123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607 |
- //===- FunctionAttrs.cpp - Pass which marks functions readnone or readonly ===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements a simple interprocedural pass which walks the
- // call-graph, looking for functions which do not access or only read
- // non-local memory, and marking them readnone/readonly. In addition,
- // it marks function arguments (of pointer type) 'nocapture' if a call
- // to the function does not create any copies of the pointer value that
- // outlive the call. This more or less means that the pointer is only
- // dereferenced, and not returned from the function or stored in a global.
- // This pass is implemented as a bottom-up traversal of the call-graph.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "functionattrs"
- #include "llvm/Transforms/IPO.h"
- #include "llvm/ADT/SCCIterator.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/CallGraph.h"
- #include "llvm/Analysis/CaptureTracking.h"
- #include "llvm/CallGraphSCCPass.h"
- #include "llvm/GlobalVariable.h"
- #include "llvm/IntrinsicInst.h"
- #include "llvm/LLVMContext.h"
- #include "llvm/Support/InstIterator.h"
- using namespace llvm;
- STATISTIC(NumReadNone, "Number of functions marked readnone");
- STATISTIC(NumReadOnly, "Number of functions marked readonly");
- STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
- STATISTIC(NumNoAlias, "Number of function returns marked noalias");
- namespace {
- struct FunctionAttrs : public CallGraphSCCPass {
- static char ID; // Pass identification, replacement for typeid
- FunctionAttrs() : CallGraphSCCPass(ID), AA(0) {
- initializeFunctionAttrsPass(*PassRegistry::getPassRegistry());
- }
- // runOnSCC - Analyze the SCC, performing the transformation if possible.
- bool runOnSCC(CallGraphSCC &SCC);
- // AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
- bool AddReadAttrs(const CallGraphSCC &SCC);
- // AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
- bool AddNoCaptureAttrs(const CallGraphSCC &SCC);
- // IsFunctionMallocLike - Does this function allocate new memory?
- bool IsFunctionMallocLike(Function *F,
- SmallPtrSet<Function*, 8> &) const;
- // AddNoAliasAttrs - Deduce noalias attributes for the SCC.
- bool AddNoAliasAttrs(const CallGraphSCC &SCC);
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- AU.addRequired<AliasAnalysis>();
- CallGraphSCCPass::getAnalysisUsage(AU);
- }
- private:
- AliasAnalysis *AA;
- };
- }
- char FunctionAttrs::ID = 0;
- INITIALIZE_PASS_BEGIN(FunctionAttrs, "functionattrs",
- "Deduce function attributes", false, false)
- INITIALIZE_AG_DEPENDENCY(CallGraph)
- INITIALIZE_PASS_END(FunctionAttrs, "functionattrs",
- "Deduce function attributes", false, false)
- Pass *llvm::createFunctionAttrsPass() { return new FunctionAttrs(); }
- /// AddReadAttrs - Deduce readonly/readnone attributes for the SCC.
- bool FunctionAttrs::AddReadAttrs(const CallGraphSCC &SCC) {
- SmallPtrSet<Function*, 8> SCCNodes;
- // Fill SCCNodes with the elements of the SCC. Used for quickly
- // looking up whether a given CallGraphNode is in this SCC.
- for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I)
- SCCNodes.insert((*I)->getFunction());
- // Check if any of the functions in the SCC read or write memory. If they
- // write memory then they can't be marked readnone or readonly.
- bool ReadsMemory = false;
- for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
- Function *F = (*I)->getFunction();
- if (F == 0)
- // External node - may write memory. Just give up.
- return false;
- AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(F);
- if (MRB == AliasAnalysis::DoesNotAccessMemory)
- // Already perfect!
- continue;
- // Definitions with weak linkage may be overridden at linktime with
- // something that writes memory, so treat them like declarations.
- if (F->isDeclaration() || F->mayBeOverridden()) {
- if (!AliasAnalysis::onlyReadsMemory(MRB))
- // May write memory. Just give up.
- return false;
- ReadsMemory = true;
- continue;
- }
- // Scan the function body for instructions that may read or write memory.
