12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577 |
- //===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Scalar/LoopPassManager.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/AssumptionCache.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Analysis/TargetTransformInfo.h"
- #include "llvm/AsmParser/Parser.h"
- #include "llvm/IR/Dominators.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PassManager.h"
- #include "llvm/Support/SourceMgr.h"
- #include "gmock/gmock.h"
- #include "gtest/gtest.h"
- using namespace llvm;
- namespace {
- using testing::DoDefault;
- using testing::Return;
- using testing::Expectation;
- using testing::Invoke;
- using testing::InvokeWithoutArgs;
- using testing::_;
- template <typename DerivedT, typename IRUnitT,
- typename AnalysisManagerT = AnalysisManager<IRUnitT>,
- typename... ExtraArgTs>
- class MockAnalysisHandleBase {
- public:
- class Analysis : public AnalysisInfoMixin<Analysis> {
- friend AnalysisInfoMixin<Analysis>;
- friend MockAnalysisHandleBase;
- static AnalysisKey Key;
- DerivedT *Handle;
- Analysis(DerivedT &Handle) : Handle(&Handle) {
- static_assert(std::is_base_of<MockAnalysisHandleBase, DerivedT>::value,
- "Must pass the derived type to this template!");
- }
- public:
- class Result {
- friend MockAnalysisHandleBase;
- DerivedT *Handle;
- Result(DerivedT &Handle) : Handle(&Handle) {}
- public:
- // Forward invalidation events to the mock handle.
- bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA,
- typename AnalysisManagerT::Invalidator &Inv) {
- return Handle->invalidate(IR, PA, Inv);
- }
- };
- Result run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) {
- return Handle->run(IR, AM, ExtraArgs...);
- }
- };
- Analysis getAnalysis() { return Analysis(static_cast<DerivedT &>(*this)); }
- typename Analysis::Result getResult() {
- return typename Analysis::Result(static_cast<DerivedT &>(*this));
- }
- protected:
- // FIXME: MSVC seems unable to handle a lambda argument to Invoke from within
- // the template, so we use a boring static function.
- static bool invalidateCallback(IRUnitT &IR, const PreservedAnalyses &PA,
- typename AnalysisManagerT::Invalidator &Inv) {
- auto PAC = PA.template getChecker<Analysis>();
- return !PAC.preserved() &&
- !PAC.template preservedSet<AllAnalysesOn<IRUnitT>>();
- }
- /// Derived classes should call this in their constructor to set up default
- /// mock actions. (We can't do this in our constructor because this has to
- /// run after the DerivedT is constructed.)
- void setDefaults() {
- ON_CALL(static_cast<DerivedT &>(*this),
- run(_, _, testing::Matcher<ExtraArgTs>(_)...))
- .WillByDefault(Return(this->getResult()));
- ON_CALL(static_cast<DerivedT &>(*this), invalidate(_, _, _))
- .WillByDefault(Invoke(&invalidateCallback));
- }
- };
- template <typename DerivedT, typename IRUnitT, typename AnalysisManagerT,
- typename... ExtraArgTs>
- AnalysisKey MockAnalysisHandleBase<DerivedT, IRUnitT, AnalysisManagerT,
- ExtraArgTs...>::Analysis::Key;
- /// Mock handle for loop analyses.
- ///
- /// This is provided as a template accepting an (optional) integer. Because
- /// analyses are identified and queried by type, this allows constructing
- /// multiple handles with distinctly typed nested 'Analysis' types that can be
- /// registered and queried. If you want to register multiple loop analysis
- /// passes, you'll need to instantiate this type with different values for I.
- /// For example:
- ///
- /// MockLoopAnalysisHandleTemplate<0> h0;
- /// MockLoopAnalysisHandleTemplate<1> h1;
- /// typedef decltype(h0)::Analysis Analysis0;
- /// typedef decltype(h1)::Analysis Analysis1;
- template <size_t I = static_cast<size_t>(-1)>
- struct MockLoopAnalysisHandleTemplate
- : MockAnalysisHandleBase<MockLoopAnalysisHandleTemplate<I>, Loop,
- LoopAnalysisManager,
- LoopStandardAnalysisResults &> {
- typedef typename MockLoopAnalysisHandleTemplate::Analysis Analysis;
- MOCK_METHOD3_T(run, typename Analysis::Result(Loop &, LoopAnalysisManager &,
- LoopStandardAnalysisResults &));
- MOCK_METHOD3_T(invalidate, bool(Loop &, const PreservedAnalyses &,
- LoopAnalysisManager::Invalidator &));
- MockLoopAnalysisHandleTemplate() { this->setDefaults(); }
- };
- typedef MockLoopAnalysisHandleTemplate<> MockLoopAnalysisHandle;
- struct MockFunctionAnalysisHandle
- : MockAnalysisHandleBase<MockFunctionAnalysisHandle, Function> {
- MOCK_METHOD2(run, Analysis::Result(Function &, FunctionAnalysisManager &));
- MOCK_METHOD3(invalidate, bool(Function &, const PreservedAnalyses &,
- FunctionAnalysisManager::Invalidator &));
- MockFunctionAnalysisHandle() { setDefaults(); }
- };
- template <typename DerivedT, typename IRUnitT,
- typename AnalysisManagerT = AnalysisManager<IRUnitT>,
- typename... ExtraArgTs>
- class MockPassHandleBase {
- public:
- class Pass : public PassInfoMixin<Pass> {
- friend MockPassHandleBase;
- DerivedT *Handle;
- Pass(DerivedT &Handle) : Handle(&Handle) {
- static_assert(std::is_base_of<MockPassHandleBase, DerivedT>::value,
- "Must pass the derived type to this template!");
- }
- public:
- PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
- ExtraArgTs... ExtraArgs) {
- return Handle->run(IR, AM, ExtraArgs...);
- }
- };
- Pass getPass() { return Pass(static_cast<DerivedT &>(*this)); }
- protected:
- /// Derived classes should call this in their constructor to set up default
- /// mock actions. (We can't do this in our constructor because this has to
- /// run after the DerivedT is constructed.)
- void setDefaults() {
- ON_CALL(static_cast<DerivedT &>(*this),
- run(_, _, testing::Matcher<ExtraArgTs>(_)...))
