123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887 |
- //===- InlineFunction.cpp - Code to perform function inlining -------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements inlining of a function into a call site, resolving
- // parameters and the return value as appropriate.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Attributes.h"
- #include "llvm/Constants.h"
- #include "llvm/DebugInfo.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/IRBuilder.h"
- #include "llvm/Instructions.h"
- #include "llvm/IntrinsicInst.h"
- #include "llvm/Intrinsics.h"
- #include "llvm/Module.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/Analysis/CallGraph.h"
- #include "llvm/Analysis/InstructionSimplify.h"
- #include "llvm/Support/CallSite.h"
- #include "llvm/Target/TargetData.h"
- #include "llvm/Transforms/Utils/Local.h"
- using namespace llvm;
- bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
- bool InsertLifetime) {
- return InlineFunction(CallSite(CI), IFI, InsertLifetime);
- }
- bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
- bool InsertLifetime) {
- return InlineFunction(CallSite(II), IFI, InsertLifetime);
- }
- namespace {
- /// A class for recording information about inlining through an invoke.
- class InvokeInliningInfo {
- BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
- BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
- LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke.
- PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts.
- SmallVector<Value*, 8> UnwindDestPHIValues;
- public:
- InvokeInliningInfo(InvokeInst *II)
- : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
- CallerLPad(0), InnerEHValuesPHI(0) {
- // If there are PHI nodes in the unwind destination block, we need to keep
- // track of which values came into them from the invoke before removing
- // the edge from this block.
- llvm::BasicBlock *InvokeBB = II->getParent();
- BasicBlock::iterator I = OuterResumeDest->begin();
- for (; isa<PHINode>(I); ++I) {
- // Save the value to use for this edge.
- PHINode *PHI = cast<PHINode>(I);
- UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
- }
- CallerLPad = cast<LandingPadInst>(I);
- }
- /// getOuterResumeDest - The outer unwind destination is the target of
- /// unwind edges introduced for calls within the inlined function.
- BasicBlock *getOuterResumeDest() const {
- return OuterResumeDest;
- }
- BasicBlock *getInnerResumeDest();
- LandingPadInst *getLandingPadInst() const { return CallerLPad; }
- /// forwardResume - Forward the 'resume' instruction to the caller's landing
- /// pad block. When the landing pad block has only one predecessor, this is
- /// a simple branch. When there is more than one predecessor, we need to
- /// split the landing pad block after the landingpad instruction and jump
- /// to there.
- void forwardResume(ResumeInst *RI);
- /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
- /// destination block for the given basic block, using the values for the
- /// original invoke's source block.
- void addIncomingPHIValuesFor(BasicBlock *BB) const {
- addIncomingPHIValuesForInto(BB, OuterResumeDest);
- }
- void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
- BasicBlock::iterator I = dest->begin();
- for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
- PHINode *phi = cast<PHINode>(I);
- phi->addIncoming(UnwindDestPHIValues[i], src);
- }
- }
- };
- }
- /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
- BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
- if (InnerResumeDest) return InnerResumeDest;
- // Split the landing pad.
- BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
- InnerResumeDest =
- OuterResumeDest->splitBasicBlock(SplitPoint,
- OuterResumeDest->getName() + ".body");
- // The number of incoming edges we expect to the inner landing pad.
- const unsigned PHICapacity = 2;
- // Create corresponding new PHIs for all the PHIs in the outer landing pad.
- BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
- BasicBlock::iterator I = OuterResumeDest->begin();
- for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
- PHINode *OuterPHI = cast<PHINode>(I);
- PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
- OuterPHI->getName() + ".lpad-body",
- InsertPoint);
- OuterPHI->replaceAllUsesWith(InnerPHI);
- InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
- }
- // Create a PHI for the exception values.
- InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
- "eh.lpad-body", InsertPoint);
- CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
- InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
- // All done.
- return InnerResumeDest;
- }
- /// forwardResume - Forward the 'resume' instruction to the caller's landing pad
- /// block. When the landing pad block has only one predecessor, this is a simple
- /// branch. When there is more than one predecessor, we need to split the
- /// landing pad block after the landingpad instruction and jump to there.
