12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860 |
- //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements routines for translating from LLVM IR into SelectionDAG IR.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "isel"
- #include "SelectionDAGBuilder.h"
- #include "SDNodeDbgValue.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/PostOrderIterator.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/Analysis/AliasAnalysis.h"
- #include "llvm/Analysis/ConstantFolding.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/CallingConv.h"
- #include "llvm/CodeGen/Analysis.h"
- #include "llvm/CodeGen/FastISel.h"
- #include "llvm/CodeGen/FunctionLoweringInfo.h"
- #include "llvm/CodeGen/GCMetadata.h"
- #include "llvm/CodeGen/GCStrategy.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/MachineInstrBuilder.h"
- #include "llvm/CodeGen/MachineJumpTableInfo.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/CodeGen/MachineRegisterInfo.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/Constants.h"
- #include "llvm/DataLayout.h"
- #include "llvm/DebugInfo.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Function.h"
- #include "llvm/GlobalVariable.h"
- #include "llvm/InlineAsm.h"
- #include "llvm/Instructions.h"
- #include "llvm/IntrinsicInst.h"
- #include "llvm/Intrinsics.h"
- #include "llvm/LLVMContext.h"
- #include "llvm/Module.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/IntegersSubsetMapping.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/Target/TargetFrameLowering.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetIntrinsicInfo.h"
- #include "llvm/Target/TargetLibraryInfo.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetOptions.h"
- #include <algorithm>
- using namespace llvm;
- /// LimitFloatPrecision - Generate low-precision inline sequences for
- /// some float libcalls (6, 8 or 12 bits).
- static unsigned LimitFloatPrecision;
- static cl::opt<unsigned, true>
- LimitFPPrecision("limit-float-precision",
- cl::desc("Generate low-precision inline sequences "
- "for some float libcalls"),
- cl::location(LimitFloatPrecision),
- cl::init(0));
- // Limit the width of DAG chains. This is important in general to prevent
- // prevent DAG-based analysis from blowing up. For example, alias analysis and
- // load clustering may not complete in reasonable time. It is difficult to
- // recognize and avoid this situation within each individual analysis, and
- // future analyses are likely to have the same behavior. Limiting DAG width is
- // the safe approach, and will be especially important with global DAGs.
- //
- // MaxParallelChains default is arbitrarily high to avoid affecting
- // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
- // sequence over this should have been converted to llvm.memcpy by the
- // frontend. It easy to induce this behavior with .ll code such as:
- // %buffer = alloca [4096 x i8]
- // %data = load [4096 x i8]* %argPtr
- // store [4096 x i8] %data, [4096 x i8]* %buffer
- static const unsigned MaxParallelChains = 64;
- static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
- const SDValue *Parts, unsigned NumParts,
- EVT PartVT, EVT ValueVT, const Value *V);
- /// getCopyFromParts - Create a value that contains the specified legal parts
- /// combined into the value they represent. If the parts combine to a type
- /// larger then ValueVT then AssertOp can be used to specify whether the extra
- /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
- /// (ISD::AssertSext).
- static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL,
- const SDValue *Parts,
- unsigned NumParts, EVT PartVT, EVT ValueVT,
- const Value *V,
- ISD::NodeType AssertOp = ISD::DELETED_NODE) {
- if (ValueVT.isVector())
- return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
- PartVT, ValueVT, V);
- assert(NumParts > 0 && "No parts to assemble!");
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Val = Parts[0];
- if (NumParts > 1) {
- // Assemble the value from multiple parts.
- if (ValueVT.isInteger()) {
- unsigned PartBits = PartVT.getSizeInBits();
- unsigned ValueBits = ValueVT.getSizeInBits();
- // Assemble the power of 2 part.
- unsigned RoundParts = NumParts & (NumParts - 1) ?
- 1 << Log2_32(NumParts) : NumParts;
- unsigned RoundBits = PartBits * RoundParts;
- EVT RoundVT = RoundBits == ValueBits ?
- ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
- SDValue Lo, Hi;
- EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
- if (RoundParts > 2) {
- Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
- PartVT, HalfVT, V);
- Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
- RoundParts / 2, PartVT, HalfVT, V);
- } else {
- Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
- Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
- }
- if (TLI.isBigEndian())
- std::swap(Lo, Hi);
- Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
- if (RoundParts < NumParts) {
- // Assemble the trailing non-power-of-2 part.
- unsigned OddParts = NumParts - RoundParts;
- EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
- Hi = getCopyFromParts(DAG, DL,
- Parts + RoundParts, OddParts, PartVT, OddVT, V);
- // Combine the round and odd parts.
- Lo = Val;
- if (TLI.isBigEndian())
- std::swap(Lo, Hi);
- EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
- Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
- DAG.getConstant(Lo.getValueType().getSizeInBits(),
- TLI.getPointerTy()));
- Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
- Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
- }
- } else if (PartVT.isFloatingPoint()) {
- // FP split into multiple FP parts (for ppcf128)
- assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) &&
- "Unexpected split");
- SDValue Lo, Hi;
- Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
- Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
- if (TLI.isBigEndian())
- std::swap(Lo, Hi);
- Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
- } else {
- // FP split into integer parts (soft fp)
- assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
- !PartVT.isVector() && "Unexpected split");
- EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
- Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
- }
- }
- // There is now one part, held in Val. Correct it to match ValueVT.
- PartVT = Val.getValueType();
- if (PartVT == ValueVT)
- return Val;
- if (PartVT.isInteger() && ValueVT.isInteger()) {
- if (ValueVT.bitsLT(PartVT)) {
- // For a truncate, see if we have any information to
- // indicate whether the truncated bits will always be
- // zero or sign-extension.
- if (AssertOp != ISD::DELETED_NODE)
- Val = DAG.getNode(AssertOp, DL, PartVT, Val,
- DAG.getValueType(ValueVT));
- return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
- }
- return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
- }
- if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
- // FP_ROUND's are always exact here.
- if (ValueVT.bitsLT(Val.getValueType()))
- return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
- DAG.getTargetConstant(1, TLI.getPointerTy()));
- return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
- }
- if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
- return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
- llvm_unreachable("Unknown mismatch!");
- }
- /// getCopyFromPartsVector - Create a value that contains the specified legal
- /// parts combined into the value they represent. If the parts combine to a
- /// type larger then ValueVT then AssertOp can be used to specify whether the
- /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
- /// ValueVT (ISD::AssertSext).
- static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL,
- const SDValue *Parts, unsigned NumParts,
- EVT PartVT, EVT ValueVT, const Value *V) {
- assert(ValueVT.isVector() && "Not a vector value");
- assert(NumParts > 0 && "No parts to assemble!");
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- SDValue Val = Parts[0];
- // Handle a multi-element vector.
- if (NumParts > 1) {
- EVT IntermediateVT, RegisterVT;
- unsigned NumIntermediates;
- unsigned NumRegs =
- TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
- NumIntermediates, RegisterVT);
- assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
- NumParts = NumRegs; // Silence a compiler warning.
- assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
- assert(RegisterVT == Parts[0].getValueType() &&
- "Part type doesn't match part!");
- // Assemble the parts into intermediate operands.
- SmallVector<SDValue, 8> Ops(NumIntermediates);
- if (NumIntermediates == NumParts) {
- // If the register was not expanded, truncate or copy the value,
- // as appropriate.
- for (unsigned i = 0; i != NumParts; ++i)
- Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
- PartVT, IntermediateVT, V);
- } else if (NumParts > 0) {
- // If the intermediate type was expanded, build the intermediate
- // operands from the parts.
- assert(NumParts % NumIntermediates == 0 &&
- "Must expand into a divisible number of parts!");
- unsigned Factor = NumParts / NumIntermediates;
- for (unsigned i = 0; i != NumIntermediates; ++i)
- Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
- PartVT, IntermediateVT, V);
- }
- // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
- // intermediate operands.
- Val = DAG.getNode(IntermediateVT.isVector() ?
- ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
- ValueVT, &Ops[0], NumIntermediates);
- }
- // There is now one part, held in Val. Correct it to match ValueVT.
- PartVT = Val.getValueType();
- if (PartVT == ValueVT)
- return Val;
- if (PartVT.isVector()) {
- // If the element type of the source/dest vectors are the same, but the
- // parts vector has more elements than the value vector, then we have a
- // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
- // elements we want.
- if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
- assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
- "Cannot narrow, it would be a lossy transformation");
- return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
- DAG.getIntPtrConstant(0));
- }
- // Vector/Vector bitcast.
- if (ValueVT.getSizeInBits() == PartVT.getSizeInBits())
- return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
- assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
- "Cannot handle this kind of promotion");
- // Promoted vector extract
- bool Smaller = ValueVT.bitsLE(PartVT);
- return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
- DL, ValueVT, Val);
- }
- // Trivial bitcast if the types are the same size and the destination
- // vector type is legal.
- if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() &&
- TLI.isTypeLegal(ValueVT))
- return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
- // Handle cases such as i8 -> <1 x i1>
- if (ValueVT.getVectorNumElements() != 1) {
- LLVMContext &Ctx = *DAG.getContext();
- Twine ErrMsg("non-trivial scalar-to-vector conversion");
- if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
- if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (isa<InlineAsm>(CI->getCalledValue()))
- ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
- Ctx.emitError(I, ErrMsg);
- } else {
- Ctx.emitError(ErrMsg);
- }
- report_fatal_error("Cannot handle scalar-to-vector conversion!");
- }
- if (ValueVT.getVectorNumElements() == 1 &&
- ValueVT.getVectorElementType() != PartVT) {
- bool Smaller = ValueVT.bitsLE(PartVT);
- Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
- DL, ValueVT.getScalarType(), Val);
- }
- return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
- }
- static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl,
- SDValue Val, SDValue *Parts, unsigned NumParts,
- EVT PartVT, const Value *V);
- /// getCopyToParts - Create a series of nodes that contain the specified value
- /// split into legal parts. If the parts contain more bits than Val, then, for
- /// integers, ExtendKind can be used to specify how to generate the extra bits.
- static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL,
- SDValue Val, SDValue *Parts, unsigned NumParts,
- EVT PartVT, const Value *V,
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
- EVT ValueVT = Val.getValueType();
- // Handle the vector case separately.
- if (ValueVT.isVector())
- return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- unsigned PartBits = PartVT.getSizeInBits();
- unsigned OrigNumParts = NumParts;
- assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
- if (NumParts == 0)
- return;
- assert(!ValueVT.isVector() && "Vector case handled elsewhere");
- if (PartVT == ValueVT) {
- assert(NumParts == 1 && "No-op copy with multiple parts!");
- Parts[0] = Val;
- return;
- }
- if (NumParts * PartBits > ValueVT.getSizeInBits()) {
- // If the parts cover more bits than the value has, promote the value.
- if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
- assert(NumParts == 1 && "Do not know what to promote to!");
- Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
- } else {
- assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
- ValueVT.isInteger() &&
- "Unknown mismatch!");
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
- if (PartVT == MVT::x86mmx)
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- }
- } else if (PartBits == ValueVT.getSizeInBits()) {
- // Different types of the same size.
- assert(NumParts == 1 && PartVT != ValueVT);
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
- // If the parts cover less bits than value has, truncate the value.
- assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
- ValueVT.isInteger() &&
- "Unknown mismatch!");
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
- if (PartVT == MVT::x86mmx)
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- }
- // The value may have changed - recompute ValueVT.
- ValueVT = Val.getValueType();
- assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
- "Failed to tile the value with PartVT!");
- if (NumParts == 1) {
- if (PartVT != ValueVT) {
- LLVMContext &Ctx = *DAG.getContext();
- Twine ErrMsg("scalar-to-vector conversion failed");
- if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
- if (const CallInst *CI = dyn_cast<CallInst>(I))
- if (isa<InlineAsm>(CI->getCalledValue()))
- ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
- Ctx.emitError(I, ErrMsg);
- } else {
- Ctx.emitError(ErrMsg);
- }
- }
- Parts[0] = Val;
- return;
- }
- // Expand the value into multiple parts.
- if (NumParts & (NumParts - 1)) {
- // The number of parts is not a power of 2. Split off and copy the tail.
- assert(PartVT.isInteger() && ValueVT.isInteger() &&
- "Do not know what to expand to!");
- unsigned RoundParts = 1 << Log2_32(NumParts);
- unsigned RoundBits = RoundParts * PartBits;
- unsigned OddParts = NumParts - RoundParts;
- SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
- DAG.getIntPtrConstant(RoundBits));
- getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
- if (TLI.isBigEndian())
- // The odd parts were reversed by getCopyToParts - unreverse them.
- std::reverse(Parts + RoundParts, Parts + NumParts);
- NumParts = RoundParts;
- ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
- Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
- }
- // The number of parts is a power of 2. Repeatedly bisect the value using
- // EXTRACT_ELEMENT.
- Parts[0] = DAG.getNode(ISD::BITCAST, DL,
- EVT::getIntegerVT(*DAG.getContext(),
- ValueVT.getSizeInBits()),
- Val);
- for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
- for (unsigned i = 0; i < NumParts; i += StepSize) {
- unsigned ThisBits = StepSize * PartBits / 2;
- EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
- SDValue &Part0 = Parts[i];
- SDValue &Part1 = Parts[i+StepSize/2];
- Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
- ThisVT, Part0, DAG.getIntPtrConstant(1));
- Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
- ThisVT, Part0, DAG.getIntPtrConstant(0));
- if (ThisBits == PartBits && ThisVT != PartVT) {
- Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
- Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
- }
- }
- }
- if (TLI.isBigEndian())
- std::reverse(Parts, Parts + OrigNumParts);
- }
- /// getCopyToPartsVector - Create a series of nodes that contain the specified
- /// value split into legal parts.
- static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL,
- SDValue Val, SDValue *Parts, unsigned NumParts,
- EVT PartVT, const Value *V) {
- EVT ValueVT = Val.getValueType();
- assert(ValueVT.isVector() && "Not a vector");
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- if (NumParts == 1) {
- if (PartVT == ValueVT) {
- // Nothing to do.
- } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
- // Bitconvert vector->vector case.
- Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
- } else if (PartVT.isVector() &&
- PartVT.getVectorElementType() == ValueVT.getVectorElementType() &&
- PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
- EVT ElementVT = PartVT.getVectorElementType();
- // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
- // undef elements.
- SmallVector<SDValue, 16> Ops;
- for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
- Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
- ElementVT, Val, DAG.getIntPtrConstant(i)));
- for (unsigned i = ValueVT.getVectorNumElements(),
- e = PartVT.getVectorNumElements(); i != e; ++i)
- Ops.push_back(DAG.getUNDEF(ElementVT));
- Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
- // FIXME: Use CONCAT for 2x -> 4x.
- //SDValue UndefElts = DAG.getUNDEF(VectorTy);
- //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
- } else if (PartVT.isVector() &&
- PartVT.getVectorElementType().bitsGE(
- ValueVT.getVectorElementType()) &&
- PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
- // Promoted vector extract
- bool Smaller = PartVT.bitsLE(ValueVT);
- Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
- DL, PartVT, Val);
- } else{
- // Vector -> scalar conversion.
- assert(ValueVT.getVectorNumElements() == 1 &&
- "Only trivial vector-to-scalar conversions should get here!");
- Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
- PartVT, Val, DAG.getIntPtrConstant(0));
- bool Smaller = ValueVT.bitsLE(PartVT);
- Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
- DL, PartVT, Val);
- }
- Parts[0] = Val;
- return;
- }
- // Handle a multi-element vector.
- EVT IntermediateVT, RegisterVT;
- unsigned NumIntermediates;
- unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
- IntermediateVT,
- NumIntermediates, RegisterVT);
- unsigned NumElements = ValueVT.getVectorNumElements();
- assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
- NumParts = NumRegs; // Silence a compiler warning.
- assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
- // Split the vector into intermediate operands.
- SmallVector<SDValue, 8> Ops(NumIntermediates);
- for (unsigned i = 0; i != NumIntermediates; ++i) {
- if (IntermediateVT.isVector())
- Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
- IntermediateVT, Val,
- DAG.getIntPtrConstant(i * (NumElements / NumIntermediates)));
- else
- Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
- IntermediateVT, Val, DAG.getIntPtrConstant(i));
- }
- // Split the intermediate operands into legal parts.
- if (NumParts == NumIntermediates) {
- // If the register was not expanded, promote or copy the value,
- // as appropriate.
- for (unsigned i = 0; i != NumParts; ++i)
- getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
- } else if (NumParts > 0) {
- // If the intermediate type was expanded, split each the value into
- // legal parts.
- assert(NumParts % NumIntermediates == 0 &&
- "Must expand into a divisible number of parts!");
- unsigned Factor = NumParts / NumIntermediates;
- for (unsigned i = 0; i != NumIntermediates; ++i)
- getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
- }
- }
- namespace {
- /// RegsForValue - This struct represents the registers (physical or virtual)
- /// that a particular set of values is assigned, and the type information
- /// about the value. The most common situation is to represent one value at a
- /// time, but struct or array values are handled element-wise as multiple
- /// values. The splitting of aggregates is performed recursively, so that we
- /// never have aggregate-typed registers. The values at this point do not
- /// necessarily have legal types, so each value may require one or more
- /// registers of some legal type.
- ///
- struct RegsForValue {
- /// ValueVTs - The value types of the values, which may not be legal, and
- /// may need be promoted or synthesized from one or more registers.
- ///
- SmallVector<EVT, 4> ValueVTs;
- /// RegVTs - The value types of the registers. This is the same size as
- /// ValueVTs and it records, for each value, what the type of the assigned
- /// register or registers are. (Individual values are never synthesized
- /// from more than one type of register.)
- ///
- /// With virtual registers, the contents of RegVTs is redundant with TLI's
- /// getRegisterType member function, however when with physical registers
- /// it is necessary to have a separate record of the types.
- ///
- SmallVector<EVT, 4> RegVTs;
- /// Regs - This list holds the registers assigned to the values.
- /// Each legal or promoted value requires one register, and each
- /// expanded value requires multiple registers.
- ///
- SmallVector<unsigned, 4> Regs;
- RegsForValue() {}
- RegsForValue(const SmallVector<unsigned, 4> ®s,
- EVT regvt, EVT valuevt)
- : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
- RegsForValue(LLVMContext &Context, const TargetLowering &tli,
- unsigned Reg, Type *Ty) {
- ComputeValueVTs(tli, Ty, ValueVTs);
- for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
- EVT ValueVT = ValueVTs[Value];
- unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
- EVT RegisterVT = tli.getRegisterType(Context, ValueVT);
- for (unsigned i = 0; i != NumRegs; ++i)
- Regs.push_back(Reg + i);
- RegVTs.push_back(RegisterVT);
- Reg += NumRegs;
- }
- }
- /// areValueTypesLegal - Return true if types of all the values are legal.
- bool areValueTypesLegal(const TargetLowering &TLI) {
- for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
- EVT RegisterVT = RegVTs[Value];
- if (!TLI.isTypeLegal(RegisterVT))
- return false;
- }
- return true;
- }
- /// append - Add the specified values to this one.
- void append(const RegsForValue &RHS) {
- ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
- RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
- Regs.append(RHS.Regs.begin(), RHS.Regs.end());
- }
- /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
- /// this value and returns the result as a ValueVTs value. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
- DebugLoc dl,
- SDValue &Chain, SDValue *Flag,
- const Value *V = 0) const;
- /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
- /// specified value into the registers specified by this object. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
- SDValue &Chain, SDValue *Flag, const Value *V) const;
- /// AddInlineAsmOperands - Add this value to the specified inlineasm node
- /// operand list. This adds the code marker, matching input operand index
- /// (if applicable), and includes the number of values added into it.
- void AddInlineAsmOperands(unsigned Kind,
- bool HasMatching, unsigned MatchingIdx,
- SelectionDAG &DAG,
- std::vector<SDValue> &Ops) const;
- };
- }
- /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
- /// this value and returns the result as a ValueVT value. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
- FunctionLoweringInfo &FuncInfo,
- DebugLoc dl,
- SDValue &Chain, SDValue *Flag,
- const Value *V) const {
- // A Value with type {} or [0 x %t] needs no registers.
- if (ValueVTs.empty())
- return SDValue();
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // Assemble the legal parts into the final values.
- SmallVector<SDValue, 4> Values(ValueVTs.size());
- SmallVector<SDValue, 8> Parts;
- for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
- // Copy the legal parts from the registers.
- EVT ValueVT = ValueVTs[Value];
- unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
- EVT RegisterVT = RegVTs[Value];
- Parts.resize(NumRegs);
- for (unsigned i = 0; i != NumRegs; ++i) {
- SDValue P;
- if (Flag == 0) {
- P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
- } else {
- P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
- *Flag = P.getValue(2);
- }
- Chain = P.getValue(1);
- Parts[i] = P;
- // If the source register was virtual and if we know something about it,
- // add an assert node.
- if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
- !RegisterVT.isInteger() || RegisterVT.isVector())
- continue;
- const FunctionLoweringInfo::LiveOutInfo *LOI =
- FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
- if (!LOI)
- continue;
- unsigned RegSize = RegisterVT.getSizeInBits();
- unsigned NumSignBits = LOI->NumSignBits;
- unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
- // FIXME: We capture more information than the dag can represent. For
- // now, just use the tightest assertzext/assertsext possible.
- bool isSExt = true;
- EVT FromVT(MVT::Other);
- if (NumSignBits == RegSize)
- isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
- else if (NumZeroBits >= RegSize-1)
- isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
- else if (NumSignBits > RegSize-8)
- isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
- else if (NumZeroBits >= RegSize-8)
- isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
- else if (NumSignBits > RegSize-16)
- isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
- else if (NumZeroBits >= RegSize-16)
- isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
- else if (NumSignBits > RegSize-32)
- isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
- else if (NumZeroBits >= RegSize-32)
- isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
- else
- continue;
- // Add an assertion node.
- assert(FromVT != MVT::Other);
- Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
- RegisterVT, P, DAG.getValueType(FromVT));
- }
- Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
- NumRegs, RegisterVT, ValueVT, V);
- Part += NumRegs;
- Parts.clear();
- }
- return DAG.getNode(ISD::MERGE_VALUES, dl,
- DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
- &Values[0], ValueVTs.size());
- }
- /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
- /// specified value into the registers specified by this object. This uses
- /// Chain/Flag as the input and updates them for the output Chain/Flag.
- /// If the Flag pointer is NULL, no flag is used.
- void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl,
- SDValue &Chain, SDValue *Flag,
- const Value *V) const {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- // Get the list of the values's legal parts.
- unsigned NumRegs = Regs.size();
- SmallVector<SDValue, 8> Parts(NumRegs);
- for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
- EVT ValueVT = ValueVTs[Value];
- unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
- EVT RegisterVT = RegVTs[Value];
- ISD::NodeType ExtendKind =
- TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
- getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
- &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
- Part += NumParts;
- }
- // Copy the parts into the registers.
- SmallVector<SDValue, 8> Chains(NumRegs);
- for (unsigned i = 0; i != NumRegs; ++i) {
- SDValue Part;
- if (Flag == 0) {
- Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
- } else {
- Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
- *Flag = Part.getValue(1);
- }
- Chains[i] = Part.getValue(0);
- }
- if (NumRegs == 1 || Flag)
- // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
- // flagged to it. That is the CopyToReg nodes and the user are considered
- // a single scheduling unit. If we create a TokenFactor and return it as
- // chain, then the TokenFactor is both a predecessor (operand) of the
- // user as well as a successor (the TF operands are flagged to the user).