- for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
- Instruction *I = &*II;
- // Some instructions can be ignored even if they read or write memory.
- // Detect these now, skipping to the next instruction if one is found.
- CallSite CS(cast<Value>(I));
- if (CS) {
- // Ignore calls to functions in the same SCC.
- if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
- continue;
- AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(CS);
- // If the call doesn't access arbitrary memory, we may be able to
- // figure out something.
- if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
- // If the call does access argument pointees, check each argument.
- if (AliasAnalysis::doesAccessArgPointees(MRB))
- // Check whether all pointer arguments point to local memory, and
- // ignore calls that only access local memory.
- for (CallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
- CI != CE; ++CI) {
- Value *Arg = *CI;
- if (Arg->getType()->isPointerTy()) {
- AliasAnalysis::Location Loc(Arg,
- AliasAnalysis::UnknownSize,
- I->getMetadata(LLVMContext::MD_tbaa));
- if (!AA->pointsToConstantMemory(Loc, /*OrLocal=*/true)) {
- if (MRB & AliasAnalysis::Mod)
- // Writes non-local memory. Give up.
- return false;
- if (MRB & AliasAnalysis::Ref)
- // Ok, it reads non-local memory.
- ReadsMemory = true;
- }
- }
- }
- continue;
- }
- // The call could access any memory. If that includes writes, give up.
- if (MRB & AliasAnalysis::Mod)
- return false;
- // If it reads, note it.
- if (MRB & AliasAnalysis::Ref)
- ReadsMemory = true;
- continue;
- } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- // Ignore non-volatile loads from local memory. (Atomic is okay here.)
- if (!LI->isVolatile()) {
- AliasAnalysis::Location Loc = AA->getLocation(LI);
- if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
- continue;
- }
- } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- // Ignore non-volatile stores to local memory. (Atomic is okay here.)
- if (!SI->isVolatile()) {
- AliasAnalysis::Location Loc = AA->getLocation(SI);
- if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
- continue;
- }
- } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
- // Ignore vaargs on local memory.
- AliasAnalysis::Location Loc = AA->getLocation(VI);
- if (AA->pointsToConstantMemory(Loc, /*OrLocal=*/true))
- continue;
- }
- // Any remaining instructions need to be taken seriously! Check if they
- // read or write memory.
- if (I->mayWriteToMemory())
- // Writes memory. Just give up.
- return false;
- // If this instruction may read memory, remember that.
- ReadsMemory |= I->mayReadFromMemory();
- }
- }
- // Success! Functions in this SCC do not access memory, or only read memory.
- // Give them the appropriate attribute.
- bool MadeChange = false;
- for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
- Function *F = (*I)->getFunction();
- if (F->doesNotAccessMemory())
- // Already perfect!
- continue;
- if (F->onlyReadsMemory() && ReadsMemory)
- // No change.
- continue;
- MadeChange = true;
- // Clear out any existing attributes.
- AttrBuilder B;
- B.addAttribute(Attribute::ReadOnly)
- .addAttribute(Attribute::ReadNone);
- F->removeAttribute(AttributeSet::FunctionIndex,
- Attribute::get(F->getContext(), B));
- // Add in the new attribute.
- B.clear();
- B.addAttribute(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
- F->addAttribute(AttributeSet::FunctionIndex,
- Attribute::get(F->getContext(), B));
- if (ReadsMemory)
- ++NumReadOnly;
- else
- ++NumReadNone;
- }
- return MadeChange;
- }
- namespace {
- // For a given pointer Argument, this retains a list of Arguments of functions
- // in the same SCC that the pointer data flows into. We use this to build an
- // SCC of the arguments.
- struct ArgumentGraphNode {
- Argument *Definition;
- SmallVector<ArgumentGraphNode*, 4> Uses;
- };
- class ArgumentGraph {
- // We store pointers to ArgumentGraphNode objects, so it's important that
- // that they not move around upon insert.