- .WillByDefault(Return(PreservedAnalyses::all()));
- }
- };
- struct MockLoopPassHandle
- : MockPassHandleBase<MockLoopPassHandle, Loop, LoopAnalysisManager,
- LoopStandardAnalysisResults &, LPMUpdater &> {
- MOCK_METHOD4(run,
- PreservedAnalyses(Loop &, LoopAnalysisManager &,
- LoopStandardAnalysisResults &, LPMUpdater &));
- MockLoopPassHandle() { setDefaults(); }
- };
- struct MockFunctionPassHandle
- : MockPassHandleBase<MockFunctionPassHandle, Function> {
- MOCK_METHOD2(run, PreservedAnalyses(Function &, FunctionAnalysisManager &));
- MockFunctionPassHandle() { setDefaults(); }
- };
- struct MockModulePassHandle : MockPassHandleBase<MockModulePassHandle, Module> {
- MOCK_METHOD2(run, PreservedAnalyses(Module &, ModuleAnalysisManager &));
- MockModulePassHandle() { setDefaults(); }
- };
- /// Define a custom matcher for objects which support a 'getName' method
- /// returning a StringRef.
- ///
- /// LLVM often has IR objects or analysis objects which expose a StringRef name
- /// and in tests it is convenient to match these by name for readability. This
- /// matcher supports any type exposing a getName() method of this form.
- ///
- /// It should be used as:
- ///
- /// HasName("my_function")
- ///
- /// No namespace or other qualification is required.
- MATCHER_P(HasName, Name, "") {
- // The matcher's name and argument are printed in the case of failure, but we
- // also want to print out the name of the argument. This uses an implicitly
- // avaiable std::ostream, so we have to construct a std::string.
- *result_listener << "has name '" << arg.getName().str() << "'";
- return Name == arg.getName();
- }
- std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
- SMDiagnostic Err;
- return parseAssemblyString(IR, Err, C);
- }
- class LoopPassManagerTest : public ::testing::Test {
- protected:
- LLVMContext Context;
- std::unique_ptr<Module> M;
- LoopAnalysisManager LAM;
- FunctionAnalysisManager FAM;
- ModuleAnalysisManager MAM;
- MockLoopAnalysisHandle MLAHandle;
- MockLoopPassHandle MLPHandle;
- MockFunctionPassHandle MFPHandle;
- MockModulePassHandle MMPHandle;
- static PreservedAnalyses
- getLoopAnalysisResult(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR, LPMUpdater &) {
- (void)AM.getResult<MockLoopAnalysisHandle::Analysis>(L, AR);
- return PreservedAnalyses::all();
- };
- public:
- LoopPassManagerTest()
- : M(parseIR(Context,
- "define void @f(i1* %ptr) {\n"
- "entry:\n"
- " br label %loop.0\n"
- "loop.0:\n"
- " %cond.0 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0, label %loop.0.0.ph, label %end\n"
- "loop.0.0.ph:\n"
- " br label %loop.0.0\n"
- "loop.0.0:\n"
- " %cond.0.0 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
- "loop.0.1.ph:\n"
- " br label %loop.0.1\n"
- "loop.0.1:\n"
- " %cond.0.1 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0.1, label %loop.0.1, label %loop.0.latch\n"
- "loop.0.latch:\n"
- " br label %loop.0\n"
- "end:\n"
- " ret void\n"
- "}\n"
- "\n"
- "define void @g(i1* %ptr) {\n"
- "entry:\n"
- " br label %loop.g.0\n"
- "loop.g.0:\n"
- " %cond.0 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0, label %loop.g.0, label %end\n"
- "end:\n"
- " ret void\n"
- "}\n")),
- LAM(true), FAM(true), MAM(true) {
- // Register our mock analysis.
- LAM.registerPass([&] { return MLAHandle.getAnalysis(); });
- // We need DominatorTreeAnalysis for LoopAnalysis.
- FAM.registerPass([&] { return DominatorTreeAnalysis(); });
- FAM.registerPass([&] { return LoopAnalysis(); });
- // We also allow loop passes to assume a set of other analyses and so need
- // those.
- FAM.registerPass([&] { return AAManager(); });
- FAM.registerPass([&] { return AssumptionAnalysis(); });
- if (EnableMSSALoopDependency)
- FAM.registerPass([&] { return MemorySSAAnalysis(); });
- FAM.registerPass([&] { return ScalarEvolutionAnalysis(); });
- FAM.registerPass([&] { return TargetLibraryAnalysis(); });
- FAM.registerPass([&] { return TargetIRAnalysis(); });
- // Register required pass instrumentation analysis.
- LAM.registerPass([&] { return PassInstrumentationAnalysis(); });
- FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
- MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
- // Cross-register proxies.
- LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
- FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
- FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
- MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
- }
- };
- TEST_F(LoopPassManagerTest, Basic) {
- ModulePassManager MPM(true);
- ::testing::InSequence MakeExpectationsSequenced;
- // First we just visit all the loops in all the functions and get their
- // analysis results. This will run the analysis a total of four times,
- // once for each loop.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
- // Wire the loop pass through pass managers into the module pipeline.
- {
- LoopPassManager LPM(true);
- LPM.addPass(MLPHandle.getPass());
- FunctionPassManager FPM(true);
- FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
- MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
- }
- // Next we run two passes over the loops. The first one invalidates the
- // analyses for one loop, the second ones try to get the analysis results.
- // This should force only one analysis to re-run within the loop PM, but will
- // also invalidate everything after the loop pass manager finishes.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
- .WillOnce(DoDefault())
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
- .WillOnce(InvokeWithoutArgs([] { return PreservedAnalyses::none(); }))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
- .WillOnce(DoDefault())
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
- .WillOnce(DoDefault())
- .WillOnce(Invoke(getLoopAnalysisResult));
- // Wire two loop pass runs into the module pipeline.
- {
- LoopPassManager LPM(true);
- LPM.addPass(MLPHandle.getPass());
- LPM.addPass(MLPHandle.getPass());
- FunctionPassManager FPM(true);
- FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
- MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
- }
- // And now run the pipeline across the module.
- MPM.run(*M, MAM);
- }
- TEST_F(LoopPassManagerTest, FunctionPassInvalidationOfLoopAnalyses) {
- ModulePassManager MPM(true);
- FunctionPassManager FPM(true);
- // We process each function completely in sequence.
- ::testing::Sequence FSequence, GSequence;
- // First, force the analysis result to be computed for each loop.
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
- .InSequence(FSequence)
- .WillOnce(DoDefault());
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _))
- .InSequence(FSequence)
- .WillOnce(DoDefault());
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
- .InSequence(FSequence)
- .WillOnce(DoDefault());
- EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
- .InSequence(GSequence)
- .WillOnce(DoDefault());
- FPM.addPass(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
- // No need to re-run if we require again from a fresh loop pass manager.
- FPM.addPass(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
- // For 'f', preserve most things but not the specific loop analyses.
