1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469 |
- //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements the TargetLowering class.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/CodeGen/Analysis.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineJumpTableInfo.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/DataLayout.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/GlobalVariable.h"
- #include "llvm/MC/MCAsmInfo.h"
- #include "llvm/MC/MCExpr.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Target/TargetLoweringObjectFile.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include <cctype>
- using namespace llvm;
- /// InitLibcallNames - Set default libcall names.
- ///
- static void InitLibcallNames(const char **Names) {
- Names[RTLIB::SHL_I16] = "__ashlhi3";
- Names[RTLIB::SHL_I32] = "__ashlsi3";
- Names[RTLIB::SHL_I64] = "__ashldi3";
- Names[RTLIB::SHL_I128] = "__ashlti3";
- Names[RTLIB::SRL_I16] = "__lshrhi3";
- Names[RTLIB::SRL_I32] = "__lshrsi3";
- Names[RTLIB::SRL_I64] = "__lshrdi3";
- Names[RTLIB::SRL_I128] = "__lshrti3";
- Names[RTLIB::SRA_I16] = "__ashrhi3";
- Names[RTLIB::SRA_I32] = "__ashrsi3";
- Names[RTLIB::SRA_I64] = "__ashrdi3";
- Names[RTLIB::SRA_I128] = "__ashrti3";
- Names[RTLIB::MUL_I8] = "__mulqi3";
- Names[RTLIB::MUL_I16] = "__mulhi3";
- Names[RTLIB::MUL_I32] = "__mulsi3";
- Names[RTLIB::MUL_I64] = "__muldi3";
- Names[RTLIB::MUL_I128] = "__multi3";
- Names[RTLIB::MULO_I32] = "__mulosi4";
- Names[RTLIB::MULO_I64] = "__mulodi4";
- Names[RTLIB::MULO_I128] = "__muloti4";
- Names[RTLIB::SDIV_I8] = "__divqi3";
- Names[RTLIB::SDIV_I16] = "__divhi3";
- Names[RTLIB::SDIV_I32] = "__divsi3";
- Names[RTLIB::SDIV_I64] = "__divdi3";
- Names[RTLIB::SDIV_I128] = "__divti3";
- Names[RTLIB::UDIV_I8] = "__udivqi3";
- Names[RTLIB::UDIV_I16] = "__udivhi3";
- Names[RTLIB::UDIV_I32] = "__udivsi3";
- Names[RTLIB::UDIV_I64] = "__udivdi3";
- Names[RTLIB::UDIV_I128] = "__udivti3";
- Names[RTLIB::SREM_I8] = "__modqi3";
- Names[RTLIB::SREM_I16] = "__modhi3";
- Names[RTLIB::SREM_I32] = "__modsi3";
- Names[RTLIB::SREM_I64] = "__moddi3";
- Names[RTLIB::SREM_I128] = "__modti3";
- Names[RTLIB::UREM_I8] = "__umodqi3";
- Names[RTLIB::UREM_I16] = "__umodhi3";
- Names[RTLIB::UREM_I32] = "__umodsi3";
- Names[RTLIB::UREM_I64] = "__umoddi3";
- Names[RTLIB::UREM_I128] = "__umodti3";
- // These are generally not available.
- Names[RTLIB::SDIVREM_I8] = 0;
- Names[RTLIB::SDIVREM_I16] = 0;
- Names[RTLIB::SDIVREM_I32] = 0;
- Names[RTLIB::SDIVREM_I64] = 0;
- Names[RTLIB::SDIVREM_I128] = 0;
- Names[RTLIB::UDIVREM_I8] = 0;
- Names[RTLIB::UDIVREM_I16] = 0;
- Names[RTLIB::UDIVREM_I32] = 0;
- Names[RTLIB::UDIVREM_I64] = 0;
- Names[RTLIB::UDIVREM_I128] = 0;
- Names[RTLIB::NEG_I32] = "__negsi2";
- Names[RTLIB::NEG_I64] = "__negdi2";
- Names[RTLIB::ADD_F32] = "__addsf3";
- Names[RTLIB::ADD_F64] = "__adddf3";
- Names[RTLIB::ADD_F80] = "__addxf3";
- Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
- Names[RTLIB::SUB_F32] = "__subsf3";
- Names[RTLIB::SUB_F64] = "__subdf3";
- Names[RTLIB::SUB_F80] = "__subxf3";
- Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
- Names[RTLIB::MUL_F32] = "__mulsf3";
- Names[RTLIB::MUL_F64] = "__muldf3";
- Names[RTLIB::MUL_F80] = "__mulxf3";
- Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
- Names[RTLIB::DIV_F32] = "__divsf3";
- Names[RTLIB::DIV_F64] = "__divdf3";
- Names[RTLIB::DIV_F80] = "__divxf3";
- Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
- Names[RTLIB::REM_F32] = "fmodf";
- Names[RTLIB::REM_F64] = "fmod";
- Names[RTLIB::REM_F80] = "fmodl";
- Names[RTLIB::REM_PPCF128] = "fmodl";
- Names[RTLIB::FMA_F32] = "fmaf";
- Names[RTLIB::FMA_F64] = "fma";
- Names[RTLIB::FMA_F80] = "fmal";
- Names[RTLIB::FMA_PPCF128] = "fmal";
- Names[RTLIB::POWI_F32] = "__powisf2";
- Names[RTLIB::POWI_F64] = "__powidf2";
- Names[RTLIB::POWI_F80] = "__powixf2";
- Names[RTLIB::POWI_PPCF128] = "__powitf2";
- Names[RTLIB::SQRT_F32] = "sqrtf";
- Names[RTLIB::SQRT_F64] = "sqrt";
- Names[RTLIB::SQRT_F80] = "sqrtl";
- Names[RTLIB::SQRT_PPCF128] = "sqrtl";
- Names[RTLIB::LOG_F32] = "logf";
- Names[RTLIB::LOG_F64] = "log";
- Names[RTLIB::LOG_F80] = "logl";
- Names[RTLIB::LOG_PPCF128] = "logl";
- Names[RTLIB::LOG2_F32] = "log2f";
- Names[RTLIB::LOG2_F64] = "log2";
- Names[RTLIB::LOG2_F80] = "log2l";
- Names[RTLIB::LOG2_PPCF128] = "log2l";
- Names[RTLIB::LOG10_F32] = "log10f";
- Names[RTLIB::LOG10_F64] = "log10";
- Names[RTLIB::LOG10_F80] = "log10l";
- Names[RTLIB::LOG10_PPCF128] = "log10l";
- Names[RTLIB::EXP_F32] = "expf";
- Names[RTLIB::EXP_F64] = "exp";
- Names[RTLIB::EXP_F80] = "expl";
- Names[RTLIB::EXP_PPCF128] = "expl";
- Names[RTLIB::EXP2_F32] = "exp2f";
- Names[RTLIB::EXP2_F64] = "exp2";
- Names[RTLIB::EXP2_F80] = "exp2l";
- Names[RTLIB::EXP2_PPCF128] = "exp2l";
- Names[RTLIB::SIN_F32] = "sinf";
- Names[RTLIB::SIN_F64] = "sin";
- Names[RTLIB::SIN_F80] = "sinl";
- Names[RTLIB::SIN_PPCF128] = "sinl";
- Names[RTLIB::COS_F32] = "cosf";
- Names[RTLIB::COS_F64] = "cos";
- Names[RTLIB::COS_F80] = "cosl";
- Names[RTLIB::COS_PPCF128] = "cosl";
- Names[RTLIB::POW_F32] = "powf";
- Names[RTLIB::POW_F64] = "pow";
- Names[RTLIB::POW_F80] = "powl";
- Names[RTLIB::POW_PPCF128] = "powl";
- Names[RTLIB::CEIL_F32] = "ceilf";
- Names[RTLIB::CEIL_F64] = "ceil";
- Names[RTLIB::CEIL_F80] = "ceill";
- Names[RTLIB::CEIL_PPCF128] = "ceill";
- Names[RTLIB::TRUNC_F32] = "truncf";
- Names[RTLIB::TRUNC_F64] = "trunc";
- Names[RTLIB::TRUNC_F80] = "truncl";
- Names[RTLIB::TRUNC_PPCF128] = "truncl";
- Names[RTLIB::RINT_F32] = "rintf";
- Names[RTLIB::RINT_F64] = "rint";
- Names[RTLIB::RINT_F80] = "rintl";
- Names[RTLIB::RINT_PPCF128] = "rintl";
- Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
- Names[RTLIB::NEARBYINT_F64] = "nearbyint";
- Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
- Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
- Names[RTLIB::FLOOR_F32] = "floorf";
- Names[RTLIB::FLOOR_F64] = "floor";
- Names[RTLIB::FLOOR_F80] = "floorl";
- Names[RTLIB::FLOOR_PPCF128] = "floorl";
- Names[RTLIB::COPYSIGN_F32] = "copysignf";
- Names[RTLIB::COPYSIGN_F64] = "copysign";
- Names[RTLIB::COPYSIGN_F80] = "copysignl";
- Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
- Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
- Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
- Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
- Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
- Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
- Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
- Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
- Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
- Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
- Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
- Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
- Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
- Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
- Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
- Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
- Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
- Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
- Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
- Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
- Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
- Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
- Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
- Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
- Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
- Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
- Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
- Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
- Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
- Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
- Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
- Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
- Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
- Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
- Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
- Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
- Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
- Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
- Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
- Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
- Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
- Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
- Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
- Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
- Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
- Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
- Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
- Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
- Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
- Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
- Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
- Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
- Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
- Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
- Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
- Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
- Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
- Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
- Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
- Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
- Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
- Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
- Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
- Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
- Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
- Names[RTLIB::OEQ_F32] = "__eqsf2";
- Names[RTLIB::OEQ_F64] = "__eqdf2";
- Names[RTLIB::UNE_F32] = "__nesf2";
- Names[RTLIB::UNE_F64] = "__nedf2";
- Names[RTLIB::OGE_F32] = "__gesf2";
- Names[RTLIB::OGE_F64] = "__gedf2";
- Names[RTLIB::OLT_F32] = "__ltsf2";
- Names[RTLIB::OLT_F64] = "__ltdf2";
- Names[RTLIB::OLE_F32] = "__lesf2";
- Names[RTLIB::OLE_F64] = "__ledf2";
- Names[RTLIB::OGT_F32] = "__gtsf2";
- Names[RTLIB::OGT_F64] = "__gtdf2";
- Names[RTLIB::UO_F32] = "__unordsf2";
- Names[RTLIB::UO_F64] = "__unorddf2";
- Names[RTLIB::O_F32] = "__unordsf2";
- Names[RTLIB::O_F64] = "__unorddf2";
- Names[RTLIB::MEMCPY] = "memcpy";
- Names[RTLIB::MEMMOVE] = "memmove";
- Names[RTLIB::MEMSET] = "memset";
- Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
- Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
- Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
- Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
- Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
- Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
- Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
- Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
- Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
- Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
- Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
- Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
- Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
- Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
- Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
- Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
- Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
- Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
- Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
- Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
- Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
- Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
- Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
- Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
- Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
- Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
- Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
- Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
- Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
- Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
- Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
- Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
- Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
- }
- /// InitLibcallCallingConvs - Set default libcall CallingConvs.
