BitcodeWriter.cpp 153 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962
  1. //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // Bitcode writer implementation.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "llvm/Bitcode/BitcodeWriter.h"
  14. #include "ValueEnumerator.h"
  15. #include "llvm/ADT/StringExtras.h"
  16. #include "llvm/ADT/Triple.h"
  17. #include "llvm/Bitcode/BitstreamWriter.h"
  18. #include "llvm/Bitcode/LLVMBitCodes.h"
  19. #include "llvm/IR/CallSite.h"
  20. #include "llvm/IR/Constants.h"
  21. #include "llvm/IR/DebugInfoMetadata.h"
  22. #include "llvm/IR/DerivedTypes.h"
  23. #include "llvm/IR/InlineAsm.h"
  24. #include "llvm/IR/Instructions.h"
  25. #include "llvm/IR/LLVMContext.h"
  26. #include "llvm/IR/Module.h"
  27. #include "llvm/IR/Operator.h"
  28. #include "llvm/IR/UseListOrder.h"
  29. #include "llvm/IR/ValueSymbolTable.h"
  30. #include "llvm/Support/ErrorHandling.h"
  31. #include "llvm/Support/MathExtras.h"
  32. #include "llvm/Support/Program.h"
  33. #include "llvm/Support/SHA1.h"
  34. #include "llvm/Support/raw_ostream.h"
  35. #include <cctype>
  36. #include <map>
  37. using namespace llvm;
  38. namespace {
  39. cl::opt<unsigned>
  40. IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
  41. cl::desc("Number of metadatas above which we emit an index "
  42. "to enable lazy-loading"));
  43. /// These are manifest constants used by the bitcode writer. They do not need to
  44. /// be kept in sync with the reader, but need to be consistent within this file.
  45. enum {
  46. // VALUE_SYMTAB_BLOCK abbrev id's.
  47. VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  48. VST_ENTRY_7_ABBREV,
  49. VST_ENTRY_6_ABBREV,
  50. VST_BBENTRY_6_ABBREV,
  51. // CONSTANTS_BLOCK abbrev id's.
  52. CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  53. CONSTANTS_INTEGER_ABBREV,
  54. CONSTANTS_CE_CAST_Abbrev,
  55. CONSTANTS_NULL_Abbrev,
  56. // FUNCTION_BLOCK abbrev id's.
  57. FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
  58. FUNCTION_INST_BINOP_ABBREV,
  59. FUNCTION_INST_BINOP_FLAGS_ABBREV,
  60. FUNCTION_INST_CAST_ABBREV,
  61. FUNCTION_INST_RET_VOID_ABBREV,
  62. FUNCTION_INST_RET_VAL_ABBREV,
  63. FUNCTION_INST_UNREACHABLE_ABBREV,
  64. FUNCTION_INST_GEP_ABBREV,
  65. };
  66. /// Abstract class to manage the bitcode writing, subclassed for each bitcode
  67. /// file type.
  68. class BitcodeWriterBase {
  69. protected:
  70. /// The stream created and owned by the client.
  71. BitstreamWriter &Stream;
  72. /// Saves the offset of the VSTOffset record that must eventually be
  73. /// backpatched with the offset of the actual VST.
  74. uint64_t VSTOffsetPlaceholder = 0;
  75. public:
  76. /// Constructs a BitcodeWriterBase object that writes to the provided
  77. /// \p Stream.
  78. BitcodeWriterBase(BitstreamWriter &Stream) : Stream(Stream) {}
  79. protected:
  80. bool hasVSTOffsetPlaceholder() { return VSTOffsetPlaceholder != 0; }
  81. void writeValueSymbolTableForwardDecl();
  82. void writeBitcodeHeader();
  83. };
  84. /// Class to manage the bitcode writing for a module.
  85. class ModuleBitcodeWriter : public BitcodeWriterBase {
  86. /// Pointer to the buffer allocated by caller for bitcode writing.
  87. const SmallVectorImpl<char> &Buffer;
  88. /// The Module to write to bitcode.
  89. const Module &M;
  90. /// Enumerates ids for all values in the module.
  91. ValueEnumerator VE;
  92. /// Optional per-module index to write for ThinLTO.
  93. const ModuleSummaryIndex *Index;
  94. /// True if a module hash record should be written.
  95. bool GenerateHash;
  96. /// The start bit of the identification block.
  97. uint64_t BitcodeStartBit;
  98. /// Map that holds the correspondence between GUIDs in the summary index,
  99. /// that came from indirect call profiles, and a value id generated by this
  100. /// class to use in the VST and summary block records.
  101. std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
  102. /// Tracks the last value id recorded in the GUIDToValueMap.
  103. unsigned GlobalValueId;
  104. public:
  105. /// Constructs a ModuleBitcodeWriter object for the given Module,
  106. /// writing to the provided \p Buffer.
  107. ModuleBitcodeWriter(const Module *M, SmallVectorImpl<char> &Buffer,
  108. BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
  109. const ModuleSummaryIndex *Index, bool GenerateHash)
  110. : BitcodeWriterBase(Stream), Buffer(Buffer), M(*M),
  111. VE(*M, ShouldPreserveUseListOrder), Index(Index),
  112. GenerateHash(GenerateHash), BitcodeStartBit(Stream.GetCurrentBitNo()) {
  113. // Assign ValueIds to any callee values in the index that came from
  114. // indirect call profiles and were recorded as a GUID not a Value*
  115. // (which would have been assigned an ID by the ValueEnumerator).
  116. // The starting ValueId is just after the number of values in the
  117. // ValueEnumerator, so that they can be emitted in the VST.
  118. GlobalValueId = VE.getValues().size();
  119. if (!Index)
  120. return;
  121. for (const auto &GUIDSummaryLists : *Index)
  122. // Examine all summaries for this GUID.
  123. for (auto &Summary : GUIDSummaryLists.second)
  124. if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
  125. // For each call in the function summary, see if the call
  126. // is to a GUID (which means it is for an indirect call,
  127. // otherwise we would have a Value for it). If so, synthesize
  128. // a value id.
  129. for (auto &CallEdge : FS->calls())
  130. if (CallEdge.first.isGUID())
  131. assignValueId(CallEdge.first.getGUID());
  132. }
  133. /// Emit the current module to the bitstream.
  134. void write();
  135. private:
  136. uint64_t bitcodeStartBit() { return BitcodeStartBit; }
  137. void writeAttributeGroupTable();
  138. void writeAttributeTable();
  139. void writeTypeTable();
  140. void writeComdats();
  141. void writeModuleInfo();
  142. void writeValueAsMetadata(const ValueAsMetadata *MD,
  143. SmallVectorImpl<uint64_t> &Record);
  144. void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
  145. unsigned Abbrev);
  146. unsigned createDILocationAbbrev();
  147. void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
  148. unsigned &Abbrev);
  149. unsigned createGenericDINodeAbbrev();
  150. void writeGenericDINode(const GenericDINode *N,
  151. SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
  152. void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
  153. unsigned Abbrev);
  154. void writeDIEnumerator(const DIEnumerator *N,
  155. SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  156. void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
  157. unsigned Abbrev);
  158. void writeDIDerivedType(const DIDerivedType *N,
  159. SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  160. void writeDICompositeType(const DICompositeType *N,
  161. SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  162. void writeDISubroutineType(const DISubroutineType *N,
  163. SmallVectorImpl<uint64_t> &Record,
  164. unsigned Abbrev);
  165. void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
  166. unsigned Abbrev);
  167. void writeDICompileUnit(const DICompileUnit *N,
  168. SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  169. void writeDISubprogram(const DISubprogram *N,
  170. SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  171. void writeDILexicalBlock(const DILexicalBlock *N,
  172. SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  173. void writeDILexicalBlockFile(const DILexicalBlockFile *N,
  174. SmallVectorImpl<uint64_t> &Record,
  175. unsigned Abbrev);
  176. void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
  177. unsigned Abbrev);
  178. void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
  179. unsigned Abbrev);
  180. void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
  181. unsigned Abbrev);
  182. void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
  183. unsigned Abbrev);
  184. void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
  185. SmallVectorImpl<uint64_t> &Record,
  186. unsigned Abbrev);
  187. void writeDITemplateValueParameter(const DITemplateValueParameter *N,
  188. SmallVectorImpl<uint64_t> &Record,
  189. unsigned Abbrev);
  190. void writeDIGlobalVariable(const DIGlobalVariable *N,
  191. SmallVectorImpl<uint64_t> &Record,
  192. unsigned Abbrev);
  193. void writeDILocalVariable(const DILocalVariable *N,
  194. SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  195. void writeDIExpression(const DIExpression *N,
  196. SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  197. void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
  198. SmallVectorImpl<uint64_t> &Record,
  199. unsigned Abbrev);
  200. void writeDIObjCProperty(const DIObjCProperty *N,
  201. SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
  202. void writeDIImportedEntity(const DIImportedEntity *N,
  203. SmallVectorImpl<uint64_t> &Record,
  204. unsigned Abbrev);
  205. unsigned createNamedMetadataAbbrev();
  206. void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
  207. unsigned createMetadataStringsAbbrev();
  208. void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
  209. SmallVectorImpl<uint64_t> &Record);
  210. void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
  211. SmallVectorImpl<uint64_t> &Record,
  212. std::vector<unsigned> *MDAbbrevs = nullptr,
  213. std::vector<uint64_t> *IndexPos = nullptr);
  214. void writeModuleMetadata();
  215. void writeFunctionMetadata(const Function &F);
  216. void writeFunctionMetadataAttachment(const Function &F);
  217. void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
  218. void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
  219. const GlobalObject &GO);
  220. void writeModuleMetadataKinds();
  221. void writeOperandBundleTags();
  222. void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
  223. void writeModuleConstants();
  224. bool pushValueAndType(const Value *V, unsigned InstID,
  225. SmallVectorImpl<unsigned> &Vals);
  226. void writeOperandBundles(ImmutableCallSite CS, unsigned InstID);
  227. void pushValue(const Value *V, unsigned InstID,
  228. SmallVectorImpl<unsigned> &Vals);
  229. void pushValueSigned(const Value *V, unsigned InstID,
  230. SmallVectorImpl<uint64_t> &Vals);
  231. void writeInstruction(const Instruction &I, unsigned InstID,
  232. SmallVectorImpl<unsigned> &Vals);
  233. void writeValueSymbolTable(
  234. const ValueSymbolTable &VST, bool IsModuleLevel = false,
  235. DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex = nullptr);
  236. void writeUseList(UseListOrder &&Order);
  237. void writeUseListBlock(const Function *F);
  238. void
  239. writeFunction(const Function &F,
  240. DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
  241. void writeBlockInfo();
  242. void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
  243. GlobalValueSummary *Summary,
  244. unsigned ValueID,
  245. unsigned FSCallsAbbrev,
  246. unsigned FSCallsProfileAbbrev,
  247. const Function &F);
  248. void writeModuleLevelReferences(const GlobalVariable &V,
  249. SmallVector<uint64_t, 64> &NameVals,
  250. unsigned FSModRefsAbbrev);
  251. void writePerModuleGlobalValueSummary();
  252. void writeModuleHash(size_t BlockStartPos);
  253. void assignValueId(GlobalValue::GUID ValGUID) {
  254. GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
  255. }
  256. unsigned getValueId(GlobalValue::GUID ValGUID) {
  257. const auto &VMI = GUIDToValueIdMap.find(ValGUID);
  258. // Expect that any GUID value had a value Id assigned by an
  259. // earlier call to assignValueId.
  260. assert(VMI != GUIDToValueIdMap.end() &&
  261. "GUID does not have assigned value Id");
  262. return VMI->second;
  263. }
  264. // Helper to get the valueId for the type of value recorded in VI.
  265. unsigned getValueId(ValueInfo VI) {
  266. if (VI.isGUID())
  267. return getValueId(VI.getGUID());
  268. return VE.getValueID(VI.getValue());
  269. }
  270. std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
  271. };
  272. /// Class to manage the bitcode writing for a combined index.
  273. class IndexBitcodeWriter : public BitcodeWriterBase {
  274. /// The combined index to write to bitcode.
  275. const ModuleSummaryIndex &Index;
  276. /// When writing a subset of the index for distributed backends, client
  277. /// provides a map of modules to the corresponding GUIDs/summaries to write.
  278. const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
  279. /// Map that holds the correspondence between the GUID used in the combined
  280. /// index and a value id generated by this class to use in references.
  281. std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
  282. /// Tracks the last value id recorded in the GUIDToValueMap.
  283. unsigned GlobalValueId = 0;
  284. public:
  285. /// Constructs a IndexBitcodeWriter object for the given combined index,
  286. /// writing to the provided \p Buffer. When writing a subset of the index
  287. /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
  288. IndexBitcodeWriter(BitstreamWriter &Stream, const ModuleSummaryIndex &Index,
  289. const std::map<std::string, GVSummaryMapTy>
  290. *ModuleToSummariesForIndex = nullptr)
  291. : BitcodeWriterBase(Stream), Index(Index),
  292. ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
  293. // Assign unique value ids to all summaries to be written, for use
  294. // in writing out the call graph edges. Save the mapping from GUID
  295. // to the new global value id to use when writing those edges, which
  296. // are currently saved in the index in terms of GUID.
  297. for (const auto &I : *this)
  298. GUIDToValueIdMap[I.first] = ++GlobalValueId;
  299. }
  300. /// The below iterator returns the GUID and associated summary.
  301. typedef std::pair<GlobalValue::GUID, GlobalValueSummary *> GVInfo;
  302. /// Iterator over the value GUID and summaries to be written to bitcode,
  303. /// hides the details of whether they are being pulled from the entire
  304. /// index or just those in a provided ModuleToSummariesForIndex map.
  305. class iterator
  306. : public llvm::iterator_facade_base<iterator, std::forward_iterator_tag,
  307. GVInfo> {
  308. /// Enables access to parent class.
  309. const IndexBitcodeWriter &Writer;
  310. // Iterators used when writing only those summaries in a provided
  311. // ModuleToSummariesForIndex map:
  312. /// Points to the last element in outer ModuleToSummariesForIndex map.
  313. std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesBack;
  314. /// Iterator on outer ModuleToSummariesForIndex map.
  315. std::map<std::string, GVSummaryMapTy>::const_iterator ModuleSummariesIter;
  316. /// Iterator on an inner global variable summary map.
  317. GVSummaryMapTy::const_iterator ModuleGVSummariesIter;
  318. // Iterators used when writing all summaries in the index:
  319. /// Points to the last element in the Index outer GlobalValueMap.
  320. const_gvsummary_iterator IndexSummariesBack;
  321. /// Iterator on outer GlobalValueMap.
  322. const_gvsummary_iterator IndexSummariesIter;
  323. /// Iterator on an inner GlobalValueSummaryList.
  324. GlobalValueSummaryList::const_iterator IndexGVSummariesIter;
  325. public:
  326. /// Construct iterator from parent \p Writer and indicate if we are
  327. /// constructing the end iterator.
  328. iterator(const IndexBitcodeWriter &Writer, bool IsAtEnd) : Writer(Writer) {
  329. // Set up the appropriate set of iterators given whether we are writing
  330. // the full index or just a subset.
  331. // Can't setup the Back or inner iterators if the corresponding map
  332. // is empty. This will be handled specially in operator== as well.
  333. if (Writer.ModuleToSummariesForIndex &&
  334. !Writer.ModuleToSummariesForIndex->empty()) {
  335. for (ModuleSummariesBack = Writer.ModuleToSummariesForIndex->begin();
  336. std::next(ModuleSummariesBack) !=
  337. Writer.ModuleToSummariesForIndex->end();
  338. ModuleSummariesBack++)
  339. ;
  340. ModuleSummariesIter = !IsAtEnd
  341. ? Writer.ModuleToSummariesForIndex->begin()
  342. : ModuleSummariesBack;
  343. ModuleGVSummariesIter = !IsAtEnd ? ModuleSummariesIter->second.begin()
  344. : ModuleSummariesBack->second.end();
  345. } else if (!Writer.ModuleToSummariesForIndex &&
  346. Writer.Index.begin() != Writer.Index.end()) {
  347. for (IndexSummariesBack = Writer.Index.begin();
  348. std::next(IndexSummariesBack) != Writer.Index.end();
  349. IndexSummariesBack++)
  350. ;
  351. IndexSummariesIter =
  352. !IsAtEnd ? Writer.Index.begin() : IndexSummariesBack;
  353. IndexGVSummariesIter = !IsAtEnd ? IndexSummariesIter->second.begin()
  354. : IndexSummariesBack->second.end();
  355. }
  356. }
  357. /// Increment the appropriate set of iterators.
  358. iterator &operator++() {
  359. // First the inner iterator is incremented, then if it is at the end
  360. // and there are more outer iterations to go, the inner is reset to
  361. // the start of the next inner list.
  362. if (Writer.ModuleToSummariesForIndex) {
  363. ++ModuleGVSummariesIter;
  364. if (ModuleGVSummariesIter == ModuleSummariesIter->second.end() &&
  365. ModuleSummariesIter != ModuleSummariesBack) {
  366. ++ModuleSummariesIter;
  367. ModuleGVSummariesIter = ModuleSummariesIter->second.begin();
  368. }
  369. } else {
  370. ++IndexGVSummariesIter;
  371. if (IndexGVSummariesIter == IndexSummariesIter->second.end() &&
  372. IndexSummariesIter != IndexSummariesBack) {
  373. ++IndexSummariesIter;
  374. IndexGVSummariesIter = IndexSummariesIter->second.begin();
  375. }
  376. }
  377. return *this;
  378. }
  379. /// Access the <GUID,GlobalValueSummary*> pair corresponding to the current
  380. /// outer and inner iterator positions.
  381. GVInfo operator*() {
  382. if (Writer.ModuleToSummariesForIndex)
  383. return std::make_pair(ModuleGVSummariesIter->first,
  384. ModuleGVSummariesIter->second);
  385. return std::make_pair(IndexSummariesIter->first,
  386. IndexGVSummariesIter->get());
  387. }
  388. /// Checks if the iterators are equal, with special handling for empty
  389. /// indexes.