- // c1, f1 = CopyToReg
- // c2, f2 = CopyToReg
- // c3 = TokenFactor c1, c2
- // ...
- // = op c3, ..., f2
- Chain = Chains[NumRegs-1];
- else
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
- }
- /// AddInlineAsmOperands - Add this value to the specified inlineasm node
- /// operand list. This adds the code marker and includes the number of
- /// values added into it.
- void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
- unsigned MatchingIdx,
- SelectionDAG &DAG,
- std::vector<SDValue> &Ops) const {
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
- if (HasMatching)
- Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
- else if (!Regs.empty() &&
- TargetRegisterInfo::isVirtualRegister(Regs.front())) {
- // Put the register class of the virtual registers in the flag word. That
- // way, later passes can recompute register class constraints for inline
- // assembly as well as normal instructions.
- // Don't do this for tied operands that can use the regclass information
- // from the def.
- const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
- const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
- Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
- }
- SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
- Ops.push_back(Res);
- for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
- unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
- EVT RegisterVT = RegVTs[Value];
- for (unsigned i = 0; i != NumRegs; ++i) {
- assert(Reg < Regs.size() && "Mismatch in # registers expected");
- Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
- }
- }
- }
- void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
- const TargetLibraryInfo *li) {
- AA = &aa;
- GFI = gfi;
- LibInfo = li;
- TD = DAG.getTarget().getDataLayout();
- Context = DAG.getContext();
- LPadToCallSiteMap.clear();
- }
- /// clear - Clear out the current SelectionDAG and the associated
- /// state and prepare this SelectionDAGBuilder object to be used
- /// for a new block. This doesn't clear out information about
- /// additional blocks that are needed to complete switch lowering
- /// or PHI node updating; that information is cleared out as it is
- /// consumed.
- void SelectionDAGBuilder::clear() {
- NodeMap.clear();
- UnusedArgNodeMap.clear();
- PendingLoads.clear();
- PendingExports.clear();
- CurDebugLoc = DebugLoc();
- HasTailCall = false;
- }
- /// clearDanglingDebugInfo - Clear the dangling debug information
- /// map. This function is separated from the clear so that debug
- /// information that is dangling in a basic block can be properly
- /// resolved in a different basic block. This allows the
- /// SelectionDAG to resolve dangling debug information attached
- /// to PHI nodes.
- void SelectionDAGBuilder::clearDanglingDebugInfo() {
- DanglingDebugInfoMap.clear();
- }
- /// getRoot - Return the current virtual root of the Selection DAG,
- /// flushing any PendingLoad items. This must be done before emitting
- /// a store or any other node that may need to be ordered after any
- /// prior load instructions.
- ///
- SDValue SelectionDAGBuilder::getRoot() {
- if (PendingLoads.empty())
- return DAG.getRoot();
- if (PendingLoads.size() == 1) {
- SDValue Root = PendingLoads[0];
- DAG.setRoot(Root);
- PendingLoads.clear();
- return Root;
- }
- // Otherwise, we have to make a token factor node.
- SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
- &PendingLoads[0], PendingLoads.size());
- PendingLoads.clear();
- DAG.setRoot(Root);
- return Root;
- }
- /// getControlRoot - Similar to getRoot, but instead of flushing all the
- /// PendingLoad items, flush all the PendingExports items. It is necessary
- /// to do this before emitting a terminator instruction.
- ///
- SDValue SelectionDAGBuilder::getControlRoot() {
- SDValue Root = DAG.getRoot();
- if (PendingExports.empty())
- return Root;
- // Turn all of the CopyToReg chains into one factored node.
- if (Root.getOpcode() != ISD::EntryToken) {
- unsigned i = 0, e = PendingExports.size();
- for (; i != e; ++i) {
- assert(PendingExports[i].getNode()->getNumOperands() > 1);
- if (PendingExports[i].getNode()->getOperand(0) == Root)
- break; // Don't add the root if we already indirectly depend on it.
- }
- if (i == e)
- PendingExports.push_back(Root);
- }
- Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
- &PendingExports[0],
- PendingExports.size());
- PendingExports.clear();
- DAG.setRoot(Root);
- return Root;
- }
- void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) {
- if (DAG.GetOrdering(Node) != 0) return; // Already has ordering.
- DAG.AssignOrdering(Node, SDNodeOrder);
- for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I)
- AssignOrderingToNode(Node->getOperand(I).getNode());
- }
- void SelectionDAGBuilder::visit(const Instruction &I) {
- // Set up outgoing PHI node register values before emitting the terminator.
- if (isa<TerminatorInst>(&I))
- HandlePHINodesInSuccessorBlocks(I.getParent());
- CurDebugLoc = I.getDebugLoc();
- visit(I.getOpcode(), I);
- if (!isa<TerminatorInst>(&I) && !HasTailCall)
- CopyToExportRegsIfNeeded(&I);
- CurDebugLoc = DebugLoc();
- }
- void SelectionDAGBuilder::visitPHI(const PHINode &) {
- llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
- }
- void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
- // Note: this doesn't use InstVisitor, because it has to work with
- // ConstantExpr's in addition to instructions.
- switch (Opcode) {
- default: llvm_unreachable("Unknown instruction type encountered!");
- // Build the switch statement using the Instruction.def file.
- #define HANDLE_INST(NUM, OPCODE, CLASS) \
- case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
- #include "llvm/Instruction.def"
- }
- // Assign the ordering to the freshly created DAG nodes.
- if (NodeMap.count(&I)) {
- ++SDNodeOrder;
- AssignOrderingToNode(getValue(&I).getNode());
- }
- }
- // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
- // generate the debug data structures now that we've seen its definition.
- void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
- SDValue Val) {
- DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
- if (DDI.getDI()) {
- const DbgValueInst *DI = DDI.getDI();
- DebugLoc dl = DDI.getdl();
- unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
- MDNode *Variable = DI->getVariable();
- uint64_t Offset = DI->getOffset();
- SDDbgValue *SDV;
- if (Val.getNode()) {
- if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
- SDV = DAG.getDbgValue(Variable, Val.getNode(),
- Val.getResNo(), Offset, dl, DbgSDNodeOrder);
- DAG.AddDbgValue(SDV, Val.getNode(), false);
- }
- } else
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- DanglingDebugInfoMap[V] = DanglingDebugInfo();
- }
- }
- /// getValue - Return an SDValue for the given Value.
- SDValue SelectionDAGBuilder::getValue(const Value *V) {
- // If we already have an SDValue for this value, use it. It's important
- // to do this first, so that we don't create a CopyFromReg if we already
- // have a regular SDValue.
- SDValue &N = NodeMap[V];
- if (N.getNode()) return N;
- // If there's a virtual register allocated and initialized for this
- // value, use it.
- DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
- if (It != FuncInfo.ValueMap.end()) {
- unsigned InReg = It->second;
- RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType());
- SDValue Chain = DAG.getEntryNode();
- N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
- resolveDanglingDebugInfo(V, N);
- return N;
- }
- // Otherwise create a new SDValue and remember it.
- SDValue Val = getValueImpl(V);
- NodeMap[V] = Val;
- resolveDanglingDebugInfo(V, Val);
- return Val;
- }
- /// getNonRegisterValue - Return an SDValue for the given Value, but
- /// don't look in FuncInfo.ValueMap for a virtual register.
- SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
- // If we already have an SDValue for this value, use it.
- SDValue &N = NodeMap[V];
- if (N.getNode()) return N;
- // Otherwise create a new SDValue and remember it.
- SDValue Val = getValueImpl(V);
- NodeMap[V] = Val;
- resolveDanglingDebugInfo(V, Val);
- return Val;
- }
- /// getValueImpl - Helper function for getValue and getNonRegisterValue.
- /// Create an SDValue for the given value.
- SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
- if (const Constant *C = dyn_cast<Constant>(V)) {
- EVT VT = TLI.getValueType(V->getType(), true);
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
- return DAG.getConstant(*CI, VT);
- if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
- return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT);
- if (isa<ConstantPointerNull>(C))
- return DAG.getConstant(0, TLI.getPointerTy());
- if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
- return DAG.getConstantFP(*CFP, VT);
- if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
- return DAG.getUNDEF(VT);
- if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
- visit(CE->getOpcode(), *CE);
- SDValue N1 = NodeMap[V];
- assert(N1.getNode() && "visit didn't populate the NodeMap!");
- return N1;
- }
- if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
- SmallVector<SDValue, 4> Constants;
- for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
- OI != OE; ++OI) {
- SDNode *Val = getValue(*OI).getNode();
- // If the operand is an empty aggregate, there are no values.
- if (!Val) continue;
- // Add each leaf value from the operand to the Constants list
- // to form a flattened list of all the values.
- for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
- Constants.push_back(SDValue(Val, i));
- }
- return DAG.getMergeValues(&Constants[0], Constants.size(),
- getCurDebugLoc());
- }
-
- if (const ConstantDataSequential *CDS =
- dyn_cast<ConstantDataSequential>(C)) {
- SmallVector<SDValue, 4> Ops;
- for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
- SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
- // Add each leaf value from the operand to the Constants list
- // to form a flattened list of all the values.
- for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
- Ops.push_back(SDValue(Val, i));
- }
- if (isa<ArrayType>(CDS->getType()))
- return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc());
- return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
- VT, &Ops[0], Ops.size());
- }
- if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
- assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
- "Unknown struct or array constant!");
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, C->getType(), ValueVTs);
- unsigned NumElts = ValueVTs.size();
- if (NumElts == 0)
- return SDValue(); // empty struct
- SmallVector<SDValue, 4> Constants(NumElts);
- for (unsigned i = 0; i != NumElts; ++i) {
- EVT EltVT = ValueVTs[i];
- if (isa<UndefValue>(C))
- Constants[i] = DAG.getUNDEF(EltVT);
- else if (EltVT.isFloatingPoint())
- Constants[i] = DAG.getConstantFP(0, EltVT);
- else
- Constants[i] = DAG.getConstant(0, EltVT);
- }
- return DAG.getMergeValues(&Constants[0], NumElts,
- getCurDebugLoc());
- }
- if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
- return DAG.getBlockAddress(BA, VT);
- VectorType *VecTy = cast<VectorType>(V->getType());
- unsigned NumElements = VecTy->getNumElements();
- // Now that we know the number and type of the elements, get that number of
- // elements into the Ops array based on what kind of constant it is.
- SmallVector<SDValue, 16> Ops;
- if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
- for (unsigned i = 0; i != NumElements; ++i)
- Ops.push_back(getValue(CV->getOperand(i)));
- } else {
- assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
- EVT EltVT = TLI.getValueType(VecTy->getElementType());
- SDValue Op;
- if (EltVT.isFloatingPoint())
- Op = DAG.getConstantFP(0, EltVT);
- else
- Op = DAG.getConstant(0, EltVT);
- Ops.assign(NumElements, Op);
- }
- // Create a BUILD_VECTOR node.
- return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
- VT, &Ops[0], Ops.size());
- }
- // If this is a static alloca, generate it as the frameindex instead of
- // computation.
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
- DenseMap<const AllocaInst*, int>::iterator SI =
- FuncInfo.StaticAllocaMap.find(AI);
- if (SI != FuncInfo.StaticAllocaMap.end())
- return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
- }
- // If this is an instruction which fast-isel has deferred, select it now.
- if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
- unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
- RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
- SDValue Chain = DAG.getEntryNode();
- return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V);
- }
- llvm_unreachable("Can't get register for value!");
- }
- void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
- SDValue Chain = getControlRoot();
- SmallVector<ISD::OutputArg, 8> Outs;
- SmallVector<SDValue, 8> OutVals;
- if (!FuncInfo.CanLowerReturn) {
- unsigned DemoteReg = FuncInfo.DemoteRegister;
- const Function *F = I.getParent()->getParent();
- // Emit a store of the return value through the virtual register.
- // Leave Outs empty so that LowerReturn won't try to load return
- // registers the usual way.
- SmallVector<EVT, 1> PtrValueVTs;
- ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
- PtrValueVTs);
- SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
- SDValue RetOp = getValue(I.getOperand(0));
- SmallVector<EVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
- SmallVector<SDValue, 4> Chains(NumValues);
- for (unsigned i = 0; i != NumValues; ++i) {
- SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(),
- RetPtr.getValueType(), RetPtr,
- DAG.getIntPtrConstant(Offsets[i]));
- Chains[i] =
- DAG.getStore(Chain, getCurDebugLoc(),
- SDValue(RetOp.getNode(), RetOp.getResNo() + i),
- // FIXME: better loc info would be nice.
- Add, MachinePointerInfo(), false, false, 0);
- }
- Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
- MVT::Other, &Chains[0], NumValues);
- } else if (I.getNumOperands() != 0) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues) {
- SDValue RetOp = getValue(I.getOperand(0));
- for (unsigned j = 0, f = NumValues; j != f; ++j) {
- EVT VT = ValueVTs[j];
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
- const Function *F = I.getParent()->getParent();
- if (F->getRetAttributes().hasAttribute(Attribute::SExt))
- ExtendKind = ISD::SIGN_EXTEND;
- else if (F->getRetAttributes().hasAttribute(Attribute::ZExt))
- ExtendKind = ISD::ZERO_EXTEND;
- if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
- VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
- unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
- EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
- SmallVector<SDValue, 4> Parts(NumParts);
- getCopyToParts(DAG, getCurDebugLoc(),
- SDValue(RetOp.getNode(), RetOp.getResNo() + j),
- &Parts[0], NumParts, PartVT, &I, ExtendKind);
- // 'inreg' on function refers to return value
- ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
- if (F->getRetAttributes().hasAttribute(Attribute::InReg))
- Flags.setInReg();
- // Propagate extension type if any
- if (ExtendKind == ISD::SIGN_EXTEND)
- Flags.setSExt();
- else if (ExtendKind == ISD::ZERO_EXTEND)
- Flags.setZExt();
- for (unsigned i = 0; i < NumParts; ++i) {
- Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
- /*isfixed=*/true, 0, 0));
- OutVals.push_back(Parts[i]);
- }
- }
- }
- }
- bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
- CallingConv::ID CallConv =
- DAG.getMachineFunction().getFunction()->getCallingConv();
- Chain = TLI.LowerReturn(Chain, CallConv, isVarArg,
- Outs, OutVals, getCurDebugLoc(), DAG);
- // Verify that the target's LowerReturn behaved as expected.
- assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
- "LowerReturn didn't return a valid chain!");
- // Update the DAG with the new chain value resulting from return lowering.
- DAG.setRoot(Chain);
- }
- /// CopyToExportRegsIfNeeded - If the given value has virtual registers
- /// created for it, emit nodes to copy the value into the virtual
- /// registers.
- void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
- // Skip empty types
- if (V->getType()->isEmptyTy())
- return;
- DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
- if (VMI != FuncInfo.ValueMap.end()) {
- assert(!V->use_empty() && "Unused value assigned virtual registers!");
- CopyValueToVirtualRegister(V, VMI->second);
- }
- }
- /// ExportFromCurrentBlock - If this condition isn't known to be exported from
- /// the current basic block, add it to ValueMap now so that we'll get a
- /// CopyTo/FromReg.
- void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
- // No need to export constants.
- if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
- // Already exported?
- if (FuncInfo.isExportedInst(V)) return;
- unsigned Reg = FuncInfo.InitializeRegForValue(V);
- CopyValueToVirtualRegister(V, Reg);
- }
- bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
- const BasicBlock *FromBB) {
- // The operands of the setcc have to be in this block. We don't know
- // how to export them from some other block.
- if (const Instruction *VI = dyn_cast<Instruction>(V)) {
- // Can export from current BB.
- if (VI->getParent() == FromBB)
- return true;
- // Is already exported, noop.
- return FuncInfo.isExportedInst(V);
- }
- // If this is an argument, we can export it if the BB is the entry block or
- // if it is already exported.
- if (isa<Argument>(V)) {
- if (FromBB == &FromBB->getParent()->getEntryBlock())
- return true;
- // Otherwise, can only export this if it is already exported.
- return FuncInfo.isExportedInst(V);
- }
- // Otherwise, constants can always be exported.
- return true;
- }
- /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
- uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
- const MachineBasicBlock *Dst) const {
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- if (!BPI)
- return 0;
- const BasicBlock *SrcBB = Src->getBasicBlock();
- const BasicBlock *DstBB = Dst->getBasicBlock();
- return BPI->getEdgeWeight(SrcBB, DstBB);
- }
- void SelectionDAGBuilder::
- addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
- uint32_t Weight /* = 0 */) {
- if (!Weight)
- Weight = getEdgeWeight(Src, Dst);
- Src->addSuccessor(Dst, Weight);
- }
- static bool InBlock(const Value *V, const BasicBlock *BB) {
- if (const Instruction *I = dyn_cast<Instruction>(V))
- return I->getParent() == BB;
- return true;
- }
- /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
- /// This function emits a branch and is used at the leaves of an OR or an
- /// AND operator tree.
- ///
- void
- SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
- MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- MachineBasicBlock *CurBB,
- MachineBasicBlock *SwitchBB) {
- const BasicBlock *BB = CurBB->getBasicBlock();
- // If the leaf of the tree is a comparison, merge the condition into
- // the caseblock.
- if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
- // The operands of the cmp have to be in this block. We don't know
- // how to export them from some other block. If this is the first block
- // of the sequence, no exporting is needed.
- if (CurBB == SwitchBB ||
- (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
- isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
- ISD::CondCode Condition;
- if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
- Condition = getICmpCondCode(IC->getPredicate());
- } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
- Condition = getFCmpCondCode(FC->getPredicate());
- if (TM.Options.NoNaNsFPMath)
- Condition = getFCmpCodeWithoutNaN(Condition);
- } else {
- Condition = ISD::SETEQ; // silence warning.
- llvm_unreachable("Unknown compare instruction");
- }
- CaseBlock CB(Condition, BOp->getOperand(0),
- BOp->getOperand(1), NULL, TBB, FBB, CurBB);
- SwitchCases.push_back(CB);
- return;
- }
- }
- // Create a CaseBlock record representing this branch.
- CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
- NULL, TBB, FBB, CurBB);
- SwitchCases.push_back(CB);
- }
- /// FindMergedConditions - If Cond is an expression like
- void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
- MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- MachineBasicBlock *CurBB,
- MachineBasicBlock *SwitchBB,
- unsigned Opc) {
- // If this node is not part of the or/and tree, emit it as a branch.
- const Instruction *BOp = dyn_cast<Instruction>(Cond);
- if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
- (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
- BOp->getParent() != CurBB->getBasicBlock() ||
- !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
- !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
- EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
- return;
- }
- // Create TmpBB after CurBB.
- MachineFunction::iterator BBI = CurBB;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
- CurBB->getParent()->insert(++BBI, TmpBB);
- if (Opc == Instruction::Or) {
- // Codegen X | Y as:
- // jmp_if_X TBB
- // jmp TmpBB
- // TmpBB:
- // jmp_if_Y TBB
- // jmp FBB
- //
- // Emit the LHS condition.
- FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
- // Emit the RHS condition into TmpBB.
- FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
- } else {
- assert(Opc == Instruction::And && "Unknown merge op!");
- // Codegen X & Y as:
- // jmp_if_X TmpBB
- // jmp FBB
- // TmpBB:
- // jmp_if_Y TBB
- // jmp FBB
- //
- // This requires creation of TmpBB after CurBB.
- // Emit the LHS condition.
- FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
- // Emit the RHS condition into TmpBB.
- FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
- }
- }
- /// If the set of cases should be emitted as a series of branches, return true.
- /// If we should emit this as a bunch of and/or'd together conditions, return
- /// false.
- bool
- SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
- if (Cases.size() != 2) return true;
- // If this is two comparisons of the same values or'd or and'd together, they
- // will get folded into a single comparison, so don't emit two blocks.
- if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
- Cases[0].CmpRHS == Cases[1].CmpRHS) ||
- (Cases[0].CmpRHS == Cases[1].CmpLHS &&
- Cases[0].CmpLHS == Cases[1].CmpRHS)) {
- return false;
- }
- // Handle: (X != null) | (Y != null) --> (X|Y) != 0
- // Handle: (X == null) & (Y == null) --> (X|Y) == 0
- if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
- Cases[0].CC == Cases[1].CC &&
- isa<Constant>(Cases[0].CmpRHS) &&
- cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
- if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
- return false;
- if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
- return false;
- }
- return true;
- }
- void SelectionDAGBuilder::visitBr(const BranchInst &I) {
- MachineBasicBlock *BrMBB = FuncInfo.MBB;
- // Update machine-CFG edges.
- MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = BrMBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
- if (I.isUnconditional()) {
- // Update machine-CFG edges.
- BrMBB->addSuccessor(Succ0MBB);
- // If this is not a fall-through branch, emit the branch.
- if (Succ0MBB != NextBlock)
- DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Succ0MBB)));
- return;
- }
- // If this condition is one of the special cases we handle, do special stuff
- // now.
- const Value *CondVal = I.getCondition();
- MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
- // If this is a series of conditions that are or'd or and'd together, emit
- // this as a sequence of branches instead of setcc's with and/or operations.
- // As long as jumps are not expensive, this should improve performance.
- // For example, instead of something like:
- // cmp A, B
- // C = seteq
- // cmp D, E
- // F = setle
- // or C, F
- // jnz foo
- // Emit:
- // cmp A, B
- // je foo
- // cmp D, E
- // jle foo
- //
- if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
- if (!TLI.isJumpExpensive() &&
- BOp->hasOneUse() &&
- (BOp->getOpcode() == Instruction::And ||
- BOp->getOpcode() == Instruction::Or)) {
- FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
- BOp->getOpcode());
- // If the compares in later blocks need to use values not currently
- // exported from this block, export them now. This block should always
- // be the first entry.
- assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
- // Allow some cases to be rejected.
- if (ShouldEmitAsBranches(SwitchCases)) {
- for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
- ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
- ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
- }
- // Emit the branch for this block.
- visitSwitchCase(SwitchCases[0], BrMBB);
- SwitchCases.erase(SwitchCases.begin());
- return;
- }
- // Okay, we decided not to do this, remove any inserted MBB's and clear
- // SwitchCases.
- for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
- FuncInfo.MF->erase(SwitchCases[i].ThisBB);
- SwitchCases.clear();
- }
- }
- // Create a CaseBlock record representing this branch.
- CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
- NULL, Succ0MBB, Succ1MBB, BrMBB);
- // Use visitSwitchCase to actually insert the fast branch sequence for this
- // cond branch.
- visitSwitchCase(CB, BrMBB);
- }
- /// visitSwitchCase - Emits the necessary code to represent a single node in
- /// the binary search tree resulting from lowering a switch instruction.
- void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
- MachineBasicBlock *SwitchBB) {
- SDValue Cond;
- SDValue CondLHS = getValue(CB.CmpLHS);
- DebugLoc dl = getCurDebugLoc();
- // Build the setcc now.
- if (CB.CmpMHS == NULL) {
- // Fold "(X == true)" to X and "(X == false)" to !X to
- // handle common cases produced by branch lowering.