- ///
- static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
- for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
- CCs[i] = CallingConv::C;
- }
- }
- /// getFPEXT - Return the FPEXT_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
- if (OpVT == MVT::f32) {
- if (RetVT == MVT::f64)
- return FPEXT_F32_F64;
- }
- return UNKNOWN_LIBCALL;
- }
- /// getFPROUND - Return the FPROUND_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
- if (RetVT == MVT::f32) {
- if (OpVT == MVT::f64)
- return FPROUND_F64_F32;
- if (OpVT == MVT::f80)
- return FPROUND_F80_F32;
- if (OpVT == MVT::ppcf128)
- return FPROUND_PPCF128_F32;
- } else if (RetVT == MVT::f64) {
- if (OpVT == MVT::f80)
- return FPROUND_F80_F64;
- if (OpVT == MVT::ppcf128)
- return FPROUND_PPCF128_F64;
- }
- return UNKNOWN_LIBCALL;
- }
- /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
- if (OpVT == MVT::f32) {
- if (RetVT == MVT::i8)
- return FPTOSINT_F32_I8;
- if (RetVT == MVT::i16)
- return FPTOSINT_F32_I16;
- if (RetVT == MVT::i32)
- return FPTOSINT_F32_I32;
- if (RetVT == MVT::i64)
- return FPTOSINT_F32_I64;
- if (RetVT == MVT::i128)
- return FPTOSINT_F32_I128;
- } else if (OpVT == MVT::f64) {
- if (RetVT == MVT::i8)
- return FPTOSINT_F64_I8;
- if (RetVT == MVT::i16)
- return FPTOSINT_F64_I16;
- if (RetVT == MVT::i32)
- return FPTOSINT_F64_I32;
- if (RetVT == MVT::i64)
- return FPTOSINT_F64_I64;
- if (RetVT == MVT::i128)
- return FPTOSINT_F64_I128;
- } else if (OpVT == MVT::f80) {
- if (RetVT == MVT::i32)
- return FPTOSINT_F80_I32;
- if (RetVT == MVT::i64)
- return FPTOSINT_F80_I64;
- if (RetVT == MVT::i128)
- return FPTOSINT_F80_I128;
- } else if (OpVT == MVT::ppcf128) {
- if (RetVT == MVT::i32)
- return FPTOSINT_PPCF128_I32;
- if (RetVT == MVT::i64)
- return FPTOSINT_PPCF128_I64;
- if (RetVT == MVT::i128)
- return FPTOSINT_PPCF128_I128;
- }
- return UNKNOWN_LIBCALL;
- }
- /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
- if (OpVT == MVT::f32) {
- if (RetVT == MVT::i8)
- return FPTOUINT_F32_I8;
- if (RetVT == MVT::i16)
- return FPTOUINT_F32_I16;
- if (RetVT == MVT::i32)
- return FPTOUINT_F32_I32;
- if (RetVT == MVT::i64)
- return FPTOUINT_F32_I64;
- if (RetVT == MVT::i128)
- return FPTOUINT_F32_I128;
- } else if (OpVT == MVT::f64) {
- if (RetVT == MVT::i8)
- return FPTOUINT_F64_I8;
- if (RetVT == MVT::i16)
- return FPTOUINT_F64_I16;
- if (RetVT == MVT::i32)
- return FPTOUINT_F64_I32;
- if (RetVT == MVT::i64)
- return FPTOUINT_F64_I64;
- if (RetVT == MVT::i128)
- return FPTOUINT_F64_I128;
- } else if (OpVT == MVT::f80) {
- if (RetVT == MVT::i32)
- return FPTOUINT_F80_I32;
- if (RetVT == MVT::i64)
- return FPTOUINT_F80_I64;
- if (RetVT == MVT::i128)
- return FPTOUINT_F80_I128;
- } else if (OpVT == MVT::ppcf128) {
- if (RetVT == MVT::i32)
- return FPTOUINT_PPCF128_I32;
- if (RetVT == MVT::i64)
- return FPTOUINT_PPCF128_I64;
- if (RetVT == MVT::i128)
- return FPTOUINT_PPCF128_I128;
- }
- return UNKNOWN_LIBCALL;
- }
- /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
- if (OpVT == MVT::i32) {
- if (RetVT == MVT::f32)
- return SINTTOFP_I32_F32;
- if (RetVT == MVT::f64)
- return SINTTOFP_I32_F64;
- if (RetVT == MVT::f80)
- return SINTTOFP_I32_F80;
- if (RetVT == MVT::ppcf128)
- return SINTTOFP_I32_PPCF128;
- } else if (OpVT == MVT::i64) {
- if (RetVT == MVT::f32)
- return SINTTOFP_I64_F32;
- if (RetVT == MVT::f64)
- return SINTTOFP_I64_F64;
- if (RetVT == MVT::f80)
- return SINTTOFP_I64_F80;
- if (RetVT == MVT::ppcf128)
- return SINTTOFP_I64_PPCF128;
- } else if (OpVT == MVT::i128) {
- if (RetVT == MVT::f32)
- return SINTTOFP_I128_F32;
- if (RetVT == MVT::f64)
- return SINTTOFP_I128_F64;
- if (RetVT == MVT::f80)
- return SINTTOFP_I128_F80;
- if (RetVT == MVT::ppcf128)
- return SINTTOFP_I128_PPCF128;
- }
- return UNKNOWN_LIBCALL;
- }
- /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
- /// UNKNOWN_LIBCALL if there is none.
- RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
- if (OpVT == MVT::i32) {
- if (RetVT == MVT::f32)
- return UINTTOFP_I32_F32;
- if (RetVT == MVT::f64)
- return UINTTOFP_I32_F64;
- if (RetVT == MVT::f80)
- return UINTTOFP_I32_F80;
- if (RetVT == MVT::ppcf128)
- return UINTTOFP_I32_PPCF128;
- } else if (OpVT == MVT::i64) {
- if (RetVT == MVT::f32)
- return UINTTOFP_I64_F32;
- if (RetVT == MVT::f64)
- return UINTTOFP_I64_F64;
- if (RetVT == MVT::f80)
- return UINTTOFP_I64_F80;
- if (RetVT == MVT::ppcf128)
- return UINTTOFP_I64_PPCF128;
- } else if (OpVT == MVT::i128) {
- if (RetVT == MVT::f32)
- return UINTTOFP_I128_F32;
- if (RetVT == MVT::f64)
- return UINTTOFP_I128_F64;
- if (RetVT == MVT::f80)
- return UINTTOFP_I128_F80;
- if (RetVT == MVT::ppcf128)
- return UINTTOFP_I128_PPCF128;
- }
- return UNKNOWN_LIBCALL;
- }
- /// InitCmpLibcallCCs - Set default comparison libcall CC.
- ///
- static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
- memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
- CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
- CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
- CCs[RTLIB::UNE_F32] = ISD::SETNE;
- CCs[RTLIB::UNE_F64] = ISD::SETNE;
- CCs[RTLIB::OGE_F32] = ISD::SETGE;
- CCs[RTLIB::OGE_F64] = ISD::SETGE;
- CCs[RTLIB::OLT_F32] = ISD::SETLT;
- CCs[RTLIB::OLT_F64] = ISD::SETLT;
- CCs[RTLIB::OLE_F32] = ISD::SETLE;
- CCs[RTLIB::OLE_F64] = ISD::SETLE;
- CCs[RTLIB::OGT_F32] = ISD::SETGT;
- CCs[RTLIB::OGT_F64] = ISD::SETGT;
- CCs[RTLIB::UO_F32] = ISD::SETNE;
- CCs[RTLIB::UO_F64] = ISD::SETNE;
- CCs[RTLIB::O_F32] = ISD::SETEQ;
- CCs[RTLIB::O_F64] = ISD::SETEQ;
- }
- /// NOTE: The constructor takes ownership of TLOF.
- TargetLowering::TargetLowering(const TargetMachine &tm,
- const TargetLoweringObjectFile *tlof)
- : TM(tm), TD(TM.getDataLayout()), TLOF(*tlof) {
- // All operations default to being supported.
- memset(OpActions, 0, sizeof(OpActions));
- memset(LoadExtActions, 0, sizeof(LoadExtActions));
- memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
- memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
- memset(CondCodeActions, 0, sizeof(CondCodeActions));
- // Set default actions for various operations.
- for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
- // Default all indexed load / store to expand.
- for (unsigned IM = (unsigned)ISD::PRE_INC;
- IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
- setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
- setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
- }
- // These operations default to expand.
- setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
- setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
- }
- // Most targets ignore the @llvm.prefetch intrinsic.
- setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
- // ConstantFP nodes default to expand. Targets can either change this to
- // Legal, in which case all fp constants are legal, or use isFPImmLegal()
- // to optimize expansions for certain constants.
- setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
- setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
- // These library functions default to expand.
- setOperationAction(ISD::FLOG , MVT::f16, Expand);
- setOperationAction(ISD::FLOG2, MVT::f16, Expand);
- setOperationAction(ISD::FLOG10, MVT::f16, Expand);
- setOperationAction(ISD::FEXP , MVT::f16, Expand);
- setOperationAction(ISD::FEXP2, MVT::f16, Expand);
- setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
- setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
- setOperationAction(ISD::FCEIL, MVT::f16, Expand);
- setOperationAction(ISD::FRINT, MVT::f16, Expand);
- setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
- setOperationAction(ISD::FLOG , MVT::f32, Expand);
- setOperationAction(ISD::FLOG2, MVT::f32, Expand);
- setOperationAction(ISD::FLOG10, MVT::f32, Expand);
- setOperationAction(ISD::FEXP , MVT::f32, Expand);
- setOperationAction(ISD::FEXP2, MVT::f32, Expand);
- setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
- setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
- setOperationAction(ISD::FCEIL, MVT::f32, Expand);
- setOperationAction(ISD::FRINT, MVT::f32, Expand);
- setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
- setOperationAction(ISD::FLOG , MVT::f64, Expand);
- setOperationAction(ISD::FLOG2, MVT::f64, Expand);
- setOperationAction(ISD::FLOG10, MVT::f64, Expand);
- setOperationAction(ISD::FEXP , MVT::f64, Expand);
- setOperationAction(ISD::FEXP2, MVT::f64, Expand);
- setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
- setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
- setOperationAction(ISD::FCEIL, MVT::f64, Expand);
- setOperationAction(ISD::FRINT, MVT::f64, Expand);
- setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
- // Default ISD::TRAP to expand (which turns it into abort).
- setOperationAction(ISD::TRAP, MVT::Other, Expand);
- // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
- // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
- //
- setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
- IsLittleEndian = TD->isLittleEndian();
- PointerTy = MVT::getIntegerVT(8*TD->getPointerSize(0));
- memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
- memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
- maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
- maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
- = maxStoresPerMemmoveOptSize = 4;
- benefitFromCodePlacementOpt = false;
- UseUnderscoreSetJmp = false;
- UseUnderscoreLongJmp = false;
- SelectIsExpensive = false;
- IntDivIsCheap = false;
- Pow2DivIsCheap = false;
- JumpIsExpensive = false;
- predictableSelectIsExpensive = false;
- StackPointerRegisterToSaveRestore = 0;
- ExceptionPointerRegister = 0;
- ExceptionSelectorRegister = 0;
- BooleanContents = UndefinedBooleanContent;
- BooleanVectorContents = UndefinedBooleanContent;
- SchedPreferenceInfo = Sched::ILP;
- JumpBufSize = 0;
- JumpBufAlignment = 0;
- MinFunctionAlignment = 0;
- PrefFunctionAlignment = 0;
- PrefLoopAlignment = 0;
- MinStackArgumentAlignment = 1;
- ShouldFoldAtomicFences = false;
- InsertFencesForAtomic = false;
- SupportJumpTables = true;
- MinimumJumpTableEntries = 4;
- InitLibcallNames(LibcallRoutineNames);
- InitCmpLibcallCCs(CmpLibcallCCs);
- InitLibcallCallingConvs(LibcallCallingConvs);
- }
- TargetLowering::~TargetLowering() {
- delete &TLOF;
- }
- MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
- return MVT::getIntegerVT(8*TD->getPointerSize(0));
- }
- /// canOpTrap - Returns true if the operation can trap for the value type.
- /// VT must be a legal type.
- bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
- assert(isTypeLegal(VT));
- switch (Op) {
- default:
- return false;
- case ISD::FDIV:
- case ISD::FREM:
- case ISD::SDIV:
- case ISD::UDIV:
- case ISD::SREM:
- case ISD::UREM:
- return true;
- }
- }
- static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
- unsigned &NumIntermediates,
- EVT &RegisterVT,
- TargetLowering *TLI) {
- // Figure out the right, legal destination reg to copy into.
- unsigned NumElts = VT.getVectorNumElements();
- MVT EltTy = VT.getVectorElementType();
- unsigned NumVectorRegs = 1;
- // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
- // could break down into LHS/RHS like LegalizeDAG does.
- if (!isPowerOf2_32(NumElts)) {
- NumVectorRegs = NumElts;
- NumElts = 1;
- }
- // Divide the input until we get to a supported size. This will always
- // end with a scalar if the target doesn't support vectors.
- while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
- NumElts >>= 1;
- NumVectorRegs <<= 1;
- }
- NumIntermediates = NumVectorRegs;
- MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
- if (!TLI->isTypeLegal(NewVT))
- NewVT = EltTy;
- IntermediateVT = NewVT;
- unsigned NewVTSize = NewVT.getSizeInBits();
- // Convert sizes such as i33 to i64.
- if (!isPowerOf2_32(NewVTSize))
- NewVTSize = NextPowerOf2(NewVTSize);
- EVT DestVT = TLI->getRegisterType(NewVT);
- RegisterVT = DestVT;
- if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
- return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
- // Otherwise, promotion or legal types use the same number of registers as
- // the vector decimated to the appropriate level.
- return NumVectorRegs;
- }
- /// isLegalRC - Return true if the value types that can be represented by the
- /// specified register class are all legal.
- bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
- for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
- I != E; ++I) {
- if (isTypeLegal(*I))
- return true;
- }
- return false;
- }
- /// findRepresentativeClass - Return the largest legal super-reg register class
- /// of the register class for the specified type and its associated "cost".
- std::pair<const TargetRegisterClass*, uint8_t>
- TargetLowering::findRepresentativeClass(EVT VT) const {
- const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
- const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
- if (!RC)
- return std::make_pair(RC, 0);
- // Compute the set of all super-register classes.
- BitVector SuperRegRC(TRI->getNumRegClasses());
- for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
- SuperRegRC.setBitsInMask(RCI.getMask());
- // Find the first legal register class with the largest spill size.
- const TargetRegisterClass *BestRC = RC;
- for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
- const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
- // We want the largest possible spill size.
- if (SuperRC->getSize() <= BestRC->getSize())
- continue;
- if (!isLegalRC(SuperRC))
- continue;
- BestRC = SuperRC;
- }
- return std::make_pair(BestRC, 1);
- }
- /// computeRegisterProperties - Once all of the register classes are added,
- /// this allows us to compute derived properties we expose.