  390. bool operator==(const iterator &RHS) const {
  391. if (Writer.ModuleToSummariesForIndex) {
  392. // First ensure that both are writing the same subset.
  393. if (Writer.ModuleToSummariesForIndex !=
  394. RHS.Writer.ModuleToSummariesForIndex)
  395. return false;
  396. // Already determined above that maps are the same, so if one is
  397. // empty, they both are.
  398. if (Writer.ModuleToSummariesForIndex->empty())
  399. return true;
  400. // Ensure the ModuleGVSummariesIter are iterating over the same
  401. // container before checking them below.
  402. if (ModuleSummariesIter != RHS.ModuleSummariesIter)
  403. return false;
  404. return ModuleGVSummariesIter == RHS.ModuleGVSummariesIter;
  405. }
  406. // First ensure RHS also writing the full index, and that both are
  407. // writing the same full index.
  408. if (RHS.Writer.ModuleToSummariesForIndex ||
  409. &Writer.Index != &RHS.Writer.Index)
  410. return false;
  411. // Already determined above that maps are the same, so if one is
  412. // empty, they both are.
  413. if (Writer.Index.begin() == Writer.Index.end())
  414. return true;
  415. // Ensure the IndexGVSummariesIter are iterating over the same
  416. // container before checking them below.
  417. if (IndexSummariesIter != RHS.IndexSummariesIter)
  418. return false;
  419. return IndexGVSummariesIter == RHS.IndexGVSummariesIter;
  420. }
  421. };
  422. /// Obtain the start iterator over the summaries to be written.
  423. iterator begin() { return iterator(*this, /*IsAtEnd=*/false); }
  424. /// Obtain the end iterator over the summaries to be written.
  425. iterator end() { return iterator(*this, /*IsAtEnd=*/true); }
  426. /// Main entry point for writing a combined index to bitcode.
  427. void write();
  428. private:
  429. void writeIndex();
  430. void writeModStrings();
  431. void writeCombinedValueSymbolTable();
  432. void writeCombinedGlobalValueSummary();
  433. /// Indicates whether the provided \p ModulePath should be written into
  434. /// the module string table, e.g. if full index written or if it is in
  435. /// the provided subset.
  436. bool doIncludeModule(StringRef ModulePath) {
  437. return !ModuleToSummariesForIndex ||
  438. ModuleToSummariesForIndex->count(ModulePath);
  439. }
  440. bool hasValueId(GlobalValue::GUID ValGUID) {
  441. const auto &VMI = GUIDToValueIdMap.find(ValGUID);
  442. return VMI != GUIDToValueIdMap.end();
  443. }
  444. unsigned getValueId(GlobalValue::GUID ValGUID) {
  445. const auto &VMI = GUIDToValueIdMap.find(ValGUID);
  446. // If this GUID doesn't have an entry, assign one.
  447. if (VMI == GUIDToValueIdMap.end()) {
  448. GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
  449. return GlobalValueId;
  450. } else {
  451. return VMI->second;
  452. }
  453. }
  454. std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
  455. };
  456. } // end anonymous namespace
  457. static unsigned getEncodedCastOpcode(unsigned Opcode) {
  458. switch (Opcode) {
  459. default: llvm_unreachable("Unknown cast instruction!");
  460. case Instruction::Trunc : return bitc::CAST_TRUNC;
  461. case Instruction::ZExt : return bitc::CAST_ZEXT;
  462. case Instruction::SExt : return bitc::CAST_SEXT;
  463. case Instruction::FPToUI : return bitc::CAST_FPTOUI;
  464. case Instruction::FPToSI : return bitc::CAST_FPTOSI;
  465. case Instruction::UIToFP : return bitc::CAST_UITOFP;
  466. case Instruction::SIToFP : return bitc::CAST_SITOFP;
  467. case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
  468. case Instruction::FPExt : return bitc::CAST_FPEXT;
  469. case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
  470. case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
  471. case Instruction::BitCast : return bitc::CAST_BITCAST;
  472. case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
  473. }
  474. }
  475. static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
  476. switch (Opcode) {
  477. default: llvm_unreachable("Unknown binary instruction!");
  478. case Instruction::Add:
  479. case Instruction::FAdd: return bitc::BINOP_ADD;
  480. case Instruction::Sub:
  481. case Instruction::FSub: return bitc::BINOP_SUB;
  482. case Instruction::Mul:
  483. case Instruction::FMul: return bitc::BINOP_MUL;
  484. case Instruction::UDiv: return bitc::BINOP_UDIV;
  485. case Instruction::FDiv:
  486. case Instruction::SDiv: return bitc::BINOP_SDIV;
  487. case Instruction::URem: return bitc::BINOP_UREM;
  488. case Instruction::FRem:
  489. case Instruction::SRem: return bitc::BINOP_SREM;
  490. case Instruction::Shl: return bitc::BINOP_SHL;
  491. case Instruction::LShr: return bitc::BINOP_LSHR;
  492. case Instruction::AShr: return bitc::BINOP_ASHR;
  493. case Instruction::And: return bitc::BINOP_AND;
  494. case Instruction::Or: return bitc::BINOP_OR;
  495. case Instruction::Xor: return bitc::BINOP_XOR;
  496. }
  497. }
  498. static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
  499. switch (Op) {
  500. default: llvm_unreachable("Unknown RMW operation!");
  501. case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
  502. case AtomicRMWInst::Add: return bitc::RMW_ADD;
  503. case AtomicRMWInst::Sub: return bitc::RMW_SUB;
  504. case AtomicRMWInst::And: return bitc::RMW_AND;
  505. case AtomicRMWInst::Nand: return bitc::RMW_NAND;
  506. case AtomicRMWInst::Or: return bitc::RMW_OR;
  507. case AtomicRMWInst::Xor: return bitc::RMW_XOR;
  508. case AtomicRMWInst::Max: return bitc::RMW_MAX;
  509. case AtomicRMWInst::Min: return bitc::RMW_MIN;
  510. case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
  511. case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
  512. }
  513. }
  514. static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
  515. switch (Ordering) {
  516. case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
  517. case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
  518. case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
  519. case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
  520. case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
  521. case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
  522. case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
  523. }
  524. llvm_unreachable("Invalid ordering");
  525. }
  526. static unsigned getEncodedSynchScope(SynchronizationScope SynchScope) {
  527. switch (SynchScope) {
  528. case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
  529. case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
  530. }
  531. llvm_unreachable("Invalid synch scope");
  532. }
  533. static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
  534. StringRef Str, unsigned AbbrevToUse) {
  535. SmallVector<unsigned, 64> Vals;
  536. // Code: [strchar x N]
  537. for (unsigned i = 0, e = Str.size(); i != e; ++i) {
  538. if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
  539. AbbrevToUse = 0;
  540. Vals.push_back(Str[i]);
  541. }
  542. // Emit the finished record.
  543. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  544. }
  545. static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
  546. switch (Kind) {
  547. case Attribute::Alignment:
  548. return bitc::ATTR_KIND_ALIGNMENT;
  549. case Attribute::AllocSize:
  550. return bitc::ATTR_KIND_ALLOC_SIZE;
  551. case Attribute::AlwaysInline:
  552. return bitc::ATTR_KIND_ALWAYS_INLINE;
  553. case Attribute::ArgMemOnly:
  554. return bitc::ATTR_KIND_ARGMEMONLY;
  555. case Attribute::Builtin:
  556. return bitc::ATTR_KIND_BUILTIN;
  557. case Attribute::ByVal:
  558. return bitc::ATTR_KIND_BY_VAL;
  559. case Attribute::Convergent:
  560. return bitc::ATTR_KIND_CONVERGENT;
  561. case Attribute::InAlloca:
  562. return bitc::ATTR_KIND_IN_ALLOCA;
  563. case Attribute::Cold:
  564. return bitc::ATTR_KIND_COLD;
  565. case Attribute::InaccessibleMemOnly:
  566. return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
  567. case Attribute::InaccessibleMemOrArgMemOnly:
  568. return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
  569. case Attribute::InlineHint:
  570. return bitc::ATTR_KIND_INLINE_HINT;
  571. case Attribute::InReg:
  572. return bitc::ATTR_KIND_IN_REG;
  573. case Attribute::JumpTable:
  574. return bitc::ATTR_KIND_JUMP_TABLE;
  575. case Attribute::MinSize:
  576. return bitc::ATTR_KIND_MIN_SIZE;
  577. case Attribute::Naked:
  578. return bitc::ATTR_KIND_NAKED;
  579. case Attribute::Nest:
  580. return bitc::ATTR_KIND_NEST;
  581. case Attribute::NoAlias:
  582. return bitc::ATTR_KIND_NO_ALIAS;
  583. case Attribute::NoBuiltin:
  584. return bitc::ATTR_KIND_NO_BUILTIN;
  585. case Attribute::NoCapture:
  586. return bitc::ATTR_KIND_NO_CAPTURE;
  587. case Attribute::NoDuplicate:
  588. return bitc::ATTR_KIND_NO_DUPLICATE;
  589. case Attribute::NoImplicitFloat:
  590. return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
  591. case Attribute::NoInline:
  592. return bitc::ATTR_KIND_NO_INLINE;
  593. case Attribute::NoRecurse:
  594. return bitc::ATTR_KIND_NO_RECURSE;
  595. case Attribute::NonLazyBind:
  596. return bitc::ATTR_KIND_NON_LAZY_BIND;
  597. case Attribute::NonNull:
  598. return bitc::ATTR_KIND_NON_NULL;
  599. case Attribute::Dereferenceable:
  600. return bitc::ATTR_KIND_DEREFERENCEABLE;
  601. case Attribute::DereferenceableOrNull:
  602. return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
  603. case Attribute::NoRedZone:
  604. return bitc::ATTR_KIND_NO_RED_ZONE;
  605. case Attribute::NoReturn:
  606. return bitc::ATTR_KIND_NO_RETURN;
  607. case Attribute::NoUnwind:
  608. return bitc::ATTR_KIND_NO_UNWIND;
  609. case Attribute::OptimizeForSize:
  610. return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
  611. case Attribute::OptimizeNone:
  612. return bitc::ATTR_KIND_OPTIMIZE_NONE;
  613. case Attribute::ReadNone:
  614. return bitc::ATTR_KIND_READ_NONE;
  615. case Attribute::ReadOnly:
  616. return bitc::ATTR_KIND_READ_ONLY;
  617. case Attribute::Returned:
  618. return bitc::ATTR_KIND_RETURNED;
  619. case Attribute::ReturnsTwice:
  620. return bitc::ATTR_KIND_RETURNS_TWICE;
  621. case Attribute::SExt:
  622. return bitc::ATTR_KIND_S_EXT;
  623. case Attribute::StackAlignment:
  624. return bitc::ATTR_KIND_STACK_ALIGNMENT;
  625. case Attribute::StackProtect:
  626. return bitc::ATTR_KIND_STACK_PROTECT;
  627. case Attribute::StackProtectReq:
  628. return bitc::ATTR_KIND_STACK_PROTECT_REQ;
  629. case Attribute::StackProtectStrong:
  630. return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
  631. case Attribute::SafeStack:
  632. return bitc::ATTR_KIND_SAFESTACK;
  633. case Attribute::StructRet:
  634. return bitc::ATTR_KIND_STRUCT_RET;
  635. case Attribute::SanitizeAddress:
  636. return bitc::ATTR_KIND_SANITIZE_ADDRESS;
  637. case Attribute::SanitizeThread:
  638. return bitc::ATTR_KIND_SANITIZE_THREAD;
  639. case Attribute::SanitizeMemory:
  640. return bitc::ATTR_KIND_SANITIZE_MEMORY;
  641. case Attribute::SwiftError:
  642. return bitc::ATTR_KIND_SWIFT_ERROR;
  643. case Attribute::SwiftSelf:
  644. return bitc::ATTR_KIND_SWIFT_SELF;
  645. case Attribute::UWTable:
  646. return bitc::ATTR_KIND_UW_TABLE;
  647. case Attribute::WriteOnly:
  648. return bitc::ATTR_KIND_WRITEONLY;
  649. case Attribute::ZExt:
  650. return bitc::ATTR_KIND_Z_EXT;
  651. case Attribute::EndAttrKinds:
  652. llvm_unreachable("Can not encode end-attribute kinds marker.");
  653. case Attribute::None:
  654. llvm_unreachable("Can not encode none-attribute.");
  655. }
  656. llvm_unreachable("Trying to encode unknown attribute");
  657. }
  658. void ModuleBitcodeWriter::writeAttributeGroupTable() {
  659. const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups();
  660. if (AttrGrps.empty()) return;
  661. Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
  662. SmallVector<uint64_t, 64> Record;
  663. for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) {
  664. AttributeSet AS = AttrGrps[i];
  665. for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) {
  666. AttributeSet A = AS.getSlotAttributes(i);
  667. Record.push_back(VE.getAttributeGroupID(A));
  668. Record.push_back(AS.getSlotIndex(i));
  669. for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0);
  670. I != E; ++I) {
  671. Attribute Attr = *I;
  672. if (Attr.isEnumAttribute()) {
  673. Record.push_back(0);
  674. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  675. } else if (Attr.isIntAttribute()) {
  676. Record.push_back(1);
  677. Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
  678. Record.push_back(Attr.getValueAsInt());
  679. } else {
  680. StringRef Kind = Attr.getKindAsString();
  681. StringRef Val = Attr.getValueAsString();
  682. Record.push_back(Val.empty() ? 3 : 4);
  683. Record.append(Kind.begin(), Kind.end());
  684. Record.push_back(0);
  685. if (!Val.empty()) {
  686. Record.append(Val.begin(), Val.end());
  687. Record.push_back(0);
  688. }
  689. }
  690. }
  691. Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
  692. Record.clear();
  693. }
  694. }
  695. Stream.ExitBlock();
  696. }
  697. void ModuleBitcodeWriter::writeAttributeTable() {
  698. const std::vector<AttributeSet> &Attrs = VE.getAttributes();
  699. if (Attrs.empty()) return;
  700. Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
  701. SmallVector<uint64_t, 64> Record;
  702. for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
  703. const AttributeSet &A = Attrs[i];
  704. for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
  705. Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
  706. Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
  707. Record.clear();
  708. }
  709. Stream.ExitBlock();
  710. }
  711. /// WriteTypeTable - Write out the type table for a module.
  712. void ModuleBitcodeWriter::writeTypeTable() {
  713. const ValueEnumerator::TypeList &TypeList = VE.getTypes();
  714. Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
  715. SmallVector<uint64_t, 64> TypeVals;
  716. uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
  717. // Abbrev for TYPE_CODE_POINTER.
  718. auto Abbv = std::make_shared<BitCodeAbbrev>();
  719. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
  720. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  721. Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
  722. unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  723. // Abbrev for TYPE_CODE_FUNCTION.
  724. Abbv = std::make_shared<BitCodeAbbrev>();
  725. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
  726. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
  727. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  728. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  729. unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  730. // Abbrev for TYPE_CODE_STRUCT_ANON.
  731. Abbv = std::make_shared<BitCodeAbbrev>();
  732. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
  733. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  734. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  735. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  736. unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  737. // Abbrev for TYPE_CODE_STRUCT_NAME.
  738. Abbv = std::make_shared<BitCodeAbbrev>();
  739. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
  740. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  741. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  742. unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  743. // Abbrev for TYPE_CODE_STRUCT_NAMED.
  744. Abbv = std::make_shared<BitCodeAbbrev>();
  745. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
  746. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
  747. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  748. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  749. unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  750. // Abbrev for TYPE_CODE_ARRAY.
  751. Abbv = std::make_shared<BitCodeAbbrev>();
  752. Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
  753. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
  754. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
  755. unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  756. // Emit an entry count so the reader can reserve space.
  757. TypeVals.push_back(TypeList.size());
  758. Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
  759. TypeVals.clear();
  760. // Loop over all of the types, emitting each in turn.
  761. for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
  762. Type *T = TypeList[i];
  763. int AbbrevToUse = 0;
  764. unsigned Code = 0;
  765. switch (T->getTypeID()) {
  766. case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break;
  767. case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break;
  768. case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break;
  769. case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break;
  770. case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break;
  771. case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break;
  772. case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
  773. case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break;
  774. case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break;
  775. case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break;
  776. case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break;
  777. case Type::IntegerTyID:
  778. // INTEGER: [width]
  779. Code = bitc::TYPE_CODE_INTEGER;
  780. TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
  781. break;
  782. case Type::PointerTyID: {
  783. PointerType *PTy = cast<PointerType>(T);
  784. // POINTER: [pointee type, address space]
  785. Code = bitc::TYPE_CODE_POINTER;
  786. TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
  787. unsigned AddressSpace = PTy->getAddressSpace();
  788. TypeVals.push_back(AddressSpace);
  789. if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
  790. break;
  791. }
  792. case Type::FunctionTyID: {
  793. FunctionType *FT = cast<FunctionType>(T);
  794. // FUNCTION: [isvararg, retty, paramty x N]
  795. Code = bitc::TYPE_CODE_FUNCTION;
  796. TypeVals.push_back(FT->isVarArg());
  797. TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
  798. for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
  799. TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
  800. AbbrevToUse = FunctionAbbrev;
  801. break;
  802. }
  803. case Type::StructTyID: {
  804. StructType *ST = cast<StructType>(T);
  805. // STRUCT: [ispacked, eltty x N]
  806. TypeVals.push_back(ST->isPacked());
  807. // Output all of the element types.
  808. for (StructType::element_iterator I = ST->element_begin(),
  809. E = ST->element_end(); I != E; ++I)
  810. TypeVals.push_back(VE.getTypeID(*I));
  811. if (ST->isLiteral()) {
  812. Code = bitc::TYPE_CODE_STRUCT_ANON;
  813. AbbrevToUse = StructAnonAbbrev;
  814. } else {
  815. if (ST->isOpaque()) {
  816. Code = bitc::TYPE_CODE_OPAQUE;
  817. } else {
  818. Code = bitc::TYPE_CODE_STRUCT_NAMED;
  819. AbbrevToUse = StructNamedAbbrev;
  820. }
  821. // Emit the name if it is present.