- EXPECT_CALL(MFPHandle, run(HasName("f"), _))
- .InSequence(FSequence)
- .WillOnce(Return(getLoopPassPreservedAnalyses()));
- EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _))
- .InSequence(FSequence)
- .WillOnce(DoDefault());
- // On one loop, skip the invalidation (as though we did an internal update).
- EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
- .InSequence(FSequence)
- .WillOnce(Return(false));
- EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _))
- .InSequence(FSequence)
- .WillOnce(DoDefault());
- // Now two loops still have to be recomputed.
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
- .InSequence(FSequence)
- .WillOnce(DoDefault());
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
- .InSequence(FSequence)
- .WillOnce(DoDefault());
- // Preserve things in the second function to ensure invalidation remains
- // isolated to one function.
- EXPECT_CALL(MFPHandle, run(HasName("g"), _))
- .InSequence(GSequence)
- .WillOnce(DoDefault());
- FPM.addPass(MFPHandle.getPass());
- FPM.addPass(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
- EXPECT_CALL(MFPHandle, run(HasName("f"), _))
- .InSequence(FSequence)
- .WillOnce(DoDefault());
- // For 'g', fail to preserve anything, causing the loops themselves to be
- // cleared. We don't get an invalidation event here as the loop is gone, but
- // we should still have to recompute the analysis.
- EXPECT_CALL(MFPHandle, run(HasName("g"), _))
- .InSequence(GSequence)
- .WillOnce(Return(PreservedAnalyses::none()));
- EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
- .InSequence(GSequence)
- .WillOnce(DoDefault());
- FPM.addPass(MFPHandle.getPass());
- FPM.addPass(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
- MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
- // Verify with a separate function pass run that we didn't mess up 'f's
- // cache. No analysis runs should be necessary here.
- MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
- MPM.run(*M, MAM);
- }
- TEST_F(LoopPassManagerTest, ModulePassInvalidationOfLoopAnalyses) {
- ModulePassManager MPM(true);
- ::testing::InSequence MakeExpectationsSequenced;
- // First, force the analysis result to be computed for each loop.
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
- MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
- // Walking all the way out and all the way back in doesn't re-run the
- // analysis.
- MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
- // But a module pass that doesn't preserve the actual mock loop analysis
- // invalidates all the way down and forces recomputing.
- EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
- auto PA = getLoopPassPreservedAnalyses();
- PA.preserve<FunctionAnalysisManagerModuleProxy>();
- return PA;
- }));
- // All the loop analyses from both functions get invalidated before we
- // recompute anything.
- EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
- // On one loop, again skip the invalidation (as though we did an internal
- // update).
- EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
- .WillOnce(Return(false));
- EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
- EXPECT_CALL(MLAHandle, invalidate(HasName("loop.g.0"), _, _));
- // Now all but one of the loops gets re-analyzed.
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
- MPM.addPass(MMPHandle.getPass());
- MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
- // Verify that the cached values persist.
- MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
- // Now we fail to preserve the loop analysis and observe that the loop
- // analyses are cleared (so no invalidation event) as the loops themselves
- // are no longer valid.
- EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
- auto PA = PreservedAnalyses::none();
- PA.preserve<FunctionAnalysisManagerModuleProxy>();
- return PA;
- }));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
- MPM.addPass(MMPHandle.getPass());
- MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
- // Verify that the cached values persist.
- MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
- // Next, check that even if we preserve everything within the function itelf,
- // if the function's module pass proxy isn't preserved and the potential set
- // of functions changes, the clear reaches the loop analyses as well. This
- // will again trigger re-runs but not invalidation events.
- EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
- auto PA = PreservedAnalyses::none();
- PA.preserveSet<AllAnalysesOn<Function>>();
- PA.preserveSet<AllAnalysesOn<Loop>>();
- return PA;
- }));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
- MPM.addPass(MMPHandle.getPass());
- MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
- MPM.run(*M, MAM);
- }
- // Test that if any of the bundled analyses provided in the LPM's signature
- // become invalid, the analysis proxy itself becomes invalid and we clear all
- // loop analysis results.
- TEST_F(LoopPassManagerTest, InvalidationOfBundledAnalyses) {
- ModulePassManager MPM(true);
- FunctionPassManager FPM(true);
- ::testing::InSequence MakeExpectationsSequenced;
- // First, force the analysis result to be computed for each loop.
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- FPM.addPass(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
- // No need to re-run if we require again from a fresh loop pass manager.
- FPM.addPass(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
- // Preserving everything but the loop analyses themselves results in
- // invalidation and running.
- EXPECT_CALL(MFPHandle, run(HasName("f"), _))
- .WillOnce(Return(getLoopPassPreservedAnalyses()));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- FPM.addPass(MFPHandle.getPass());
- FPM.addPass(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
- // The rest don't invalidate analyses, they only trigger re-runs because we
- // clear the cache completely.
- EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
- auto PA = PreservedAnalyses::none();
- // Not preserving `AAManager`.
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<LoopAnalysis>();
- PA.preserve<LoopAnalysisManagerFunctionProxy>();
- PA.preserve<ScalarEvolutionAnalysis>();
- return PA;
- }));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- FPM.addPass(MFPHandle.getPass());
- FPM.addPass(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
- EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
- auto PA = PreservedAnalyses::none();
- PA.preserve<AAManager>();
- // Not preserving `DominatorTreeAnalysis`.
- PA.preserve<LoopAnalysis>();
- PA.preserve<LoopAnalysisManagerFunctionProxy>();
- PA.preserve<ScalarEvolutionAnalysis>();
- return PA;
- }));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- FPM.addPass(MFPHandle.getPass());
- FPM.addPass(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
- EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
- auto PA = PreservedAnalyses::none();
- PA.preserve<AAManager>();
- PA.preserve<DominatorTreeAnalysis>();
- // Not preserving the `LoopAnalysis`.
- PA.preserve<LoopAnalysisManagerFunctionProxy>();
- PA.preserve<ScalarEvolutionAnalysis>();
- return PA;
- }));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- FPM.addPass(MFPHandle.getPass());
- FPM.addPass(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
- EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
- auto PA = PreservedAnalyses::none();
- PA.preserve<AAManager>();
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<LoopAnalysis>();
- // Not preserving the `LoopAnalysisManagerFunctionProxy`.
- PA.preserve<ScalarEvolutionAnalysis>();
- return PA;
- }));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- FPM.addPass(MFPHandle.getPass());
- FPM.addPass(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
- EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
- auto PA = PreservedAnalyses::none();
- PA.preserve<AAManager>();
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<LoopAnalysis>();
- PA.preserve<LoopAnalysisManagerFunctionProxy>();
- // Not preserving `ScalarEvolutionAnalysis`.
