123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373 |
- //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This is a utility pass used for testing the InstructionSimplify analysis.
- // The analysis is applied to every instruction, and if it simplifies then the
- // instruction is replaced by the simplification. If you are looking for a pass
- // that performs serious instruction folding, use the instcombine pass instead.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
- #include "llvm/ADT/SmallString.h"
- #include "llvm/ADT/StringMap.h"
- #include "llvm/ADT/Triple.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/DiagnosticInfo.h"
- #include "llvm/IR/Function.h"
- #include "llvm/IR/IRBuilder.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/LLVMContext.h"
- #include "llvm/IR/Module.h"
- #include "llvm/IR/PatternMatch.h"
- #include "llvm/Support/Allocator.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Analysis/TargetLibraryInfo.h"
- #include "llvm/Transforms/Utils/BuildLibCalls.h"
- using namespace llvm;
- using namespace PatternMatch;
- static cl::opt<bool>
- ColdErrorCalls("error-reporting-is-cold", cl::init(true), cl::Hidden,
- cl::desc("Treat error-reporting calls as cold"));
- static cl::opt<bool>
- EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
- cl::init(false),
- cl::desc("Enable unsafe double to float "
- "shrinking for math lib calls"));
- //===----------------------------------------------------------------------===//
- // Helper Functions
- //===----------------------------------------------------------------------===//
- static bool ignoreCallingConv(LibFunc::Func Func) {
- switch (Func) {
- case LibFunc::abs:
- case LibFunc::labs:
- case LibFunc::llabs:
- case LibFunc::strlen:
- return true;
- default:
- return false;
- }
- llvm_unreachable("All cases should be covered in the switch.");
- }
- /// isOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
- /// value is equal or not-equal to zero.
- static bool isOnlyUsedInZeroEqualityComparison(Value *V) {
- for (User *U : V->users()) {
- if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
- if (IC->isEquality())
- if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
- if (C->isNullValue())
- continue;
- // Unknown instruction.
- return false;
- }
- return true;
- }
- /// isOnlyUsedInEqualityComparison - Return true if it is only used in equality
- /// comparisons with With.
- static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
- for (User *U : V->users()) {
- if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
- if (IC->isEquality() && IC->getOperand(1) == With)
- continue;
- // Unknown instruction.
- return false;
- }
- return true;
- }
- static bool callHasFloatingPointArgument(const CallInst *CI) {
- for (CallInst::const_op_iterator it = CI->op_begin(), e = CI->op_end();
- it != e; ++it) {
- if ((*it)->getType()->isFloatingPointTy())
- return true;
- }
- return false;
- }
- /// \brief Check whether the overloaded unary floating point function
- /// corresponing to \a Ty is available.
- static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
- LibFunc::Func DoubleFn, LibFunc::Func FloatFn,
- LibFunc::Func LongDoubleFn) {
- switch (Ty->getTypeID()) {
- case Type::FloatTyID:
- return TLI->has(FloatFn);
- case Type::DoubleTyID:
- return TLI->has(DoubleFn);
- default:
- return TLI->has(LongDoubleFn);
- }
- }
- /// \brief Returns whether \p F matches the signature expected for the
- /// string/memory copying library function \p Func.
- /// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset.
- /// Their fortified (_chk) counterparts are also accepted.
- static bool checkStringCopyLibFuncSignature(Function *F, LibFunc::Func Func) {
- const DataLayout &DL = F->getParent()->getDataLayout();
- FunctionType *FT = F->getFunctionType();
- LLVMContext &Context = F->getContext();
- Type *PCharTy = Type::getInt8PtrTy(Context);
- Type *SizeTTy = DL.getIntPtrType(Context);
- unsigned NumParams = FT->getNumParams();
- // All string libfuncs return the same type as the first parameter.
- if (FT->getReturnType() != FT->getParamType(0))
- return false;
- switch (Func) {
- default:
- llvm_unreachable("Can't check signature for non-string-copy libfunc.");
- case LibFunc::stpncpy_chk:
- case LibFunc::strncpy_chk:
- --NumParams; // fallthrough
- case LibFunc::stpncpy:
- case LibFunc::strncpy: {
- if (NumParams != 3 || FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != PCharTy || !FT->getParamType(2)->isIntegerTy())
- return false;
- break;
- }
- case LibFunc::strcpy_chk:
- case LibFunc::stpcpy_chk:
- --NumParams; // fallthrough
- case LibFunc::stpcpy:
- case LibFunc::strcpy: {
- if (NumParams != 2 || FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != PCharTy)
- return false;
- break;
- }
- case LibFunc::memmove_chk:
- case LibFunc::memcpy_chk:
- --NumParams; // fallthrough
- case LibFunc::memmove:
- case LibFunc::memcpy: {
- if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() || FT->getParamType(2) != SizeTTy)
- return false;
- break;
- }
- case LibFunc::memset_chk:
- --NumParams; // fallthrough
- case LibFunc::memset: {
- if (NumParams != 3 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isIntegerTy() || FT->getParamType(2) != SizeTTy)
- return false;
- break;
- }
- }
- // If this is a fortified libcall, the last parameter is a size_t.
- if (NumParams == FT->getNumParams() - 1)
- return FT->getParamType(FT->getNumParams() - 1) == SizeTTy;
- return true;
- }
- //===----------------------------------------------------------------------===//
- // String and Memory Library Call Optimizations
- //===----------------------------------------------------------------------===//
- Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- // Verify the "strcat" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2||
- FT->getReturnType() != B.getInt8PtrTy() ||
- FT->getParamType(0) != FT->getReturnType() ||
- FT->getParamType(1) != FT->getReturnType())
- return nullptr;
- // Extract some information from the instruction
- Value *Dst = CI->getArgOperand(0);
- Value *Src = CI->getArgOperand(1);
- // See if we can get the length of the input string.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0)
- return nullptr;
- --Len; // Unbias length.
- // Handle the simple, do-nothing case: strcat(x, "") -> x
- if (Len == 0)
- return Dst;
- return emitStrLenMemCpy(Src, Dst, Len, B);
- }
- Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
- IRBuilder<> &B) {
- // We need to find the end of the destination string. That's where the
- // memory is to be moved to. We just generate a call to strlen.
- Value *DstLen = EmitStrLen(Dst, B, DL, TLI);
- if (!DstLen)
- return nullptr;
- // Now that we have the destination's length, we must index into the
- // destination's pointer to get the actual memcpy destination (end of
- // the string .. we're concatenating).
- Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
- // We have enough information to now generate the memcpy call to do the
- // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
- B.CreateMemCpy(CpyDst, Src,
- ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1),
- 1);
- return Dst;
- }
- Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- // Verify the "strncat" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 || FT->getReturnType() != B.getInt8PtrTy() ||
- FT->getParamType(0) != FT->getReturnType() ||
- FT->getParamType(1) != FT->getReturnType() ||
- !FT->getParamType(2)->isIntegerTy())
- return nullptr;
- // Extract some information from the instruction
- Value *Dst = CI->getArgOperand(0);
- Value *Src = CI->getArgOperand(1);
- uint64_t Len;
- // We don't do anything if length is not constant
- if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
- Len = LengthArg->getZExtValue();
- else
- return nullptr;
- // See if we can get the length of the input string.
- uint64_t SrcLen = GetStringLength(Src);
- if (SrcLen == 0)
- return nullptr;
- --SrcLen; // Unbias length.
- // Handle the simple, do-nothing cases:
- // strncat(x, "", c) -> x
- // strncat(x, c, 0) -> x
- if (SrcLen == 0 || Len == 0)
- return Dst;
- // We don't optimize this case
- if (Len < SrcLen)
- return nullptr;
- // strncat(x, s, c) -> strcat(x, s)
- // s is constant so the strcat can be optimized further
- return emitStrLenMemCpy(Src, Dst, SrcLen, B);
- }
- Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- // Verify the "strchr" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
- FT->getParamType(0) != FT->getReturnType() ||
- !FT->getParamType(1)->isIntegerTy(32))
- return nullptr;
- Value *SrcStr = CI->getArgOperand(0);
- // If the second operand is non-constant, see if we can compute the length
- // of the input string and turn this into memchr.
- ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- if (!CharC) {
- uint64_t Len = GetStringLength(SrcStr);
- if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
- return nullptr;
- return EmitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
- B, DL, TLI);
- }
- // Otherwise, the character is a constant, see if the first argument is
- // a string literal. If so, we can constant fold.