  822. if (!ST->getName().empty())
  823. writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
  824. StructNameAbbrev);
  825. }
  826. break;
  827. }
  828. case Type::ArrayTyID: {
  829. ArrayType *AT = cast<ArrayType>(T);
  830. // ARRAY: [numelts, eltty]
  831. Code = bitc::TYPE_CODE_ARRAY;
  832. TypeVals.push_back(AT->getNumElements());
  833. TypeVals.push_back(VE.getTypeID(AT->getElementType()));
  834. AbbrevToUse = ArrayAbbrev;
  835. break;
  836. }
  837. case Type::VectorTyID: {
  838. VectorType *VT = cast<VectorType>(T);
  839. // VECTOR [numelts, eltty]
  840. Code = bitc::TYPE_CODE_VECTOR;
  841. TypeVals.push_back(VT->getNumElements());
  842. TypeVals.push_back(VE.getTypeID(VT->getElementType()));
  843. break;
  844. }
  845. }
  846. // Emit the finished record.
  847. Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
  848. TypeVals.clear();
  849. }
  850. Stream.ExitBlock();
  851. }
  852. static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
  853. switch (Linkage) {
  854. case GlobalValue::ExternalLinkage:
  855. return 0;
  856. case GlobalValue::WeakAnyLinkage:
  857. return 16;
  858. case GlobalValue::AppendingLinkage:
  859. return 2;
  860. case GlobalValue::InternalLinkage:
  861. return 3;
  862. case GlobalValue::LinkOnceAnyLinkage:
  863. return 18;
  864. case GlobalValue::ExternalWeakLinkage:
  865. return 7;
  866. case GlobalValue::CommonLinkage:
  867. return 8;
  868. case GlobalValue::PrivateLinkage:
  869. return 9;
  870. case GlobalValue::WeakODRLinkage:
  871. return 17;
  872. case GlobalValue::LinkOnceODRLinkage:
  873. return 19;
  874. case GlobalValue::AvailableExternallyLinkage:
  875. return 12;
  876. }
  877. llvm_unreachable("Invalid linkage");
  878. }
  879. static unsigned getEncodedLinkage(const GlobalValue &GV) {
  880. return getEncodedLinkage(GV.getLinkage());
  881. }
  882. // Decode the flags for GlobalValue in the summary
  883. static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
  884. uint64_t RawFlags = 0;
  885. RawFlags |= Flags.NoRename; // bool
  886. RawFlags |= (Flags.IsNotViableToInline << 1);
  887. RawFlags |= (Flags.HasInlineAsmMaybeReferencingInternal << 2);
  888. // Linkage don't need to be remapped at that time for the summary. Any future
  889. // change to the getEncodedLinkage() function will need to be taken into
  890. // account here as well.
  891. RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
  892. return RawFlags;
  893. }
  894. static unsigned getEncodedVisibility(const GlobalValue &GV) {
  895. switch (GV.getVisibility()) {
  896. case GlobalValue::DefaultVisibility: return 0;
  897. case GlobalValue::HiddenVisibility: return 1;
  898. case GlobalValue::ProtectedVisibility: return 2;
  899. }
  900. llvm_unreachable("Invalid visibility");
  901. }
  902. static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
  903. switch (GV.getDLLStorageClass()) {
  904. case GlobalValue::DefaultStorageClass: return 0;
  905. case GlobalValue::DLLImportStorageClass: return 1;
  906. case GlobalValue::DLLExportStorageClass: return 2;
  907. }
  908. llvm_unreachable("Invalid DLL storage class");
  909. }
  910. static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
  911. switch (GV.getThreadLocalMode()) {
  912. case GlobalVariable::NotThreadLocal: return 0;
  913. case GlobalVariable::GeneralDynamicTLSModel: return 1;
  914. case GlobalVariable::LocalDynamicTLSModel: return 2;
  915. case GlobalVariable::InitialExecTLSModel: return 3;
  916. case GlobalVariable::LocalExecTLSModel: return 4;
  917. }
  918. llvm_unreachable("Invalid TLS model");
  919. }
  920. static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
  921. switch (C.getSelectionKind()) {
  922. case Comdat::Any:
  923. return bitc::COMDAT_SELECTION_KIND_ANY;
  924. case Comdat::ExactMatch:
  925. return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
  926. case Comdat::Largest:
  927. return bitc::COMDAT_SELECTION_KIND_LARGEST;
  928. case Comdat::NoDuplicates:
  929. return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
  930. case Comdat::SameSize:
  931. return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
  932. }
  933. llvm_unreachable("Invalid selection kind");
  934. }
  935. static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
  936. switch (GV.getUnnamedAddr()) {
  937. case GlobalValue::UnnamedAddr::None: return 0;
  938. case GlobalValue::UnnamedAddr::Local: return 2;
  939. case GlobalValue::UnnamedAddr::Global: return 1;
  940. }
  941. llvm_unreachable("Invalid unnamed_addr");
  942. }
  943. void ModuleBitcodeWriter::writeComdats() {
  944. SmallVector<unsigned, 64> Vals;
  945. for (const Comdat *C : VE.getComdats()) {
  946. // COMDAT: [selection_kind, name]
  947. Vals.push_back(getEncodedComdatSelectionKind(*C));
  948. size_t Size = C->getName().size();
  949. assert(isUInt<32>(Size));
  950. Vals.push_back(Size);
  951. for (char Chr : C->getName())
  952. Vals.push_back((unsigned char)Chr);
  953. Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
  954. Vals.clear();
  955. }
  956. }
  957. /// Write a record that will eventually hold the word offset of the
  958. /// module-level VST. For now the offset is 0, which will be backpatched
  959. /// after the real VST is written. Saves the bit offset to backpatch.
  960. void BitcodeWriterBase::writeValueSymbolTableForwardDecl() {
  961. // Write a placeholder value in for the offset of the real VST,
  962. // which is written after the function blocks so that it can include
  963. // the offset of each function. The placeholder offset will be
  964. // updated when the real VST is written.
  965. auto Abbv = std::make_shared<BitCodeAbbrev>();
  966. Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
  967. // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
  968. // hold the real VST offset. Must use fixed instead of VBR as we don't
  969. // know how many VBR chunks to reserve ahead of time.
  970. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  971. unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  972. // Emit the placeholder
  973. uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
  974. Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
  975. // Compute and save the bit offset to the placeholder, which will be
  976. // patched when the real VST is written. We can simply subtract the 32-bit
  977. // fixed size from the current bit number to get the location to backpatch.
  978. VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
  979. }
  980. enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
  981. /// Determine the encoding to use for the given string name and length.
  982. static StringEncoding getStringEncoding(const char *Str, unsigned StrLen) {
  983. bool isChar6 = true;
  984. for (const char *C = Str, *E = C + StrLen; C != E; ++C) {
  985. if (isChar6)
  986. isChar6 = BitCodeAbbrevOp::isChar6(*C);
  987. if ((unsigned char)*C & 128)
  988. // don't bother scanning the rest.
  989. return SE_Fixed8;
  990. }
  991. if (isChar6)
  992. return SE_Char6;
  993. else
  994. return SE_Fixed7;
  995. }
  996. /// Emit top-level description of module, including target triple, inline asm,
  997. /// descriptors for global variables, and function prototype info.
  998. /// Returns the bit offset to backpatch with the location of the real VST.
  999. void ModuleBitcodeWriter::writeModuleInfo() {
  1000. // Emit various pieces of data attached to a module.
  1001. if (!M.getTargetTriple().empty())
  1002. writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
  1003. 0 /*TODO*/);
  1004. const std::string &DL = M.getDataLayoutStr();
  1005. if (!DL.empty())
  1006. writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
  1007. if (!M.getModuleInlineAsm().empty())
  1008. writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
  1009. 0 /*TODO*/);
  1010. // Emit information about sections and GC, computing how many there are. Also
  1011. // compute the maximum alignment value.
  1012. std::map<std::string, unsigned> SectionMap;
  1013. std::map<std::string, unsigned> GCMap;
  1014. unsigned MaxAlignment = 0;
  1015. unsigned MaxGlobalType = 0;
  1016. for (const GlobalValue &GV : M.globals()) {
  1017. MaxAlignment = std::max(MaxAlignment, GV.getAlignment());
  1018. MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
  1019. if (GV.hasSection()) {
  1020. // Give section names unique ID's.
  1021. unsigned &Entry = SectionMap[GV.getSection()];
  1022. if (!Entry) {
  1023. writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
  1024. 0 /*TODO*/);
  1025. Entry = SectionMap.size();
  1026. }
  1027. }
  1028. }
  1029. for (const Function &F : M) {
  1030. MaxAlignment = std::max(MaxAlignment, F.getAlignment());
  1031. if (F.hasSection()) {
  1032. // Give section names unique ID's.
  1033. unsigned &Entry = SectionMap[F.getSection()];
  1034. if (!Entry) {
  1035. writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
  1036. 0 /*TODO*/);
  1037. Entry = SectionMap.size();
  1038. }
  1039. }
  1040. if (F.hasGC()) {
  1041. // Same for GC names.
  1042. unsigned &Entry = GCMap[F.getGC()];
  1043. if (!Entry) {
  1044. writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
  1045. 0 /*TODO*/);
  1046. Entry = GCMap.size();
  1047. }
  1048. }
  1049. }
  1050. // Emit abbrev for globals, now that we know # sections and max alignment.
  1051. unsigned SimpleGVarAbbrev = 0;
  1052. if (!M.global_empty()) {
  1053. // Add an abbrev for common globals with no visibility or thread localness.
  1054. auto Abbv = std::make_shared<BitCodeAbbrev>();
  1055. Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
  1056. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  1057. Log2_32_Ceil(MaxGlobalType+1)));
  1058. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
  1059. //| explicitType << 1
  1060. //| constant
  1061. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
  1062. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
  1063. if (MaxAlignment == 0) // Alignment.
  1064. Abbv->Add(BitCodeAbbrevOp(0));
  1065. else {
  1066. unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
  1067. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  1068. Log2_32_Ceil(MaxEncAlignment+1)));
  1069. }
  1070. if (SectionMap.empty()) // Section.
  1071. Abbv->Add(BitCodeAbbrevOp(0));
  1072. else
  1073. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  1074. Log2_32_Ceil(SectionMap.size()+1)));
  1075. // Don't bother emitting vis + thread local.
  1076. SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  1077. }
  1078. // Emit the global variable information.
  1079. SmallVector<unsigned, 64> Vals;
  1080. for (const GlobalVariable &GV : M.globals()) {
  1081. unsigned AbbrevToUse = 0;
  1082. // GLOBALVAR: [type, isconst, initid,
  1083. // linkage, alignment, section, visibility, threadlocal,
  1084. // unnamed_addr, externally_initialized, dllstorageclass,
  1085. // comdat]
  1086. Vals.push_back(VE.getTypeID(GV.getValueType()));
  1087. Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
  1088. Vals.push_back(GV.isDeclaration() ? 0 :
  1089. (VE.getValueID(GV.getInitializer()) + 1));
  1090. Vals.push_back(getEncodedLinkage(GV));
  1091. Vals.push_back(Log2_32(GV.getAlignment())+1);
  1092. Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0);
  1093. if (GV.isThreadLocal() ||
  1094. GV.getVisibility() != GlobalValue::DefaultVisibility ||
  1095. GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
  1096. GV.isExternallyInitialized() ||
  1097. GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
  1098. GV.hasComdat()) {
  1099. Vals.push_back(getEncodedVisibility(GV));
  1100. Vals.push_back(getEncodedThreadLocalMode(GV));
  1101. Vals.push_back(getEncodedUnnamedAddr(GV));
  1102. Vals.push_back(GV.isExternallyInitialized());
  1103. Vals.push_back(getEncodedDLLStorageClass(GV));
  1104. Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
  1105. } else {
  1106. AbbrevToUse = SimpleGVarAbbrev;
  1107. }
  1108. Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
  1109. Vals.clear();
  1110. }
  1111. // Emit the function proto information.
  1112. for (const Function &F : M) {
  1113. // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
  1114. // section, visibility, gc, unnamed_addr, prologuedata,
  1115. // dllstorageclass, comdat, prefixdata, personalityfn]
  1116. Vals.push_back(VE.getTypeID(F.getFunctionType()));
  1117. Vals.push_back(F.getCallingConv());
  1118. Vals.push_back(F.isDeclaration());
  1119. Vals.push_back(getEncodedLinkage(F));
  1120. Vals.push_back(VE.getAttributeID(F.getAttributes()));
  1121. Vals.push_back(Log2_32(F.getAlignment())+1);
  1122. Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0);
  1123. Vals.push_back(getEncodedVisibility(F));
  1124. Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
  1125. Vals.push_back(getEncodedUnnamedAddr(F));
  1126. Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
  1127. : 0);
  1128. Vals.push_back(getEncodedDLLStorageClass(F));
  1129. Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
  1130. Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
  1131. : 0);
  1132. Vals.push_back(
  1133. F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
  1134. unsigned AbbrevToUse = 0;
  1135. Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
  1136. Vals.clear();
  1137. }
  1138. // Emit the alias information.
  1139. for (const GlobalAlias &A : M.aliases()) {
  1140. // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass,
  1141. // threadlocal, unnamed_addr]
  1142. Vals.push_back(VE.getTypeID(A.getValueType()));
  1143. Vals.push_back(A.getType()->getAddressSpace());
  1144. Vals.push_back(VE.getValueID(A.getAliasee()));
  1145. Vals.push_back(getEncodedLinkage(A));
  1146. Vals.push_back(getEncodedVisibility(A));
  1147. Vals.push_back(getEncodedDLLStorageClass(A));
  1148. Vals.push_back(getEncodedThreadLocalMode(A));
  1149. Vals.push_back(getEncodedUnnamedAddr(A));
  1150. unsigned AbbrevToUse = 0;
  1151. Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
  1152. Vals.clear();
  1153. }
  1154. // Emit the ifunc information.
  1155. for (const GlobalIFunc &I : M.ifuncs()) {
  1156. // IFUNC: [ifunc type, address space, resolver val#, linkage, visibility]
  1157. Vals.push_back(VE.getTypeID(I.getValueType()));
  1158. Vals.push_back(I.getType()->getAddressSpace());
  1159. Vals.push_back(VE.getValueID(I.getResolver()));
  1160. Vals.push_back(getEncodedLinkage(I));
  1161. Vals.push_back(getEncodedVisibility(I));
  1162. Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
  1163. Vals.clear();
  1164. }
  1165. // Emit the module's source file name.
  1166. {
  1167. StringEncoding Bits = getStringEncoding(M.getSourceFileName().data(),
  1168. M.getSourceFileName().size());
  1169. BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
  1170. if (Bits == SE_Char6)
  1171. AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
  1172. else if (Bits == SE_Fixed7)
  1173. AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
  1174. // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
  1175. auto Abbv = std::make_shared<BitCodeAbbrev>();
  1176. Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
  1177. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1178. Abbv->Add(AbbrevOpToUse);
  1179. unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  1180. for (const auto P : M.getSourceFileName())
  1181. Vals.push_back((unsigned char)P);
  1182. // Emit the finished record.
  1183. Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
  1184. Vals.clear();
  1185. }
  1186. // If we have a VST, write the VSTOFFSET record placeholder.
  1187. if (M.getValueSymbolTable().empty())
  1188. return;
  1189. writeValueSymbolTableForwardDecl();
  1190. }
  1191. static uint64_t getOptimizationFlags(const Value *V) {
  1192. uint64_t Flags = 0;
  1193. if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
  1194. if (OBO->hasNoSignedWrap())
  1195. Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
  1196. if (OBO->hasNoUnsignedWrap())
  1197. Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
  1198. } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
  1199. if (PEO->isExact())
  1200. Flags |= 1 << bitc::PEO_EXACT;
  1201. } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
  1202. if (FPMO->hasUnsafeAlgebra())
  1203. Flags |= FastMathFlags::UnsafeAlgebra;
  1204. if (FPMO->hasNoNaNs())
  1205. Flags |= FastMathFlags::NoNaNs;
  1206. if (FPMO->hasNoInfs())
  1207. Flags |= FastMathFlags::NoInfs;
  1208. if (FPMO->hasNoSignedZeros())
  1209. Flags |= FastMathFlags::NoSignedZeros;
  1210. if (FPMO->hasAllowReciprocal())
  1211. Flags |= FastMathFlags::AllowReciprocal;
  1212. }
  1213. return Flags;
  1214. }
  1215. void ModuleBitcodeWriter::writeValueAsMetadata(
  1216. const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
  1217. // Mimic an MDNode with a value as one operand.
  1218. Value *V = MD->getValue();
  1219. Record.push_back(VE.getTypeID(V->getType()));
  1220. Record.push_back(VE.getValueID(V));
  1221. Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
  1222. Record.clear();
  1223. }
  1224. void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
  1225. SmallVectorImpl<uint64_t> &Record,
  1226. unsigned Abbrev) {
  1227. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
  1228. Metadata *MD = N->getOperand(i);
  1229. assert(!(MD && isa<LocalAsMetadata>(MD)) &&
  1230. "Unexpected function-local metadata");
  1231. Record.push_back(VE.getMetadataOrNullID(MD));
  1232. }
  1233. Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
  1234. : bitc::METADATA_NODE,
  1235. Record, Abbrev);
  1236. Record.clear();
  1237. }
  1238. unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
  1239. // Assume the column is usually under 128, and always output the inlined-at
  1240. // location (it's never more expensive than building an array size 1).
  1241. auto Abbv = std::make_shared<BitCodeAbbrev>();
  1242. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
  1243. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
  1244. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1245. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  1246. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1247. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1248. return Stream.EmitAbbrev(std::move(Abbv));
  1249. }
  1250. void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
  1251. SmallVectorImpl<uint64_t> &Record,
  1252. unsigned &Abbrev) {
  1253. if (!Abbrev)
  1254. Abbrev = createDILocationAbbrev();
  1255. Record.push_back(N->isDistinct());
  1256. Record.push_back(N->getLine());
  1257. Record.push_back(N->getColumn());
  1258. Record.push_back(VE.getMetadataID(N->getScope()));
  1259. Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
  1260. Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
  1261. Record.clear();
  1262. }
  1263. unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
  1264. // Assume the column is usually under 128, and always output the inlined-at
  1265. // location (it's never more expensive than building an array size 1).