- return PA;
- }));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- FPM.addPass(MFPHandle.getPass());
- FPM.addPass(createFunctionToLoopPassAdaptor(
- RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
- // After all the churn on 'f', we'll compute the loop analysis results for
- // 'g' once with a requires pass and then run our mock pass over g a bunch
- // but just get cached results each time.
- EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
- EXPECT_CALL(MFPHandle, run(HasName("g"), _)).Times(6);
- MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
- MPM.run(*M, MAM);
- }
- TEST_F(LoopPassManagerTest, IndirectInvalidation) {
- // We need two distinct analysis types and handles.
- enum { A, B };
- MockLoopAnalysisHandleTemplate<A> MLAHandleA;
- MockLoopAnalysisHandleTemplate<B> MLAHandleB;
- LAM.registerPass([&] { return MLAHandleA.getAnalysis(); });
- LAM.registerPass([&] { return MLAHandleB.getAnalysis(); });
- typedef decltype(MLAHandleA)::Analysis AnalysisA;
- typedef decltype(MLAHandleB)::Analysis AnalysisB;
- // Set up AnalysisA to depend on our AnalysisB. For testing purposes we just
- // need to get the AnalysisB results in AnalysisA's run method and check if
- // AnalysisB gets invalidated in AnalysisA's invalidate method.
- ON_CALL(MLAHandleA, run(_, _, _))
- .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR) {
- (void)AM.getResult<AnalysisB>(L, AR);
- return MLAHandleA.getResult();
- }));
- ON_CALL(MLAHandleA, invalidate(_, _, _))
- .WillByDefault(Invoke([](Loop &L, const PreservedAnalyses &PA,
- LoopAnalysisManager::Invalidator &Inv) {
- auto PAC = PA.getChecker<AnalysisA>();
- return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Loop>>()) ||
- Inv.invalidate<AnalysisB>(L, PA);
- }));
- ::testing::InSequence MakeExpectationsSequenced;
- // Compute the analyses across all of 'f' first.
- EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandleA, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLAHandleB, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLAHandleA, run(HasName("loop.0"), _, _));
- EXPECT_CALL(MLAHandleB, run(HasName("loop.0"), _, _));
- // Now we invalidate AnalysisB (but not AnalysisA) for one of the loops and
- // preserve everything for the rest. This in turn triggers that one loop to
- // recompute both AnalysisB *and* AnalysisA if indirect invalidation is
- // working.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
- .WillOnce(InvokeWithoutArgs([] {
- auto PA = getLoopPassPreservedAnalyses();
- // Specifically preserve AnalysisA so that it would survive if it
- // didn't depend on AnalysisB.
- PA.preserve<AnalysisA>();
- return PA;
- }));
- // It happens that AnalysisB is invalidated first. That shouldn't matter
- // though, and we should still call AnalysisA's invalidation.
- EXPECT_CALL(MLAHandleB, invalidate(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandleA, invalidate(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
- .WillOnce(Invoke([](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR, LPMUpdater &) {
- (void)AM.getResult<AnalysisA>(L, AR);
- return PreservedAnalyses::all();
- }));
- EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
- // The rest of the loops should run and get cached results.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR, LPMUpdater &) {
- (void)AM.getResult<AnalysisA>(L, AR);
- return PreservedAnalyses::all();
- }));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR, LPMUpdater &) {
- (void)AM.getResult<AnalysisA>(L, AR);
- return PreservedAnalyses::all();
- }));
- // The run over 'g' should be boring, with us just computing the analyses once
- // up front and then running loop passes and getting cached results.
- EXPECT_CALL(MLAHandleA, run(HasName("loop.g.0"), _, _));
- EXPECT_CALL(MLAHandleB, run(HasName("loop.g.0"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR, LPMUpdater &) {
- (void)AM.getResult<AnalysisA>(L, AR);
- return PreservedAnalyses::all();
- }));
- // Build the pipeline and run it.
- ModulePassManager MPM(true);
- FunctionPassManager FPM(true);
- FPM.addPass(
- createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<AnalysisA>()));
- LoopPassManager LPM(true);
- LPM.addPass(MLPHandle.getPass());
- LPM.addPass(MLPHandle.getPass());
- FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
- MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
- MPM.run(*M, MAM);
- }
- TEST_F(LoopPassManagerTest, IndirectOuterPassInvalidation) {
- typedef decltype(MLAHandle)::Analysis LoopAnalysis;
- MockFunctionAnalysisHandle MFAHandle;
- FAM.registerPass([&] { return MFAHandle.getAnalysis(); });
- typedef decltype(MFAHandle)::Analysis FunctionAnalysis;
- // Set up the loop analysis to depend on both the function and module
- // analysis.
- ON_CALL(MLAHandle, run(_, _, _))
- .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR) {
- auto &FAMP = AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR);
- auto &FAM = FAMP.getManager();
- Function &F = *L.getHeader()->getParent();
- if (FAM.getCachedResult<FunctionAnalysis>(F))
- FAMP.registerOuterAnalysisInvalidation<FunctionAnalysis,
- LoopAnalysis>();
- return MLAHandle.getResult();
- }));
- ::testing::InSequence MakeExpectationsSequenced;
- // Compute the analyses across all of 'f' first.
- EXPECT_CALL(MFPHandle, run(HasName("f"), _))
- .WillOnce(Invoke([](Function &F, FunctionAnalysisManager &AM) {
- // Force the computing of the function analysis so it is available in
- // this function.
- (void)AM.getResult<FunctionAnalysis>(F);
- return PreservedAnalyses::all();
- }));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- // Now invalidate the function analysis but preserve the loop analyses.
- // This should trigger immediate invalidation of the loop analyses, despite
- // the fact that they were preserved.
- EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
- auto PA = getLoopPassPreservedAnalyses();
- PA.preserveSet<AllAnalysesOn<Loop>>();
- return PA;
- }));
- EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
- // And re-running a requires pass recomputes them.
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- // When we run over 'g' we don't populate the cache with the function
- // analysis.
- EXPECT_CALL(MFPHandle, run(HasName("g"), _))
- .WillOnce(Return(PreservedAnalyses::all()));
- EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
- // Which means that no extra invalidation occurs and cached values are used.
- EXPECT_CALL(MFPHandle, run(HasName("g"), _)).WillOnce(InvokeWithoutArgs([] {
- auto PA = getLoopPassPreservedAnalyses();
- PA.preserveSet<AllAnalysesOn<Loop>>();
- return PA;
- }));
- // Build the pipeline and run it.
