0) ? VectorStart : Identity;
- cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
- cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
- }
- // Before each round, move the insertion point right between
- // the PHIs and the values we are going to write.
- // This allows us to write both PHINodes and the extractelement
- // instructions.
- Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
- VectorParts RdxParts;
- for (unsigned part = 0; part < UF; ++part) {
- // This PHINode contains the vectorized reduction variable, or
- // the initial value vector, if we bypass the vector loop.
- VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
- PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
- Value *StartVal = (part == 0) ? VectorStart : Identity;
- for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
- NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
- NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
- RdxParts.push_back(NewPhi);
- }
- // Reduce all of the unrolled parts into a single vector.
- Value *ReducedPartRdx = RdxParts[0];
- for (unsigned part = 1; part < UF; ++part) {
- Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
- ReducedPartRdx = Builder.CreateBinOp(Op, RdxParts[part], ReducedPartRdx,
- "bin.rdx");
- }
- // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
- // and vector ops, reducing the set of values being computed by half each
- // round.
- assert(isPowerOf2_32(VF) &&
- "Reduction emission only supported for pow2 vectors!");
- Value *TmpVec = ReducedPartRdx;
- SmallVector<Constant*, 32> ShuffleMask(VF, 0);
- for (unsigned i = VF; i != 1; i >>= 1) {
- // Move the upper half of the vector to the lower half.
- for (unsigned j = 0; j != i/2; ++j)
- ShuffleMask[j] = Builder.getInt32(i/2 + j);
- // Fill the rest of the mask with undef.
- std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
- UndefValue::get(Builder.getInt32Ty()));
- Value *Shuf =
- Builder.CreateShuffleVector(TmpVec,
- UndefValue::get(TmpVec->getType()),
- ConstantVector::get(ShuffleMask),
- "rdx.shuf");
- Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
- TmpVec = Builder.CreateBinOp(Op, TmpVec, Shuf, "bin.rdx");
- }
- // The result is in the first element of the vector.
- Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
- // Now, we need to fix the users of the reduction variable
- // inside and outside of the scalar remainder loop.
- // We know that the loop is in LCSSA form. We need to update the
- // PHI nodes in the exit blocks.
- for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
- LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
- PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
- if (!LCSSAPhi) continue;
- // All PHINodes need to have a single entry edge, or two if
- // we already fixed them.
- assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
- // We found our reduction value exit-PHI. Update it with the
- // incoming bypass edge.
- if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
- // Add an edge coming from the bypass.
- LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
- break;
- }
- }// end of the LCSSA phi scan.
- // Fix the scalar loop reduction variable with the incoming reduction sum
- // from the vector body and from the backedge value.
- int IncomingEdgeBlockIdx =
- (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
- assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
- // Pick the other block.
- int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
- (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
- (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
- }// end of for each redux variable.
- // The Loop exit block may have single value PHI nodes where the incoming
- // value is 'undef'. While vectorizing we only handled real values that
- // were defined inside the loop. Here we handle the 'undef case'.
- // See PR14725.
- for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
- LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
- PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
- if (!LCSSAPhi) continue;
- if (LCSSAPhi->getNumIncomingValues() == 1)
- LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
- LoopMiddleBlock);
- }
- }
- InnerLoopVectorizer::VectorParts
- InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
- assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
- "Invalid edge");
- VectorParts SrcMask = createBlockInMask(Src);
- // The terminator has to be a branch inst!
- BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
- assert(BI && "Unexpected terminator found");
- if (BI->isConditional()) {
- VectorParts EdgeMask = getVectorValue(BI->getCondition());
- if (BI->getSuccessor(0) != Dst)
- for (unsigned part = 0; part < UF; ++part)
- EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
- for (unsigned part = 0; part < UF; ++part)
- EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
- return EdgeMask;
- }
- return SrcMask;
- }
- InnerLoopVectorizer::VectorParts
- InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
- assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
- // Loop incoming mask is all-one.
- if (OrigLoop->getHeader() == BB) {
- Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
- return getVectorValue(C);
- }
- // This is the block mask. We OR all incoming edges, and with zero.
- Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
- VectorParts BlockMask = getVectorValue(Zero);
- // For each pred:
- for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
- VectorParts EM = createEdgeMask(*it, BB);
- for (unsigned part = 0; part < UF; ++part)
- BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
- }
- return BlockMask;
- }
- void
- InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
- BasicBlock *BB, PhiVector *PV) {
- Constant *Zero = Builder.getInt32(0);
- // For each instruction in the old loop.
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- VectorParts &Entry = WidenMap.get(it);
- switch (it->getOpcode()) {
- case Instruction::Br:
- // Nothing to do for PHIs and BR, since we already took care of the
- // loop control flow instructions.
- continue;
- case Instruction::PHI:{
- PHINode* P = cast<PHINode>(it);
- // Handle reduction variables:
- if (Legal->getReductionVars()->count(P)) {
- for (unsigned part = 0; part < UF; ++part) {
- // This is phase one of vectorizing PHIs.
- Type *VecTy = VectorType::get(it->getType(), VF);
- Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
- LoopVectorBody-> getFirstInsertionPt());
- }
- PV->push_back(P);
- continue;
- }
- // Check for PHI nodes that are lowered to vector selects.
- if (P->getParent() != OrigLoop->getHeader()) {
- // We know that all PHIs in non header blocks are converted into
- // selects, so we don't have to worry about the insertion order and we
- // can just use the builder.
- // At this point we generate the predication tree. There may be
- // duplications since this is a simple recursive scan, but future
- // optimizations will clean it up.
- VectorParts Cond = createEdgeMask(P->getIncomingBlock(0),
- P->getParent());
-
- for (unsigned part = 0; part < UF; ++part) {
- VectorParts &In0 = getVectorValue(P->getIncomingValue(0));
- VectorParts &In1 = getVectorValue(P->getIncomingValue(1));
- Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In1[part],
- "predphi");
- }
- continue;
- }
- // This PHINode must be an induction variable.
- // Make sure that we know about it.
- assert(Legal->getInductionVars()->count(P) &&
- "Not an induction variable");
- LoopVectorizationLegality::InductionInfo II =
- Legal->getInductionVars()->lookup(P);
- switch (II.IK) {
- case LoopVectorizationLegality::IK_NoInduction:
- llvm_unreachable("Unknown induction");
- case LoopVectorizationLegality::IK_IntInduction: {
- assert(P == OldInduction && "Unexpected PHI");
- Value *Broadcasted = getBroadcastInstrs(Induction);
- // After broadcasting the induction variable we need to make the
- // vector consecutive by adding 0, 1, 2 ...