- typedef std::map<Argument*, ArgumentGraphNode> ArgumentMapTy;
- ArgumentMapTy ArgumentMap;
- // There is no root node for the argument graph, in fact:
- // void f(int *x, int *y) { if (...) f(x, y); }
- // is an example where the graph is disconnected. The SCCIterator requires a
- // single entry point, so we maintain a fake ("synthetic") root node that
- // uses every node. Because the graph is directed and nothing points into
- // the root, it will not participate in any SCCs (except for its own).
- ArgumentGraphNode SyntheticRoot;
- public:
- ArgumentGraph() { SyntheticRoot.Definition = 0; }
- typedef SmallVectorImpl<ArgumentGraphNode*>::iterator iterator;
- iterator begin() { return SyntheticRoot.Uses.begin(); }
- iterator end() { return SyntheticRoot.Uses.end(); }
- ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
- ArgumentGraphNode *operator[](Argument *A) {
- ArgumentGraphNode &Node = ArgumentMap[A];
- Node.Definition = A;
- SyntheticRoot.Uses.push_back(&Node);
- return &Node;
- }
- };
- // This tracker checks whether callees are in the SCC, and if so it does not
- // consider that a capture, instead adding it to the "Uses" list and
- // continuing with the analysis.
- struct ArgumentUsesTracker : public CaptureTracker {
- ArgumentUsesTracker(const SmallPtrSet<Function*, 8> &SCCNodes)
- : Captured(false), SCCNodes(SCCNodes) {}
- void tooManyUses() { Captured = true; }
- bool captured(Use *U) {
- CallSite CS(U->getUser());
- if (!CS.getInstruction()) { Captured = true; return true; }
- Function *F = CS.getCalledFunction();
- if (!F || !SCCNodes.count(F)) { Captured = true; return true; }
- Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
- for (CallSite::arg_iterator PI = CS.arg_begin(), PE = CS.arg_end();
- PI != PE; ++PI, ++AI) {
- if (AI == AE) {
- assert(F->isVarArg() && "More params than args in non-varargs call");
- Captured = true;
- return true;
- }
- if (PI == U) {
- Uses.push_back(AI);
- break;
- }
- }
- assert(!Uses.empty() && "Capturing call-site captured nothing?");
- return false;
- }
- bool Captured; // True only if certainly captured (used outside our SCC).
- SmallVector<Argument*, 4> Uses; // Uses within our SCC.
- const SmallPtrSet<Function*, 8> &SCCNodes;
- };
- }
- namespace llvm {
- template<> struct GraphTraits<ArgumentGraphNode*> {
- typedef ArgumentGraphNode NodeType;
- typedef SmallVectorImpl<ArgumentGraphNode*>::iterator ChildIteratorType;
- static inline NodeType *getEntryNode(NodeType *A) { return A; }
- static inline ChildIteratorType child_begin(NodeType *N) {
- return N->Uses.begin();
- }
- static inline ChildIteratorType child_end(NodeType *N) {
- return N->Uses.end();
- }
- };
- template<> struct GraphTraits<ArgumentGraph*>
- : public GraphTraits<ArgumentGraphNode*> {
- static NodeType *getEntryNode(ArgumentGraph *AG) {
- return AG->getEntryNode();
- }
- static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
- return AG->begin();
- }
- static ChildIteratorType nodes_end(ArgumentGraph *AG) {
- return AG->end();
- }
- };
- }
- /// AddNoCaptureAttrs - Deduce nocapture attributes for the SCC.
- bool FunctionAttrs::AddNoCaptureAttrs(const CallGraphSCC &SCC) {
- bool Changed = false;
- SmallPtrSet<Function*, 8> SCCNodes;
- // Fill SCCNodes with the elements of the SCC. Used for quickly
- // looking up whether a given CallGraphNode is in this SCC.
- for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
- Function *F = (*I)->getFunction();
- if (F && !F->isDeclaration() && !F->mayBeOverridden())
- SCCNodes.insert(F);
- }
- ArgumentGraph AG;
- AttrBuilder B;
- B.addAttribute(Attribute::NoCapture);
- // Check each function in turn, determining which pointer arguments are not
- // captured.