  1266. auto Abbv = std::make_shared<BitCodeAbbrev>();
  1267. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
  1268. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
  1269. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1270. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
  1271. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1272. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1273. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1274. return Stream.EmitAbbrev(std::move(Abbv));
  1275. }
  1276. void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
  1277. SmallVectorImpl<uint64_t> &Record,
  1278. unsigned &Abbrev) {
  1279. if (!Abbrev)
  1280. Abbrev = createGenericDINodeAbbrev();
  1281. Record.push_back(N->isDistinct());
  1282. Record.push_back(N->getTag());
  1283. Record.push_back(0); // Per-tag version field; unused for now.
  1284. for (auto &I : N->operands())
  1285. Record.push_back(VE.getMetadataOrNullID(I));
  1286. Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
  1287. Record.clear();
  1288. }
  1289. static uint64_t rotateSign(int64_t I) {
  1290. uint64_t U = I;
  1291. return I < 0 ? ~(U << 1) : U << 1;
  1292. }
  1293. void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
  1294. SmallVectorImpl<uint64_t> &Record,
  1295. unsigned Abbrev) {
  1296. Record.push_back(N->isDistinct());
  1297. Record.push_back(N->getCount());
  1298. Record.push_back(rotateSign(N->getLowerBound()));
  1299. Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
  1300. Record.clear();
  1301. }
  1302. void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
  1303. SmallVectorImpl<uint64_t> &Record,
  1304. unsigned Abbrev) {
  1305. Record.push_back(N->isDistinct());
  1306. Record.push_back(rotateSign(N->getValue()));
  1307. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1308. Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
  1309. Record.clear();
  1310. }
  1311. void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
  1312. SmallVectorImpl<uint64_t> &Record,
  1313. unsigned Abbrev) {
  1314. Record.push_back(N->isDistinct());
  1315. Record.push_back(N->getTag());
  1316. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1317. Record.push_back(N->getSizeInBits());
  1318. Record.push_back(N->getAlignInBits());
  1319. Record.push_back(N->getEncoding());
  1320. Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
  1321. Record.clear();
  1322. }
  1323. void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
  1324. SmallVectorImpl<uint64_t> &Record,
  1325. unsigned Abbrev) {
  1326. Record.push_back(N->isDistinct());
  1327. Record.push_back(N->getTag());
  1328. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1329. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  1330. Record.push_back(N->getLine());
  1331. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  1332. Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
  1333. Record.push_back(N->getSizeInBits());
  1334. Record.push_back(N->getAlignInBits());
  1335. Record.push_back(N->getOffsetInBits());
  1336. Record.push_back(N->getFlags());
  1337. Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
  1338. Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
  1339. Record.clear();
  1340. }
  1341. void ModuleBitcodeWriter::writeDICompositeType(
  1342. const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
  1343. unsigned Abbrev) {
  1344. const unsigned IsNotUsedInOldTypeRef = 0x2;
  1345. Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
  1346. Record.push_back(N->getTag());
  1347. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1348. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  1349. Record.push_back(N->getLine());
  1350. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  1351. Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
  1352. Record.push_back(N->getSizeInBits());
  1353. Record.push_back(N->getAlignInBits());
  1354. Record.push_back(N->getOffsetInBits());
  1355. Record.push_back(N->getFlags());
  1356. Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
  1357. Record.push_back(N->getRuntimeLang());
  1358. Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
  1359. Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
  1360. Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
  1361. Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
  1362. Record.clear();
  1363. }
  1364. void ModuleBitcodeWriter::writeDISubroutineType(
  1365. const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
  1366. unsigned Abbrev) {
  1367. const unsigned HasNoOldTypeRefs = 0x2;
  1368. Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
  1369. Record.push_back(N->getFlags());
  1370. Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
  1371. Record.push_back(N->getCC());
  1372. Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
  1373. Record.clear();
  1374. }
  1375. void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
  1376. SmallVectorImpl<uint64_t> &Record,
  1377. unsigned Abbrev) {
  1378. Record.push_back(N->isDistinct());
  1379. Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
  1380. Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
  1381. Record.push_back(N->getChecksumKind());
  1382. Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()));
  1383. Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
  1384. Record.clear();
  1385. }
  1386. void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
  1387. SmallVectorImpl<uint64_t> &Record,
  1388. unsigned Abbrev) {
  1389. assert(N->isDistinct() && "Expected distinct compile units");
  1390. Record.push_back(/* IsDistinct */ true);
  1391. Record.push_back(N->getSourceLanguage());
  1392. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  1393. Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
  1394. Record.push_back(N->isOptimized());
  1395. Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
  1396. Record.push_back(N->getRuntimeVersion());
  1397. Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
  1398. Record.push_back(N->getEmissionKind());
  1399. Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
  1400. Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
  1401. Record.push_back(/* subprograms */ 0);
  1402. Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
  1403. Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
  1404. Record.push_back(N->getDWOId());
  1405. Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
  1406. Record.push_back(N->getSplitDebugInlining());
  1407. Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
  1408. Record.clear();
  1409. }
  1410. void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
  1411. SmallVectorImpl<uint64_t> &Record,
  1412. unsigned Abbrev) {
  1413. uint64_t HasUnitFlag = 1 << 1;
  1414. Record.push_back(N->isDistinct() | HasUnitFlag);
  1415. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  1416. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1417. Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
  1418. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  1419. Record.push_back(N->getLine());
  1420. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  1421. Record.push_back(N->isLocalToUnit());
  1422. Record.push_back(N->isDefinition());
  1423. Record.push_back(N->getScopeLine());
  1424. Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
  1425. Record.push_back(N->getVirtuality());
  1426. Record.push_back(N->getVirtualIndex());
  1427. Record.push_back(N->getFlags());
  1428. Record.push_back(N->isOptimized());
  1429. Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
  1430. Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
  1431. Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
  1432. Record.push_back(VE.getMetadataOrNullID(N->getVariables().get()));
  1433. Record.push_back(N->getThisAdjustment());
  1434. Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
  1435. Record.clear();
  1436. }
  1437. void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
  1438. SmallVectorImpl<uint64_t> &Record,
  1439. unsigned Abbrev) {
  1440. Record.push_back(N->isDistinct());
  1441. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  1442. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  1443. Record.push_back(N->getLine());
  1444. Record.push_back(N->getColumn());
  1445. Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
  1446. Record.clear();
  1447. }
  1448. void ModuleBitcodeWriter::writeDILexicalBlockFile(
  1449. const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
  1450. unsigned Abbrev) {
  1451. Record.push_back(N->isDistinct());
  1452. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  1453. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  1454. Record.push_back(N->getDiscriminator());
  1455. Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
  1456. Record.clear();
  1457. }
  1458. void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
  1459. SmallVectorImpl<uint64_t> &Record,
  1460. unsigned Abbrev) {
  1461. Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
  1462. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  1463. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  1464. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1465. Record.push_back(N->getLine());
  1466. Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
  1467. Record.clear();
  1468. }
  1469. void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
  1470. SmallVectorImpl<uint64_t> &Record,
  1471. unsigned Abbrev) {
  1472. Record.push_back(N->isDistinct());
  1473. Record.push_back(N->getMacinfoType());
  1474. Record.push_back(N->getLine());
  1475. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1476. Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
  1477. Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
  1478. Record.clear();
  1479. }
  1480. void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
  1481. SmallVectorImpl<uint64_t> &Record,
  1482. unsigned Abbrev) {
  1483. Record.push_back(N->isDistinct());
  1484. Record.push_back(N->getMacinfoType());
  1485. Record.push_back(N->getLine());
  1486. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  1487. Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
  1488. Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
  1489. Record.clear();
  1490. }
  1491. void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
  1492. SmallVectorImpl<uint64_t> &Record,
  1493. unsigned Abbrev) {
  1494. Record.push_back(N->isDistinct());
  1495. for (auto &I : N->operands())
  1496. Record.push_back(VE.getMetadataOrNullID(I));
  1497. Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
  1498. Record.clear();
  1499. }
  1500. void ModuleBitcodeWriter::writeDITemplateTypeParameter(
  1501. const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
  1502. unsigned Abbrev) {
  1503. Record.push_back(N->isDistinct());
  1504. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1505. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  1506. Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
  1507. Record.clear();
  1508. }
  1509. void ModuleBitcodeWriter::writeDITemplateValueParameter(
  1510. const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
  1511. unsigned Abbrev) {
  1512. Record.push_back(N->isDistinct());
  1513. Record.push_back(N->getTag());
  1514. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1515. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  1516. Record.push_back(VE.getMetadataOrNullID(N->getValue()));
  1517. Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
  1518. Record.clear();
  1519. }
  1520. void ModuleBitcodeWriter::writeDIGlobalVariable(
  1521. const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
  1522. unsigned Abbrev) {
  1523. const uint64_t Version = 1 << 1;
  1524. Record.push_back((uint64_t)N->isDistinct() | Version);
  1525. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  1526. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1527. Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
  1528. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  1529. Record.push_back(N->getLine());
  1530. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  1531. Record.push_back(N->isLocalToUnit());
  1532. Record.push_back(N->isDefinition());
  1533. Record.push_back(/* expr */ 0);
  1534. Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
  1535. Record.push_back(N->getAlignInBits());
  1536. Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
  1537. Record.clear();
  1538. }
  1539. void ModuleBitcodeWriter::writeDILocalVariable(
  1540. const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
  1541. unsigned Abbrev) {
  1542. // In order to support all possible bitcode formats in BitcodeReader we need
  1543. // to distinguish the following cases:
  1544. // 1) Record has no artificial tag (Record[1]),
  1545. // has no obsolete inlinedAt field (Record[9]).
  1546. // In this case Record size will be 8, HasAlignment flag is false.
  1547. // 2) Record has artificial tag (Record[1]),
  1548. // has no obsolete inlignedAt field (Record[9]).
  1549. // In this case Record size will be 9, HasAlignment flag is false.
  1550. // 3) Record has both artificial tag (Record[1]) and
  1551. // obsolete inlignedAt field (Record[9]).
  1552. // In this case Record size will be 10, HasAlignment flag is false.
  1553. // 4) Record has neither artificial tag, nor inlignedAt field, but
  1554. // HasAlignment flag is true and Record[8] contains alignment value.
  1555. const uint64_t HasAlignmentFlag = 1 << 1;
  1556. Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
  1557. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  1558. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1559. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  1560. Record.push_back(N->getLine());
  1561. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  1562. Record.push_back(N->getArg());
  1563. Record.push_back(N->getFlags());
  1564. Record.push_back(N->getAlignInBits());
  1565. Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
  1566. Record.clear();
  1567. }
  1568. void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
  1569. SmallVectorImpl<uint64_t> &Record,
  1570. unsigned Abbrev) {
  1571. Record.reserve(N->getElements().size() + 1);
  1572. const uint64_t HasOpFragmentFlag = 1 << 1;
  1573. Record.push_back((uint64_t)N->isDistinct() | HasOpFragmentFlag);
  1574. Record.append(N->elements_begin(), N->elements_end());
  1575. Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
  1576. Record.clear();
  1577. }
  1578. void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
  1579. const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
  1580. unsigned Abbrev) {
  1581. Record.push_back(N->isDistinct());
  1582. Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
  1583. Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
  1584. Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
  1585. Record.clear();
  1586. }
  1587. void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
  1588. SmallVectorImpl<uint64_t> &Record,
  1589. unsigned Abbrev) {
  1590. Record.push_back(N->isDistinct());
  1591. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1592. Record.push_back(VE.getMetadataOrNullID(N->getFile()));
  1593. Record.push_back(N->getLine());
  1594. Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
  1595. Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
  1596. Record.push_back(N->getAttributes());
  1597. Record.push_back(VE.getMetadataOrNullID(N->getType()));
  1598. Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
  1599. Record.clear();
  1600. }
  1601. void ModuleBitcodeWriter::writeDIImportedEntity(
  1602. const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
  1603. unsigned Abbrev) {
  1604. Record.push_back(N->isDistinct());
  1605. Record.push_back(N->getTag());
  1606. Record.push_back(VE.getMetadataOrNullID(N->getScope()));
  1607. Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
  1608. Record.push_back(N->getLine());
  1609. Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
  1610. Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
  1611. Record.clear();
  1612. }
  1613. unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
  1614. auto Abbv = std::make_shared<BitCodeAbbrev>();
  1615. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
  1616. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1617. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  1618. return Stream.EmitAbbrev(std::move(Abbv));
  1619. }
  1620. void ModuleBitcodeWriter::writeNamedMetadata(
  1621. SmallVectorImpl<uint64_t> &Record) {
  1622. if (M.named_metadata_empty())
  1623. return;
  1624. unsigned Abbrev = createNamedMetadataAbbrev();
  1625. for (const NamedMDNode &NMD : M.named_metadata()) {
  1626. // Write name.
  1627. StringRef Str = NMD.getName();
  1628. Record.append(Str.bytes_begin(), Str.bytes_end());
  1629. Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
  1630. Record.clear();
  1631. // Write named metadata operands.
  1632. for (const MDNode *N : NMD.operands())
  1633. Record.push_back(VE.getMetadataID(N));
  1634. Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
  1635. Record.clear();
  1636. }
  1637. }
  1638. unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
  1639. auto Abbv = std::make_shared<BitCodeAbbrev>();
  1640. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
  1641. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
  1642. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
  1643. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
  1644. return Stream.EmitAbbrev(std::move(Abbv));
  1645. }
  1646. /// Write out a record for MDString.
  1647. ///
  1648. /// All the metadata strings in a metadata block are emitted in a single
  1649. /// record. The sizes and strings themselves are shoved into a blob.
  1650. void ModuleBitcodeWriter::writeMetadataStrings(
  1651. ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
  1652. if (Strings.empty())
  1653. return;
  1654. // Start the record with the number of strings.
  1655. Record.push_back(bitc::METADATA_STRINGS);
  1656. Record.push_back(Strings.size());
  1657. // Emit the sizes of the strings in the blob.
  1658. SmallString<256> Blob;
  1659. {
  1660. BitstreamWriter W(Blob);
  1661. for (const Metadata *MD : Strings)
  1662. W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
  1663. W.FlushToWord();
  1664. }
  1665. // Add the offset to the strings to the record.
  1666. Record.push_back(Blob.size());
  1667. // Add the strings to the blob.
  1668. for (const Metadata *MD : Strings)
  1669. Blob.append(cast<MDString>(MD)->getString());
  1670. // Emit the final record.
  1671. Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
  1672. Record.clear();
  1673. }
  1674. // Generates an enum to use as an index in the Abbrev array of Metadata record.
  1675. enum MetadataAbbrev : unsigned {
  1676. #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
  1677. #include "llvm/IR/Metadata.def"
  1678. LastPlusOne
  1679. };
  1680. void ModuleBitcodeWriter::writeMetadataRecords(
  1681. ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
  1682. std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
  1683. if (MDs.empty())
  1684. return;
  1685. // Initialize MDNode abbreviations.
  1686. #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
  1687. #include "llvm/IR/Metadata.def"
  1688. for (const Metadata *MD : MDs) {
  1689. if (IndexPos)
  1690. IndexPos->push_back(Stream.GetCurrentBitNo());
  1691. if (const MDNode *N = dyn_cast<MDNode>(MD)) {
  1692. assert(N->isResolved() && "Expected forward references to be resolved");
  1693. switch (N->getMetadataID()) {
  1694. default:
  1695. llvm_unreachable("Invalid MDNode subclass");
  1696. #define HANDLE_MDNODE_LEAF(CLASS) \
  1697. case Metadata::CLASS##Kind: \
  1698. if (MDAbbrevs) \
  1699. write##CLASS(cast<CLASS>(N), Record, \
  1700. (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
  1701. else \
  1702. write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
  1703. continue;
  1704. #include "llvm/IR/Metadata.def"
  1705. }
  1706. }
  1707. writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
  1708. }
  1709. }
  1710. void ModuleBitcodeWriter::writeModuleMetadata() {
  1711. if (!VE.hasMDs() && M.named_metadata_empty())
  1712. return;
  1713. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
  1714. SmallVector<uint64_t, 64> Record;
  1715. // Emit all abbrevs upfront, so that the reader can jump in the middle of the
  1716. // block and load any metadata.
  1717. std::vector<unsigned> MDAbbrevs;
  1718. MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
  1719. MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
  1720. MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
  1721. createGenericDINodeAbbrev();
  1722. auto Abbv = std::make_shared<BitCodeAbbrev>();
  1723. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
  1724. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  1725. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  1726. unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  1727. Abbv = std::make_shared<BitCodeAbbrev>();
  1728. Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
  1729. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1730. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  1731. unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  1732. // Emit MDStrings together upfront.
  1733. writeMetadataStrings(VE.getMDStrings(), Record);
  1734. // We only emit an index for the metadata record if we have more than a given
  1735. // (naive) threshold of metadatas, otherwise it is not worth it.
  1736. if (VE.getNonMDStrings().size() > IndexThreshold) {
  1737. // Write a placeholder value in for the offset of the metadata index,
  1738. // which is written after the records, so that it can include
  1739. // the offset of each entry. The placeholder offset will be
  1740. // updated after all records are emitted.
  1741. uint64_t Vals[] = {0, 0};
  1742. Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
  1743. }
  1744. // Compute and save the bit offset to the current position, which will be
  1745. // patched when we emit the index later. We can simply subtract the 64-bit
  1746. // fixed size from the current bit number to get the location to backpatch.
  1747. uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
  1748. // This index will contain the bitpos for each individual record.
  1749. std::vector<uint64_t> IndexPos;
  1750. IndexPos.reserve(VE.getNonMDStrings().size());
  1751. // Write all the records
  1752. writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
  1753. if (VE.getNonMDStrings().size() > IndexThreshold) {
  1754. // Now that we have emitted all the records we will emit the index. But
  1755. // first
  1756. // backpatch the forward reference so that the reader can skip the records
  1757. // efficiently.
