123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309 |
- //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This implements the SelectionDAG class.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "SDNodeDbgValue.h"
- #include "SDNodeOrdering.h"
- #include "llvm/ADT/SetVector.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallSet.h"
- #include "llvm/ADT/SmallVector.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/Assembly/Writer.h"
- #include "llvm/CallingConv.h"
- #include "llvm/CodeGen/MachineBasicBlock.h"
- #include "llvm/CodeGen/MachineConstantPool.h"
- #include "llvm/CodeGen/MachineFrameInfo.h"
- #include "llvm/CodeGen/MachineModuleInfo.h"
- #include "llvm/Constants.h"
- #include "llvm/DataLayout.h"
- #include "llvm/DebugInfo.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Function.h"
- #include "llvm/GlobalAlias.h"
- #include "llvm/GlobalVariable.h"
- #include "llvm/Intrinsics.h"
- #include "llvm/Support/CommandLine.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/ManagedStatic.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Support/Mutex.h"
- #include "llvm/Support/raw_ostream.h"
- #include "llvm/TargetTransformInfo.h"
- #include "llvm/Target/TargetInstrInfo.h"
- #include "llvm/Target/TargetIntrinsicInfo.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetMachine.h"
- #include "llvm/Target/TargetOptions.h"
- #include "llvm/Target/TargetRegisterInfo.h"
- #include "llvm/Target/TargetSelectionDAGInfo.h"
- #include <algorithm>
- #include <cmath>
- using namespace llvm;
- /// makeVTList - Return an instance of the SDVTList struct initialized with the
- /// specified members.
- static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
- SDVTList Res = {VTs, NumVTs};
- return Res;
- }
- static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
- switch (VT.getSimpleVT().SimpleTy) {
- default: llvm_unreachable("Unknown FP format");
- case MVT::f16: return &APFloat::IEEEhalf;
- case MVT::f32: return &APFloat::IEEEsingle;
- case MVT::f64: return &APFloat::IEEEdouble;
- case MVT::f80: return &APFloat::x87DoubleExtended;
- case MVT::f128: return &APFloat::IEEEquad;
- case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
- }
- }
- // Default null implementations of the callbacks.
- void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
- void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
- //===----------------------------------------------------------------------===//
- // ConstantFPSDNode Class
- //===----------------------------------------------------------------------===//
- /// isExactlyValue - We don't rely on operator== working on double values, as
- /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
- /// As such, this method can be used to do an exact bit-for-bit comparison of
- /// two floating point values.
- bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
- return getValueAPF().bitwiseIsEqual(V);
- }
- bool ConstantFPSDNode::isValueValidForType(EVT VT,
- const APFloat& Val) {
- assert(VT.isFloatingPoint() && "Can only convert between FP types");
- // convert modifies in place, so make a copy.
- APFloat Val2 = APFloat(Val);
- bool losesInfo;
- (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
- &losesInfo);
- return !losesInfo;
- }
- //===----------------------------------------------------------------------===//
- // ISD Namespace
- //===----------------------------------------------------------------------===//
- /// isBuildVectorAllOnes - Return true if the specified node is a
- /// BUILD_VECTOR where all of the elements are ~0 or undef.
- bool ISD::isBuildVectorAllOnes(const SDNode *N) {
- // Look through a bit convert.
- if (N->getOpcode() == ISD::BITCAST)
- N = N->getOperand(0).getNode();
- if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
- unsigned i = 0, e = N->getNumOperands();
- // Skip over all of the undef values.
- while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
- ++i;
- // Do not accept an all-undef vector.
- if (i == e) return false;
- // Do not accept build_vectors that aren't all constants or which have non-~0
- // elements. We have to be a bit careful here, as the type of the constant
- // may not be the same as the type of the vector elements due to type
- // legalization (the elements are promoted to a legal type for the target and
- // a vector of a type may be legal when the base element type is not).
- // We only want to check enough bits to cover the vector elements, because
- // we care if the resultant vector is all ones, not whether the individual
- // constants are.
- SDValue NotZero = N->getOperand(i);
- unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
- if (CN->getAPIntValue().countTrailingOnes() < EltSize)
- return false;
- } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
- if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
- return false;
- } else
- return false;
- // Okay, we have at least one ~0 value, check to see if the rest match or are
- // undefs. Even with the above element type twiddling, this should be OK, as
- // the same type legalization should have applied to all the elements.
- for (++i; i != e; ++i)
- if (N->getOperand(i) != NotZero &&
- N->getOperand(i).getOpcode() != ISD::UNDEF)
- return false;
- return true;
- }
- /// isBuildVectorAllZeros - Return true if the specified node is a
- /// BUILD_VECTOR where all of the elements are 0 or undef.
- bool ISD::isBuildVectorAllZeros(const SDNode *N) {
- // Look through a bit convert.
- if (N->getOpcode() == ISD::BITCAST)
- N = N->getOperand(0).getNode();
- if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
- unsigned i = 0, e = N->getNumOperands();
- // Skip over all of the undef values.
- while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
- ++i;
- // Do not accept an all-undef vector.
- if (i == e) return false;
- // Do not accept build_vectors that aren't all constants or which have non-0
- // elements.
- SDValue Zero = N->getOperand(i);
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Zero)) {
- if (!CN->isNullValue())
- return false;
- } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Zero)) {
- if (!CFPN->getValueAPF().isPosZero())
- return false;
- } else
- return false;
- // Okay, we have at least one 0 value, check to see if the rest match or are
- // undefs.
- for (++i; i != e; ++i)
- if (N->getOperand(i) != Zero &&
- N->getOperand(i).getOpcode() != ISD::UNDEF)
- return false;
- return true;
- }
- /// isScalarToVector - Return true if the specified node is a
- /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
- /// element is not an undef.
- bool ISD::isScalarToVector(const SDNode *N) {
- if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
- return true;
- if (N->getOpcode() != ISD::BUILD_VECTOR)
- return false;
- if (N->getOperand(0).getOpcode() == ISD::UNDEF)
- return false;
- unsigned NumElems = N->getNumOperands();
- if (NumElems == 1)
- return false;
- for (unsigned i = 1; i < NumElems; ++i) {
- SDValue V = N->getOperand(i);
- if (V.getOpcode() != ISD::UNDEF)
- return false;
- }
- return true;
- }
- /// allOperandsUndef - Return true if the node has at least one operand
- /// and all operands of the specified node are ISD::UNDEF.
- bool ISD::allOperandsUndef(const SDNode *N) {
- // Return false if the node has no operands.
- // This is "logically inconsistent" with the definition of "all" but
- // is probably the desired behavior.
- if (N->getNumOperands() == 0)
- return false;
- for (unsigned i = 0, e = N->getNumOperands(); i != e ; ++i)
- if (N->getOperand(i).getOpcode() != ISD::UNDEF)
- return false;
- return true;
- }
- /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
- /// when given the operation for (X op Y).
- ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
- // To perform this operation, we just need to swap the L and G bits of the
- // operation.
- unsigned OldL = (Operation >> 2) & 1;
- unsigned OldG = (Operation >> 1) & 1;
- return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
- (OldL << 1) | // New G bit
- (OldG << 2)); // New L bit.
- }
- /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
- /// 'op' is a valid SetCC operation.
- ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
- unsigned Operation = Op;
- if (isInteger)
- Operation ^= 7; // Flip L, G, E bits, but not U.
- else
- Operation ^= 15; // Flip all of the condition bits.
- if (Operation > ISD::SETTRUE2)
- Operation &= ~8; // Don't let N and U bits get set.
- return ISD::CondCode(Operation);
- }
- /// isSignedOp - For an integer comparison, return 1 if the comparison is a
- /// signed operation and 2 if the result is an unsigned comparison. Return zero
- /// if the operation does not depend on the sign of the input (setne and seteq).
- static int isSignedOp(ISD::CondCode Opcode) {
- switch (Opcode) {
- default: llvm_unreachable("Illegal integer setcc operation!");
- case ISD::SETEQ:
- case ISD::SETNE: return 0;
- case ISD::SETLT:
- case ISD::SETLE:
- case ISD::SETGT:
- case ISD::SETGE: return 1;
- case ISD::SETULT:
- case ISD::SETULE:
- case ISD::SETUGT:
- case ISD::SETUGE: return 2;
- }
- }
- /// getSetCCOrOperation - Return the result of a logical OR between different
- /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
- /// returns SETCC_INVALID if it is not possible to represent the resultant
- /// comparison.
- ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
- bool isInteger) {
- if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
- // Cannot fold a signed integer setcc with an unsigned integer setcc.
- return ISD::SETCC_INVALID;
- unsigned Op = Op1 | Op2; // Combine all of the condition bits.
- // If the N and U bits get set then the resultant comparison DOES suddenly
- // care about orderedness, and is true when ordered.
- if (Op > ISD::SETTRUE2)
- Op &= ~16; // Clear the U bit if the N bit is set.
- // Canonicalize illegal integer setcc's.
- if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
- Op = ISD::SETNE;
- return ISD::CondCode(Op);
- }
- /// getSetCCAndOperation - Return the result of a logical AND between different
- /// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
- /// function returns zero if it is not possible to represent the resultant
- /// comparison.
- ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
- bool isInteger) {
- if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
- // Cannot fold a signed setcc with an unsigned setcc.
- return ISD::SETCC_INVALID;
- // Combine all of the condition bits.
- ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
- // Canonicalize illegal integer setcc's.
- if (isInteger) {
- switch (Result) {
- default: break;
- case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
- case ISD::SETOEQ: // SETEQ & SETU[LG]E
- case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
- case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
- case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
- }
- }
- return Result;
- }
- //===----------------------------------------------------------------------===//
- // SDNode Profile Support
- //===----------------------------------------------------------------------===//
- /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
- ///
- static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
- ID.AddInteger(OpC);
- }
- /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
- /// solely with their pointer.
- static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
- ID.AddPointer(VTList.VTs);
- }
- /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
- ///
- static void AddNodeIDOperands(FoldingSetNodeID &ID,
- const SDValue *Ops, unsigned NumOps) {
- for (; NumOps; --NumOps, ++Ops) {
- ID.AddPointer(Ops->getNode());
- ID.AddInteger(Ops->getResNo());
- }
- }
- /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
- ///
- static void AddNodeIDOperands(FoldingSetNodeID &ID,
- const SDUse *Ops, unsigned NumOps) {
- for (; NumOps; --NumOps, ++Ops) {
- ID.AddPointer(Ops->getNode());
- ID.AddInteger(Ops->getResNo());
- }
- }
- static void AddNodeIDNode(FoldingSetNodeID &ID,
- unsigned short OpC, SDVTList VTList,
- const SDValue *OpList, unsigned N) {
- AddNodeIDOpcode(ID, OpC);
- AddNodeIDValueTypes(ID, VTList);
- AddNodeIDOperands(ID, OpList, N);
- }
- /// AddNodeIDCustom - If this is an SDNode with special info, add this info to
- /// the NodeID data.
- static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
- switch (N->getOpcode()) {
- case ISD::TargetExternalSymbol:
- case ISD::ExternalSymbol:
- llvm_unreachable("Should only be used on nodes with operands");
- default: break; // Normal nodes don't need extra info.