- StringRef Str;
- if (!getConstantStringInfo(SrcStr, Str)) {
- if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
- return B.CreateGEP(B.getInt8Ty(), SrcStr, EmitStrLen(SrcStr, B, DL, TLI), "strchr");
- return nullptr;
- }
- // Compute the offset, make sure to handle the case when we're searching for
- // zero (a weird way to spell strlen).
- size_t I = (0xFF & CharC->getSExtValue()) == 0
- ? Str.size()
- : Str.find(CharC->getSExtValue());
- if (I == StringRef::npos) // Didn't find the char. strchr returns null.
- return Constant::getNullValue(CI->getType());
- // strchr(s+n,c) -> gep(s+n+i,c)
- return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
- }
- Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- // Verify the "strrchr" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || FT->getReturnType() != B.getInt8PtrTy() ||
- FT->getParamType(0) != FT->getReturnType() ||
- !FT->getParamType(1)->isIntegerTy(32))
- return nullptr;
- Value *SrcStr = CI->getArgOperand(0);
- ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- // Cannot fold anything if we're not looking for a constant.
- if (!CharC)
- return nullptr;
- StringRef Str;
- if (!getConstantStringInfo(SrcStr, Str)) {
- // strrchr(s, 0) -> strchr(s, 0)
- if (CharC->isZero())
- return EmitStrChr(SrcStr, '\0', B, TLI);
- return nullptr;
- }
- // Compute the offset.
- size_t I = (0xFF & CharC->getSExtValue()) == 0
- ? Str.size()
- : Str.rfind(CharC->getSExtValue());
- if (I == StringRef::npos) // Didn't find the char. Return null.
- return Constant::getNullValue(CI->getType());
- // strrchr(s+n,c) -> gep(s+n+i,c)
- return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
- }
- Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- // Verify the "strcmp" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || !FT->getReturnType()->isIntegerTy(32) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != B.getInt8PtrTy())
- return nullptr;
- Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
- if (Str1P == Str2P) // strcmp(x,x) -> 0
- return ConstantInt::get(CI->getType(), 0);
- StringRef Str1, Str2;
- bool HasStr1 = getConstantStringInfo(Str1P, Str1);
- bool HasStr2 = getConstantStringInfo(Str2P, Str2);
- // strcmp(x, y) -> cnst (if both x and y are constant strings)
- if (HasStr1 && HasStr2)
- return ConstantInt::get(CI->getType(), Str1.compare(Str2));
- if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
- return B.CreateNeg(
- B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
- if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
- return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
- // strcmp(P, "x") -> memcmp(P, "x", 2)
- uint64_t Len1 = GetStringLength(Str1P);
- uint64_t Len2 = GetStringLength(Str2P);
- if (Len1 && Len2) {
- return EmitMemCmp(Str1P, Str2P,
- ConstantInt::get(DL.getIntPtrType(CI->getContext()),
- std::min(Len1, Len2)),
- B, DL, TLI);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- // Verify the "strncmp" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 || !FT->getReturnType()->isIntegerTy(32) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- FT->getParamType(0) != B.getInt8PtrTy() ||
- !FT->getParamType(2)->isIntegerTy())
- return nullptr;
- Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
- if (Str1P == Str2P) // strncmp(x,x,n) -> 0
- return ConstantInt::get(CI->getType(), 0);
- // Get the length argument if it is constant.
- uint64_t Length;
- if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
- Length = LengthArg->getZExtValue();
- else
- return nullptr;
- if (Length == 0) // strncmp(x,y,0) -> 0
- return ConstantInt::get(CI->getType(), 0);
- if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
- return EmitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);
- StringRef Str1, Str2;
- bool HasStr1 = getConstantStringInfo(Str1P, Str1);
- bool HasStr2 = getConstantStringInfo(Str2P, Str2);
- // strncmp(x, y) -> cnst (if both x and y are constant strings)
- if (HasStr1 && HasStr2) {
- StringRef SubStr1 = Str1.substr(0, Length);
- StringRef SubStr2 = Str2.substr(0, Length);
- return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
- }
- if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
- return B.CreateNeg(
- B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));
- if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
- return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strcpy))
- return nullptr;
- Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
- if (Dst == Src) // strcpy(x,x) -> x
- return Src;
- // See if we can get the length of the input string.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0)
- return nullptr;
- // We have enough information to now generate the memcpy call to do the
- // copy for us. Make a memcpy to copy the nul byte with align = 1.
- B.CreateMemCpy(Dst, Src,
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 1);
- return Dst;
- }
- Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- // Verify the "stpcpy" function prototype.
- FunctionType *FT = Callee->getFunctionType();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::stpcpy))
- return nullptr;
- Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
- if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
- Value *StrLen = EmitStrLen(Src, B, DL, TLI);
- return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
- }
- // See if we can get the length of the input string.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0)
- return nullptr;
- Type *PT = FT->getParamType(0);
- Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
- Value *DstEnd =
- B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
- // We have enough information to now generate the memcpy call to do the
- // copy for us. Make a memcpy to copy the nul byte with align = 1.
- B.CreateMemCpy(Dst, Src, LenV, 1);
- return DstEnd;
- }
- Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::strncpy))
- return nullptr;
- Value *Dst = CI->getArgOperand(0);
- Value *Src = CI->getArgOperand(1);
- Value *LenOp = CI->getArgOperand(2);
- // See if we can get the length of the input string.
- uint64_t SrcLen = GetStringLength(Src);
- if (SrcLen == 0)
- return nullptr;
- --SrcLen;
- if (SrcLen == 0) {
- // strncpy(x, "", y) -> memset(x, '\0', y, 1)
- B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
- return Dst;
- }
- uint64_t Len;
- if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
- Len = LengthArg->getZExtValue();
- else
- return nullptr;
- if (Len == 0)
- return Dst; // strncpy(x, y, 0) -> x
- // Let strncpy handle the zero padding
- if (Len > SrcLen + 1)
- return nullptr;
- Type *PT = FT->getParamType(0);
- // strncpy(x, s, c) -> memcpy(x, s, c, 1) [s and c are constant]
- B.CreateMemCpy(Dst, Src, ConstantInt::get(DL.getIntPtrType(PT), Len), 1);
- return Dst;
- }
- Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 1 || FT->getParamType(0) != B.getInt8PtrTy() ||
- !FT->getReturnType()->isIntegerTy())
- return nullptr;
- Value *Src = CI->getArgOperand(0);
- // Constant folding: strlen("xyz") -> 3
- if (uint64_t Len = GetStringLength(Src))
- return ConstantInt::get(CI->getType(), Len - 1);
- // strlen(x?"foo":"bars") --> x ? 3 : 4
- if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
- uint64_t LenTrue = GetStringLength(SI->getTrueValue());
- uint64_t LenFalse = GetStringLength(SI->getFalseValue());
- if (LenTrue && LenFalse) {
- Function *Caller = CI->getParent()->getParent();
- emitOptimizationRemark(CI->getContext(), "simplify-libcalls", *Caller,
- SI->getDebugLoc(),
- "folded strlen(select) to select of constants");
- return B.CreateSelect(SI->getCondition(),
- ConstantInt::get(CI->getType(), LenTrue - 1),
- ConstantInt::get(CI->getType(), LenFalse - 1));
- }
- }
- // strlen(x) != 0 --> *x != 0
- // strlen(x) == 0 --> *x == 0
- if (isOnlyUsedInZeroEqualityComparison(CI))
- return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
- FT->getParamType(1) != FT->getParamType(0) ||
- FT->getReturnType() != FT->getParamType(0))
- return nullptr;
- StringRef S1, S2;
- bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
- bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
- // strpbrk(s, "") -> nullptr
- // strpbrk("", s) -> nullptr
- if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
- return Constant::getNullValue(CI->getType());
- // Constant folding.
- if (HasS1 && HasS2) {
- size_t I = S1.find_first_of(S2);
- if (I == StringRef::npos) // No match.
- return Constant::getNullValue(CI->getType());
- return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), "strpbrk");
- }
- // strpbrk(s, "a") -> strchr(s, 'a')
- if (HasS2 && S2.size() == 1)
- return EmitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if ((FT->getNumParams() != 2 && FT->getNumParams() != 3) ||
- !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy())
- return nullptr;
- Value *EndPtr = CI->getArgOperand(1);
- if (isa<ConstantPointerNull>(EndPtr)) {
- // With a null EndPtr, this function won't capture the main argument.
- // It would be readonly too, except that it still may write to errno.