- if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
- CB.CC == ISD::SETEQ)
- Cond = CondLHS;
- else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
- CB.CC == ISD::SETEQ) {
- SDValue True = DAG.getConstant(1, CondLHS.getValueType());
- Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
- } else
- Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
- } else {
- assert(CB.CC == ISD::SETCC_INVALID &&
- "Condition is undefined for to-the-range belonging check.");
- const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
- const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
- SDValue CmpOp = getValue(CB.CmpMHS);
- EVT VT = CmpOp.getValueType();
-
- if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) {
- Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
- ISD::SETULE);
- } else {
- SDValue SUB = DAG.getNode(ISD::SUB, dl,
- VT, CmpOp, DAG.getConstant(Low, VT));
- Cond = DAG.getSetCC(dl, MVT::i1, SUB,
- DAG.getConstant(High-Low, VT), ISD::SETULE);
- }
- }
- // Update successor info
- addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
- // TrueBB and FalseBB are always different unless the incoming IR is
- // degenerate. This only happens when running llc on weird IR.
- if (CB.TrueBB != CB.FalseBB)
- addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = SwitchBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
- // If the lhs block is the next block, invert the condition so that we can
- // fall through to the lhs instead of the rhs block.
- if (CB.TrueBB == NextBlock) {
- std::swap(CB.TrueBB, CB.FalseBB);
- SDValue True = DAG.getConstant(1, Cond.getValueType());
- Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
- }
- SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
- MVT::Other, getControlRoot(), Cond,
- DAG.getBasicBlock(CB.TrueBB));
- // Insert the false branch. Do this even if it's a fall through branch,
- // this makes it easier to do DAG optimizations which require inverting
- // the branch condition.
- BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
- DAG.getBasicBlock(CB.FalseBB));
- DAG.setRoot(BrCond);
- }
- /// visitJumpTable - Emit JumpTable node in the current MBB
- void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
- // Emit the code for the jump table
- assert(JT.Reg != -1U && "Should lower JT Header first!");
- EVT PTy = TLI.getPointerTy();
- SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
- JT.Reg, PTy);
- SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
- SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(),
- MVT::Other, Index.getValue(1),
- Table, Index);
- DAG.setRoot(BrJumpTable);
- }
- /// visitJumpTableHeader - This function emits necessary code to produce index
- /// in the JumpTable from switch case.
- void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
- JumpTableHeader &JTH,
- MachineBasicBlock *SwitchBB) {
- // Subtract the lowest switch case value from the value being switched on and
- // conditional branch to default mbb if the result is greater than the
- // difference between smallest and largest cases.
- SDValue SwitchOp = getValue(JTH.SValue);
- EVT VT = SwitchOp.getValueType();
- SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
- DAG.getConstant(JTH.First, VT));
- // The SDNode we just created, which holds the value being switched on minus
- // the smallest case value, needs to be copied to a virtual register so it
- // can be used as an index into the jump table in a subsequent basic block.
- // This value may be smaller or larger than the target's pointer type, and
- // therefore require extension or truncating.
- SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy());
- unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
- SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
- JumpTableReg, SwitchOp);
- JT.Reg = JumpTableReg;
- // Emit the range check for the jump table, and branch to the default block
- // for the switch statement if the value being switched on exceeds the largest
- // case in the switch.
- SDValue CMP = DAG.getSetCC(getCurDebugLoc(),
- TLI.getSetCCResultType(Sub.getValueType()), Sub,
- DAG.getConstant(JTH.Last-JTH.First,VT),
- ISD::SETUGT);
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = SwitchBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
- SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
- MVT::Other, CopyTo, CMP,
- DAG.getBasicBlock(JT.Default));
- if (JT.MBB != NextBlock)
- BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond,
- DAG.getBasicBlock(JT.MBB));
- DAG.setRoot(BrCond);
- }
- /// visitBitTestHeader - This function emits necessary code to produce value
- /// suitable for "bit tests"
- void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
- MachineBasicBlock *SwitchBB) {
- // Subtract the minimum value
- SDValue SwitchOp = getValue(B.SValue);
- EVT VT = SwitchOp.getValueType();
- SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp,
- DAG.getConstant(B.First, VT));
- // Check range
- SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(),
- TLI.getSetCCResultType(Sub.getValueType()),
- Sub, DAG.getConstant(B.Range, VT),
- ISD::SETUGT);
- // Determine the type of the test operands.
- bool UsePtrType = false;
- if (!TLI.isTypeLegal(VT))
- UsePtrType = true;
- else {
- for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
- if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
- // Switch table case range are encoded into series of masks.
- // Just use pointer type, it's guaranteed to fit.
- UsePtrType = true;
- break;
- }
- }
- if (UsePtrType) {
- VT = TLI.getPointerTy();
- Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT);
- }
- B.RegVT = VT.getSimpleVT();
- B.Reg = FuncInfo.CreateReg(B.RegVT.getSimpleVT());
- SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(),
- B.Reg, Sub);
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = SwitchBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
- MachineBasicBlock* MBB = B.Cases[0].ThisBB;
- addSuccessorWithWeight(SwitchBB, B.Default);
- addSuccessorWithWeight(SwitchBB, MBB);
- SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
- MVT::Other, CopyTo, RangeCmp,
- DAG.getBasicBlock(B.Default));
- if (MBB != NextBlock)
- BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo,
- DAG.getBasicBlock(MBB));
- DAG.setRoot(BrRange);
- }
- /// visitBitTestCase - this function produces one "bit test"
- void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
- MachineBasicBlock* NextMBB,
- uint32_t BranchWeightToNext,
- unsigned Reg,
- BitTestCase &B,
- MachineBasicBlock *SwitchBB) {
- EVT VT = BB.RegVT;
- SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(),
- Reg, VT);
- SDValue Cmp;
- unsigned PopCount = CountPopulation_64(B.Mask);
- if (PopCount == 1) {
- // Testing for a single bit; just compare the shift count with what it
- // would need to be to shift a 1 bit in that position.
- Cmp = DAG.getSetCC(getCurDebugLoc(),
- TLI.getSetCCResultType(VT),
- ShiftOp,
- DAG.getConstant(CountTrailingZeros_64(B.Mask), VT),
- ISD::SETEQ);
- } else if (PopCount == BB.Range) {
- // There is only one zero bit in the range, test for it directly.
- Cmp = DAG.getSetCC(getCurDebugLoc(),
- TLI.getSetCCResultType(VT),
- ShiftOp,
- DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
- ISD::SETNE);
- } else {
- // Make desired shift
- SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT,
- DAG.getConstant(1, VT), ShiftOp);
- // Emit bit tests and jumps
- SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(),
- VT, SwitchVal, DAG.getConstant(B.Mask, VT));
- Cmp = DAG.getSetCC(getCurDebugLoc(),
- TLI.getSetCCResultType(VT),
- AndOp, DAG.getConstant(0, VT),
- ISD::SETNE);
- }
- // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
- addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
- // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
- addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
- SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(),
- MVT::Other, getControlRoot(),
- Cmp, DAG.getBasicBlock(B.TargetBB));
- // Set NextBlock to be the MBB immediately after the current one, if any.
- // This is used to avoid emitting unnecessary branches to the next block.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = SwitchBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
- if (NextMBB != NextBlock)
- BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd,
- DAG.getBasicBlock(NextMBB));
- DAG.setRoot(BrAnd);
- }
- void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
- MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
- // Retrieve successors.
- MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
- MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
- const Value *Callee(I.getCalledValue());
- const Function *Fn = dyn_cast<Function>(Callee);
- if (isa<InlineAsm>(Callee))
- visitInlineAsm(&I);
- else if (Fn && Fn->isIntrinsic()) {
- assert(Fn->getIntrinsicID() == Intrinsic::donothing);
- // Ignore invokes to @llvm.donothing: jump directly to the next BB.
- } else
- LowerCallTo(&I, getValue(Callee), false, LandingPad);
- // If the value of the invoke is used outside of its defining block, make it
- // available as a virtual register.
- CopyToExportRegsIfNeeded(&I);
- // Update successor info
- addSuccessorWithWeight(InvokeMBB, Return);
- addSuccessorWithWeight(InvokeMBB, LandingPad);
- // Drop into normal successor.
- DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Return)));
- }
- void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
- llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
- }
- void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
- assert(FuncInfo.MBB->isLandingPad() &&
- "Call to landingpad not in landing pad!");
- MachineBasicBlock *MBB = FuncInfo.MBB;
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- AddLandingPadInfo(LP, MMI, MBB);
- // If there aren't registers to copy the values into (e.g., during SjLj
- // exceptions), then don't bother to create these DAG nodes.
- if (TLI.getExceptionPointerRegister() == 0 &&
- TLI.getExceptionSelectorRegister() == 0)
- return;
- SmallVector<EVT, 2> ValueVTs;
- ComputeValueVTs(TLI, LP.getType(), ValueVTs);
- // Insert the EXCEPTIONADDR instruction.
- assert(FuncInfo.MBB->isLandingPad() &&
- "Call to eh.exception not in landing pad!");
- SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
- SDValue Ops[2];
- Ops[0] = DAG.getRoot();
- SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1);
- SDValue Chain = Op1.getValue(1);
- // Insert the EHSELECTION instruction.
- VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
- Ops[0] = Op1;
- Ops[1] = Chain;
- SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2);
- Chain = Op2.getValue(1);
- Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32);
- Ops[0] = Op1;
- Ops[1] = Op2;
- SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
- DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
- &Ops[0], 2);
- std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain);
- setValue(&LP, RetPair.first);
- DAG.setRoot(RetPair.second);
- }
- /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
- /// small case ranges).
- bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
- CaseRecVector& WorkList,
- const Value* SV,
- MachineBasicBlock *Default,
- MachineBasicBlock *SwitchBB) {
- // Size is the number of Cases represented by this range.
- size_t Size = CR.Range.second - CR.Range.first;
- if (Size > 3)
- return false;
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
- MachineFunction::iterator BBI = CR.CaseBB;
- if (++BBI != FuncInfo.MF->end())
- NextBlock = BBI;
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- // If any two of the cases has the same destination, and if one value
- // is the same as the other, but has one bit unset that the other has set,
- // use bit manipulation to do two compares at once. For example:
- // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
- // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
- // TODO: Handle cases where CR.CaseBB != SwitchBB.
- if (Size == 2 && CR.CaseBB == SwitchBB) {
- Case &Small = *CR.Range.first;
- Case &Big = *(CR.Range.second-1);
- if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
- const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
- const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
- // Check that there is only one bit different.
- if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
- (SmallValue | BigValue) == BigValue) {
- // Isolate the common bit.
- APInt CommonBit = BigValue & ~SmallValue;
- assert((SmallValue | CommonBit) == BigValue &&
- CommonBit.countPopulation() == 1 && "Not a common bit?");
- SDValue CondLHS = getValue(SV);
- EVT VT = CondLHS.getValueType();
- DebugLoc DL = getCurDebugLoc();
- SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
- DAG.getConstant(CommonBit, VT));
- SDValue Cond = DAG.getSetCC(DL, MVT::i1,
- Or, DAG.getConstant(BigValue, VT),
- ISD::SETEQ);
- // Update successor info.
- // Both Small and Big will jump to Small.BB, so we sum up the weights.
- addSuccessorWithWeight(SwitchBB, Small.BB,
- Small.ExtraWeight + Big.ExtraWeight);
- addSuccessorWithWeight(SwitchBB, Default,
- // The default destination is the first successor in IR.
- BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
- // Insert the true branch.
- SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
- getControlRoot(), Cond,
- DAG.getBasicBlock(Small.BB));
- // Insert the false branch.
- BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
- DAG.getBasicBlock(Default));
- DAG.setRoot(BrCond);
- return true;
- }
- }
- }
- // Order cases by weight so the most likely case will be checked first.
- uint32_t UnhandledWeights = 0;
- if (BPI) {
- for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
- uint32_t IWeight = I->ExtraWeight;
- UnhandledWeights += IWeight;
- for (CaseItr J = CR.Range.first; J < I; ++J) {
- uint32_t JWeight = J->ExtraWeight;
- if (IWeight > JWeight)
- std::swap(*I, *J);
- }
- }
- }
- // Rearrange the case blocks so that the last one falls through if possible.
- Case &BackCase = *(CR.Range.second-1);
- if (Size > 1 &&
- NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
- // The last case block won't fall through into 'NextBlock' if we emit the
- // branches in this order. See if rearranging a case value would help.
- // We start at the bottom as it's the case with the least weight.
- for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){
- if (I->BB == NextBlock) {
- std::swap(*I, BackCase);
- break;
- }
- }
- }
- // Create a CaseBlock record representing a conditional branch to
- // the Case's target mbb if the value being switched on SV is equal
- // to C.
- MachineBasicBlock *CurBlock = CR.CaseBB;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
- MachineBasicBlock *FallThrough;
- if (I != E-1) {
- FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
- CurMF->insert(BBI, FallThrough);
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- } else {
- // If the last case doesn't match, go to the default block.
- FallThrough = Default;
- }
- const Value *RHS, *LHS, *MHS;
- ISD::CondCode CC;
- if (I->High == I->Low) {
- // This is just small small case range :) containing exactly 1 case
- CC = ISD::SETEQ;
- LHS = SV; RHS = I->High; MHS = NULL;
- } else {
- CC = ISD::SETCC_INVALID;
- LHS = I->Low; MHS = SV; RHS = I->High;
- }
- // The false weight should be sum of all un-handled cases.
- UnhandledWeights -= I->ExtraWeight;
- CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
- /* me */ CurBlock,
- /* trueweight */ I->ExtraWeight,
- /* falseweight */ UnhandledWeights);
- // If emitting the first comparison, just call visitSwitchCase to emit the
- // code into the current block. Otherwise, push the CaseBlock onto the
- // vector to be later processed by SDISel, and insert the node's MBB
- // before the next MBB.
- if (CurBlock == SwitchBB)
- visitSwitchCase(CB, SwitchBB);
- else
- SwitchCases.push_back(CB);
- CurBlock = FallThrough;
- }
- return true;
- }
- static inline bool areJTsAllowed(const TargetLowering &TLI) {
- return TLI.supportJumpTables() &&
- (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
- TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
- }
- static APInt ComputeRange(const APInt &First, const APInt &Last) {
- uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
- APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth);
- return (LastExt - FirstExt + 1ULL);
- }
- /// handleJTSwitchCase - Emit jumptable for current switch case range
- bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
- CaseRecVector &WorkList,
- const Value *SV,
- MachineBasicBlock *Default,
- MachineBasicBlock *SwitchBB) {
- Case& FrontCase = *CR.Range.first;
- Case& BackCase = *(CR.Range.second-1);
- const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
- const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
- APInt TSize(First.getBitWidth(), 0);
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
- TSize += I->size();
- if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
- return false;
- APInt Range = ComputeRange(First, Last);
- // The density is TSize / Range. Require at least 40%.
- // It should not be possible for IntTSize to saturate for sane code, but make
- // sure we handle Range saturation correctly.
- uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
- uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
- if (IntTSize * 10 < IntRange * 4)
- return false;
- DEBUG(dbgs() << "Lowering jump table\n"
- << "First entry: " << First << ". Last entry: " << Last << '\n'
- << "Range: " << Range << ". Size: " << TSize << ".\n\n");
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
- // Figure out which block is immediately after the current one.
- MachineFunction::iterator BBI = CR.CaseBB;
- ++BBI;
- const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
- // Create a new basic block to hold the code for loading the address
- // of the jump table, and jumping to it. Update successor information;
- // we will either branch to the default case for the switch, or the jump
- // table.
- MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, JumpTableBB);
- addSuccessorWithWeight(CR.CaseBB, Default);
- addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
- // Build a vector of destination BBs, corresponding to each target
- // of the jump table. If the value of the jump table slot corresponds to
- // a case statement, push the case's BB onto the vector, otherwise, push
- // the default BB.
- std::vector<MachineBasicBlock*> DestBBs;
- APInt TEI = First;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
- const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
- const APInt &High = cast<ConstantInt>(I->High)->getValue();
- if (Low.ule(TEI) && TEI.ule(High)) {
- DestBBs.push_back(I->BB);
- if (TEI==High)
- ++I;
- } else {
- DestBBs.push_back(Default);
- }
- }
- // Calculate weight for each unique destination in CR.
- DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
- if (FuncInfo.BPI)
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
- DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
- DestWeights.find(I->BB);
- if (Itr != DestWeights.end())
- Itr->second += I->ExtraWeight;
- else
- DestWeights[I->BB] = I->ExtraWeight;
- }
- // Update successor info. Add one edge to each unique successor.
- BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
- for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
- E = DestBBs.end(); I != E; ++I) {
- if (!SuccsHandled[(*I)->getNumber()]) {
- SuccsHandled[(*I)->getNumber()] = true;
- DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
- DestWeights.find(*I);
- addSuccessorWithWeight(JumpTableBB, *I,
- Itr != DestWeights.end() ? Itr->second : 0);
- }
- }
- // Create a jump table index for this jump table.
- unsigned JTEncoding = TLI.getJumpTableEncoding();
- unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
- ->createJumpTableIndex(DestBBs);
- // Set the jump table information so that we can codegen it as a second
- // MachineBasicBlock
- JumpTable JT(-1U, JTI, JumpTableBB, Default);
- JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
- if (CR.CaseBB == SwitchBB)
- visitJumpTableHeader(JT, JTH, SwitchBB);
- JTCases.push_back(JumpTableBlock(JTH, JT));
- return true;
- }
- /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
- /// 2 subtrees.
- bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
- CaseRecVector& WorkList,
- const Value* SV,
- MachineBasicBlock *Default,
- MachineBasicBlock *SwitchBB) {
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
- // Figure out which block is immediately after the current one.
- MachineFunction::iterator BBI = CR.CaseBB;
- ++BBI;
- Case& FrontCase = *CR.Range.first;
- Case& BackCase = *(CR.Range.second-1);
- const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
- // Size is the number of Cases represented by this range.
- unsigned Size = CR.Range.second - CR.Range.first;
- const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
- const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
- double FMetric = 0;
- CaseItr Pivot = CR.Range.first + Size/2;
- // Select optimal pivot, maximizing sum density of LHS and RHS. This will
- // (heuristically) allow us to emit JumpTable's later.
- APInt TSize(First.getBitWidth(), 0);
- for (CaseItr I = CR.Range.first, E = CR.Range.second;
- I!=E; ++I)
- TSize += I->size();
- APInt LSize = FrontCase.size();
- APInt RSize = TSize-LSize;
- DEBUG(dbgs() << "Selecting best pivot: \n"
- << "First: " << First << ", Last: " << Last <<'\n'
- << "LSize: " << LSize << ", RSize: " << RSize << '\n');
- for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
- J!=E; ++I, ++J) {
- const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
- const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
- APInt Range = ComputeRange(LEnd, RBegin);
- assert((Range - 2ULL).isNonNegative() &&
- "Invalid case distance");
- // Use volatile double here to avoid excess precision issues on some hosts,
- // e.g. that use 80-bit X87 registers.
- volatile double LDensity =
- (double)LSize.roundToDouble() /
- (LEnd - First + 1ULL).roundToDouble();
- volatile double RDensity =
- (double)RSize.roundToDouble() /
- (Last - RBegin + 1ULL).roundToDouble();
- double Metric = Range.logBase2()*(LDensity+RDensity);
- // Should always split in some non-trivial place
- DEBUG(dbgs() <<"=>Step\n"
- << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
- << "LDensity: " << LDensity
- << ", RDensity: " << RDensity << '\n'
- << "Metric: " << Metric << '\n');
- if (FMetric < Metric) {
- Pivot = J;
- FMetric = Metric;
- DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
- }
- LSize += J->size();
- RSize -= J->size();
- }
- if (areJTsAllowed(TLI)) {
- // If our case is dense we *really* should handle it earlier!
- assert((FMetric > 0) && "Should handle dense range earlier!");
- } else {
- Pivot = CR.Range.first + Size/2;
- }
- CaseRange LHSR(CR.Range.first, Pivot);
- CaseRange RHSR(Pivot, CR.Range.second);
- const Constant *C = Pivot->Low;
- MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
- // We know that we branch to the LHS if the Value being switched on is
- // less than the Pivot value, C. We use this to optimize our binary
- // tree a bit, by recognizing that if SV is greater than or equal to the
- // LHS's Case Value, and that Case Value is exactly one less than the
- // Pivot's Value, then we can branch directly to the LHS's Target,
- // rather than creating a leaf node for it.
- if ((LHSR.second - LHSR.first) == 1 &&
- LHSR.first->High == CR.GE &&
- cast<ConstantInt>(C)->getValue() ==
- (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
- TrueBB = LHSR.first->BB;
- } else {
- TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, TrueBB);
- WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- }
- // Similar to the optimization above, if the Value being switched on is
- // known to be less than the Constant CR.LT, and the current Case Value
- // is CR.LT - 1, then we can branch directly to the target block for
- // the current Case Value, rather than emitting a RHS leaf node for it.
- if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
- cast<ConstantInt>(RHSR.first->Low)->getValue() ==
- (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
- FalseBB = RHSR.first->BB;
- } else {
- FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, FalseBB);
- WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- }
- // Create a CaseBlock record representing a conditional branch to
- // the LHS node if the value being switched on SV is less than C.
- // Otherwise, branch to LHS.
- CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
- if (CR.CaseBB == SwitchBB)
- visitSwitchCase(CB, SwitchBB);
- else
- SwitchCases.push_back(CB);
- return true;
- }
- /// handleBitTestsSwitchCase - if current case range has few destination and
- /// range span less, than machine word bitwidth, encode case range into series
- /// of masks and emit bit tests with these masks.
- bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
- CaseRecVector& WorkList,
- const Value* SV,
- MachineBasicBlock* Default,
- MachineBasicBlock *SwitchBB){
- EVT PTy = TLI.getPointerTy();
- unsigned IntPtrBits = PTy.getSizeInBits();
- Case& FrontCase = *CR.Range.first;
- Case& BackCase = *(CR.Range.second-1);
- // Get the MachineFunction which holds the current MBB. This is used when
- // inserting any additional MBBs necessary to represent the switch.
- MachineFunction *CurMF = FuncInfo.MF;
- // If target does not have legal shift left, do not emit bit tests at all.
- if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy()))
- return false;
- size_t numCmps = 0;
- for (CaseItr I = CR.Range.first, E = CR.Range.second;
- I!=E; ++I) {
- // Single case counts one, case range - two.
- numCmps += (I->Low == I->High ? 1 : 2);
- }
- // Count unique destinations
- SmallSet<MachineBasicBlock*, 4> Dests;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
- Dests.insert(I->BB);
- if (Dests.size() > 3)
- // Don't bother the code below, if there are too much unique destinations
- return false;
- }
- DEBUG(dbgs() << "Total number of unique destinations: "
- << Dests.size() << '\n'
- << "Total number of comparisons: " << numCmps << '\n');
- // Compute span of values.
- const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
- const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
- APInt cmpRange = maxValue - minValue;
- DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
- << "Low bound: " << minValue << '\n'
- << "High bound: " << maxValue << '\n');
- if (cmpRange.uge(IntPtrBits) ||
- (!(Dests.size() == 1 && numCmps >= 3) &&
- !(Dests.size() == 2 && numCmps >= 5) &&
- !(Dests.size() >= 3 && numCmps >= 6)))
- return false;
- DEBUG(dbgs() << "Emitting bit tests\n");
- APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
- // Optimize the case where all the case values fit in a
- // word without having to subtract minValue. In this case,
- // we can optimize away the subtraction.