- ModulePassManager MPM(true);
- FunctionPassManager FPM(true);
- FPM.addPass(MFPHandle.getPass());
- FPM.addPass(
- createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
- FPM.addPass(MFPHandle.getPass());
- FPM.addPass(
- createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
- MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
- MPM.run(*M, MAM);
- }
- TEST_F(LoopPassManagerTest, LoopChildInsertion) {
- // Super boring module with three loops in a single loop nest.
- M = parseIR(Context, "define void @f(i1* %ptr) {\n"
- "entry:\n"
- " br label %loop.0\n"
- "loop.0:\n"
- " %cond.0 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0, label %loop.0.0.ph, label %end\n"
- "loop.0.0.ph:\n"
- " br label %loop.0.0\n"
- "loop.0.0:\n"
- " %cond.0.0 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
- "loop.0.1.ph:\n"
- " br label %loop.0.1\n"
- "loop.0.1:\n"
- " %cond.0.1 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
- "loop.0.2.ph:\n"
- " br label %loop.0.2\n"
- "loop.0.2:\n"
- " %cond.0.2 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
- "loop.0.latch:\n"
- " br label %loop.0\n"
- "end:\n"
- " ret void\n"
- "}\n");
- // Build up variables referring into the IR so we can rewrite it below
- // easily.
- Function &F = *M->begin();
- ASSERT_THAT(F, HasName("f"));
- Argument &Ptr = *F.arg_begin();
- auto BBI = F.begin();
- BasicBlock &EntryBB = *BBI++;
- ASSERT_THAT(EntryBB, HasName("entry"));
- BasicBlock &Loop0BB = *BBI++;
- ASSERT_THAT(Loop0BB, HasName("loop.0"));
- BasicBlock &Loop00PHBB = *BBI++;
- ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
- BasicBlock &Loop00BB = *BBI++;
- ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
- BasicBlock &Loop01PHBB = *BBI++;
- ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
- BasicBlock &Loop01BB = *BBI++;
- ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
- BasicBlock &Loop02PHBB = *BBI++;
- ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
- BasicBlock &Loop02BB = *BBI++;
- ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
- BasicBlock &Loop0LatchBB = *BBI++;
- ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
- BasicBlock &EndBB = *BBI++;
- ASSERT_THAT(EndBB, HasName("end"));
- ASSERT_THAT(BBI, F.end());
- auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
- const char *Name, BasicBlock *BB) {
- auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
- /*isVolatile*/ true, BB);
- BranchInst::Create(TrueBB, FalseBB, Cond, BB);
- };
- // Build the pass managers and register our pipeline. We build a single loop
- // pass pipeline consisting of three mock pass runs over each loop. After
- // this we run both domtree and loop verification passes to make sure that
- // the IR remained valid during our mutations.
- ModulePassManager MPM(true);
- FunctionPassManager FPM(true);
- LoopPassManager LPM(true);
- LPM.addPass(MLPHandle.getPass());
- LPM.addPass(MLPHandle.getPass());
- LPM.addPass(MLPHandle.getPass());
- FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
- FPM.addPass(DominatorTreeVerifierPass());
- FPM.addPass(LoopVerifierPass());
- MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
- // All the visit orders are deterministic, so we use simple fully order
- // expectations.
- ::testing::InSequence MakeExpectationsSequenced;
- // We run loop passes three times over each of the loops.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- // When running over the middle loop, the second run inserts two new child
- // loops, inserting them and itself into the worklist.
- BasicBlock *NewLoop010BB, *NewLoop01LatchBB;
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
- .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &Updater) {
- auto *NewLoop = AR.LI.AllocateLoop();
- L.addChildLoop(NewLoop);
- auto *NewLoop010PHBB =
- BasicBlock::Create(Context, "loop.0.1.0.ph", &F, &Loop02PHBB);
- NewLoop010BB =
- BasicBlock::Create(Context, "loop.0.1.0", &F, &Loop02PHBB);
- NewLoop01LatchBB =
- BasicBlock::Create(Context, "loop.0.1.latch", &F, &Loop02PHBB);
- Loop01BB.getTerminator()->replaceUsesOfWith(&Loop01BB, NewLoop010PHBB);
- BranchInst::Create(NewLoop010BB, NewLoop010PHBB);
- CreateCondBr(NewLoop01LatchBB, NewLoop010BB, "cond.0.1.0",
- NewLoop010BB);
- BranchInst::Create(&Loop01BB, NewLoop01LatchBB);
- AR.DT.addNewBlock(NewLoop010PHBB, &Loop01BB);
- AR.DT.addNewBlock(NewLoop010BB, NewLoop010PHBB);
- AR.DT.addNewBlock(NewLoop01LatchBB, NewLoop010BB);
- EXPECT_TRUE(AR.DT.verify());
- L.addBasicBlockToLoop(NewLoop010PHBB, AR.LI);
- NewLoop->addBasicBlockToLoop(NewLoop010BB, AR.LI);
- L.addBasicBlockToLoop(NewLoop01LatchBB, AR.LI);
- NewLoop->verifyLoop();
- L.verifyLoop();
- Updater.addChildLoops({NewLoop});
- return PreservedAnalyses::all();
- }));
- // We should immediately drop down to fully visit the new inner loop.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.0"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- // After visiting the inner loop, we should re-visit the second loop
- // reflecting its new loop nest structure.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- // In the second run over the middle loop after we've visited the new child,
- // we add another child to check that we can repeatedly add children, and add
- // children to a loop that already has children.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
- .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &Updater) {
- auto *NewLoop = AR.LI.AllocateLoop();
- L.addChildLoop(NewLoop);
- auto *NewLoop011PHBB = BasicBlock::Create(Context, "loop.0.1.1.ph", &F, NewLoop01LatchBB);
- auto *NewLoop011BB = BasicBlock::Create(Context, "loop.0.1.1", &F, NewLoop01LatchBB);
- NewLoop010BB->getTerminator()->replaceUsesOfWith(NewLoop01LatchBB,
- NewLoop011PHBB);
- BranchInst::Create(NewLoop011BB, NewLoop011PHBB);
- CreateCondBr(NewLoop01LatchBB, NewLoop011BB, "cond.0.1.1",
- NewLoop011BB);
- AR.DT.addNewBlock(NewLoop011PHBB, NewLoop010BB);
- auto *NewDTNode = AR.DT.addNewBlock(NewLoop011BB, NewLoop011PHBB);
- AR.DT.changeImmediateDominator(AR.DT[NewLoop01LatchBB], NewDTNode);
- EXPECT_TRUE(AR.DT.verify());
- L.addBasicBlockToLoop(NewLoop011PHBB, AR.LI);
- NewLoop->addBasicBlockToLoop(NewLoop011BB, AR.LI);
- NewLoop->verifyLoop();
- L.verifyLoop();
- Updater.addChildLoops({NewLoop});
- return PreservedAnalyses::all();
- }));
- // Again, we should immediately drop down to visit the new, unvisited child
- // loop. We don't need to revisit the other child though.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.1"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- // And now we should pop back up to the second loop and do a full pipeline of
- // three passes on its current form.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
- .Times(3)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- // Now that all the expected actions are registered, run the pipeline over
- // our module. All of our expectations are verified when the test finishes.