- for (unsigned part = 0; part < UF; ++part)
- Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
- continue;
- }
- case LoopVectorizationLegality::IK_ReverseIntInduction:
- case LoopVectorizationLegality::IK_PtrInduction:
- // Handle reverse integer and pointer inductions.
- Value *StartIdx = 0;
- // If we have a single integer induction variable then use it.
- // Otherwise, start counting at zero.
- if (OldInduction) {
- LoopVectorizationLegality::InductionInfo OldII =
- Legal->getInductionVars()->lookup(OldInduction);
- StartIdx = OldII.StartValue;
- } else {
- StartIdx = ConstantInt::get(Induction->getType(), 0);
- }
- // This is the normalized GEP that starts counting at zero.
- Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
- "normalized.idx");
- // Handle the reverse integer induction variable case.
- if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
- IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
- Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
- "resize.norm.idx");
- Value *ReverseInd = Builder.CreateSub(II.StartValue, CNI,
- "reverse.idx");
- // This is a new value so do not hoist it out.
- Value *Broadcasted = getBroadcastInstrs(ReverseInd);
- // After broadcasting the induction variable we need to make the
- // vector consecutive by adding ... -3, -2, -1, 0.
- for (unsigned part = 0; part < UF; ++part)
- Entry[part] = getConsecutiveVector(Broadcasted, -VF * part, true);
- continue;
- }
- // Handle the pointer induction variable case.
- assert(P->getType()->isPointerTy() && "Unexpected type.");
- // This is the vector of results. Notice that we don't generate
- // vector geps because scalar geps result in better code.
- for (unsigned part = 0; part < UF; ++part) {
- Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
- for (unsigned int i = 0; i < VF; ++i) {
- Constant *Idx = ConstantInt::get(Induction->getType(),
- i + part * VF);
- Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx,
- "gep.idx");
- Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
- "next.gep");
- VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
- Builder.getInt32(i),
- "insert.gep");
- }
- Entry[part] = VecVal;
- }
- continue;
- }
- }// End of PHI.
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- // Just widen binops.
- BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
- VectorParts &A = getVectorValue(it->getOperand(0));
- VectorParts &B = getVectorValue(it->getOperand(1));
- // Use this vector value for all users of the original instruction.
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
- // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
- BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
- if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
- VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
- VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
- }
- if (VecOp && isa<PossiblyExactOperator>(VecOp))
- VecOp->setIsExact(BinOp->isExact());
- Entry[Part] = V;
- }
- break;
- }
- case Instruction::Select: {
- // Widen selects.
- // If the selector is loop invariant we can create a select
- // instruction with a scalar condition. Otherwise, use vector-select.
- bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
- OrigLoop);
- // The condition can be loop invariant but still defined inside the
- // loop. This means that we can't just use the original 'cond' value.
- // We have to take the 'vectorized' value and pick the first lane.
- // Instcombine will make this a no-op.
- VectorParts &Cond = getVectorValue(it->getOperand(0));
- VectorParts &Op0 = getVectorValue(it->getOperand(1));
- VectorParts &Op1 = getVectorValue(it->getOperand(2));
- Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
- Builder.getInt32(0));
- for (unsigned Part = 0; Part < UF; ++Part) {
- Entry[Part] = Builder.CreateSelect(
- InvariantCond ? ScalarCond : Cond[Part],
- Op0[Part],
- Op1[Part]);
- }
- break;
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- // Widen compares. Generate vector compares.
- bool FCmp = (it->getOpcode() == Instruction::FCmp);
- CmpInst *Cmp = dyn_cast<CmpInst>(it);
- VectorParts &A = getVectorValue(it->getOperand(0));
- VectorParts &B = getVectorValue(it->getOperand(1));
- for (unsigned Part = 0; Part < UF; ++Part) {
- Value *C = 0;
- if (FCmp)
- C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
- else
- C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
- Entry[Part] = C;
- }
- break;
- }
- case Instruction::Store: {
- // Attempt to issue a wide store.
- StoreInst *SI = dyn_cast<StoreInst>(it);
- Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
- Value *Ptr = SI->getPointerOperand();
- unsigned Alignment = SI->getAlignment();
- assert(!Legal->isUniform(Ptr) &&
- "We do not allow storing to uniform addresses");
- int Stride = Legal->isConsecutivePtr(Ptr);
- bool Reverse = Stride < 0;
- if (Stride == 0) {
- scalarizeInstruction(it);
- break;
- }
- // Handle consecutive stores.
- GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
- if (Gep) {
- // The last index does not have to be the induction. It can be
- // consecutive and be a function of the index. For example A[I+1];
- unsigned NumOperands = Gep->getNumOperands();
- Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
- VectorParts &GEPParts = getVectorValue(LastGepOperand);
- Value *LastIndex = GEPParts[0];
- LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
- // Create the new GEP with the new induction variable.
- GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
- Gep2->setOperand(NumOperands - 1, LastIndex);
- Ptr = Builder.Insert(Gep2);
- } else {
- // Use the induction element ptr.
- assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
- VectorParts &PtrVal = getVectorValue(Ptr);
- Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
- }
- VectorParts &StoredVal = getVectorValue(SI->getValueOperand());
- for (unsigned Part = 0; Part < UF; ++Part) {
- // Calculate the pointer for the specific unroll-part.
- Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
- if (Reverse) {
- // If we store to reverse consecutive memory locations then we need
- // to reverse the order of elements in the stored value.
- StoredVal[Part] = reverseVector(StoredVal[Part]);
- // If the address is consecutive but reversed, then the
- // wide store needs to start at the last vector element.
- PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
- PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
- }
- Value *VecPtr = Builder.CreateBitCast(PartPtr, StTy->getPointerTo());
- Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
- }
- break;
- }
- case Instruction::Load: {
- // Attempt to issue a wide load.
- LoadInst *LI = dyn_cast<LoadInst>(it);
- Type *RetTy = VectorType::get(LI->getType(), VF);
- Value *Ptr = LI->getPointerOperand();
- unsigned Alignment = LI->getAlignment();
- // If the pointer is loop invariant or if it is non consecutive,
- // scalarize the load.