- case ISD::TargetConstant:
- case ISD::Constant:
- ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
- break;
- case ISD::TargetConstantFP:
- case ISD::ConstantFP: {
- ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
- break;
- }
- case ISD::TargetGlobalAddress:
- case ISD::GlobalAddress:
- case ISD::TargetGlobalTLSAddress:
- case ISD::GlobalTLSAddress: {
- const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
- ID.AddPointer(GA->getGlobal());
- ID.AddInteger(GA->getOffset());
- ID.AddInteger(GA->getTargetFlags());
- ID.AddInteger(GA->getAddressSpace());
- break;
- }
- case ISD::BasicBlock:
- ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
- break;
- case ISD::Register:
- ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
- break;
- case ISD::RegisterMask:
- ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
- break;
- case ISD::SRCVALUE:
- ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
- break;
- case ISD::FrameIndex:
- case ISD::TargetFrameIndex:
- ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
- break;
- case ISD::JumpTable:
- case ISD::TargetJumpTable:
- ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
- ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
- break;
- case ISD::ConstantPool:
- case ISD::TargetConstantPool: {
- const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
- ID.AddInteger(CP->getAlignment());
- ID.AddInteger(CP->getOffset());
- if (CP->isMachineConstantPoolEntry())
- CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
- else
- ID.AddPointer(CP->getConstVal());
- ID.AddInteger(CP->getTargetFlags());
- break;
- }
- case ISD::TargetIndex: {
- const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
- ID.AddInteger(TI->getIndex());
- ID.AddInteger(TI->getOffset());
- ID.AddInteger(TI->getTargetFlags());
- break;
- }
- case ISD::LOAD: {
- const LoadSDNode *LD = cast<LoadSDNode>(N);
- ID.AddInteger(LD->getMemoryVT().getRawBits());
- ID.AddInteger(LD->getRawSubclassData());
- ID.AddInteger(LD->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::STORE: {
- const StoreSDNode *ST = cast<StoreSDNode>(N);
- ID.AddInteger(ST->getMemoryVT().getRawBits());
- ID.AddInteger(ST->getRawSubclassData());
- ID.AddInteger(ST->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::ATOMIC_CMP_SWAP:
- case ISD::ATOMIC_SWAP:
- case ISD::ATOMIC_LOAD_ADD:
- case ISD::ATOMIC_LOAD_SUB:
- case ISD::ATOMIC_LOAD_AND:
- case ISD::ATOMIC_LOAD_OR:
- case ISD::ATOMIC_LOAD_XOR:
- case ISD::ATOMIC_LOAD_NAND:
- case ISD::ATOMIC_LOAD_MIN:
- case ISD::ATOMIC_LOAD_MAX:
- case ISD::ATOMIC_LOAD_UMIN:
- case ISD::ATOMIC_LOAD_UMAX:
- case ISD::ATOMIC_LOAD:
- case ISD::ATOMIC_STORE: {
- const AtomicSDNode *AT = cast<AtomicSDNode>(N);
- ID.AddInteger(AT->getMemoryVT().getRawBits());
- ID.AddInteger(AT->getRawSubclassData());
- ID.AddInteger(AT->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::PREFETCH: {
- const MemSDNode *PF = cast<MemSDNode>(N);
- ID.AddInteger(PF->getPointerInfo().getAddrSpace());
- break;
- }
- case ISD::VECTOR_SHUFFLE: {
- const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
- for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
- i != e; ++i)
- ID.AddInteger(SVN->getMaskElt(i));
- break;
- }
- case ISD::TargetBlockAddress:
- case ISD::BlockAddress: {
- const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
- ID.AddPointer(BA->getBlockAddress());
- ID.AddInteger(BA->getOffset());
- ID.AddInteger(BA->getTargetFlags());
- break;
- }
- } // end switch (N->getOpcode())
- // Target specific memory nodes could also have address spaces to check.
- if (N->isTargetMemoryOpcode())
- ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
- }
- /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
- /// data.
- static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
- AddNodeIDOpcode(ID, N->getOpcode());
- // Add the return value info.
- AddNodeIDValueTypes(ID, N->getVTList());
- // Add the operand info.
- AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
- // Handle SDNode leafs with special info.
- AddNodeIDCustom(ID, N);
- }
- /// encodeMemSDNodeFlags - Generic routine for computing a value for use in
- /// the CSE map that carries volatility, temporalness, indexing mode, and
- /// extension/truncation information.
- ///
- static inline unsigned
- encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
- bool isNonTemporal, bool isInvariant) {
- assert((ConvType & 3) == ConvType &&
- "ConvType may not require more than 2 bits!");
- assert((AM & 7) == AM &&
- "AM may not require more than 3 bits!");
- return ConvType |
- (AM << 2) |
- (isVolatile << 5) |
- (isNonTemporal << 6) |
- (isInvariant << 7);
- }
- //===----------------------------------------------------------------------===//
- // SelectionDAG Class
- //===----------------------------------------------------------------------===//
- /// doNotCSE - Return true if CSE should not be performed for this node.
- static bool doNotCSE(SDNode *N) {
- if (N->getValueType(0) == MVT::Glue)
- return true; // Never CSE anything that produces a flag.
- switch (N->getOpcode()) {
- default: break;
- case ISD::HANDLENODE:
- case ISD::EH_LABEL:
- return true; // Never CSE these nodes.
- }
- // Check that remaining values produced are not flags.
- for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
- if (N->getValueType(i) == MVT::Glue)
- return true; // Never CSE anything that produces a flag.
- return false;
- }
- /// RemoveDeadNodes - This method deletes all unreachable nodes in the
- /// SelectionDAG.
- void SelectionDAG::RemoveDeadNodes() {
- // Create a dummy node (which is not added to allnodes), that adds a reference
- // to the root node, preventing it from being deleted.
- HandleSDNode Dummy(getRoot());
- SmallVector<SDNode*, 128> DeadNodes;
- // Add all obviously-dead nodes to the DeadNodes worklist.
- for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
- if (I->use_empty())
- DeadNodes.push_back(I);
- RemoveDeadNodes(DeadNodes);
- // If the root changed (e.g. it was a dead load, update the root).
- setRoot(Dummy.getValue());
- }
- /// RemoveDeadNodes - This method deletes the unreachable nodes in the
- /// given list, and any nodes that become unreachable as a result.
- void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
- // Process the worklist, deleting the nodes and adding their uses to the
- // worklist.
- while (!DeadNodes.empty()) {
- SDNode *N = DeadNodes.pop_back_val();
- for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
- DUL->NodeDeleted(N, 0);
- // Take the node out of the appropriate CSE map.
- RemoveNodeFromCSEMaps(N);
- // Next, brutally remove the operand list. This is safe to do, as there are
- // no cycles in the graph.
- for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
- SDUse &Use = *I++;
- SDNode *Operand = Use.getNode();
- Use.set(SDValue());
- // Now that we removed this operand, see if there are no uses of it left.
- if (Operand->use_empty())
- DeadNodes.push_back(Operand);
- }
- DeallocateNode(N);
- }
- }
- void SelectionDAG::RemoveDeadNode(SDNode *N){
- SmallVector<SDNode*, 16> DeadNodes(1, N);
- // Create a dummy node that adds a reference to the root node, preventing
- // it from being deleted. (This matters if the root is an operand of the
- // dead node.)
- HandleSDNode Dummy(getRoot());
- RemoveDeadNodes(DeadNodes);
- }
- void SelectionDAG::DeleteNode(SDNode *N) {
- // First take this out of the appropriate CSE map.
- RemoveNodeFromCSEMaps(N);
- // Finally, remove uses due to operands of this node, remove from the
- // AllNodes list, and delete the node.
- DeleteNodeNotInCSEMaps(N);
- }
- void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
- assert(N != AllNodes.begin() && "Cannot delete the entry node!");
- assert(N->use_empty() && "Cannot delete a node that is not dead!");
- // Drop all of the operands and decrement used node's use counts.
- N->DropOperands();
- DeallocateNode(N);
- }
- void SelectionDAG::DeallocateNode(SDNode *N) {
- if (N->OperandsNeedDelete)
- delete[] N->OperandList;
- // Set the opcode to DELETED_NODE to help catch bugs when node
- // memory is reallocated.
- N->NodeType = ISD::DELETED_NODE;
- NodeAllocator.Deallocate(AllNodes.remove(N));
- // Remove the ordering of this node.
- Ordering->remove(N);
- // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
- ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
- for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
- DbgVals[i]->setIsInvalidated();
- }
- /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
- /// correspond to it. This is useful when we're about to delete or repurpose
- /// the node. We don't want future request for structurally identical nodes
- /// to return N anymore.
- bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
- bool Erased = false;
- switch (N->getOpcode()) {
- case ISD::HANDLENODE: return false; // noop.
- case ISD::CONDCODE:
- assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
- "Cond code doesn't exist!");
- Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
- CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
- break;
- case ISD::ExternalSymbol:
- Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
- break;
- case ISD::TargetExternalSymbol: {
- ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
- Erased = TargetExternalSymbols.erase(
- std::pair<std::string,unsigned char>(ESN->getSymbol(),
- ESN->getTargetFlags()));
- break;
- }
- case ISD::VALUETYPE: {
- EVT VT = cast<VTSDNode>(N)->getVT();
- if (VT.isExtended()) {
- Erased = ExtendedValueTypeNodes.erase(VT);
- } else {
- Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
- ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
- }
- break;
- }
- default:
- // Remove it from the CSE Map.
- assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
- assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
- Erased = CSEMap.RemoveNode(N);
- break;
- }
- #ifndef NDEBUG
- // Verify that the node was actually in one of the CSE maps, unless it has a
- // flag result (which cannot be CSE'd) or is one of the special cases that are
- // not subject to CSE.
- if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
- !N->isMachineOpcode() && !doNotCSE(N)) {
- N->dump(this);
- dbgs() << "\n";
- llvm_unreachable("Node is not in map!");
- }
- #endif
- return Erased;
- }
- /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
- /// maps and modified in place. Add it back to the CSE maps, unless an identical
- /// node already exists, in which case transfer all its users to the existing
- /// node. This transfer can potentially trigger recursive merging.
- ///
- void
- SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
- // For node types that aren't CSE'd, just act as if no identical node
- // already exists.
- if (!doNotCSE(N)) {
- SDNode *Existing = CSEMap.GetOrInsertNode(N);
- if (Existing != N) {
- // If there was already an existing matching node, use ReplaceAllUsesWith
- // to replace the dead one with the existing one. This can cause
- // recursive merging of other unrelated nodes down the line.
- ReplaceAllUsesWith(N, Existing);
- // N is now dead. Inform the listeners and delete it.
- for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
- DUL->NodeDeleted(N, Existing);
- DeleteNodeNotInCSEMaps(N);
- return;
- }
- }
- // If the node doesn't already exist, we updated it. Inform listeners.
- for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
- DUL->NodeUpdated(N);
- }
- /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
- /// were replaced with those specified. If this node is never memoized,
- /// return null, otherwise return a pointer to the slot it would take. If a
- /// node already exists with these operands, the slot will be non-null.
- SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
- void *&InsertPos) {
- if (doNotCSE(N))
- return 0;
- SDValue Ops[] = { Op };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
- AddNodeIDCustom(ID, N);
- SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
- return Node;
- }
- /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
- /// were replaced with those specified. If this node is never memoized,
- /// return null, otherwise return a pointer to the slot it would take. If a
- /// node already exists with these operands, the slot will be non-null.
- SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
- SDValue Op1, SDValue Op2,
- void *&InsertPos) {
- if (doNotCSE(N))
- return 0;
- SDValue Ops[] = { Op1, Op2 };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
- AddNodeIDCustom(ID, N);
- SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
- return Node;
- }
- /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
- /// were replaced with those specified. If this node is never memoized,
- /// return null, otherwise return a pointer to the slot it would take. If a
- /// node already exists with these operands, the slot will be non-null.
- SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
- const SDValue *Ops,unsigned NumOps,
- void *&InsertPos) {
- if (doNotCSE(N))
- return 0;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
- AddNodeIDCustom(ID, N);
- SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
- return Node;
- }
- #ifndef NDEBUG
- /// VerifyNodeCommon - Sanity check the given node. Aborts if it is invalid.