- void TargetLowering::computeRegisterProperties() {
- assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
- "Too many value types for ValueTypeActions to hold!");
- // Everything defaults to needing one register.
- for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
- NumRegistersForVT[i] = 1;
- RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
- }
- // ...except isVoid, which doesn't need any registers.
- NumRegistersForVT[MVT::isVoid] = 0;
- // Find the largest integer register class.
- unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
- for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
- assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
- // Every integer value type larger than this largest register takes twice as
- // many registers to represent as the previous ValueType.
- for (unsigned ExpandedReg = LargestIntReg + 1;
- ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
- NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
- RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
- TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
- ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
- TypeExpandInteger);
- }
- // Inspect all of the ValueType's smaller than the largest integer
- // register to see which ones need promotion.
- unsigned LegalIntReg = LargestIntReg;
- for (unsigned IntReg = LargestIntReg - 1;
- IntReg >= (unsigned)MVT::i1; --IntReg) {
- MVT IVT = (MVT::SimpleValueType)IntReg;
- if (isTypeLegal(IVT)) {
- LegalIntReg = IntReg;
- } else {
- RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
- (const MVT::SimpleValueType)LegalIntReg;
- ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
- }
- }
- // ppcf128 type is really two f64's.
- if (!isTypeLegal(MVT::ppcf128)) {
- NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
- RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
- TransformToType[MVT::ppcf128] = MVT::f64;
- ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
- }
- // Decide how to handle f64. If the target does not have native f64 support,
- // expand it to i64 and we will be generating soft float library calls.
- if (!isTypeLegal(MVT::f64)) {
- NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
- RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
- TransformToType[MVT::f64] = MVT::i64;
- ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
- }
- // Decide how to handle f32. If the target does not have native support for
- // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
- if (!isTypeLegal(MVT::f32)) {
- if (isTypeLegal(MVT::f64)) {
- NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
- RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
- TransformToType[MVT::f32] = MVT::f64;
- ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
- } else {
- NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
- RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
- TransformToType[MVT::f32] = MVT::i32;
- ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
- }
- }
- // Loop over all of the vector value types to see which need transformations.
- for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
- i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
- MVT VT = (MVT::SimpleValueType)i;
- if (isTypeLegal(VT)) continue;
- // Determine if there is a legal wider type. If so, we should promote to
- // that wider vector type.
- EVT EltVT = VT.getVectorElementType();
- unsigned NElts = VT.getVectorNumElements();
- if (NElts != 1 && !shouldSplitVectorElementType(EltVT)) {
- bool IsLegalWiderType = false;
- // First try to promote the elements of integer vectors. If no legal
- // promotion was found, fallback to the widen-vector method.
- for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
- EVT SVT = (MVT::SimpleValueType)nVT;
- // Promote vectors of integers to vectors with the same number
- // of elements, with a wider element type.
- if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
- && SVT.getVectorNumElements() == NElts &&
- isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
- TransformToType[i] = SVT;
- RegisterTypeForVT[i] = SVT;
- NumRegistersForVT[i] = 1;
- ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
- IsLegalWiderType = true;
- break;
- }
- }
- if (IsLegalWiderType) continue;
- // Try to widen the vector.
- for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
- EVT SVT = (MVT::SimpleValueType)nVT;
- if (SVT.getVectorElementType() == EltVT &&
- SVT.getVectorNumElements() > NElts &&
- isTypeLegal(SVT)) {
- TransformToType[i] = SVT;
- RegisterTypeForVT[i] = SVT;
- NumRegistersForVT[i] = 1;
- ValueTypeActions.setTypeAction(VT, TypeWidenVector);
- IsLegalWiderType = true;
- break;
- }
- }
- if (IsLegalWiderType) continue;
- }
- MVT IntermediateVT;
- EVT RegisterVT;
- unsigned NumIntermediates;
- NumRegistersForVT[i] =
- getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
- RegisterVT, this);
- RegisterTypeForVT[i] = RegisterVT;
- EVT NVT = VT.getPow2VectorType();
- if (NVT == VT) {
- // Type is already a power of 2. The default action is to split.
- TransformToType[i] = MVT::Other;
- unsigned NumElts = VT.getVectorNumElements();
- ValueTypeActions.setTypeAction(VT,
- NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
- } else {
- TransformToType[i] = NVT;
- ValueTypeActions.setTypeAction(VT, TypeWidenVector);
- }
- }
- // Determine the 'representative' register class for each value type.
- // An representative register class is the largest (meaning one which is
- // not a sub-register class / subreg register class) legal register class for
- // a group of value types. For example, on i386, i8, i16, and i32
- // representative would be GR32; while on x86_64 it's GR64.
- for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
- const TargetRegisterClass* RRC;
- uint8_t Cost;
- tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
- RepRegClassForVT[i] = RRC;
- RepRegClassCostForVT[i] = Cost;
- }
- }
- const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
- return NULL;
- }
- EVT TargetLowering::getSetCCResultType(EVT VT) const {
- assert(!VT.isVector() && "No default SetCC type for vectors!");
- return getPointerTy(0).SimpleTy;
- }
- MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
- return MVT::i32; // return the default value
- }
- /// getVectorTypeBreakdown - Vector types are broken down into some number of
- /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
- /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
- /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
- ///
- /// This method returns the number of registers needed, and the VT for each
- /// register. It also returns the VT and quantity of the intermediate values
- /// before they are promoted/expanded.
- ///
- unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
- EVT &IntermediateVT,
- unsigned &NumIntermediates,
- EVT &RegisterVT) const {
- unsigned NumElts = VT.getVectorNumElements();
- // If there is a wider vector type with the same element type as this one,
- // or a promoted vector type that has the same number of elements which
- // are wider, then we should convert to that legal vector type.
- // This handles things like <2 x float> -> <4 x float> and
- // <4 x i1> -> <4 x i32>.
- LegalizeTypeAction TA = getTypeAction(Context, VT);
- if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
- RegisterVT = getTypeToTransformTo(Context, VT);
- if (isTypeLegal(RegisterVT)) {
- IntermediateVT = RegisterVT;
- NumIntermediates = 1;
- return 1;
- }
- }
- // Figure out the right, legal destination reg to copy into.
- EVT EltTy = VT.getVectorElementType();
- unsigned NumVectorRegs = 1;
- // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
- // could break down into LHS/RHS like LegalizeDAG does.
- if (!isPowerOf2_32(NumElts)) {
- NumVectorRegs = NumElts;
- NumElts = 1;
- }
- // Divide the input until we get to a supported size. This will always
- // end with a scalar if the target doesn't support vectors.
- while (NumElts > 1 && !isTypeLegal(
- EVT::getVectorVT(Context, EltTy, NumElts))) {
- NumElts >>= 1;
- NumVectorRegs <<= 1;
- }
- NumIntermediates = NumVectorRegs;
- EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
- if (!isTypeLegal(NewVT))
- NewVT = EltTy;
- IntermediateVT = NewVT;
- EVT DestVT = getRegisterType(Context, NewVT);
- RegisterVT = DestVT;
- unsigned NewVTSize = NewVT.getSizeInBits();
- // Convert sizes such as i33 to i64.
- if (!isPowerOf2_32(NewVTSize))
- NewVTSize = NextPowerOf2(NewVTSize);
- if (DestVT.bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
- return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
- // Otherwise, promotion or legal types use the same number of registers as
- // the vector decimated to the appropriate level.
- return NumVectorRegs;
- }
- /// Get the EVTs and ArgFlags collections that represent the legalized return
- /// type of the given function. This does not require a DAG or a return value,
- /// and is suitable for use before any DAGs for the function are constructed.
- /// TODO: Move this out of TargetLowering.cpp.
- void llvm::GetReturnInfo(Type* ReturnType, Attribute attr,
- SmallVectorImpl<ISD::OutputArg> &Outs,
- const TargetLowering &TLI) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, ReturnType, ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0) return;
- for (unsigned j = 0, f = NumValues; j != f; ++j) {
- EVT VT = ValueVTs[j];
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
- if (attr.hasAttribute(Attribute::SExt))
- ExtendKind = ISD::SIGN_EXTEND;
- else if (attr.hasAttribute(Attribute::ZExt))
- ExtendKind = ISD::ZERO_EXTEND;
- // FIXME: C calling convention requires the return type to be promoted to
- // at least 32-bit. But this is not necessary for non-C calling
- // conventions. The frontend should mark functions whose return values
- // require promoting with signext or zeroext attributes.
- if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
- EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
- if (VT.bitsLT(MinVT))
- VT = MinVT;
- }
- unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
- EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
- // 'inreg' on function refers to return value
- ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
- if (attr.hasAttribute(Attribute::InReg))
- Flags.setInReg();
- // Propagate extension type if any
- if (attr.hasAttribute(Attribute::SExt))
- Flags.setSExt();
- else if (attr.hasAttribute(Attribute::ZExt))
- Flags.setZExt();
- for (unsigned i = 0; i < NumParts; ++i)
- Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true, 0, 0));
- }
- }
- /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
- /// function arguments in the caller parameter area. This is the actual
- /// alignment, not its logarithm.
- unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const {
- return TD->getCallFrameTypeAlignment(Ty);
- }
- /// getJumpTableEncoding - Return the entry encoding for a jump table in the
- /// current function. The returned value is a member of the
- /// MachineJumpTableInfo::JTEntryKind enum.
- unsigned TargetLowering::getJumpTableEncoding() const {
- // In non-pic modes, just use the address of a block.
- if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
- return MachineJumpTableInfo::EK_BlockAddress;
- // In PIC mode, if the target supports a GPRel32 directive, use it.
- if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
- return MachineJumpTableInfo::EK_GPRel32BlockAddress;
- // Otherwise, use a label difference.
- return MachineJumpTableInfo::EK_LabelDifference32;
- }
- SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
- SelectionDAG &DAG) const {
- // If our PIC model is GP relative, use the global offset table as the base.
- unsigned JTEncoding = getJumpTableEncoding();
- if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
- (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
- return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
- return Table;
- }
- /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
- /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
- /// MCExpr.
- const MCExpr *
- TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
- unsigned JTI,MCContext &Ctx) const{
- // The normal PIC reloc base is the label at the start of the jump table.
- return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
- }
- bool
- TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
- // Assume that everything is safe in static mode.
- if (getTargetMachine().getRelocationModel() == Reloc::Static)
- return true;
- // In dynamic-no-pic mode, assume that known defined values are safe.
- if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
- GA &&
- !GA->getGlobal()->isDeclaration() &&
- !GA->getGlobal()->isWeakForLinker())
- return true;
- // Otherwise assume nothing is safe.
- return false;
- }
- //===----------------------------------------------------------------------===//
- // Optimization Methods
- //===----------------------------------------------------------------------===//
- /// ShrinkDemandedConstant - Check to see if the specified operand of the
- /// specified instruction is a constant integer. If so, check to see if there
- /// are any bits set in the constant that are not demanded. If so, shrink the
- /// constant and return true.
- bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
- const APInt &Demanded) {
- DebugLoc dl = Op.getDebugLoc();
- // FIXME: ISD::SELECT, ISD::SELECT_CC
- switch (Op.getOpcode()) {
- default: break;
- case ISD::XOR:
- case ISD::AND:
- case ISD::OR: {
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
- if (!C) return false;
- if (Op.getOpcode() == ISD::XOR &&
- (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
- return false;
- // if we can expand it to have all bits set, do it
- if (C->getAPIntValue().intersects(~Demanded)) {
- EVT VT = Op.getValueType();
- SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
- DAG.getConstant(Demanded &
- C->getAPIntValue(),
- VT));
- return CombineTo(Op, New);
- }
- break;
- }
- }
- return false;
- }
- /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
- /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
- /// cast, but it could be generalized for targets with other types of
- /// implicit widening casts.
- bool
- TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
- unsigned BitWidth,
- const APInt &Demanded,
- DebugLoc dl) {
- assert(Op.getNumOperands() == 2 &&
- "ShrinkDemandedOp only supports binary operators!");
- assert(Op.getNode()->getNumValues() == 1 &&
- "ShrinkDemandedOp only supports nodes with one result!");
- // Don't do this if the node has another user, which may require the
- // full value.
- if (!Op.getNode()->hasOneUse())
- return false;
- // Search for the smallest integer type with free casts to and from
- // Op's type. For expedience, just check power-of-2 integer types.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
- if (!isPowerOf2_32(SmallVTBits))
- SmallVTBits = NextPowerOf2(SmallVTBits);
- for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
- EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
- if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
- TLI.isZExtFree(SmallVT, Op.getValueType())) {
- // We found a type with free casts.
- SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
- DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
- Op.getNode()->getOperand(0)),
- DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
- Op.getNode()->getOperand(1)));
- SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
- return CombineTo(Op, Z);
- }
- }
- return false;
- }
- /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
- /// DemandedMask bits of the result of Op are ever used downstream. If we can
- /// use this information to simplify Op, create a new simplified DAG node and
- /// return true, returning the original and new nodes in Old and New. Otherwise,
- /// analyze the expression and return a mask of KnownOne and KnownZero bits for
- /// the expression (used to simplify the caller). The KnownZero/One bits may
- /// only be accurate for those bits in the DemandedMask.