- int Stride = Legal->isConsecutivePtr(Ptr);
- bool Reverse = Stride < 0;
- if (Legal->isUniform(Ptr) || Stride == 0) {
- scalarizeInstruction(it);
- break;
- }
- GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
- if (Gep) {
- // The last index does not have to be the induction. It can be
- // consecutive and be a function of the index. For example A[I+1];
- unsigned NumOperands = Gep->getNumOperands();
- Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
- VectorParts &GEPParts = getVectorValue(LastGepOperand);
- Value *LastIndex = GEPParts[0];
- LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
- // Create the new GEP with the new induction variable.
- GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
- Gep2->setOperand(NumOperands - 1, LastIndex);
- Ptr = Builder.Insert(Gep2);
- } else {
- // Use the induction element ptr.
- assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
- VectorParts &PtrVal = getVectorValue(Ptr);
- Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
- }
- for (unsigned Part = 0; Part < UF; ++Part) {
- // Calculate the pointer for the specific unroll-part.
- Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
- if (Reverse) {
- // If the address is consecutive but reversed, then the
- // wide store needs to start at the last vector element.
- PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
- PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
- }
- Value *VecPtr = Builder.CreateBitCast(PartPtr, RetTy->getPointerTo());
- Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
- cast<LoadInst>(LI)->setAlignment(Alignment);
- Entry[Part] = Reverse ? reverseVector(LI) : LI;
- }
- break;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- CastInst *CI = dyn_cast<CastInst>(it);
- /// Optimize the special case where the source is the induction
- /// variable. Notice that we can only optimize the 'trunc' case
- /// because: a. FP conversions lose precision, b. sext/zext may wrap,
- /// c. other casts depend on pointer size.
- if (CI->getOperand(0) == OldInduction &&
- it->getOpcode() == Instruction::Trunc) {
- Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
- CI->getType());
- Value *Broadcasted = getBroadcastInstrs(ScalarCast);
- for (unsigned Part = 0; Part < UF; ++Part)
- Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
- break;
- }
- /// Vectorize casts.
- Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
- VectorParts &A = getVectorValue(it->getOperand(0));
- for (unsigned Part = 0; Part < UF; ++Part)
- Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
- break;
- }
- case Instruction::Call: {
- assert(isTriviallyVectorizableIntrinsic(it));
- Module *M = BB->getParent()->getParent();
- IntrinsicInst *II = cast<IntrinsicInst>(it);
- Intrinsic::ID ID = II->getIntrinsicID();
- for (unsigned Part = 0; Part < UF; ++Part) {
- SmallVector<Value*, 4> Args;
- for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i) {
- VectorParts &Arg = getVectorValue(II->getArgOperand(i));
- Args.push_back(Arg[Part]);
- }
- Type *Tys[] = { VectorType::get(II->getType()->getScalarType(), VF) };
- Function *F = Intrinsic::getDeclaration(M, ID, Tys);
- Entry[Part] = Builder.CreateCall(F, Args);
- }
- break;
- }
- default:
- // All other instructions are unsupported. Scalarize them.
- scalarizeInstruction(it);
- break;
- }// end of switch.
- }// end of for_each instr.
- }
- void InnerLoopVectorizer::updateAnalysis() {
- // Forget the original basic block.
- SE->forgetLoop(OrigLoop);
- // Update the dominator tree information.
- assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
- "Entry does not dominate exit.");
- for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
- DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
- DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
- DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
- DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
- DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
- DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
- DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
- DEBUG(DT->verifyAnalysis());
- }
- bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
- if (!EnableIfConversion)
- return false;
- assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
- std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
- // Collect the blocks that need predication.
- for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
- BasicBlock *BB = LoopBlocks[i];
- // We don't support switch statements inside loops.
- if (!isa<BranchInst>(BB->getTerminator()))
- return false;
- // We must have at most two predecessors because we need to convert
- // all PHIs to selects.
- unsigned Preds = std::distance(pred_begin(BB), pred_end(BB));
- if (Preds > 2)
- return false;
- // We must be able to predicate all blocks that need to be predicated.
- if (blockNeedsPredication(BB) && !blockCanBePredicated(BB))
- return false;
- }
- // We can if-convert this loop.
- return true;
- }
- bool LoopVectorizationLegality::canVectorize() {
- assert(TheLoop->getLoopPreheader() && "No preheader!!");
- // We can only vectorize innermost loops.
- if (TheLoop->getSubLoopsVector().size())
- return false;
- // We must have a single backedge.
- if (TheLoop->getNumBackEdges() != 1)
- return false;
- // We must have a single exiting block.
- if (!TheLoop->getExitingBlock())
- return false;
- unsigned NumBlocks = TheLoop->getNumBlocks();
- // Check if we can if-convert non single-bb loops.
- if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
- DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
- return false;
- }
- // We need to have a loop header.
- BasicBlock *Latch = TheLoop->getLoopLatch();
- DEBUG(dbgs() << "LV: Found a loop: " <<
- TheLoop->getHeader()->getName() << "\n");
- // ScalarEvolution needs to be able to find the exit count.
- const SCEV *ExitCount = SE->getExitCount(TheLoop, Latch);
- if (ExitCount == SE->getCouldNotCompute()) {
- DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
- return false;
- }
- // Do not loop-vectorize loops with a tiny trip count.
- unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
- if (TC > 0u && TC < TinyTripCountVectorThreshold) {
- DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
- "This loop is not worth vectorizing.\n");
- return false;
- }
- // Check if we can vectorize the instructions and CFG in this loop.
- if (!canVectorizeInstrs()) {
- DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
- return false;
- }
- // Go over each instruction and look at memory deps.
- if (!canVectorizeMemory()) {
- DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
- return false;
- }
- // Collect all of the variables that remain uniform after vectorization.
- collectLoopUniforms();
- DEBUG(dbgs() << "LV: We can vectorize this loop" <<
- (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
- <<"!\n");
- // Okay! We can vectorize. At this point we don't have any other mem analysis
- // which may limit our maximum vectorization factor, so just return true with
- // no restrictions.
- return true;
- }
- bool LoopVectorizationLegality::canVectorizeInstrs() {
- BasicBlock *PreHeader = TheLoop->getLoopPreheader();
- BasicBlock *Header = TheLoop->getHeader();
- // For each block in the loop.