- static void VerifyNodeCommon(SDNode *N) {
- switch (N->getOpcode()) {
- default:
- break;
- case ISD::BUILD_PAIR: {
- EVT VT = N->getValueType(0);
- assert(N->getNumValues() == 1 && "Too many results!");
- assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
- "Wrong return type!");
- assert(N->getNumOperands() == 2 && "Wrong number of operands!");
- assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
- "Mismatched operand types!");
- assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
- "Wrong operand type!");
- assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
- "Wrong return type size");
- break;
- }
- case ISD::BUILD_VECTOR: {
- assert(N->getNumValues() == 1 && "Too many results!");
- assert(N->getValueType(0).isVector() && "Wrong return type!");
- assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
- "Wrong number of operands!");
- EVT EltVT = N->getValueType(0).getVectorElementType();
- for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
- assert((I->getValueType() == EltVT ||
- (EltVT.isInteger() && I->getValueType().isInteger() &&
- EltVT.bitsLE(I->getValueType()))) &&
- "Wrong operand type!");
- assert(I->getValueType() == N->getOperand(0).getValueType() &&
- "Operands must all have the same type");
- }
- break;
- }
- }
- }
- /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
- static void VerifySDNode(SDNode *N) {
- // The SDNode allocators cannot be used to allocate nodes with fields that are
- // not present in an SDNode!
- assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
- assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
- assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
- assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
- assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
- assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
- assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
- assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
- assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
- assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
- assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
- assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
- assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
- assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
- assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
- assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
- assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
- assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
- assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
- VerifyNodeCommon(N);
- }
- /// VerifyMachineNode - Sanity check the given MachineNode. Aborts if it is
- /// invalid.
- static void VerifyMachineNode(SDNode *N) {
- // The MachineNode allocators cannot be used to allocate nodes with fields
- // that are not present in a MachineNode!
- // Currently there are no such nodes.
- VerifyNodeCommon(N);
- }
- #endif // NDEBUG
- /// getEVTAlignment - Compute the default alignment value for the
- /// given type.
- ///
- unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
- Type *Ty = VT == MVT::iPTR ?
- PointerType::get(Type::getInt8Ty(*getContext()), 0) :
- VT.getTypeForEVT(*getContext());
- return TLI.getDataLayout()->getABITypeAlignment(Ty);
- }
- // EntryNode could meaningfully have debug info if we can find it...
- SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
- : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
- OptLevel(OL), EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
- Root(getEntryNode()), Ordering(0), UpdateListeners(0) {
- AllNodes.push_back(&EntryNode);
- Ordering = new SDNodeOrdering();
- DbgInfo = new SDDbgInfo();
- }
- void SelectionDAG::init(MachineFunction &mf) {
- MF = &mf;
- Context = &mf.getFunction()->getContext();
- }
- SelectionDAG::~SelectionDAG() {
- assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
- allnodes_clear();
- delete Ordering;
- delete DbgInfo;
- }
- void SelectionDAG::allnodes_clear() {
- assert(&*AllNodes.begin() == &EntryNode);
- AllNodes.remove(AllNodes.begin());
- while (!AllNodes.empty())
- DeallocateNode(AllNodes.begin());
- }
- void SelectionDAG::clear() {
- allnodes_clear();
- OperandAllocator.Reset();
- CSEMap.clear();
- ExtendedValueTypeNodes.clear();
- ExternalSymbols.clear();
- TargetExternalSymbols.clear();
- std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
- static_cast<CondCodeSDNode*>(0));
- std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
- static_cast<SDNode*>(0));
- EntryNode.UseList = 0;
- AllNodes.push_back(&EntryNode);
- Root = getEntryNode();
- Ordering->clear();
- DbgInfo->clear();
- }
- SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
- return VT.bitsGT(Op.getValueType()) ?
- getNode(ISD::ANY_EXTEND, DL, VT, Op) :
- getNode(ISD::TRUNCATE, DL, VT, Op);
- }
- SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
- return VT.bitsGT(Op.getValueType()) ?
- getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
- getNode(ISD::TRUNCATE, DL, VT, Op);
- }
- SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
- return VT.bitsGT(Op.getValueType()) ?
- getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
- getNode(ISD::TRUNCATE, DL, VT, Op);
- }
- SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
- assert(!VT.isVector() &&
- "getZeroExtendInReg should use the vector element type instead of "
- "the vector type!");
- if (Op.getValueType() == VT) return Op;
- unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
- APInt Imm = APInt::getLowBitsSet(BitWidth,
- VT.getSizeInBits());
- return getNode(ISD::AND, DL, Op.getValueType(), Op,
- getConstant(Imm, Op.getValueType()));
- }
- /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
- ///
- SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
- EVT EltVT = VT.getScalarType();
- SDValue NegOne =
- getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
- return getNode(ISD::XOR, DL, VT, Val, NegOne);
- }
- SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
- EVT EltVT = VT.getScalarType();
- assert((EltVT.getSizeInBits() >= 64 ||
- (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
- "getConstant with a uint64_t value that doesn't fit in the type!");
- return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
- }
- SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
- return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
- }
- SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
- assert(VT.isInteger() && "Cannot create FP integer constant!");
- EVT EltVT = VT.getScalarType();
- const ConstantInt *Elt = &Val;
- // In some cases the vector type is legal but the element type is illegal and
- // needs to be promoted, for example v8i8 on ARM. In this case, promote the
- // inserted value (the type does not need to match the vector element type).
- // Any extra bits introduced will be truncated away.
- if (VT.isVector() && TLI.getTypeAction(*getContext(), EltVT) ==
- TargetLowering::TypePromoteInteger) {
- EltVT = TLI.getTypeToTransformTo(*getContext(), EltVT);
- APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
- Elt = ConstantInt::get(*getContext(), NewVal);
- }
- assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
- "APInt size does not match type size!");
- unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
- ID.AddPointer(Elt);
- void *IP = 0;
- SDNode *N = NULL;
- if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
- if (!VT.isVector())
- return SDValue(N, 0);
- if (!N) {
- N = new (NodeAllocator) ConstantSDNode(isT, Elt, EltVT);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- }
- SDValue Result(N, 0);
- if (VT.isVector()) {
- SmallVector<SDValue, 8> Ops;
- Ops.assign(VT.getVectorNumElements(), Result);
- Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
- }
- return Result;
- }
- SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
- return getConstant(Val, TLI.getPointerTy(), isTarget);
- }
- SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
- return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
- }
- SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
- assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
- EVT EltVT = VT.getScalarType();
- // Do the map lookup using the actual bit pattern for the floating point
- // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
- // we don't have issues with SNANs.
- unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
- ID.AddPointer(&V);
- void *IP = 0;
- SDNode *N = NULL;
- if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
- if (!VT.isVector())
- return SDValue(N, 0);
- if (!N) {
- N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- }
- SDValue Result(N, 0);
- if (VT.isVector()) {
- SmallVector<SDValue, 8> Ops;
- Ops.assign(VT.getVectorNumElements(), Result);
- // FIXME DebugLoc info might be appropriate here
- Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
- }
- return Result;
- }
- SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
- EVT EltVT = VT.getScalarType();
- if (EltVT==MVT::f32)
- return getConstantFP(APFloat((float)Val), VT, isTarget);
- else if (EltVT==MVT::f64)
- return getConstantFP(APFloat(Val), VT, isTarget);
- else if (EltVT==MVT::f80 || EltVT==MVT::f128 || EltVT==MVT::f16) {
- bool ignored;
- APFloat apf = APFloat(Val);
- apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
- &ignored);
- return getConstantFP(apf, VT, isTarget);
- } else
- llvm_unreachable("Unsupported type in getConstantFP");
- }
- SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
- EVT VT, int64_t Offset,
- bool isTargetGA,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTargetGA) &&
- "Cannot set target flags on target-independent globals");
- // Truncate (with sign-extension) the offset value to the pointer size.
- unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
- if (BitWidth < 64)
- Offset = SignExtend64(Offset, BitWidth);
- const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
- if (!GVar) {
- // If GV is an alias then use the aliasee for determining thread-localness.
- if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
- GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
- }
- unsigned Opc;
- if (GVar && GVar->isThreadLocal())
- Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
- else
- Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
- ID.AddPointer(GV);
- ID.AddInteger(Offset);
- ID.AddInteger(TargetFlags);
- ID.AddInteger(GV->getType()->getAddressSpace());
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
- Offset, TargetFlags);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
- unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
- ID.AddInteger(FI);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTarget) &&
- "Cannot set target flags on target-independent jump tables");
- unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
- ID.AddInteger(JTI);
- ID.AddInteger(TargetFlags);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
- TargetFlags);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
- unsigned Alignment, int Offset,
- bool isTarget,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTarget) &&
- "Cannot set target flags on target-independent globals");
- if (Alignment == 0)
- Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType());
- unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
- ID.AddInteger(Alignment);
- ID.AddInteger(Offset);
- ID.AddPointer(C);
- ID.AddInteger(TargetFlags);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
- Alignment, TargetFlags);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
- unsigned Alignment, int Offset,
- bool isTarget,
- unsigned char TargetFlags) {
- assert((TargetFlags == 0 || isTarget) &&
- "Cannot set target flags on target-independent globals");
- if (Alignment == 0)
- Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType());
- unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
- ID.AddInteger(Alignment);
- ID.AddInteger(Offset);
- C->addSelectionDAGCSEId(ID);
- ID.AddInteger(TargetFlags);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
- Alignment, TargetFlags);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
- unsigned char TargetFlags) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), 0, 0);
- ID.AddInteger(Index);
- ID.AddInteger(Offset);
- ID.AddInteger(TargetFlags);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) TargetIndexSDNode(Index, VT, Offset,
- TargetFlags);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
- ID.AddPointer(MBB);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getValueType(EVT VT) {
- if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
- ValueTypeNodes.size())
- ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
- SDNode *&N = VT.isExtended() ?
- ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
- if (N) return SDValue(N, 0);
- N = new (NodeAllocator) VTSDNode(VT);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
- SDNode *&N = ExternalSymbols[Sym];
- if (N) return SDValue(N, 0);
- N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
- unsigned char TargetFlags) {
- SDNode *&N =
- TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
- TargetFlags)];
- if (N) return SDValue(N, 0);
- N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
- if ((unsigned)Cond >= CondCodeNodes.size())
- CondCodeNodes.resize(Cond+1);
- if (CondCodeNodes[Cond] == 0) {
- CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
- CondCodeNodes[Cond] = N;
- AllNodes.push_back(N);
- }
- return SDValue(CondCodeNodes[Cond], 0);
- }
- // commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
- // the shuffle mask M that point at N1 to point at N2, and indices that point
- // N2 to point at N1.
- static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
- std::swap(N1, N2);
- int NElts = M.size();
- for (int i = 0; i != NElts; ++i) {
- if (M[i] >= NElts)
- M[i] -= NElts;
- else if (M[i] >= 0)
- M[i] += NElts;
- }
- }
- SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
- SDValue N2, const int *Mask) {
- assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
- assert(VT.isVector() && N1.getValueType().isVector() &&
- "Vector Shuffle VTs must be a vectors");
- assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
- && "Vector Shuffle VTs must have same element type");
- // Canonicalize shuffle undef, undef -> undef
- if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
- return getUNDEF(VT);
- // Validate that all indices in Mask are within the range of the elements
- // input to the shuffle.