- void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
- BasicBlock *Dest = getInnerResumeDest();
- BasicBlock *Src = RI->getParent();
- BranchInst::Create(Dest, Src);
- // Update the PHIs in the destination. They were inserted in an order which
- // makes this work.
- addIncomingPHIValuesForInto(Src, Dest);
- InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
- RI->eraseFromParent();
- }
- /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
- /// an invoke, we have to turn all of the calls that can throw into
- /// invokes. This function analyze BB to see if there are any calls, and if so,
- /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
- /// nodes in that block with the values specified in InvokeDestPHIValues.
- ///
- /// Returns true to indicate that the next block should be skipped.
- static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
- InvokeInliningInfo &Invoke) {
- LandingPadInst *LPI = Invoke.getLandingPadInst();
- for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
- Instruction *I = BBI++;
- if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
- unsigned NumClauses = LPI->getNumClauses();
- L->reserveClauses(NumClauses);
- for (unsigned i = 0; i != NumClauses; ++i)
- L->addClause(LPI->getClause(i));
- }
- // We only need to check for function calls: inlined invoke
- // instructions require no special handling.
- CallInst *CI = dyn_cast<CallInst>(I);
- // If this call cannot unwind, don't convert it to an invoke.
- if (!CI || CI->doesNotThrow())
- continue;
- // Convert this function call into an invoke instruction. First, split the
- // basic block.
- BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
- // Delete the unconditional branch inserted by splitBasicBlock
- BB->getInstList().pop_back();
- // Create the new invoke instruction.
- ImmutableCallSite CS(CI);
- SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
- InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
- Invoke.getOuterResumeDest(),
- InvokeArgs, CI->getName(), BB);
- II->setCallingConv(CI->getCallingConv());
- II->setAttributes(CI->getAttributes());
-
- // Make sure that anything using the call now uses the invoke! This also
- // updates the CallGraph if present, because it uses a WeakVH.
- CI->replaceAllUsesWith(II);
- // Delete the original call
- Split->getInstList().pop_front();
- // Update any PHI nodes in the exceptional block to indicate that there is
- // now a new entry in them.
- Invoke.addIncomingPHIValuesFor(BB);
- return false;
- }
- return false;
- }
- /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
- /// in the body of the inlined function into invokes.
- ///
- /// II is the invoke instruction being inlined. FirstNewBlock is the first
- /// block of the inlined code (the last block is the end of the function),
- /// and InlineCodeInfo is information about the code that got inlined.
- static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
- ClonedCodeInfo &InlinedCodeInfo) {
- BasicBlock *InvokeDest = II->getUnwindDest();
- Function *Caller = FirstNewBlock->getParent();
- // The inlined code is currently at the end of the function, scan from the
- // start of the inlined code to its end, checking for stuff we need to
- // rewrite. If the code doesn't have calls or unwinds, we know there is
- // nothing to rewrite.
- if (!InlinedCodeInfo.ContainsCalls) {
- // Now that everything is happy, we have one final detail. The PHI nodes in
- // the exception destination block still have entries due to the original
- // invoke instruction. Eliminate these entries (which might even delete the
- // PHI node) now.
- InvokeDest->removePredecessor(II->getParent());
- return;
- }
- InvokeInliningInfo Invoke(II);
-
- for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
- if (InlinedCodeInfo.ContainsCalls)
- if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
- // Honor a request to skip the next block.
- ++BB;
- continue;
- }
- if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
- Invoke.forwardResume(RI);
- }
- // Now that everything is happy, we have one final detail. The PHI nodes in
- // the exception destination block still have entries due to the original
- // invoke instruction. Eliminate these entries (which might even delete the
- // PHI node) now.
- InvokeDest->removePredecessor(II->getParent());
- }
- /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
- /// into the caller, update the specified callgraph to reflect the changes we
- /// made. Note that it's possible that not all code was copied over, so only
- /// some edges of the callgraph may remain.