- bool TargetLowering::SimplifyDemandedBits(SDValue Op,
- const APInt &DemandedMask,
- APInt &KnownZero,
- APInt &KnownOne,
- TargetLoweringOpt &TLO,
- unsigned Depth) const {
- unsigned BitWidth = DemandedMask.getBitWidth();
- assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
- "Mask size mismatches value type size!");
- APInt NewMask = DemandedMask;
- DebugLoc dl = Op.getDebugLoc();
- // Don't know anything.
- KnownZero = KnownOne = APInt(BitWidth, 0);
- // Other users may use these bits.
- if (!Op.getNode()->hasOneUse()) {
- if (Depth != 0) {
- // If not at the root, Just compute the KnownZero/KnownOne bits to
- // simplify things downstream.
- TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
- return false;
- }
- // If this is the root being simplified, allow it to have multiple uses,
- // just set the NewMask to all bits.
- NewMask = APInt::getAllOnesValue(BitWidth);
- } else if (DemandedMask == 0) {
- // Not demanding any bits from Op.
- if (Op.getOpcode() != ISD::UNDEF)
- return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
- return false;
- } else if (Depth == 6) { // Limit search depth.
- return false;
- }
- APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
- switch (Op.getOpcode()) {
- case ISD::Constant:
- // We know all of the bits for a constant!
- KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
- KnownZero = ~KnownOne;
- return false; // Don't fall through, will infinitely loop.
- case ISD::AND:
- // If the RHS is a constant, check to see if the LHS would be zero without
- // using the bits from the RHS. Below, we use knowledge about the RHS to
- // simplify the LHS, here we're using information from the LHS to simplify
- // the RHS.
- if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- APInt LHSZero, LHSOne;
- // Do not increment Depth here; that can cause an infinite loop.
- TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
- // If the LHS already has zeros where RHSC does, this and is dead.
- if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
- return TLO.CombineTo(Op, Op.getOperand(0));
- // If any of the set bits in the RHS are known zero on the LHS, shrink
- // the constant.
- if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
- return true;
- }
- if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
- KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
- KnownZero2, KnownOne2, TLO, Depth+1))
- return true;
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // If all of the demanded bits are known one on one side, return the other.
- // These bits cannot contribute to the result of the 'and'.
- if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
- return TLO.CombineTo(Op, Op.getOperand(0));
- if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
- return TLO.CombineTo(Op, Op.getOperand(1));
- // If all of the demanded bits in the inputs are known zeros, return zero.
- if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
- return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
- // If the RHS is a constant, see if we can simplify it.
- if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
- return true;
- // If the operation can be done in a smaller type, do so.
- if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
- return true;
- // Output known-1 bits are only known if set in both the LHS & RHS.
- KnownOne &= KnownOne2;
- // Output known-0 are known to be clear if zero in either the LHS | RHS.
- KnownZero |= KnownZero2;
- break;
- case ISD::OR:
- if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
- KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
- KnownZero2, KnownOne2, TLO, Depth+1))
- return true;
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'or'.
- if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
- return TLO.CombineTo(Op, Op.getOperand(0));
- if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
- return TLO.CombineTo(Op, Op.getOperand(1));
- // If all of the potentially set bits on one side are known to be set on
- // the other side, just use the 'other' side.
- if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
- return TLO.CombineTo(Op, Op.getOperand(0));
- if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
- return TLO.CombineTo(Op, Op.getOperand(1));
- // If the RHS is a constant, see if we can simplify it.
- if (TLO.ShrinkDemandedConstant(Op, NewMask))
- return true;
- // If the operation can be done in a smaller type, do so.
- if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
- return true;
- // Output known-0 bits are only known if clear in both the LHS & RHS.
- KnownZero &= KnownZero2;
- // Output known-1 are known to be set if set in either the LHS | RHS.
- KnownOne |= KnownOne2;
- break;
- case ISD::XOR:
- if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
- KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
- KnownOne2, TLO, Depth+1))
- return true;
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // If all of the demanded bits are known zero on one side, return the other.
- // These bits cannot contribute to the result of the 'xor'.
- if ((KnownZero & NewMask) == NewMask)
- return TLO.CombineTo(Op, Op.getOperand(0));
- if ((KnownZero2 & NewMask) == NewMask)
- return TLO.CombineTo(Op, Op.getOperand(1));
- // If the operation can be done in a smaller type, do so.
- if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
- return true;
- // If all of the unknown bits are known to be zero on one side or the other
- // (but not both) turn this into an *inclusive* or.
- // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
- if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
- Op.getOperand(0),
- Op.getOperand(1)));
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
- // If all of the demanded bits on one side are known, and all of the set
- // bits on that side are also known to be set on the other side, turn this
- // into an AND, as we know the bits will be cleared.
- // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
- // NB: it is okay if more bits are known than are requested
- if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
- if (KnownOne == KnownOne2) { // set bits are the same on both sides
- EVT VT = Op.getValueType();
- SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
- Op.getOperand(0), ANDC));
- }
- }
- // If the RHS is a constant, see if we can simplify it.
- // for XOR, we prefer to force bits to 1 if they will make a -1.
- // if we can't force bits, try to shrink constant
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- APInt Expanded = C->getAPIntValue() | (~NewMask);
- // if we can expand it to have all bits set, do it
- if (Expanded.isAllOnesValue()) {
- if (Expanded != C->getAPIntValue()) {
- EVT VT = Op.getValueType();
- SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
- TLO.DAG.getConstant(Expanded, VT));
- return TLO.CombineTo(Op, New);
- }
- // if it already has all the bits set, nothing to change
- // but don't shrink either!
- } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
- return true;
- }
- }
- KnownZero = KnownZeroOut;
- KnownOne = KnownOneOut;
- break;
- case ISD::SELECT:
- if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
- KnownOne, TLO, Depth+1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
- KnownOne2, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // If the operands are constants, see if we can simplify them.
- if (TLO.ShrinkDemandedConstant(Op, NewMask))
- return true;
- // Only known if known in both the LHS and RHS.
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
- break;
- case ISD::SELECT_CC:
- if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
- KnownOne, TLO, Depth+1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
- KnownOne2, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // If the operands are constants, see if we can simplify them.
- if (TLO.ShrinkDemandedConstant(Op, NewMask))
- return true;
- // Only known if known in both the LHS and RHS.
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
- break;
- case ISD::SHL:
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned ShAmt = SA->getZExtValue();
- SDValue InOp = Op.getOperand(0);
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- break;
- // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
- // single shift. We can do this if the bottom bits (which are shifted
- // out) are never demanded.
- if (InOp.getOpcode() == ISD::SRL &&
- isa<ConstantSDNode>(InOp.getOperand(1))) {
- if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
- unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
- unsigned Opc = ISD::SHL;
- int Diff = ShAmt-C1;
- if (Diff < 0) {
- Diff = -Diff;
- Opc = ISD::SRL;
- }
- SDValue NewSA =
- TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
- EVT VT = Op.getValueType();
- return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
- InOp.getOperand(0), NewSA));
- }
- }
- if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
- // are not demanded. This will likely allow the anyext to be folded away.
- if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
- SDValue InnerOp = InOp.getNode()->getOperand(0);
- EVT InnerVT = InnerOp.getValueType();
- unsigned InnerBits = InnerVT.getSizeInBits();
- if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
- isTypeDesirableForOp(ISD::SHL, InnerVT)) {
- EVT ShTy = getShiftAmountTy(InnerVT);
- if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
- ShTy = InnerVT;
- SDValue NarrowShl =
- TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
- TLO.DAG.getConstant(ShAmt, ShTy));
- return
- TLO.CombineTo(Op,
- TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
- NarrowShl));
- }
- }
- KnownZero <<= SA->getZExtValue();
- KnownOne <<= SA->getZExtValue();
- // low bits known zero.
- KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
- }
- break;
- case ISD::SRL:
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- EVT VT = Op.getValueType();
- unsigned ShAmt = SA->getZExtValue();
- unsigned VTSize = VT.getSizeInBits();
- SDValue InOp = Op.getOperand(0);
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- break;
- // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
- // single shift. We can do this if the top bits (which are shifted out)
- // are never demanded.
- if (InOp.getOpcode() == ISD::SHL &&
- isa<ConstantSDNode>(InOp.getOperand(1))) {
- if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
- unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
- unsigned Opc = ISD::SRL;
- int Diff = ShAmt-C1;
- if (Diff < 0) {
- Diff = -Diff;
- Opc = ISD::SHL;
- }
- SDValue NewSA =
- TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
- return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
- InOp.getOperand(0), NewSA));
- }
- }
- // Compute the new bits that are at the top now.
- if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero = KnownZero.lshr(ShAmt);
- KnownOne = KnownOne.lshr(ShAmt);
- APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
- KnownZero |= HighBits; // High bits known zero.
- }
- break;
- case ISD::SRA:
- // If this is an arithmetic shift right and only the low-bit is set, we can
- // always convert this into a logical shr, even if the shift amount is
- // variable. The low bit of the shift cannot be an input sign bit unless
- // the shift amount is >= the size of the datatype, which is undefined.
- if (NewMask == 1)
- return TLO.CombineTo(Op,
- TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
- Op.getOperand(0), Op.getOperand(1)));
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- EVT VT = Op.getValueType();
- unsigned ShAmt = SA->getZExtValue();
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- break;
- APInt InDemandedMask = (NewMask << ShAmt);
- // If any of the demanded bits are produced by the sign extension, we also
- // demand the input sign bit.
- APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
- if (HighBits.intersects(NewMask))
- InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
- if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero = KnownZero.lshr(ShAmt);
- KnownOne = KnownOne.lshr(ShAmt);
- // Handle the sign bit, adjusted to where it is now in the mask.
- APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
- // If the input sign bit is known to be zero, or if none of the top bits
- // are demanded, turn this into an unsigned shift right.
- if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
- Op.getOperand(0),
- Op.getOperand(1)));
- } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
- KnownOne |= HighBits;
- }
- }
- break;
- case ISD::SIGN_EXTEND_INREG: {
- EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
- // If we only care about the highest bit, don't bother shifting right.
- if (MsbMask == DemandedMask) {
- unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
- SDValue InOp = Op.getOperand(0);
- // Compute the correct shift amount type, which must be getShiftAmountTy
- // for scalar types after legalization.
- EVT ShiftAmtTy = Op.getValueType();
- if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
- ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
- SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
- Op.getValueType(), InOp, ShiftAmt));
- }
- // Sign extension. Compute the demanded bits in the result that are not
- // present in the input.
- APInt NewBits =
- APInt::getHighBitsSet(BitWidth,
- BitWidth - ExVT.getScalarType().getSizeInBits());
- // If none of the extended bits are demanded, eliminate the sextinreg.
- if ((NewBits & NewMask) == 0)
- return TLO.CombineTo(Op, Op.getOperand(0));
- APInt InSignBit =
- APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
- APInt InputDemandedBits =
- APInt::getLowBitsSet(BitWidth,
- ExVT.getScalarType().getSizeInBits()) &
- NewMask;
- // Since the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- InputDemandedBits |= InSignBit;
- if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
- // If the input sign bit is known zero, convert this into a zero extension.
- if (KnownZero.intersects(InSignBit))
- return TLO.CombineTo(Op,
- TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
- if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
- KnownOne |= NewBits;
- KnownZero &= ~NewBits;
- } else { // Input sign bit unknown
- KnownZero &= ~NewBits;
- KnownOne &= ~NewBits;
- }
- break;
- }
- case ISD::ZERO_EXTEND: {
- unsigned OperandBitWidth =
- Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
- APInt InMask = NewMask.trunc(OperandBitWidth);
- // If none of the top bits are demanded, convert this into an any_extend.
- APInt NewBits =
- APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
- if (!NewBits.intersects(NewMask))
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
- Op.getValueType(),
- Op.getOperand(0)));
- if (SimplifyDemandedBits(Op.getOperand(0), InMask,
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
- KnownZero |= NewBits;
- break;
- }
- case ISD::SIGN_EXTEND: {
- EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getScalarType().getSizeInBits();
- APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
- APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
- APInt NewBits = ~InMask & NewMask;
- // If none of the top bits are demanded, convert this into an any_extend.
- if (NewBits == 0)
- return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
- Op.getValueType(),
- Op.getOperand(0)));
- // Since some of the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- APInt InDemandedBits = InMask & NewMask;
- InDemandedBits |= InSignBit;
- InDemandedBits = InDemandedBits.trunc(InBits);
- if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
- KnownOne, TLO, Depth+1))
- return true;
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
- // If the sign bit is known zero, convert this to a zero extend.
- if (KnownZero.intersects(InSignBit))
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
- Op.getValueType(),
- Op.getOperand(0)));
- // If the sign bit is known one, the top bits match.