- MPM.run(*M, MAM);
- }
- TEST_F(LoopPassManagerTest, LoopPeerInsertion) {
- // Super boring module with two loop nests and loop nest with two child
- // loops.
- M = parseIR(Context, "define void @f(i1* %ptr) {\n"
- "entry:\n"
- " br label %loop.0\n"
- "loop.0:\n"
- " %cond.0 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0, label %loop.0.0.ph, label %loop.2.ph\n"
- "loop.0.0.ph:\n"
- " br label %loop.0.0\n"
- "loop.0.0:\n"
- " %cond.0.0 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0.0, label %loop.0.0, label %loop.0.2.ph\n"
- "loop.0.2.ph:\n"
- " br label %loop.0.2\n"
- "loop.0.2:\n"
- " %cond.0.2 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
- "loop.0.latch:\n"
- " br label %loop.0\n"
- "loop.2.ph:\n"
- " br label %loop.2\n"
- "loop.2:\n"
- " %cond.2 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.2, label %loop.2, label %end\n"
- "end:\n"
- " ret void\n"
- "}\n");
- // Build up variables referring into the IR so we can rewrite it below
- // easily.
- Function &F = *M->begin();
- ASSERT_THAT(F, HasName("f"));
- Argument &Ptr = *F.arg_begin();
- auto BBI = F.begin();
- BasicBlock &EntryBB = *BBI++;
- ASSERT_THAT(EntryBB, HasName("entry"));
- BasicBlock &Loop0BB = *BBI++;
- ASSERT_THAT(Loop0BB, HasName("loop.0"));
- BasicBlock &Loop00PHBB = *BBI++;
- ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
- BasicBlock &Loop00BB = *BBI++;
- ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
- BasicBlock &Loop02PHBB = *BBI++;
- ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
- BasicBlock &Loop02BB = *BBI++;
- ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
- BasicBlock &Loop0LatchBB = *BBI++;
- ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
- BasicBlock &Loop2PHBB = *BBI++;
- ASSERT_THAT(Loop2PHBB, HasName("loop.2.ph"));
- BasicBlock &Loop2BB = *BBI++;
- ASSERT_THAT(Loop2BB, HasName("loop.2"));
- BasicBlock &EndBB = *BBI++;
- ASSERT_THAT(EndBB, HasName("end"));
- ASSERT_THAT(BBI, F.end());
- auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
- const char *Name, BasicBlock *BB) {
- auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
- /*isVolatile*/ true, BB);
- BranchInst::Create(TrueBB, FalseBB, Cond, BB);
- };
- // Build the pass managers and register our pipeline. We build a single loop
- // pass pipeline consisting of three mock pass runs over each loop. After
- // this we run both domtree and loop verification passes to make sure that
- // the IR remained valid during our mutations.
- ModulePassManager MPM(true);
- FunctionPassManager FPM(true);
- LoopPassManager LPM(true);
- LPM.addPass(MLPHandle.getPass());
- LPM.addPass(MLPHandle.getPass());
- LPM.addPass(MLPHandle.getPass());
- FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
- FPM.addPass(DominatorTreeVerifierPass());
- FPM.addPass(LoopVerifierPass());
- MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
- // All the visit orders are deterministic, so we use simple fully order
- // expectations.
- ::testing::InSequence MakeExpectationsSequenced;
- // We run loop passes three times over each of the loops.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- // On the second run, we insert a sibling loop.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
- .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &Updater) {
- auto *NewLoop = AR.LI.AllocateLoop();
- L.getParentLoop()->addChildLoop(NewLoop);
- auto *NewLoop01PHBB = BasicBlock::Create(Context, "loop.0.1.ph", &F, &Loop02PHBB);
- auto *NewLoop01BB = BasicBlock::Create(Context, "loop.0.1", &F, &Loop02PHBB);
- BranchInst::Create(NewLoop01BB, NewLoop01PHBB);
- CreateCondBr(&Loop02PHBB, NewLoop01BB, "cond.0.1", NewLoop01BB);
- Loop00BB.getTerminator()->replaceUsesOfWith(&Loop02PHBB, NewLoop01PHBB);
- AR.DT.addNewBlock(NewLoop01PHBB, &Loop00BB);
- auto *NewDTNode = AR.DT.addNewBlock(NewLoop01BB, NewLoop01PHBB);
- AR.DT.changeImmediateDominator(AR.DT[&Loop02PHBB], NewDTNode);
- EXPECT_TRUE(AR.DT.verify());
- L.getParentLoop()->addBasicBlockToLoop(NewLoop01PHBB, AR.LI);
- NewLoop->addBasicBlockToLoop(NewLoop01BB, AR.LI);
- L.getParentLoop()->verifyLoop();
- Updater.addSiblingLoops({NewLoop});
- return PreservedAnalyses::all();
- }));
- // We finish processing this loop as sibling loops don't perturb the
- // postorder walk.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- // We visit the inserted sibling next.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- // Next, on the third pass run on the last inner loop we add more new
- // siblings, more than one, and one with nested child loops. By doing this at
- // the end we make sure that edge case works well.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
- .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &Updater) {
- Loop *NewLoops[] = {AR.LI.AllocateLoop(), AR.LI.AllocateLoop(),
- AR.LI.AllocateLoop()};
- L.getParentLoop()->addChildLoop(NewLoops[0]);
- L.getParentLoop()->addChildLoop(NewLoops[1]);
- NewLoops[1]->addChildLoop(NewLoops[2]);
- auto *NewLoop03PHBB =
- BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
- auto *NewLoop03BB =
- BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
- auto *NewLoop04PHBB =
- BasicBlock::Create(Context, "loop.0.4.ph", &F, &Loop0LatchBB);
- auto *NewLoop04BB =
- BasicBlock::Create(Context, "loop.0.4", &F, &Loop0LatchBB);
- auto *NewLoop040PHBB =
- BasicBlock::Create(Context, "loop.0.4.0.ph", &F, &Loop0LatchBB);
- auto *NewLoop040BB =
- BasicBlock::Create(Context, "loop.0.4.0", &F, &Loop0LatchBB);
- auto *NewLoop04LatchBB =
- BasicBlock::Create(Context, "loop.0.4.latch", &F, &Loop0LatchBB);
- Loop02BB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB);
- BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
- CreateCondBr(NewLoop04PHBB, NewLoop03BB, "cond.0.3", NewLoop03BB);
- BranchInst::Create(NewLoop04BB, NewLoop04PHBB);
- CreateCondBr(&Loop0LatchBB, NewLoop040PHBB, "cond.0.4", NewLoop04BB);