- for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
- Function *F = (*I)->getFunction();
- if (F == 0)
- // External node - only a problem for arguments that we pass to it.
- continue;
- // Definitions with weak linkage may be overridden at linktime with
- // something that captures pointers, so treat them like declarations.
- if (F->isDeclaration() || F->mayBeOverridden())
- continue;
- // Functions that are readonly (or readnone) and nounwind and don't return
- // a value can't capture arguments. Don't analyze them.
- if (F->onlyReadsMemory() && F->doesNotThrow() &&
- F->getReturnType()->isVoidTy()) {
- for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end();
- A != E; ++A) {
- if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
- A->addAttr(Attribute::get(F->getContext(), B));
- ++NumNoCapture;
- Changed = true;
- }
- }
- continue;
- }
- for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A!=E; ++A)
- if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
- ArgumentUsesTracker Tracker(SCCNodes);
- PointerMayBeCaptured(A, &Tracker);
- if (!Tracker.Captured) {
- if (Tracker.Uses.empty()) {
- // If it's trivially not captured, mark it nocapture now.
- A->addAttr(Attribute::get(F->getContext(), B));
- ++NumNoCapture;
- Changed = true;
- } else {
- // If it's not trivially captured and not trivially not captured,
- // then it must be calling into another function in our SCC. Save
- // its particulars for Argument-SCC analysis later.
- ArgumentGraphNode *Node = AG[A];
- for (SmallVectorImpl<Argument*>::iterator UI = Tracker.Uses.begin(),
- UE = Tracker.Uses.end(); UI != UE; ++UI)
- Node->Uses.push_back(AG[*UI]);
- }
- }
- // Otherwise, it's captured. Don't bother doing SCC analysis on it.
- }
- }
- // The graph we've collected is partial because we stopped scanning for
- // argument uses once we solved the argument trivially. These partial nodes
- // show up as ArgumentGraphNode objects with an empty Uses list, and for
- // these nodes the final decision about whether they capture has already been
- // made. If the definition doesn't have a 'nocapture' attribute by now, it
- // captures.
- for (scc_iterator<ArgumentGraph*> I = scc_begin(&AG), E = scc_end(&AG);
- I != E; ++I) {
- std::vector<ArgumentGraphNode*> &ArgumentSCC = *I;
- if (ArgumentSCC.size() == 1) {
- if (!ArgumentSCC[0]->Definition) continue; // synthetic root node
- // eg. "void f(int* x) { if (...) f(x); }"
- if (ArgumentSCC[0]->Uses.size() == 1 &&
- ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
- ArgumentSCC[0]->
- Definition->
- addAttr(Attribute::get(ArgumentSCC[0]->Definition->getContext(), B));
- ++NumNoCapture;
- Changed = true;
- }
- continue;
- }
- bool SCCCaptured = false;
- for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
- E = ArgumentSCC.end(); I != E && !SCCCaptured; ++I) {
- ArgumentGraphNode *Node = *I;
- if (Node->Uses.empty()) {
- if (!Node->Definition->hasNoCaptureAttr())
- SCCCaptured = true;
- }
- }
- if (SCCCaptured) continue;
- SmallPtrSet<Argument*, 8> ArgumentSCCNodes;
- // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
- // quickly looking up whether a given Argument is in this ArgumentSCC.
- for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
- E = ArgumentSCC.end(); I != E; ++I) {
- ArgumentSCCNodes.insert((*I)->Definition);
- }
- for (std::vector<ArgumentGraphNode*>::iterator I = ArgumentSCC.begin(),
- E = ArgumentSCC.end(); I != E && !SCCCaptured; ++I) {
- ArgumentGraphNode *N = *I;
- for (SmallVectorImpl<ArgumentGraphNode*>::iterator UI = N->Uses.begin(),
- UE = N->Uses.end(); UI != UE; ++UI) {
- Argument *A = (*UI)->Definition;
- if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
- continue;
- SCCCaptured = true;
- break;
- }
- }
- if (SCCCaptured) continue;
- for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
- Argument *A = ArgumentSCC[i]->Definition;
- A->addAttr(Attribute::get(A->getContext(), B));
- ++NumNoCapture;
- Changed = true;
- }
- }
- return Changed;
- }
- /// IsFunctionMallocLike - A function is malloc-like if it returns either null
- /// or a pointer that doesn't alias any other pointer visible to the caller.