- CI->addAttribute(1, Attribute::NoCapture);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
- FT->getParamType(1) != FT->getParamType(0) ||
- !FT->getReturnType()->isIntegerTy())
- return nullptr;
- StringRef S1, S2;
- bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
- bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
- // strspn(s, "") -> 0
- // strspn("", s) -> 0
- if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
- return Constant::getNullValue(CI->getType());
- // Constant folding.
- if (HasS1 && HasS2) {
- size_t Pos = S1.find_first_not_of(S2);
- if (Pos == StringRef::npos)
- Pos = S1.size();
- return ConstantInt::get(CI->getType(), Pos);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || FT->getParamType(0) != B.getInt8PtrTy() ||
- FT->getParamType(1) != FT->getParamType(0) ||
- !FT->getReturnType()->isIntegerTy())
- return nullptr;
- StringRef S1, S2;
- bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
- bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
- // strcspn("", s) -> 0
- if (HasS1 && S1.empty())
- return Constant::getNullValue(CI->getType());
- // Constant folding.
- if (HasS1 && HasS2) {
- size_t Pos = S1.find_first_of(S2);
- if (Pos == StringRef::npos)
- Pos = S1.size();
- return ConstantInt::get(CI->getType(), Pos);
- }
- // strcspn(s, "") -> strlen(s)
- if (HasS2 && S2.empty())
- return EmitStrLen(CI->getArgOperand(0), B, DL, TLI);
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !FT->getReturnType()->isPointerTy())
- return nullptr;
- // fold strstr(x, x) -> x.
- if (CI->getArgOperand(0) == CI->getArgOperand(1))
- return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
- // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
- if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
- Value *StrLen = EmitStrLen(CI->getArgOperand(1), B, DL, TLI);
- if (!StrLen)
- return nullptr;
- Value *StrNCmp = EmitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
- StrLen, B, DL, TLI);
- if (!StrNCmp)
- return nullptr;
- for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
- ICmpInst *Old = cast<ICmpInst>(*UI++);
- Value *Cmp =
- B.CreateICmp(Old->getPredicate(), StrNCmp,
- ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
- replaceAllUsesWith(Old, Cmp);
- }
- return CI;
- }
- // See if either input string is a constant string.
- StringRef SearchStr, ToFindStr;
- bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
- bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
- // fold strstr(x, "") -> x.
- if (HasStr2 && ToFindStr.empty())
- return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
- // If both strings are known, constant fold it.
- if (HasStr1 && HasStr2) {
- size_t Offset = SearchStr.find(ToFindStr);
- if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
- return Constant::getNullValue(CI->getType());
- // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
- Value *Result = CastToCStr(CI->getArgOperand(0), B);
- Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
- return B.CreateBitCast(Result, CI->getType());
- }
- // fold strstr(x, "y") -> strchr(x, 'y').
- if (HasStr2 && ToFindStr.size() == 1) {
- Value *StrChr = EmitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
- return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isIntegerTy(32) ||
- !FT->getParamType(2)->isIntegerTy() ||
- !FT->getReturnType()->isPointerTy())
- return nullptr;
- Value *SrcStr = CI->getArgOperand(0);
- ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
- // memchr(x, y, 0) -> null
- if (LenC && LenC->isNullValue())
- return Constant::getNullValue(CI->getType());
- // From now on we need at least constant length and string.
- StringRef Str;
- if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
- return nullptr;
- // Truncate the string to LenC. If Str is smaller than LenC we will still only
- // scan the string, as reading past the end of it is undefined and we can just
- // return null if we don't find the char.
- Str = Str.substr(0, LenC->getZExtValue());
- // If the char is variable but the input str and length are not we can turn
- // this memchr call into a simple bit field test. Of course this only works
- // when the return value is only checked against null.
- //
- // It would be really nice to reuse switch lowering here but we can't change
- // the CFG at this point.
- //
- // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
- // after bounds check.
- if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
- unsigned char Max =
- *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
- reinterpret_cast<const unsigned char *>(Str.end()));
- // Make sure the bit field we're about to create fits in a register on the
- // target.
- // FIXME: On a 64 bit architecture this prevents us from using the
- // interesting range of alpha ascii chars. We could do better by emitting
- // two bitfields or shifting the range by 64 if no lower chars are used.
- if (!DL.fitsInLegalInteger(Max + 1))
- return nullptr;
- // For the bit field use a power-of-2 type with at least 8 bits to avoid
- // creating unnecessary illegal types.
- unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
- // Now build the bit field.
- APInt Bitfield(Width, 0);
- for (char C : Str)
- Bitfield.setBit((unsigned char)C);
- Value *BitfieldC = B.getInt(Bitfield);
- // First check that the bit field access is within bounds.
- Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
- Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
- "memchr.bounds");
- // Create code that checks if the given bit is set in the field.
- Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
- Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
- // Finally merge both checks and cast to pointer type. The inttoptr
- // implicitly zexts the i1 to intptr type.
- return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
- }
- // Check if all arguments are constants. If so, we can constant fold.
- if (!CharC)
- return nullptr;
- // Compute the offset.
- size_t I = Str.find(CharC->getSExtValue() & 0xFF);
- if (I == StringRef::npos) // Didn't find the char. memchr returns null.
- return Constant::getNullValue(CI->getType());
- // memchr(s+n,c,l) -> gep(s+n+i,c)
- return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
- }
- Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 3 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !FT->getReturnType()->isIntegerTy(32))
- return nullptr;
- Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
- if (LHS == RHS) // memcmp(s,s,x) -> 0
- return Constant::getNullValue(CI->getType());
- // Make sure we have a constant length.
- ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
- if (!LenC)
- return nullptr;
- uint64_t Len = LenC->getZExtValue();
- if (Len == 0) // memcmp(s1,s2,0) -> 0
- return Constant::getNullValue(CI->getType());
- // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
- if (Len == 1) {
- Value *LHSV = B.CreateZExt(B.CreateLoad(CastToCStr(LHS, B), "lhsc"),
- CI->getType(), "lhsv");
- Value *RHSV = B.CreateZExt(B.CreateLoad(CastToCStr(RHS, B), "rhsc"),
- CI->getType(), "rhsv");
- return B.CreateSub(LHSV, RHSV, "chardiff");
- }
- // Constant folding: memcmp(x, y, l) -> cnst (all arguments are constant)
- StringRef LHSStr, RHSStr;
- if (getConstantStringInfo(LHS, LHSStr) &&
- getConstantStringInfo(RHS, RHSStr)) {
- // Make sure we're not reading out-of-bounds memory.
- if (Len > LHSStr.size() || Len > RHSStr.size())
- return nullptr;
- // Fold the memcmp and normalize the result. This way we get consistent
- // results across multiple platforms.
- uint64_t Ret = 0;
- int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
- if (Cmp < 0)
- Ret = -1;
- else if (Cmp > 0)
- Ret = 1;
- return ConstantInt::get(CI->getType(), Ret);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy))
- return nullptr;
- // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
- Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove))
- return nullptr;
- // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
- B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
- Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset))
- return nullptr;
- // memset(p, v, n) -> llvm.memset(p, v, n, 1)
- Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
- B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
- //===----------------------------------------------------------------------===//
- // Math Library Optimizations
- //===----------------------------------------------------------------------===//
- /// Return a variant of Val with float type.
- /// Currently this works in two cases: If Val is an FPExtension of a float
- /// value to something bigger, simply return the operand.
- /// If Val is a ConstantFP but can be converted to a float ConstantFP without
- /// loss of precision do so.
- static Value *valueHasFloatPrecision(Value *Val) {
- if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
- Value *Op = Cast->getOperand(0);
- if (Op->getType()->isFloatTy())
- return Op;
- }
- if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
- APFloat F = Const->getValueAPF();
- bool losesInfo;
- (void)F.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
- &losesInfo);
- if (!losesInfo)
- return ConstantFP::get(Const->getContext(), F);
- }
- return nullptr;
- }
- //===----------------------------------------------------------------------===//
- // Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
- Value *LibCallSimplifier::optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
- bool CheckRetType) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isDoubleTy() ||
- !FT->getParamType(0)->isDoubleTy())
- return nullptr;
- if (CheckRetType) {
- // Check if all the uses for function like 'sin' are converted to float.
- for (User *U : CI->users()) {
- FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
- if (!Cast || !Cast->getType()->isFloatTy())
- return nullptr;
- }
- }
- // If this is something like 'floor((double)floatval)', convert to floorf.
- Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
- if (V == nullptr)
- return nullptr;
- // floor((double)floatval) -> (double)floorf(floatval)
- if (Callee->isIntrinsic()) {
- Module *M = CI->getParent()->getParent()->getParent();
- Intrinsic::ID IID = (Intrinsic::ID) Callee->getIntrinsicID();
- Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
- V = B.CreateCall(F, V);
- } else {
- // The call is a library call rather than an intrinsic.
- V = EmitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
- }
- return B.CreateFPExt(V, B.getDoubleTy());
- }
- // Double -> Float Shrinking Optimizations for Binary Functions like 'fmin/fmax'
- Value *LibCallSimplifier::optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 2 arguments of the same FP type, which match the
- // result type.
- if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- !FT->getParamType(0)->isFloatingPointTy())
- return nullptr;
- // If this is something like 'fmin((double)floatval1, (double)floatval2)',
- // or fmin(1.0, (double)floatval), then we convert it to fminf.
- Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
- if (V1 == nullptr)
- return nullptr;
- Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
- if (V2 == nullptr)
- return nullptr;
- // fmin((double)floatval1, (double)floatval2)
- // -> (double)fminf(floatval1, floatval2)
- // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
- Value *V = EmitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
- Callee->getAttributes());
- return B.CreateFPExt(V, B.getDoubleTy());
- }
- Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Ret = nullptr;
- if (UnsafeFPShrink && Callee->getName() == "cos" && TLI->has(LibFunc::cosf)) {
- Ret = optimizeUnaryDoubleFP(CI, B, true);
- }
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 1 argument of FP type, which matches the
- // result type.
- if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isFloatingPointTy())
- return Ret;
- // cos(-x) -> cos(x)
- Value *Op1 = CI->getArgOperand(0);
- if (BinaryOperator::isFNeg(Op1)) {
- BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
- return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
- }
- return Ret;
- }
- Value *LibCallSimplifier::optimizePow(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Ret = nullptr;
- if (UnsafeFPShrink && Callee->getName() == "pow" && TLI->has(LibFunc::powf)) {
- Ret = optimizeUnaryDoubleFP(CI, B, true);
- }
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 2 arguments of the same FP type, which match the
- // result type.
- if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
- FT->getParamType(0) != FT->getParamType(1) ||
- !FT->getParamType(0)->isFloatingPointTy())
- return Ret;
- Value *Op1 = CI->getArgOperand(0), *Op2 = CI->getArgOperand(1);
- if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
- // pow(1.0, x) -> 1.0
- if (Op1C->isExactlyValue(1.0))
- return Op1C;
- // pow(2.0, x) -> exp2(x)
- if (Op1C->isExactlyValue(2.0) &&
- hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp2, LibFunc::exp2f,
- LibFunc::exp2l))
- return EmitUnaryFloatFnCall(Op2, "exp2", B, Callee->getAttributes());
- // pow(10.0, x) -> exp10(x)
- if (Op1C->isExactlyValue(10.0) &&
- hasUnaryFloatFn(TLI, Op1->getType(), LibFunc::exp10, LibFunc::exp10f,
- LibFunc::exp10l))
- return EmitUnaryFloatFnCall(Op2, TLI->getName(LibFunc::exp10), B,
- Callee->getAttributes());
- }
- ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
- if (!Op2C)
- return Ret;
- if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
- return ConstantFP::get(CI->getType(), 1.0);
- if (Op2C->isExactlyValue(0.5) &&
- hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::sqrt, LibFunc::sqrtf,
- LibFunc::sqrtl) &&
- hasUnaryFloatFn(TLI, Op2->getType(), LibFunc::fabs, LibFunc::fabsf,
- LibFunc::fabsl)) {
- // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
- // This is faster than calling pow, and still handles negative zero
- // and negative infinity correctly.
- // TODO: In fast-math mode, this could be just sqrt(x).
- // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
- Value *Inf = ConstantFP::getInfinity(CI->getType());
- Value *NegInf = ConstantFP::getInfinity(CI->getType(), true);
- Value *Sqrt = EmitUnaryFloatFnCall(Op1, "sqrt", B, Callee->getAttributes());
- Value *FAbs =
- EmitUnaryFloatFnCall(Sqrt, "fabs", B, Callee->getAttributes());
- Value *FCmp = B.CreateFCmpOEQ(Op1, NegInf);
- Value *Sel = B.CreateSelect(FCmp, Inf, FAbs);
- return Sel;
- }
- if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
- return Op1;
- if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
- return B.CreateFMul(Op1, Op1, "pow2");
- if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
- return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Function *Caller = CI->getParent()->getParent();
- Value *Ret = nullptr;
- if (UnsafeFPShrink && Callee->getName() == "exp2" &&
- TLI->has(LibFunc::exp2f)) {
- Ret = optimizeUnaryDoubleFP(CI, B, true);
- }
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 1 argument of FP type, which matches the
- // result type.
- if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isFloatingPointTy())
- return Ret;
- Value *Op = CI->getArgOperand(0);
- // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
- // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
- LibFunc::Func LdExp = LibFunc::ldexpl;
- if (Op->getType()->isFloatTy())
- LdExp = LibFunc::ldexpf;
- else if (Op->getType()->isDoubleTy())
- LdExp = LibFunc::ldexp;
- if (TLI->has(LdExp)) {
- Value *LdExpArg = nullptr;
- if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
- if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
- LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
- } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
- if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
- LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
- }
- if (LdExpArg) {
- Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
- if (!Op->getType()->isFloatTy())
- One = ConstantExpr::getFPExtend(One, Op->getType());
- Module *M = Caller->getParent();
- Value *Callee =
- M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
- Op->getType(), B.getInt32Ty(), nullptr);
- CallInst *CI = B.CreateCall(Callee, {One, LdExpArg});
- if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
- CI->setCallingConv(F->getCallingConv());
- return CI;
- }
- }
- return Ret;
- }
- Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- Value *Ret = nullptr;
- if (Callee->getName() == "fabs" && TLI->has(LibFunc::fabsf)) {
- Ret = optimizeUnaryDoubleFP(CI, B, false);
- }
- FunctionType *FT = Callee->getFunctionType();
- // Make sure this has 1 argument of FP type which matches the result type.
- if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isFloatingPointTy())
- return Ret;
- Value *Op = CI->getArgOperand(0);
- if (Instruction *I = dyn_cast<Instruction>(Op)) {
- // Fold fabs(x * x) -> x * x; any squared FP value must already be positive.
- if (I->getOpcode() == Instruction::FMul)
- if (I->getOperand(0) == I->getOperand(1))
- return Op;
- }
- return Ret;
- }
- Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
-
- Value *Ret = nullptr;
- if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
- Callee->getIntrinsicID() == Intrinsic::sqrt))
- Ret = optimizeUnaryDoubleFP(CI, B, true);
- // FIXME: For finer-grain optimization, we need intrinsics to have the same
- // fast-math flag decorations that are applied to FP instructions. For now,
- // we have to rely on the function-level unsafe-fp-math attribute to do this
- // optimization because there's no other way to express that the sqrt can be
- // reassociated.
- Function *F = CI->getParent()->getParent();
- if (F->hasFnAttribute("unsafe-fp-math")) {
- // Check for unsafe-fp-math = true.
- Attribute Attr = F->getFnAttribute("unsafe-fp-math");
- if (Attr.getValueAsString() != "true")
- return Ret;
- }
- Value *Op = CI->getArgOperand(0);
- if (Instruction *I = dyn_cast<Instruction>(Op)) {
- if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) {
- // We're looking for a repeated factor in a multiplication tree,
- // so we can do this fold: sqrt(x * x) -> fabs(x);
- // or this fold: sqrt(x * x * y) -> fabs(x) * sqrt(y).
- Value *Op0 = I->getOperand(0);
- Value *Op1 = I->getOperand(1);
- Value *RepeatOp = nullptr;
- Value *OtherOp = nullptr;
- if (Op0 == Op1) {
- // Simple match: the operands of the multiply are identical.
- RepeatOp = Op0;
- } else {
- // Look for a more complicated pattern: one of the operands is itself
- // a multiply, so search for a common factor in that multiply.
- // Note: We don't bother looking any deeper than this first level or for
- // variations of this pattern because instcombine's visitFMUL and/or the
- // reassociation pass should give us this form.