- if (maxValue.ult(IntPtrBits)) {
- cmpRange = maxValue;
- } else {
- lowBound = minValue;
- }
- CaseBitsVector CasesBits;
- unsigned i, count = 0;
- for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
- MachineBasicBlock* Dest = I->BB;
- for (i = 0; i < count; ++i)
- if (Dest == CasesBits[i].BB)
- break;
- if (i == count) {
- assert((count < 3) && "Too much destinations to test!");
- CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
- count++;
- }
- const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
- const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
- uint64_t lo = (lowValue - lowBound).getZExtValue();
- uint64_t hi = (highValue - lowBound).getZExtValue();
- CasesBits[i].ExtraWeight += I->ExtraWeight;
- for (uint64_t j = lo; j <= hi; j++) {
- CasesBits[i].Mask |= 1ULL << j;
- CasesBits[i].Bits++;
- }
- }
- std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
- BitTestInfo BTC;
- // Figure out which block is immediately after the current one.
- MachineFunction::iterator BBI = CR.CaseBB;
- ++BBI;
- const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
- DEBUG(dbgs() << "Cases:\n");
- for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
- DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
- << ", Bits: " << CasesBits[i].Bits
- << ", BB: " << CasesBits[i].BB << '\n');
- MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
- CurMF->insert(BBI, CaseBB);
- BTC.push_back(BitTestCase(CasesBits[i].Mask,
- CaseBB,
- CasesBits[i].BB, CasesBits[i].ExtraWeight));
- // Put SV in a virtual register to make it available from the new blocks.
- ExportFromCurrentBlock(SV);
- }
- BitTestBlock BTB(lowBound, cmpRange, SV,
- -1U, MVT::Other, (CR.CaseBB == SwitchBB),
- CR.CaseBB, Default, BTC);
- if (CR.CaseBB == SwitchBB)
- visitBitTestHeader(BTB, SwitchBB);
- BitTestCases.push_back(BTB);
- return true;
- }
- /// Clusterify - Transform simple list of Cases into list of CaseRange's
- size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
- const SwitchInst& SI) {
-
- /// Use a shorter form of declaration, and also
- /// show the we want to use CRSBuilder as Clusterifier.
- typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier;
-
- Clusterifier TheClusterifier;
- BranchProbabilityInfo *BPI = FuncInfo.BPI;
- // Start with "simple" cases
- for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
- i != e; ++i) {
- const BasicBlock *SuccBB = i.getCaseSuccessor();
- MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
- TheClusterifier.add(i.getCaseValueEx(), SMBB,
- BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0);
- }
-
- TheClusterifier.optimize();
-
- size_t numCmps = 0;
- for (Clusterifier::RangeIterator i = TheClusterifier.begin(),
- e = TheClusterifier.end(); i != e; ++i, ++numCmps) {
- Clusterifier::Cluster &C = *i;
- // Update edge weight for the cluster.
- unsigned W = C.first.Weight;
- // FIXME: Currently work with ConstantInt based numbers.
- // Changing it to APInt based is a pretty heavy for this commit.
- Cases.push_back(Case(C.first.getLow().toConstantInt(),
- C.first.getHigh().toConstantInt(), C.second, W));
-
- if (C.first.getLow() != C.first.getHigh())
- // A range counts double, since it requires two compares.
- ++numCmps;
- }
- return numCmps;
- }
- void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
- MachineBasicBlock *Last) {
- // Update JTCases.
- for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
- if (JTCases[i].first.HeaderBB == First)
- JTCases[i].first.HeaderBB = Last;
- // Update BitTestCases.
- for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
- if (BitTestCases[i].Parent == First)
- BitTestCases[i].Parent = Last;
- }
- void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
- MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
- // Figure out which block is immediately after the current one.
- MachineBasicBlock *NextBlock = 0;
- MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
- // If there is only the default destination, branch to it if it is not the
- // next basic block. Otherwise, just fall through.
- if (!SI.getNumCases()) {
- // Update machine-CFG edges.
- // If this is not a fall-through branch, emit the branch.
- SwitchMBB->addSuccessor(Default);
- if (Default != NextBlock)
- DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(),
- MVT::Other, getControlRoot(),
- DAG.getBasicBlock(Default)));
- return;
- }
- // If there are any non-default case statements, create a vector of Cases
- // representing each one, and sort the vector so that we can efficiently
- // create a binary search tree from them.
- CaseVector Cases;
- size_t numCmps = Clusterify(Cases, SI);
- DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
- << ". Total compares: " << numCmps << '\n');
- (void)numCmps;
- // Get the Value to be switched on and default basic blocks, which will be
- // inserted into CaseBlock records, representing basic blocks in the binary
- // search tree.
- const Value *SV = SI.getCondition();
- // Push the initial CaseRec onto the worklist
- CaseRecVector WorkList;
- WorkList.push_back(CaseRec(SwitchMBB,0,0,
- CaseRange(Cases.begin(),Cases.end())));
- while (!WorkList.empty()) {
- // Grab a record representing a case range to process off the worklist
- CaseRec CR = WorkList.back();
- WorkList.pop_back();
- if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
- continue;
- // If the range has few cases (two or less) emit a series of specific
- // tests.
- if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
- continue;
- // If the switch has more than N blocks, and is at least 40% dense, and the
- // target supports indirect branches, then emit a jump table rather than
- // lowering the switch to a binary tree of conditional branches.
- // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
- if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
- continue;
- // Emit binary tree. We need to pick a pivot, and push left and right ranges
- // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
- handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
- }
- }
- void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
- MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
- // Update machine-CFG edges with unique successors.
- SmallSet<BasicBlock*, 32> Done;
- for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
- BasicBlock *BB = I.getSuccessor(i);
- bool Inserted = Done.insert(BB);
- if (!Inserted)
- continue;
- MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
- addSuccessorWithWeight(IndirectBrMBB, Succ);
- }
- DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(),
- MVT::Other, getControlRoot(),
- getValue(I.getAddress())));
- }
- void SelectionDAGBuilder::visitFSub(const User &I) {
- // -0.0 - X --> fneg
- Type *Ty = I.getType();
- if (isa<Constant>(I.getOperand(0)) &&
- I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
- SDValue Op2 = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(),
- Op2.getValueType(), Op2));
- return;
- }
- visitBinary(I, ISD::FSUB);
- }
- void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(),
- Op1.getValueType(), Op1, Op2));
- }
- void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType());
- // Coerce the shift amount to the right type if we can.
- if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
- unsigned ShiftSize = ShiftTy.getSizeInBits();
- unsigned Op2Size = Op2.getValueType().getSizeInBits();
- DebugLoc DL = getCurDebugLoc();
- // If the operand is smaller than the shift count type, promote it.
- if (ShiftSize > Op2Size)
- Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
- // If the operand is larger than the shift count type but the shift
- // count type has enough bits to represent any shift value, truncate
- // it now. This is a common case and it exposes the truncate to
- // optimization early.
- else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
- Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
- // Otherwise we'll need to temporarily settle for some other convenient
- // type. Type legalization will make adjustments once the shiftee is split.
- else
- Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
- }
- setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(),
- Op1.getValueType(), Op1, Op2));
- }
- void SelectionDAGBuilder::visitSDiv(const User &I) {
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- // Turn exact SDivs into multiplications.
- // FIXME: This should be in DAGCombiner, but it doesn't have access to the
- // exact bit.
- if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
- !isa<ConstantSDNode>(Op1) &&
- isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
- setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG));
- else
- setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(),
- Op1, Op2));
- }
- void SelectionDAGBuilder::visitICmp(const User &I) {
- ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
- if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
- predicate = IC->getPredicate();
- else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
- predicate = ICmpInst::Predicate(IC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Opcode = getICmpCondCode(predicate);
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode));
- }
- void SelectionDAGBuilder::visitFCmp(const User &I) {
- FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
- if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
- predicate = FC->getPredicate();
- else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
- predicate = FCmpInst::Predicate(FC->getPredicate());
- SDValue Op1 = getValue(I.getOperand(0));
- SDValue Op2 = getValue(I.getOperand(1));
- ISD::CondCode Condition = getFCmpCondCode(predicate);
- if (TM.Options.NoNaNsFPMath)
- Condition = getFCmpCodeWithoutNaN(Condition);
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition));
- }
- void SelectionDAGBuilder::visitSelect(const User &I) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, I.getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0) return;
- SmallVector<SDValue, 4> Values(NumValues);
- SDValue Cond = getValue(I.getOperand(0));
- SDValue TrueVal = getValue(I.getOperand(1));
- SDValue FalseVal = getValue(I.getOperand(2));
- ISD::NodeType OpCode = Cond.getValueType().isVector() ?
- ISD::VSELECT : ISD::SELECT;
- for (unsigned i = 0; i != NumValues; ++i)
- Values[i] = DAG.getNode(OpCode, getCurDebugLoc(),
- TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
- Cond,
- SDValue(TrueVal.getNode(),
- TrueVal.getResNo() + i),
- SDValue(FalseVal.getNode(),
- FalseVal.getResNo() + i));
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
- DAG.getVTList(&ValueVTs[0], NumValues),
- &Values[0], NumValues));
- }
- void SelectionDAGBuilder::visitTrunc(const User &I) {
- // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitZExt(const User &I) {
- // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
- // ZExt also can't be a cast to bool for same reason. So, nothing much to do
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitSExt(const User &I) {
- // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
- // SExt also can't be a cast to bool for same reason. So, nothing much to do
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitFPTrunc(const User &I) {
- // FPTrunc is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(),
- DestVT, N,
- DAG.getTargetConstant(0, TLI.getPointerTy())));
- }
- void SelectionDAGBuilder::visitFPExt(const User &I){
- // FPExt is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitFPToUI(const User &I) {
- // FPToUI is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitFPToSI(const User &I) {
- // FPToSI is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitUIToFP(const User &I) {
- // UIToFP is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitSIToFP(const User &I){
- // SIToFP is never a no-op cast, no need to check
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N));
- }
- void SelectionDAGBuilder::visitPtrToInt(const User &I) {
- // What to do depends on the size of the integer and the size of the pointer.
- // We can either truncate, zero extend, or no-op, accordingly.
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
- }
- void SelectionDAGBuilder::visitIntToPtr(const User &I) {
- // What to do depends on the size of the integer and the size of the pointer.
- // We can either truncate, zero extend, or no-op, accordingly.
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT));
- }
- void SelectionDAGBuilder::visitBitCast(const User &I) {
- SDValue N = getValue(I.getOperand(0));
- EVT DestVT = TLI.getValueType(I.getType());
- // BitCast assures us that source and destination are the same size so this is
- // either a BITCAST or a no-op.
- if (DestVT != N.getValueType())
- setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
- DestVT, N)); // convert types.
- else
- setValue(&I, N); // noop cast.
- }
- void SelectionDAGBuilder::visitInsertElement(const User &I) {
- SDValue InVec = getValue(I.getOperand(0));
- SDValue InVal = getValue(I.getOperand(1));
- SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
- TLI.getPointerTy(),
- getValue(I.getOperand(2)));
- setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(),
- TLI.getValueType(I.getType()),
- InVec, InVal, InIdx));
- }
- void SelectionDAGBuilder::visitExtractElement(const User &I) {
- SDValue InVec = getValue(I.getOperand(0));
- SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(),
- TLI.getPointerTy(),
- getValue(I.getOperand(1)));
- setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
- TLI.getValueType(I.getType()), InVec, InIdx));
- }
- // Utility for visitShuffleVector - Return true if every element in Mask,
- // beginning from position Pos and ending in Pos+Size, falls within the
- // specified sequential range [L, L+Pos). or is undef.
- static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
- unsigned Pos, unsigned Size, int Low) {
- for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
- if (Mask[i] >= 0 && Mask[i] != Low)
- return false;
- return true;
- }
- void SelectionDAGBuilder::visitShuffleVector(const User &I) {
- SDValue Src1 = getValue(I.getOperand(0));
- SDValue Src2 = getValue(I.getOperand(1));
- SmallVector<int, 8> Mask;
- ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
- unsigned MaskNumElts = Mask.size();
-
- EVT VT = TLI.getValueType(I.getType());
- EVT SrcVT = Src1.getValueType();
- unsigned SrcNumElts = SrcVT.getVectorNumElements();
- if (SrcNumElts == MaskNumElts) {
- setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
- &Mask[0]));
- return;
- }
- // Normalize the shuffle vector since mask and vector length don't match.
- if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
- // Mask is longer than the source vectors and is a multiple of the source
- // vectors. We can use concatenate vector to make the mask and vectors
- // lengths match.
- if (SrcNumElts*2 == MaskNumElts) {
- // First check for Src1 in low and Src2 in high
- if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
- isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
- // The shuffle is concatenating two vectors together.
- setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
- VT, Src1, Src2));
- return;
- }
- // Then check for Src2 in low and Src1 in high
- if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
- isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
- // The shuffle is concatenating two vectors together.
- setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(),
- VT, Src2, Src1));
- return;
- }
- }
- // Pad both vectors with undefs to make them the same length as the mask.
- unsigned NumConcat = MaskNumElts / SrcNumElts;
- bool Src1U = Src1.getOpcode() == ISD::UNDEF;
- bool Src2U = Src2.getOpcode() == ISD::UNDEF;
- SDValue UndefVal = DAG.getUNDEF(SrcVT);
- SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
- SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
- MOps1[0] = Src1;
- MOps2[0] = Src2;
- Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
- getCurDebugLoc(), VT,
- &MOps1[0], NumConcat);
- Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
- getCurDebugLoc(), VT,
- &MOps2[0], NumConcat);
- // Readjust mask for new input vector length.
- SmallVector<int, 8> MappedOps;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- if (Idx >= (int)SrcNumElts)
- Idx -= SrcNumElts - MaskNumElts;
- MappedOps.push_back(Idx);
- }
- setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
- &MappedOps[0]));
- return;
- }
- if (SrcNumElts > MaskNumElts) {
- // Analyze the access pattern of the vector to see if we can extract
- // two subvectors and do the shuffle. The analysis is done by calculating
- // the range of elements the mask access on both vectors.
- int MinRange[2] = { static_cast<int>(SrcNumElts),
- static_cast<int>(SrcNumElts)};
- int MaxRange[2] = {-1, -1};
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- unsigned Input = 0;
- if (Idx < 0)
- continue;
- if (Idx >= (int)SrcNumElts) {
- Input = 1;
- Idx -= SrcNumElts;
- }
- if (Idx > MaxRange[Input])
- MaxRange[Input] = Idx;
- if (Idx < MinRange[Input])
- MinRange[Input] = Idx;
- }
- // Check if the access is smaller than the vector size and can we find
- // a reasonable extract index.
- int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not
- // Extract.
- int StartIdx[2]; // StartIdx to extract from
- for (unsigned Input = 0; Input < 2; ++Input) {
- if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
- RangeUse[Input] = 0; // Unused
- StartIdx[Input] = 0;
- continue;
- }
- // Find a good start index that is a multiple of the mask length. Then
- // see if the rest of the elements are in range.
- StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
- if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
- StartIdx[Input] + MaskNumElts <= SrcNumElts)
- RangeUse[Input] = 1; // Extract from a multiple of the mask length.
- }
- if (RangeUse[0] == 0 && RangeUse[1] == 0) {
- setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
- return;
- }
- if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
- // Extract appropriate subvector and generate a vector shuffle
- for (unsigned Input = 0; Input < 2; ++Input) {
- SDValue &Src = Input == 0 ? Src1 : Src2;
- if (RangeUse[Input] == 0)
- Src = DAG.getUNDEF(VT);
- else
- Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT,
- Src, DAG.getIntPtrConstant(StartIdx[Input]));
- }
- // Calculate new mask.
- SmallVector<int, 8> MappedOps;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- if (Idx >= 0) {
- if (Idx < (int)SrcNumElts)
- Idx -= StartIdx[0];
- else
- Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
- }
- MappedOps.push_back(Idx);
- }
- setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2,
- &MappedOps[0]));
- return;
- }
- }
- // We can't use either concat vectors or extract subvectors so fall back to
- // replacing the shuffle with extract and build vector.
- // to insert and build vector.
- EVT EltVT = VT.getVectorElementType();
- EVT PtrVT = TLI.getPointerTy();
- SmallVector<SDValue,8> Ops;
- for (unsigned i = 0; i != MaskNumElts; ++i) {
- int Idx = Mask[i];
- SDValue Res;
- if (Idx < 0) {
- Res = DAG.getUNDEF(EltVT);
- } else {
- SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
- if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
- Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(),
- EltVT, Src, DAG.getConstant(Idx, PtrVT));
- }
- Ops.push_back(Res);
- }
- setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(),
- VT, &Ops[0], Ops.size()));
- }
- void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
- const Value *Op0 = I.getOperand(0);
- const Value *Op1 = I.getOperand(1);
- Type *AggTy = I.getType();
- Type *ValTy = Op1->getType();
- bool IntoUndef = isa<UndefValue>(Op0);
- bool FromUndef = isa<UndefValue>(Op1);
- unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
- SmallVector<EVT, 4> AggValueVTs;
- ComputeValueVTs(TLI, AggTy, AggValueVTs);
- SmallVector<EVT, 4> ValValueVTs;
- ComputeValueVTs(TLI, ValTy, ValValueVTs);
- unsigned NumAggValues = AggValueVTs.size();
- unsigned NumValValues = ValValueVTs.size();
- SmallVector<SDValue, 4> Values(NumAggValues);
- SDValue Agg = getValue(Op0);
- unsigned i = 0;
- // Copy the beginning value(s) from the original aggregate.
- for (; i != LinearIndex; ++i)
- Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- // Copy values from the inserted value(s).
- if (NumValValues) {
- SDValue Val = getValue(Op1);
- for (; i != LinearIndex + NumValValues; ++i)
- Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
- }
- // Copy remaining value(s) from the original aggregate.
- for (; i != NumAggValues; ++i)
- Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
- DAG.getVTList(&AggValueVTs[0], NumAggValues),
- &Values[0], NumAggValues));
- }
- void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
- const Value *Op0 = I.getOperand(0);
- Type *AggTy = Op0->getType();
- Type *ValTy = I.getType();
- bool OutOfUndef = isa<UndefValue>(Op0);
- unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
- SmallVector<EVT, 4> ValValueVTs;
- ComputeValueVTs(TLI, ValTy, ValValueVTs);
- unsigned NumValValues = ValValueVTs.size();
- // Ignore a extractvalue that produces an empty object
- if (!NumValValues) {
- setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
- return;
- }
- SmallVector<SDValue, 4> Values(NumValValues);
- SDValue Agg = getValue(Op0);
- // Copy out the selected value(s).
- for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
- Values[i - LinearIndex] =
- OutOfUndef ?
- DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
- SDValue(Agg.getNode(), Agg.getResNo() + i);
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
- DAG.getVTList(&ValValueVTs[0], NumValValues),
- &Values[0], NumValValues));
- }
- void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
- SDValue N = getValue(I.getOperand(0));
- // Note that the pointer operand may be a vector of pointers. Take the scalar
- // element which holds a pointer.
- Type *Ty = I.getOperand(0)->getType()->getScalarType();
- for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
- OI != E; ++OI) {
- const Value *Idx = *OI;
- if (StructType *StTy = dyn_cast<StructType>(Ty)) {
- unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
- if (Field) {
- // N = N + Offset
- uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
- N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
- DAG.getConstant(Offset, N.getValueType()));
- }
- Ty = StTy->getElementType(Field);
- } else {
- Ty = cast<SequentialType>(Ty)->getElementType();
- // If this is a constant subscript, handle it quickly.
- if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
- if (CI->isZero()) continue;
- uint64_t Offs =
- TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
- SDValue OffsVal;
- EVT PTy = TLI.getPointerTy();
- unsigned PtrBits = PTy.getSizeInBits();
- if (PtrBits < 64)
- OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(),
- TLI.getPointerTy(),
- DAG.getConstant(Offs, MVT::i64));
- else
- OffsVal = DAG.getIntPtrConstant(Offs);
- N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N,
- OffsVal);
- continue;
- }
- // N = N + Idx * ElementSize;
- APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(),
- TD->getTypeAllocSize(Ty));
- SDValue IdxN = getValue(Idx);
- // If the index is smaller or larger than intptr_t, truncate or extend
- // it.
- IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType());
- // If this is a multiply by a power of two, turn it into a shl
- // immediately. This is a very common case.
- if (ElementSize != 1) {
- if (ElementSize.isPowerOf2()) {
- unsigned Amt = ElementSize.logBase2();
- IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(),
- N.getValueType(), IdxN,
- DAG.getConstant(Amt, IdxN.getValueType()));
- } else {
- SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
- IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(),
- N.getValueType(), IdxN, Scale);
- }
- }
- N = DAG.getNode(ISD::ADD, getCurDebugLoc(),
- N.getValueType(), N, IdxN);
- }
- }
- setValue(&I, N);
- }
- void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
- // If this is a fixed sized alloca in the entry block of the function,
- // allocate it statically on the stack.
- if (FuncInfo.StaticAllocaMap.count(&I))
- return; // getValue will auto-populate this.
- Type *Ty = I.getAllocatedType();
- uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
- unsigned Align =
- std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
- I.getAlignment());
- SDValue AllocSize = getValue(I.getArraySize());
- EVT IntPtr = TLI.getPointerTy();
- if (AllocSize.getValueType() != IntPtr)
- AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr);
- AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr,
- AllocSize,
- DAG.getConstant(TySize, IntPtr));
- // Handle alignment. If the requested alignment is less than or equal to
- // the stack alignment, ignore it. If the size is greater than or equal to
- // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
- unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
- if (Align <= StackAlign)
- Align = 0;
- // Round the size of the allocation up to the stack alignment size
- // by add SA-1 to the size.
- AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(),
- AllocSize.getValueType(), AllocSize,
- DAG.getIntPtrConstant(StackAlign-1));
- // Mask out the low bits for alignment purposes.
- AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(),
- AllocSize.getValueType(), AllocSize,
- DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
- SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
- SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
- SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(),
- VTs, Ops, 3);
- setValue(&I, DSA);
- DAG.setRoot(DSA.getValue(1));
- // Inform the Frame Information that we have just allocated a variable-sized
- // object.
- FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
- }
- void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
- if (I.isAtomic())
- return visitAtomicLoad(I);
- const Value *SV = I.getOperand(0);
- SDValue Ptr = getValue(SV);
- Type *Ty = I.getType();
- bool isVolatile = I.isVolatile();
- bool isNonTemporal = I.getMetadata("nontemporal") != 0;
- bool isInvariant = I.getMetadata("invariant.load") != 0;
- unsigned Alignment = I.getAlignment();
- const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
- const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
- SmallVector<EVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0)
- return;
- SDValue Root;
- bool ConstantMemory = false;
- if (I.isVolatile() || NumValues > MaxParallelChains)
- // Serialize volatile loads with other side effects.
- Root = getRoot();
- else if (AA->pointsToConstantMemory(
- AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
- // Do not serialize (non-volatile) loads of constant memory with anything.
- Root = DAG.getEntryNode();
- ConstantMemory = true;
- } else {
- // Do not serialize non-volatile loads against each other.