  1758. Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
  1759. Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
  1760. // Delta encode the index.
  1761. uint64_t PreviousValue = IndexOffsetRecordBitPos;
  1762. for (auto &Elt : IndexPos) {
  1763. auto EltDelta = Elt - PreviousValue;
  1764. PreviousValue = Elt;
  1765. Elt = EltDelta;
  1766. }
  1767. // Emit the index record.
  1768. Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
  1769. IndexPos.clear();
  1770. }
  1771. // Write the named metadata now.
  1772. writeNamedMetadata(Record);
  1773. auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
  1774. SmallVector<uint64_t, 4> Record;
  1775. Record.push_back(VE.getValueID(&GO));
  1776. pushGlobalMetadataAttachment(Record, GO);
  1777. Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
  1778. };
  1779. for (const Function &F : M)
  1780. if (F.isDeclaration() && F.hasMetadata())
  1781. AddDeclAttachedMetadata(F);
  1782. // FIXME: Only store metadata for declarations here, and move data for global
  1783. // variable definitions to a separate block (PR28134).
  1784. for (const GlobalVariable &GV : M.globals())
  1785. if (GV.hasMetadata())
  1786. AddDeclAttachedMetadata(GV);
  1787. Stream.ExitBlock();
  1788. }
  1789. void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
  1790. if (!VE.hasMDs())
  1791. return;
  1792. Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
  1793. SmallVector<uint64_t, 64> Record;
  1794. writeMetadataStrings(VE.getMDStrings(), Record);
  1795. writeMetadataRecords(VE.getNonMDStrings(), Record);
  1796. Stream.ExitBlock();
  1797. }
  1798. void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
  1799. SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
  1800. // [n x [id, mdnode]]
  1801. SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
  1802. GO.getAllMetadata(MDs);
  1803. for (const auto &I : MDs) {
  1804. Record.push_back(I.first);
  1805. Record.push_back(VE.getMetadataID(I.second));
  1806. }
  1807. }
  1808. void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
  1809. Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
  1810. SmallVector<uint64_t, 64> Record;
  1811. if (F.hasMetadata()) {
  1812. pushGlobalMetadataAttachment(Record, F);
  1813. Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
  1814. Record.clear();
  1815. }
  1816. // Write metadata attachments
  1817. // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
  1818. SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
  1819. for (const BasicBlock &BB : F)
  1820. for (const Instruction &I : BB) {
  1821. MDs.clear();
  1822. I.getAllMetadataOtherThanDebugLoc(MDs);
  1823. // If no metadata, ignore instruction.
  1824. if (MDs.empty()) continue;
  1825. Record.push_back(VE.getInstructionID(&I));
  1826. for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
  1827. Record.push_back(MDs[i].first);
  1828. Record.push_back(VE.getMetadataID(MDs[i].second));
  1829. }
  1830. Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
  1831. Record.clear();
  1832. }
  1833. Stream.ExitBlock();
  1834. }
  1835. void ModuleBitcodeWriter::writeModuleMetadataKinds() {
  1836. SmallVector<uint64_t, 64> Record;
  1837. // Write metadata kinds
  1838. // METADATA_KIND - [n x [id, name]]
  1839. SmallVector<StringRef, 8> Names;
  1840. M.getMDKindNames(Names);
  1841. if (Names.empty()) return;
  1842. Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
  1843. for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
  1844. Record.push_back(MDKindID);
  1845. StringRef KName = Names[MDKindID];
  1846. Record.append(KName.begin(), KName.end());
  1847. Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
  1848. Record.clear();
  1849. }
  1850. Stream.ExitBlock();
  1851. }
  1852. void ModuleBitcodeWriter::writeOperandBundleTags() {
  1853. // Write metadata kinds
  1854. //
  1855. // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
  1856. //
  1857. // OPERAND_BUNDLE_TAG - [strchr x N]
  1858. SmallVector<StringRef, 8> Tags;
  1859. M.getOperandBundleTags(Tags);
  1860. if (Tags.empty())
  1861. return;
  1862. Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
  1863. SmallVector<uint64_t, 64> Record;
  1864. for (auto Tag : Tags) {
  1865. Record.append(Tag.begin(), Tag.end());
  1866. Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
  1867. Record.clear();
  1868. }
  1869. Stream.ExitBlock();
  1870. }
  1871. static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
  1872. if ((int64_t)V >= 0)
  1873. Vals.push_back(V << 1);
  1874. else
  1875. Vals.push_back((-V << 1) | 1);
  1876. }
  1877. void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
  1878. bool isGlobal) {
  1879. if (FirstVal == LastVal) return;
  1880. Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
  1881. unsigned AggregateAbbrev = 0;
  1882. unsigned String8Abbrev = 0;
  1883. unsigned CString7Abbrev = 0;
  1884. unsigned CString6Abbrev = 0;
  1885. // If this is a constant pool for the module, emit module-specific abbrevs.
  1886. if (isGlobal) {
  1887. // Abbrev for CST_CODE_AGGREGATE.
  1888. auto Abbv = std::make_shared<BitCodeAbbrev>();
  1889. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
  1890. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1891. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
  1892. AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  1893. // Abbrev for CST_CODE_STRING.
  1894. Abbv = std::make_shared<BitCodeAbbrev>();
  1895. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
  1896. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1897. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  1898. String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
  1899. // Abbrev for CST_CODE_CSTRING.
  1900. Abbv = std::make_shared<BitCodeAbbrev>();
  1901. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  1902. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1903. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  1904. CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
  1905. // Abbrev for CST_CODE_CSTRING.
  1906. Abbv = std::make_shared<BitCodeAbbrev>();
  1907. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
  1908. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  1909. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  1910. CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
  1911. }
  1912. SmallVector<uint64_t, 64> Record;
  1913. const ValueEnumerator::ValueList &Vals = VE.getValues();
  1914. Type *LastTy = nullptr;
  1915. for (unsigned i = FirstVal; i != LastVal; ++i) {
  1916. const Value *V = Vals[i].first;
  1917. // If we need to switch types, do so now.
  1918. if (V->getType() != LastTy) {
  1919. LastTy = V->getType();
  1920. Record.push_back(VE.getTypeID(LastTy));
  1921. Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
  1922. CONSTANTS_SETTYPE_ABBREV);
  1923. Record.clear();
  1924. }
  1925. if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
  1926. Record.push_back(unsigned(IA->hasSideEffects()) |
  1927. unsigned(IA->isAlignStack()) << 1 |
  1928. unsigned(IA->getDialect()&1) << 2);
  1929. // Add the asm string.
  1930. const std::string &AsmStr = IA->getAsmString();
  1931. Record.push_back(AsmStr.size());
  1932. Record.append(AsmStr.begin(), AsmStr.end());
  1933. // Add the constraint string.
  1934. const std::string &ConstraintStr = IA->getConstraintString();
  1935. Record.push_back(ConstraintStr.size());
  1936. Record.append(ConstraintStr.begin(), ConstraintStr.end());
  1937. Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
  1938. Record.clear();
  1939. continue;
  1940. }
  1941. const Constant *C = cast<Constant>(V);
  1942. unsigned Code = -1U;
  1943. unsigned AbbrevToUse = 0;
  1944. if (C->isNullValue()) {
  1945. Code = bitc::CST_CODE_NULL;
  1946. } else if (isa<UndefValue>(C)) {
  1947. Code = bitc::CST_CODE_UNDEF;
  1948. } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
  1949. if (IV->getBitWidth() <= 64) {
  1950. uint64_t V = IV->getSExtValue();
  1951. emitSignedInt64(Record, V);
  1952. Code = bitc::CST_CODE_INTEGER;
  1953. AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
  1954. } else { // Wide integers, > 64 bits in size.
  1955. // We have an arbitrary precision integer value to write whose
  1956. // bit width is > 64. However, in canonical unsigned integer
  1957. // format it is likely that the high bits are going to be zero.
  1958. // So, we only write the number of active words.
  1959. unsigned NWords = IV->getValue().getActiveWords();
  1960. const uint64_t *RawWords = IV->getValue().getRawData();
  1961. for (unsigned i = 0; i != NWords; ++i) {
  1962. emitSignedInt64(Record, RawWords[i]);
  1963. }
  1964. Code = bitc::CST_CODE_WIDE_INTEGER;
  1965. }
  1966. } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
  1967. Code = bitc::CST_CODE_FLOAT;
  1968. Type *Ty = CFP->getType();
  1969. if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
  1970. Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
  1971. } else if (Ty->isX86_FP80Ty()) {
  1972. // api needed to prevent premature destruction
  1973. // bits are not in the same order as a normal i80 APInt, compensate.
  1974. APInt api = CFP->getValueAPF().bitcastToAPInt();
  1975. const uint64_t *p = api.getRawData();
  1976. Record.push_back((p[1] << 48) | (p[0] >> 16));
  1977. Record.push_back(p[0] & 0xffffLL);
  1978. } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
  1979. APInt api = CFP->getValueAPF().bitcastToAPInt();
  1980. const uint64_t *p = api.getRawData();
  1981. Record.push_back(p[0]);
  1982. Record.push_back(p[1]);
  1983. } else {
  1984. assert (0 && "Unknown FP type!");
  1985. }
  1986. } else if (isa<ConstantDataSequential>(C) &&
  1987. cast<ConstantDataSequential>(C)->isString()) {
  1988. const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
  1989. // Emit constant strings specially.
  1990. unsigned NumElts = Str->getNumElements();
  1991. // If this is a null-terminated string, use the denser CSTRING encoding.
  1992. if (Str->isCString()) {
  1993. Code = bitc::CST_CODE_CSTRING;
  1994. --NumElts; // Don't encode the null, which isn't allowed by char6.
  1995. } else {
  1996. Code = bitc::CST_CODE_STRING;
  1997. AbbrevToUse = String8Abbrev;
  1998. }
  1999. bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
  2000. bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
  2001. for (unsigned i = 0; i != NumElts; ++i) {
  2002. unsigned char V = Str->getElementAsInteger(i);
  2003. Record.push_back(V);
  2004. isCStr7 &= (V & 128) == 0;
  2005. if (isCStrChar6)
  2006. isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
  2007. }
  2008. if (isCStrChar6)
  2009. AbbrevToUse = CString6Abbrev;
  2010. else if (isCStr7)
  2011. AbbrevToUse = CString7Abbrev;
  2012. } else if (const ConstantDataSequential *CDS =
  2013. dyn_cast<ConstantDataSequential>(C)) {
  2014. Code = bitc::CST_CODE_DATA;
  2015. Type *EltTy = CDS->getType()->getElementType();
  2016. if (isa<IntegerType>(EltTy)) {
  2017. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
  2018. Record.push_back(CDS->getElementAsInteger(i));
  2019. } else {
  2020. for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
  2021. Record.push_back(
  2022. CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
  2023. }
  2024. } else if (isa<ConstantAggregate>(C)) {
  2025. Code = bitc::CST_CODE_AGGREGATE;
  2026. for (const Value *Op : C->operands())
  2027. Record.push_back(VE.getValueID(Op));
  2028. AbbrevToUse = AggregateAbbrev;
  2029. } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
  2030. switch (CE->getOpcode()) {
  2031. default:
  2032. if (Instruction::isCast(CE->getOpcode())) {
  2033. Code = bitc::CST_CODE_CE_CAST;
  2034. Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
  2035. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  2036. Record.push_back(VE.getValueID(C->getOperand(0)));
  2037. AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
  2038. } else {
  2039. assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
  2040. Code = bitc::CST_CODE_CE_BINOP;
  2041. Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
  2042. Record.push_back(VE.getValueID(C->getOperand(0)));
  2043. Record.push_back(VE.getValueID(C->getOperand(1)));
  2044. uint64_t Flags = getOptimizationFlags(CE);
  2045. if (Flags != 0)
  2046. Record.push_back(Flags);
  2047. }
  2048. break;
  2049. case Instruction::GetElementPtr: {
  2050. Code = bitc::CST_CODE_CE_GEP;
  2051. const auto *GO = cast<GEPOperator>(C);
  2052. Record.push_back(VE.getTypeID(GO->getSourceElementType()));
  2053. if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
  2054. Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
  2055. Record.push_back((*Idx << 1) | GO->isInBounds());
  2056. } else if (GO->isInBounds())
  2057. Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
  2058. for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
  2059. Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
  2060. Record.push_back(VE.getValueID(C->getOperand(i)));
  2061. }
  2062. break;
  2063. }
  2064. case Instruction::Select:
  2065. Code = bitc::CST_CODE_CE_SELECT;
  2066. Record.push_back(VE.getValueID(C->getOperand(0)));
  2067. Record.push_back(VE.getValueID(C->getOperand(1)));
  2068. Record.push_back(VE.getValueID(C->getOperand(2)));
  2069. break;
  2070. case Instruction::ExtractElement:
  2071. Code = bitc::CST_CODE_CE_EXTRACTELT;
  2072. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  2073. Record.push_back(VE.getValueID(C->getOperand(0)));
  2074. Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
  2075. Record.push_back(VE.getValueID(C->getOperand(1)));
  2076. break;
  2077. case Instruction::InsertElement:
  2078. Code = bitc::CST_CODE_CE_INSERTELT;
  2079. Record.push_back(VE.getValueID(C->getOperand(0)));
  2080. Record.push_back(VE.getValueID(C->getOperand(1)));
  2081. Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
  2082. Record.push_back(VE.getValueID(C->getOperand(2)));
  2083. break;
  2084. case Instruction::ShuffleVector:
  2085. // If the return type and argument types are the same, this is a
  2086. // standard shufflevector instruction. If the types are different,
  2087. // then the shuffle is widening or truncating the input vectors, and
  2088. // the argument type must also be encoded.
  2089. if (C->getType() == C->getOperand(0)->getType()) {
  2090. Code = bitc::CST_CODE_CE_SHUFFLEVEC;
  2091. } else {
  2092. Code = bitc::CST_CODE_CE_SHUFVEC_EX;
  2093. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  2094. }
  2095. Record.push_back(VE.getValueID(C->getOperand(0)));
  2096. Record.push_back(VE.getValueID(C->getOperand(1)));
  2097. Record.push_back(VE.getValueID(C->getOperand(2)));
  2098. break;
  2099. case Instruction::ICmp:
  2100. case Instruction::FCmp:
  2101. Code = bitc::CST_CODE_CE_CMP;
  2102. Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
  2103. Record.push_back(VE.getValueID(C->getOperand(0)));
  2104. Record.push_back(VE.getValueID(C->getOperand(1)));
  2105. Record.push_back(CE->getPredicate());
  2106. break;
  2107. }
  2108. } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
  2109. Code = bitc::CST_CODE_BLOCKADDRESS;
  2110. Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
  2111. Record.push_back(VE.getValueID(BA->getFunction()));
  2112. Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
  2113. } else {
  2114. #ifndef NDEBUG
  2115. C->dump();
  2116. #endif
  2117. llvm_unreachable("Unknown constant!");
  2118. }
  2119. Stream.EmitRecord(Code, Record, AbbrevToUse);
  2120. Record.clear();
  2121. }
  2122. Stream.ExitBlock();
  2123. }
  2124. void ModuleBitcodeWriter::writeModuleConstants() {
  2125. const ValueEnumerator::ValueList &Vals = VE.getValues();
  2126. // Find the first constant to emit, which is the first non-globalvalue value.
  2127. // We know globalvalues have been emitted by WriteModuleInfo.
  2128. for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
  2129. if (!isa<GlobalValue>(Vals[i].first)) {
  2130. writeConstants(i, Vals.size(), true);
  2131. return;
  2132. }
  2133. }
  2134. }
  2135. /// pushValueAndType - The file has to encode both the value and type id for
  2136. /// many values, because we need to know what type to create for forward
  2137. /// references. However, most operands are not forward references, so this type
  2138. /// field is not needed.
  2139. ///
  2140. /// This function adds V's value ID to Vals. If the value ID is higher than the
  2141. /// instruction ID, then it is a forward reference, and it also includes the
  2142. /// type ID. The value ID that is written is encoded relative to the InstID.
  2143. bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
  2144. SmallVectorImpl<unsigned> &Vals) {
  2145. unsigned ValID = VE.getValueID(V);
  2146. // Make encoding relative to the InstID.
  2147. Vals.push_back(InstID - ValID);
  2148. if (ValID >= InstID) {
  2149. Vals.push_back(VE.getTypeID(V->getType()));
  2150. return true;
  2151. }
  2152. return false;
  2153. }
  2154. void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS,
  2155. unsigned InstID) {
  2156. SmallVector<unsigned, 64> Record;
  2157. LLVMContext &C = CS.getInstruction()->getContext();
  2158. for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
  2159. const auto &Bundle = CS.getOperandBundleAt(i);
  2160. Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
  2161. for (auto &Input : Bundle.Inputs)
  2162. pushValueAndType(Input, InstID, Record);
  2163. Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
  2164. Record.clear();
  2165. }
  2166. }
  2167. /// pushValue - Like pushValueAndType, but where the type of the value is
  2168. /// omitted (perhaps it was already encoded in an earlier operand).
  2169. void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
  2170. SmallVectorImpl<unsigned> &Vals) {
  2171. unsigned ValID = VE.getValueID(V);
  2172. Vals.push_back(InstID - ValID);
  2173. }
  2174. void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
  2175. SmallVectorImpl<uint64_t> &Vals) {
  2176. unsigned ValID = VE.getValueID(V);
  2177. int64_t diff = ((int32_t)InstID - (int32_t)ValID);
  2178. emitSignedInt64(Vals, diff);
  2179. }
  2180. /// WriteInstruction - Emit an instruction to the specified stream.