- unsigned NElts = VT.getVectorNumElements();
- SmallVector<int, 8> MaskVec;
- for (unsigned i = 0; i != NElts; ++i) {
- assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
- MaskVec.push_back(Mask[i]);
- }
- // Canonicalize shuffle v, v -> v, undef
- if (N1 == N2) {
- N2 = getUNDEF(VT);
- for (unsigned i = 0; i != NElts; ++i)
- if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
- }
- // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
- if (N1.getOpcode() == ISD::UNDEF)
- commuteShuffle(N1, N2, MaskVec);
- // Canonicalize all index into lhs, -> shuffle lhs, undef
- // Canonicalize all index into rhs, -> shuffle rhs, undef
- bool AllLHS = true, AllRHS = true;
- bool N2Undef = N2.getOpcode() == ISD::UNDEF;
- for (unsigned i = 0; i != NElts; ++i) {
- if (MaskVec[i] >= (int)NElts) {
- if (N2Undef)
- MaskVec[i] = -1;
- else
- AllLHS = false;
- } else if (MaskVec[i] >= 0) {
- AllRHS = false;
- }
- }
- if (AllLHS && AllRHS)
- return getUNDEF(VT);
- if (AllLHS && !N2Undef)
- N2 = getUNDEF(VT);
- if (AllRHS) {
- N1 = getUNDEF(VT);
- commuteShuffle(N1, N2, MaskVec);
- }
- // If Identity shuffle, or all shuffle in to undef, return that node.
- bool AllUndef = true;
- bool Identity = true;
- for (unsigned i = 0; i != NElts; ++i) {
- if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
- if (MaskVec[i] >= 0) AllUndef = false;
- }
- if (Identity && NElts == N1.getValueType().getVectorNumElements())
- return N1;
- if (AllUndef)
- return getUNDEF(VT);
- FoldingSetNodeID ID;
- SDValue Ops[2] = { N1, N2 };
- AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
- for (unsigned i = 0; i != NElts; ++i)
- ID.AddInteger(MaskVec[i]);
- void* IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- // Allocate the mask array for the node out of the BumpPtrAllocator, since
- // SDNode doesn't have access to it. This memory will be "leaked" when
- // the node is deallocated, but recovered when the NodeAllocator is released.
- int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
- memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
- ShuffleVectorSDNode *N =
- new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
- SDValue Val, SDValue DTy,
- SDValue STy, SDValue Rnd, SDValue Sat,
- ISD::CvtCode Code) {
- // If the src and dest types are the same and the conversion is between
- // integer types of the same sign or two floats, no conversion is necessary.
- if (DTy == STy &&
- (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
- return Val;
- FoldingSetNodeID ID;
- SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
- AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
- void* IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
- Code);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
- ID.AddInteger(RegNo);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), 0, 0);
- ID.AddPointer(RegMask);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) RegisterMaskSDNode(RegMask);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
- FoldingSetNodeID ID;
- SDValue Ops[] = { Root };
- AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
- ID.AddPointer(Label);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
- int64_t Offset,
- bool isTarget,
- unsigned char TargetFlags) {
- unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
- ID.AddPointer(BA);
- ID.AddInteger(Offset);
- ID.AddInteger(TargetFlags);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, Offset,
- TargetFlags);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getSrcValue(const Value *V) {
- assert((!V || V->getType()->isPointerTy()) &&
- "SrcValue is not a pointer?");
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
- ID.AddPointer(V);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- /// getMDNode - Return an MDNodeSDNode which holds an MDNode.
- SDValue SelectionDAG::getMDNode(const MDNode *MD) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
- ID.AddPointer(MD);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- /// getShiftAmountOperand - Return the specified value casted to
- /// the target's desired shift amount type.
- SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
- EVT OpTy = Op.getValueType();
- MVT ShTy = TLI.getShiftAmountTy(LHSTy);
- if (OpTy == ShTy || OpTy.isVector()) return Op;
- ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
- return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
- }
- /// CreateStackTemporary - Create a stack temporary, suitable for holding the
- /// specified value type.
- SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
- MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
- unsigned ByteSize = VT.getStoreSize();
- Type *Ty = VT.getTypeForEVT(*getContext());
- unsigned StackAlign =
- std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), minAlign);
- int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
- return getFrameIndex(FrameIdx, TLI.getPointerTy());
- }
- /// CreateStackTemporary - Create a stack temporary suitable for holding
- /// either of the specified value types.
- SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
- unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
- VT2.getStoreSizeInBits())/8;
- Type *Ty1 = VT1.getTypeForEVT(*getContext());
- Type *Ty2 = VT2.getTypeForEVT(*getContext());
- const DataLayout *TD = TLI.getDataLayout();
- unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
- TD->getPrefTypeAlignment(Ty2));
- MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
- int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
- return getFrameIndex(FrameIdx, TLI.getPointerTy());
- }
- SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
- SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
- // These setcc operations always fold.
- switch (Cond) {
- default: break;
- case ISD::SETFALSE:
- case ISD::SETFALSE2: return getConstant(0, VT);
- case ISD::SETTRUE:
- case ISD::SETTRUE2: return getConstant(1, VT);
- case ISD::SETOEQ:
- case ISD::SETOGT:
- case ISD::SETOGE:
- case ISD::SETOLT:
- case ISD::SETOLE:
- case ISD::SETONE:
- case ISD::SETO:
- case ISD::SETUO:
- case ISD::SETUEQ:
- case ISD::SETUNE:
- assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
- break;
- }
- if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
- const APInt &C2 = N2C->getAPIntValue();
- if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
- const APInt &C1 = N1C->getAPIntValue();
- switch (Cond) {
- default: llvm_unreachable("Unknown integer setcc!");
- case ISD::SETEQ: return getConstant(C1 == C2, VT);
- case ISD::SETNE: return getConstant(C1 != C2, VT);
- case ISD::SETULT: return getConstant(C1.ult(C2), VT);
- case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
- case ISD::SETULE: return getConstant(C1.ule(C2), VT);
- case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
- case ISD::SETLT: return getConstant(C1.slt(C2), VT);
- case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
- case ISD::SETLE: return getConstant(C1.sle(C2), VT);
- case ISD::SETGE: return getConstant(C1.sge(C2), VT);
- }
- }
- }
- if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
- if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
- APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
- switch (Cond) {
- default: break;
- case ISD::SETEQ: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
- case ISD::SETNE: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpLessThan, VT);
- case ISD::SETLT: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
- case ISD::SETGT: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
- case ISD::SETLE: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
- R==APFloat::cmpEqual, VT);
- case ISD::SETGE: if (R==APFloat::cmpUnordered)
- return getUNDEF(VT);
- // fall through
- case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpEqual, VT);
- case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
- case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
- case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
- R==APFloat::cmpEqual, VT);
- case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
- case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
- R==APFloat::cmpLessThan, VT);
- case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
- R==APFloat::cmpUnordered, VT);
- case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
- case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
- }
- } else {
- // Ensure that the constant occurs on the RHS.
- return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
- }
- }
- // Could not fold it.
- return SDValue();
- }
- /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
- /// use this predicate to simplify operations downstream.
- bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
- // This predicate is not safe for vector operations.
- if (Op.getValueType().isVector())
- return false;
- unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
- return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
- }
- /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
- /// this predicate to simplify operations downstream. Mask is known to be zero
- /// for bits that V cannot have.
- bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
- unsigned Depth) const {
- APInt KnownZero, KnownOne;
- ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- return (KnownZero & Mask) == Mask;
- }
- /// ComputeMaskedBits - Determine which of the bits specified in Mask are
- /// known to be either zero or one and return them in the KnownZero/KnownOne
- /// bitsets. This code only analyzes bits in Mask, in order to short-circuit
- /// processing.
- void SelectionDAG::ComputeMaskedBits(SDValue Op, APInt &KnownZero,
- APInt &KnownOne, unsigned Depth) const {
- unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
- KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
- if (Depth == 6)
- return; // Limit search depth.
- APInt KnownZero2, KnownOne2;
- switch (Op.getOpcode()) {
- case ISD::Constant:
- // We know all of the bits for a constant!
- KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
- KnownZero = ~KnownOne;
- return;
- case ISD::AND:
- // If either the LHS or the RHS are Zero, the result is zero.
- ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
- ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // Output known-1 bits are only known if set in both the LHS & RHS.
- KnownOne &= KnownOne2;
- // Output known-0 are known to be clear if zero in either the LHS | RHS.
- KnownZero |= KnownZero2;
- return;
- case ISD::OR:
- ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
- ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // Output known-0 bits are only known if clear in both the LHS & RHS.
- KnownZero &= KnownZero2;
- // Output known-1 are known to be set if set in either the LHS | RHS.
- KnownOne |= KnownOne2;
- return;
- case ISD::XOR: {
- ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
- ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // Output known-0 bits are known if clear or set in both the LHS & RHS.
- APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
- // Output known-1 are known to be set if set in only one of the LHS, RHS.
- KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
- KnownZero = KnownZeroOut;
- return;
- }
- case ISD::MUL: {
- ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
- ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // If low bits are zero in either operand, output low known-0 bits.
- // Also compute a conserative estimate for high known-0 bits.
- // More trickiness is possible, but this is sufficient for the
- // interesting case of alignment computation.
- KnownOne.clearAllBits();
- unsigned TrailZ = KnownZero.countTrailingOnes() +
- KnownZero2.countTrailingOnes();
- unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
- KnownZero2.countLeadingOnes(),
- BitWidth) - BitWidth;
- TrailZ = std::min(TrailZ, BitWidth);
- LeadZ = std::min(LeadZ, BitWidth);
- KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
- APInt::getHighBitsSet(BitWidth, LeadZ);
- return;
- }
- case ISD::UDIV: {
- // For the purposes of computing leading zeros we can conservatively
- // treat a udiv as a logical right shift by the power of 2 known to
- // be less than the denominator.
- ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
- unsigned LeadZ = KnownZero2.countLeadingOnes();
- KnownOne2.clearAllBits();
- KnownZero2.clearAllBits();
- ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
- unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
- if (RHSUnknownLeadingOnes != BitWidth)
- LeadZ = std::min(BitWidth,
- LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
- KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
- return;
- }
- case ISD::SELECT:
- ComputeMaskedBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
- ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // Only known if known in both the LHS and RHS.
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
- return;
- case ISD::SELECT_CC:
- ComputeMaskedBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
- ComputeMaskedBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- // Only known if known in both the LHS and RHS.
- KnownOne &= KnownOne2;
- KnownZero &= KnownZero2;
- return;
- case ISD::SADDO:
- case ISD::UADDO:
- case ISD::SSUBO:
- case ISD::USUBO:
- case ISD::SMULO:
- case ISD::UMULO:
- if (Op.getResNo() != 1)
- return;
- // The boolean result conforms to getBooleanContents. Fall through.
- case ISD::SETCC:
- // If we know the result of a setcc has the top bits zero, use this info.
- if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
- TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1)
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
- return;
- case ISD::SHL:
- // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned ShAmt = SA->getZExtValue();
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- return;
- ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero <<= ShAmt;
- KnownOne <<= ShAmt;
- // low bits known zero.
- KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
- }
- return;
- case ISD::SRL:
- // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned ShAmt = SA->getZExtValue();
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- return;
- ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero = KnownZero.lshr(ShAmt);
- KnownOne = KnownOne.lshr(ShAmt);
- APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
- KnownZero |= HighBits; // High bits known zero.
- }
- return;
- case ISD::SRA:
- if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned ShAmt = SA->getZExtValue();
- // If the shift count is an invalid immediate, don't do anything.
- if (ShAmt >= BitWidth)
- return;
- // If any of the demanded bits are produced by the sign extension, we also
- // demand the input sign bit.
- APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
- ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero = KnownZero.lshr(ShAmt);
- KnownOne = KnownOne.lshr(ShAmt);
- // Handle the sign bits.
- APInt SignBit = APInt::getSignBit(BitWidth);
- SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
- if (KnownZero.intersects(SignBit)) {
- KnownZero |= HighBits; // New bits are known zero.
- } else if (KnownOne.intersects(SignBit)) {
- KnownOne |= HighBits; // New bits are known one.
- }
- }
- return;
- case ISD::SIGN_EXTEND_INREG: {
- EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- unsigned EBits = EVT.getScalarType().getSizeInBits();
- // Sign extension. Compute the demanded bits in the result that are not
- // present in the input.
- APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
- APInt InSignBit = APInt::getSignBit(EBits);
- APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
- // If the sign extended bits are demanded, we know that the sign
- // bit is demanded.