- BranchInst::Create(NewLoop040BB, NewLoop040PHBB);
- CreateCondBr(NewLoop04LatchBB, NewLoop040BB, "cond.0.4.0", NewLoop040BB);
- BranchInst::Create(NewLoop04BB, NewLoop04LatchBB);
- AR.DT.addNewBlock(NewLoop03PHBB, &Loop02BB);
- AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
- AR.DT.addNewBlock(NewLoop04PHBB, NewLoop03BB);
- auto *NewDTNode = AR.DT.addNewBlock(NewLoop04BB, NewLoop04PHBB);
- AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], NewDTNode);
- AR.DT.addNewBlock(NewLoop040PHBB, NewLoop04BB);
- AR.DT.addNewBlock(NewLoop040BB, NewLoop040PHBB);
- AR.DT.addNewBlock(NewLoop04LatchBB, NewLoop040BB);
- EXPECT_TRUE(AR.DT.verify());
- L.getParentLoop()->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
- NewLoops[0]->addBasicBlockToLoop(NewLoop03BB, AR.LI);
- L.getParentLoop()->addBasicBlockToLoop(NewLoop04PHBB, AR.LI);
- NewLoops[1]->addBasicBlockToLoop(NewLoop04BB, AR.LI);
- NewLoops[1]->addBasicBlockToLoop(NewLoop040PHBB, AR.LI);
- NewLoops[2]->addBasicBlockToLoop(NewLoop040BB, AR.LI);
- NewLoops[1]->addBasicBlockToLoop(NewLoop04LatchBB, AR.LI);
- L.getParentLoop()->verifyLoop();
- Updater.addSiblingLoops({NewLoops[0], NewLoops[1]});
- return PreservedAnalyses::all();
- }));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- // Note that we need to visit the inner loop of this added sibling before the
- // sibling itself!
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.4.0"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.4"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- // And only now do we visit the outermost loop of the nest.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- // On the second pass, we add sibling loops which become new top-level loops.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
- .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR,
- LPMUpdater &Updater) {
- auto *NewLoop = AR.LI.AllocateLoop();
- AR.LI.addTopLevelLoop(NewLoop);
- auto *NewLoop1PHBB = BasicBlock::Create(Context, "loop.1.ph", &F, &Loop2BB);
- auto *NewLoop1BB = BasicBlock::Create(Context, "loop.1", &F, &Loop2BB);
- BranchInst::Create(NewLoop1BB, NewLoop1PHBB);
- CreateCondBr(&Loop2PHBB, NewLoop1BB, "cond.1", NewLoop1BB);
- Loop0BB.getTerminator()->replaceUsesOfWith(&Loop2PHBB, NewLoop1PHBB);
- AR.DT.addNewBlock(NewLoop1PHBB, &Loop0BB);
- auto *NewDTNode = AR.DT.addNewBlock(NewLoop1BB, NewLoop1PHBB);
- AR.DT.changeImmediateDominator(AR.DT[&Loop2PHBB], NewDTNode);
- EXPECT_TRUE(AR.DT.verify());
- NewLoop->addBasicBlockToLoop(NewLoop1BB, AR.LI);
- NewLoop->verifyLoop();
- Updater.addSiblingLoops({NewLoop});
- return PreservedAnalyses::all();
- }));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.1"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.2"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- // Now that all the expected actions are registered, run the pipeline over
- // our module. All of our expectations are verified when the test finishes.
- MPM.run(*M, MAM);
- }
- TEST_F(LoopPassManagerTest, LoopDeletion) {
- // Build a module with a single loop nest that contains one outer loop with
- // three subloops, and one of those with its own subloop. We will
- // incrementally delete all of these to test different deletion scenarios.
- M = parseIR(Context, "define void @f(i1* %ptr) {\n"
- "entry:\n"
- " br label %loop.0\n"
- "loop.0:\n"
- " %cond.0 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0, label %loop.0.0.ph, label %end\n"
- "loop.0.0.ph:\n"
- " br label %loop.0.0\n"
- "loop.0.0:\n"
- " %cond.0.0 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
- "loop.0.1.ph:\n"
- " br label %loop.0.1\n"
- "loop.0.1:\n"
- " %cond.0.1 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
- "loop.0.2.ph:\n"
- " br label %loop.0.2\n"
- "loop.0.2:\n"
- " %cond.0.2 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0.2, label %loop.0.2.0.ph, label %loop.0.latch\n"
- "loop.0.2.0.ph:\n"
- " br label %loop.0.2.0\n"
- "loop.0.2.0:\n"
- " %cond.0.2.0 = load volatile i1, i1* %ptr\n"
- " br i1 %cond.0.2.0, label %loop.0.2.0, label %loop.0.2.latch\n"
- "loop.0.2.latch:\n"
- " br label %loop.0.2\n"
- "loop.0.latch:\n"
- " br label %loop.0\n"
- "end:\n"
- " ret void\n"
- "}\n");
- // Build up variables referring into the IR so we can rewrite it below
- // easily.
- Function &F = *M->begin();
- ASSERT_THAT(F, HasName("f"));
- Argument &Ptr = *F.arg_begin();
- auto BBI = F.begin();
- BasicBlock &EntryBB = *BBI++;
- ASSERT_THAT(EntryBB, HasName("entry"));
- BasicBlock &Loop0BB = *BBI++;
- ASSERT_THAT(Loop0BB, HasName("loop.0"));
- BasicBlock &Loop00PHBB = *BBI++;
- ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
- BasicBlock &Loop00BB = *BBI++;
- ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
- BasicBlock &Loop01PHBB = *BBI++;
- ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
- BasicBlock &Loop01BB = *BBI++;
- ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
- BasicBlock &Loop02PHBB = *BBI++;
- ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
- BasicBlock &Loop02BB = *BBI++;
- ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
- BasicBlock &Loop020PHBB = *BBI++;
- ASSERT_THAT(Loop020PHBB, HasName("loop.0.2.0.ph"));
- BasicBlock &Loop020BB = *BBI++;
- ASSERT_THAT(Loop020BB, HasName("loop.0.2.0"));
- BasicBlock &Loop02LatchBB = *BBI++;
- ASSERT_THAT(Loop02LatchBB, HasName("loop.0.2.latch"));
- BasicBlock &Loop0LatchBB = *BBI++;
- ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
- BasicBlock &EndBB = *BBI++;
- ASSERT_THAT(EndBB, HasName("end"));
- ASSERT_THAT(BBI, F.end());
- // Helper to do the actual deletion of a loop. We directly encode this here
- // to isolate ourselves from the rest of LLVM and for simplicity. Here we can
- // egregiously cheat based on knowledge of the test case. For example, we
- // have no PHI nodes and there is always a single i-dom.