- Value *OtherMul0, *OtherMul1;
- if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
- // Pattern: sqrt((x * y) * z)
- if (OtherMul0 == OtherMul1) {
- // Matched: sqrt((x * x) * z)
- RepeatOp = OtherMul0;
- OtherOp = Op1;
- }
- }
- }
- if (RepeatOp) {
- // Fast math flags for any created instructions should match the sqrt
- // and multiply.
- // FIXME: We're not checking the sqrt because it doesn't have
- // fast-math-flags (see earlier comment).
- IRBuilder<true, ConstantFolder,
- IRBuilderDefaultInserter<true> >::FastMathFlagGuard Guard(B);
- B.SetFastMathFlags(I->getFastMathFlags());
- // If we found a repeated factor, hoist it out of the square root and
- // replace it with the fabs of that factor.
- Module *M = Callee->getParent();
- Type *ArgType = Op->getType();
- Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
- Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
- if (OtherOp) {
- // If we found a non-repeated factor, we still need to get its square
- // root. We then multiply that by the value that was simplified out
- // of the square root calculation.
- Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
- Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
- return B.CreateFMul(FabsCall, SqrtCall);
- }
- return FabsCall;
- }
- }
- }
- return Ret;
- }
- static bool isTrigLibCall(CallInst *CI);
- static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
- bool UseFloat, Value *&Sin, Value *&Cos,
- Value *&SinCos);
- Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
- // Make sure the prototype is as expected, otherwise the rest of the
- // function is probably invalid and likely to abort.
- if (!isTrigLibCall(CI))
- return nullptr;
- Value *Arg = CI->getArgOperand(0);
- SmallVector<CallInst *, 1> SinCalls;
- SmallVector<CallInst *, 1> CosCalls;
- SmallVector<CallInst *, 1> SinCosCalls;
- bool IsFloat = Arg->getType()->isFloatTy();
- // Look for all compatible sinpi, cospi and sincospi calls with the same
- // argument. If there are enough (in some sense) we can make the
- // substitution.
- for (User *U : Arg->users())
- classifyArgUse(U, CI->getParent(), IsFloat, SinCalls, CosCalls,
- SinCosCalls);
- // It's only worthwhile if both sinpi and cospi are actually used.
- if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
- return nullptr;
- Value *Sin, *Cos, *SinCos;
- insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
- replaceTrigInsts(SinCalls, Sin);
- replaceTrigInsts(CosCalls, Cos);
- replaceTrigInsts(SinCosCalls, SinCos);
- return nullptr;
- }
- static bool isTrigLibCall(CallInst *CI) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- // We can only hope to do anything useful if we can ignore things like errno
- // and floating-point exceptions.
- bool AttributesSafe =
- CI->hasFnAttr(Attribute::NoUnwind) && CI->hasFnAttr(Attribute::ReadNone);
- // Other than that we need float(float) or double(double)
- return AttributesSafe && FT->getNumParams() == 1 &&
- FT->getReturnType() == FT->getParamType(0) &&
- (FT->getParamType(0)->isFloatTy() ||
- FT->getParamType(0)->isDoubleTy());
- }
- void
- LibCallSimplifier::classifyArgUse(Value *Val, BasicBlock *BB, bool IsFloat,
- SmallVectorImpl<CallInst *> &SinCalls,
- SmallVectorImpl<CallInst *> &CosCalls,
- SmallVectorImpl<CallInst *> &SinCosCalls) {
- CallInst *CI = dyn_cast<CallInst>(Val);
- if (!CI)
- return;
- Function *Callee = CI->getCalledFunction();
- StringRef FuncName = Callee->getName();
- LibFunc::Func Func;
- if (!TLI->getLibFunc(FuncName, Func) || !TLI->has(Func) || !isTrigLibCall(CI))
- return;
- if (IsFloat) {
- if (Func == LibFunc::sinpif)
- SinCalls.push_back(CI);
- else if (Func == LibFunc::cospif)
- CosCalls.push_back(CI);
- else if (Func == LibFunc::sincospif_stret)
- SinCosCalls.push_back(CI);
- } else {
- if (Func == LibFunc::sinpi)
- SinCalls.push_back(CI);
- else if (Func == LibFunc::cospi)
- CosCalls.push_back(CI);
- else if (Func == LibFunc::sincospi_stret)
- SinCosCalls.push_back(CI);
- }
- }
- void LibCallSimplifier::replaceTrigInsts(SmallVectorImpl<CallInst *> &Calls,
- Value *Res) {
- for (SmallVectorImpl<CallInst *>::iterator I = Calls.begin(), E = Calls.end();
- I != E; ++I) {
- replaceAllUsesWith(*I, Res);
- }
- }
- void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
- bool UseFloat, Value *&Sin, Value *&Cos, Value *&SinCos) {
- Type *ArgTy = Arg->getType();
- Type *ResTy;
- StringRef Name;
- Triple T(OrigCallee->getParent()->getTargetTriple());
- if (UseFloat) {
- Name = "__sincospif_stret";
- assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
- // x86_64 can't use {float, float} since that would be returned in both
- // xmm0 and xmm1, which isn't what a real struct would do.
- ResTy = T.getArch() == Triple::x86_64
- ? static_cast<Type *>(VectorType::get(ArgTy, 2))
- : static_cast<Type *>(StructType::get(ArgTy, ArgTy, nullptr));
- } else {
- Name = "__sincospi_stret";
- ResTy = StructType::get(ArgTy, ArgTy, nullptr);
- }
- Module *M = OrigCallee->getParent();
- Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
- ResTy, ArgTy, nullptr);
- if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
- // If the argument is an instruction, it must dominate all uses so put our
- // sincos call there.
- BasicBlock::iterator Loc = ArgInst;
- B.SetInsertPoint(ArgInst->getParent(), ++Loc);
- } else {
- // Otherwise (e.g. for a constant) the beginning of the function is as
- // good a place as any.
- BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
- B.SetInsertPoint(&EntryBB, EntryBB.begin());
- }
- SinCos = B.CreateCall(Callee, Arg, "sincospi");
- if (SinCos->getType()->isStructTy()) {
- Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
- Cos = B.CreateExtractValue(SinCos, 1, "cospi");
- } else {
- Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
- "sinpi");
- Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
- "cospi");
- }
- }
- //===----------------------------------------------------------------------===//
- // Integer Library Call Optimizations
- //===----------------------------------------------------------------------===//
- Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- // Just make sure this has 2 arguments of the same FP type, which match the
- // result type.
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy(32) ||
- !FT->getParamType(0)->isIntegerTy())
- return nullptr;
- Value *Op = CI->getArgOperand(0);
- // Constant fold.
- if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
- if (CI->isZero()) // ffs(0) -> 0.
- return B.getInt32(0);
- // ffs(c) -> cttz(c)+1
- return B.getInt32(CI->getValue().countTrailingZeros() + 1);
- }
- // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
- Type *ArgType = Op->getType();
- Value *F =
- Intrinsic::getDeclaration(Callee->getParent(), Intrinsic::cttz, ArgType);
- Value *V = B.CreateCall(F, {Op, B.getFalse()}, "cttz");
- V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
- V = B.CreateIntCast(V, B.getInt32Ty(), false);
- Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
- return B.CreateSelect(Cond, V, B.getInt32(0));
- }
- Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- // We require integer(integer) where the types agree.
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
- FT->getParamType(0) != FT->getReturnType())
- return nullptr;
- // abs(x) -> x >s -1 ? x : -x
- Value *Op = CI->getArgOperand(0);
- Value *Pos =
- B.CreateICmpSGT(Op, Constant::getAllOnesValue(Op->getType()), "ispos");
- Value *Neg = B.CreateNeg(Op, "neg");
- return B.CreateSelect(Pos, Op, Neg);
- }
- Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- // We require integer(i32)
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
- !FT->getParamType(0)->isIntegerTy(32))
- return nullptr;
- // isdigit(c) -> (c-'0') <u 10
- Value *Op = CI->getArgOperand(0);
- Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
- Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
- return B.CreateZExt(Op, CI->getType());
- }
- Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- // We require integer(i32)
- if (FT->getNumParams() != 1 || !FT->getReturnType()->isIntegerTy() ||
- !FT->getParamType(0)->isIntegerTy(32))
- return nullptr;
- // isascii(c) -> c <u 128
- Value *Op = CI->getArgOperand(0);
- Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
- return B.CreateZExt(Op, CI->getType());
- }
- Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- FunctionType *FT = Callee->getFunctionType();
- // We require i32(i32)
- if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
- !FT->getParamType(0)->isIntegerTy(32))
- return nullptr;
- // toascii(c) -> c & 0x7f
- return B.CreateAnd(CI->getArgOperand(0),
- ConstantInt::get(CI->getType(), 0x7F));
- }
- //===----------------------------------------------------------------------===//
- // Formatting and IO Library Call Optimizations
- //===----------------------------------------------------------------------===//
- static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
- Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
- int StreamArg) {
- // Error reporting calls should be cold, mark them as such.