- for (Loop::block_iterator bb = TheLoop->block_begin(),
- be = TheLoop->block_end(); bb != be; ++bb) {
- // Scan the instructions in the block and look for hazards.
- for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
- ++it) {
- if (PHINode *Phi = dyn_cast<PHINode>(it)) {
- // This should not happen because the loop should be normalized.
- if (Phi->getNumIncomingValues() != 2) {
- DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
- return false;
- }
- // Check that this PHI type is allowed.
- if (!Phi->getType()->isIntegerTy() &&
- !Phi->getType()->isFloatingPointTy() &&
- !Phi->getType()->isPointerTy()) {
- DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
- return false;
- }
- // If this PHINode is not in the header block, then we know that we
- // can convert it to select during if-conversion. No need to check if
- // the PHIs in this block are induction or reduction variables.
- if (*bb != Header)
- continue;
- // This is the value coming from the preheader.
- Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
- // Check if this is an induction variable.
- InductionKind IK = isInductionVariable(Phi);
- if (IK_NoInduction != IK) {
- // Int inductions are special because we only allow one IV.
- if (IK == IK_IntInduction) {
- if (Induction) {
- DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
- return false;
- }
- Induction = Phi;
- }
- DEBUG(dbgs() << "LV: Found an induction variable.\n");
- Inductions[Phi] = InductionInfo(StartValue, IK);
- continue;
- }
- if (AddReductionVar(Phi, RK_IntegerAdd)) {
- DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, RK_IntegerMult)) {
- DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, RK_IntegerOr)) {
- DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, RK_IntegerAnd)) {
- DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, RK_IntegerXor)) {
- DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, RK_FloatMult)) {
- DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
- continue;
- }
- if (AddReductionVar(Phi, RK_FloatAdd)) {
- DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
- continue;
- }
- DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
- return false;
- }// end of PHI handling
- // We still don't handle functions.
- CallInst *CI = dyn_cast<CallInst>(it);
- if (CI && !isTriviallyVectorizableIntrinsic(it)) {
- DEBUG(dbgs() << "LV: Found a call site.\n");
- return false;
- }
- // Check that the instruction return type is vectorizable.
- if (!VectorType::isValidElementType(it->getType()) &&
- !it->getType()->isVoidTy()) {
- DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
- return false;
- }
- // Check that the stored type is vectorizable.
- if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
- Type *T = ST->getValueOperand()->getType();
- if (!VectorType::isValidElementType(T))
- return false;
- }
- // Reduction instructions are allowed to have exit users.
- // All other instructions must not have external users.
- if (!AllowedExit.count(it))
- //Check that all of the users of the loop are inside the BB.
- for (Value::use_iterator I = it->use_begin(), E = it->use_end();
- I != E; ++I) {
- Instruction *U = cast<Instruction>(*I);
- // This user may be a reduction exit value.
- if (!TheLoop->contains(U)) {
- DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
- return false;
- }
- }
- } // next instr.
- }
- if (!Induction) {
- DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
- assert(getInductionVars()->size() && "No induction variables");
- }
- return true;
- }
- void LoopVectorizationLegality::collectLoopUniforms() {
- // We now know that the loop is vectorizable!
- // Collect variables that will remain uniform after vectorization.
- std::vector<Value*> Worklist;
- BasicBlock *Latch = TheLoop->getLoopLatch();
- // Start with the conditional branch and walk up the block.
- Worklist.push_back(Latch->getTerminator()->getOperand(0));
- while (Worklist.size()) {
- Instruction *I = dyn_cast<Instruction>(Worklist.back());
- Worklist.pop_back();
- // Look at instructions inside this loop.
- // Stop when reaching PHI nodes.
- // TODO: we need to follow values all over the loop, not only in this block.
- if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
- continue;
- // This is a known uniform.
- Uniforms.insert(I);
- // Insert all operands.
- for (int i = 0, Op = I->getNumOperands(); i < Op; ++i) {
- Worklist.push_back(I->getOperand(i));
- }
- }
- }
- bool LoopVectorizationLegality::canVectorizeMemory() {
- typedef SmallVector<Value*, 16> ValueVector;
- typedef SmallPtrSet<Value*, 16> ValueSet;
- // Holds the Load and Store *instructions*.
- ValueVector Loads;
- ValueVector Stores;
- PtrRtCheck.Pointers.clear();
- PtrRtCheck.Need = false;
- // For each block.
- for (Loop::block_iterator bb = TheLoop->block_begin(),
- be = TheLoop->block_end(); bb != be; ++bb) {
- // Scan the BB and collect legal loads and stores.
- for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
- ++it) {
- // If this is a load, save it. If this instruction can read from memory
- // but is not a load, then we quit. Notice that we don't handle function
- // calls that read or write.
- if (it->mayReadFromMemory()) {
- LoadInst *Ld = dyn_cast<LoadInst>(it);
- if (!Ld) return false;
- if (!Ld->isSimple()) {
- DEBUG(dbgs() << "LV: Found a non-simple load.\n");
- return false;
- }
- Loads.push_back(Ld);
- continue;
- }
- // Save 'store' instructions. Abort if other instructions write to memory.
- if (it->mayWriteToMemory()) {
- StoreInst *St = dyn_cast<StoreInst>(it);
- if (!St) return false;
- if (!St->isSimple()) {
- DEBUG(dbgs() << "LV: Found a non-simple store.\n");
- return false;
- }
- Stores.push_back(St);
- }
- } // next instr.
- } // next block.
- // Now we have two lists that hold the loads and the stores.
- // Next, we find the pointers that they use.
- // Check if we see any stores. If there are no stores, then we don't
- // care if the pointers are *restrict*.
- if (!Stores.size()) {
- DEBUG(dbgs() << "LV: Found a read-only loop!\n");
- return true;
- }
- // Holds the read and read-write *pointers* that we find.
- ValueVector Reads;
- ValueVector ReadWrites;
- // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
- // multiple times on the same object. If the ptr is accessed twice, once
- // for read and once for write, it will only appear once (on the write
- // list). This is okay, since we are going to check for conflicts between
- // writes and between reads and writes, but not between reads and reads.
- ValueSet Seen;
- ValueVector::iterator I, IE;
- for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
- StoreInst *ST = cast<StoreInst>(*I);
- Value* Ptr = ST->getPointerOperand();
- if (isUniform(Ptr)) {
- DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
- return false;
- }
- // If we did *not* see this pointer before, insert it to
- // the read-write list. At this phase it is only a 'write' list.