- static void UpdateCallGraphAfterInlining(CallSite CS,
- Function::iterator FirstNewBlock,
- ValueToValueMapTy &VMap,
- InlineFunctionInfo &IFI) {
- CallGraph &CG = *IFI.CG;
- const Function *Caller = CS.getInstruction()->getParent()->getParent();
- const Function *Callee = CS.getCalledFunction();
- CallGraphNode *CalleeNode = CG[Callee];
- CallGraphNode *CallerNode = CG[Caller];
- // Since we inlined some uninlined call sites in the callee into the caller,
- // add edges from the caller to all of the callees of the callee.
- CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
- // Consider the case where CalleeNode == CallerNode.
- CallGraphNode::CalledFunctionsVector CallCache;
- if (CalleeNode == CallerNode) {
- CallCache.assign(I, E);
- I = CallCache.begin();
- E = CallCache.end();
- }
- for (; I != E; ++I) {
- const Value *OrigCall = I->first;
- ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
- // Only copy the edge if the call was inlined!
- if (VMI == VMap.end() || VMI->second == 0)
- continue;
-
- // If the call was inlined, but then constant folded, there is no edge to
- // add. Check for this case.
- Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
- if (NewCall == 0) continue;
- // Remember that this call site got inlined for the client of
- // InlineFunction.
- IFI.InlinedCalls.push_back(NewCall);
- // It's possible that inlining the callsite will cause it to go from an
- // indirect to a direct call by resolving a function pointer. If this
- // happens, set the callee of the new call site to a more precise
- // destination. This can also happen if the call graph node of the caller
- // was just unnecessarily imprecise.
- if (I->second->getFunction() == 0)
- if (Function *F = CallSite(NewCall).getCalledFunction()) {
- // Indirect call site resolved to direct call.
- CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
- continue;
- }
- CallerNode->addCalledFunction(CallSite(NewCall), I->second);
- }
-
- // Update the call graph by deleting the edge from Callee to Caller. We must
- // do this after the loop above in case Caller and Callee are the same.
- CallerNode->removeCallEdgeFor(CS);
- }
- /// HandleByValArgument - When inlining a call site that has a byval argument,
- /// we have to make the implicit memcpy explicit by adding it.
- static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
- const Function *CalledFunc,
- InlineFunctionInfo &IFI,
- unsigned ByValAlignment) {
- Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
- // If the called function is readonly, then it could not mutate the caller's
- // copy of the byval'd memory. In this case, it is safe to elide the copy and
- // temporary.
- if (CalledFunc->onlyReadsMemory()) {
- // If the byval argument has a specified alignment that is greater than the
- // passed in pointer, then we either have to round up the input pointer or
- // give up on this transformation.
- if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
- return Arg;
- // If the pointer is already known to be sufficiently aligned, or if we can
- // round it up to a larger alignment, then we don't need a temporary.
- if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
- IFI.TD) >= ByValAlignment)
- return Arg;
-
- // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
- // for code quality, but rarely happens and is required for correctness.
- }
-
- LLVMContext &Context = Arg->getContext();
- Type *VoidPtrTy = Type::getInt8PtrTy(Context);
-
- // Create the alloca. If we have TargetData, use nice alignment.
- unsigned Align = 1;
- if (IFI.TD)
- Align = IFI.TD->getPrefTypeAlignment(AggTy);
-
- // If the byval had an alignment specified, we *must* use at least that
- // alignment, as it is required by the byval argument (and uses of the
- // pointer inside the callee).
- Align = std::max(Align, ByValAlignment);
-
- Function *Caller = TheCall->getParent()->getParent();
-
- Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
- &*Caller->begin()->begin());
- // Emit a memcpy.
- Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
- Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
- Intrinsic::memcpy,
- Tys);
- Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
- Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
-
- Value *Size;
- if (IFI.TD == 0)
- Size = ConstantExpr::getSizeOf(AggTy);
- else
- Size = ConstantInt::get(Type::getInt64Ty(Context),
- IFI.TD->getTypeStoreSize(AggTy));
-
- // Always generate a memcpy of alignment 1 here because we don't know
- // the alignment of the src pointer. Other optimizations can infer
- // better alignment.