- // This applies even to non-builtin calls: it is only a hint and applies to
- // functions that the frontend might not understand as builtins.
- // This heuristic was suggested in:
- // Improving Static Branch Prediction in a Compiler
- // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
- // Proceedings of PACT'98, Oct. 1998, IEEE
- Function *Callee = CI->getCalledFunction();
- if (!CI->hasFnAttr(Attribute::Cold) &&
- isReportingError(Callee, CI, StreamArg)) {
- CI->addAttribute(AttributeSet::FunctionIndex, Attribute::Cold);
- }
- return nullptr;
- }
- static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
- if (!ColdErrorCalls)
- return false;
- if (!Callee || !Callee->isDeclaration())
- return false;
- if (StreamArg < 0)
- return true;
- // These functions might be considered cold, but only if their stream
- // argument is stderr.
- if (StreamArg >= (int)CI->getNumArgOperands())
- return false;
- LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
- if (!LI)
- return false;
- GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
- if (!GV || !GV->isDeclaration())
- return false;
- return GV->getName() == "stderr";
- }
- Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
- // Check for a fixed format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
- return nullptr;
- // Empty format string -> noop.
- if (FormatStr.empty()) // Tolerate printf's declared void.
- return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
- // Do not do any of the following transformations if the printf return value
- // is used, in general the printf return value is not compatible with either
- // putchar() or puts().
- if (!CI->use_empty())
- return nullptr;
- // printf("x") -> putchar('x'), even for '%'.
- if (FormatStr.size() == 1) {
- Value *Res = EmitPutChar(B.getInt32(FormatStr[0]), B, TLI);
- if (CI->use_empty() || !Res)
- return Res;
- return B.CreateIntCast(Res, CI->getType(), true);
- }
- // printf("foo\n") --> puts("foo")
- if (FormatStr[FormatStr.size() - 1] == '\n' &&
- FormatStr.find('%') == StringRef::npos) { // No format characters.
- // Create a string literal with no \n on it. We expect the constant merge
- // pass to be run after this pass, to merge duplicate strings.
- FormatStr = FormatStr.drop_back();
- Value *GV = B.CreateGlobalString(FormatStr, "str");
- Value *NewCI = EmitPutS(GV, B, TLI);
- return (CI->use_empty() || !NewCI)
- ? NewCI
- : ConstantInt::get(CI->getType(), FormatStr.size() + 1);
- }
- // Optimize specific format strings.
- // printf("%c", chr) --> putchar(chr)
- if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
- CI->getArgOperand(1)->getType()->isIntegerTy()) {
- Value *Res = EmitPutChar(CI->getArgOperand(1), B, TLI);
- if (CI->use_empty() || !Res)
- return Res;
- return B.CreateIntCast(Res, CI->getType(), true);
- }
- // printf("%s\n", str) --> puts(str)
- if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
- CI->getArgOperand(1)->getType()->isPointerTy()) {
- return EmitPutS(CI->getArgOperand(1), B, TLI);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- // Require one fixed pointer argument and an integer/void result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
- !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
- return nullptr;
- if (Value *V = optimizePrintFString(CI, B)) {
- return V;
- }
- // printf(format, ...) -> iprintf(format, ...) if no floating point
- // arguments.
- if (TLI->has(LibFunc::iprintf) && !callHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *IPrintFFn =
- M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(IPrintFFn);
- B.Insert(New);
- return New;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
- // Check for a fixed format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
- return nullptr;
- // If we just have a format string (nothing else crazy) transform it.
- if (CI->getNumArgOperands() == 2) {
- // Make sure there's no % in the constant array. We could try to handle
- // %% -> % in the future if we cared.
- for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
- if (FormatStr[i] == '%')
- return nullptr; // we found a format specifier, bail out.
- // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- ConstantInt::get(DL.getIntPtrType(CI->getContext()),
- FormatStr.size() + 1),
- 1); // Copy the null byte.
- return ConstantInt::get(CI->getType(), FormatStr.size());
- }
- // The remaining optimizations require the format string to be "%s" or "%c"
- // and have an extra operand.
- if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
- CI->getNumArgOperands() < 3)
- return nullptr;
- // Decode the second character of the format string.
- if (FormatStr[1] == 'c') {
- // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
- if (!CI->getArgOperand(2)->getType()->isIntegerTy())
- return nullptr;
- Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
- Value *Ptr = CastToCStr(CI->getArgOperand(0), B);
- B.CreateStore(V, Ptr);
- Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
- B.CreateStore(B.getInt8(0), Ptr);
- return ConstantInt::get(CI->getType(), 1);
- }
- if (FormatStr[1] == 's') {
- // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
- if (!CI->getArgOperand(2)->getType()->isPointerTy())
- return nullptr;
- Value *Len = EmitStrLen(CI->getArgOperand(2), B, DL, TLI);
- if (!Len)
- return nullptr;
- Value *IncLen =
- B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(2), IncLen, 1);
- // The sprintf result is the unincremented number of bytes in the string.
- return B.CreateIntCast(Len, CI->getType(), false);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- // Require two fixed pointer arguments and an integer result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !FT->getReturnType()->isIntegerTy())
- return nullptr;
- if (Value *V = optimizeSPrintFString(CI, B)) {
- return V;
- }
- // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
- // point arguments.
- if (TLI->has(LibFunc::siprintf) && !callHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *SIPrintFFn =
- M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(SIPrintFFn);
- B.Insert(New);
- return New;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
- optimizeErrorReporting(CI, B, 0);
- // All the optimizations depend on the format string.
- StringRef FormatStr;
- if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
- return nullptr;
- // Do not do any of the following transformations if the fprintf return
- // value is used, in general the fprintf return value is not compatible
- // with fwrite(), fputc() or fputs().
- if (!CI->use_empty())
- return nullptr;
- // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
- if (CI->getNumArgOperands() == 2) {
- for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
- if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
- return nullptr; // We found a format specifier.
- return EmitFWrite(
- CI->getArgOperand(1),
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
- CI->getArgOperand(0), B, DL, TLI);
- }
- // The remaining optimizations require the format string to be "%s" or "%c"
- // and have an extra operand.
- if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
- CI->getNumArgOperands() < 3)
- return nullptr;
- // Decode the second character of the format string.
- if (FormatStr[1] == 'c') {
- // fprintf(F, "%c", chr) --> fputc(chr, F)
- if (!CI->getArgOperand(2)->getType()->isIntegerTy())
- return nullptr;
- return EmitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
- }
- if (FormatStr[1] == 's') {
- // fprintf(F, "%s", str) --> fputs(str, F)
- if (!CI->getArgOperand(2)->getType()->isPointerTy())
- return nullptr;
- return EmitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- // Require two fixed paramters as pointers and integer result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() ||
- !FT->getReturnType()->isIntegerTy())
- return nullptr;
- if (Value *V = optimizeFPrintFString(CI, B)) {
- return V;
- }
- // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
- // floating point arguments.
- if (TLI->has(LibFunc::fiprintf) && !callHasFloatingPointArgument(CI)) {
- Module *M = B.GetInsertBlock()->getParent()->getParent();
- Constant *FIPrintFFn =
- M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
- CallInst *New = cast<CallInst>(CI->clone());
- New->setCalledFunction(FIPrintFFn);
- B.Insert(New);
- return New;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
- optimizeErrorReporting(CI, B, 3);
- Function *Callee = CI->getCalledFunction();
- // Require a pointer, an integer, an integer, a pointer, returning integer.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 4 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isIntegerTy() ||
- !FT->getParamType(2)->isIntegerTy() ||
- !FT->getParamType(3)->isPointerTy() ||
- !FT->getReturnType()->isIntegerTy())
- return nullptr;
- // Get the element size and count.
- ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
- ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
- if (!SizeC || !CountC)
- return nullptr;
- uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
- // If this is writing zero records, remove the call (it's a noop).
- if (Bytes == 0)
- return ConstantInt::get(CI->getType(), 0);
- // If this is writing one byte, turn it into fputc.
- // This optimisation is only valid, if the return value is unused.