- if (KnownOne.intersects(InSignBit)) {
- KnownOne |= NewBits;
- assert((KnownZero & NewBits) == 0);
- } else { // Otherwise, top bits aren't known.
- assert((KnownOne & NewBits) == 0);
- assert((KnownZero & NewBits) == 0);
- }
- break;
- }
- case ISD::ANY_EXTEND: {
- unsigned OperandBitWidth =
- Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
- APInt InMask = NewMask.trunc(OperandBitWidth);
- if (SimplifyDemandedBits(Op.getOperand(0), InMask,
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
- break;
- }
- case ISD::TRUNCATE: {
- // Simplify the input, using demanded bit information, and compute the known
- // zero/one bits live out.
- unsigned OperandBitWidth =
- Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
- APInt TruncMask = NewMask.zext(OperandBitWidth);
- if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- KnownZero = KnownZero.trunc(BitWidth);
- KnownOne = KnownOne.trunc(BitWidth);
- // If the input is only used by this truncate, see if we can shrink it based
- // on the known demanded bits.
- if (Op.getOperand(0).getNode()->hasOneUse()) {
- SDValue In = Op.getOperand(0);
- switch (In.getOpcode()) {
- default: break;
- case ISD::SRL:
- // Shrink SRL by a constant if none of the high bits shifted in are
- // demanded.
- if (TLO.LegalTypes() &&
- !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
- // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
- // undesirable.
- break;
- ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
- if (!ShAmt)
- break;
- SDValue Shift = In.getOperand(1);
- if (TLO.LegalTypes()) {
- uint64_t ShVal = ShAmt->getZExtValue();
- Shift =
- TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
- }
- APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
- OperandBitWidth - BitWidth);
- HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
- if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
- // None of the shifted in bits are needed. Add a truncate of the
- // shift input, then shift it.
- SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
- Op.getValueType(),
- In.getOperand(0));
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
- Op.getValueType(),
- NewTrunc,
- Shift));
- }
- break;
- }
- }
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- break;
- }
- case ISD::AssertZext: {
- // AssertZext demands all of the high bits, plus any of the low bits
- // demanded by its users.
- EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- APInt InMask = APInt::getLowBitsSet(BitWidth,
- VT.getSizeInBits());
- if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
- KnownZero, KnownOne, TLO, Depth+1))
- return true;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero |= ~InMask & NewMask;
- break;
- }
- case ISD::BITCAST:
- // If this is an FP->Int bitcast and if the sign bit is the only
- // thing demanded, turn this into a FGETSIGN.
- if (!TLO.LegalOperations() &&
- !Op.getValueType().isVector() &&
- !Op.getOperand(0).getValueType().isVector() &&
- NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
- Op.getOperand(0).getValueType().isFloatingPoint()) {
- bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
- bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
- if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
- EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
- // Make a FGETSIGN + SHL to move the sign bit into the appropriate
- // place. We expect the SHL to be eliminated by other optimizations.
- SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
- unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
- if (!OpVTLegal && OpVTSizeInBits > 32)
- Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
- unsigned ShVal = Op.getValueType().getSizeInBits()-1;
- SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
- return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
- Op.getValueType(),
- Sign, ShAmt));
- }
- }
- break;
- case ISD::ADD:
- case ISD::MUL:
- case ISD::SUB: {
- // Add, Sub, and Mul don't demand any bits in positions beyond that
- // of the highest bit demanded of them.
- APInt LoMask = APInt::getLowBitsSet(BitWidth,
- BitWidth - NewMask.countLeadingZeros());
- if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
- KnownOne2, TLO, Depth+1))
- return true;
- if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
- KnownOne2, TLO, Depth+1))
- return true;
- // See if the operation should be performed at a smaller bit width.
- if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
- return true;
- }
- // FALL THROUGH
- default:
- // Just use ComputeMaskedBits to compute output bits.
- TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
- break;
- }
- // If we know the value of all of the demanded bits, return this as a
- // constant.
- if ((NewMask & (KnownZero|KnownOne)) == NewMask)
- return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
- return false;
- }
- /// computeMaskedBitsForTargetNode - Determine which of the bits specified
- /// in Mask are known to be either zero or one and return them in the
- /// KnownZero/KnownOne bitsets.
- void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
- APInt &KnownZero,
- APInt &KnownOne,
- const SelectionDAG &DAG,
- unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use MaskedValueIsZero if you don't know whether Op"
- " is a target node!");
- KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
- }
- /// ComputeNumSignBitsForTargetNode - This method can be implemented by
- /// targets that want to expose additional information about sign bits to the
- /// DAG Combiner.
- unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
- unsigned Depth) const {
- assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) &&
- "Should use ComputeNumSignBits if you don't know whether Op"
- " is a target node!");
- return 1;
- }
- /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
- /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
- /// determine which bit is set.
- ///
- static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
- // A left-shift of a constant one will have exactly one bit set, because
- // shifting the bit off the end is undefined.
- if (Val.getOpcode() == ISD::SHL)
- if (ConstantSDNode *C =
- dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
- if (C->getAPIntValue() == 1)
- return true;
- // Similarly, a right-shift of a constant sign-bit will have exactly
- // one bit set.
- if (Val.getOpcode() == ISD::SRL)
- if (ConstantSDNode *C =
- dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
- if (C->getAPIntValue().isSignBit())
- return true;
- // More could be done here, though the above checks are enough
- // to handle some common cases.
- // Fall back to ComputeMaskedBits to catch other known cases.
- EVT OpVT = Val.getValueType();
- unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
- APInt KnownZero, KnownOne;
- DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
- return (KnownZero.countPopulation() == BitWidth - 1) &&
- (KnownOne.countPopulation() == 1);
- }
- /// SimplifySetCC - Try to simplify a setcc built with the specified operands
- /// and cc. If it is unable to simplify it, return a null SDValue.
- SDValue
- TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
- ISD::CondCode Cond, bool foldBooleans,
- DAGCombinerInfo &DCI, DebugLoc dl) const {
- SelectionDAG &DAG = DCI.DAG;
- // These setcc operations always fold.
- switch (Cond) {
- default: break;
- case ISD::SETFALSE:
- case ISD::SETFALSE2: return DAG.getConstant(0, VT);
- case ISD::SETTRUE:
- case ISD::SETTRUE2: return DAG.getConstant(1, VT);
- }
- // Ensure that the constant occurs on the RHS, and fold constant
- // comparisons.
- if (isa<ConstantSDNode>(N0.getNode()))
- return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
- if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
- const APInt &C1 = N1C->getAPIntValue();
- // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
- // equality comparison, then we're just comparing whether X itself is
- // zero.
- if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
- N0.getOperand(0).getOpcode() == ISD::CTLZ &&
- N0.getOperand(1).getOpcode() == ISD::Constant) {
- const APInt &ShAmt
- = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
- if ((C1 == 0) == (Cond == ISD::SETEQ)) {
- // (srl (ctlz x), 5) == 0 -> X != 0
- // (srl (ctlz x), 5) != 1 -> X != 0
- Cond = ISD::SETNE;
- } else {
- // (srl (ctlz x), 5) != 0 -> X == 0
- // (srl (ctlz x), 5) == 1 -> X == 0
- Cond = ISD::SETEQ;
- }
- SDValue Zero = DAG.getConstant(0, N0.getValueType());
- return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
- Zero, Cond);
- }
- }
- SDValue CTPOP = N0;
- // Look through truncs that don't change the value of a ctpop.
- if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
- CTPOP = N0.getOperand(0);
- if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
- (N0 == CTPOP || N0.getValueType().getSizeInBits() >
- Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
- EVT CTVT = CTPOP.getValueType();
- SDValue CTOp = CTPOP.getOperand(0);
- // (ctpop x) u< 2 -> (x & x-1) == 0
- // (ctpop x) u> 1 -> (x & x-1) != 0
- if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
- SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
- DAG.getConstant(1, CTVT));
- SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
- ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
- return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
- }
- // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
- }
- // (zext x) == C --> x == (trunc C)
- if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
- unsigned MinBits = N0.getValueSizeInBits();
- SDValue PreZExt;
- if (N0->getOpcode() == ISD::ZERO_EXTEND) {
- // ZExt
- MinBits = N0->getOperand(0).getValueSizeInBits();
- PreZExt = N0->getOperand(0);
- } else if (N0->getOpcode() == ISD::AND) {
- // DAGCombine turns costly ZExts into ANDs
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
- if ((C->getAPIntValue()+1).isPowerOf2()) {
- MinBits = C->getAPIntValue().countTrailingOnes();
- PreZExt = N0->getOperand(0);
- }
- } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
- // ZEXTLOAD
- if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
- MinBits = LN0->getMemoryVT().getSizeInBits();
- PreZExt = N0;
- }
- }
- // Make sure we're not losing bits from the constant.
- if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
- EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
- if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
- // Will get folded away.
- SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
- SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
- return DAG.getSetCC(dl, VT, Trunc, C, Cond);
- }
- }
- }
- // If the LHS is '(and load, const)', the RHS is 0,
- // the test is for equality or unsigned, and all 1 bits of the const are
- // in the same partial word, see if we can shorten the load.
- if (DCI.isBeforeLegalize() &&
- N0.getOpcode() == ISD::AND && C1 == 0 &&
- N0.getNode()->hasOneUse() &&
- isa<LoadSDNode>(N0.getOperand(0)) &&
- N0.getOperand(0).getNode()->hasOneUse() &&
- isa<ConstantSDNode>(N0.getOperand(1))) {
- LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
- APInt bestMask;
- unsigned bestWidth = 0, bestOffset = 0;
- if (!Lod->isVolatile() && Lod->isUnindexed()) {
- unsigned origWidth = N0.getValueType().getSizeInBits();
- unsigned maskWidth = origWidth;
- // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
- // 8 bits, but have to be careful...
- if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
- origWidth = Lod->getMemoryVT().getSizeInBits();
- const APInt &Mask =
- cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
- for (unsigned width = origWidth / 2; width>=8; width /= 2) {
- APInt newMask = APInt::getLowBitsSet(maskWidth, width);
- for (unsigned offset=0; offset<origWidth/width; offset++) {
- if ((newMask & Mask) == Mask) {
- if (!TD->isLittleEndian())
- bestOffset = (origWidth/width - offset - 1) * (width/8);
- else
- bestOffset = (uint64_t)offset * (width/8);
- bestMask = Mask.lshr(offset * (width/8) * 8);
- bestWidth = width;
- break;
- }
- newMask = newMask << width;
- }
- }
- }
- if (bestWidth) {
- EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
- if (newVT.isRound()) {
- EVT PtrType = Lod->getOperand(1).getValueType();
- SDValue Ptr = Lod->getBasePtr();
- if (bestOffset != 0)
- Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
- DAG.getConstant(bestOffset, PtrType));
- unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
- SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
- Lod->getPointerInfo().getWithOffset(bestOffset),
- false, false, false, NewAlign);
- return DAG.getSetCC(dl, VT,
- DAG.getNode(ISD::AND, dl, newVT, NewLoad,
- DAG.getConstant(bestMask.trunc(bestWidth),
- newVT)),
- DAG.getConstant(0LL, newVT), Cond);
- }
- }
- }
- // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
- if (N0.getOpcode() == ISD::ZERO_EXTEND) {
- unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
- // If the comparison constant has bits in the upper part, the
- // zero-extended value could never match.
- if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
- C1.getBitWidth() - InSize))) {
- switch (Cond) {
- case ISD::SETUGT:
- case ISD::SETUGE:
- case ISD::SETEQ: return DAG.getConstant(0, VT);
- case ISD::SETULT:
- case ISD::SETULE:
- case ISD::SETNE: return DAG.getConstant(1, VT);
- case ISD::SETGT:
- case ISD::SETGE:
- // True if the sign bit of C1 is set.
- return DAG.getConstant(C1.isNegative(), VT);
- case ISD::SETLT:
- case ISD::SETLE:
- // True if the sign bit of C1 isn't set.
- return DAG.getConstant(C1.isNonNegative(), VT);
- default:
- break;
- }
- }
- // Otherwise, we can perform the comparison with the low bits.
- switch (Cond) {
- case ISD::SETEQ:
- case ISD::SETNE:
- case ISD::SETUGT:
- case ISD::SETUGE:
- case ISD::SETULT:
- case ISD::SETULE: {
- EVT newVT = N0.getOperand(0).getValueType();
- if (DCI.isBeforeLegalizeOps() ||
- (isOperationLegal(ISD::SETCC, newVT) &&
- getCondCodeAction(Cond, newVT)==Legal))
- return DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(C1.trunc(InSize), newVT),
- Cond);
- break;
- }
- default:
- break; // todo, be more careful with signed comparisons
- }
- } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
- EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
- unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
- EVT ExtDstTy = N0.getValueType();
- unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
- // If the constant doesn't fit into the number of bits for the source of
- // the sign extension, it is impossible for both sides to be equal.