- InSignBit = InSignBit.zext(BitWidth);
- if (NewBits.getBoolValue())
- InputDemandedBits |= InSignBit;
- ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownOne &= InputDemandedBits;
- KnownZero &= InputDemandedBits;
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- // If the sign bit of the input is known set or clear, then we know the
- // top bits of the result.
- if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
- KnownZero |= NewBits;
- KnownOne &= ~NewBits;
- } else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
- KnownOne |= NewBits;
- KnownZero &= ~NewBits;
- } else { // Input sign bit unknown
- KnownZero &= ~NewBits;
- KnownOne &= ~NewBits;
- }
- return;
- }
- case ISD::CTTZ:
- case ISD::CTTZ_ZERO_UNDEF:
- case ISD::CTLZ:
- case ISD::CTLZ_ZERO_UNDEF:
- case ISD::CTPOP: {
- unsigned LowBits = Log2_32(BitWidth)+1;
- KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
- KnownOne.clearAllBits();
- return;
- }
- case ISD::LOAD: {
- LoadSDNode *LD = cast<LoadSDNode>(Op);
- if (ISD::isZEXTLoad(Op.getNode())) {
- EVT VT = LD->getMemoryVT();
- unsigned MemBits = VT.getScalarType().getSizeInBits();
- KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
- } else if (const MDNode *Ranges = LD->getRanges()) {
- computeMaskedBitsLoad(*Ranges, KnownZero);
- }
- return;
- }
- case ISD::ZERO_EXTEND: {
- EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getScalarType().getSizeInBits();
- APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
- KnownZero = KnownZero.trunc(InBits);
- KnownOne = KnownOne.trunc(InBits);
- ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
- KnownZero |= NewBits;
- return;
- }
- case ISD::SIGN_EXTEND: {
- EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getScalarType().getSizeInBits();
- APInt InSignBit = APInt::getSignBit(InBits);
- APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
- KnownZero = KnownZero.trunc(InBits);
- KnownOne = KnownOne.trunc(InBits);
- ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- // Note if the sign bit is known to be zero or one.
- bool SignBitKnownZero = KnownZero.isNegative();
- bool SignBitKnownOne = KnownOne.isNegative();
- assert(!(SignBitKnownZero && SignBitKnownOne) &&
- "Sign bit can't be known to be both zero and one!");
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
- // If the sign bit is known zero or one, the top bits match.
- if (SignBitKnownZero)
- KnownZero |= NewBits;
- else if (SignBitKnownOne)
- KnownOne |= NewBits;
- return;
- }
- case ISD::ANY_EXTEND: {
- EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getScalarType().getSizeInBits();
- KnownZero = KnownZero.trunc(InBits);
- KnownOne = KnownOne.trunc(InBits);
- ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownZero = KnownZero.zext(BitWidth);
- KnownOne = KnownOne.zext(BitWidth);
- return;
- }
- case ISD::TRUNCATE: {
- EVT InVT = Op.getOperand(0).getValueType();
- unsigned InBits = InVT.getScalarType().getSizeInBits();
- KnownZero = KnownZero.zext(InBits);
- KnownOne = KnownOne.zext(InBits);
- ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
- KnownZero = KnownZero.trunc(BitWidth);
- KnownOne = KnownOne.trunc(BitWidth);
- break;
- }
- case ISD::AssertZext: {
- EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
- APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
- ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- KnownZero |= (~InMask);
- KnownOne &= (~KnownZero);
- return;
- }
- case ISD::FGETSIGN:
- // All bits are zero except the low bit.
- KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
- return;
- case ISD::SUB: {
- if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
- // We know that the top bits of C-X are clear if X contains less bits
- // than C (i.e. no wrap-around can happen). For example, 20-X is
- // positive if we can prove that X is >= 0 and < 16.
- if (CLHS->getAPIntValue().isNonNegative()) {
- unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
- // NLZ can't be BitWidth with no sign bit
- APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
- ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
- // If all of the MaskV bits are known to be zero, then we know the
- // output top bits are zero, because we now know that the output is
- // from [0-C].
- if ((KnownZero2 & MaskV) == MaskV) {
- unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
- // Top bits known zero.
- KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
- }
- }
- }
- }
- // fall through
- case ISD::ADD:
- case ISD::ADDE: {
- // Output known-0 bits are known if clear or set in both the low clear bits
- // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
- // low 3 bits clear.
- ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
- ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
- assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
- KnownZeroOut = std::min(KnownZeroOut,
- KnownZero2.countTrailingOnes());
- if (Op.getOpcode() == ISD::ADD) {
- KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
- return;
- }
- // With ADDE, a carry bit may be added in, so we can only use this
- // information if we know (at least) that the low two bits are clear. We
- // then return to the caller that the low bit is unknown but that other bits
- // are known zero.
- if (KnownZeroOut >= 2) // ADDE
- KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
- return;
- }
- case ISD::SREM:
- if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- const APInt &RA = Rem->getAPIntValue().abs();
- if (RA.isPowerOf2()) {
- APInt LowBits = RA - 1;
- APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
- ComputeMaskedBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1);
- // The low bits of the first operand are unchanged by the srem.
- KnownZero = KnownZero2 & LowBits;
- KnownOne = KnownOne2 & LowBits;
- // If the first operand is non-negative or has all low bits zero, then
- // the upper bits are all zero.
- if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
- KnownZero |= ~LowBits;
- // If the first operand is negative and not all low bits are zero, then
- // the upper bits are all one.
- if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
- KnownOne |= ~LowBits;
- assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
- }
- }
- return;
- case ISD::UREM: {
- if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- const APInt &RA = Rem->getAPIntValue();
- if (RA.isPowerOf2()) {
- APInt LowBits = (RA - 1);
- KnownZero |= ~LowBits;
- ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne,Depth+1);
- assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
- break;
- }
- }
- // Since the result is less than or equal to either operand, any leading
- // zero bits in either operand must also exist in the result.
- ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
- uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
- KnownZero2.countLeadingOnes());
- KnownOne.clearAllBits();
- KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
- return;
- }
- case ISD::FrameIndex:
- case ISD::TargetFrameIndex:
- if (unsigned Align = InferPtrAlignment(Op)) {
- // The low bits are known zero if the pointer is aligned.
- KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
- return;
- }
- break;
- default:
- if (Op.getOpcode() < ISD::BUILTIN_OP_END)
- break;
- // Fallthrough
- case ISD::INTRINSIC_WO_CHAIN:
- case ISD::INTRINSIC_W_CHAIN:
- case ISD::INTRINSIC_VOID:
- // Allow the target to implement this method for its nodes.
- TLI.computeMaskedBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
- return;
- }
- }
- /// ComputeNumSignBits - Return the number of times the sign bit of the
- /// register is replicated into the other bits. We know that at least 1 bit
- /// is always equal to the sign bit (itself), but other cases can give us
- /// information. For example, immediately after an "SRA X, 2", we know that
- /// the top 3 bits are all equal to each other, so we return 3.
- unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
- EVT VT = Op.getValueType();
- assert(VT.isInteger() && "Invalid VT!");
- unsigned VTBits = VT.getScalarType().getSizeInBits();
- unsigned Tmp, Tmp2;
- unsigned FirstAnswer = 1;
- if (Depth == 6)
- return 1; // Limit search depth.
- switch (Op.getOpcode()) {
- default: break;
- case ISD::AssertSext:
- Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
- return VTBits-Tmp+1;
- case ISD::AssertZext:
- Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
- return VTBits-Tmp;
- case ISD::Constant: {
- const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
- return Val.getNumSignBits();
- }
- case ISD::SIGN_EXTEND:
- Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
- return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
- case ISD::SIGN_EXTEND_INREG:
- // Max of the input and what this extends.
- Tmp =
- cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
- Tmp = VTBits-Tmp+1;
- Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- return std::max(Tmp, Tmp2);
- case ISD::SRA:
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- // SRA X, C -> adds C sign bits.
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- Tmp += C->getZExtValue();
- if (Tmp > VTBits) Tmp = VTBits;
- }
- return Tmp;
- case ISD::SHL:
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- // shl destroys sign bits.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (C->getZExtValue() >= VTBits || // Bad shift.
- C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
- return Tmp - C->getZExtValue();
- }
- break;
- case ISD::AND:
- case ISD::OR:
- case ISD::XOR: // NOT is handled here.
- // Logical binary ops preserve the number of sign bits at the worst.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (Tmp != 1) {
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
- FirstAnswer = std::min(Tmp, Tmp2);
- // We computed what we know about the sign bits as our first
- // answer. Now proceed to the generic code that uses
- // ComputeMaskedBits, and pick whichever answer is better.
- }
- break;
- case ISD::SELECT:
- Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
- if (Tmp == 1) return 1; // Early out.
- Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
- return std::min(Tmp, Tmp2);
- case ISD::SADDO:
- case ISD::UADDO:
- case ISD::SSUBO:
- case ISD::USUBO:
- case ISD::SMULO:
- case ISD::UMULO:
- if (Op.getResNo() != 1)
- break;
- // The boolean result conforms to getBooleanContents. Fall through.
- case ISD::SETCC:
- // If setcc returns 0/-1, all bits are sign bits.
- if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
- TargetLowering::ZeroOrNegativeOneBooleanContent)
- return VTBits;
- break;
- case ISD::ROTL:
- case ISD::ROTR:
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
- unsigned RotAmt = C->getZExtValue() & (VTBits-1);
- // Handle rotate right by N like a rotate left by 32-N.
- if (Op.getOpcode() == ISD::ROTR)
- RotAmt = (VTBits-RotAmt) & (VTBits-1);
- // If we aren't rotating out all of the known-in sign bits, return the
- // number that are left. This handles rotl(sext(x), 1) for example.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (Tmp > RotAmt+1) return Tmp-RotAmt;
- }
- break;
- case ISD::ADD:
- // Add can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (Tmp == 1) return 1; // Early out.
- // Special case decrementing a value (ADD X, -1):
- if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
- if (CRHS->isAllOnesValue()) {
- APInt KnownZero, KnownOne;
- ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
- return VTBits;
- // If we are subtracting one from a positive number, there is no carry
- // out of the result.
- if (KnownZero.isNegative())
- return Tmp;
- }
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
- if (Tmp2 == 1) return 1;
- return std::min(Tmp, Tmp2)-1;
- case ISD::SUB:
- Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
- if (Tmp2 == 1) return 1;
- // Handle NEG.
- if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
- if (CLHS->isNullValue()) {
- APInt KnownZero, KnownOne;
- ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
- // If the input is known to be 0 or 1, the output is 0/-1, which is all
- // sign bits set.
- if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
- return VTBits;
- // If the input is known to be positive (the sign bit is known clear),
- // the output of the NEG has the same number of sign bits as the input.
- if (KnownZero.isNegative())
- return Tmp2;
- // Otherwise, we treat this like a SUB.
- }
- // Sub can have at most one carry bit. Thus we know that the output
- // is, at worst, one more bit than the inputs.
- Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
- if (Tmp == 1) return 1; // Early out.
- return std::min(Tmp, Tmp2)-1;
- case ISD::TRUNCATE:
- // FIXME: it's tricky to do anything useful for this, but it is an important
- // case for targets like X86.
- break;
- }
- // Handle LOADX separately here. EXTLOAD case will fallthrough.
- if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
- unsigned ExtType = LD->getExtensionType();
- switch (ExtType) {
- default: break;
- case ISD::SEXTLOAD: // '17' bits known
- Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
- return VTBits-Tmp+1;
- case ISD::ZEXTLOAD: // '16' bits known
- Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
- return VTBits-Tmp;
- }
- }
- // Allow the target to implement this method for its nodes.
- if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
- Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
- Op.getOpcode() == ISD::INTRINSIC_VOID) {
- unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
- if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
- }
- // Finally, if we can prove that the top bits of the result are 0's or 1's,
- // use this information.