- if (Seen.insert(Ptr))
- ReadWrites.push_back(Ptr);
- }
- for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
- LoadInst *LD = cast<LoadInst>(*I);
- Value* Ptr = LD->getPointerOperand();
- // If we did *not* see this pointer before, insert it to the
- // read list. If we *did* see it before, then it is already in
- // the read-write list. This allows us to vectorize expressions
- // such as A[i] += x; Because the address of A[i] is a read-write
- // pointer. This only works if the index of A[i] is consecutive.
- // If the address of i is unknown (for example A[B[i]]) then we may
- // read a few words, modify, and write a few words, and some of the
- // words may be written to the same address.
- if (Seen.insert(Ptr) || 0 == isConsecutivePtr(Ptr))
- Reads.push_back(Ptr);
- }
- // If we write (or read-write) to a single destination and there are no
- // other reads in this loop then is it safe to vectorize.
- if (ReadWrites.size() == 1 && Reads.size() == 0) {
- DEBUG(dbgs() << "LV: Found a write-only loop!\n");
- return true;
- }
- // Find pointers with computable bounds. We are going to use this information
- // to place a runtime bound check.
- bool CanDoRT = true;
- for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I)
- if (hasComputableBounds(*I)) {
- PtrRtCheck.insert(SE, TheLoop, *I);
- DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
- } else {
- CanDoRT = false;
- break;
- }
- for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I)
- if (hasComputableBounds(*I)) {
- PtrRtCheck.insert(SE, TheLoop, *I);
- DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
- } else {
- CanDoRT = false;
- break;
- }
- // Check that we did not collect too many pointers or found a
- // unsizeable pointer.
- if (!CanDoRT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
- PtrRtCheck.reset();
- CanDoRT = false;
- }
- if (CanDoRT) {
- DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
- }
- bool NeedRTCheck = false;
- // Now that the pointers are in two lists (Reads and ReadWrites), we
- // can check that there are no conflicts between each of the writes and
- // between the writes to the reads.
- ValueSet WriteObjects;
- ValueVector TempObjects;
- // Check that the read-writes do not conflict with other read-write
- // pointers.
- bool AllWritesIdentified = true;
- for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) {
- GetUnderlyingObjects(*I, TempObjects, DL);
- for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
- it != e; ++it) {
- if (!isIdentifiedObject(*it)) {
- DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n");
- NeedRTCheck = true;
- AllWritesIdentified = false;
- }
- if (!WriteObjects.insert(*it)) {
- DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
- << **it <<"\n");
- return false;
- }
- }
- TempObjects.clear();
- }
- /// Check that the reads don't conflict with the read-writes.
- for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) {
- GetUnderlyingObjects(*I, TempObjects, DL);
- for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
- it != e; ++it) {
- // If all of the writes are identified then we don't care if the read
- // pointer is identified or not.
- if (!AllWritesIdentified && !isIdentifiedObject(*it)) {
- DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n");
- NeedRTCheck = true;
- }
- if (WriteObjects.count(*it)) {
- DEBUG(dbgs() << "LV: Found a possible read/write reorder:"
- << **it <<"\n");
- return false;
- }
- }
- TempObjects.clear();
- }
- PtrRtCheck.Need = NeedRTCheck;
- if (NeedRTCheck && !CanDoRT) {
- DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
- "the array bounds.\n");
- PtrRtCheck.reset();
- return false;
- }
- DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
- " need a runtime memory check.\n");
- return true;
- }
- bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
- ReductionKind Kind) {
- if (Phi->getNumIncomingValues() != 2)
- return false;
- // Reduction variables are only found in the loop header block.
- if (Phi->getParent() != TheLoop->getHeader())
- return false;
- // Obtain the reduction start value from the value that comes from the loop
- // preheader.
- Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
- // ExitInstruction is the single value which is used outside the loop.
- // We only allow for a single reduction value to be used outside the loop.
- // This includes users of the reduction, variables (which form a cycle
- // which ends in the phi node).
- Instruction *ExitInstruction = 0;
- // Indicates that we found a binary operation in our scan.
- bool FoundBinOp = false;
- // Iter is our iterator. We start with the PHI node and scan for all of the
- // users of this instruction. All users must be instructions that can be
- // used as reduction variables (such as ADD). We may have a single
- // out-of-block user. The cycle must end with the original PHI.
- Instruction *Iter = Phi;
- while (true) {
- // If the instruction has no users then this is a broken
- // chain and can't be a reduction variable.
- if (Iter->use_empty())
- return false;
- // Did we find a user inside this loop already ?
- bool FoundInBlockUser = false;
- // Did we reach the initial PHI node already ?
- bool FoundStartPHI = false;
- // Is this a bin op ?
- FoundBinOp |= !isa<PHINode>(Iter);
- // For each of the *users* of iter.
- for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
- it != e; ++it) {
- Instruction *U = cast<Instruction>(*it);
- // We already know that the PHI is a user.
- if (U == Phi) {
- FoundStartPHI = true;
- continue;
- }
- // Check if we found the exit user.
- BasicBlock *Parent = U->getParent();
- if (!TheLoop->contains(Parent)) {
- // Exit if you find multiple outside users.
- if (ExitInstruction != 0)
- return false;
- ExitInstruction = Iter;
- }
- // We allow in-loop PHINodes which are not the original reduction PHI
- // node. If this PHI is the only user of Iter (happens in IF w/ no ELSE
- // structure) then don't skip this PHI.
- if (isa<PHINode>(Iter) && isa<PHINode>(U) &&
- U->getParent() != TheLoop->getHeader() &&
- TheLoop->contains(U) &&
- Iter->getNumUses() > 1)
- continue;
- // We can't have multiple inside users.
- if (FoundInBlockUser)
- return false;
- FoundInBlockUser = true;
- // Any reduction instr must be of one of the allowed kinds.
- if (!isReductionInstr(U, Kind))
- return false;
- // Reductions of instructions such as Div, and Sub is only
- // possible if the LHS is the reduction variable.
- if (!U->isCommutative() && !isa<PHINode>(U) && U->getOperand(0) != Iter)
- return false;
- Iter = U;
- }
- // We found a reduction var if we have reached the original
- // phi node and we only have a single instruction with out-of-loop
- // users.
- if (FoundStartPHI) {
- // This instruction is allowed to have out-of-loop users.