- bool FunctionAttrs::IsFunctionMallocLike(Function *F,
- SmallPtrSet<Function*, 8> &SCCNodes) const {
- SmallSetVector<Value *, 8> FlowsToReturn;
- for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
- if (ReturnInst *Ret = dyn_cast<ReturnInst>(I->getTerminator()))
- FlowsToReturn.insert(Ret->getReturnValue());
- for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
- Value *RetVal = FlowsToReturn[i];
- if (Constant *C = dyn_cast<Constant>(RetVal)) {
- if (!C->isNullValue() && !isa<UndefValue>(C))
- return false;
- continue;
- }
- if (isa<Argument>(RetVal))
- return false;
- if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
- switch (RVI->getOpcode()) {
- // Extend the analysis by looking upwards.
- case Instruction::BitCast:
- case Instruction::GetElementPtr:
- FlowsToReturn.insert(RVI->getOperand(0));
- continue;
- case Instruction::Select: {
- SelectInst *SI = cast<SelectInst>(RVI);
- FlowsToReturn.insert(SI->getTrueValue());
- FlowsToReturn.insert(SI->getFalseValue());
- continue;
- }
- case Instruction::PHI: {
- PHINode *PN = cast<PHINode>(RVI);
- for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
- FlowsToReturn.insert(PN->getIncomingValue(i));
- continue;
- }
- // Check whether the pointer came from an allocation.
- case Instruction::Alloca:
- break;
- case Instruction::Call:
- case Instruction::Invoke: {
- CallSite CS(RVI);
- if (CS.paramHasAttr(0, Attribute::NoAlias))
- break;
- if (CS.getCalledFunction() &&
- SCCNodes.count(CS.getCalledFunction()))
- break;
- } // fall-through
- default:
- return false; // Did not come from an allocation.
- }
- if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
- return false;
- }
- return true;
- }
- /// AddNoAliasAttrs - Deduce noalias attributes for the SCC.
- bool FunctionAttrs::AddNoAliasAttrs(const CallGraphSCC &SCC) {
- SmallPtrSet<Function*, 8> SCCNodes;
- // Fill SCCNodes with the elements of the SCC. Used for quickly
- // looking up whether a given CallGraphNode is in this SCC.
- for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I)
- SCCNodes.insert((*I)->getFunction());
- // Check each function in turn, determining which functions return noalias
- // pointers.
- for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
- Function *F = (*I)->getFunction();
- if (F == 0)
- // External node - skip it;
- return false;
- // Already noalias.
- if (F->doesNotAlias(0))
- continue;
- // Definitions with weak linkage may be overridden at linktime, so
- // treat them like declarations.
- if (F->isDeclaration() || F->mayBeOverridden())
- return false;
- // We annotate noalias return values, which are only applicable to
- // pointer types.
- if (!F->getReturnType()->isPointerTy())
- continue;
- if (!IsFunctionMallocLike(F, SCCNodes))
- return false;
- }
- bool MadeChange = false;
- for (CallGraphSCC::iterator I = SCC.begin(), E = SCC.end(); I != E; ++I) {
- Function *F = (*I)->getFunction();
- if (F->doesNotAlias(0) || !F->getReturnType()->isPointerTy())
- continue;
- F->setDoesNotAlias(0);
- ++NumNoAlias;
- MadeChange = true;
- }
- return MadeChange;
- }
- bool FunctionAttrs::runOnSCC(CallGraphSCC &SCC) {
- AA = &getAnalysis<AliasAnalysis>();
- bool Changed = AddReadAttrs(SCC);
- Changed |= AddNoCaptureAttrs(SCC);
- Changed |= AddNoAliasAttrs(SCC);
- return Changed;
- }
|