- Root = DAG.getRoot();
- }
- SmallVector<SDValue, 4> Values(NumValues);
- SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
- NumValues));
- EVT PtrVT = Ptr.getValueType();
- unsigned ChainI = 0;
- for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
- // Serializing loads here may result in excessive register pressure, and
- // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
- // could recover a bit by hoisting nodes upward in the chain by recognizing
- // they are side-effect free or do not alias. The optimizer should really
- // avoid this case by converting large object/array copies to llvm.memcpy
- // (MaxParallelChains should always remain as failsafe).
- if (ChainI == MaxParallelChains) {
- assert(PendingLoads.empty() && "PendingLoads must be serialized first");
- SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
- MVT::Other, &Chains[0], ChainI);
- Root = Chain;
- ChainI = 0;
- }
- SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(),
- PtrVT, Ptr,
- DAG.getConstant(Offsets[i], PtrVT));
- SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root,
- A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
- isNonTemporal, isInvariant, Alignment, TBAAInfo,
- Ranges);
- Values[i] = L;
- Chains[ChainI] = L.getValue(1);
- }
- if (!ConstantMemory) {
- SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
- MVT::Other, &Chains[0], ChainI);
- if (isVolatile)
- DAG.setRoot(Chain);
- else
- PendingLoads.push_back(Chain);
- }
- setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
- DAG.getVTList(&ValueVTs[0], NumValues),
- &Values[0], NumValues));
- }
- void SelectionDAGBuilder::visitStore(const StoreInst &I) {
- if (I.isAtomic())
- return visitAtomicStore(I);
- const Value *SrcV = I.getOperand(0);
- const Value *PtrV = I.getOperand(1);
- SmallVector<EVT, 4> ValueVTs;
- SmallVector<uint64_t, 4> Offsets;
- ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
- unsigned NumValues = ValueVTs.size();
- if (NumValues == 0)
- return;
- // Get the lowered operands. Note that we do this after
- // checking if NumResults is zero, because with zero results
- // the operands won't have values in the map.
- SDValue Src = getValue(SrcV);
- SDValue Ptr = getValue(PtrV);
- SDValue Root = getRoot();
- SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
- NumValues));
- EVT PtrVT = Ptr.getValueType();
- bool isVolatile = I.isVolatile();
- bool isNonTemporal = I.getMetadata("nontemporal") != 0;
- unsigned Alignment = I.getAlignment();
- const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
- unsigned ChainI = 0;
- for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
- // See visitLoad comments.
- if (ChainI == MaxParallelChains) {
- SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
- MVT::Other, &Chains[0], ChainI);
- Root = Chain;
- ChainI = 0;
- }
- SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr,
- DAG.getConstant(Offsets[i], PtrVT));
- SDValue St = DAG.getStore(Root, getCurDebugLoc(),
- SDValue(Src.getNode(), Src.getResNo() + i),
- Add, MachinePointerInfo(PtrV, Offsets[i]),
- isVolatile, isNonTemporal, Alignment, TBAAInfo);
- Chains[ChainI] = St;
- }
- SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
- MVT::Other, &Chains[0], ChainI);
- ++SDNodeOrder;
- AssignOrderingToNode(StoreNode.getNode());
- DAG.setRoot(StoreNode);
- }
- static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
- SynchronizationScope Scope,
- bool Before, DebugLoc dl,
- SelectionDAG &DAG,
- const TargetLowering &TLI) {
- // Fence, if necessary
- if (Before) {
- if (Order == AcquireRelease || Order == SequentiallyConsistent)
- Order = Release;
- else if (Order == Acquire || Order == Monotonic)
- return Chain;
- } else {
- if (Order == AcquireRelease)
- Order = Acquire;
- else if (Order == Release || Order == Monotonic)
- return Chain;
- }
- SDValue Ops[3];
- Ops[0] = Chain;
- Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
- Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
- return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
- }
- void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
- DebugLoc dl = getCurDebugLoc();
- AtomicOrdering Order = I.getOrdering();
- SynchronizationScope Scope = I.getSynchScope();
- SDValue InChain = getRoot();
- if (TLI.getInsertFencesForAtomic())
- InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
- DAG, TLI);
- SDValue L =
- DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
- getValue(I.getCompareOperand()).getValueType().getSimpleVT(),
- InChain,
- getValue(I.getPointerOperand()),
- getValue(I.getCompareOperand()),
- getValue(I.getNewValOperand()),
- MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
- TLI.getInsertFencesForAtomic() ? Monotonic : Order,
- Scope);
- SDValue OutChain = L.getValue(1);
- if (TLI.getInsertFencesForAtomic())
- OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
- DAG, TLI);
- setValue(&I, L);
- DAG.setRoot(OutChain);
- }
- void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
- DebugLoc dl = getCurDebugLoc();
- ISD::NodeType NT;
- switch (I.getOperation()) {
- default: llvm_unreachable("Unknown atomicrmw operation");
- case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
- case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
- case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
- case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
- case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
- case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
- case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
- case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
- case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
- case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
- case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
- }
- AtomicOrdering Order = I.getOrdering();
- SynchronizationScope Scope = I.getSynchScope();
- SDValue InChain = getRoot();
- if (TLI.getInsertFencesForAtomic())
- InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
- DAG, TLI);
- SDValue L =
- DAG.getAtomic(NT, dl,
- getValue(I.getValOperand()).getValueType().getSimpleVT(),
- InChain,
- getValue(I.getPointerOperand()),
- getValue(I.getValOperand()),
- I.getPointerOperand(), 0 /* Alignment */,
- TLI.getInsertFencesForAtomic() ? Monotonic : Order,
- Scope);
- SDValue OutChain = L.getValue(1);
- if (TLI.getInsertFencesForAtomic())
- OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
- DAG, TLI);
- setValue(&I, L);
- DAG.setRoot(OutChain);
- }
- void SelectionDAGBuilder::visitFence(const FenceInst &I) {
- DebugLoc dl = getCurDebugLoc();
- SDValue Ops[3];
- Ops[0] = getRoot();
- Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
- Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
- DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
- }
- void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
- DebugLoc dl = getCurDebugLoc();
- AtomicOrdering Order = I.getOrdering();
- SynchronizationScope Scope = I.getSynchScope();
- SDValue InChain = getRoot();
- EVT VT = TLI.getValueType(I.getType());
- if (I.getAlignment() * 8 < VT.getSizeInBits())
- report_fatal_error("Cannot generate unaligned atomic load");
- SDValue L =
- DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
- getValue(I.getPointerOperand()),
- I.getPointerOperand(), I.getAlignment(),
- TLI.getInsertFencesForAtomic() ? Monotonic : Order,
- Scope);
- SDValue OutChain = L.getValue(1);
- if (TLI.getInsertFencesForAtomic())
- OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
- DAG, TLI);
- setValue(&I, L);
- DAG.setRoot(OutChain);
- }
- void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
- DebugLoc dl = getCurDebugLoc();
- AtomicOrdering Order = I.getOrdering();
- SynchronizationScope Scope = I.getSynchScope();
- SDValue InChain = getRoot();
- EVT VT = TLI.getValueType(I.getValueOperand()->getType());
- if (I.getAlignment() * 8 < VT.getSizeInBits())
- report_fatal_error("Cannot generate unaligned atomic store");
- if (TLI.getInsertFencesForAtomic())
- InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
- DAG, TLI);
- SDValue OutChain =
- DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
- InChain,
- getValue(I.getPointerOperand()),
- getValue(I.getValueOperand()),
- I.getPointerOperand(), I.getAlignment(),
- TLI.getInsertFencesForAtomic() ? Monotonic : Order,
- Scope);
- if (TLI.getInsertFencesForAtomic())
- OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
- DAG, TLI);
- DAG.setRoot(OutChain);
- }
- /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
- /// node.
- void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
- unsigned Intrinsic) {
- bool HasChain = !I.doesNotAccessMemory();
- bool OnlyLoad = HasChain && I.onlyReadsMemory();
- // Build the operand list.
- SmallVector<SDValue, 8> Ops;
- if (HasChain) { // If this intrinsic has side-effects, chainify it.
- if (OnlyLoad) {
- // We don't need to serialize loads against other loads.
- Ops.push_back(DAG.getRoot());
- } else {
- Ops.push_back(getRoot());
- }
- }
- // Info is set by getTgtMemInstrinsic
- TargetLowering::IntrinsicInfo Info;
- bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
- // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
- if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
- Info.opc == ISD::INTRINSIC_W_CHAIN)
- Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
- // Add all operands of the call to the operand list.
- for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
- SDValue Op = getValue(I.getArgOperand(i));
- Ops.push_back(Op);
- }
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, I.getType(), ValueVTs);
- if (HasChain)
- ValueVTs.push_back(MVT::Other);
- SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
- // Create the node.
- SDValue Result;
- if (IsTgtIntrinsic) {
- // This is target intrinsic that touches memory
- Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(),
- VTs, &Ops[0], Ops.size(),
- Info.memVT,
- MachinePointerInfo(Info.ptrVal, Info.offset),
- Info.align, Info.vol,
- Info.readMem, Info.writeMem);
- } else if (!HasChain) {
- Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(),
- VTs, &Ops[0], Ops.size());
- } else if (!I.getType()->isVoidTy()) {
- Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(),
- VTs, &Ops[0], Ops.size());
- } else {
- Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(),
- VTs, &Ops[0], Ops.size());
- }
- if (HasChain) {
- SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
- if (OnlyLoad)
- PendingLoads.push_back(Chain);
- else
- DAG.setRoot(Chain);
- }
- if (!I.getType()->isVoidTy()) {
- if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
- EVT VT = TLI.getValueType(PTy);
- Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result);
- }
- setValue(&I, Result);
- } else {
- // Assign order to result here. If the intrinsic does not produce a result,
- // it won't be mapped to a SDNode and visit() will not assign it an order
- // number.
- ++SDNodeOrder;
- AssignOrderingToNode(Result.getNode());
- }
- }
- /// GetSignificand - Get the significand and build it into a floating-point
- /// number with exponent of 1:
- ///
- /// Op = (Op & 0x007fffff) | 0x3f800000;
- ///
- /// where Op is the hexidecimal representation of floating point value.
- static SDValue
- GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) {
- SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
- DAG.getConstant(0x007fffff, MVT::i32));
- SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
- DAG.getConstant(0x3f800000, MVT::i32));
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
- }
- /// GetExponent - Get the exponent:
- ///
- /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
- ///
- /// where Op is the hexidecimal representation of floating point value.
- static SDValue
- GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
- DebugLoc dl) {
- SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
- DAG.getConstant(0x7f800000, MVT::i32));
- SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
- DAG.getConstant(23, TLI.getPointerTy()));
- SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
- DAG.getConstant(127, MVT::i32));
- return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
- }
- /// getF32Constant - Get 32-bit floating point constant.
- static SDValue
- getF32Constant(SelectionDAG &DAG, unsigned Flt) {
- return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
- }
- /// expandExp - Lower an exp intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandExp(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- // Put the exponent in the right bit position for later addition to the
- // final result:
- //
- // #define LOG2OFe 1.4426950f
- // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
- getF32Constant(DAG, 0x3fb8aa3b));
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
- // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, TLI.getPointerTy()));
- SDValue TwoToFracPartOfX;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // TwoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // 0.000107046256 error, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- //
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000));
- }
- // Add the exponent into the result in integer domain.
- SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
- DAG.getNode(ISD::ADD, dl, MVT::i32,
- t13, IntegerPartOfX));
- }
- // No special expansion.
- return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
- }
- /// expandLog - Lower a log intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandLog(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
- // Scale the exponent by log(2) [0.69314718f].
- SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
- SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
- getF32Constant(DAG, 0x3f317218));
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
- SDValue LogOfMantissa;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // LogofMantissa =
- // -1.1609546f +
- // (1.4034025f - 0.23903021f * x) * x;
- //
- // error 0.0034276066, which is better than 8 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbe74c456));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3fb3a2b1));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f949a29));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // LogOfMantissa =
- // -1.7417939f +
- // (2.8212026f +
- // (-1.4699568f +
- // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
- //
- // error 0.000061011436, which is 14 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbd67b6d6));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3ee4f4b8));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fbc278b));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40348e95));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3fdef31a));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // LogOfMantissa =
- // -2.1072184f +
- // (4.2372794f +
- // (-3.7029485f +
- // (2.2781945f +
- // (-0.87823314f +
- // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
- //
- // error 0.0000023660568, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbc91e5ac));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e4350aa));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f60d3e3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x4011cdf0));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x406cfd1c));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x408797cb));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x4006dcab));
- }
- return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
- }
- // No special expansion.
- return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
- }
- /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandLog2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
- // Get the exponent.
- SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
- // Different possible minimax approximations of significand in
- // floating-point for various degrees of accuracy over [1,2].
- SDValue Log2ofMantissa;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
- //
- // error 0.0049451742, which is more than 7 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbeb08fe0));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x40019463));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fd6633d));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // Log2ofMantissa =
- // -2.51285454f +
- // (4.07009056f +
- // (-2.12067489f +
- // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
- //
- // error 0.0000876136000, which is better than 13 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbda7262e));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3f25280b));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x4007b923));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40823e2f));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x4020d29c));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // Log2ofMantissa =
- // -3.0400495f +
- // (6.1129976f +
- // (-5.3420409f +
- // (3.2865683f +
- // (-1.2669343f +
- // (0.27515199f -
- // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
- //
- // error 0.0000018516, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbcd2769e));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e8ce0b9));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3fa22ae7));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x40525723));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x40aaf200));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x40c39dad));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x4042902c));
- }
- return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
- }
- // No special expansion.
- return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
- }
- /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandLog10(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
- // Scale the exponent by log10(2) [0.30102999f].
- SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
- SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
- getF32Constant(DAG, 0x3e9a209a));
- // Get the significand and build it into a floating-point number with
- // exponent of 1.
- SDValue X = GetSignificand(DAG, Op1, dl);
- SDValue Log10ofMantissa;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // Log10ofMantissa =
- // -0.50419619f +
- // (0.60948995f - 0.10380950f * x) * x;
- //
- // error 0.0014886165, which is 6 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0xbdd49a13));
- SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3f1c0789));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f011300));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // Log10ofMantissa =
- // -0.64831180f +
- // (0.91751397f +
- // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
- //
- // error 0.00019228036, which is better than 12 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3d431f31));
- SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3ea21fb2));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f6ae232));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f25f7c3));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // Log10ofMantissa =
- // -0.84299375f +
- // (1.5327582f +
- // (-1.0688956f +
- // (0.49102474f +
- // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
- //
- // error 0.0000037995730, which is better than 18 bits
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3c5d51ce));
- SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
- getF32Constant(DAG, 0x3e00685a));
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3efb6798));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f88d192));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3fc4316c));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3f57ce70));
- }
- return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
- }
- // No special expansion.
- return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
- }
- /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
- /// limited-precision mode.
- static SDValue expandExp2(DebugLoc dl, SDValue Op, SelectionDAG &DAG,
- const TargetLowering &TLI) {
- if (Op.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
- // FractionalPartOfX = x - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, TLI.getPointerTy()));
- SDValue TwoToFractionalPartOfX;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // TwoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // error 0.000107046256, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000));
- }
- // Add the exponent into the result in integer domain.
- SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
- TwoToFractionalPartOfX);
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
- DAG.getNode(ISD::ADD, dl, MVT::i32,
- t13, IntegerPartOfX));
- }
- // No special expansion.
- return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
- }
- /// visitPow - Lower a pow intrinsic. Handles the special sequences for
- /// limited-precision mode with x == 10.0f.
- static SDValue expandPow(DebugLoc dl, SDValue LHS, SDValue RHS,
- SelectionDAG &DAG, const TargetLowering &TLI) {
- bool IsExp10 = false;
- if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
- LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
- if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
- APFloat Ten(10.0f);
- IsExp10 = LHSC->isExactlyValue(Ten);
- }
- }
- if (IsExp10) {
- // Put the exponent in the right bit position for later addition to the
- // final result:
- //
- // #define LOG2OF10 3.3219281f
- // IntegerPartOfX = (int32_t)(x * LOG2OF10);
- SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
- getF32Constant(DAG, 0x40549a78));
- SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
- // FractionalPartOfX = x - (float)IntegerPartOfX;
- SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
- SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
- // IntegerPartOfX <<= 23;
- IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
- DAG.getConstant(23, TLI.getPointerTy()));
- SDValue TwoToFractionalPartOfX;
- if (LimitFloatPrecision <= 6) {
- // For floating-point precision of 6:
- //
- // twoToFractionalPartOfX =
- // 0.997535578f +
- // (0.735607626f + 0.252464424f * x) * x;
- //
- // error 0.0144103317, which is 6 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3e814304));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3f3c50c8));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f7f5e7e));
- } else if (LimitFloatPrecision <= 12) {
- // For floating-point precision of 12:
- //
- // TwoToFractionalPartOfX =
- // 0.999892986f +
- // (0.696457318f +
- // (0.224338339f + 0.792043434e-1f * x) * x) * x;
- //
- // error 0.000107046256, which is 13 to 14 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3da235e3));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3e65b8f3));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3f324b07));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3f7ff8fd));
- } else { // LimitFloatPrecision <= 18
- // For floating-point precision of 18:
- //
- // TwoToFractionalPartOfX =
- // 0.999999982f +
- // (0.693148872f +
- // (0.240227044f +
- // (0.554906021e-1f +
- // (0.961591928e-2f +
- // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
- // error 2.47208000*10^(-7), which is better than 18 bits
- SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
- getF32Constant(DAG, 0x3924b03e));
- SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
- getF32Constant(DAG, 0x3ab24b87));
- SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
- SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
- getF32Constant(DAG, 0x3c1d8c17));
- SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
- SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
- getF32Constant(DAG, 0x3d634a1d));
- SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
- SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
- getF32Constant(DAG, 0x3e75fe14));
- SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
- SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
- getF32Constant(DAG, 0x3f317234));
- SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
- TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
- getF32Constant(DAG, 0x3f800000));
- }
- SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
- return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
- DAG.getNode(ISD::ADD, dl, MVT::i32,
- t13, IntegerPartOfX));
- }
- // No special expansion.
- return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
- }
- /// ExpandPowI - Expand a llvm.powi intrinsic.
- static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS,
- SelectionDAG &DAG) {
- // If RHS is a constant, we can expand this out to a multiplication tree,
- // otherwise we end up lowering to a call to __powidf2 (for example). When
- // optimizing for size, we only want to do this if the expansion would produce
- // a small number of multiplies, otherwise we do the full expansion.
- if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
- // Get the exponent as a positive value.
- unsigned Val = RHSC->getSExtValue();
- if ((int)Val < 0) Val = -Val;
- // powi(x, 0) -> 1.0
- if (Val == 0)
- return DAG.getConstantFP(1.0, LHS.getValueType());
- const Function *F = DAG.getMachineFunction().getFunction();
- if (!F->getFnAttributes().hasAttribute(Attribute::OptimizeForSize) ||
- // If optimizing for size, don't insert too many multiplies. This
- // inserts up to 5 multiplies.
- CountPopulation_32(Val)+Log2_32(Val) < 7) {
- // We use the simple binary decomposition method to generate the multiply
- // sequence. There are more optimal ways to do this (for example,
- // powi(x,15) generates one more multiply than it should), but this has
- // the benefit of being both really simple and much better than a libcall.
- SDValue Res; // Logically starts equal to 1.0
- SDValue CurSquare = LHS;
- while (Val) {
- if (Val & 1) {
- if (Res.getNode())
- Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
- else
- Res = CurSquare; // 1.0*CurSquare.
- }
- CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
- CurSquare, CurSquare);
- Val >>= 1;
- }
- // If the original was negative, invert the result, producing 1/(x*x*x).
- if (RHSC->getSExtValue() < 0)
- Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
- DAG.getConstantFP(1.0, LHS.getValueType()), Res);
- return Res;
- }
- }
- // Otherwise, expand to a libcall.
- return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
- }
- // getTruncatedArgReg - Find underlying register used for an truncated
- // argument.
- static unsigned getTruncatedArgReg(const SDValue &N) {
- if (N.getOpcode() != ISD::TRUNCATE)
- return 0;
- const SDValue &Ext = N.getOperand(0);
- if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){
- const SDValue &CFR = Ext.getOperand(0);
- if (CFR.getOpcode() == ISD::CopyFromReg)
- return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
- if (CFR.getOpcode() == ISD::TRUNCATE)
- return getTruncatedArgReg(CFR);
- }
- return 0;
- }
- /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
- /// argument, create the corresponding DBG_VALUE machine instruction for it now.
- /// At the end of instruction selection, they will be inserted to the entry BB.
- bool
- SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
- int64_t Offset,
- const SDValue &N) {
- const Argument *Arg = dyn_cast<Argument>(V);
- if (!Arg)
- return false;
- MachineFunction &MF = DAG.getMachineFunction();
- const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
- const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
- // Ignore inlined function arguments here.
- DIVariable DV(Variable);
- if (DV.isInlinedFnArgument(MF.getFunction()))
- return false;
- unsigned Reg = 0;
- // Some arguments' frame index is recorded during argument lowering.
- Offset = FuncInfo.getArgumentFrameIndex(Arg);
- if (Offset)
- Reg = TRI->getFrameRegister(MF);
- if (!Reg && N.getNode()) {
- if (N.getOpcode() == ISD::CopyFromReg)
- Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
- else
- Reg = getTruncatedArgReg(N);
- if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
- MachineRegisterInfo &RegInfo = MF.getRegInfo();
- unsigned PR = RegInfo.getLiveInPhysReg(Reg);
- if (PR)
- Reg = PR;
- }
- }
- if (!Reg) {
- // Check if ValueMap has reg number.
- DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
- if (VMI != FuncInfo.ValueMap.end())
- Reg = VMI->second;
- }
- if (!Reg && N.getNode()) {
- // Check if frame index is available.
- if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
- if (FrameIndexSDNode *FINode =
- dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) {
- Reg = TRI->getFrameRegister(MF);
- Offset = FINode->getIndex();
- }
- }
- if (!Reg)
- return false;
- MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(),
- TII->get(TargetOpcode::DBG_VALUE))
- .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable);
- FuncInfo.ArgDbgValues.push_back(&*MIB);
- return true;
- }
- // VisualStudio defines setjmp as _setjmp
- #if defined(_MSC_VER) && defined(setjmp) && \
- !defined(setjmp_undefined_for_msvc)
- # pragma push_macro("setjmp")
- # undef setjmp
- # define setjmp_undefined_for_msvc
- #endif
- /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
- /// we want to emit this as a call to a named external function, return the name
- /// otherwise lower it and return null.
- const char *
- SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
- DebugLoc dl = getCurDebugLoc();
- SDValue Res;
- switch (Intrinsic) {
- default:
- // By default, turn this into a target intrinsic node.
- visitTargetIntrinsic(I, Intrinsic);
- return 0;
- case Intrinsic::vastart: visitVAStart(I); return 0;
- case Intrinsic::vaend: visitVAEnd(I); return 0;
- case Intrinsic::vacopy: visitVACopy(I); return 0;
- case Intrinsic::returnaddress:
- setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(),
- getValue(I.getArgOperand(0))));
- return 0;
- case Intrinsic::frameaddress:
- setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(),
- getValue(I.getArgOperand(0))));
- return 0;
- case Intrinsic::setjmp:
- return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
- case Intrinsic::longjmp:
- return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
- case Intrinsic::memcpy: {
- // Assert for address < 256 since we support only user defined address
- // spaces.
- assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
- < 256 &&
- cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
- < 256 &&
- "Unknown address space");
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDValue Op3 = getValue(I.getArgOperand(2));
- unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
- bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
- DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false,
- MachinePointerInfo(I.getArgOperand(0)),
- MachinePointerInfo(I.getArgOperand(1))));
- return 0;
- }
- case Intrinsic::memset: {
- // Assert for address < 256 since we support only user defined address
- // spaces.
- assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
- < 256 &&
- "Unknown address space");
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDValue Op3 = getValue(I.getArgOperand(2));
- unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
- bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
- DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
- MachinePointerInfo(I.getArgOperand(0))));
- return 0;
- }
- case Intrinsic::memmove: {
- // Assert for address < 256 since we support only user defined address
- // spaces.
- assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
- < 256 &&
- cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
- < 256 &&
- "Unknown address space");
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDValue Op3 = getValue(I.getArgOperand(2));
- unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
- bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
- DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol,
- MachinePointerInfo(I.getArgOperand(0)),
- MachinePointerInfo(I.getArgOperand(1))));
- return 0;
- }
- case Intrinsic::dbg_declare: {
- const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
- MDNode *Variable = DI.getVariable();
- const Value *Address = DI.getAddress();
- if (!Address || !DIVariable(Variable).Verify()) {
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- return 0;
- }
- // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
- // but do not always have a corresponding SDNode built. The SDNodeOrder
- // absolute, but not relative, values are different depending on whether
- // debug info exists.
- ++SDNodeOrder;
- // Check if address has undef value.
- if (isa<UndefValue>(Address) ||
- (Address->use_empty() && !isa<Argument>(Address))) {
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- return 0;
- }
- SDValue &N = NodeMap[Address];
- if (!N.getNode() && isa<Argument>(Address))
- // Check unused arguments map.
- N = UnusedArgNodeMap[Address];
- SDDbgValue *SDV;
- if (N.getNode()) {
- if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
- Address = BCI->getOperand(0);
- // Parameters are handled specially.
- bool isParameter =
- (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
- isa<Argument>(Address));
- const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
- if (isParameter && !AI) {
- FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
- if (FINode)
- // Byval parameter. We have a frame index at this point.
- SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
- 0, dl, SDNodeOrder);
- else {
- // Address is an argument, so try to emit its dbg value using
- // virtual register info from the FuncInfo.ValueMap.
- EmitFuncArgumentDbgValue(Address, Variable, 0, N);
- return 0;
- }
- } else if (AI)
- SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
- 0, dl, SDNodeOrder);
- else {
- // Can't do anything with other non-AI cases yet.
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
- DEBUG(Address->dump());
- return 0;
- }
- DAG.AddDbgValue(SDV, N.getNode(), isParameter);
- } else {
- // If Address is an argument then try to emit its dbg value using
- // virtual register info from the FuncInfo.ValueMap.
- if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
- // If variable is pinned by a alloca in dominating bb then
- // use StaticAllocaMap.
- if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
- if (AI->getParent() != DI.getParent()) {
- DenseMap<const AllocaInst*, int>::iterator SI =
- FuncInfo.StaticAllocaMap.find(AI);
- if (SI != FuncInfo.StaticAllocaMap.end()) {
- SDV = DAG.getDbgValue(Variable, SI->second,
- 0, dl, SDNodeOrder);
- DAG.AddDbgValue(SDV, 0, false);
- return 0;
- }
- }
- }
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- }
- }
- return 0;
- }
- case Intrinsic::dbg_value: {
- const DbgValueInst &DI = cast<DbgValueInst>(I);
- if (!DIVariable(DI.getVariable()).Verify())
- return 0;
- MDNode *Variable = DI.getVariable();
- uint64_t Offset = DI.getOffset();
- const Value *V = DI.getValue();
- if (!V)
- return 0;
- // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder
- // but do not always have a corresponding SDNode built. The SDNodeOrder
- // absolute, but not relative, values are different depending on whether
- // debug info exists.
- ++SDNodeOrder;
- SDDbgValue *SDV;
- if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
- SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
- DAG.AddDbgValue(SDV, 0, false);
- } else {
- // Do not use getValue() in here; we don't want to generate code at
- // this point if it hasn't been done yet.
- SDValue N = NodeMap[V];
- if (!N.getNode() && isa<Argument>(V))
- // Check unused arguments map.
- N = UnusedArgNodeMap[V];
- if (N.getNode()) {
- if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
- SDV = DAG.getDbgValue(Variable, N.getNode(),
- N.getResNo(), Offset, dl, SDNodeOrder);
- DAG.AddDbgValue(SDV, N.getNode(), false);
- }
- } else if (!V->use_empty() ) {
- // Do not call getValue(V) yet, as we don't want to generate code.
- // Remember it for later.
- DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
- DanglingDebugInfoMap[V] = DDI;
- } else {
- // We may expand this to cover more cases. One case where we have no
- // data available is an unreferenced parameter.
- DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
- }
- }
- // Build a debug info table entry.
- if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
- V = BCI->getOperand(0);
- const AllocaInst *AI = dyn_cast<AllocaInst>(V);
- // Don't handle byval struct arguments or VLAs, for example.
- if (!AI) {
- DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n");
- DEBUG(dbgs() << " Last seen at:\n " << *V << "\n");
- return 0;
- }
- DenseMap<const AllocaInst*, int>::iterator SI =
- FuncInfo.StaticAllocaMap.find(AI);
- if (SI == FuncInfo.StaticAllocaMap.end())
- return 0; // VLAs.
- int FI = SI->second;
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
- MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
- return 0;
- }
- case Intrinsic::eh_typeid_for: {
- // Find the type id for the given typeinfo.
- GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
- unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
- Res = DAG.getConstant(TypeID, MVT::i32);
- setValue(&I, Res);
- return 0;
- }
- case Intrinsic::eh_return_i32:
- case Intrinsic::eh_return_i64:
- DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
- DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl,
- MVT::Other,
- getControlRoot(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1))));
- return 0;
- case Intrinsic::eh_unwind_init:
- DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
- return 0;
- case Intrinsic::eh_dwarf_cfa: {
- SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl,
- TLI.getPointerTy());
- SDValue Offset = DAG.getNode(ISD::ADD, dl,
- TLI.getPointerTy(),
- DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
- TLI.getPointerTy()),
- CfaArg);
- SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl,
- TLI.getPointerTy(),
- DAG.getConstant(0, TLI.getPointerTy()));
- setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
- FA, Offset));
- return 0;
- }
- case Intrinsic::eh_sjlj_callsite: {
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
- assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
- assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
- MMI.setCurrentCallSite(CI->getZExtValue());
- return 0;
- }
- case Intrinsic::eh_sjlj_functioncontext: {
- // Get and store the index of the function context.
- MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
- AllocaInst *FnCtx =
- cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
- int FI = FuncInfo.StaticAllocaMap[FnCtx];
- MFI->setFunctionContextIndex(FI);
- return 0;
- }
- case Intrinsic::eh_sjlj_setjmp: {
- SDValue Ops[2];
- Ops[0] = getRoot();
- Ops[1] = getValue(I.getArgOperand(0));
- SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl,
- DAG.getVTList(MVT::i32, MVT::Other),
- Ops, 2);
- setValue(&I, Op.getValue(0));
- DAG.setRoot(Op.getValue(1));
- return 0;
- }
- case Intrinsic::eh_sjlj_longjmp: {
- DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other,
- getRoot(), getValue(I.getArgOperand(0))));
- return 0;
- }
- case Intrinsic::x86_mmx_pslli_w:
- case Intrinsic::x86_mmx_pslli_d:
- case Intrinsic::x86_mmx_pslli_q:
- case Intrinsic::x86_mmx_psrli_w:
- case Intrinsic::x86_mmx_psrli_d:
- case Intrinsic::x86_mmx_psrli_q:
- case Intrinsic::x86_mmx_psrai_w:
- case Intrinsic::x86_mmx_psrai_d: {
- SDValue ShAmt = getValue(I.getArgOperand(1));
- if (isa<ConstantSDNode>(ShAmt)) {
- visitTargetIntrinsic(I, Intrinsic);
- return 0;
- }
- unsigned NewIntrinsic = 0;
- EVT ShAmtVT = MVT::v2i32;
- switch (Intrinsic) {
- case Intrinsic::x86_mmx_pslli_w:
- NewIntrinsic = Intrinsic::x86_mmx_psll_w;
- break;
- case Intrinsic::x86_mmx_pslli_d:
- NewIntrinsic = Intrinsic::x86_mmx_psll_d;
- break;
- case Intrinsic::x86_mmx_pslli_q:
- NewIntrinsic = Intrinsic::x86_mmx_psll_q;
- break;
- case Intrinsic::x86_mmx_psrli_w:
- NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
- break;
- case Intrinsic::x86_mmx_psrli_d:
- NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
- break;
- case Intrinsic::x86_mmx_psrli_q:
- NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
- break;
- case Intrinsic::x86_mmx_psrai_w:
- NewIntrinsic = Intrinsic::x86_mmx_psra_w;
- break;
- case Intrinsic::x86_mmx_psrai_d:
- NewIntrinsic = Intrinsic::x86_mmx_psra_d;
- break;
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- }
- // The vector shift intrinsics with scalars uses 32b shift amounts but
- // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
- // to be zero.
- // We must do this early because v2i32 is not a legal type.
- SDValue ShOps[2];
- ShOps[0] = ShAmt;
- ShOps[1] = DAG.getConstant(0, MVT::i32);
- ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
- EVT DestVT = TLI.getValueType(I.getType());
- ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt);
- Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
- DAG.getConstant(NewIntrinsic, MVT::i32),
- getValue(I.getArgOperand(0)), ShAmt);
- setValue(&I, Res);
- return 0;
- }
- case Intrinsic::x86_avx_vinsertf128_pd_256:
- case Intrinsic::x86_avx_vinsertf128_ps_256:
- case Intrinsic::x86_avx_vinsertf128_si_256:
- case Intrinsic::x86_avx2_vinserti128: {
- EVT DestVT = TLI.getValueType(I.getType());
- EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
- uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
- ElVT.getVectorNumElements();
- Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT,
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)),
- DAG.getIntPtrConstant(Idx));
- setValue(&I, Res);
- return 0;
- }
- case Intrinsic::x86_avx_vextractf128_pd_256:
- case Intrinsic::x86_avx_vextractf128_ps_256:
- case Intrinsic::x86_avx_vextractf128_si_256:
- case Intrinsic::x86_avx2_vextracti128: {
- EVT DestVT = TLI.getValueType(I.getType());
- uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
- DestVT.getVectorNumElements();
- Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT,
- getValue(I.getArgOperand(0)),
- DAG.getIntPtrConstant(Idx));
- setValue(&I, Res);
- return 0;
- }
- case Intrinsic::convertff:
- case Intrinsic::convertfsi:
- case Intrinsic::convertfui:
- case Intrinsic::convertsif:
- case Intrinsic::convertuif:
- case Intrinsic::convertss:
- case Intrinsic::convertsu:
- case Intrinsic::convertus:
- case Intrinsic::convertuu: {
- ISD::CvtCode Code = ISD::CVT_INVALID;
- switch (Intrinsic) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::convertff: Code = ISD::CVT_FF; break;
- case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
- case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
- case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
- case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
- case Intrinsic::convertss: Code = ISD::CVT_SS; break;
- case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
- case Intrinsic::convertus: Code = ISD::CVT_US; break;
- case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
- }
- EVT DestVT = TLI.getValueType(I.getType());
- const Value *Op1 = I.getArgOperand(0);
- Res = DAG.getConvertRndSat(DestVT, dl, getValue(Op1),
- DAG.getValueType(DestVT),
- DAG.getValueType(getValue(Op1).getValueType()),
- getValue(I.getArgOperand(1)),
- getValue(I.getArgOperand(2)),
- Code);
- setValue(&I, Res);
- return 0;
- }
- case Intrinsic::powi:
- setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)), DAG));
- return 0;
- case Intrinsic::log:
- setValue(&I, expandLog(dl, getValue(I.getArgOperand(0)), DAG, TLI));
- return 0;
- case Intrinsic::log2:
- setValue(&I, expandLog2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
- return 0;
- case Intrinsic::log10:
- setValue(&I, expandLog10(dl, getValue(I.getArgOperand(0)), DAG, TLI));
- return 0;
- case Intrinsic::exp:
- setValue(&I, expandExp(dl, getValue(I.getArgOperand(0)), DAG, TLI));
- return 0;
- case Intrinsic::exp2:
- setValue(&I, expandExp2(dl, getValue(I.getArgOperand(0)), DAG, TLI));
- return 0;
- case Intrinsic::pow:
- setValue(&I, expandPow(dl, getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)), DAG, TLI));
- return 0;
- case Intrinsic::sqrt:
- case Intrinsic::fabs:
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint: {
- unsigned Opcode;
- switch (Intrinsic) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
- case Intrinsic::fabs: Opcode = ISD::FABS; break;
- case Intrinsic::sin: Opcode = ISD::FSIN; break;
- case Intrinsic::cos: Opcode = ISD::FCOS; break;
- case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
- case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
- case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
- case Intrinsic::rint: Opcode = ISD::FRINT; break;
- case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
- }
- setValue(&I, DAG.getNode(Opcode, dl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0))));
- return 0;
- }
- case Intrinsic::fma:
- setValue(&I, DAG.getNode(ISD::FMA, dl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)),
- getValue(I.getArgOperand(2))));
- return 0;
- case Intrinsic::fmuladd: {
- EVT VT = TLI.getValueType(I.getType());
- if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
- TLI.isOperationLegalOrCustom(ISD::FMA, VT) &&
- TLI.isFMAFasterThanMulAndAdd(VT)){
- setValue(&I, DAG.getNode(ISD::FMA, dl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)),
- getValue(I.getArgOperand(2))));
- } else {
- SDValue Mul = DAG.getNode(ISD::FMUL, dl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)));
- SDValue Add = DAG.getNode(ISD::FADD, dl,
- getValue(I.getArgOperand(0)).getValueType(),
- Mul,
- getValue(I.getArgOperand(2)));
- setValue(&I, Add);
- }
- return 0;
- }
- case Intrinsic::convert_to_fp16:
- setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl,
- MVT::i16, getValue(I.getArgOperand(0))));
- return 0;
- case Intrinsic::convert_from_fp16:
- setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl,
- MVT::f32, getValue(I.getArgOperand(0))));
- return 0;
- case Intrinsic::pcmarker: {
- SDValue Tmp = getValue(I.getArgOperand(0));
- DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp));
- return 0;
- }
- case Intrinsic::readcyclecounter: {
- SDValue Op = getRoot();
- Res = DAG.getNode(ISD::READCYCLECOUNTER, dl,
- DAG.getVTList(MVT::i64, MVT::Other),
- &Op, 1);
- setValue(&I, Res);
- DAG.setRoot(Res.getValue(1));
- return 0;
- }
- case Intrinsic::bswap:
- setValue(&I, DAG.getNode(ISD::BSWAP, dl,
- getValue(I.getArgOperand(0)).getValueType(),
- getValue(I.getArgOperand(0))));
- return 0;
- case Intrinsic::cttz: {
- SDValue Arg = getValue(I.getArgOperand(0));
- ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
- EVT Ty = Arg.getValueType();
- setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
- dl, Ty, Arg));
- return 0;
- }
- case Intrinsic::ctlz: {
- SDValue Arg = getValue(I.getArgOperand(0));
- ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
- EVT Ty = Arg.getValueType();
- setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
- dl, Ty, Arg));
- return 0;
- }
- case Intrinsic::ctpop: {
- SDValue Arg = getValue(I.getArgOperand(0));
- EVT Ty = Arg.getValueType();
- setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg));
- return 0;
- }
- case Intrinsic::stacksave: {
- SDValue Op = getRoot();
- Res = DAG.getNode(ISD::STACKSAVE, dl,
- DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1);
- setValue(&I, Res);
- DAG.setRoot(Res.getValue(1));
- return 0;
- }
- case Intrinsic::stackrestore: {
- Res = getValue(I.getArgOperand(0));
- DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res));
- return 0;
- }
- case Intrinsic::stackprotector: {
- // Emit code into the DAG to store the stack guard onto the stack.
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- EVT PtrTy = TLI.getPointerTy();
- SDValue Src = getValue(I.getArgOperand(0)); // The guard's value.
- AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
- int FI = FuncInfo.StaticAllocaMap[Slot];
- MFI->setStackProtectorIndex(FI);
- SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
- // Store the stack protector onto the stack.
- Res = DAG.getStore(getRoot(), dl, Src, FIN,
- MachinePointerInfo::getFixedStack(FI),
- true, false, 0);
- setValue(&I, Res);
- DAG.setRoot(Res);
- return 0;
- }
- case Intrinsic::objectsize: {
- // If we don't know by now, we're never going to know.
- ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
- assert(CI && "Non-constant type in __builtin_object_size?");
- SDValue Arg = getValue(I.getCalledValue());
- EVT Ty = Arg.getValueType();
- if (CI->isZero())
- Res = DAG.getConstant(-1ULL, Ty);
- else
- Res = DAG.getConstant(0, Ty);
- setValue(&I, Res);
- return 0;
- }
- case Intrinsic::var_annotation:
- // Discard annotate attributes
- return 0;
- case Intrinsic::init_trampoline: {
- const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
- SDValue Ops[6];
- Ops[0] = getRoot();
- Ops[1] = getValue(I.getArgOperand(0));
- Ops[2] = getValue(I.getArgOperand(1));
- Ops[3] = getValue(I.getArgOperand(2));
- Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
- Ops[5] = DAG.getSrcValue(F);
- Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6);
- DAG.setRoot(Res);
- return 0;
- }
- case Intrinsic::adjust_trampoline: {
- setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl,
- TLI.getPointerTy(),
- getValue(I.getArgOperand(0))));
- return 0;
- }
- case Intrinsic::gcroot:
- if (GFI) {
- const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
- const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
- FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
- GFI->addStackRoot(FI->getIndex(), TypeMap);
- }
- return 0;
- case Intrinsic::gcread:
- case Intrinsic::gcwrite:
- llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
- case Intrinsic::flt_rounds:
- setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32));
- return 0;
- case Intrinsic::expect: {
- // Just replace __builtin_expect(exp, c) with EXP.
- setValue(&I, getValue(I.getArgOperand(0)));
- return 0;
- }
- case Intrinsic::debugtrap:
- case Intrinsic::trap: {
- StringRef TrapFuncName = TM.Options.getTrapFunctionName();
- if (TrapFuncName.empty()) {
- ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
- ISD::TRAP : ISD::DEBUGTRAP;
- DAG.setRoot(DAG.getNode(Op, dl,MVT::Other, getRoot()));
- return 0;
- }
- TargetLowering::ArgListTy Args;
- TargetLowering::
- CallLoweringInfo CLI(getRoot(), I.getType(),
- false, false, false, false, 0, CallingConv::C,
- /*isTailCall=*/false,
- /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
- DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
- Args, DAG, dl);
- std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
- DAG.setRoot(Result.second);
- return 0;
- }
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::umul_with_overflow:
- case Intrinsic::smul_with_overflow: {
- ISD::NodeType Op;
- switch (Intrinsic) {
- default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
- case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
- case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
- case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
- case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
- case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
- case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
- }
- SDValue Op1 = getValue(I.getArgOperand(0));
- SDValue Op2 = getValue(I.getArgOperand(1));
- SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
- setValue(&I, DAG.getNode(Op, dl, VTs, Op1, Op2));
- return 0;
- }
- case Intrinsic::prefetch: {
- SDValue Ops[5];
- unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
- Ops[0] = getRoot();
- Ops[1] = getValue(I.getArgOperand(0));
- Ops[2] = getValue(I.getArgOperand(1));
- Ops[3] = getValue(I.getArgOperand(2));
- Ops[4] = getValue(I.getArgOperand(3));
- DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl,
- DAG.getVTList(MVT::Other),
- &Ops[0], 5,
- EVT::getIntegerVT(*Context, 8),
- MachinePointerInfo(I.getArgOperand(0)),
- 0, /* align */
- false, /* volatile */
- rw==0, /* read */
- rw==1)); /* write */
- return 0;
- }
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end: {
- bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
- // Stack coloring is not enabled in O0, discard region information.
- if (TM.getOptLevel() == CodeGenOpt::None)
- return 0;
- SmallVector<Value *, 4> Allocas;
- GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
- for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(),
- E = Allocas.end(); Object != E; ++Object) {
- AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
- // Could not find an Alloca.
- if (!LifetimeObject)
- continue;
- int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
- SDValue Ops[2];
- Ops[0] = getRoot();
- Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
- unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
- Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2);
- DAG.setRoot(Res);
- }
- }
- case Intrinsic::invariant_start:
- // Discard region information.
- setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
- return 0;
- case Intrinsic::invariant_end:
- // Discard region information.
- return 0;
- case Intrinsic::donothing:
- // ignore
- return 0;
- }
- }
- void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
- bool isTailCall,
- MachineBasicBlock *LandingPad) {
- PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
- FunctionType *FTy = cast<FunctionType>(PT->getElementType());
- Type *RetTy = FTy->getReturnType();
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- MCSymbol *BeginLabel = 0;
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Args.reserve(CS.arg_size());
- // Check whether the function can return without sret-demotion.
- SmallVector<ISD::OutputArg, 4> Outs;
- GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(),
- Outs, TLI);
- bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
- DAG.getMachineFunction(),
- FTy->isVarArg(), Outs,
- FTy->getContext());
- SDValue DemoteStackSlot;
- int DemoteStackIdx = -100;
- if (!CanLowerReturn) {
- uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(
- FTy->getReturnType());
- unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(
- FTy->getReturnType());
- MachineFunction &MF = DAG.getMachineFunction();
- DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
- Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
- DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy());
- Entry.Node = DemoteStackSlot;
- Entry.Ty = StackSlotPtrType;
- Entry.isSExt = false;
- Entry.isZExt = false;
- Entry.isInReg = false;
- Entry.isSRet = true;
- Entry.isNest = false;
- Entry.isByVal = false;
- Entry.Alignment = Align;
- Args.push_back(Entry);
- RetTy = Type::getVoidTy(FTy->getContext());
- }
- for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
- i != e; ++i) {
- const Value *V = *i;
- // Skip empty types
- if (V->getType()->isEmptyTy())
- continue;
- SDValue ArgNode = getValue(V);
- Entry.Node = ArgNode; Entry.Ty = V->getType();
- unsigned attrInd = i - CS.arg_begin() + 1;
- Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt);
- Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt);
- Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
- Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet);
- Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest);
- Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
- Entry.Alignment = CS.getParamAlignment(attrInd);
- Args.push_back(Entry);
- }
- if (LandingPad) {
- // Insert a label before the invoke call to mark the try range. This can be
- // used to detect deletion of the invoke via the MachineModuleInfo.
- BeginLabel = MMI.getContext().CreateTempSymbol();
- // For SjLj, keep track of which landing pads go with which invokes
- // so as to maintain the ordering of pads in the LSDA.
- unsigned CallSiteIndex = MMI.getCurrentCallSite();
- if (CallSiteIndex) {
- MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
- LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
- // Now that the call site is handled, stop tracking it.
- MMI.setCurrentCallSite(0);
- }
- // Both PendingLoads and PendingExports must be flushed here;
- // this call might not return.
- (void)getRoot();
- DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel));
- }
- // Check if target-independent constraints permit a tail call here.