- AllowedExit.insert(ExitInstruction);
- // Save the description of this reduction variable.
- ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
- Reductions[Phi] = RD;
- // We've ended the cycle. This is a reduction variable if we have an
- // outside user and it has a binary op.
- return FoundBinOp && ExitInstruction;
- }
- }
- }
- bool
- LoopVectorizationLegality::isReductionInstr(Instruction *I,
- ReductionKind Kind) {
- bool FP = I->getType()->isFloatingPointTy();
- bool FastMath = (FP && I->isCommutative() && I->isAssociative());
- switch (I->getOpcode()) {
- default:
- return false;
- case Instruction::PHI:
- if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd))
- return false;
- // possibly.
- return true;
- case Instruction::Sub:
- case Instruction::Add:
- return Kind == RK_IntegerAdd;
- case Instruction::SDiv:
- case Instruction::UDiv:
- case Instruction::Mul:
- return Kind == RK_IntegerMult;
- case Instruction::And:
- return Kind == RK_IntegerAnd;
- case Instruction::Or:
- return Kind == RK_IntegerOr;
- case Instruction::Xor:
- return Kind == RK_IntegerXor;
- case Instruction::FMul:
- return Kind == RK_FloatMult && FastMath;
- case Instruction::FAdd:
- return Kind == RK_FloatAdd && FastMath;
- }
- }
- LoopVectorizationLegality::InductionKind
- LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
- Type *PhiTy = Phi->getType();
- // We only handle integer and pointer inductions variables.
- if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
- return IK_NoInduction;
- // Check that the PHI is consecutive and starts at zero.
- const SCEV *PhiScev = SE->getSCEV(Phi);
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
- if (!AR) {
- DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
- return IK_NoInduction;
- }
- const SCEV *Step = AR->getStepRecurrence(*SE);
- // Integer inductions need to have a stride of one.
- if (PhiTy->isIntegerTy()) {
- if (Step->isOne())
- return IK_IntInduction;
- if (Step->isAllOnesValue())
- return IK_ReverseIntInduction;
- return IK_NoInduction;
- }
- // Calculate the pointer stride and check if it is consecutive.
- const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
- if (!C)
- return IK_NoInduction;
- assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
- uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
- if (C->getValue()->equalsInt(Size))
- return IK_PtrInduction;
- return IK_NoInduction;
- }
- bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
- Value *In0 = const_cast<Value*>(V);
- PHINode *PN = dyn_cast_or_null<PHINode>(In0);
- if (!PN)
- return false;
- return Inductions.count(PN);
- }
- bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
- assert(TheLoop->contains(BB) && "Unknown block used");
- // Blocks that do not dominate the latch need predication.
- BasicBlock* Latch = TheLoop->getLoopLatch();
- return !DT->dominates(BB, Latch);
- }
- bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- // We don't predicate loads/stores at the moment.
- if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow())
- return false;
- // The instructions below can trap.
- switch (it->getOpcode()) {
- default: continue;
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::URem:
- case Instruction::SRem:
- return false;
- }
- }
- return true;
- }
- bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
- const SCEV *PhiScev = SE->getSCEV(Ptr);
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
- if (!AR)
- return false;
- return AR->isAffine();
- }
- std::pair<unsigned, unsigned>
- LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
- unsigned UserVF) {
- if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
- DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
- return std::make_pair(1U, 0U);
- }
- // Find the trip count.
- unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
- DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
- unsigned WidestType = getWidestType();
- unsigned WidestRegister = TTI.getRegisterBitWidth(true);
- unsigned MaxVectorSize = WidestRegister / WidestType;
- DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
- DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n");
- if (MaxVectorSize == 0) {
- DEBUG(dbgs() << "LV: The target has no vector registers.\n");
- MaxVectorSize = 1;
- }
- assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
- " into one vector!");
- unsigned VF = MaxVectorSize;
- // If we optimize the program for size, avoid creating the tail loop.
- if (OptForSize) {
- // If we are unable to calculate the trip count then don't try to vectorize.
- if (TC < 2) {
- DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
- return std::make_pair(1U, 0U);
- }
- // Find the maximum SIMD width that can fit within the trip count.
- VF = TC % MaxVectorSize;
- if (VF == 0)
- VF = MaxVectorSize;
- // If the trip count that we found modulo the vectorization factor is not
- // zero then we require a tail.
- if (VF < 2) {
- DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
- return std::make_pair(1U, 0U);
- }
- }
- if (UserVF != 0) {
- assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
- DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
- return std::make_pair(UserVF, 0U);
- }
- float Cost = expectedCost(1);
- unsigned Width = 1;
- DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
- for (unsigned i=2; i <= VF; i*=2) {
- // Notice that the vector loop needs to be executed less times, so
- // we need to divide the cost of the vector loops by the width of
- // the vector elements.
- float VectorCost = expectedCost(i) / (float)i;
- DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
- (int)VectorCost << ".\n");
- if (VectorCost < Cost) {
- Cost = VectorCost;
- Width = i;
- }
- }
- DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
- return std::make_pair<unsigned, unsigned>(Width, VF * Cost);
- }
- unsigned LoopVectorizationCostModel::getWidestType() {
- unsigned MaxWidth = 8;
- // For each block.
- for (Loop::block_iterator bb = TheLoop->block_begin(),
- be = TheLoop->block_end(); bb != be; ++bb) {
- BasicBlock *BB = *bb;
- // For each instruction in the loop.
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- Type *T = it->getType();
- // Only examine Loads, Stores and PHINodes.
- if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
- continue;
- // Examine PHI nodes that are reduction variables.
- if (PHINode *PN = dyn_cast<PHINode>(it))
- if (!Legal->getReductionVars()->count(PN))
- continue;
- // Examine the stored values.
- if (StoreInst *ST = dyn_cast<StoreInst>(it))
- T = ST->getValueOperand()->getType();
- // Ignore stored/loaded pointer types.
- if (T->isPointerTy())
- continue;
- MaxWidth = std::max(MaxWidth, T->getScalarSizeInBits());
- }
- }
- return MaxWidth;
- }
- unsigned
- LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
- unsigned UserUF,
- unsigned VF,
- unsigned LoopCost) {
- // -- The unroll heuristics --
- // We unroll the loop in order to expose ILP and reduce the loop overhead.