  2181. void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
  2182. unsigned InstID,
  2183. SmallVectorImpl<unsigned> &Vals) {
  2184. unsigned Code = 0;
  2185. unsigned AbbrevToUse = 0;
  2186. VE.setInstructionID(&I);
  2187. switch (I.getOpcode()) {
  2188. default:
  2189. if (Instruction::isCast(I.getOpcode())) {
  2190. Code = bitc::FUNC_CODE_INST_CAST;
  2191. if (!pushValueAndType(I.getOperand(0), InstID, Vals))
  2192. AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
  2193. Vals.push_back(VE.getTypeID(I.getType()));
  2194. Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
  2195. } else {
  2196. assert(isa<BinaryOperator>(I) && "Unknown instruction!");
  2197. Code = bitc::FUNC_CODE_INST_BINOP;
  2198. if (!pushValueAndType(I.getOperand(0), InstID, Vals))
  2199. AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
  2200. pushValue(I.getOperand(1), InstID, Vals);
  2201. Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
  2202. uint64_t Flags = getOptimizationFlags(&I);
  2203. if (Flags != 0) {
  2204. if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
  2205. AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
  2206. Vals.push_back(Flags);
  2207. }
  2208. }
  2209. break;
  2210. case Instruction::GetElementPtr: {
  2211. Code = bitc::FUNC_CODE_INST_GEP;
  2212. AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
  2213. auto &GEPInst = cast<GetElementPtrInst>(I);
  2214. Vals.push_back(GEPInst.isInBounds());
  2215. Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
  2216. for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
  2217. pushValueAndType(I.getOperand(i), InstID, Vals);
  2218. break;
  2219. }
  2220. case Instruction::ExtractValue: {
  2221. Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
  2222. pushValueAndType(I.getOperand(0), InstID, Vals);
  2223. const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
  2224. Vals.append(EVI->idx_begin(), EVI->idx_end());
  2225. break;
  2226. }
  2227. case Instruction::InsertValue: {
  2228. Code = bitc::FUNC_CODE_INST_INSERTVAL;
  2229. pushValueAndType(I.getOperand(0), InstID, Vals);
  2230. pushValueAndType(I.getOperand(1), InstID, Vals);
  2231. const InsertValueInst *IVI = cast<InsertValueInst>(&I);
  2232. Vals.append(IVI->idx_begin(), IVI->idx_end());
  2233. break;
  2234. }
  2235. case Instruction::Select:
  2236. Code = bitc::FUNC_CODE_INST_VSELECT;
  2237. pushValueAndType(I.getOperand(1), InstID, Vals);
  2238. pushValue(I.getOperand(2), InstID, Vals);
  2239. pushValueAndType(I.getOperand(0), InstID, Vals);
  2240. break;
  2241. case Instruction::ExtractElement:
  2242. Code = bitc::FUNC_CODE_INST_EXTRACTELT;
  2243. pushValueAndType(I.getOperand(0), InstID, Vals);
  2244. pushValueAndType(I.getOperand(1), InstID, Vals);
  2245. break;
  2246. case Instruction::InsertElement:
  2247. Code = bitc::FUNC_CODE_INST_INSERTELT;
  2248. pushValueAndType(I.getOperand(0), InstID, Vals);
  2249. pushValue(I.getOperand(1), InstID, Vals);
  2250. pushValueAndType(I.getOperand(2), InstID, Vals);
  2251. break;
  2252. case Instruction::ShuffleVector:
  2253. Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
  2254. pushValueAndType(I.getOperand(0), InstID, Vals);
  2255. pushValue(I.getOperand(1), InstID, Vals);
  2256. pushValue(I.getOperand(2), InstID, Vals);
  2257. break;
  2258. case Instruction::ICmp:
  2259. case Instruction::FCmp: {
  2260. // compare returning Int1Ty or vector of Int1Ty
  2261. Code = bitc::FUNC_CODE_INST_CMP2;
  2262. pushValueAndType(I.getOperand(0), InstID, Vals);
  2263. pushValue(I.getOperand(1), InstID, Vals);
  2264. Vals.push_back(cast<CmpInst>(I).getPredicate());
  2265. uint64_t Flags = getOptimizationFlags(&I);
  2266. if (Flags != 0)
  2267. Vals.push_back(Flags);
  2268. break;
  2269. }
  2270. case Instruction::Ret:
  2271. {
  2272. Code = bitc::FUNC_CODE_INST_RET;
  2273. unsigned NumOperands = I.getNumOperands();
  2274. if (NumOperands == 0)
  2275. AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
  2276. else if (NumOperands == 1) {
  2277. if (!pushValueAndType(I.getOperand(0), InstID, Vals))
  2278. AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
  2279. } else {
  2280. for (unsigned i = 0, e = NumOperands; i != e; ++i)
  2281. pushValueAndType(I.getOperand(i), InstID, Vals);
  2282. }
  2283. }
  2284. break;
  2285. case Instruction::Br:
  2286. {
  2287. Code = bitc::FUNC_CODE_INST_BR;
  2288. const BranchInst &II = cast<BranchInst>(I);
  2289. Vals.push_back(VE.getValueID(II.getSuccessor(0)));
  2290. if (II.isConditional()) {
  2291. Vals.push_back(VE.getValueID(II.getSuccessor(1)));
  2292. pushValue(II.getCondition(), InstID, Vals);
  2293. }
  2294. }
  2295. break;
  2296. case Instruction::Switch:
  2297. {
  2298. Code = bitc::FUNC_CODE_INST_SWITCH;
  2299. const SwitchInst &SI = cast<SwitchInst>(I);
  2300. Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
  2301. pushValue(SI.getCondition(), InstID, Vals);
  2302. Vals.push_back(VE.getValueID(SI.getDefaultDest()));
  2303. for (SwitchInst::ConstCaseIt Case : SI.cases()) {
  2304. Vals.push_back(VE.getValueID(Case.getCaseValue()));
  2305. Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
  2306. }
  2307. }
  2308. break;
  2309. case Instruction::IndirectBr:
  2310. Code = bitc::FUNC_CODE_INST_INDIRECTBR;
  2311. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  2312. // Encode the address operand as relative, but not the basic blocks.
  2313. pushValue(I.getOperand(0), InstID, Vals);
  2314. for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
  2315. Vals.push_back(VE.getValueID(I.getOperand(i)));
  2316. break;
  2317. case Instruction::Invoke: {
  2318. const InvokeInst *II = cast<InvokeInst>(&I);
  2319. const Value *Callee = II->getCalledValue();
  2320. FunctionType *FTy = II->getFunctionType();
  2321. if (II->hasOperandBundles())
  2322. writeOperandBundles(II, InstID);
  2323. Code = bitc::FUNC_CODE_INST_INVOKE;
  2324. Vals.push_back(VE.getAttributeID(II->getAttributes()));
  2325. Vals.push_back(II->getCallingConv() | 1 << 13);
  2326. Vals.push_back(VE.getValueID(II->getNormalDest()));
  2327. Vals.push_back(VE.getValueID(II->getUnwindDest()));
  2328. Vals.push_back(VE.getTypeID(FTy));
  2329. pushValueAndType(Callee, InstID, Vals);
  2330. // Emit value #'s for the fixed parameters.
  2331. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
  2332. pushValue(I.getOperand(i), InstID, Vals); // fixed param.
  2333. // Emit type/value pairs for varargs params.
  2334. if (FTy->isVarArg()) {
  2335. for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
  2336. i != e; ++i)
  2337. pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
  2338. }
  2339. break;
  2340. }
  2341. case Instruction::Resume:
  2342. Code = bitc::FUNC_CODE_INST_RESUME;
  2343. pushValueAndType(I.getOperand(0), InstID, Vals);
  2344. break;
  2345. case Instruction::CleanupRet: {
  2346. Code = bitc::FUNC_CODE_INST_CLEANUPRET;
  2347. const auto &CRI = cast<CleanupReturnInst>(I);
  2348. pushValue(CRI.getCleanupPad(), InstID, Vals);
  2349. if (CRI.hasUnwindDest())
  2350. Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
  2351. break;
  2352. }
  2353. case Instruction::CatchRet: {
  2354. Code = bitc::FUNC_CODE_INST_CATCHRET;
  2355. const auto &CRI = cast<CatchReturnInst>(I);
  2356. pushValue(CRI.getCatchPad(), InstID, Vals);
  2357. Vals.push_back(VE.getValueID(CRI.getSuccessor()));
  2358. break;
  2359. }
  2360. case Instruction::CleanupPad:
  2361. case Instruction::CatchPad: {
  2362. const auto &FuncletPad = cast<FuncletPadInst>(I);
  2363. Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
  2364. : bitc::FUNC_CODE_INST_CLEANUPPAD;
  2365. pushValue(FuncletPad.getParentPad(), InstID, Vals);
  2366. unsigned NumArgOperands = FuncletPad.getNumArgOperands();
  2367. Vals.push_back(NumArgOperands);
  2368. for (unsigned Op = 0; Op != NumArgOperands; ++Op)
  2369. pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
  2370. break;
  2371. }
  2372. case Instruction::CatchSwitch: {
  2373. Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
  2374. const auto &CatchSwitch = cast<CatchSwitchInst>(I);
  2375. pushValue(CatchSwitch.getParentPad(), InstID, Vals);
  2376. unsigned NumHandlers = CatchSwitch.getNumHandlers();
  2377. Vals.push_back(NumHandlers);
  2378. for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
  2379. Vals.push_back(VE.getValueID(CatchPadBB));
  2380. if (CatchSwitch.hasUnwindDest())
  2381. Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
  2382. break;
  2383. }
  2384. case Instruction::Unreachable:
  2385. Code = bitc::FUNC_CODE_INST_UNREACHABLE;
  2386. AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
  2387. break;
  2388. case Instruction::PHI: {
  2389. const PHINode &PN = cast<PHINode>(I);
  2390. Code = bitc::FUNC_CODE_INST_PHI;
  2391. // With the newer instruction encoding, forward references could give
  2392. // negative valued IDs. This is most common for PHIs, so we use
  2393. // signed VBRs.
  2394. SmallVector<uint64_t, 128> Vals64;
  2395. Vals64.push_back(VE.getTypeID(PN.getType()));
  2396. for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
  2397. pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
  2398. Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
  2399. }
  2400. // Emit a Vals64 vector and exit.
  2401. Stream.EmitRecord(Code, Vals64, AbbrevToUse);
  2402. Vals64.clear();
  2403. return;
  2404. }
  2405. case Instruction::LandingPad: {
  2406. const LandingPadInst &LP = cast<LandingPadInst>(I);
  2407. Code = bitc::FUNC_CODE_INST_LANDINGPAD;
  2408. Vals.push_back(VE.getTypeID(LP.getType()));
  2409. Vals.push_back(LP.isCleanup());
  2410. Vals.push_back(LP.getNumClauses());
  2411. for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
  2412. if (LP.isCatch(I))
  2413. Vals.push_back(LandingPadInst::Catch);
  2414. else
  2415. Vals.push_back(LandingPadInst::Filter);
  2416. pushValueAndType(LP.getClause(I), InstID, Vals);
  2417. }
  2418. break;
  2419. }
  2420. case Instruction::Alloca: {
  2421. Code = bitc::FUNC_CODE_INST_ALLOCA;
  2422. const AllocaInst &AI = cast<AllocaInst>(I);
  2423. Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
  2424. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
  2425. Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
  2426. unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1;
  2427. assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 &&
  2428. "not enough bits for maximum alignment");
  2429. assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
  2430. AlignRecord |= AI.isUsedWithInAlloca() << 5;
  2431. AlignRecord |= 1 << 6;
  2432. AlignRecord |= AI.isSwiftError() << 7;
  2433. Vals.push_back(AlignRecord);
  2434. break;
  2435. }
  2436. case Instruction::Load:
  2437. if (cast<LoadInst>(I).isAtomic()) {
  2438. Code = bitc::FUNC_CODE_INST_LOADATOMIC;
  2439. pushValueAndType(I.getOperand(0), InstID, Vals);
  2440. } else {
  2441. Code = bitc::FUNC_CODE_INST_LOAD;
  2442. if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
  2443. AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
  2444. }
  2445. Vals.push_back(VE.getTypeID(I.getType()));
  2446. Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
  2447. Vals.push_back(cast<LoadInst>(I).isVolatile());
  2448. if (cast<LoadInst>(I).isAtomic()) {
  2449. Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
  2450. Vals.push_back(getEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
  2451. }
  2452. break;
  2453. case Instruction::Store:
  2454. if (cast<StoreInst>(I).isAtomic())
  2455. Code = bitc::FUNC_CODE_INST_STOREATOMIC;
  2456. else
  2457. Code = bitc::FUNC_CODE_INST_STORE;
  2458. pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
  2459. pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
  2460. Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
  2461. Vals.push_back(cast<StoreInst>(I).isVolatile());
  2462. if (cast<StoreInst>(I).isAtomic()) {
  2463. Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
  2464. Vals.push_back(getEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
  2465. }
  2466. break;
  2467. case Instruction::AtomicCmpXchg:
  2468. Code = bitc::FUNC_CODE_INST_CMPXCHG;
  2469. pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
  2470. pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
  2471. pushValue(I.getOperand(2), InstID, Vals); // newval.
  2472. Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
  2473. Vals.push_back(
  2474. getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
  2475. Vals.push_back(
  2476. getEncodedSynchScope(cast<AtomicCmpXchgInst>(I).getSynchScope()));
  2477. Vals.push_back(
  2478. getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
  2479. Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
  2480. break;
  2481. case Instruction::AtomicRMW:
  2482. Code = bitc::FUNC_CODE_INST_ATOMICRMW;
  2483. pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
  2484. pushValue(I.getOperand(1), InstID, Vals); // val.
  2485. Vals.push_back(
  2486. getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
  2487. Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
  2488. Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
  2489. Vals.push_back(
  2490. getEncodedSynchScope(cast<AtomicRMWInst>(I).getSynchScope()));
  2491. break;
  2492. case Instruction::Fence:
  2493. Code = bitc::FUNC_CODE_INST_FENCE;
  2494. Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
  2495. Vals.push_back(getEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
  2496. break;
  2497. case Instruction::Call: {
  2498. const CallInst &CI = cast<CallInst>(I);
  2499. FunctionType *FTy = CI.getFunctionType();
  2500. if (CI.hasOperandBundles())
  2501. writeOperandBundles(&CI, InstID);
  2502. Code = bitc::FUNC_CODE_INST_CALL;
  2503. Vals.push_back(VE.getAttributeID(CI.getAttributes()));
  2504. unsigned Flags = getOptimizationFlags(&I);
  2505. Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
  2506. unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
  2507. unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
  2508. 1 << bitc::CALL_EXPLICIT_TYPE |
  2509. unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
  2510. unsigned(Flags != 0) << bitc::CALL_FMF);
  2511. if (Flags != 0)
  2512. Vals.push_back(Flags);
  2513. Vals.push_back(VE.getTypeID(FTy));
  2514. pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee
  2515. // Emit value #'s for the fixed parameters.
  2516. for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
  2517. // Check for labels (can happen with asm labels).
  2518. if (FTy->getParamType(i)->isLabelTy())
  2519. Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
  2520. else
  2521. pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
  2522. }
  2523. // Emit type/value pairs for varargs params.
  2524. if (FTy->isVarArg()) {
  2525. for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
  2526. i != e; ++i)
  2527. pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
  2528. }
  2529. break;
  2530. }
  2531. case Instruction::VAArg:
  2532. Code = bitc::FUNC_CODE_INST_VAARG;
  2533. Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty
  2534. pushValue(I.getOperand(0), InstID, Vals); // valist.
  2535. Vals.push_back(VE.getTypeID(I.getType())); // restype.
  2536. break;
  2537. }
  2538. Stream.EmitRecord(Code, Vals, AbbrevToUse);
  2539. Vals.clear();
  2540. }
  2541. /// Emit names for globals/functions etc. \p IsModuleLevel is true when
  2542. /// we are writing the module-level VST, where we are including a function
  2543. /// bitcode index and need to backpatch the VST forward declaration record.
  2544. void ModuleBitcodeWriter::writeValueSymbolTable(
  2545. const ValueSymbolTable &VST, bool IsModuleLevel,
  2546. DenseMap<const Function *, uint64_t> *FunctionToBitcodeIndex) {
  2547. if (VST.empty()) {
  2548. // writeValueSymbolTableForwardDecl should have returned early as
  2549. // well. Ensure this handling remains in sync by asserting that
  2550. // the placeholder offset is not set.
  2551. assert(!IsModuleLevel || !hasVSTOffsetPlaceholder());
  2552. return;
  2553. }
  2554. if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
  2555. // Get the offset of the VST we are writing, and backpatch it into
  2556. // the VST forward declaration record.
  2557. uint64_t VSTOffset = Stream.GetCurrentBitNo();
  2558. // The BitcodeStartBit was the stream offset of the identification block.
  2559. VSTOffset -= bitcodeStartBit();
  2560. assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
  2561. // Note that we add 1 here because the offset is relative to one word
  2562. // before the start of the identification block, which was historically
  2563. // always the start of the regular bitcode header.
  2564. Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
  2565. }
  2566. Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
  2567. // For the module-level VST, add abbrev Ids for the VST_CODE_FNENTRY
  2568. // records, which are not used in the per-function VSTs.
  2569. unsigned FnEntry8BitAbbrev;
  2570. unsigned FnEntry7BitAbbrev;
  2571. unsigned FnEntry6BitAbbrev;
  2572. unsigned GUIDEntryAbbrev;
  2573. if (IsModuleLevel && hasVSTOffsetPlaceholder()) {
  2574. // 8-bit fixed-width VST_CODE_FNENTRY function strings.
  2575. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2576. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
  2577. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
  2578. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
  2579. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  2580. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  2581. FnEntry8BitAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  2582. // 7-bit fixed width VST_CODE_FNENTRY function strings.
  2583. Abbv = std::make_shared<BitCodeAbbrev>();
  2584. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
  2585. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
  2586. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
  2587. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  2588. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  2589. FnEntry7BitAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  2590. // 6-bit char6 VST_CODE_FNENTRY function strings.
  2591. Abbv = std::make_shared<BitCodeAbbrev>();
  2592. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
  2593. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
  2594. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
  2595. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  2596. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  2597. FnEntry6BitAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  2598. // FIXME: Change the name of this record as it is now used by
  2599. // the per-module index as well.
  2600. Abbv = std::make_shared<BitCodeAbbrev>();
  2601. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
  2602. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
  2603. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
  2604. GUIDEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  2605. }
  2606. // FIXME: Set up the abbrev, we know how many values there are!