- if (C1.getMinSignedBits() > ExtSrcTyBits)
- return DAG.getConstant(Cond == ISD::SETNE, VT);
- SDValue ZextOp;
- EVT Op0Ty = N0.getOperand(0).getValueType();
- if (Op0Ty == ExtSrcTy) {
- ZextOp = N0.getOperand(0);
- } else {
- APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
- ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
- DAG.getConstant(Imm, Op0Ty));
- }
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(ZextOp.getNode());
- // Otherwise, make this a use of a zext.
- return DAG.getSetCC(dl, VT, ZextOp,
- DAG.getConstant(C1 & APInt::getLowBitsSet(
- ExtDstTyBits,
- ExtSrcTyBits),
- ExtDstTy),
- Cond);
- } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
- (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
- // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
- if (N0.getOpcode() == ISD::SETCC &&
- isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
- bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
- if (TrueWhenTrue)
- return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
- // Invert the condition.
- ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
- CC = ISD::getSetCCInverse(CC,
- N0.getOperand(0).getValueType().isInteger());
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
- }
- if ((N0.getOpcode() == ISD::XOR ||
- (N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::XOR &&
- N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
- isa<ConstantSDNode>(N0.getOperand(1)) &&
- cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
- // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
- // can only do this if the top bits are known zero.
- unsigned BitWidth = N0.getValueSizeInBits();
- if (DAG.MaskedValueIsZero(N0,
- APInt::getHighBitsSet(BitWidth,
- BitWidth-1))) {
- // Okay, get the un-inverted input value.
- SDValue Val;
- if (N0.getOpcode() == ISD::XOR)
- Val = N0.getOperand(0);
- else {
- assert(N0.getOpcode() == ISD::AND &&
- N0.getOperand(0).getOpcode() == ISD::XOR);
- // ((X^1)&1)^1 -> X & 1
- Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
- N0.getOperand(0).getOperand(0),
- N0.getOperand(1));
- }
- return DAG.getSetCC(dl, VT, Val, N1,
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- }
- } else if (N1C->getAPIntValue() == 1 &&
- (VT == MVT::i1 ||
- getBooleanContents(false) == ZeroOrOneBooleanContent)) {
- SDValue Op0 = N0;
- if (Op0.getOpcode() == ISD::TRUNCATE)
- Op0 = Op0.getOperand(0);
- if ((Op0.getOpcode() == ISD::XOR) &&
- Op0.getOperand(0).getOpcode() == ISD::SETCC &&
- Op0.getOperand(1).getOpcode() == ISD::SETCC) {
- // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
- Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
- return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
- Cond);
- }
- if (Op0.getOpcode() == ISD::AND &&
- isa<ConstantSDNode>(Op0.getOperand(1)) &&
- cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
- // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
- if (Op0.getValueType().bitsGT(VT))
- Op0 = DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
- DAG.getConstant(1, VT));
- else if (Op0.getValueType().bitsLT(VT))
- Op0 = DAG.getNode(ISD::AND, dl, VT,
- DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
- DAG.getConstant(1, VT));
- return DAG.getSetCC(dl, VT, Op0,
- DAG.getConstant(0, Op0.getValueType()),
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- }
- if (Op0.getOpcode() == ISD::AssertZext &&
- cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
- return DAG.getSetCC(dl, VT, Op0,
- DAG.getConstant(0, Op0.getValueType()),
- Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
- }
- }
- APInt MinVal, MaxVal;
- unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
- if (ISD::isSignedIntSetCC(Cond)) {
- MinVal = APInt::getSignedMinValue(OperandBitSize);
- MaxVal = APInt::getSignedMaxValue(OperandBitSize);
- } else {
- MinVal = APInt::getMinValue(OperandBitSize);
- MaxVal = APInt::getMaxValue(OperandBitSize);
- }
- // Canonicalize GE/LE comparisons to use GT/LT comparisons.
- if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
- if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
- // X >= C0 --> X > (C0-1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(C1-1, N1.getValueType()),
- (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
- }
- if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
- if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
- // X <= C0 --> X < (C0+1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(C1+1, N1.getValueType()),
- (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
- }
- if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
- return DAG.getConstant(0, VT); // X < MIN --> false
- if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
- return DAG.getConstant(1, VT); // X >= MIN --> true
- if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
- return DAG.getConstant(0, VT); // X > MAX --> false
- if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
- return DAG.getConstant(1, VT); // X <= MAX --> true
- // Canonicalize setgt X, Min --> setne X, Min
- if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
- // Canonicalize setlt X, Max --> setne X, Max
- if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
- // If we have setult X, 1, turn it into seteq X, 0
- if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(MinVal, N0.getValueType()),
- ISD::SETEQ);
- // If we have setugt X, Max-1, turn it into seteq X, Max
- if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(MaxVal, N0.getValueType()),
- ISD::SETEQ);
- // If we have "setcc X, C0", check to see if we can shrink the immediate
- // by changing cc.
- // SETUGT X, SINTMAX -> SETLT X, 0
- if (Cond == ISD::SETUGT &&
- C1 == APInt::getSignedMaxValue(OperandBitSize))
- return DAG.getSetCC(dl, VT, N0,
- DAG.getConstant(0, N1.getValueType()),
- ISD::SETLT);
- // SETULT X, SINTMIN -> SETGT X, -1
- if (Cond == ISD::SETULT &&
- C1 == APInt::getSignedMinValue(OperandBitSize)) {
- SDValue ConstMinusOne =
- DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
- N1.getValueType());
- return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
- }
- // Fold bit comparisons when we can.
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- (VT == N0.getValueType() ||
- (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
- N0.getOpcode() == ISD::AND)
- if (ConstantSDNode *AndRHS =
- dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
- getPointerTy() : getShiftAmountTy(N0.getValueType());
- if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
- // Perform the xform if the AND RHS is a single bit.
- if (AndRHS->getAPIntValue().isPowerOf2()) {
- return DAG.getNode(ISD::TRUNCATE, dl, VT,
- DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
- DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
- }
- } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
- // (X & 8) == 8 --> (X & 8) >> 3
- // Perform the xform if C1 is a single bit.
- if (C1.isPowerOf2()) {
- return DAG.getNode(ISD::TRUNCATE, dl, VT,
- DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
- DAG.getConstant(C1.logBase2(), ShiftTy)));
- }
- }
- }
- if (C1.getMinSignedBits() <= 64 &&
- !isLegalICmpImmediate(C1.getSExtValue())) {
- // (X & -256) == 256 -> (X >> 8) == 1
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
- if (ConstantSDNode *AndRHS =
- dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- const APInt &AndRHSC = AndRHS->getAPIntValue();
- if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
- unsigned ShiftBits = AndRHSC.countTrailingZeros();
- EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
- getPointerTy() : getShiftAmountTy(N0.getValueType());
- EVT CmpTy = N0.getValueType();
- SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
- DAG.getConstant(ShiftBits, ShiftTy));
- SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
- return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
- }
- }
- } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
- Cond == ISD::SETULE || Cond == ISD::SETUGT) {
- bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
- // X < 0x100000000 -> (X >> 32) < 1
- // X >= 0x100000000 -> (X >> 32) >= 1
- // X <= 0x0ffffffff -> (X >> 32) < 1
- // X > 0x0ffffffff -> (X >> 32) >= 1
- unsigned ShiftBits;
- APInt NewC = C1;
- ISD::CondCode NewCond = Cond;
- if (AdjOne) {
- ShiftBits = C1.countTrailingOnes();
- NewC = NewC + 1;
- NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
- } else {
- ShiftBits = C1.countTrailingZeros();
- }
- NewC = NewC.lshr(ShiftBits);
- if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
- EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
- getPointerTy() : getShiftAmountTy(N0.getValueType());
- EVT CmpTy = N0.getValueType();
- SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
- DAG.getConstant(ShiftBits, ShiftTy));
- SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
- return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
- }
- }
- }
- }
- if (isa<ConstantFPSDNode>(N0.getNode())) {
- // Constant fold or commute setcc.
- SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
- if (O.getNode()) return O;
- } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
- // If the RHS of an FP comparison is a constant, simplify it away in
- // some cases.
- if (CFP->getValueAPF().isNaN()) {
- // If an operand is known to be a nan, we can fold it.
- switch (ISD::getUnorderedFlavor(Cond)) {
- default: llvm_unreachable("Unknown flavor!");
- case 0: // Known false.
- return DAG.getConstant(0, VT);
- case 1: // Known true.
- return DAG.getConstant(1, VT);
- case 2: // Undefined.
- return DAG.getUNDEF(VT);
- }
- }
- // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
- // constant if knowing that the operand is non-nan is enough. We prefer to
- // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
- // materialize 0.0.
- if (Cond == ISD::SETO || Cond == ISD::SETUO)
- return DAG.getSetCC(dl, VT, N0, N0, Cond);
- // If the condition is not legal, see if we can find an equivalent one
- // which is legal.
- if (!isCondCodeLegal(Cond, N0.getValueType())) {
- // If the comparison was an awkward floating-point == or != and one of
- // the comparison operands is infinity or negative infinity, convert the
- // condition to a less-awkward <= or >=.
- if (CFP->getValueAPF().isInfinity()) {
- if (CFP->getValueAPF().isNegative()) {
- if (Cond == ISD::SETOEQ &&
- isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
- if (Cond == ISD::SETUEQ &&
- isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
- if (Cond == ISD::SETUNE &&
- isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
- if (Cond == ISD::SETONE &&
- isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
- } else {
- if (Cond == ISD::SETOEQ &&
- isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
- if (Cond == ISD::SETUEQ &&
- isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
- if (Cond == ISD::SETUNE &&
- isCondCodeLegal(ISD::SETULT, N0.getValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
- if (Cond == ISD::SETONE &&
- isCondCodeLegal(ISD::SETULT, N0.getValueType()))
- return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
- }
- }
- }
- }
- if (N0 == N1) {
- // The sext(setcc()) => setcc() optimization relies on the appropriate
- // constant being emitted.
- uint64_t EqVal = 0;
- switch (getBooleanContents(N0.getValueType().isVector())) {
- case UndefinedBooleanContent:
- case ZeroOrOneBooleanContent:
- EqVal = ISD::isTrueWhenEqual(Cond);
- break;
- case ZeroOrNegativeOneBooleanContent:
- EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
- break;
- }
- // We can always fold X == X for integer setcc's.
- if (N0.getValueType().isInteger()) {
- return DAG.getConstant(EqVal, VT);
- }
- unsigned UOF = ISD::getUnorderedFlavor(Cond);
- if (UOF == 2) // FP operators that are undefined on NaNs.
- return DAG.getConstant(EqVal, VT);
- if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
- return DAG.getConstant(EqVal, VT);
- // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
- // if it is not already.
- ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
- if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
- getCondCodeAction(NewCond, N0.getValueType()) == Legal))
- return DAG.getSetCC(dl, VT, N0, N1, NewCond);
- }
- if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
- N0.getValueType().isInteger()) {
- if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
- N0.getOpcode() == ISD::XOR) {
- // Simplify (X+Y) == (X+Z) --> Y == Z
- if (N0.getOpcode() == N1.getOpcode()) {
- if (N0.getOperand(0) == N1.getOperand(0))
- return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
- if (N0.getOperand(1) == N1.getOperand(1))
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
- if (DAG.isCommutativeBinOp(N0.getOpcode())) {
- // If X op Y == Y op X, try other combinations.
- if (N0.getOperand(0) == N1.getOperand(1))
- return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
- Cond);
- if (N0.getOperand(1) == N1.getOperand(0))
- return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
- Cond);
- }
- }
- // If RHS is a legal immediate value for a compare instruction, we need
- // to be careful about increasing register pressure needlessly.
- bool LegalRHSImm = false;
- if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
- if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
- // Turn (X+C1) == C2 --> X == C2-C1
- if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
- return DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(RHSC->getAPIntValue()-
- LHSR->getAPIntValue(),
- N0.getValueType()), Cond);
- }
- // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
- if (N0.getOpcode() == ISD::XOR)
- // If we know that all of the inverted bits are zero, don't bother
- // performing the inversion.
- if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
- return
- DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(LHSR->getAPIntValue() ^
- RHSC->getAPIntValue(),
- N0.getValueType()),
- Cond);
- }
- // Turn (C1-X) == C2 --> X == C1-C2
- if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
- if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
- return
- DAG.getSetCC(dl, VT, N0.getOperand(1),
- DAG.getConstant(SUBC->getAPIntValue() -
- RHSC->getAPIntValue(),
- N0.getValueType()),
- Cond);
- }
- }
- // Could RHSC fold directly into a compare?
- if (RHSC->getValueType(0).getSizeInBits() <= 64)
- LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
- }
- // Simplify (X+Z) == X --> Z == 0
- // Don't do this if X is an immediate that can fold into a cmp
- // instruction and X+Z has other uses. It could be an induction variable
- // chain, and the transform would increase register pressure.