- Value *CallArgs[] = {
- DestCast, SrcCast, Size,
- ConstantInt::get(Type::getInt32Ty(Context), 1),
- ConstantInt::getFalse(Context) // isVolatile
- };
- IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
-
- // Uses of the argument in the function should use our new alloca
- // instead.
- return NewAlloca;
- }
- // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
- // intrinsic.
- static bool isUsedByLifetimeMarker(Value *V) {
- for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
- ++UI) {
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
- switch (II->getIntrinsicID()) {
- default: break;
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- return true;
- }
- }
- }
- return false;
- }
- // hasLifetimeMarkers - Check whether the given alloca already has
- // lifetime.start or lifetime.end intrinsics.
- static bool hasLifetimeMarkers(AllocaInst *AI) {
- Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
- if (AI->getType() == Int8PtrTy)
- return isUsedByLifetimeMarker(AI);
- // Do a scan to find all the casts to i8*.
- for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
- ++I) {
- if (I->getType() != Int8PtrTy) continue;
- if (I->stripPointerCasts() != AI) continue;
- if (isUsedByLifetimeMarker(*I))
- return true;
- }
- return false;
- }
- /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
- /// recursively update InlinedAtEntry of a DebugLoc.
- static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
- const DebugLoc &InlinedAtDL,
- LLVMContext &Ctx) {
- if (MDNode *IA = DL.getInlinedAt(Ctx)) {
- DebugLoc NewInlinedAtDL
- = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
- return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
- NewInlinedAtDL.getAsMDNode(Ctx));
- }
- return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
- InlinedAtDL.getAsMDNode(Ctx));
- }
- /// fixupLineNumbers - Update inlined instructions' line numbers to
- /// to encode location where these instructions are inlined.
- static void fixupLineNumbers(Function *Fn, Function::iterator FI,
- Instruction *TheCall) {
- DebugLoc TheCallDL = TheCall->getDebugLoc();
- if (TheCallDL.isUnknown())
- return;
- for (; FI != Fn->end(); ++FI) {
- for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
- BI != BE; ++BI) {
- DebugLoc DL = BI->getDebugLoc();
- if (!DL.isUnknown()) {
- BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
- if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
- LLVMContext &Ctx = BI->getContext();
- MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
- DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
- InlinedAt, Ctx));
- }
- }
- }
- }
- }
- /// InlineFunction - This function inlines the called function into the basic
- /// block of the caller. This returns false if it is not possible to inline
- /// this call. The program is still in a well defined state if this occurs
- /// though.
- ///
- /// Note that this only does one level of inlining. For example, if the
- /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
- /// exists in the instruction stream. Similarly this will inline a recursive
- /// function by one level.
- bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
- bool InsertLifetime) {
- Instruction *TheCall = CS.getInstruction();
- assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
- "Instruction not in function!");
- // If IFI has any state in it, zap it before we fill it in.
- IFI.reset();
-
- const Function *CalledFunc = CS.getCalledFunction();
- if (CalledFunc == 0 || // Can't inline external function or indirect
- CalledFunc->isDeclaration() || // call, or call to a vararg function!
- CalledFunc->getFunctionType()->isVarArg()) return false;
- // If the call to the callee is not a tail call, we must clear the 'tail'
- // flags on any calls that we inline.
- bool MustClearTailCallFlags =
- !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
- // If the call to the callee cannot throw, set the 'nounwind' flag on any
- // calls that we inline.
- bool MarkNoUnwind = CS.doesNotThrow();
- BasicBlock *OrigBB = TheCall->getParent();
- Function *Caller = OrigBB->getParent();
- // GC poses two hazards to inlining, which only occur when the callee has GC:
- // 1. If the caller has no GC, then the callee's GC must be propagated to the
- // caller.
- // 2. If the caller has a differing GC, it is invalid to inline.