  2607. // FIXME: We know if the type names can use 7-bit ascii.
  2608. SmallVector<uint64_t, 64> NameVals;
  2609. for (const ValueName &Name : VST) {
  2610. // Figure out the encoding to use for the name.
  2611. StringEncoding Bits =
  2612. getStringEncoding(Name.getKeyData(), Name.getKeyLength());
  2613. unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
  2614. NameVals.push_back(VE.getValueID(Name.getValue()));
  2615. Function *F = dyn_cast<Function>(Name.getValue());
  2616. if (!F) {
  2617. // If value is an alias, need to get the aliased base object to
  2618. // see if it is a function.
  2619. auto *GA = dyn_cast<GlobalAlias>(Name.getValue());
  2620. if (GA && GA->getBaseObject())
  2621. F = dyn_cast<Function>(GA->getBaseObject());
  2622. }
  2623. // VST_CODE_ENTRY: [valueid, namechar x N]
  2624. // VST_CODE_FNENTRY: [valueid, funcoffset, namechar x N]
  2625. // VST_CODE_BBENTRY: [bbid, namechar x N]
  2626. unsigned Code;
  2627. if (isa<BasicBlock>(Name.getValue())) {
  2628. Code = bitc::VST_CODE_BBENTRY;
  2629. if (Bits == SE_Char6)
  2630. AbbrevToUse = VST_BBENTRY_6_ABBREV;
  2631. } else if (F && !F->isDeclaration()) {
  2632. // Must be the module-level VST, where we pass in the Index and
  2633. // have a VSTOffsetPlaceholder. The function-level VST should not
  2634. // contain any Function symbols.
  2635. assert(FunctionToBitcodeIndex);
  2636. assert(hasVSTOffsetPlaceholder());
  2637. // Save the word offset of the function (from the start of the
  2638. // actual bitcode written to the stream).
  2639. uint64_t BitcodeIndex = (*FunctionToBitcodeIndex)[F] - bitcodeStartBit();
  2640. assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
  2641. // Note that we add 1 here because the offset is relative to one word
  2642. // before the start of the identification block, which was historically
  2643. // always the start of the regular bitcode header.
  2644. NameVals.push_back(BitcodeIndex / 32 + 1);
  2645. Code = bitc::VST_CODE_FNENTRY;
  2646. AbbrevToUse = FnEntry8BitAbbrev;
  2647. if (Bits == SE_Char6)
  2648. AbbrevToUse = FnEntry6BitAbbrev;
  2649. else if (Bits == SE_Fixed7)
  2650. AbbrevToUse = FnEntry7BitAbbrev;
  2651. } else {
  2652. Code = bitc::VST_CODE_ENTRY;
  2653. if (Bits == SE_Char6)
  2654. AbbrevToUse = VST_ENTRY_6_ABBREV;
  2655. else if (Bits == SE_Fixed7)
  2656. AbbrevToUse = VST_ENTRY_7_ABBREV;
  2657. }
  2658. for (const auto P : Name.getKey())
  2659. NameVals.push_back((unsigned char)P);
  2660. // Emit the finished record.
  2661. Stream.EmitRecord(Code, NameVals, AbbrevToUse);
  2662. NameVals.clear();
  2663. }
  2664. // Emit any GUID valueIDs created for indirect call edges into the
  2665. // module-level VST.
  2666. if (IsModuleLevel && hasVSTOffsetPlaceholder())
  2667. for (const auto &GI : valueIds()) {
  2668. NameVals.push_back(GI.second);
  2669. NameVals.push_back(GI.first);
  2670. Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals,
  2671. GUIDEntryAbbrev);
  2672. NameVals.clear();
  2673. }
  2674. Stream.ExitBlock();
  2675. }
  2676. /// Emit function names and summary offsets for the combined index
  2677. /// used by ThinLTO.
  2678. void IndexBitcodeWriter::writeCombinedValueSymbolTable() {
  2679. assert(hasVSTOffsetPlaceholder() && "Expected non-zero VSTOffsetPlaceholder");
  2680. // Get the offset of the VST we are writing, and backpatch it into
  2681. // the VST forward declaration record.
  2682. uint64_t VSTOffset = Stream.GetCurrentBitNo();
  2683. assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
  2684. Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32);
  2685. Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
  2686. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2687. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_COMBINED_ENTRY));
  2688. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
  2689. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // refguid
  2690. unsigned EntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  2691. SmallVector<uint64_t, 64> NameVals;
  2692. for (const auto &GVI : valueIds()) {
  2693. // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
  2694. NameVals.push_back(GVI.second);
  2695. NameVals.push_back(GVI.first);
  2696. // Emit the finished record.
  2697. Stream.EmitRecord(bitc::VST_CODE_COMBINED_ENTRY, NameVals, EntryAbbrev);
  2698. NameVals.clear();
  2699. }
  2700. Stream.ExitBlock();
  2701. }
  2702. void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
  2703. assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
  2704. unsigned Code;
  2705. if (isa<BasicBlock>(Order.V))
  2706. Code = bitc::USELIST_CODE_BB;
  2707. else
  2708. Code = bitc::USELIST_CODE_DEFAULT;
  2709. SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
  2710. Record.push_back(VE.getValueID(Order.V));
  2711. Stream.EmitRecord(Code, Record);
  2712. }
  2713. void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
  2714. assert(VE.shouldPreserveUseListOrder() &&
  2715. "Expected to be preserving use-list order");
  2716. auto hasMore = [&]() {
  2717. return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
  2718. };
  2719. if (!hasMore())
  2720. // Nothing to do.
  2721. return;
  2722. Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
  2723. while (hasMore()) {
  2724. writeUseList(std::move(VE.UseListOrders.back()));
  2725. VE.UseListOrders.pop_back();
  2726. }
  2727. Stream.ExitBlock();
  2728. }
  2729. /// Emit a function body to the module stream.
  2730. void ModuleBitcodeWriter::writeFunction(
  2731. const Function &F,
  2732. DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
  2733. // Save the bitcode index of the start of this function block for recording
  2734. // in the VST.
  2735. FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
  2736. Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
  2737. VE.incorporateFunction(F);
  2738. SmallVector<unsigned, 64> Vals;
  2739. // Emit the number of basic blocks, so the reader can create them ahead of
  2740. // time.
  2741. Vals.push_back(VE.getBasicBlocks().size());
  2742. Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
  2743. Vals.clear();
  2744. // If there are function-local constants, emit them now.
  2745. unsigned CstStart, CstEnd;
  2746. VE.getFunctionConstantRange(CstStart, CstEnd);
  2747. writeConstants(CstStart, CstEnd, false);
  2748. // If there is function-local metadata, emit it now.
  2749. writeFunctionMetadata(F);
  2750. // Keep a running idea of what the instruction ID is.
  2751. unsigned InstID = CstEnd;
  2752. bool NeedsMetadataAttachment = F.hasMetadata();
  2753. DILocation *LastDL = nullptr;
  2754. // Finally, emit all the instructions, in order.
  2755. for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
  2756. for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
  2757. I != E; ++I) {
  2758. writeInstruction(*I, InstID, Vals);
  2759. if (!I->getType()->isVoidTy())
  2760. ++InstID;
  2761. // If the instruction has metadata, write a metadata attachment later.
  2762. NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
  2763. // If the instruction has a debug location, emit it.
  2764. DILocation *DL = I->getDebugLoc();
  2765. if (!DL)
  2766. continue;
  2767. if (DL == LastDL) {
  2768. // Just repeat the same debug loc as last time.
  2769. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
  2770. continue;
  2771. }
  2772. Vals.push_back(DL->getLine());
  2773. Vals.push_back(DL->getColumn());
  2774. Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
  2775. Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
  2776. Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
  2777. Vals.clear();
  2778. LastDL = DL;
  2779. }
  2780. // Emit names for all the instructions etc.
  2781. if (auto *Symtab = F.getValueSymbolTable())
  2782. writeValueSymbolTable(*Symtab);
  2783. if (NeedsMetadataAttachment)
  2784. writeFunctionMetadataAttachment(F);
  2785. if (VE.shouldPreserveUseListOrder())
  2786. writeUseListBlock(&F);
  2787. VE.purgeFunction();
  2788. Stream.ExitBlock();
  2789. }
  2790. // Emit blockinfo, which defines the standard abbreviations etc.
  2791. void ModuleBitcodeWriter::writeBlockInfo() {
  2792. // We only want to emit block info records for blocks that have multiple
  2793. // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
  2794. // Other blocks can define their abbrevs inline.
  2795. Stream.EnterBlockInfoBlock();
  2796. { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
  2797. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2798. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
  2799. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  2800. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  2801. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  2802. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
  2803. VST_ENTRY_8_ABBREV)
  2804. llvm_unreachable("Unexpected abbrev ordering!");
  2805. }
  2806. { // 7-bit fixed width VST_CODE_ENTRY strings.
  2807. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2808. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  2809. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  2810. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  2811. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  2812. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
  2813. VST_ENTRY_7_ABBREV)
  2814. llvm_unreachable("Unexpected abbrev ordering!");
  2815. }
  2816. { // 6-bit char6 VST_CODE_ENTRY strings.
  2817. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2818. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
  2819. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  2820. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  2821. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  2822. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
  2823. VST_ENTRY_6_ABBREV)
  2824. llvm_unreachable("Unexpected abbrev ordering!");
  2825. }
  2826. { // 6-bit char6 VST_CODE_BBENTRY strings.
  2827. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2828. Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
  2829. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  2830. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  2831. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  2832. if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
  2833. VST_BBENTRY_6_ABBREV)
  2834. llvm_unreachable("Unexpected abbrev ordering!");
  2835. }
  2836. { // SETTYPE abbrev for CONSTANTS_BLOCK.
  2837. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2838. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
  2839. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
  2840. VE.computeBitsRequiredForTypeIndicies()));
  2841. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
  2842. CONSTANTS_SETTYPE_ABBREV)
  2843. llvm_unreachable("Unexpected abbrev ordering!");
  2844. }
  2845. { // INTEGER abbrev for CONSTANTS_BLOCK.
  2846. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2847. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
  2848. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  2849. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
  2850. CONSTANTS_INTEGER_ABBREV)
  2851. llvm_unreachable("Unexpected abbrev ordering!");
  2852. }
  2853. { // CE_CAST abbrev for CONSTANTS_BLOCK.
  2854. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2855. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
  2856. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
  2857. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
  2858. VE.computeBitsRequiredForTypeIndicies()));
  2859. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
  2860. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
  2861. CONSTANTS_CE_CAST_Abbrev)
  2862. llvm_unreachable("Unexpected abbrev ordering!");
  2863. }
  2864. { // NULL abbrev for CONSTANTS_BLOCK.
  2865. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2866. Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
  2867. if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
  2868. CONSTANTS_NULL_Abbrev)
  2869. llvm_unreachable("Unexpected abbrev ordering!");
  2870. }
  2871. // FIXME: This should only use space for first class types!
  2872. { // INST_LOAD abbrev for FUNCTION_BLOCK.
  2873. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2874. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
  2875. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
  2876. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
  2877. VE.computeBitsRequiredForTypeIndicies()));
  2878. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
  2879. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
  2880. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
  2881. FUNCTION_INST_LOAD_ABBREV)
  2882. llvm_unreachable("Unexpected abbrev ordering!");
  2883. }
  2884. { // INST_BINOP abbrev for FUNCTION_BLOCK.
  2885. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2886. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  2887. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  2888. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  2889. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  2890. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
  2891. FUNCTION_INST_BINOP_ABBREV)
  2892. llvm_unreachable("Unexpected abbrev ordering!");
  2893. }
  2894. { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
  2895. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2896. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
  2897. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
  2898. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
  2899. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  2900. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
  2901. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
  2902. FUNCTION_INST_BINOP_FLAGS_ABBREV)
  2903. llvm_unreachable("Unexpected abbrev ordering!");
  2904. }
  2905. { // INST_CAST abbrev for FUNCTION_BLOCK.
  2906. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2907. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
  2908. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
  2909. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
  2910. VE.computeBitsRequiredForTypeIndicies()));
  2911. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
  2912. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
  2913. FUNCTION_INST_CAST_ABBREV)
  2914. llvm_unreachable("Unexpected abbrev ordering!");
  2915. }
  2916. { // INST_RET abbrev for FUNCTION_BLOCK.
  2917. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2918. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  2919. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
  2920. FUNCTION_INST_RET_VOID_ABBREV)
  2921. llvm_unreachable("Unexpected abbrev ordering!");
  2922. }
  2923. { // INST_RET abbrev for FUNCTION_BLOCK.
  2924. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2925. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
  2926. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
  2927. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
  2928. FUNCTION_INST_RET_VAL_ABBREV)
  2929. llvm_unreachable("Unexpected abbrev ordering!");
  2930. }
  2931. { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
  2932. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2933. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
  2934. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
  2935. FUNCTION_INST_UNREACHABLE_ABBREV)
  2936. llvm_unreachable("Unexpected abbrev ordering!");
  2937. }
  2938. {
  2939. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2940. Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
  2941. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
  2942. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
  2943. Log2_32_Ceil(VE.getTypes().size() + 1)));
  2944. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  2945. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  2946. if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
  2947. FUNCTION_INST_GEP_ABBREV)
  2948. llvm_unreachable("Unexpected abbrev ordering!");
  2949. }
  2950. Stream.ExitBlock();
  2951. }
  2952. /// Write the module path strings, currently only used when generating
  2953. /// a combined index file.
  2954. void IndexBitcodeWriter::writeModStrings() {
  2955. Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
  2956. // TODO: See which abbrev sizes we actually need to emit
  2957. // 8-bit fixed-width MST_ENTRY strings.
  2958. auto Abbv = std::make_shared<BitCodeAbbrev>();
  2959. Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
  2960. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  2961. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  2962. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
  2963. unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
  2964. // 7-bit fixed width MST_ENTRY strings.
  2965. Abbv = std::make_shared<BitCodeAbbrev>();
  2966. Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
  2967. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  2968. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  2969. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
  2970. unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
  2971. // 6-bit char6 MST_ENTRY strings.
  2972. Abbv = std::make_shared<BitCodeAbbrev>();
  2973. Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
  2974. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  2975. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  2976. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  2977. unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
  2978. // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
  2979. Abbv = std::make_shared<BitCodeAbbrev>();
  2980. Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
  2981. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  2982. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  2983. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  2984. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  2985. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
  2986. unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
  2987. SmallVector<unsigned, 64> Vals;
  2988. for (const auto &MPSE : Index.modulePaths()) {
  2989. if (!doIncludeModule(MPSE.getKey()))
  2990. continue;
  2991. StringEncoding Bits =
  2992. getStringEncoding(MPSE.getKey().data(), MPSE.getKey().size());
  2993. unsigned AbbrevToUse = Abbrev8Bit;
  2994. if (Bits == SE_Char6)
  2995. AbbrevToUse = Abbrev6Bit;
  2996. else if (Bits == SE_Fixed7)
  2997. AbbrevToUse = Abbrev7Bit;
  2998. Vals.push_back(MPSE.getValue().first);
  2999. for (const auto P : MPSE.getKey())
  3000. Vals.push_back((unsigned char)P);
  3001. // Emit the finished record.
  3002. Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
  3003. Vals.clear();
  3004. // Emit an optional hash for the module now
  3005. auto &Hash = MPSE.getValue().second;
  3006. bool AllZero = true; // Detect if the hash is empty, and do not generate it
  3007. for (auto Val : Hash) {
  3008. if (Val)
  3009. AllZero = false;
  3010. Vals.push_back(Val);
  3011. }
  3012. if (!AllZero) {
  3013. // Emit the hash record.
  3014. Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
  3015. }
  3016. Vals.clear();
  3017. }
  3018. Stream.ExitBlock();
  3019. }
  3020. // Helper to emit a single function summary record.
  3021. void ModuleBitcodeWriter::writePerModuleFunctionSummaryRecord(
  3022. SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
  3023. unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
  3024. const Function &F) {
  3025. NameVals.push_back(ValueID);
  3026. FunctionSummary *FS = cast<FunctionSummary>(Summary);
  3027. if (!FS->type_tests().empty())
  3028. Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
  3029. NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
  3030. NameVals.push_back(FS->instCount());
  3031. NameVals.push_back(FS->refs().size());
  3032. for (auto &RI : FS->refs())
  3033. NameVals.push_back(VE.getValueID(RI.getValue()));
  3034. bool HasProfileData = F.getEntryCount().hasValue();
  3035. for (auto &ECI : FS->calls()) {
  3036. NameVals.push_back(getValueId(ECI.first));
  3037. if (HasProfileData)
  3038. NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
  3039. }
  3040. unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
  3041. unsigned Code =
  3042. (HasProfileData ? bitc::FS_PERMODULE_PROFILE : bitc::FS_PERMODULE);
  3043. // Emit the finished record.
  3044. Stream.EmitRecord(Code, NameVals, FSAbbrev);
  3045. NameVals.clear();
  3046. }
  3047. // Collect the global value references in the given variable's initializer,
  3048. // and emit them in a summary record.
  3049. void ModuleBitcodeWriter::writeModuleLevelReferences(
  3050. const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
  3051. unsigned FSModRefsAbbrev) {
  3052. auto Summaries =
  3053. Index->findGlobalValueSummaryList(GlobalValue::getGUID(V.getName()));
  3054. if (Summaries == Index->end()) {
  3055. // Only declarations should not have a summary (a declaration might however
  3056. // have a summary if the def was in module level asm).
  3057. assert(V.isDeclaration());
  3058. return;
  3059. }
  3060. auto *Summary = Summaries->second.front().get();
  3061. NameVals.push_back(VE.getValueID(&V));
  3062. GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
  3063. NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
  3064. unsigned SizeBeforeRefs = NameVals.size();
  3065. for (auto &RI : VS->refs())
  3066. NameVals.push_back(VE.getValueID(RI.getValue()));
  3067. // Sort the refs for determinism output, the vector returned by FS->refs() has
  3068. // been initialized from a DenseSet.