- APInt KnownZero, KnownOne;
- ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
- APInt Mask;
- if (KnownZero.isNegative()) { // sign bit is 0
- Mask = KnownZero;
- } else if (KnownOne.isNegative()) { // sign bit is 1;
- Mask = KnownOne;
- } else {
- // Nothing known.
- return FirstAnswer;
- }
- // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
- // the number of identical bits in the top of the input value.
- Mask = ~Mask;
- Mask <<= Mask.getBitWidth()-VTBits;
- // Return # leading zeros. We use 'min' here in case Val was zero before
- // shifting. We don't want to return '64' as for an i32 "0".
- return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
- }
- /// isBaseWithConstantOffset - Return true if the specified operand is an
- /// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
- /// ISD::OR with a ConstantSDNode that is guaranteed to have the same
- /// semantics as an ADD. This handles the equivalence:
- /// X|Cst == X+Cst iff X&Cst = 0.
- bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
- if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
- !isa<ConstantSDNode>(Op.getOperand(1)))
- return false;
- if (Op.getOpcode() == ISD::OR &&
- !MaskedValueIsZero(Op.getOperand(0),
- cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
- return false;
- return true;
- }
- bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
- // If we're told that NaNs won't happen, assume they won't.
- if (getTarget().Options.NoNaNsFPMath)
- return true;
- // If the value is a constant, we can obviously see if it is a NaN or not.
- if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
- return !C->getValueAPF().isNaN();
- // TODO: Recognize more cases here.
- return false;
- }
- bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
- // If the value is a constant, we can obviously see if it is a zero or not.
- if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
- return !C->isZero();
- // TODO: Recognize more cases here.
- switch (Op.getOpcode()) {
- default: break;
- case ISD::OR:
- if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
- return !C->isNullValue();
- break;
- }
- return false;
- }
- bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
- // Check the obvious case.
- if (A == B) return true;
- // For for negative and positive zero.
- if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
- if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
- if (CA->isZero() && CB->isZero()) return true;
- // Otherwise they may not be equal.
- return false;
- }
- /// getNode - Gets or creates the specified node.
- ///
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- #ifndef NDEBUG
- VerifySDNode(N);
- #endif
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
- EVT VT, SDValue Operand) {
- // Constant fold unary operations with an integer constant operand.
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
- const APInt &Val = C->getAPIntValue();
- switch (Opcode) {
- default: break;
- case ISD::SIGN_EXTEND:
- return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
- case ISD::ANY_EXTEND:
- case ISD::ZERO_EXTEND:
- case ISD::TRUNCATE:
- return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
- case ISD::UINT_TO_FP:
- case ISD::SINT_TO_FP: {
- APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
- (void)apf.convertFromAPInt(Val,
- Opcode==ISD::SINT_TO_FP,
- APFloat::rmNearestTiesToEven);
- return getConstantFP(apf, VT);
- }
- case ISD::BITCAST:
- if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
- return getConstantFP(APFloat(Val), VT);
- else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
- return getConstantFP(APFloat(Val), VT);
- break;
- case ISD::BSWAP:
- return getConstant(Val.byteSwap(), VT);
- case ISD::CTPOP:
- return getConstant(Val.countPopulation(), VT);
- case ISD::CTLZ:
- case ISD::CTLZ_ZERO_UNDEF:
- return getConstant(Val.countLeadingZeros(), VT);
- case ISD::CTTZ:
- case ISD::CTTZ_ZERO_UNDEF:
- return getConstant(Val.countTrailingZeros(), VT);
- }
- }
- // Constant fold unary operations with a floating point constant operand.
- if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
- APFloat V = C->getValueAPF(); // make copy
- switch (Opcode) {
- case ISD::FNEG:
- V.changeSign();
- return getConstantFP(V, VT);
- case ISD::FABS:
- V.clearSign();
- return getConstantFP(V, VT);
- case ISD::FCEIL: {
- APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
- if (fs == APFloat::opOK || fs == APFloat::opInexact)
- return getConstantFP(V, VT);
- break;
- }
- case ISD::FTRUNC: {
- APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
- if (fs == APFloat::opOK || fs == APFloat::opInexact)
- return getConstantFP(V, VT);
- break;
- }
- case ISD::FFLOOR: {
- APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
- if (fs == APFloat::opOK || fs == APFloat::opInexact)
- return getConstantFP(V, VT);
- break;
- }
- case ISD::FP_EXTEND: {
- bool ignored;
- // This can return overflow, underflow, or inexact; we don't care.
- // FIXME need to be more flexible about rounding mode.
- (void)V.convert(*EVTToAPFloatSemantics(VT),
- APFloat::rmNearestTiesToEven, &ignored);
- return getConstantFP(V, VT);
- }
- case ISD::FP_TO_SINT:
- case ISD::FP_TO_UINT: {
- integerPart x[2];
- bool ignored;
- assert(integerPartWidth >= 64);
- // FIXME need to be more flexible about rounding mode.
- APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
- Opcode==ISD::FP_TO_SINT,
- APFloat::rmTowardZero, &ignored);
- if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
- break;
- APInt api(VT.getSizeInBits(), x);
- return getConstant(api, VT);
- }
- case ISD::BITCAST:
- if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
- return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
- else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
- return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
- break;
- }
- }
- unsigned OpOpcode = Operand.getNode()->getOpcode();
- switch (Opcode) {
- case ISD::TokenFactor:
- case ISD::MERGE_VALUES:
- case ISD::CONCAT_VECTORS:
- return Operand; // Factor, merge or concat of one node? No need.
- case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
- case ISD::FP_EXTEND:
- assert(VT.isFloatingPoint() &&
- Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
- if (Operand.getValueType() == VT) return Operand; // noop conversion.
- assert((!VT.isVector() ||
- VT.getVectorNumElements() ==
- Operand.getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- if (Operand.getOpcode() == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::SIGN_EXTEND:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid SIGN_EXTEND!");
- if (Operand.getValueType() == VT) return Operand; // noop extension
- assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
- "Invalid sext node, dst < src!");
- assert((!VT.isVector() ||
- VT.getVectorNumElements() ==
- Operand.getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
- return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
- else if (OpOpcode == ISD::UNDEF)
- // sext(undef) = 0, because the top bits will all be the same.
- return getConstant(0, VT);
- break;
- case ISD::ZERO_EXTEND:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid ZERO_EXTEND!");
- if (Operand.getValueType() == VT) return Operand; // noop extension
- assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
- "Invalid zext node, dst < src!");
- assert((!VT.isVector() ||
- VT.getVectorNumElements() ==
- Operand.getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
- return getNode(ISD::ZERO_EXTEND, DL, VT,
- Operand.getNode()->getOperand(0));
- else if (OpOpcode == ISD::UNDEF)
- // zext(undef) = 0, because the top bits will be zero.
- return getConstant(0, VT);
- break;
- case ISD::ANY_EXTEND:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid ANY_EXTEND!");
- if (Operand.getValueType() == VT) return Operand; // noop extension
- assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
- "Invalid anyext node, dst < src!");
- assert((!VT.isVector() ||
- VT.getVectorNumElements() ==
- Operand.getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
- OpOpcode == ISD::ANY_EXTEND)
- // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
- return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
- else if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- // (ext (trunx x)) -> x
- if (OpOpcode == ISD::TRUNCATE) {
- SDValue OpOp = Operand.getNode()->getOperand(0);
- if (OpOp.getValueType() == VT)
- return OpOp;
- }
- break;
- case ISD::TRUNCATE:
- assert(VT.isInteger() && Operand.getValueType().isInteger() &&
- "Invalid TRUNCATE!");
- if (Operand.getValueType() == VT) return Operand; // noop truncate
- assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
- "Invalid truncate node, src < dst!");
- assert((!VT.isVector() ||
- VT.getVectorNumElements() ==
- Operand.getValueType().getVectorNumElements()) &&
- "Vector element count mismatch!");
- if (OpOpcode == ISD::TRUNCATE)
- return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
- if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
- OpOpcode == ISD::ANY_EXTEND) {
- // If the source is smaller than the dest, we still need an extend.
- if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
- .bitsLT(VT.getScalarType()))
- return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
- if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
- return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
- return Operand.getNode()->getOperand(0);
- }
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::BITCAST:
- // Basic sanity checking.
- assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
- && "Cannot BITCAST between types of different sizes!");
- if (VT == Operand.getValueType()) return Operand; // noop conversion.
- if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
- return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- break;
- case ISD::SCALAR_TO_VECTOR:
- assert(VT.isVector() && !Operand.getValueType().isVector() &&
- (VT.getVectorElementType() == Operand.getValueType() ||
- (VT.getVectorElementType().isInteger() &&
- Operand.getValueType().isInteger() &&
- VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
- "Illegal SCALAR_TO_VECTOR node!");
- if (OpOpcode == ISD::UNDEF)
- return getUNDEF(VT);
- // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
- if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
- isa<ConstantSDNode>(Operand.getOperand(1)) &&
- Operand.getConstantOperandVal(1) == 0 &&
- Operand.getOperand(0).getValueType() == VT)
- return Operand.getOperand(0);
- break;
- case ISD::FNEG:
- // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
- if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
- return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
- Operand.getNode()->getOperand(0));
- if (OpOpcode == ISD::FNEG) // --X -> X
- return Operand.getNode()->getOperand(0);
- break;
- case ISD::FABS:
- if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
- return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
- break;
- }
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- if (VT != MVT::Glue) { // Don't CSE flag producing nodes
- FoldingSetNodeID ID;
- SDValue Ops[1] = { Operand };
- AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
- CSEMap.InsertNode(N, IP);
- } else {
- N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
- }
- AllNodes.push_back(N);
- #ifndef NDEBUG
- VerifySDNode(N);
- #endif
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
- EVT VT,
- ConstantSDNode *Cst1,
- ConstantSDNode *Cst2) {
- const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
- switch (Opcode) {
- case ISD::ADD: return getConstant(C1 + C2, VT);
- case ISD::SUB: return getConstant(C1 - C2, VT);
- case ISD::MUL: return getConstant(C1 * C2, VT);
- case ISD::UDIV:
- if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
- break;
- case ISD::UREM:
- if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
- break;
- case ISD::SDIV:
- if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
- break;
- case ISD::SREM:
- if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
- break;
- case ISD::AND: return getConstant(C1 & C2, VT);
- case ISD::OR: return getConstant(C1 | C2, VT);
- case ISD::XOR: return getConstant(C1 ^ C2, VT);
- case ISD::SHL: return getConstant(C1 << C2, VT);
- case ISD::SRL: return getConstant(C1.lshr(C2), VT);
- case ISD::SRA: return getConstant(C1.ashr(C2), VT);
- case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
- case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
- default: break;
- }
- return SDValue();
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
- SDValue N1, SDValue N2) {
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
- ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
- switch (Opcode) {
- default: break;
- case ISD::TokenFactor:
- assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
- N2.getValueType() == MVT::Other && "Invalid token factor!");
- // Fold trivial token factors.
- if (N1.getOpcode() == ISD::EntryToken) return N2;
- if (N2.getOpcode() == ISD::EntryToken) return N1;
- if (N1 == N2) return N1;
- break;
- case ISD::CONCAT_VECTORS:
- // Concat of UNDEFs is UNDEF.
- if (N1.getOpcode() == ISD::UNDEF &&
- N2.getOpcode() == ISD::UNDEF)
- return getUNDEF(VT);
- // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
- // one big BUILD_VECTOR.
- if (N1.getOpcode() == ISD::BUILD_VECTOR &&
- N2.getOpcode() == ISD::BUILD_VECTOR) {
- SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
- N1.getNode()->op_end());
- Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
- return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
- }
- break;
- case ISD::AND:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
- // worth handling here.