- // There are many micro-architectural considerations that we can't predict
- // at this level. For example frontend pressure (on decode or fetch) due to
- // code size, or the number and capabilities of the execution ports.
- //
- // We use the following heuristics to select the unroll factor:
- // 1. If the code has reductions the we unroll in order to break the cross
- // iteration dependency.
- // 2. If the loop is really small then we unroll in order to reduce the loop
- // overhead.
- // 3. We don't unroll if we think that we will spill registers to memory due
- // to the increased register pressure.
- // Use the user preference, unless 'auto' is selected.
- if (UserUF != 0)
- return UserUF;
- // When we optimize for size we don't unroll.
- if (OptForSize)
- return 1;
- // Do not unroll loops with a relatively small trip count.
- unsigned TC = SE->getSmallConstantTripCount(TheLoop,
- TheLoop->getLoopLatch());
- if (TC > 1 && TC < TinyTripCountUnrollThreshold)
- return 1;
- unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
- DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
- " vector registers\n");
- LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
- // We divide by these constants so assume that we have at least one
- // instruction that uses at least one register.
- R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
- R.NumInstructions = std::max(R.NumInstructions, 1U);
- // We calculate the unroll factor using the following formula.
- // Subtract the number of loop invariants from the number of available
- // registers. These registers are used by all of the unrolled instances.
- // Next, divide the remaining registers by the number of registers that is
- // required by the loop, in order to estimate how many parallel instances
- // fit without causing spills.
- unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
- // Clamp the unroll factor ranges to reasonable factors.
- unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
- // If we did not calculate the cost for VF (because the user selected the VF)
- // then we calculate the cost of VF here.
- if (LoopCost == 0)
- LoopCost = expectedCost(VF);
- // Clamp the calculated UF to be between the 1 and the max unroll factor
- // that the target allows.
- if (UF > MaxUnrollSize)
- UF = MaxUnrollSize;
- else if (UF < 1)
- UF = 1;
- if (Legal->getReductionVars()->size()) {
- DEBUG(dbgs() << "LV: Unrolling because of reductions. \n");
- return UF;
- }
- // We want to unroll tiny loops in order to reduce the loop overhead.
- // We assume that the cost overhead is 1 and we use the cost model
- // to estimate the cost of the loop and unroll until the cost of the
- // loop overhead is about 5% of the cost of the loop.
- DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n");
- if (LoopCost < 20) {
- DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n");
- unsigned NewUF = 20/LoopCost + 1;
- return std::min(NewUF, UF);
- }
- DEBUG(dbgs() << "LV: Not Unrolling. \n");
- return 1;
- }
- LoopVectorizationCostModel::RegisterUsage
- LoopVectorizationCostModel::calculateRegisterUsage() {
- // This function calculates the register usage by measuring the highest number
- // of values that are alive at a single location. Obviously, this is a very
- // rough estimation. We scan the loop in a topological order in order and
- // assign a number to each instruction. We use RPO to ensure that defs are
- // met before their users. We assume that each instruction that has in-loop
- // users starts an interval. We record every time that an in-loop value is
- // used, so we have a list of the first and last occurrences of each
- // instruction. Next, we transpose this data structure into a multi map that
- // holds the list of intervals that *end* at a specific location. This multi
- // map allows us to perform a linear search. We scan the instructions linearly
- // and record each time that a new interval starts, by placing it in a set.
- // If we find this value in the multi-map then we remove it from the set.
- // The max register usage is the maximum size of the set.
- // We also search for instructions that are defined outside the loop, but are
- // used inside the loop. We need this number separately from the max-interval
- // usage number because when we unroll, loop-invariant values do not take
- // more register.
- LoopBlocksDFS DFS(TheLoop);
- DFS.perform(LI);
- RegisterUsage R;
- R.NumInstructions = 0;
- // Each 'key' in the map opens a new interval. The values
- // of the map are the index of the 'last seen' usage of the
- // instruction that is the key.
- typedef DenseMap<Instruction*, unsigned> IntervalMap;
- // Maps instruction to its index.
- DenseMap<unsigned, Instruction*> IdxToInstr;
- // Marks the end of each interval.
- IntervalMap EndPoint;
- // Saves the list of instruction indices that are used in the loop.
- SmallSet<Instruction*, 8> Ends;
- // Saves the list of values that are used in the loop but are
- // defined outside the loop, such as arguments and constants.
- SmallPtrSet<Value*, 8> LoopInvariants;
- unsigned Index = 0;
- for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
- be = DFS.endRPO(); bb != be; ++bb) {
- R.NumInstructions += (*bb)->size();
- for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
- ++it) {
- Instruction *I = it;
- IdxToInstr[Index++] = I;
- // Save the end location of each USE.
- for (unsigned i = 0; i < I->getNumOperands(); ++i) {
- Value *U = I->getOperand(i);
- Instruction *Instr = dyn_cast<Instruction>(U);
- // Ignore non-instruction values such as arguments, constants, etc.
- if (!Instr) continue;
- // If this instruction is outside the loop then record it and continue.
- if (!TheLoop->contains(Instr)) {
- LoopInvariants.insert(Instr);
- continue;
- }
- // Overwrite previous end points.
- EndPoint[Instr] = Index;
- Ends.insert(Instr);
- }
- }
- }
- // Saves the list of intervals that end with the index in 'key'.
- typedef SmallVector<Instruction*, 2> InstrList;
- DenseMap<unsigned, InstrList> TransposeEnds;
- // Transpose the EndPoints to a list of values that end at each index.
- for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
- it != e; ++it)
- TransposeEnds[it->second].push_back(it->first);
- SmallSet<Instruction*, 8> OpenIntervals;
- unsigned MaxUsage = 0;
- DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
- for (unsigned int i = 0; i < Index; ++i) {
- Instruction *I = IdxToInstr[i];
- // Ignore instructions that are never used within the loop.
- if (!Ends.count(I)) continue;
- // Remove all of the instructions that end at this location.
- InstrList &List = TransposeEnds[i];
- for (unsigned int j=0, e = List.size(); j < e; ++j)
- OpenIntervals.erase(List[j]);
- // Count the number of live interals.
- MaxUsage = std::max(MaxUsage, OpenIntervals.size());
- DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
- OpenIntervals.size() <<"\n");
- // Add the current instruction to the list of open intervals.