- // Target-dependent constraints are checked within TLI.LowerCallTo.
- if (isTailCall &&
- !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI))
- isTailCall = false;
- TargetLowering::
- CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
- getCurDebugLoc(), CS);
- std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI);
- assert((isTailCall || Result.second.getNode()) &&
- "Non-null chain expected with non-tail call!");
- assert((Result.second.getNode() || !Result.first.getNode()) &&
- "Null value expected with tail call!");
- if (Result.first.getNode()) {
- setValue(CS.getInstruction(), Result.first);
- } else if (!CanLowerReturn && Result.second.getNode()) {
- // The instruction result is the result of loading from the
- // hidden sret parameter.
- SmallVector<EVT, 1> PVTs;
- Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
- ComputeValueVTs(TLI, PtrRetTy, PVTs);
- assert(PVTs.size() == 1 && "Pointers should fit in one register");
- EVT PtrVT = PVTs[0];
- SmallVector<EVT, 4> RetTys;
- SmallVector<uint64_t, 4> Offsets;
- RetTy = FTy->getReturnType();
- ComputeValueVTs(TLI, RetTy, RetTys, &Offsets);
- unsigned NumValues = RetTys.size();
- SmallVector<SDValue, 4> Values(NumValues);
- SmallVector<SDValue, 4> Chains(NumValues);
- for (unsigned i = 0; i < NumValues; ++i) {
- SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT,
- DemoteStackSlot,
- DAG.getConstant(Offsets[i], PtrVT));
- SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add,
- MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
- false, false, false, 1);
- Values[i] = L;
- Chains[i] = L.getValue(1);
- }
- SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(),
- MVT::Other, &Chains[0], NumValues);
- PendingLoads.push_back(Chain);
- setValue(CS.getInstruction(),
- DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(),
- DAG.getVTList(&RetTys[0], RetTys.size()),
- &Values[0], Values.size()));
- }
- // Assign order to nodes here. If the call does not produce a result, it won't
- // be mapped to a SDNode and visit() will not assign it an order number.
- if (!Result.second.getNode()) {
- // As a special case, a null chain means that a tail call has been emitted and
- // the DAG root is already updated.
- HasTailCall = true;
- ++SDNodeOrder;
- AssignOrderingToNode(DAG.getRoot().getNode());
- } else {
- DAG.setRoot(Result.second);
- ++SDNodeOrder;
- AssignOrderingToNode(Result.second.getNode());
- }
- if (LandingPad) {
- // Insert a label at the end of the invoke call to mark the try range. This
- // can be used to detect deletion of the invoke via the MachineModuleInfo.
- MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
- DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel));
- // Inform MachineModuleInfo of range.
- MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
- }
- }
- /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
- /// value is equal or not-equal to zero.
- static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
- for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
- UI != E; ++UI) {
- if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
- if (IC->isEquality())
- if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
- if (C->isNullValue())
- continue;
- // Unknown instruction.
- return false;
- }
- return true;
- }
- static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
- Type *LoadTy,
- SelectionDAGBuilder &Builder) {
- // Check to see if this load can be trivially constant folded, e.g. if the
- // input is from a string literal.
- if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
- // Cast pointer to the type we really want to load.
- LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
- PointerType::getUnqual(LoadTy));
- if (const Constant *LoadCst =
- ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
- Builder.TD))
- return Builder.getValue(LoadCst);
- }
- // Otherwise, we have to emit the load. If the pointer is to unfoldable but
- // still constant memory, the input chain can be the entry node.
- SDValue Root;
- bool ConstantMemory = false;
- // Do not serialize (non-volatile) loads of constant memory with anything.
- if (Builder.AA->pointsToConstantMemory(PtrVal)) {
- Root = Builder.DAG.getEntryNode();
- ConstantMemory = true;
- } else {
- // Do not serialize non-volatile loads against each other.
- Root = Builder.DAG.getRoot();
- }
- SDValue Ptr = Builder.getValue(PtrVal);
- SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root,
- Ptr, MachinePointerInfo(PtrVal),
- false /*volatile*/,
- false /*nontemporal*/,
- false /*isinvariant*/, 1 /* align=1 */);
- if (!ConstantMemory)
- Builder.PendingLoads.push_back(LoadVal.getValue(1));
- return LoadVal;
- }
- /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
- /// If so, return true and lower it, otherwise return false and it will be
- /// lowered like a normal call.
- bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
- // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
- if (I.getNumArgOperands() != 3)
- return false;
- const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
- if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
- !I.getArgOperand(2)->getType()->isIntegerTy() ||
- !I.getType()->isIntegerTy())
- return false;
- const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2));
- // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
- // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
- if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) {
- bool ActuallyDoIt = true;
- MVT LoadVT;
- Type *LoadTy;
- switch (Size->getZExtValue()) {
- default:
- LoadVT = MVT::Other;
- LoadTy = 0;
- ActuallyDoIt = false;
- break;
- case 2:
- LoadVT = MVT::i16;
- LoadTy = Type::getInt16Ty(Size->getContext());
- break;
- case 4:
- LoadVT = MVT::i32;
- LoadTy = Type::getInt32Ty(Size->getContext());
- break;
- case 8:
- LoadVT = MVT::i64;
- LoadTy = Type::getInt64Ty(Size->getContext());
- break;
- /*
- case 16:
- LoadVT = MVT::v4i32;
- LoadTy = Type::getInt32Ty(Size->getContext());
- LoadTy = VectorType::get(LoadTy, 4);
- break;
- */
- }
- // This turns into unaligned loads. We only do this if the target natively
- // supports the MVT we'll be loading or if it is small enough (<= 4) that
- // we'll only produce a small number of byte loads.
- // Require that we can find a legal MVT, and only do this if the target
- // supports unaligned loads of that type. Expanding into byte loads would
- // bloat the code.
- if (ActuallyDoIt && Size->getZExtValue() > 4) {
- // TODO: Handle 5 byte compare as 4-byte + 1 byte.
- // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
- if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT))
- ActuallyDoIt = false;
- }
- if (ActuallyDoIt) {
- SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
- SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
- SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal,
- ISD::SETNE);
- EVT CallVT = TLI.getValueType(I.getType(), true);
- setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT));
- return true;
- }
- }
- return false;
- }
- /// visitUnaryFloatCall - If a call instruction is a unary floating-point
- /// operation (as expected), translate it to an SDNode with the specified opcode
- /// and return true.
- bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
- unsigned Opcode) {
- // Sanity check that it really is a unary floating-point call.
- if (I.getNumArgOperands() != 1 ||
- !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
- I.getType() != I.getArgOperand(0)->getType() ||
- !I.onlyReadsMemory())
- return false;
- SDValue Tmp = getValue(I.getArgOperand(0));
- setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp));
- return true;
- }
- void SelectionDAGBuilder::visitCall(const CallInst &I) {
- // Handle inline assembly differently.
- if (isa<InlineAsm>(I.getCalledValue())) {
- visitInlineAsm(&I);
- return;
- }
- MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
- ComputeUsesVAFloatArgument(I, &MMI);
- const char *RenameFn = 0;
- if (Function *F = I.getCalledFunction()) {
- if (F->isDeclaration()) {
- if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
- if (unsigned IID = II->getIntrinsicID(F)) {
- RenameFn = visitIntrinsicCall(I, IID);
- if (!RenameFn)
- return;
- }
- }
- if (unsigned IID = F->getIntrinsicID()) {
- RenameFn = visitIntrinsicCall(I, IID);
- if (!RenameFn)
- return;
- }
- }
- // Check for well-known libc/libm calls. If the function is internal, it
- // can't be a library call.
- LibFunc::Func Func;
- if (!F->hasLocalLinkage() && F->hasName() &&
- LibInfo->getLibFunc(F->getName(), Func) &&
- LibInfo->hasOptimizedCodeGen(Func)) {
- switch (Func) {
- default: break;
- case LibFunc::copysign:
- case LibFunc::copysignf:
- case LibFunc::copysignl:
- if (I.getNumArgOperands() == 2 && // Basic sanity checks.
- I.getArgOperand(0)->getType()->isFloatingPointTy() &&
- I.getType() == I.getArgOperand(0)->getType() &&
- I.getType() == I.getArgOperand(1)->getType() &&
- I.onlyReadsMemory()) {
- SDValue LHS = getValue(I.getArgOperand(0));
- SDValue RHS = getValue(I.getArgOperand(1));
- setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(),
- LHS.getValueType(), LHS, RHS));
- return;
- }
- break;
- case LibFunc::fabs:
- case LibFunc::fabsf:
- case LibFunc::fabsl:
- if (visitUnaryFloatCall(I, ISD::FABS))
- return;
- break;
- case LibFunc::sin:
- case LibFunc::sinf:
- case LibFunc::sinl:
- if (visitUnaryFloatCall(I, ISD::FSIN))
- return;
- break;
- case LibFunc::cos:
- case LibFunc::cosf:
- case LibFunc::cosl:
- if (visitUnaryFloatCall(I, ISD::FCOS))
- return;
- break;
- case LibFunc::sqrt:
- case LibFunc::sqrtf:
- case LibFunc::sqrtl:
- if (visitUnaryFloatCall(I, ISD::FSQRT))
- return;
- break;
- case LibFunc::floor:
- case LibFunc::floorf:
- case LibFunc::floorl:
- if (visitUnaryFloatCall(I, ISD::FFLOOR))
- return;
- break;
- case LibFunc::nearbyint:
- case LibFunc::nearbyintf:
- case LibFunc::nearbyintl:
- if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
- return;
- break;
- case LibFunc::ceil:
- case LibFunc::ceilf:
- case LibFunc::ceill:
- if (visitUnaryFloatCall(I, ISD::FCEIL))
- return;
- break;
- case LibFunc::rint:
- case LibFunc::rintf:
- case LibFunc::rintl:
- if (visitUnaryFloatCall(I, ISD::FRINT))
- return;
- break;
- case LibFunc::trunc:
- case LibFunc::truncf:
- case LibFunc::truncl:
- if (visitUnaryFloatCall(I, ISD::FTRUNC))
- return;
- break;
- case LibFunc::log2:
- case LibFunc::log2f:
- case LibFunc::log2l:
- if (visitUnaryFloatCall(I, ISD::FLOG2))
- return;
- break;
- case LibFunc::exp2:
- case LibFunc::exp2f:
- case LibFunc::exp2l:
- if (visitUnaryFloatCall(I, ISD::FEXP2))
- return;
- break;
- case LibFunc::memcmp:
- if (visitMemCmpCall(I))
- return;
- break;
- }
- }
- }
- SDValue Callee;
- if (!RenameFn)
- Callee = getValue(I.getCalledValue());
- else
- Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
- // Check if we can potentially perform a tail call. More detailed checking is
- // be done within LowerCallTo, after more information about the call is known.
- LowerCallTo(&I, Callee, I.isTailCall());
- }
- namespace {
- /// AsmOperandInfo - This contains information for each constraint that we are
- /// lowering.
- class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
- public:
- /// CallOperand - If this is the result output operand or a clobber
- /// this is null, otherwise it is the incoming operand to the CallInst.
- /// This gets modified as the asm is processed.
- SDValue CallOperand;
- /// AssignedRegs - If this is a register or register class operand, this
- /// contains the set of register corresponding to the operand.
- RegsForValue AssignedRegs;
- explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
- : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
- }
- /// getCallOperandValEVT - Return the EVT of the Value* that this operand
- /// corresponds to. If there is no Value* for this operand, it returns
- /// MVT::Other.
- EVT getCallOperandValEVT(LLVMContext &Context,
- const TargetLowering &TLI,
- const DataLayout *TD) const {
- if (CallOperandVal == 0) return MVT::Other;
- if (isa<BasicBlock>(CallOperandVal))
- return TLI.getPointerTy();
- llvm::Type *OpTy = CallOperandVal->getType();
- // FIXME: code duplicated from TargetLowering::ParseConstraints().
- // If this is an indirect operand, the operand is a pointer to the
- // accessed type.
- if (isIndirect) {
- llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
- if (!PtrTy)
- report_fatal_error("Indirect operand for inline asm not a pointer!");
- OpTy = PtrTy->getElementType();
- }
- // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
- if (StructType *STy = dyn_cast<StructType>(OpTy))
- if (STy->getNumElements() == 1)
- OpTy = STy->getElementType(0);
- // If OpTy is not a single value, it may be a struct/union that we
- // can tile with integers.
- if (!OpTy->isSingleValueType() && OpTy->isSized()) {
- unsigned BitSize = TD->getTypeSizeInBits(OpTy);
- switch (BitSize) {
- default: break;
- case 1:
- case 8:
- case 16:
- case 32:
- case 64:
- case 128:
- OpTy = IntegerType::get(Context, BitSize);
- break;
- }
- }
- return TLI.getValueType(OpTy, true);
- }
- };
- typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
- } // end anonymous namespace
- /// GetRegistersForValue - Assign registers (virtual or physical) for the
- /// specified operand. We prefer to assign virtual registers, to allow the
- /// register allocator to handle the assignment process. However, if the asm
- /// uses features that we can't model on machineinstrs, we have SDISel do the
- /// allocation. This produces generally horrible, but correct, code.
- ///
- /// OpInfo describes the operand.
- ///
- static void GetRegistersForValue(SelectionDAG &DAG,
- const TargetLowering &TLI,
- DebugLoc DL,
- SDISelAsmOperandInfo &OpInfo) {
- LLVMContext &Context = *DAG.getContext();
- MachineFunction &MF = DAG.getMachineFunction();
- SmallVector<unsigned, 4> Regs;
- // If this is a constraint for a single physreg, or a constraint for a
- // register class, find it.
- std::pair<unsigned, const TargetRegisterClass*> PhysReg =
- TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
- unsigned NumRegs = 1;
- if (OpInfo.ConstraintVT != MVT::Other) {
- // If this is a FP input in an integer register (or visa versa) insert a bit
- // cast of the input value. More generally, handle any case where the input
- // value disagrees with the register class we plan to stick this in.
- if (OpInfo.Type == InlineAsm::isInput &&
- PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
- // Try to convert to the first EVT that the reg class contains. If the
- // types are identical size, use a bitcast to convert (e.g. two differing
- // vector types).
- EVT RegVT = *PhysReg.second->vt_begin();
- if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
- OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
- RegVT, OpInfo.CallOperand);
- OpInfo.ConstraintVT = RegVT;
- } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
- // If the input is a FP value and we want it in FP registers, do a
- // bitcast to the corresponding integer type. This turns an f64 value
- // into i64, which can be passed with two i32 values on a 32-bit
- // machine.
- RegVT = EVT::getIntegerVT(Context,
- OpInfo.ConstraintVT.getSizeInBits());
- OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
- RegVT, OpInfo.CallOperand);
- OpInfo.ConstraintVT = RegVT;
- }
- }
- NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
- }
- EVT RegVT;
- EVT ValueVT = OpInfo.ConstraintVT;
- // If this is a constraint for a specific physical register, like {r17},
- // assign it now.
- if (unsigned AssignedReg = PhysReg.first) {
- const TargetRegisterClass *RC = PhysReg.second;
- if (OpInfo.ConstraintVT == MVT::Other)
- ValueVT = *RC->vt_begin();
- // Get the actual register value type. This is important, because the user
- // may have asked for (e.g.) the AX register in i32 type. We need to
- // remember that AX is actually i16 to get the right extension.
- RegVT = *RC->vt_begin();
- // This is a explicit reference to a physical register.
- Regs.push_back(AssignedReg);
- // If this is an expanded reference, add the rest of the regs to Regs.
- if (NumRegs != 1) {
- TargetRegisterClass::iterator I = RC->begin();
- for (; *I != AssignedReg; ++I)
- assert(I != RC->end() && "Didn't find reg!");
- // Already added the first reg.
- --NumRegs; ++I;
- for (; NumRegs; --NumRegs, ++I) {
- assert(I != RC->end() && "Ran out of registers to allocate!");
- Regs.push_back(*I);
- }
- }
- OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
- return;
- }
- // Otherwise, if this was a reference to an LLVM register class, create vregs
- // for this reference.
- if (const TargetRegisterClass *RC = PhysReg.second) {
- RegVT = *RC->vt_begin();
- if (OpInfo.ConstraintVT == MVT::Other)
- ValueVT = RegVT;
- // Create the appropriate number of virtual registers.
- MachineRegisterInfo &RegInfo = MF.getRegInfo();
- for (; NumRegs; --NumRegs)
- Regs.push_back(RegInfo.createVirtualRegister(RC));
- OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
- return;
- }
- // Otherwise, we couldn't allocate enough registers for this.
- }
- /// visitInlineAsm - Handle a call to an InlineAsm object.
- ///
- void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
- const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
- /// ConstraintOperands - Information about all of the constraints.
- SDISelAsmOperandInfoVector ConstraintOperands;
- TargetLowering::AsmOperandInfoVector
- TargetConstraints = TLI.ParseConstraints(CS);
- bool hasMemory = false;
- unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
- unsigned ResNo = 0; // ResNo - The result number of the next output.
- for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
- ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
- EVT OpVT = MVT::Other;
- // Compute the value type for each operand.
- switch (OpInfo.Type) {
- case InlineAsm::isOutput:
- // Indirect outputs just consume an argument.
- if (OpInfo.isIndirect) {
- OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
- break;
- }
- // The return value of the call is this value. As such, there is no
- // corresponding argument.
- assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
- if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
- OpVT = TLI.getValueType(STy->getElementType(ResNo));
- } else {
- assert(ResNo == 0 && "Asm only has one result!");
- OpVT = TLI.getValueType(CS.getType());
- }
- ++ResNo;
- break;
- case InlineAsm::isInput:
- OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
- break;
- case InlineAsm::isClobber:
- // Nothing to do.
- break;
- }
- // If this is an input or an indirect output, process the call argument.
- // BasicBlocks are labels, currently appearing only in asm's.
- if (OpInfo.CallOperandVal) {
- if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
- OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
- } else {
- OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
- }
- OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD);
- }
- OpInfo.ConstraintVT = OpVT;
- // Indirect operand accesses access memory.
- if (OpInfo.isIndirect)
- hasMemory = true;
- else {
- for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
- TargetLowering::ConstraintType
- CType = TLI.getConstraintType(OpInfo.Codes[j]);
- if (CType == TargetLowering::C_Memory) {
- hasMemory = true;
- break;
- }
- }
- }
- }
- SDValue Chain, Flag;
- // We won't need to flush pending loads if this asm doesn't touch
- // memory and is nonvolatile.
- if (hasMemory || IA->hasSideEffects())
- Chain = getRoot();
- else
- Chain = DAG.getRoot();
- // Second pass over the constraints: compute which constraint option to use
- // and assign registers to constraints that want a specific physreg.
- for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
- // If this is an output operand with a matching input operand, look up the
- // matching input. If their types mismatch, e.g. one is an integer, the
- // other is floating point, or their sizes are different, flag it as an
- // error.
- if (OpInfo.hasMatchingInput()) {
- SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
- if (OpInfo.ConstraintVT != Input.ConstraintVT) {
- std::pair<unsigned, const TargetRegisterClass*> MatchRC =
- TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
- OpInfo.ConstraintVT);
- std::pair<unsigned, const TargetRegisterClass*> InputRC =
- TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
- Input.ConstraintVT);
- if ((OpInfo.ConstraintVT.isInteger() !=
- Input.ConstraintVT.isInteger()) ||
- (MatchRC.second != InputRC.second)) {
- report_fatal_error("Unsupported asm: input constraint"
- " with a matching output constraint of"
- " incompatible type!");
- }
- Input.ConstraintVT = OpInfo.ConstraintVT;
- }
- }
- // Compute the constraint code and ConstraintType to use.
- TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
- // If this is a memory input, and if the operand is not indirect, do what we
- // need to to provide an address for the memory input.
- if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
- !OpInfo.isIndirect) {
- assert((OpInfo.isMultipleAlternative ||
- (OpInfo.Type == InlineAsm::isInput)) &&
- "Can only indirectify direct input operands!");
- // Memory operands really want the address of the value. If we don't have
- // an indirect input, put it in the constpool if we can, otherwise spill
- // it to a stack slot.
- // TODO: This isn't quite right. We need to handle these according to
- // the addressing mode that the constraint wants. Also, this may take
- // an additional register for the computation and we don't want that
- // either.
- // If the operand is a float, integer, or vector constant, spill to a
- // constant pool entry to get its address.
- const Value *OpVal = OpInfo.CallOperandVal;
- if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
- isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
- OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
- TLI.getPointerTy());
- } else {
- // Otherwise, create a stack slot and emit a store to it before the
- // asm.
- Type *Ty = OpVal->getType();
- uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
- unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
- MachineFunction &MF = DAG.getMachineFunction();
- int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
- SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
- Chain = DAG.getStore(Chain, getCurDebugLoc(),
- OpInfo.CallOperand, StackSlot,
- MachinePointerInfo::getFixedStack(SSFI),
- false, false, 0);
- OpInfo.CallOperand = StackSlot;
- }
- // There is no longer a Value* corresponding to this operand.
- OpInfo.CallOperandVal = 0;
- // It is now an indirect operand.
- OpInfo.isIndirect = true;
- }
- // If this constraint is for a specific register, allocate it before
- // anything else.
- if (OpInfo.ConstraintType == TargetLowering::C_Register)
- GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
- }
- // Second pass - Loop over all of the operands, assigning virtual or physregs
- // to register class operands.
- for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
- // C_Register operands have already been allocated, Other/Memory don't need
- // to be.
- if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
- GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo);
- }
- // AsmNodeOperands - The operands for the ISD::INLINEASM node.
- std::vector<SDValue> AsmNodeOperands;
- AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
- AsmNodeOperands.push_back(
- DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
- TLI.getPointerTy()));
- // If we have a !srcloc metadata node associated with it, we want to attach
- // this to the ultimately generated inline asm machineinstr. To do this, we
- // pass in the third operand as this (potentially null) inline asm MDNode.
- const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
- AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
- // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
- // bits as operand 3.
- unsigned ExtraInfo = 0;
- if (IA->hasSideEffects())
- ExtraInfo |= InlineAsm::Extra_HasSideEffects;
- if (IA->isAlignStack())
- ExtraInfo |= InlineAsm::Extra_IsAlignStack;
- // Set the asm dialect.
- ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
- // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
- for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
- TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
- // Compute the constraint code and ConstraintType to use.
- TLI.ComputeConstraintToUse(OpInfo, SDValue());
- // Ideally, we would only check against memory constraints. However, the
- // meaning of an other constraint can be target-specific and we can't easily
- // reason about it. Therefore, be conservative and set MayLoad/MayStore
- // for other constriants as well.
- if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
- OpInfo.ConstraintType == TargetLowering::C_Other) {
- if (OpInfo.Type == InlineAsm::isInput)
- ExtraInfo |= InlineAsm::Extra_MayLoad;
- else if (OpInfo.Type == InlineAsm::isOutput)
- ExtraInfo |= InlineAsm::Extra_MayStore;
- }
- }
- AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
- TLI.getPointerTy()));
- // Loop over all of the inputs, copying the operand values into the
- // appropriate registers and processing the output regs.
- RegsForValue RetValRegs;
- // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
- std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
- for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
- SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
- switch (OpInfo.Type) {
- case InlineAsm::isOutput: {
- if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
- OpInfo.ConstraintType != TargetLowering::C_Register) {
- // Memory output, or 'other' output (e.g. 'X' constraint).