  3069. std::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end());
  3070. Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
  3071. FSModRefsAbbrev);
  3072. NameVals.clear();
  3073. }
  3074. // Current version for the summary.
  3075. // This is bumped whenever we introduce changes in the way some record are
  3076. // interpreted, like flags for instance.
  3077. static const uint64_t INDEX_VERSION = 2;
  3078. /// Emit the per-module summary section alongside the rest of
  3079. /// the module's bitcode.
  3080. void ModuleBitcodeWriter::writePerModuleGlobalValueSummary() {
  3081. Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 4);
  3082. Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
  3083. if (Index->begin() == Index->end()) {
  3084. Stream.ExitBlock();
  3085. return;
  3086. }
  3087. // Abbrev for FS_PERMODULE.
  3088. auto Abbv = std::make_shared<BitCodeAbbrev>();
  3089. Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
  3090. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
  3091. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
  3092. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
  3093. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
  3094. // numrefs x valueid, n x (valueid)
  3095. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  3096. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  3097. unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  3098. // Abbrev for FS_PERMODULE_PROFILE.
  3099. Abbv = std::make_shared<BitCodeAbbrev>();
  3100. Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
  3101. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
  3102. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
  3103. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
  3104. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
  3105. // numrefs x valueid, n x (valueid, hotness)
  3106. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  3107. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  3108. unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  3109. // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
  3110. Abbv = std::make_shared<BitCodeAbbrev>();
  3111. Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
  3112. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
  3113. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
  3114. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
  3115. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  3116. unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  3117. // Abbrev for FS_ALIAS.
  3118. Abbv = std::make_shared<BitCodeAbbrev>();
  3119. Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
  3120. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
  3121. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
  3122. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
  3123. unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  3124. SmallVector<uint64_t, 64> NameVals;
  3125. // Iterate over the list of functions instead of the Index to
  3126. // ensure the ordering is stable.
  3127. for (const Function &F : M) {
  3128. // Summary emission does not support anonymous functions, they have to
  3129. // renamed using the anonymous function renaming pass.
  3130. if (!F.hasName())
  3131. report_fatal_error("Unexpected anonymous function when writing summary");
  3132. auto Summaries =
  3133. Index->findGlobalValueSummaryList(GlobalValue::getGUID(F.getName()));
  3134. if (Summaries == Index->end()) {
  3135. // Only declarations should not have a summary (a declaration might
  3136. // however have a summary if the def was in module level asm).
  3137. assert(F.isDeclaration());
  3138. continue;
  3139. }
  3140. auto *Summary = Summaries->second.front().get();
  3141. writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
  3142. FSCallsAbbrev, FSCallsProfileAbbrev, F);
  3143. }
  3144. // Capture references from GlobalVariable initializers, which are outside
  3145. // of a function scope.
  3146. for (const GlobalVariable &G : M.globals())
  3147. writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev);
  3148. for (const GlobalAlias &A : M.aliases()) {
  3149. auto *Aliasee = A.getBaseObject();
  3150. if (!Aliasee->hasName())
  3151. // Nameless function don't have an entry in the summary, skip it.
  3152. continue;
  3153. auto AliasId = VE.getValueID(&A);
  3154. auto AliaseeId = VE.getValueID(Aliasee);
  3155. NameVals.push_back(AliasId);
  3156. auto *Summary = Index->getGlobalValueSummary(A);
  3157. AliasSummary *AS = cast<AliasSummary>(Summary);
  3158. NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
  3159. NameVals.push_back(AliaseeId);
  3160. Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
  3161. NameVals.clear();
  3162. }
  3163. Stream.ExitBlock();
  3164. }
  3165. /// Emit the combined summary section into the combined index file.
  3166. void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
  3167. Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
  3168. Stream.EmitRecord(bitc::FS_VERSION, ArrayRef<uint64_t>{INDEX_VERSION});
  3169. // Abbrev for FS_COMBINED.
  3170. auto Abbv = std::make_shared<BitCodeAbbrev>();
  3171. Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
  3172. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
  3173. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
  3174. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
  3175. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
  3176. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
  3177. // numrefs x valueid, n x (valueid)
  3178. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  3179. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  3180. unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  3181. // Abbrev for FS_COMBINED_PROFILE.
  3182. Abbv = std::make_shared<BitCodeAbbrev>();
  3183. Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
  3184. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
  3185. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
  3186. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
  3187. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount
  3188. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
  3189. // numrefs x valueid, n x (valueid, hotness)
  3190. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  3191. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  3192. unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  3193. // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
  3194. Abbv = std::make_shared<BitCodeAbbrev>();
  3195. Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
  3196. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
  3197. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
  3198. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
  3199. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids
  3200. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
  3201. unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  3202. // Abbrev for FS_COMBINED_ALIAS.
  3203. Abbv = std::make_shared<BitCodeAbbrev>();
  3204. Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
  3205. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
  3206. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid
  3207. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
  3208. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
  3209. unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  3210. // The aliases are emitted as a post-pass, and will point to the value
  3211. // id of the aliasee. Save them in a vector for post-processing.
  3212. SmallVector<AliasSummary *, 64> Aliases;
  3213. // Save the value id for each summary for alias emission.
  3214. DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
  3215. SmallVector<uint64_t, 64> NameVals;
  3216. // For local linkage, we also emit the original name separately
  3217. // immediately after the record.
  3218. auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
  3219. if (!GlobalValue::isLocalLinkage(S.linkage()))
  3220. return;
  3221. NameVals.push_back(S.getOriginalName());
  3222. Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
  3223. NameVals.clear();
  3224. };
  3225. for (const auto &I : *this) {
  3226. GlobalValueSummary *S = I.second;
  3227. assert(S);
  3228. assert(hasValueId(I.first));
  3229. unsigned ValueId = getValueId(I.first);
  3230. SummaryToValueIdMap[S] = ValueId;
  3231. if (auto *AS = dyn_cast<AliasSummary>(S)) {
  3232. // Will process aliases as a post-pass because the reader wants all
  3233. // global to be loaded first.
  3234. Aliases.push_back(AS);
  3235. continue;
  3236. }
  3237. if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
  3238. NameVals.push_back(ValueId);
  3239. NameVals.push_back(Index.getModuleId(VS->modulePath()));
  3240. NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
  3241. for (auto &RI : VS->refs()) {
  3242. NameVals.push_back(getValueId(RI.getGUID()));
  3243. }
  3244. // Emit the finished record.
  3245. Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
  3246. FSModRefsAbbrev);
  3247. NameVals.clear();
  3248. MaybeEmitOriginalName(*S);
  3249. continue;
  3250. }
  3251. auto *FS = cast<FunctionSummary>(S);
  3252. if (!FS->type_tests().empty())
  3253. Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
  3254. NameVals.push_back(ValueId);
  3255. NameVals.push_back(Index.getModuleId(FS->modulePath()));
  3256. NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
  3257. NameVals.push_back(FS->instCount());
  3258. NameVals.push_back(FS->refs().size());
  3259. for (auto &RI : FS->refs()) {
  3260. NameVals.push_back(getValueId(RI.getGUID()));
  3261. }
  3262. bool HasProfileData = false;
  3263. for (auto &EI : FS->calls()) {
  3264. HasProfileData |= EI.second.Hotness != CalleeInfo::HotnessType::Unknown;
  3265. if (HasProfileData)
  3266. break;
  3267. }
  3268. for (auto &EI : FS->calls()) {
  3269. // If this GUID doesn't have a value id, it doesn't have a function
  3270. // summary and we don't need to record any calls to it.
  3271. if (!hasValueId(EI.first.getGUID()))
  3272. continue;
  3273. NameVals.push_back(getValueId(EI.first.getGUID()));
  3274. if (HasProfileData)
  3275. NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
  3276. }
  3277. unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
  3278. unsigned Code =
  3279. (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
  3280. // Emit the finished record.
  3281. Stream.EmitRecord(Code, NameVals, FSAbbrev);
  3282. NameVals.clear();
  3283. MaybeEmitOriginalName(*S);
  3284. }
  3285. for (auto *AS : Aliases) {
  3286. auto AliasValueId = SummaryToValueIdMap[AS];
  3287. assert(AliasValueId);
  3288. NameVals.push_back(AliasValueId);
  3289. NameVals.push_back(Index.getModuleId(AS->modulePath()));
  3290. NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
  3291. auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
  3292. assert(AliaseeValueId);
  3293. NameVals.push_back(AliaseeValueId);
  3294. // Emit the finished record.
  3295. Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
  3296. NameVals.clear();
  3297. MaybeEmitOriginalName(*AS);
  3298. }
  3299. Stream.ExitBlock();
  3300. }
  3301. /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
  3302. /// current llvm version, and a record for the epoch number.
  3303. void writeIdentificationBlock(BitstreamWriter &Stream) {
  3304. Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
  3305. // Write the "user readable" string identifying the bitcode producer
  3306. auto Abbv = std::make_shared<BitCodeAbbrev>();
  3307. Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
  3308. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
  3309. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
  3310. auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  3311. writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
  3312. "LLVM" LLVM_VERSION_STRING, StringAbbrev);
  3313. // Write the epoch version
  3314. Abbv = std::make_shared<BitCodeAbbrev>();
  3315. Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
  3316. Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
  3317. auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
  3318. SmallVector<unsigned, 1> Vals = {bitc::BITCODE_CURRENT_EPOCH};
  3319. Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
  3320. Stream.ExitBlock();
  3321. }
  3322. void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
  3323. // Emit the module's hash.
  3324. // MODULE_CODE_HASH: [5*i32]
  3325. SHA1 Hasher;
  3326. Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
  3327. Buffer.size() - BlockStartPos));
  3328. StringRef Hash = Hasher.result();
  3329. uint32_t Vals[5];
  3330. for (int Pos = 0; Pos < 20; Pos += 4) {
  3331. Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
  3332. }
  3333. // Emit the finished record.
  3334. Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
  3335. }
  3336. void ModuleBitcodeWriter::write() {
  3337. writeIdentificationBlock(Stream);
  3338. Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
  3339. size_t BlockStartPos = Buffer.size();
  3340. SmallVector<unsigned, 1> Vals;
  3341. unsigned CurVersion = 1;
  3342. Vals.push_back(CurVersion);
  3343. Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
  3344. // Emit blockinfo, which defines the standard abbreviations etc.
  3345. writeBlockInfo();
  3346. // Emit information about attribute groups.
  3347. writeAttributeGroupTable();
  3348. // Emit information about parameter attributes.
  3349. writeAttributeTable();
  3350. // Emit information describing all of the types in the module.
  3351. writeTypeTable();
  3352. writeComdats();
  3353. // Emit top-level description of module, including target triple, inline asm,
  3354. // descriptors for global variables, and function prototype info.
  3355. writeModuleInfo();
  3356. // Emit constants.
  3357. writeModuleConstants();
  3358. // Emit metadata kind names.
  3359. writeModuleMetadataKinds();
  3360. // Emit metadata.
  3361. writeModuleMetadata();
  3362. // Emit module-level use-lists.
  3363. if (VE.shouldPreserveUseListOrder())
  3364. writeUseListBlock(nullptr);
  3365. writeOperandBundleTags();
  3366. // Emit function bodies.
  3367. DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
  3368. for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
  3369. if (!F->isDeclaration())
  3370. writeFunction(*F, FunctionToBitcodeIndex);
  3371. // Need to write after the above call to WriteFunction which populates
  3372. // the summary information in the index.
  3373. if (Index)
  3374. writePerModuleGlobalValueSummary();
  3375. writeValueSymbolTable(M.getValueSymbolTable(),
  3376. /* IsModuleLevel */ true, &FunctionToBitcodeIndex);
  3377. if (GenerateHash) {
  3378. writeModuleHash(BlockStartPos);
  3379. }
  3380. Stream.ExitBlock();
  3381. }
  3382. static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
  3383. uint32_t &Position) {
  3384. support::endian::write32le(&Buffer[Position], Value);
  3385. Position += 4;
  3386. }
  3387. /// If generating a bc file on darwin, we have to emit a
  3388. /// header and trailer to make it compatible with the system archiver. To do
  3389. /// this we emit the following header, and then emit a trailer that pads the
  3390. /// file out to be a multiple of 16 bytes.
  3391. ///
  3392. /// struct bc_header {
  3393. /// uint32_t Magic; // 0x0B17C0DE
  3394. /// uint32_t Version; // Version, currently always 0.
  3395. /// uint32_t BitcodeOffset; // Offset to traditional bitcode file.
  3396. /// uint32_t BitcodeSize; // Size of traditional bitcode file.
  3397. /// uint32_t CPUType; // CPU specifier.
  3398. /// ... potentially more later ...
  3399. /// };
  3400. static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
  3401. const Triple &TT) {
  3402. unsigned CPUType = ~0U;
  3403. // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
  3404. // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
  3405. // number from /usr/include/mach/machine.h. It is ok to reproduce the
  3406. // specific constants here because they are implicitly part of the Darwin ABI.
  3407. enum {
  3408. DARWIN_CPU_ARCH_ABI64 = 0x01000000,
  3409. DARWIN_CPU_TYPE_X86 = 7,
  3410. DARWIN_CPU_TYPE_ARM = 12,
  3411. DARWIN_CPU_TYPE_POWERPC = 18
  3412. };
  3413. Triple::ArchType Arch = TT.getArch();
  3414. if (Arch == Triple::x86_64)
  3415. CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
  3416. else if (Arch == Triple::x86)
  3417. CPUType = DARWIN_CPU_TYPE_X86;
  3418. else if (Arch == Triple::ppc)
  3419. CPUType = DARWIN_CPU_TYPE_POWERPC;
  3420. else if (Arch == Triple::ppc64)
  3421. CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
  3422. else if (Arch == Triple::arm || Arch == Triple::thumb)
  3423. CPUType = DARWIN_CPU_TYPE_ARM;
  3424. // Traditional Bitcode starts after header.
  3425. assert(Buffer.size() >= BWH_HeaderSize &&
  3426. "Expected header size to be reserved");
  3427. unsigned BCOffset = BWH_HeaderSize;
  3428. unsigned BCSize = Buffer.size() - BWH_HeaderSize;
  3429. // Write the magic and version.
  3430. unsigned Position = 0;
  3431. writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
  3432. writeInt32ToBuffer(0, Buffer, Position); // Version.
  3433. writeInt32ToBuffer(BCOffset, Buffer, Position);
  3434. writeInt32ToBuffer(BCSize, Buffer, Position);
  3435. writeInt32ToBuffer(CPUType, Buffer, Position);
  3436. // If the file is not a multiple of 16 bytes, insert dummy padding.
  3437. while (Buffer.size() & 15)
  3438. Buffer.push_back(0);
  3439. }
  3440. /// Helper to write the header common to all bitcode files.
  3441. static void writeBitcodeHeader(BitstreamWriter &Stream) {
  3442. // Emit the file header.
  3443. Stream.Emit((unsigned)'B', 8);
  3444. Stream.Emit((unsigned)'C', 8);
  3445. Stream.Emit(0x0, 4);
  3446. Stream.Emit(0xC, 4);
  3447. Stream.Emit(0xE, 4);
  3448. Stream.Emit(0xD, 4);
  3449. }
  3450. BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
  3451. : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
  3452. writeBitcodeHeader(*Stream);
  3453. }
  3454. BitcodeWriter::~BitcodeWriter() = default;
  3455. void BitcodeWriter::writeModule(const Module *M,
  3456. bool ShouldPreserveUseListOrder,
  3457. const ModuleSummaryIndex *Index,
  3458. bool GenerateHash) {
  3459. ModuleBitcodeWriter ModuleWriter(
  3460. M, Buffer, *Stream, ShouldPreserveUseListOrder, Index, GenerateHash);
  3461. ModuleWriter.write();
  3462. }
  3463. /// WriteBitcodeToFile - Write the specified module to the specified output
  3464. /// stream.
  3465. void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out,
  3466. bool ShouldPreserveUseListOrder,
  3467. const ModuleSummaryIndex *Index,
  3468. bool GenerateHash) {
  3469. SmallVector<char, 0> Buffer;
  3470. Buffer.reserve(256*1024);
  3471. // If this is darwin or another generic macho target, reserve space for the
  3472. // header.
  3473. Triple TT(M->getTargetTriple());
  3474. if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
  3475. Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
  3476. BitcodeWriter Writer(Buffer);
  3477. Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash);
  3478. if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
  3479. emitDarwinBCHeaderAndTrailer(Buffer, TT);
  3480. // Write the generated bitstream to "Out".
  3481. Out.write((char*)&Buffer.front(), Buffer.size());
  3482. }
  3483. void IndexBitcodeWriter::write() {
  3484. Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
  3485. SmallVector<unsigned, 1> Vals;
  3486. unsigned CurVersion = 1;
  3487. Vals.push_back(CurVersion);
  3488. Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
  3489. // If we have a VST, write the VSTOFFSET record placeholder.
  3490. writeValueSymbolTableForwardDecl();
  3491. // Write the module paths in the combined index.
  3492. writeModStrings();
  3493. // Write the summary combined index records.
  3494. writeCombinedGlobalValueSummary();
  3495. // Need a special VST writer for the combined index (we don't have a
  3496. // real VST and real values when this is invoked).
  3497. writeCombinedValueSymbolTable();
  3498. Stream.ExitBlock();
  3499. }
  3500. // Write the specified module summary index to the given raw output stream,
  3501. // where it will be written in a new bitcode block. This is used when
  3502. // writing the combined index file for ThinLTO. When writing a subset of the
  3503. // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
  3504. void llvm::WriteIndexToFile(
  3505. const ModuleSummaryIndex &Index, raw_ostream &Out,
  3506. const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
  3507. SmallVector<char, 0> Buffer;
  3508. Buffer.reserve(256 * 1024);
  3509. BitstreamWriter Stream(Buffer);
  3510. writeBitcodeHeader(Stream);
  3511. IndexBitcodeWriter IndexWriter(Stream, Index, ModuleToSummariesForIndex);
  3512. IndexWriter.write();
  3513. Out.write((char *)&Buffer.front(), Buffer.size());
  3514. }