- auto EraseLoop = [](Loop &L, BasicBlock &IDomBB,
- LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
- assert(L.empty() && "Can only delete leaf loops with this routine!");
- SmallVector<BasicBlock *, 4> LoopBBs(L.block_begin(), L.block_end());
- Updater.markLoopAsDeleted(L, L.getName());
- IDomBB.getTerminator()->replaceUsesOfWith(L.getHeader(),
- L.getUniqueExitBlock());
- for (BasicBlock *LoopBB : LoopBBs) {
- SmallVector<DomTreeNode *, 4> ChildNodes(AR.DT[LoopBB]->begin(),
- AR.DT[LoopBB]->end());
- for (DomTreeNode *ChildNode : ChildNodes)
- AR.DT.changeImmediateDominator(ChildNode, AR.DT[&IDomBB]);
- AR.DT.eraseNode(LoopBB);
- AR.LI.removeBlock(LoopBB);
- LoopBB->dropAllReferences();
- }
- for (BasicBlock *LoopBB : LoopBBs)
- LoopBB->eraseFromParent();
- AR.LI.erase(&L);
- };
- // Build up the pass managers.
- ModulePassManager MPM(true);
- FunctionPassManager FPM(true);
- // We run several loop pass pipelines across the loop nest, but they all take
- // the same form of three mock pass runs in a loop pipeline followed by
- // domtree and loop verification. We use a lambda to stamp this out each
- // time.
- auto AddLoopPipelineAndVerificationPasses = [&] {
- LoopPassManager LPM(true);
- LPM.addPass(MLPHandle.getPass());
- LPM.addPass(MLPHandle.getPass());
- LPM.addPass(MLPHandle.getPass());
- FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
- FPM.addPass(DominatorTreeVerifierPass());
- FPM.addPass(LoopVerifierPass());
- };
- // All the visit orders are deterministic so we use simple fully order
- // expectations.
- ::testing::InSequence MakeExpectationsSequenced;
- // We run the loop pipeline with three passes over each of the loops. When
- // running over the middle loop, the second pass in the pipeline deletes it.
- // This should prevent the third pass from visiting it but otherwise leave
- // the process unimpacted.
- AddLoopPipelineAndVerificationPasses();
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
- .WillOnce(
- Invoke([&](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
- Loop *ParentL = L.getParentLoop();
- AR.SE.forgetLoop(&L);
- EraseLoop(L, Loop01PHBB, AR, Updater);
- ParentL->verifyLoop();
- return PreservedAnalyses::all();
- }));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.2.0"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- // Run the loop pipeline again. This time we delete the last loop, which
- // contains a nested loop within it and insert a new loop into the nest. This
- // makes sure we can handle nested loop deletion.
- AddLoopPipelineAndVerificationPasses();
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
- .Times(3)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
- .Times(3)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- BasicBlock *NewLoop03PHBB;
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
- .WillOnce(
- Invoke([&](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
- AR.SE.forgetLoop(*L.begin());
- EraseLoop(**L.begin(), Loop020PHBB, AR, Updater);
- auto *ParentL = L.getParentLoop();
- AR.SE.forgetLoop(&L);
- EraseLoop(L, Loop02PHBB, AR, Updater);
- // Now insert a new sibling loop.
- auto *NewSibling = AR.LI.AllocateLoop();
- ParentL->addChildLoop(NewSibling);
- NewLoop03PHBB =
- BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
- auto *NewLoop03BB =
- BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
- BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
- auto *Cond =
- new LoadInst(Type::getInt1Ty(Context), &Ptr, "cond.0.3",
- /*isVolatile*/ true, NewLoop03BB);
- BranchInst::Create(&Loop0LatchBB, NewLoop03BB, Cond, NewLoop03BB);
- Loop02PHBB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB,
- NewLoop03PHBB);
- AR.DT.addNewBlock(NewLoop03PHBB, &Loop02PHBB);
- AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
- AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB],
- AR.DT[NewLoop03BB]);
- EXPECT_TRUE(AR.DT.verify());
- ParentL->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
- NewSibling->addBasicBlockToLoop(NewLoop03BB, AR.LI);
- NewSibling->verifyLoop();
- ParentL->verifyLoop();
- Updater.addSiblingLoops({NewSibling});
- return PreservedAnalyses::all();
- }));
- // To respect our inner-to-outer traversal order, we must visit the
- // newly-inserted sibling of the loop we just deleted before we visit the
- // outer loop. When we do so, this must compute a fresh analysis result, even
- // though our new loop has the same pointer value as the loop we deleted.
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
- .Times(2)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
- .Times(3)
- .WillRepeatedly(Invoke(getLoopAnalysisResult));
- // In the final loop pipeline run we delete every loop, including the last
- // loop of the nest. We do this again in the second pass in the pipeline, and
- // as a consequence we never make it to three runs on any loop. We also cover
- // deleting multiple loops in a single pipeline, deleting the first loop and
- // deleting the (last) top level loop.
- AddLoopPipelineAndVerificationPasses();
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
- .WillOnce(
- Invoke([&](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
- AR.SE.forgetLoop(&L);
- EraseLoop(L, Loop00PHBB, AR, Updater);
- return PreservedAnalyses::all();
- }));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
- .WillOnce(
- Invoke([&](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
- AR.SE.forgetLoop(&L);
- EraseLoop(L, *NewLoop03PHBB, AR, Updater);
- return PreservedAnalyses::all();
- }));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
- .WillOnce(Invoke(getLoopAnalysisResult));
- EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
- .WillOnce(
- Invoke([&](Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
- AR.SE.forgetLoop(&L);
- EraseLoop(L, EntryBB, AR, Updater);
- return PreservedAnalyses::all();
- }));
- // Add the function pass pipeline now that it is fully built up and run it
- // over the module's one function.
- MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
- MPM.run(*M, MAM);
- }
- }
|