- if (CalledFunc->hasGC()) {
- if (!Caller->hasGC())
- Caller->setGC(CalledFunc->getGC());
- else if (CalledFunc->getGC() != Caller->getGC())
- return false;
- }
- // Get the personality function from the callee if it contains a landing pad.
- Value *CalleePersonality = 0;
- for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
- I != E; ++I)
- if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
- const BasicBlock *BB = II->getUnwindDest();
- const LandingPadInst *LP = BB->getLandingPadInst();
- CalleePersonality = LP->getPersonalityFn();
- break;
- }
- // Find the personality function used by the landing pads of the caller. If it
- // exists, then check to see that it matches the personality function used in
- // the callee.
- if (CalleePersonality) {
- for (Function::const_iterator I = Caller->begin(), E = Caller->end();
- I != E; ++I)
- if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
- const BasicBlock *BB = II->getUnwindDest();
- const LandingPadInst *LP = BB->getLandingPadInst();
- // If the personality functions match, then we can perform the
- // inlining. Otherwise, we can't inline.
- // TODO: This isn't 100% true. Some personality functions are proper
- // supersets of others and can be used in place of the other.
- if (LP->getPersonalityFn() != CalleePersonality)
- return false;
- break;
- }
- }
- // Get an iterator to the last basic block in the function, which will have
- // the new function inlined after it.
- Function::iterator LastBlock = &Caller->back();
- // Make sure to capture all of the return instructions from the cloned
- // function.
- SmallVector<ReturnInst*, 8> Returns;
- ClonedCodeInfo InlinedFunctionInfo;
- Function::iterator FirstNewBlock;
- { // Scope to destroy VMap after cloning.
- ValueToValueMapTy VMap;
- assert(CalledFunc->arg_size() == CS.arg_size() &&
- "No varargs calls can be inlined!");
- // Calculate the vector of arguments to pass into the function cloner, which
- // matches up the formal to the actual argument values.
- CallSite::arg_iterator AI = CS.arg_begin();
- unsigned ArgNo = 0;
- for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
- E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
- Value *ActualArg = *AI;
- // When byval arguments actually inlined, we need to make the copy implied
- // by them explicit. However, we don't do this if the callee is readonly
- // or readnone, because the copy would be unneeded: the callee doesn't
- // modify the struct.
- if (CS.isByValArgument(ArgNo)) {
- ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
- CalledFunc->getParamAlignment(ArgNo+1));
-
- // Calls that we inline may use the new alloca, so we need to clear
- // their 'tail' flags if HandleByValArgument introduced a new alloca and
- // the callee has calls.
- MustClearTailCallFlags |= ActualArg != *AI;
- }
- VMap[I] = ActualArg;
- }
- // We want the inliner to prune the code as it copies. We would LOVE to
- // have no dead or constant instructions leftover after inlining occurs
- // (which can happen, e.g., because an argument was constant), but we'll be
- // happy with whatever the cloner can do.
- CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
- /*ModuleLevelChanges=*/false, Returns, ".i",
- &InlinedFunctionInfo, IFI.TD, TheCall);
- // Remember the first block that is newly cloned over.
- FirstNewBlock = LastBlock; ++FirstNewBlock;
- // Update the callgraph if requested.
- if (IFI.CG)
- UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
- // Update inlined instructions' line number information.
- fixupLineNumbers(Caller, FirstNewBlock, TheCall);
- }
- // If there are any alloca instructions in the block that used to be the entry
- // block for the callee, move them to the entry block of the caller. First
- // calculate which instruction they should be inserted before. We insert the
- // instructions at the end of the current alloca list.
- {
- BasicBlock::iterator InsertPoint = Caller->begin()->begin();
- for (BasicBlock::iterator I = FirstNewBlock->begin(),
- E = FirstNewBlock->end(); I != E; ) {
- AllocaInst *AI = dyn_cast<AllocaInst>(I++);
- if (AI == 0) continue;
-
- // If the alloca is now dead, remove it. This often occurs due to code
- // specialization.