- if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
- Value *Char = B.CreateLoad(CastToCStr(CI->getArgOperand(0), B), "char");
- Value *NewCI = EmitFPutC(Char, CI->getArgOperand(3), B, TLI);
- return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
- optimizeErrorReporting(CI, B, 1);
- Function *Callee = CI->getCalledFunction();
- // Require two pointers. Also, we can't optimize if return value is used.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() != 2 || !FT->getParamType(0)->isPointerTy() ||
- !FT->getParamType(1)->isPointerTy() || !CI->use_empty())
- return nullptr;
- // fputs(s,F) --> fwrite(s,1,strlen(s),F)
- uint64_t Len = GetStringLength(CI->getArgOperand(0));
- if (!Len)
- return nullptr;
- // Known to have no uses (see above).
- return EmitFWrite(
- CI->getArgOperand(0),
- ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
- CI->getArgOperand(1), B, DL, TLI);
- }
- Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- // Require one fixed pointer argument and an integer/void result.
- FunctionType *FT = Callee->getFunctionType();
- if (FT->getNumParams() < 1 || !FT->getParamType(0)->isPointerTy() ||
- !(FT->getReturnType()->isIntegerTy() || FT->getReturnType()->isVoidTy()))
- return nullptr;
- // Check for a constant string.
- StringRef Str;
- if (!getConstantStringInfo(CI->getArgOperand(0), Str))
- return nullptr;
- if (Str.empty() && CI->use_empty()) {
- // puts("") -> putchar('\n')
- Value *Res = EmitPutChar(B.getInt32('\n'), B, TLI);
- if (CI->use_empty() || !Res)
- return Res;
- return B.CreateIntCast(Res, CI->getType(), true);
- }
- return nullptr;
- }
- bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
- LibFunc::Func Func;
- SmallString<20> FloatFuncName = FuncName;
- FloatFuncName += 'f';
- if (TLI->getLibFunc(FloatFuncName, Func))
- return TLI->has(Func);
- return false;
- }
- Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
- IRBuilder<> &Builder) {
- LibFunc::Func Func;
- Function *Callee = CI->getCalledFunction();
- StringRef FuncName = Callee->getName();
- // Check for string/memory library functions.
- if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
- // Make sure we never change the calling convention.
- assert((ignoreCallingConv(Func) ||
- CI->getCallingConv() == llvm::CallingConv::C) &&
- "Optimizing string/memory libcall would change the calling convention");
- switch (Func) {
- case LibFunc::strcat:
- return optimizeStrCat(CI, Builder);
- case LibFunc::strncat:
- return optimizeStrNCat(CI, Builder);
- case LibFunc::strchr:
- return optimizeStrChr(CI, Builder);
- case LibFunc::strrchr:
- return optimizeStrRChr(CI, Builder);
- case LibFunc::strcmp:
- return optimizeStrCmp(CI, Builder);
- case LibFunc::strncmp:
- return optimizeStrNCmp(CI, Builder);
- case LibFunc::strcpy:
- return optimizeStrCpy(CI, Builder);
- case LibFunc::stpcpy:
- return optimizeStpCpy(CI, Builder);
- case LibFunc::strncpy:
- return optimizeStrNCpy(CI, Builder);
- case LibFunc::strlen:
- return optimizeStrLen(CI, Builder);
- case LibFunc::strpbrk:
- return optimizeStrPBrk(CI, Builder);
- case LibFunc::strtol:
- case LibFunc::strtod:
- case LibFunc::strtof:
- case LibFunc::strtoul:
- case LibFunc::strtoll:
- case LibFunc::strtold:
- case LibFunc::strtoull:
- return optimizeStrTo(CI, Builder);
- case LibFunc::strspn:
- return optimizeStrSpn(CI, Builder);
- case LibFunc::strcspn:
- return optimizeStrCSpn(CI, Builder);
- case LibFunc::strstr:
- return optimizeStrStr(CI, Builder);
- case LibFunc::memchr:
- return optimizeMemChr(CI, Builder);
- case LibFunc::memcmp:
- return optimizeMemCmp(CI, Builder);
- case LibFunc::memcpy:
- return optimizeMemCpy(CI, Builder);
- case LibFunc::memmove:
- return optimizeMemMove(CI, Builder);
- case LibFunc::memset:
- return optimizeMemSet(CI, Builder);
- default:
- break;
- }
- }
- return nullptr;
- }
- Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
- if (CI->isNoBuiltin())
- return nullptr;
- LibFunc::Func Func;
- Function *Callee = CI->getCalledFunction();
- StringRef FuncName = Callee->getName();
- IRBuilder<> Builder(CI);
- bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
- // Command-line parameter overrides function attribute.
- if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
- UnsafeFPShrink = EnableUnsafeFPShrink;
- else if (Callee->hasFnAttribute("unsafe-fp-math")) {
- // FIXME: This is the same problem as described in optimizeSqrt().
- // If calls gain access to IR-level FMF, then use that instead of a
- // function attribute.
- // Check for unsafe-fp-math = true.
- Attribute Attr = Callee->getFnAttribute("unsafe-fp-math");
- if (Attr.getValueAsString() == "true")
- UnsafeFPShrink = true;
- }
- // First, check for intrinsics.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
- if (!isCallingConvC)
- return nullptr;
- switch (II->getIntrinsicID()) {
- case Intrinsic::pow:
- return optimizePow(CI, Builder);
- case Intrinsic::exp2:
- return optimizeExp2(CI, Builder);
- case Intrinsic::fabs:
- return optimizeFabs(CI, Builder);
- case Intrinsic::sqrt:
- return optimizeSqrt(CI, Builder);
- default:
- return nullptr;
- }
- }
- // Also try to simplify calls to fortified library functions.
- if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
- // Try to further simplify the result.
- CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
- if (SimplifiedCI && SimplifiedCI->getCalledFunction())
- if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) {
- // If we were able to further simplify, remove the now redundant call.
- SimplifiedCI->replaceAllUsesWith(V);
- SimplifiedCI->eraseFromParent();
- return V;
- }
- return SimplifiedFortifiedCI;
- }
- // Then check for known library functions.
- if (TLI->getLibFunc(FuncName, Func) && TLI->has(Func)) {
- // We never change the calling convention.
- if (!ignoreCallingConv(Func) && !isCallingConvC)
- return nullptr;
- if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
- return V;
- switch (Func) {
- case LibFunc::cosf:
- case LibFunc::cos:
- case LibFunc::cosl:
- return optimizeCos(CI, Builder);
- case LibFunc::sinpif:
- case LibFunc::sinpi:
- case LibFunc::cospif:
- case LibFunc::cospi:
- return optimizeSinCosPi(CI, Builder);
- case LibFunc::powf:
- case LibFunc::pow:
- case LibFunc::powl:
- return optimizePow(CI, Builder);
- case LibFunc::exp2l:
- case LibFunc::exp2:
- case LibFunc::exp2f:
- return optimizeExp2(CI, Builder);
- case LibFunc::fabsf:
- case LibFunc::fabs:
- case LibFunc::fabsl:
- return optimizeFabs(CI, Builder);
- case LibFunc::sqrtf:
- case LibFunc::sqrt:
- case LibFunc::sqrtl:
- return optimizeSqrt(CI, Builder);
- case LibFunc::ffs:
- case LibFunc::ffsl:
- case LibFunc::ffsll:
- return optimizeFFS(CI, Builder);
- case LibFunc::abs:
- case LibFunc::labs:
- case LibFunc::llabs:
- return optimizeAbs(CI, Builder);
- case LibFunc::isdigit:
- return optimizeIsDigit(CI, Builder);
- case LibFunc::isascii:
- return optimizeIsAscii(CI, Builder);
- case LibFunc::toascii:
- return optimizeToAscii(CI, Builder);
- case LibFunc::printf:
- return optimizePrintF(CI, Builder);
- case LibFunc::sprintf:
- return optimizeSPrintF(CI, Builder);
- case LibFunc::fprintf:
- return optimizeFPrintF(CI, Builder);
- case LibFunc::fwrite:
- return optimizeFWrite(CI, Builder);
- case LibFunc::fputs:
- return optimizeFPuts(CI, Builder);
- case LibFunc::puts:
- return optimizePuts(CI, Builder);
- case LibFunc::perror:
- return optimizeErrorReporting(CI, Builder);
- case LibFunc::vfprintf:
- case LibFunc::fiprintf:
- return optimizeErrorReporting(CI, Builder, 0);
- case LibFunc::fputc:
- return optimizeErrorReporting(CI, Builder, 1);
- case LibFunc::ceil:
- case LibFunc::floor:
- case LibFunc::rint:
- case LibFunc::round:
- case LibFunc::nearbyint:
- case LibFunc::trunc:
- if (hasFloatVersion(FuncName))
- return optimizeUnaryDoubleFP(CI, Builder, false);
- return nullptr;
- case LibFunc::acos:
- case LibFunc::acosh:
- case LibFunc::asin:
- case LibFunc::asinh:
- case LibFunc::atan:
- case LibFunc::atanh:
- case LibFunc::cbrt:
- case LibFunc::cosh:
- case LibFunc::exp:
- case LibFunc::exp10:
- case LibFunc::expm1:
- case LibFunc::log:
- case LibFunc::log10:
- case LibFunc::log1p:
- case LibFunc::log2:
- case LibFunc::logb:
- case LibFunc::sin:
- case LibFunc::sinh:
- case LibFunc::tan:
- case LibFunc::tanh:
- if (UnsafeFPShrink && hasFloatVersion(FuncName))
- return optimizeUnaryDoubleFP(CI, Builder, true);
- return nullptr;
- case LibFunc::copysign:
- case LibFunc::fmin:
- case LibFunc::fmax:
- if (hasFloatVersion(FuncName))
- return optimizeBinaryDoubleFP(CI, Builder);
- return nullptr;
- default:
- return nullptr;
- }
- }
- return nullptr;
- }
- LibCallSimplifier::LibCallSimplifier(
- const DataLayout &DL, const TargetLibraryInfo *TLI,
- function_ref<void(Instruction *, Value *)> Replacer)
- : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), UnsafeFPShrink(false),
- Replacer(Replacer) {}
- void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
- // Indirect through the replacer used in this instance.