- if (N2C && N2C->isNullValue())
- return N2;
- if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
- return N1;
- break;
- case ISD::OR:
- case ISD::XOR:
- case ISD::ADD:
- case ISD::SUB:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
- // it's worth handling here.
- if (N2C && N2C->isNullValue())
- return N1;
- break;
- case ISD::UDIV:
- case ISD::UREM:
- case ISD::MULHU:
- case ISD::MULHS:
- case ISD::MUL:
- case ISD::SDIV:
- case ISD::SREM:
- assert(VT.isInteger() && "This operator does not apply to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- break;
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM:
- if (getTarget().Options.UnsafeFPMath) {
- if (Opcode == ISD::FADD) {
- // 0+x --> x
- if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
- if (CFP->getValueAPF().isZero())
- return N2;
- // x+0 --> x
- if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
- if (CFP->getValueAPF().isZero())
- return N1;
- } else if (Opcode == ISD::FSUB) {
- // x-0 --> x
- if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
- if (CFP->getValueAPF().isZero())
- return N1;
- } else if (Opcode == ISD::FMUL) {
- ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1);
- SDValue V = N2;
- // If the first operand isn't the constant, try the second
- if (!CFP) {
- CFP = dyn_cast<ConstantFPSDNode>(N2);
- V = N1;
- }
- if (CFP) {
- // 0*x --> 0
- if (CFP->isZero())
- return SDValue(CFP,0);
- // 1*x --> x
- if (CFP->isExactlyValue(1.0))
- return V;
- }
- }
- }
- assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
- assert(N1.getValueType() == N2.getValueType() &&
- N1.getValueType() == VT && "Binary operator types must match!");
- break;
- case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
- assert(N1.getValueType() == VT &&
- N1.getValueType().isFloatingPoint() &&
- N2.getValueType().isFloatingPoint() &&
- "Invalid FCOPYSIGN!");
- break;
- case ISD::SHL:
- case ISD::SRA:
- case ISD::SRL:
- case ISD::ROTL:
- case ISD::ROTR:
- assert(VT == N1.getValueType() &&
- "Shift operators return type must be the same as their first arg");
- assert(VT.isInteger() && N2.getValueType().isInteger() &&
- "Shifts only work on integers");
- // Verify that the shift amount VT is bit enough to hold valid shift
- // amounts. This catches things like trying to shift an i1024 value by an
- // i8, which is easy to fall into in generic code that uses
- // TLI.getShiftAmount().
- assert(N2.getValueType().getSizeInBits() >=
- Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
- "Invalid use of small shift amount with oversized value!");
- // Always fold shifts of i1 values so the code generator doesn't need to
- // handle them. Since we know the size of the shift has to be less than the
- // size of the value, the shift/rotate count is guaranteed to be zero.
- if (VT == MVT::i1)
- return N1;
- if (N2C && N2C->isNullValue())
- return N1;
- break;
- case ISD::FP_ROUND_INREG: {
- EVT EVT = cast<VTSDNode>(N2)->getVT();
- assert(VT == N1.getValueType() && "Not an inreg round!");
- assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
- "Cannot FP_ROUND_INREG integer types");
- assert(EVT.isVector() == VT.isVector() &&
- "FP_ROUND_INREG type should be vector iff the operand "
- "type is vector!");
- assert((!EVT.isVector() ||
- EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
- "Vector element counts must match in FP_ROUND_INREG");
- assert(EVT.bitsLE(VT) && "Not rounding down!");
- (void)EVT;
- if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
- break;
- }
- case ISD::FP_ROUND:
- assert(VT.isFloatingPoint() &&
- N1.getValueType().isFloatingPoint() &&
- VT.bitsLE(N1.getValueType()) &&
- isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
- if (N1.getValueType() == VT) return N1; // noop conversion.
- break;
- case ISD::AssertSext:
- case ISD::AssertZext: {
- EVT EVT = cast<VTSDNode>(N2)->getVT();
- assert(VT == N1.getValueType() && "Not an inreg extend!");
- assert(VT.isInteger() && EVT.isInteger() &&
- "Cannot *_EXTEND_INREG FP types");
- assert(!EVT.isVector() &&
- "AssertSExt/AssertZExt type should be the vector element type "
- "rather than the vector type!");
- assert(EVT.bitsLE(VT) && "Not extending!");
- if (VT == EVT) return N1; // noop assertion.
- break;
- }
- case ISD::SIGN_EXTEND_INREG: {
- EVT EVT = cast<VTSDNode>(N2)->getVT();
- assert(VT == N1.getValueType() && "Not an inreg extend!");
- assert(VT.isInteger() && EVT.isInteger() &&
- "Cannot *_EXTEND_INREG FP types");
- assert(EVT.isVector() == VT.isVector() &&
- "SIGN_EXTEND_INREG type should be vector iff the operand "
- "type is vector!");
- assert((!EVT.isVector() ||
- EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
- "Vector element counts must match in SIGN_EXTEND_INREG");
- assert(EVT.bitsLE(VT) && "Not extending!");
- if (EVT == VT) return N1; // Not actually extending
- if (N1C) {
- APInt Val = N1C->getAPIntValue();
- unsigned FromBits = EVT.getScalarType().getSizeInBits();
- Val <<= Val.getBitWidth()-FromBits;
- Val = Val.ashr(Val.getBitWidth()-FromBits);
- return getConstant(Val, VT);
- }
- break;
- }
- case ISD::EXTRACT_VECTOR_ELT:
- // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
- if (N1.getOpcode() == ISD::UNDEF)
- return getUNDEF(VT);
- // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
- // expanding copies of large vectors from registers.
- if (N2C &&
- N1.getOpcode() == ISD::CONCAT_VECTORS &&
- N1.getNumOperands() > 0) {
- unsigned Factor =
- N1.getOperand(0).getValueType().getVectorNumElements();
- return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
- N1.getOperand(N2C->getZExtValue() / Factor),
- getConstant(N2C->getZExtValue() % Factor,
- N2.getValueType()));
- }
- // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
- // expanding large vector constants.
- if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
- SDValue Elt = N1.getOperand(N2C->getZExtValue());
- if (VT != Elt.getValueType())
- // If the vector element type is not legal, the BUILD_VECTOR operands
- // are promoted and implicitly truncated, and the result implicitly
- // extended. Make that explicit here.
- Elt = getAnyExtOrTrunc(Elt, DL, VT);
- return Elt;
- }
- // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
- // operations are lowered to scalars.
- if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
- // If the indices are the same, return the inserted element else
- // if the indices are known different, extract the element from
- // the original vector.
- SDValue N1Op2 = N1.getOperand(2);
- ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
- if (N1Op2C && N2C) {
- if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
- if (VT == N1.getOperand(1).getValueType())
- return N1.getOperand(1);
- else
- return getSExtOrTrunc(N1.getOperand(1), DL, VT);
- }
- return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
- }
- }
- break;
- case ISD::EXTRACT_ELEMENT:
- assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
- assert(!N1.getValueType().isVector() && !VT.isVector() &&
- (N1.getValueType().isInteger() == VT.isInteger()) &&
- N1.getValueType() != VT &&
- "Wrong types for EXTRACT_ELEMENT!");
- // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
- // 64-bit integers into 32-bit parts. Instead of building the extract of
- // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
- if (N1.getOpcode() == ISD::BUILD_PAIR)
- return N1.getOperand(N2C->getZExtValue());
- // EXTRACT_ELEMENT of a constant int is also very common.
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
- unsigned ElementSize = VT.getSizeInBits();
- unsigned Shift = ElementSize * N2C->getZExtValue();
- APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
- return getConstant(ShiftedVal.trunc(ElementSize), VT);
- }
- break;
- case ISD::EXTRACT_SUBVECTOR: {
- SDValue Index = N2;
- if (VT.isSimple() && N1.getValueType().isSimple()) {
- assert(VT.isVector() && N1.getValueType().isVector() &&
- "Extract subvector VTs must be a vectors!");
- assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
- "Extract subvector VTs must have the same element type!");
- assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
- "Extract subvector must be from larger vector to smaller vector!");
- if (isa<ConstantSDNode>(Index.getNode())) {
- assert((VT.getVectorNumElements() +
- cast<ConstantSDNode>(Index.getNode())->getZExtValue()
- <= N1.getValueType().getVectorNumElements())
- && "Extract subvector overflow!");
- }
- // Trivial extraction.
- if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
- return N1;
- }
- break;
- }
- }
- if (N1C) {
- if (N2C) {
- SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
- if (SV.getNode()) return SV;
- } else { // Cannonicalize constant to RHS if commutative
- if (isCommutativeBinOp(Opcode)) {
- std::swap(N1C, N2C);
- std::swap(N1, N2);
- }
- }
- }
- // Constant fold FP operations.
- ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
- ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
- if (N1CFP) {
- if (!N2CFP && isCommutativeBinOp(Opcode)) {
- // Cannonicalize constant to RHS if commutative
- std::swap(N1CFP, N2CFP);
- std::swap(N1, N2);
- } else if (N2CFP) {
- APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
- APFloat::opStatus s;
- switch (Opcode) {
- case ISD::FADD:
- s = V1.add(V2, APFloat::rmNearestTiesToEven);
- if (s != APFloat::opInvalidOp)
- return getConstantFP(V1, VT);
- break;
- case ISD::FSUB:
- s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
- if (s!=APFloat::opInvalidOp)
- return getConstantFP(V1, VT);
- break;
- case ISD::FMUL:
- s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
- if (s!=APFloat::opInvalidOp)
- return getConstantFP(V1, VT);
- break;
- case ISD::FDIV:
- s = V1.divide(V2, APFloat::rmNearestTiesToEven);
- if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
- return getConstantFP(V1, VT);
- break;
- case ISD::FREM :
- s = V1.mod(V2, APFloat::rmNearestTiesToEven);
- if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
- return getConstantFP(V1, VT);
- break;
- case ISD::FCOPYSIGN:
- V1.copySign(V2);
- return getConstantFP(V1, VT);
- default: break;
- }
- }
- if (Opcode == ISD::FP_ROUND) {
- APFloat V = N1CFP->getValueAPF(); // make copy
- bool ignored;
- // This can return overflow, underflow, or inexact; we don't care.
- // FIXME need to be more flexible about rounding mode.
- (void)V.convert(*EVTToAPFloatSemantics(VT),
- APFloat::rmNearestTiesToEven, &ignored);
- return getConstantFP(V, VT);
- }
- }
- // Canonicalize an UNDEF to the RHS, even over a constant.
- if (N1.getOpcode() == ISD::UNDEF) {
- if (isCommutativeBinOp(Opcode)) {
- std::swap(N1, N2);
- } else {
- switch (Opcode) {
- case ISD::FP_ROUND_INREG:
- case ISD::SIGN_EXTEND_INREG:
- case ISD::SUB:
- case ISD::FSUB:
- case ISD::FDIV:
- case ISD::FREM:
- case ISD::SRA:
- return N1; // fold op(undef, arg2) -> undef
- case ISD::UDIV:
- case ISD::SDIV:
- case ISD::UREM:
- case ISD::SREM:
- case ISD::SRL:
- case ISD::SHL:
- if (!VT.isVector())
- return getConstant(0, VT); // fold op(undef, arg2) -> 0
- // For vectors, we can't easily build an all zero vector, just return
- // the LHS.
- return N2;
- }
- }
- }
- // Fold a bunch of operators when the RHS is undef.
- if (N2.getOpcode() == ISD::UNDEF) {
- switch (Opcode) {
- case ISD::XOR:
- if (N1.getOpcode() == ISD::UNDEF)
- // Handle undef ^ undef -> 0 special case. This is a common
- // idiom (misuse).