- if (AI->use_empty()) {
- AI->eraseFromParent();
- continue;
- }
- if (!isa<Constant>(AI->getArraySize()))
- continue;
-
- // Keep track of the static allocas that we inline into the caller.
- IFI.StaticAllocas.push_back(AI);
-
- // Scan for the block of allocas that we can move over, and move them
- // all at once.
- while (isa<AllocaInst>(I) &&
- isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
- IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
- ++I;
- }
- // Transfer all of the allocas over in a block. Using splice means
- // that the instructions aren't removed from the symbol table, then
- // reinserted.
- Caller->getEntryBlock().getInstList().splice(InsertPoint,
- FirstNewBlock->getInstList(),
- AI, I);
- }
- }
- // Leave lifetime markers for the static alloca's, scoping them to the
- // function we just inlined.
- if (InsertLifetime && !IFI.StaticAllocas.empty()) {
- IRBuilder<> builder(FirstNewBlock->begin());
- for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
- AllocaInst *AI = IFI.StaticAllocas[ai];
- // If the alloca is already scoped to something smaller than the whole
- // function then there's no need to add redundant, less accurate markers.
- if (hasLifetimeMarkers(AI))
- continue;
- builder.CreateLifetimeStart(AI);
- for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
- IRBuilder<> builder(Returns[ri]);
- builder.CreateLifetimeEnd(AI);
- }
- }
- }
- // If the inlined code contained dynamic alloca instructions, wrap the inlined
- // code with llvm.stacksave/llvm.stackrestore intrinsics.
- if (InlinedFunctionInfo.ContainsDynamicAllocas) {
- Module *M = Caller->getParent();
- // Get the two intrinsics we care about.
- Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
- Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
- // Insert the llvm.stacksave.
- CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
- .CreateCall(StackSave, "savedstack");
- // Insert a call to llvm.stackrestore before any return instructions in the
- // inlined function.
- for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
- IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
- }
- }
- // If we are inlining tail call instruction through a call site that isn't
- // marked 'tail', we must remove the tail marker for any calls in the inlined
- // code. Also, calls inlined through a 'nounwind' call site should be marked
- // 'nounwind'.
- if (InlinedFunctionInfo.ContainsCalls &&
- (MustClearTailCallFlags || MarkNoUnwind)) {
- for (Function::iterator BB = FirstNewBlock, E = Caller->end();
- BB != E; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (CallInst *CI = dyn_cast<CallInst>(I)) {
- if (MustClearTailCallFlags)
- CI->setTailCall(false);
- if (MarkNoUnwind)
- CI->setDoesNotThrow();
- }
- }
- // If we are inlining for an invoke instruction, we must make sure to rewrite
- // any call instructions into invoke instructions.
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
- HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
- // If we cloned in _exactly one_ basic block, and if that block ends in a
- // return instruction, we splice the body of the inlined callee directly into
- // the calling basic block.
- if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
- // Move all of the instructions right before the call.
- OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
- FirstNewBlock->begin(), FirstNewBlock->end());
- // Remove the cloned basic block.
- Caller->getBasicBlockList().pop_back();
- // If the call site was an invoke instruction, add a branch to the normal
- // destination.
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
- BranchInst::Create(II->getNormalDest(), TheCall);
- // If the return instruction returned a value, replace uses of the call with
- // uses of the returned value.
- if (!TheCall->use_empty()) {
- ReturnInst *R = Returns[0];
- if (TheCall == R->getReturnValue())
- TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
- else
- TheCall->replaceAllUsesWith(R->getReturnValue());
- }
- // Since we are now done with the Call/Invoke, we can delete it.
- TheCall->eraseFromParent();
- // Since we are now done with the return instruction, delete it also.
- Returns[0]->eraseFromParent();
- // We are now done with the inlining.
- return true;
- }
- // Otherwise, we have the normal case, of more than one block to inline or
- // multiple return sites.
- // We want to clone the entire callee function into the hole between the
- // "starter" and "ender" blocks. How we accomplish this depends on whether
- // this is an invoke instruction or a call instruction.