- OpenIntervals.insert(I);
- }
- unsigned Invariant = LoopInvariants.size();
- DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
- DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
- DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
- R.LoopInvariantRegs = Invariant;
- R.MaxLocalUsers = MaxUsage;
- return R;
- }
- unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
- unsigned Cost = 0;
- // For each block.
- for (Loop::block_iterator bb = TheLoop->block_begin(),
- be = TheLoop->block_end(); bb != be; ++bb) {
- unsigned BlockCost = 0;
- BasicBlock *BB = *bb;
- // For each instruction in the old loop.
- for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- unsigned C = getInstructionCost(it, VF);
- Cost += C;
- DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
- VF << " For instruction: "<< *it << "\n");
- }
- // We assume that if-converted blocks have a 50% chance of being executed.
- // When the code is scalar then some of the blocks are avoided due to CF.
- // When the code is vectorized we execute all code paths.
- if (Legal->blockNeedsPredication(*bb) && VF == 1)
- BlockCost /= 2;
- Cost += BlockCost;
- }
- return Cost;
- }
- unsigned
- LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
- // If we know that this instruction will remain uniform, check the cost of
- // the scalar version.
- if (Legal->isUniformAfterVectorization(I))
- VF = 1;
- Type *RetTy = I->getType();
- Type *VectorTy = ToVectorTy(RetTy, VF);
- // TODO: We need to estimate the cost of intrinsic calls.
- switch (I->getOpcode()) {
- case Instruction::GetElementPtr:
- // We mark this instruction as zero-cost because scalar GEPs are usually
- // lowered to the intruction addressing mode. At the moment we don't
- // generate vector geps.
- return 0;
- case Instruction::Br: {
- return TTI.getCFInstrCost(I->getOpcode());
- }
- case Instruction::PHI:
- //TODO: IF-converted IFs become selects.
- return 0;
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor:
- return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy);
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(I);
- const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
- bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
- Type *CondTy = SI->getCondition()->getType();
- if (ScalarCond)
- CondTy = VectorType::get(CondTy, VF);
- return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
- }
- case Instruction::ICmp:
- case Instruction::FCmp: {
- Type *ValTy = I->getOperand(0)->getType();
- VectorTy = ToVectorTy(ValTy, VF);
- return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
- }
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(I);
- Type *ValTy = SI->getValueOperand()->getType();
- VectorTy = ToVectorTy(ValTy, VF);
- if (VF == 1)
- return TTI.getMemoryOpCost(I->getOpcode(), VectorTy,
- SI->getAlignment(),
- SI->getPointerAddressSpace());
- // Scalarized stores.
- int Stride = Legal->isConsecutivePtr(SI->getPointerOperand());
- bool Reverse = Stride < 0;
- if (0 == Stride) {
- unsigned Cost = 0;
- // The cost of extracting from the value vector and pointer vector.
- Type *PtrTy = ToVectorTy(I->getOperand(0)->getType(), VF);
- for (unsigned i = 0; i < VF; ++i) {
- Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
- i);
- Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
- }
- // The cost of the scalar stores.
- Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
- SI->getAlignment(),
- SI->getPointerAddressSpace());
- return Cost;
- }
- // Wide stores.
- unsigned Cost = TTI.getMemoryOpCost(I->getOpcode(), VectorTy,
- SI->getAlignment(),
- SI->getPointerAddressSpace());
- if (Reverse)
- Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
- VectorTy, 0);
- return Cost;
- }
- case Instruction::Load: {
- LoadInst *LI = cast<LoadInst>(I);
- if (VF == 1)
- return TTI.getMemoryOpCost(I->getOpcode(), VectorTy, LI->getAlignment(),
- LI->getPointerAddressSpace());
- // Scalarized loads.
- int Stride = Legal->isConsecutivePtr(LI->getPointerOperand());
- bool Reverse = Stride < 0;
- if (0 == Stride) {
- unsigned Cost = 0;
- Type *PtrTy = ToVectorTy(I->getOperand(0)->getType(), VF);
- // The cost of extracting from the pointer vector.
- for (unsigned i = 0; i < VF; ++i)
- Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
- // The cost of inserting data to the result vector.
- for (unsigned i = 0; i < VF; ++i)
- Cost += TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy, i);
- // The cost of the scalar stores.
- Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), RetTy->getScalarType(),
- LI->getAlignment(),
- LI->getPointerAddressSpace());
- return Cost;
- }
- // Wide loads.
- unsigned Cost = TTI.getMemoryOpCost(I->getOpcode(), VectorTy,
- LI->getAlignment(),
- LI->getPointerAddressSpace());
- if (Reverse)
- Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
- return Cost;
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- // We optimize the truncation of induction variable.
- // The cost of these is the same as the scalar operation.
- if (I->getOpcode() == Instruction::Trunc &&
- Legal->isInductionVariable(I->getOperand(0)))
- return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
- I->getOperand(0)->getType());
- Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
- return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
- }
- case Instruction::Call: {
- assert(isTriviallyVectorizableIntrinsic(I));
- IntrinsicInst *II = cast<IntrinsicInst>(I);
- Type *RetTy = ToVectorTy(II->getType(), VF);
- SmallVector<Type*, 4> Tys;
- for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i)
- Tys.push_back(ToVectorTy(II->getArgOperand(i)->getType(), VF));
- return TTI.getIntrinsicInstrCost(II->getIntrinsicID(), RetTy, Tys);
- }
- default: {
- // We are scalarizing the instruction. Return the cost of the scalar
- // instruction, plus the cost of insert and extract into vector
- // elements, times the vector width.
- unsigned Cost = 0;
- if (!RetTy->isVoidTy() && VF != 1) {
- unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
- VectorTy);
- unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
- VectorTy);
- // The cost of inserting the results plus extracting each one of the
- // operands.
- Cost += VF * (InsCost + ExtCost * I->getNumOperands());
- }
- // The cost of executing VF copies of the scalar instruction. This opcode
- // is unknown. Assume that it is the same as 'mul'.
- Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
- return Cost;
- }
- }// end of switch.
- }
- Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
- if (Scalar->isVoidTy() || VF == 1)
- return Scalar;
- return VectorType::get(Scalar, VF);
- }
- char LoopVectorize::ID = 0;
- static const char lv_name[] = "Loop Vectorization";
- INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
- INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
- INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
- INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
- INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
- INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
- namespace llvm {
- Pass *createLoopVectorizePass() {
- return new LoopVectorize();
- }
- }
|