- if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
- if (N0.getOperand(0) == N1)
- return DAG.getSetCC(dl, VT, N0.getOperand(1),
- DAG.getConstant(0, N0.getValueType()), Cond);
- if (N0.getOperand(1) == N1) {
- if (DAG.isCommutativeBinOp(N0.getOpcode()))
- return DAG.getSetCC(dl, VT, N0.getOperand(0),
- DAG.getConstant(0, N0.getValueType()), Cond);
- if (N0.getNode()->hasOneUse()) {
- assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
- // (Z-X) == X --> Z == X<<1
- SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
- DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(SH.getNode());
- return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
- }
- }
- }
- }
- if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
- N1.getOpcode() == ISD::XOR) {
- // Simplify X == (X+Z) --> Z == 0
- if (N1.getOperand(0) == N0)
- return DAG.getSetCC(dl, VT, N1.getOperand(1),
- DAG.getConstant(0, N1.getValueType()), Cond);
- if (N1.getOperand(1) == N0) {
- if (DAG.isCommutativeBinOp(N1.getOpcode()))
- return DAG.getSetCC(dl, VT, N1.getOperand(0),
- DAG.getConstant(0, N1.getValueType()), Cond);
- if (N1.getNode()->hasOneUse()) {
- assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
- // X == (Z-X) --> X<<1 == Z
- SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
- DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(SH.getNode());
- return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
- }
- }
- }
- // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
- // Note that where y is variable and is known to have at most
- // one bit set (for example, if it is z&1) we cannot do this;
- // the expressions are not equivalent when y==0.
- if (N0.getOpcode() == ISD::AND)
- if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
- if (ValueHasExactlyOneBitSet(N1, DAG)) {
- Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
- SDValue Zero = DAG.getConstant(0, N1.getValueType());
- return DAG.getSetCC(dl, VT, N0, Zero, Cond);
- }
- }
- if (N1.getOpcode() == ISD::AND)
- if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
- if (ValueHasExactlyOneBitSet(N0, DAG)) {
- Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
- SDValue Zero = DAG.getConstant(0, N0.getValueType());
- return DAG.getSetCC(dl, VT, N1, Zero, Cond);
- }
- }
- }
- // Fold away ALL boolean setcc's.
- SDValue Temp;
- if (N0.getValueType() == MVT::i1 && foldBooleans) {
- switch (Cond) {
- default: llvm_unreachable("Unknown integer setcc!");
- case ISD::SETEQ: // X == Y -> ~(X^Y)
- Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
- N0 = DAG.getNOT(dl, Temp, MVT::i1);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETNE: // X != Y --> (X^Y)
- N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
- break;
- case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
- case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
- Temp = DAG.getNOT(dl, N0, MVT::i1);
- N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
- case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
- Temp = DAG.getNOT(dl, N1, MVT::i1);
- N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
- case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
- Temp = DAG.getNOT(dl, N0, MVT::i1);
- N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(Temp.getNode());
- break;
- case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
- case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
- Temp = DAG.getNOT(dl, N1, MVT::i1);
- N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
- break;
- }
- if (VT != MVT::i1) {
- if (!DCI.isCalledByLegalizer())
- DCI.AddToWorklist(N0.getNode());
- // FIXME: If running after legalize, we probably can't do this.
- N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
- }
- return N0;
- }
- // Could not fold it.
- return SDValue();
- }
- /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
- /// node is a GlobalAddress + offset.
- bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
- int64_t &Offset) const {
- if (isa<GlobalAddressSDNode>(N)) {
- GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
- GA = GASD->getGlobal();
- Offset += GASD->getOffset();
- return true;
- }
- if (N->getOpcode() == ISD::ADD) {
- SDValue N1 = N->getOperand(0);
- SDValue N2 = N->getOperand(1);
- if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
- ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
- if (V) {
- Offset += V->getSExtValue();
- return true;
- }
- } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
- ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
- if (V) {
- Offset += V->getSExtValue();
- return true;
- }
- }
- }
- return false;
- }
- SDValue TargetLowering::
- PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
- // Default implementation: no optimization.
- return SDValue();
- }
- //===----------------------------------------------------------------------===//
- // Inline Assembler Implementation Methods
- //===----------------------------------------------------------------------===//
- TargetLowering::ConstraintType
- TargetLowering::getConstraintType(const std::string &Constraint) const {
- if (Constraint.size() == 1) {
- switch (Constraint[0]) {
- default: break;
- case 'r': return C_RegisterClass;
- case 'm': // memory
- case 'o': // offsetable
- case 'V': // not offsetable
- return C_Memory;
- case 'i': // Simple Integer or Relocatable Constant
- case 'n': // Simple Integer
- case 'E': // Floating Point Constant
- case 'F': // Floating Point Constant
- case 's': // Relocatable Constant
- case 'p': // Address.
- case 'X': // Allow ANY value.
- case 'I': // Target registers.
- case 'J':
- case 'K':
- case 'L':
- case 'M':
- case 'N':
- case 'O':
- case 'P':
- case '<':
- case '>':
- return C_Other;
- }
- }
- if (Constraint.size() > 1 && Constraint[0] == '{' &&
- Constraint[Constraint.size()-1] == '}')
- return C_Register;
- return C_Unknown;
- }
- /// LowerXConstraint - try to replace an X constraint, which matches anything,
- /// with another that has more specific requirements based on the type of the
- /// corresponding operand.
- const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
- if (ConstraintVT.isInteger())
- return "r";
- if (ConstraintVT.isFloatingPoint())
- return "f"; // works for many targets
- return 0;
- }
- /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
- /// vector. If it is invalid, don't add anything to Ops.
- void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
- std::string &Constraint,
- std::vector<SDValue> &Ops,
- SelectionDAG &DAG) const {
- if (Constraint.length() > 1) return;
- char ConstraintLetter = Constraint[0];
- switch (ConstraintLetter) {
- default: break;
- case 'X': // Allows any operand; labels (basic block) use this.
- if (Op.getOpcode() == ISD::BasicBlock) {
- Ops.push_back(Op);
- return;
- }
- // fall through
- case 'i': // Simple Integer or Relocatable Constant
- case 'n': // Simple Integer
- case 's': { // Relocatable Constant
- // These operands are interested in values of the form (GV+C), where C may
- // be folded in as an offset of GV, or it may be explicitly added. Also, it
- // is possible and fine if either GV or C are missing.
- ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
- GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
- // If we have "(add GV, C)", pull out GV/C
- if (Op.getOpcode() == ISD::ADD) {
- C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
- GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
- if (C == 0 || GA == 0) {
- C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
- GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
- }
- if (C == 0 || GA == 0)
- C = 0, GA = 0;
- }
- // If we find a valid operand, map to the TargetXXX version so that the
- // value itself doesn't get selected.
- if (GA) { // Either &GV or &GV+C
- if (ConstraintLetter != 'n') {
- int64_t Offs = GA->getOffset();
- if (C) Offs += C->getZExtValue();
- Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
- C ? C->getDebugLoc() : DebugLoc(),
- Op.getValueType(), Offs));
- return;
- }
- }
- if (C) { // just C, no GV.
- // Simple constants are not allowed for 's'.
- if (ConstraintLetter != 's') {
- // gcc prints these as sign extended. Sign extend value to 64 bits
- // now; without this it would get ZExt'd later in
- // ScheduleDAGSDNodes::EmitNode, which is very generic.
- Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
- MVT::i64));
- return;
- }
- }
- break;
- }
- }
- }
- std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
- getRegForInlineAsmConstraint(const std::string &Constraint,
- EVT VT) const {
- if (Constraint[0] != '{')
- return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
- assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
- // Remove the braces from around the name.
- StringRef RegName(Constraint.data()+1, Constraint.size()-2);
- std::pair<unsigned, const TargetRegisterClass*> R =
- std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
- // Figure out which register class contains this reg.
- const TargetRegisterInfo *RI = TM.getRegisterInfo();
- for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
- E = RI->regclass_end(); RCI != E; ++RCI) {
- const TargetRegisterClass *RC = *RCI;
- // If none of the value types for this register class are valid, we
- // can't use it. For example, 64-bit reg classes on 32-bit targets.
- if (!isLegalRC(RC))
- continue;
- for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
- I != E; ++I) {
- if (RegName.equals_lower(RI->getName(*I))) {
- std::pair<unsigned, const TargetRegisterClass*> S =
- std::make_pair(*I, RC);
- // If this register class has the requested value type, return it,
- // otherwise keep searching and return the first class found
- // if no other is found which explicitly has the requested type.
- if (RC->hasType(VT))
- return S;
- else if (!R.second)
- R = S;
- }
- }
- }
- return R;
- }
- //===----------------------------------------------------------------------===//
- // Constraint Selection.
- /// isMatchingInputConstraint - Return true of this is an input operand that is
- /// a matching constraint like "4".
- bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
- assert(!ConstraintCode.empty() && "No known constraint!");
- return isdigit(ConstraintCode[0]);
- }
- /// getMatchedOperand - If this is an input matching constraint, this method
- /// returns the output operand it matches.
- unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
- assert(!ConstraintCode.empty() && "No known constraint!");
- return atoi(ConstraintCode.c_str());
- }
- /// ParseConstraints - Split up the constraint string from the inline
- /// assembly value into the specific constraints and their prefixes,
- /// and also tie in the associated operand values.
- /// If this returns an empty vector, and if the constraint string itself
- /// isn't empty, there was an error parsing.
- TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
- ImmutableCallSite CS) const {
- /// ConstraintOperands - Information about all of the constraints.
- AsmOperandInfoVector ConstraintOperands;
- const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
- unsigned maCount = 0; // Largest number of multiple alternative constraints.
- // Do a prepass over the constraints, canonicalizing them, and building up the
- // ConstraintOperands list.
- InlineAsm::ConstraintInfoVector
- ConstraintInfos = IA->ParseConstraints();
- unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
- unsigned ResNo = 0; // ResNo - The result number of the next output.
- for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
- ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
- AsmOperandInfo &OpInfo = ConstraintOperands.back();
- // Update multiple alternative constraint count.
- if (OpInfo.multipleAlternatives.size() > maCount)
- maCount = OpInfo.multipleAlternatives.size();
- OpInfo.ConstraintVT = MVT::Other;
- // Compute the value type for each operand.
- switch (OpInfo.Type) {
- case InlineAsm::isOutput:
- // Indirect outputs just consume an argument.
- if (OpInfo.isIndirect) {
- OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
- break;
- }
- // The return value of the call is this value. As such, there is no
- // corresponding argument.
- assert(!CS.getType()->isVoidTy() &&
- "Bad inline asm!");
- if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
- OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
- } else {
- assert(ResNo == 0 && "Asm only has one result!");
- OpInfo.ConstraintVT = getValueType(CS.getType());
- }
- ++ResNo;
- break;
- case InlineAsm::isInput:
- OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
- break;
- case InlineAsm::isClobber:
- // Nothing to do.
- break;
- }
- if (OpInfo.CallOperandVal) {
- llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
- if (OpInfo.isIndirect) {
- llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
- if (!PtrTy)
- report_fatal_error("Indirect operand for inline asm not a pointer!");
- OpTy = PtrTy->getElementType();
- }
- // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
- if (StructType *STy = dyn_cast<StructType>(OpTy))
- if (STy->getNumElements() == 1)
- OpTy = STy->getElementType(0);
- // If OpTy is not a single value, it may be a struct/union that we
- // can tile with integers.
- if (!OpTy->isSingleValueType() && OpTy->isSized()) {
- unsigned BitSize = TD->getTypeSizeInBits(OpTy);
- switch (BitSize) {
- default: break;
- case 1:
- case 8:
- case 16:
- case 32:
- case 64:
- case 128:
- OpInfo.ConstraintVT =
- EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
- break;
- }
- } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
- OpInfo.ConstraintVT = MVT::getIntegerVT(
- 8*TD->getPointerSize(PT->getAddressSpace()));
- } else {
- OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
- }
- }
- }
- // If we have multiple alternative constraints, select the best alternative.
- if (ConstraintInfos.size()) {
- if (maCount) {
- unsigned bestMAIndex = 0;
- int bestWeight = -1;
- // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
- int weight = -1;
- unsigned maIndex;
- // Compute the sums of the weights for each alternative, keeping track
- // of the best (highest weight) one so far.
- for (maIndex = 0; maIndex < maCount; ++maIndex) {
- int weightSum = 0;
- for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
- cIndex != eIndex; ++cIndex) {
- AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
- if (OpInfo.Type == InlineAsm::isClobber)
- continue;
- // If this is an output operand with a matching input operand,
- // look up the matching input. If their types mismatch, e.g. one
- // is an integer, the other is floating point, or their sizes are
- // different, flag it as an maCantMatch.
- if (OpInfo.hasMatchingInput()) {
- AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
- if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- if ((OpInfo.ConstraintVT.isInteger() !=
- Input.ConstraintVT.isInteger()) ||
- (OpInfo.ConstraintVT.getSizeInBits() !=
- Input.ConstraintVT.getSizeInBits())) {
- weightSum = -1; // Can't match.
- break;
- }
- }
- }
- weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
- if (weight == -1) {
- weightSum = -1;
- break;
- }
- weightSum += weight;
- }
- // Update best.