- BasicBlock *AfterCallBB;
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
- // Add an unconditional branch to make this look like the CallInst case...
- BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
- // Split the basic block. This guarantees that no PHI nodes will have to be
- // updated due to new incoming edges, and make the invoke case more
- // symmetric to the call case.
- AfterCallBB = OrigBB->splitBasicBlock(NewBr,
- CalledFunc->getName()+".exit");
- } else { // It's a call
- // If this is a call instruction, we need to split the basic block that
- // the call lives in.
- //
- AfterCallBB = OrigBB->splitBasicBlock(TheCall,
- CalledFunc->getName()+".exit");
- }
- // Change the branch that used to go to AfterCallBB to branch to the first
- // basic block of the inlined function.
- //
- TerminatorInst *Br = OrigBB->getTerminator();
- assert(Br && Br->getOpcode() == Instruction::Br &&
- "splitBasicBlock broken!");
- Br->setOperand(0, FirstNewBlock);
- // Now that the function is correct, make it a little bit nicer. In
- // particular, move the basic blocks inserted from the end of the function
- // into the space made by splitting the source basic block.
- Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
- FirstNewBlock, Caller->end());
- // Handle all of the return instructions that we just cloned in, and eliminate
- // any users of the original call/invoke instruction.
- Type *RTy = CalledFunc->getReturnType();
- PHINode *PHI = 0;
- if (Returns.size() > 1) {
- // The PHI node should go at the front of the new basic block to merge all
- // possible incoming values.
- if (!TheCall->use_empty()) {
- PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
- AfterCallBB->begin());
- // Anything that used the result of the function call should now use the
- // PHI node as their operand.
- TheCall->replaceAllUsesWith(PHI);
- }
- // Loop over all of the return instructions adding entries to the PHI node
- // as appropriate.
- if (PHI) {
- for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
- ReturnInst *RI = Returns[i];
- assert(RI->getReturnValue()->getType() == PHI->getType() &&
- "Ret value not consistent in function!");
- PHI->addIncoming(RI->getReturnValue(), RI->getParent());
- }
- }
- // Add a branch to the merge points and remove return instructions.
- for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
- ReturnInst *RI = Returns[i];
- BranchInst::Create(AfterCallBB, RI);
- RI->eraseFromParent();
- }
- } else if (!Returns.empty()) {
- // Otherwise, if there is exactly one return value, just replace anything
- // using the return value of the call with the computed value.
- if (!TheCall->use_empty()) {
- if (TheCall == Returns[0]->getReturnValue())
- TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
- else
- TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
- }
- // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
- BasicBlock *ReturnBB = Returns[0]->getParent();
- ReturnBB->replaceAllUsesWith(AfterCallBB);
- // Splice the code from the return block into the block that it will return
- // to, which contains the code that was after the call.
- AfterCallBB->getInstList().splice(AfterCallBB->begin(),
- ReturnBB->getInstList());
- // Delete the return instruction now and empty ReturnBB now.
- Returns[0]->eraseFromParent();
- ReturnBB->eraseFromParent();
- } else if (!TheCall->use_empty()) {
- // No returns, but something is using the return value of the call. Just
- // nuke the result.
- TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
- }
- // Since we are now done with the Call/Invoke, we can delete it.
- TheCall->eraseFromParent();
- // We should always be able to fold the entry block of the function into the
- // single predecessor of the block...
- assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
- BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
- // Splice the code entry block into calling block, right before the
- // unconditional branch.
- CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
- OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
- // Remove the unconditional branch.
- OrigBB->getInstList().erase(Br);
- // Now we can remove the CalleeEntry block, which is now empty.
- Caller->getBasicBlockList().erase(CalleeEntry);
- // If we inserted a phi node, check to see if it has a single value (e.g. all
- // the entries are the same or undef). If so, remove the PHI so it doesn't
- // block other optimizations.
- if (PHI) {
- if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
- PHI->replaceAllUsesWith(V);
- PHI->eraseFromParent();
- }
- }
- return true;
- }
|