- Replacer(I, With);
- }
- /*static*/ void LibCallSimplifier::replaceAllUsesWithDefault(Instruction *I,
- Value *With) {
- I->replaceAllUsesWith(With);
- I->eraseFromParent();
- }
- // TODO:
- // Additional cases that we need to add to this file:
- //
- // cbrt:
- // * cbrt(expN(X)) -> expN(x/3)
- // * cbrt(sqrt(x)) -> pow(x,1/6)
- // * cbrt(sqrt(x)) -> pow(x,1/9)
- //
- // exp, expf, expl:
- // * exp(log(x)) -> x
- //
- // log, logf, logl:
- // * log(exp(x)) -> x
- // * log(x**y) -> y*log(x)
- // * log(exp(y)) -> y*log(e)
- // * log(exp2(y)) -> y*log(2)
- // * log(exp10(y)) -> y*log(10)
- // * log(sqrt(x)) -> 0.5*log(x)
- // * log(pow(x,y)) -> y*log(x)
- //
- // lround, lroundf, lroundl:
- // * lround(cnst) -> cnst'
- //
- // pow, powf, powl:
- // * pow(exp(x),y) -> exp(x*y)
- // * pow(sqrt(x),y) -> pow(x,y*0.5)
- // * pow(pow(x,y),z)-> pow(x,y*z)
- //
- // round, roundf, roundl:
- // * round(cnst) -> cnst'
- //
- // signbit:
- // * signbit(cnst) -> cnst'
- // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
- //
- // sqrt, sqrtf, sqrtl:
- // * sqrt(expN(x)) -> expN(x*0.5)
- // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
- // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
- //
- // tan, tanf, tanl:
- // * tan(atan(x)) -> x
- //
- // trunc, truncf, truncl:
- // * trunc(cnst) -> cnst'
- //
- //
- //===----------------------------------------------------------------------===//
- // Fortified Library Call Optimizations
- //===----------------------------------------------------------------------===//
- bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
- unsigned ObjSizeOp,
- unsigned SizeOp,
- bool isString) {
- if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
- return true;
- if (ConstantInt *ObjSizeCI =
- dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
- if (ObjSizeCI->isAllOnesValue())
- return true;
- // If the object size wasn't -1 (unknown), bail out if we were asked to.
- if (OnlyLowerUnknownSize)
- return false;
- if (isString) {
- uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
- // If the length is 0 we don't know how long it is and so we can't
- // remove the check.
- if (Len == 0)
- return false;
- return ObjSizeCI->getZExtValue() >= Len;
- }
- if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
- return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
- }
- return false;
- }
- Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memcpy_chk))
- return nullptr;
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
- B.CreateMemCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
- return nullptr;
- }
- Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memmove_chk))
- return nullptr;
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
- B.CreateMemMove(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
- return nullptr;
- }
- Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, IRBuilder<> &B) {
- Function *Callee = CI->getCalledFunction();
- if (!checkStringCopyLibFuncSignature(Callee, LibFunc::memset_chk))
- return nullptr;
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
- Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
- B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
- return CI->getArgOperand(0);
- }
- return nullptr;
- }
- Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
- IRBuilder<> &B,
- LibFunc::Func Func) {
- Function *Callee = CI->getCalledFunction();
- StringRef Name = Callee->getName();
- const DataLayout &DL = CI->getModule()->getDataLayout();
- if (!checkStringCopyLibFuncSignature(Callee, Func))
- return nullptr;
- Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
- *ObjSize = CI->getArgOperand(2);
- // __stpcpy_chk(x,x,...) -> x+strlen(x)
- if (Func == LibFunc::stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
- Value *StrLen = EmitStrLen(Src, B, DL, TLI);
- return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
- }
- // If a) we don't have any length information, or b) we know this will
- // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
- // st[rp]cpy_chk call which may fail at runtime if the size is too long.
- // TODO: It might be nice to get a maximum length out of the possible
- // string lengths for varying.
- if (isFortifiedCallFoldable(CI, 2, 1, true))
- return EmitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));
- if (OnlyLowerUnknownSize)
- return nullptr;
- // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
- uint64_t Len = GetStringLength(Src);
- if (Len == 0)
- return nullptr;
- Type *SizeTTy = DL.getIntPtrType(CI->getContext());
- Value *LenV = ConstantInt::get(SizeTTy, Len);
- Value *Ret = EmitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
- // If the function was an __stpcpy_chk, and we were able to fold it into
- // a __memcpy_chk, we still need to return the correct end pointer.
- if (Ret && Func == LibFunc::stpcpy_chk)
- return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
- return Ret;
- }
- Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
- IRBuilder<> &B,
- LibFunc::Func Func) {
- Function *Callee = CI->getCalledFunction();
- StringRef Name = Callee->getName();
- if (!checkStringCopyLibFuncSignature(Callee, Func))
- return nullptr;
- if (isFortifiedCallFoldable(CI, 3, 2, false)) {
- Value *Ret = EmitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
- CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
- return Ret;
- }
- return nullptr;
- }
- Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
- // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
- // Some clang users checked for _chk libcall availability using:
- // __has_builtin(__builtin___memcpy_chk)
- // When compiling with -fno-builtin, this is always true.
- // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
- // end up with fortified libcalls, which isn't acceptable in a freestanding
- // environment which only provides their non-fortified counterparts.
- //
- // Until we change clang and/or teach external users to check for availability
- // differently, disregard the "nobuiltin" attribute and TLI::has.
- //
- // PR23093.
- LibFunc::Func Func;
- Function *Callee = CI->getCalledFunction();
- StringRef FuncName = Callee->getName();
- IRBuilder<> Builder(CI);
- bool isCallingConvC = CI->getCallingConv() == llvm::CallingConv::C;
- // First, check that this is a known library functions.
- if (!TLI->getLibFunc(FuncName, Func))
- return nullptr;
- // We never change the calling convention.
- if (!ignoreCallingConv(Func) && !isCallingConvC)
- return nullptr;
- switch (Func) {
- case LibFunc::memcpy_chk:
- return optimizeMemCpyChk(CI, Builder);
- case LibFunc::memmove_chk:
- return optimizeMemMoveChk(CI, Builder);
- case LibFunc::memset_chk:
- return optimizeMemSetChk(CI, Builder);
- case LibFunc::stpcpy_chk:
- case LibFunc::strcpy_chk:
- return optimizeStrpCpyChk(CI, Builder, Func);
- case LibFunc::stpncpy_chk:
- case LibFunc::strncpy_chk:
- return optimizeStrpNCpyChk(CI, Builder, Func);
- default:
- break;
- }
- return nullptr;
- }
- FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
- const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
- : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
|