- assert(OpInfo.isIndirect && "Memory output must be indirect operand");
- // Add information to the INLINEASM node to know about this output.
- unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
- AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
- TLI.getPointerTy()));
- AsmNodeOperands.push_back(OpInfo.CallOperand);
- break;
- }
- // Otherwise, this is a register or register class output.
- // Copy the output from the appropriate register. Find a register that
- // we can use.
- if (OpInfo.AssignedRegs.Regs.empty()) {
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(),
- "couldn't allocate output register for constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- break;
- }
- // If this is an indirect operand, store through the pointer after the
- // asm.
- if (OpInfo.isIndirect) {
- IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
- OpInfo.CallOperandVal));
- } else {
- // This is the result value of the call.
- assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
- // Concatenate this output onto the outputs list.
- RetValRegs.append(OpInfo.AssignedRegs);
- }
- // Add information to the INLINEASM node to know that this register is
- // set.
- OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
- InlineAsm::Kind_RegDefEarlyClobber :
- InlineAsm::Kind_RegDef,
- false,
- 0,
- DAG,
- AsmNodeOperands);
- break;
- }
- case InlineAsm::isInput: {
- SDValue InOperandVal = OpInfo.CallOperand;
- if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
- // If this is required to match an output register we have already set,
- // just use its register.
- unsigned OperandNo = OpInfo.getMatchedOperand();
- // Scan until we find the definition we already emitted of this operand.
- // When we find it, create a RegsForValue operand.
- unsigned CurOp = InlineAsm::Op_FirstOperand;
- for (; OperandNo; --OperandNo) {
- // Advance to the next operand.
- unsigned OpFlag =
- cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
- assert((InlineAsm::isRegDefKind(OpFlag) ||
- InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
- InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
- CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
- }
- unsigned OpFlag =
- cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
- if (InlineAsm::isRegDefKind(OpFlag) ||
- InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
- // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
- if (OpInfo.isIndirect) {
- // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
- " don't know how to handle tied "
- "indirect register inputs");
- }
- RegsForValue MatchedRegs;
- MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
- MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
- MatchedRegs.RegVTs.push_back(RegVT);
- MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
- for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
- i != e; ++i)
- MatchedRegs.Regs.push_back
- (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)));
- // Use the produced MatchedRegs object to
- MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
- Chain, &Flag, CS.getInstruction());
- MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
- true, OpInfo.getMatchedOperand(),
- DAG, AsmNodeOperands);
- break;
- }
- assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
- assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
- "Unexpected number of operands");
- // Add information to the INLINEASM node to know about this input.
- // See InlineAsm.h isUseOperandTiedToDef.
- OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
- OpInfo.getMatchedOperand());
- AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
- TLI.getPointerTy()));
- AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
- break;
- }
- // Treat indirect 'X' constraint as memory.
- if (OpInfo.ConstraintType == TargetLowering::C_Other &&
- OpInfo.isIndirect)
- OpInfo.ConstraintType = TargetLowering::C_Memory;
- if (OpInfo.ConstraintType == TargetLowering::C_Other) {
- std::vector<SDValue> Ops;
- TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
- Ops, DAG);
- if (Ops.empty()) {
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(),
- "invalid operand for inline asm constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- break;
- }
- // Add information to the INLINEASM node to know about this input.
- unsigned ResOpType =
- InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
- AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
- TLI.getPointerTy()));
- AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
- break;
- }
- if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
- assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
- assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
- "Memory operands expect pointer values");
- // Add information to the INLINEASM node to know about this input.
- unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
- AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
- TLI.getPointerTy()));
- AsmNodeOperands.push_back(InOperandVal);
- break;
- }
- assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
- OpInfo.ConstraintType == TargetLowering::C_Register) &&
- "Unknown constraint type!");
- // TODO: Support this.
- if (OpInfo.isIndirect) {
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(),
- "Don't know how to handle indirect register inputs yet "
- "for constraint '" + Twine(OpInfo.ConstraintCode) + "'");
- break;
- }
- // Copy the input into the appropriate registers.
- if (OpInfo.AssignedRegs.Regs.empty()) {
- LLVMContext &Ctx = *DAG.getContext();
- Ctx.emitError(CS.getInstruction(),
- "couldn't allocate input reg for constraint '" +
- Twine(OpInfo.ConstraintCode) + "'");
- break;
- }
- OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(),
- Chain, &Flag, CS.getInstruction());
- OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
- DAG, AsmNodeOperands);
- break;
- }
- case InlineAsm::isClobber: {
- // Add the clobbered value to the operand list, so that the register
- // allocator is aware that the physreg got clobbered.
- if (!OpInfo.AssignedRegs.Regs.empty())
- OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
- false, 0, DAG,
- AsmNodeOperands);
- break;
- }
- }
- }
- // Finish up input operands. Set the input chain and add the flag last.
- AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
- if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
- Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(),
- DAG.getVTList(MVT::Other, MVT::Glue),
- &AsmNodeOperands[0], AsmNodeOperands.size());
- Flag = Chain.getValue(1);
- // If this asm returns a register value, copy the result from that register
- // and set it as the value of the call.
- if (!RetValRegs.Regs.empty()) {
- SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
- Chain, &Flag, CS.getInstruction());
- // FIXME: Why don't we do this for inline asms with MRVs?
- if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
- EVT ResultType = TLI.getValueType(CS.getType());
- // If any of the results of the inline asm is a vector, it may have the
- // wrong width/num elts. This can happen for register classes that can
- // contain multiple different value types. The preg or vreg allocated may
- // not have the same VT as was expected. Convert it to the right type
- // with bit_convert.
- if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
- Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(),
- ResultType, Val);
- } else if (ResultType != Val.getValueType() &&
- ResultType.isInteger() && Val.getValueType().isInteger()) {
- // If a result value was tied to an input value, the computed result may
- // have a wider width than the expected result. Extract the relevant
- // portion.
- Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val);
- }
- assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
- }
- setValue(CS.getInstruction(), Val);
- // Don't need to use this as a chain in this case.
- if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
- return;
- }
- std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
- // Process indirect outputs, first output all of the flagged copies out of
- // physregs.
- for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
- RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
- const Value *Ptr = IndirectStoresToEmit[i].second;
- SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(),
- Chain, &Flag, IA);
- StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
- }
- // Emit the non-flagged stores from the physregs.
- SmallVector<SDValue, 8> OutChains;
- for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
- SDValue Val = DAG.getStore(Chain, getCurDebugLoc(),
- StoresToEmit[i].first,
- getValue(StoresToEmit[i].second),
- MachinePointerInfo(StoresToEmit[i].second),
- false, false, 0);
- OutChains.push_back(Val);
- }
- if (!OutChains.empty())
- Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other,
- &OutChains[0], OutChains.size());
- DAG.setRoot(Chain);
- }
- void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(),
- MVT::Other, getRoot(),
- getValue(I.getArgOperand(0)),
- DAG.getSrcValue(I.getArgOperand(0))));
- }
- void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
- const DataLayout &TD = *TLI.getDataLayout();
- SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(),
- getRoot(), getValue(I.getOperand(0)),
- DAG.getSrcValue(I.getOperand(0)),
- TD.getABITypeAlignment(I.getType()));
- setValue(&I, V);
- DAG.setRoot(V.getValue(1));
- }
- void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(),
- MVT::Other, getRoot(),
- getValue(I.getArgOperand(0)),
- DAG.getSrcValue(I.getArgOperand(0))));
- }
- void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
- DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(),
- MVT::Other, getRoot(),
- getValue(I.getArgOperand(0)),
- getValue(I.getArgOperand(1)),
- DAG.getSrcValue(I.getArgOperand(0)),
- DAG.getSrcValue(I.getArgOperand(1))));
- }
- /// TargetLowering::LowerCallTo - This is the default LowerCallTo
- /// implementation, which just calls LowerCall.
- /// FIXME: When all targets are
- /// migrated to using LowerCall, this hook should be integrated into SDISel.
- std::pair<SDValue, SDValue>
- TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
- // Handle all of the outgoing arguments.
- CLI.Outs.clear();
- CLI.OutVals.clear();
- ArgListTy &Args = CLI.Args;
- for (unsigned i = 0, e = Args.size(); i != e; ++i) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
- for (unsigned Value = 0, NumValues = ValueVTs.size();
- Value != NumValues; ++Value) {
- EVT VT = ValueVTs[Value];
- Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
- SDValue Op = SDValue(Args[i].Node.getNode(),
- Args[i].Node.getResNo() + Value);
- ISD::ArgFlagsTy Flags;
- unsigned OriginalAlignment =
- getDataLayout()->getABITypeAlignment(ArgTy);
- if (Args[i].isZExt)
- Flags.setZExt();
- if (Args[i].isSExt)
- Flags.setSExt();
- if (Args[i].isInReg)
- Flags.setInReg();
- if (Args[i].isSRet)
- Flags.setSRet();
- if (Args[i].isByVal) {
- Flags.setByVal();
- PointerType *Ty = cast<PointerType>(Args[i].Ty);
- Type *ElementTy = Ty->getElementType();
- Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
- // For ByVal, alignment should come from FE. BE will guess if this
- // info is not there but there are cases it cannot get right.
- unsigned FrameAlign;
- if (Args[i].Alignment)
- FrameAlign = Args[i].Alignment;
- else
- FrameAlign = getByValTypeAlignment(ElementTy);
- Flags.setByValAlign(FrameAlign);
- }
- if (Args[i].isNest)
- Flags.setNest();
- Flags.setOrigAlign(OriginalAlignment);
- EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
- unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
- SmallVector<SDValue, 4> Parts(NumParts);
- ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
- if (Args[i].isSExt)
- ExtendKind = ISD::SIGN_EXTEND;
- else if (Args[i].isZExt)
- ExtendKind = ISD::ZERO_EXTEND;
- getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
- PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
- for (unsigned j = 0; j != NumParts; ++j) {
- // if it isn't first piece, alignment must be 1
- ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
- i < CLI.NumFixedArgs,
- i, j*Parts[j].getValueType().getStoreSize());
- if (NumParts > 1 && j == 0)
- MyFlags.Flags.setSplit();
- else if (j != 0)
- MyFlags.Flags.setOrigAlign(1);
- CLI.Outs.push_back(MyFlags);
- CLI.OutVals.push_back(Parts[j]);
- }
- }
- }
- // Handle the incoming return values from the call.
- CLI.Ins.clear();
- SmallVector<EVT, 4> RetTys;
- ComputeValueVTs(*this, CLI.RetTy, RetTys);
- for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
- EVT VT = RetTys[I];
- EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
- unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- ISD::InputArg MyFlags;
- MyFlags.VT = RegisterVT.getSimpleVT();
- MyFlags.Used = CLI.IsReturnValueUsed;
- if (CLI.RetSExt)
- MyFlags.Flags.setSExt();
- if (CLI.RetZExt)
- MyFlags.Flags.setZExt();
- if (CLI.IsInReg)
- MyFlags.Flags.setInReg();
- CLI.Ins.push_back(MyFlags);
- }
- }
- SmallVector<SDValue, 4> InVals;
- CLI.Chain = LowerCall(CLI, InVals);
- // Verify that the target's LowerCall behaved as expected.
- assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
- "LowerCall didn't return a valid chain!");
- assert((!CLI.IsTailCall || InVals.empty()) &&
- "LowerCall emitted a return value for a tail call!");
- assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
- "LowerCall didn't emit the correct number of values!");
- // For a tail call, the return value is merely live-out and there aren't
- // any nodes in the DAG representing it. Return a special value to
- // indicate that a tail call has been emitted and no more Instructions
- // should be processed in the current block.
- if (CLI.IsTailCall) {
- CLI.DAG.setRoot(CLI.Chain);
- return std::make_pair(SDValue(), SDValue());
- }
- DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
- assert(InVals[i].getNode() &&
- "LowerCall emitted a null value!");
- assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
- "LowerCall emitted a value with the wrong type!");
- });
- // Collect the legal value parts into potentially illegal values
- // that correspond to the original function's return values.
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
- if (CLI.RetSExt)
- AssertOp = ISD::AssertSext;
- else if (CLI.RetZExt)
- AssertOp = ISD::AssertZext;
- SmallVector<SDValue, 4> ReturnValues;
- unsigned CurReg = 0;
- for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
- EVT VT = RetTys[I];
- EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
- unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
- ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
- NumRegs, RegisterVT, VT, NULL,
- AssertOp));
- CurReg += NumRegs;
- }
- // For a function returning void, there is no return value. We can't create
- // such a node, so we just return a null return value in that case. In
- // that case, nothing will actually look at the value.
- if (ReturnValues.empty())
- return std::make_pair(SDValue(), CLI.Chain);
- SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
- CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
- &ReturnValues[0], ReturnValues.size());
- return std::make_pair(Res, CLI.Chain);
- }
- void TargetLowering::LowerOperationWrapper(SDNode *N,
- SmallVectorImpl<SDValue> &Results,
- SelectionDAG &DAG) const {
- SDValue Res = LowerOperation(SDValue(N, 0), DAG);
- if (Res.getNode())
- Results.push_back(Res);
- }
- SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
- llvm_unreachable("LowerOperation not implemented for this target!");
- }
- void
- SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
- SDValue Op = getNonRegisterValue(V);
- assert((Op.getOpcode() != ISD::CopyFromReg ||
- cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
- "Copy from a reg to the same reg!");
- assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
- RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
- SDValue Chain = DAG.getEntryNode();
- RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0, V);
- PendingExports.push_back(Chain);
- }
- #include "llvm/CodeGen/SelectionDAGISel.h"
- /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
- /// entry block, return true. This includes arguments used by switches, since
- /// the switch may expand into multiple basic blocks.
- static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
- // With FastISel active, we may be splitting blocks, so force creation
- // of virtual registers for all non-dead arguments.
- if (FastISel)
- return A->use_empty();
- const BasicBlock *Entry = A->getParent()->begin();
- for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
- UI != E; ++UI) {
- const User *U = *UI;
- if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
- return false; // Use not in entry block.
- }
- return true;
- }
- void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) {
- // If this is the entry block, emit arguments.
- const Function &F = *LLVMBB->getParent();
- SelectionDAG &DAG = SDB->DAG;
- DebugLoc dl = SDB->getCurDebugLoc();
- const DataLayout *TD = TLI.getDataLayout();
- SmallVector<ISD::InputArg, 16> Ins;
- // Check whether the function can return without sret-demotion.
- SmallVector<ISD::OutputArg, 4> Outs;
- GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
- Outs, TLI);
- if (!FuncInfo->CanLowerReturn) {
- // Put in an sret pointer parameter before all the other parameters.
- SmallVector<EVT, 1> ValueVTs;
- ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
- // NOTE: Assuming that a pointer will never break down to more than one VT
- // or one register.
- ISD::ArgFlagsTy Flags;
- Flags.setSRet();
- EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]);
- ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
- Ins.push_back(RetArg);
- }
- // Set up the incoming argument description vector.
- unsigned Idx = 1;
- for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
- I != E; ++I, ++Idx) {
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, I->getType(), ValueVTs);
- bool isArgValueUsed = !I->use_empty();
- for (unsigned Value = 0, NumValues = ValueVTs.size();
- Value != NumValues; ++Value) {
- EVT VT = ValueVTs[Value];
- Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
- ISD::ArgFlagsTy Flags;
- unsigned OriginalAlignment =
- TD->getABITypeAlignment(ArgTy);
- if (F.getParamAttributes(Idx).hasAttribute(Attribute::ZExt))
- Flags.setZExt();
- if (F.getParamAttributes(Idx).hasAttribute(Attribute::SExt))
- Flags.setSExt();
- if (F.getParamAttributes(Idx).hasAttribute(Attribute::InReg))
- Flags.setInReg();
- if (F.getParamAttributes(Idx).hasAttribute(Attribute::StructRet))
- Flags.setSRet();
- if (F.getParamAttributes(Idx).hasAttribute(Attribute::ByVal)) {
- Flags.setByVal();
- PointerType *Ty = cast<PointerType>(I->getType());
- Type *ElementTy = Ty->getElementType();
- Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
- // For ByVal, alignment should be passed from FE. BE will guess if
- // this info is not there but there are cases it cannot get right.
- unsigned FrameAlign;
- if (F.getParamAlignment(Idx))
- FrameAlign = F.getParamAlignment(Idx);
- else
- FrameAlign = TLI.getByValTypeAlignment(ElementTy);
- Flags.setByValAlign(FrameAlign);
- }
- if (F.getParamAttributes(Idx).hasAttribute(Attribute::Nest))
- Flags.setNest();
- Flags.setOrigAlign(OriginalAlignment);
- EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
- unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT);
- for (unsigned i = 0; i != NumRegs; ++i) {
- ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
- Idx-1, i*RegisterVT.getStoreSize());
- if (NumRegs > 1 && i == 0)
- MyFlags.Flags.setSplit();
- // if it isn't first piece, alignment must be 1
- else if (i > 0)
- MyFlags.Flags.setOrigAlign(1);
- Ins.push_back(MyFlags);
- }
- }
- }
- // Call the target to set up the argument values.
- SmallVector<SDValue, 8> InVals;
- SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
- F.isVarArg(), Ins,
- dl, DAG, InVals);
- // Verify that the target's LowerFormalArguments behaved as expected.
- assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
- "LowerFormalArguments didn't return a valid chain!");
- assert(InVals.size() == Ins.size() &&
- "LowerFormalArguments didn't emit the correct number of values!");
- DEBUG({
- for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
- assert(InVals[i].getNode() &&
- "LowerFormalArguments emitted a null value!");
- assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
- "LowerFormalArguments emitted a value with the wrong type!");
- }
- });
- // Update the DAG with the new chain value resulting from argument lowering.
- DAG.setRoot(NewRoot);
- // Set up the argument values.
- unsigned i = 0;
- Idx = 1;
- if (!FuncInfo->CanLowerReturn) {
- // Create a virtual register for the sret pointer, and put in a copy
- // from the sret argument into it.
- SmallVector<EVT, 1> ValueVTs;
- ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
- MVT VT = ValueVTs[0].getSimpleVT();
- MVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT).getSimpleVT();
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
- SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
- RegVT, VT, NULL, AssertOp);
- MachineFunction& MF = SDB->DAG.getMachineFunction();
- MachineRegisterInfo& RegInfo = MF.getRegInfo();
- unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT));
- FuncInfo->DemoteRegister = SRetReg;
- NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(),
- SRetReg, ArgValue);
- DAG.setRoot(NewRoot);
- // i indexes lowered arguments. Bump it past the hidden sret argument.
- // Idx indexes LLVM arguments. Don't touch it.
- ++i;
- }
- for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
- ++I, ++Idx) {
- SmallVector<SDValue, 4> ArgValues;
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, I->getType(), ValueVTs);
- unsigned NumValues = ValueVTs.size();
- // If this argument is unused then remember its value. It is used to generate
- // debugging information.
- if (I->use_empty() && NumValues)
- SDB->setUnusedArgValue(I, InVals[i]);
- for (unsigned Val = 0; Val != NumValues; ++Val) {
- EVT VT = ValueVTs[Val];
- EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT);
- unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT);
- if (!I->use_empty()) {
- ISD::NodeType AssertOp = ISD::DELETED_NODE;
- if (F.getParamAttributes(Idx).hasAttribute(Attribute::SExt))
- AssertOp = ISD::AssertSext;
- else if (F.getParamAttributes(Idx).hasAttribute(Attribute::ZExt))
- AssertOp = ISD::AssertZext;
- ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
- NumParts, PartVT, VT,
- NULL, AssertOp));
- }
- i += NumParts;
- }
- // We don't need to do anything else for unused arguments.
- if (ArgValues.empty())
- continue;
- // Note down frame index.
- if (FrameIndexSDNode *FI =
- dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
- FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
- SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
- SDB->getCurDebugLoc());
- SDB->setValue(I, Res);
- if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
- if (LoadSDNode *LNode =
- dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
- if (FrameIndexSDNode *FI =
- dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
- FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
- }
- // If this argument is live outside of the entry block, insert a copy from
- // wherever we got it to the vreg that other BB's will reference it as.
- if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
- // If we can, though, try to skip creating an unnecessary vreg.
- // FIXME: This isn't very clean... it would be nice to make this more
- // general. It's also subtly incompatible with the hacks FastISel
- // uses with vregs.
- unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
- if (TargetRegisterInfo::isVirtualRegister(Reg)) {
- FuncInfo->ValueMap[I] = Reg;
- continue;
- }
- }
- if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
- FuncInfo->InitializeRegForValue(I);
- SDB->CopyToExportRegsIfNeeded(I);
- }
- }
- assert(i == InVals.size() && "Argument register count mismatch!");
- // Finally, if the target has anything special to do, allow it to do so.
- // FIXME: this should insert code into the DAG!
- EmitFunctionEntryCode();
- }
- /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
- /// ensure constants are generated when needed. Remember the virtual registers
- /// that need to be added to the Machine PHI nodes as input. We cannot just
- /// directly add them, because expansion might result in multiple MBB's for one
- /// BB. As such, the start of the BB might correspond to a different MBB than
- /// the end.
- ///
- void
- SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
- const TerminatorInst *TI = LLVMBB->getTerminator();
- SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
- // Check successor nodes' PHI nodes that expect a constant to be available
- // from this block.
- for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
- const BasicBlock *SuccBB = TI->getSuccessor(succ);
- if (!isa<PHINode>(SuccBB->begin())) continue;
- MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
- // If this terminator has multiple identical successors (common for
- // switches), only handle each succ once.
- if (!SuccsHandled.insert(SuccMBB)) continue;
- MachineBasicBlock::iterator MBBI = SuccMBB->begin();
- // At this point we know that there is a 1-1 correspondence between LLVM PHI
- // nodes and Machine PHI nodes, but the incoming operands have not been
- // emitted yet.
- for (BasicBlock::const_iterator I = SuccBB->begin();
- const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
- // Ignore dead phi's.
- if (PN->use_empty()) continue;
- // Skip empty types
- if (PN->getType()->isEmptyTy())
- continue;
- unsigned Reg;
- const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
- if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
- unsigned &RegOut = ConstantsOut[C];
- if (RegOut == 0) {
- RegOut = FuncInfo.CreateRegs(C->getType());
- CopyValueToVirtualRegister(C, RegOut);
- }
- Reg = RegOut;
- } else {
- DenseMap<const Value *, unsigned>::iterator I =
- FuncInfo.ValueMap.find(PHIOp);
- if (I != FuncInfo.ValueMap.end())
- Reg = I->second;
- else {
- assert(isa<AllocaInst>(PHIOp) &&
- FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
- "Didn't codegen value into a register!??");
- Reg = FuncInfo.CreateRegs(PHIOp->getType());
- CopyValueToVirtualRegister(PHIOp, Reg);
- }
- }
- // Remember that this register needs to added to the machine PHI node as
- // the input for this MBB.
- SmallVector<EVT, 4> ValueVTs;
- ComputeValueVTs(TLI, PN->getType(), ValueVTs);
- for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
- EVT VT = ValueVTs[vti];
- unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
- for (unsigned i = 0, e = NumRegisters; i != e; ++i)
- FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
- Reg += NumRegisters;
- }
- }
- }
- ConstantsOut.clear();
- }
|