- if (weightSum > bestWeight) {
- bestWeight = weightSum;
- bestMAIndex = maIndex;
- }
- }
- // Now select chosen alternative in each constraint.
- for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
- cIndex != eIndex; ++cIndex) {
- AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
- if (cInfo.Type == InlineAsm::isClobber)
- continue;
- cInfo.selectAlternative(bestMAIndex);
- }
- }
- }
- // Check and hook up tied operands, choose constraint code to use.
- for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
- cIndex != eIndex; ++cIndex) {
- AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
- // If this is an output operand with a matching input operand, look up the
- // matching input. If their types mismatch, e.g. one is an integer, the
- // other is floating point, or their sizes are different, flag it as an
- // error.
- if (OpInfo.hasMatchingInput()) {
- AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
- if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- std::pair<unsigned, const TargetRegisterClass*> MatchRC =
- getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
- std::pair<unsigned, const TargetRegisterClass*> InputRC =
- getRegForInlineAsmConstraint(Input.ConstraintCode,
- Input.ConstraintVT);
- if ((OpInfo.ConstraintVT.isInteger() !=
- Input.ConstraintVT.isInteger()) ||
- (MatchRC.second != InputRC.second)) {
- report_fatal_error("Unsupported asm: input constraint"
- " with a matching output constraint of"
- " incompatible type!");
- }
- }
- }
- }
- return ConstraintOperands;
- }
- /// getConstraintGenerality - Return an integer indicating how general CT
- /// is.
- static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
- switch (CT) {
- case TargetLowering::C_Other:
- case TargetLowering::C_Unknown:
- return 0;
- case TargetLowering::C_Register:
- return 1;
- case TargetLowering::C_RegisterClass:
- return 2;
- case TargetLowering::C_Memory:
- return 3;
- }
- llvm_unreachable("Invalid constraint type");
- }
- /// Examine constraint type and operand type and determine a weight value.
- /// This object must already have been set up with the operand type
- /// and the current alternative constraint selected.
- TargetLowering::ConstraintWeight
- TargetLowering::getMultipleConstraintMatchWeight(
- AsmOperandInfo &info, int maIndex) const {
- InlineAsm::ConstraintCodeVector *rCodes;
- if (maIndex >= (int)info.multipleAlternatives.size())
- rCodes = &info.Codes;
- else
- rCodes = &info.multipleAlternatives[maIndex].Codes;
- ConstraintWeight BestWeight = CW_Invalid;
- // Loop over the options, keeping track of the most general one.
- for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
- ConstraintWeight weight =
- getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
- if (weight > BestWeight)
- BestWeight = weight;
- }
- return BestWeight;
- }
- /// Examine constraint type and operand type and determine a weight value.
- /// This object must already have been set up with the operand type
- /// and the current alternative constraint selected.
- TargetLowering::ConstraintWeight
- TargetLowering::getSingleConstraintMatchWeight(
- AsmOperandInfo &info, const char *constraint) const {
- ConstraintWeight weight = CW_Invalid;
- Value *CallOperandVal = info.CallOperandVal;
- // If we don't have a value, we can't do a match,
- // but allow it at the lowest weight.
- if (CallOperandVal == NULL)
- return CW_Default;
- // Look at the constraint type.
- switch (*constraint) {
- case 'i': // immediate integer.
- case 'n': // immediate integer with a known value.
- if (isa<ConstantInt>(CallOperandVal))
- weight = CW_Constant;
- break;
- case 's': // non-explicit intregal immediate.
- if (isa<GlobalValue>(CallOperandVal))
- weight = CW_Constant;
- break;
- case 'E': // immediate float if host format.
- case 'F': // immediate float.
- if (isa<ConstantFP>(CallOperandVal))
- weight = CW_Constant;
- break;
- case '<': // memory operand with autodecrement.
- case '>': // memory operand with autoincrement.
- case 'm': // memory operand.
- case 'o': // offsettable memory operand
- case 'V': // non-offsettable memory operand
- weight = CW_Memory;
- break;
- case 'r': // general register.
- case 'g': // general register, memory operand or immediate integer.
- // note: Clang converts "g" to "imr".
- if (CallOperandVal->getType()->isIntegerTy())
- weight = CW_Register;
- break;
- case 'X': // any operand.
- default:
- weight = CW_Default;
- break;
- }
- return weight;
- }
- /// ChooseConstraint - If there are multiple different constraints that we
- /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
- /// This is somewhat tricky: constraints fall into four classes:
- /// Other -> immediates and magic values
- /// Register -> one specific register
- /// RegisterClass -> a group of regs
- /// Memory -> memory
- /// Ideally, we would pick the most specific constraint possible: if we have
- /// something that fits into a register, we would pick it. The problem here
- /// is that if we have something that could either be in a register or in
- /// memory that use of the register could cause selection of *other*
- /// operands to fail: they might only succeed if we pick memory. Because of
- /// this the heuristic we use is:
- ///
- /// 1) If there is an 'other' constraint, and if the operand is valid for
- /// that constraint, use it. This makes us take advantage of 'i'
- /// constraints when available.
- /// 2) Otherwise, pick the most general constraint present. This prefers
- /// 'm' over 'r', for example.
- ///
- static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
- const TargetLowering &TLI,
- SDValue Op, SelectionDAG *DAG) {
- assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
- unsigned BestIdx = 0;
- TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
- int BestGenerality = -1;
- // Loop over the options, keeping track of the most general one.
- for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
- TargetLowering::ConstraintType CType =
- TLI.getConstraintType(OpInfo.Codes[i]);
- // If this is an 'other' constraint, see if the operand is valid for it.
- // For example, on X86 we might have an 'rI' constraint. If the operand
- // is an integer in the range [0..31] we want to use I (saving a load
- // of a register), otherwise we must use 'r'.
- if (CType == TargetLowering::C_Other && Op.getNode()) {
- assert(OpInfo.Codes[i].size() == 1 &&
- "Unhandled multi-letter 'other' constraint");
- std::vector<SDValue> ResultOps;
- TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
- ResultOps, *DAG);
- if (!ResultOps.empty()) {
- BestType = CType;
- BestIdx = i;
- break;
- }
- }
- // Things with matching constraints can only be registers, per gcc
- // documentation. This mainly affects "g" constraints.
- if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
- continue;
- // This constraint letter is more general than the previous one, use it.
- int Generality = getConstraintGenerality(CType);
- if (Generality > BestGenerality) {
- BestType = CType;
- BestIdx = i;
- BestGenerality = Generality;
- }
- }
- OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
- OpInfo.ConstraintType = BestType;
- }
- /// ComputeConstraintToUse - Determines the constraint code and constraint
- /// type to use for the specific AsmOperandInfo, setting
- /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
- void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
- SDValue Op,
- SelectionDAG *DAG) const {
- assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
- // Single-letter constraints ('r') are very common.
- if (OpInfo.Codes.size() == 1) {
- OpInfo.ConstraintCode = OpInfo.Codes[0];
- OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
- } else {
- ChooseConstraint(OpInfo, *this, Op, DAG);
- }
- // 'X' matches anything.
- if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
- // Labels and constants are handled elsewhere ('X' is the only thing
- // that matches labels). For Functions, the type here is the type of
- // the result, which is not what we want to look at; leave them alone.
- Value *v = OpInfo.CallOperandVal;
- if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
- OpInfo.CallOperandVal = v;
- return;
- }
- // Otherwise, try to resolve it to something we know about by looking at
- // the actual operand type.
- if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
- OpInfo.ConstraintCode = Repl;
- OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // Loop Strength Reduction hooks
- //===----------------------------------------------------------------------===//
- /// isLegalAddressingMode - Return true if the addressing mode represented
- /// by AM is legal for this target, for a load/store of the specified type.
- bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
- Type *Ty) const {
- // The default implementation of this implements a conservative RISCy, r+r and
- // r+i addr mode.
- // Allows a sign-extended 16-bit immediate field.
- if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
- return false;
- // No global is ever allowed as a base.
- if (AM.BaseGV)
- return false;
- // Only support r+r,
- switch (AM.Scale) {
- case 0: // "r+i" or just "i", depending on HasBaseReg.
- break;
- case 1:
- if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
- return false;
- // Otherwise we have r+r or r+i.
- break;
- case 2:
- if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
- return false;
- // Allow 2*r as r+r.
- break;
- }
- return true;
- }
- /// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
- /// with the multiplicative inverse of the constant.
- SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
- SelectionDAG &DAG) const {
- ConstantSDNode *C = cast<ConstantSDNode>(Op2);
- APInt d = C->getAPIntValue();
- assert(d != 0 && "Division by zero!");
- // Shift the value upfront if it is even, so the LSB is one.
- unsigned ShAmt = d.countTrailingZeros();
- if (ShAmt) {
- // TODO: For UDIV use SRL instead of SRA.
- SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
- Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
- d = d.ashr(ShAmt);
- }
- // Calculate the multiplicative inverse, using Newton's method.
- APInt t, xn = d;
- while ((t = d*xn) != 1)
- xn *= APInt(d.getBitWidth(), 2) - t;
- Op2 = DAG.getConstant(xn, Op1.getValueType());
- return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
- }
- /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
- /// return a DAG expression to select that will generate the same value by
- /// multiplying by a magic number. See:
- /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
- SDValue TargetLowering::
- BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
- std::vector<SDNode*> *Created) const {
- EVT VT = N->getValueType(0);
- DebugLoc dl= N->getDebugLoc();
- // Check to see if we can do this.
- // FIXME: We should be more aggressive here.
- if (!isTypeLegal(VT))
- return SDValue();
- APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
- APInt::ms magics = d.magic();
- // Multiply the numerator (operand 0) by the magic value
- // FIXME: We should support doing a MUL in a wider type
- SDValue Q;
- if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
- isOperationLegalOrCustom(ISD::MULHS, VT))
- Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
- DAG.getConstant(magics.m, VT));
- else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
- isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
- Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
- N->getOperand(0),
- DAG.getConstant(magics.m, VT)).getNode(), 1);
- else
- return SDValue(); // No mulhs or equvialent
- // If d > 0 and m < 0, add the numerator
- if (d.isStrictlyPositive() && magics.m.isNegative()) {
- Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
- if (Created)
- Created->push_back(Q.getNode());
- }
- // If d < 0 and m > 0, subtract the numerator.
- if (d.isNegative() && magics.m.isStrictlyPositive()) {
- Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
- if (Created)
- Created->push_back(Q.getNode());
- }
- // Shift right algebraic if shift value is nonzero
- if (magics.s > 0) {
- Q = DAG.getNode(ISD::SRA, dl, VT, Q,
- DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
- if (Created)
- Created->push_back(Q.getNode());
- }
- // Extract the sign bit and add it to the quotient
- SDValue T =
- DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
- getShiftAmountTy(Q.getValueType())));
- if (Created)
- Created->push_back(T.getNode());
- return DAG.getNode(ISD::ADD, dl, VT, Q, T);
- }
- /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
- /// return a DAG expression to select that will generate the same value by
- /// multiplying by a magic number. See:
- /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
- SDValue TargetLowering::
- BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
- std::vector<SDNode*> *Created) const {
- EVT VT = N->getValueType(0);
- DebugLoc dl = N->getDebugLoc();
- // Check to see if we can do this.
- // FIXME: We should be more aggressive here.
- if (!isTypeLegal(VT))
- return SDValue();
- // FIXME: We should use a narrower constant when the upper
- // bits are known to be zero.
- const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
- APInt::mu magics = N1C.magicu();
- SDValue Q = N->getOperand(0);
- // If the divisor is even, we can avoid using the expensive fixup by shifting
- // the divided value upfront.
- if (magics.a != 0 && !N1C[0]) {
- unsigned Shift = N1C.countTrailingZeros();
- Q = DAG.getNode(ISD::SRL, dl, VT, Q,
- DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
- if (Created)
- Created->push_back(Q.getNode());
- // Get magic number for the shifted divisor.
- magics = N1C.lshr(Shift).magicu(Shift);
- assert(magics.a == 0 && "Should use cheap fixup now");
- }
- // Multiply the numerator (operand 0) by the magic value
- // FIXME: We should support doing a MUL in a wider type
- if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
- isOperationLegalOrCustom(ISD::MULHU, VT))
- Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
- else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
- isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
- Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
- DAG.getConstant(magics.m, VT)).getNode(), 1);
- else
- return SDValue(); // No mulhu or equvialent
- if (Created)
- Created->push_back(Q.getNode());
- if (magics.a == 0) {
- assert(magics.s < N1C.getBitWidth() &&
- "We shouldn't generate an undefined shift!");
- return DAG.getNode(ISD::SRL, dl, VT, Q,
- DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
- } else {
- SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
- if (Created)
- Created->push_back(NPQ.getNode());
- NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
- DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
- if (Created)
- Created->push_back(NPQ.getNode());
- NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
- if (Created)
- Created->push_back(NPQ.getNode());
- return DAG.getNode(ISD::SRL, dl, VT, NPQ,
- DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
- }
- }
|