- return getConstant(0, VT);
- // fallthrough
- case ISD::ADD:
- case ISD::ADDC:
- case ISD::ADDE:
- case ISD::SUB:
- case ISD::UDIV:
- case ISD::SDIV:
- case ISD::UREM:
- case ISD::SREM:
- return N2; // fold op(arg1, undef) -> undef
- case ISD::FADD:
- case ISD::FSUB:
- case ISD::FMUL:
- case ISD::FDIV:
- case ISD::FREM:
- if (getTarget().Options.UnsafeFPMath)
- return N2;
- break;
- case ISD::MUL:
- case ISD::AND:
- case ISD::SRL:
- case ISD::SHL:
- if (!VT.isVector())
- return getConstant(0, VT); // fold op(arg1, undef) -> 0
- // For vectors, we can't easily build an all zero vector, just return
- // the LHS.
- return N1;
- case ISD::OR:
- if (!VT.isVector())
- return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
- // For vectors, we can't easily build an all one vector, just return
- // the LHS.
- return N1;
- case ISD::SRA:
- return N1;
- }
- }
- // Memoize this node if possible.
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- if (VT != MVT::Glue) {
- SDValue Ops[] = { N1, N2 };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
- CSEMap.InsertNode(N, IP);
- } else {
- N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
- }
- AllNodes.push_back(N);
- #ifndef NDEBUG
- VerifySDNode(N);
- #endif
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3) {
- // Perform various simplifications.
- ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
- switch (Opcode) {
- case ISD::CONCAT_VECTORS:
- // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
- // one big BUILD_VECTOR.
- if (N1.getOpcode() == ISD::BUILD_VECTOR &&
- N2.getOpcode() == ISD::BUILD_VECTOR &&
- N3.getOpcode() == ISD::BUILD_VECTOR) {
- SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
- N1.getNode()->op_end());
- Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
- Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
- return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
- }
- break;
- case ISD::SETCC: {
- // Use FoldSetCC to simplify SETCC's.
- SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
- if (Simp.getNode()) return Simp;
- break;
- }
- case ISD::SELECT:
- if (N1C) {
- if (N1C->getZExtValue())
- return N2; // select true, X, Y -> X
- return N3; // select false, X, Y -> Y
- }
- if (N2 == N3) return N2; // select C, X, X -> X
- break;
- case ISD::VECTOR_SHUFFLE:
- llvm_unreachable("should use getVectorShuffle constructor!");
- case ISD::INSERT_SUBVECTOR: {
- SDValue Index = N3;
- if (VT.isSimple() && N1.getValueType().isSimple()
- && N2.getValueType().isSimple()) {
- assert(VT.isVector() && N1.getValueType().isVector() &&
- N2.getValueType().isVector() &&
- "Insert subvector VTs must be a vectors");
- assert(VT == N1.getValueType() &&
- "Dest and insert subvector source types must match!");
- assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
- "Insert subvector must be from smaller vector to larger vector!");
- if (isa<ConstantSDNode>(Index.getNode())) {
- assert((N2.getValueType().getVectorNumElements() +
- cast<ConstantSDNode>(Index.getNode())->getZExtValue()
- <= VT.getVectorNumElements())
- && "Insert subvector overflow!");
- }
- // Trivial insertion.
- if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
- return N2;
- }
- break;
- }
- case ISD::BITCAST:
- // Fold bit_convert nodes from a type to themselves.
- if (N1.getValueType() == VT)
- return N1;
- break;
- }
- // Memoize node if it doesn't produce a flag.
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- if (VT != MVT::Glue) {
- SDValue Ops[] = { N1, N2, N3 };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
- CSEMap.InsertNode(N, IP);
- } else {
- N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
- }
- AllNodes.push_back(N);
- #ifndef NDEBUG
- VerifySDNode(N);
- #endif
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3,
- SDValue N4) {
- SDValue Ops[] = { N1, N2, N3, N4 };
- return getNode(Opcode, DL, VT, Ops, 4);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
- SDValue N1, SDValue N2, SDValue N3,
- SDValue N4, SDValue N5) {
- SDValue Ops[] = { N1, N2, N3, N4, N5 };
- return getNode(Opcode, DL, VT, Ops, 5);
- }
- /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
- /// the incoming stack arguments to be loaded from the stack.
- SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
- SmallVector<SDValue, 8> ArgChains;
- // Include the original chain at the beginning of the list. When this is
- // used by target LowerCall hooks, this helps legalize find the
- // CALLSEQ_BEGIN node.
- ArgChains.push_back(Chain);
- // Add a chain value for each stack argument.
- for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
- UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
- if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
- if (FI->getIndex() < 0)
- ArgChains.push_back(SDValue(L, 1));
- // Build a tokenfactor for all the chains.
- return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
- &ArgChains[0], ArgChains.size());
- }
- /// SplatByte - Distribute ByteVal over NumBits bits.
- static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
- APInt Val = APInt(NumBits, ByteVal);
- unsigned Shift = 8;
- for (unsigned i = NumBits; i > 8; i >>= 1) {
- Val = (Val << Shift) | Val;
- Shift <<= 1;
- }
- return Val;
- }
- /// getMemsetValue - Vectorized representation of the memset value
- /// operand.
- static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
- DebugLoc dl) {
- assert(Value.getOpcode() != ISD::UNDEF);
- unsigned NumBits = VT.getScalarType().getSizeInBits();
- if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
- APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
- if (VT.isInteger())
- return DAG.getConstant(Val, VT);
- return DAG.getConstantFP(APFloat(Val), VT);
- }
- Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
- if (NumBits > 8) {
- // Use a multiplication with 0x010101... to extend the input to the
- // required length.
- APInt Magic = SplatByte(NumBits, 0x01);
- Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
- }
- return Value;
- }
- /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
- /// used when a memcpy is turned into a memset when the source is a constant
- /// string ptr.
- static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
- const TargetLowering &TLI, StringRef Str) {
- // Handle vector with all elements zero.
- if (Str.empty()) {
- if (VT.isInteger())
- return DAG.getConstant(0, VT);
- else if (VT == MVT::f32 || VT == MVT::f64)
- return DAG.getConstantFP(0.0, VT);
- else if (VT.isVector()) {
- unsigned NumElts = VT.getVectorNumElements();
- MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
- return DAG.getNode(ISD::BITCAST, dl, VT,
- DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
- EltVT, NumElts)));
- } else
- llvm_unreachable("Expected type!");
- }
- assert(!VT.isVector() && "Can't handle vector type here!");
- unsigned NumVTBytes = VT.getSizeInBits() / 8;
- unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
- APInt Val(NumBytes*8, 0);
- if (TLI.isLittleEndian()) {
- for (unsigned i = 0; i != NumBytes; ++i)
- Val |= (uint64_t)(unsigned char)Str[i] << i*8;
- } else {
- for (unsigned i = 0; i != NumBytes; ++i)
- Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
- }
- // If the "cost" of materializing the integer immediate is 1 or free, then
- // it is cost effective to turn the load into the immediate.
- if (DAG.getTarget().getScalarTargetTransformInfo()->
- getIntImmCost(Val, VT.getTypeForEVT(*DAG.getContext())) < 2)
- return DAG.getConstant(Val, VT);
- return SDValue(0, 0);
- }
- /// getMemBasePlusOffset - Returns base and offset node for the
- ///
- static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
- SelectionDAG &DAG) {
- EVT VT = Base.getValueType();
- return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
- VT, Base, DAG.getConstant(Offset, VT));
- }
- /// isMemSrcFromString - Returns true if memcpy source is a string constant.
- ///
- static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
- unsigned SrcDelta = 0;
- GlobalAddressSDNode *G = NULL;
- if (Src.getOpcode() == ISD::GlobalAddress)
- G = cast<GlobalAddressSDNode>(Src);
- else if (Src.getOpcode() == ISD::ADD &&
- Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
- Src.getOperand(1).getOpcode() == ISD::Constant) {
- G = cast<GlobalAddressSDNode>(Src.getOperand(0));
- SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
- }
- if (!G)
- return false;
- return getConstantStringInfo(G->getGlobal(), Str, SrcDelta, false);
- }
- /// FindOptimalMemOpLowering - Determines the optimial series memory ops
- /// to replace the memset / memcpy. Return true if the number of memory ops
- /// is below the threshold. It returns the types of the sequence of
- /// memory ops to perform memset / memcpy by reference.
- static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
- unsigned Limit, uint64_t Size,
- unsigned DstAlign, unsigned SrcAlign,
- bool IsMemset,
- bool ZeroMemset,
- bool MemcpyStrSrc,
- bool AllowOverlap,
- SelectionDAG &DAG,
- const TargetLowering &TLI) {
- assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
- "Expecting memcpy / memset source to meet alignment requirement!");
- // If 'SrcAlign' is zero, that means the memory operation does not need to
- // load the value, i.e. memset or memcpy from constant string. Otherwise,
- // it's the inferred alignment of the source. 'DstAlign', on the other hand,
- // is the specified alignment of the memory operation. If it is zero, that
- // means it's possible to change the alignment of the destination.
- // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
- // not need to be loaded.
- EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
- IsMemset, ZeroMemset, MemcpyStrSrc,
- DAG.getMachineFunction());
- if (VT == MVT::Other) {
- if (DstAlign >= TLI.getDataLayout()->getPointerPrefAlignment() ||
- TLI.allowsUnalignedMemoryAccesses(VT)) {
- VT = TLI.getPointerTy();
- } else {
- switch (DstAlign & 7) {
- case 0: VT = MVT::i64; break;
- case 4: VT = MVT::i32; break;
- case 2: VT = MVT::i16; break;
- default: VT = MVT::i8; break;
- }
- }
- MVT LVT = MVT::i64;
- while (!TLI.isTypeLegal(LVT))
- LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
- assert(LVT.isInteger());
- if (VT.bitsGT(LVT))
- VT = LVT;
- }
- unsigned NumMemOps = 0;
- while (Size != 0) {
- unsigned VTSize = VT.getSizeInBits() / 8;
- while (VTSize > Size) {
- // For now, only use non-vector load / store's for the left-over pieces.
- EVT NewVT = VT;
- unsigned NewVTSize;
- bool Found = false;
- if (VT.isVector() || VT.isFloatingPoint()) {
- NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
- if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
- TLI.isSafeMemOpType(NewVT.getSimpleVT()))
- Found = true;
- else if (NewVT == MVT::i64 &&
- TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
- TLI.isSafeMemOpType(MVT::f64)) {
- // i64 is usually not legal on 32-bit targets, but f64 may be.
- NewVT = MVT::f64;
- Found = true;
- }
- }
- if (!Found) {
- do {
- NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
- if (NewVT == MVT::i8)
- break;
- } while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
- }
- NewVTSize = NewVT.getSizeInBits() / 8;
- // If the new VT cannot cover all of the remaining bits, then consider
- // issuing a (or a pair of) unaligned and overlapping load / store.
- // FIXME: Only does this for 64-bit or more since we don't have proper
- // cost model for unaligned load / store.
- bool Fast;
- if (NumMemOps && AllowOverlap &&
- VTSize >= 8 && NewVTSize < Size &&
- TLI.allowsUnalignedMemoryAccesses(VT, &Fast) && Fast)
- VTSize = Size;
- else {
- VT = NewVT;
- VTSize = NewVTSize;
- }
- }
- if (++NumMemOps > Limit)
- return false;
- MemOps.push_back(VT);
- Size -= VTSize;
- }
- return true;
- }
- static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
- SDValue Chain, SDValue Dst,
- SDValue Src, uint64_t Size,
- unsigned Align, bool isVol,
- bool AlwaysInline,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- // Turn a memcpy of undef to nop.
- if (Src.getOpcode() == ISD::UNDEF)
- return Chain;
- // Expand memcpy to a series of load and store ops if the size operand falls
- // below a certain threshold.
- // TODO: In the AlwaysInline case, if the size is big then generate a loop
- // rather than maybe a humongous number of loads and stores.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- std::vector<EVT> MemOps;
- bool DstAlignCanChange = false;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- bool OptSize =
- MF.getFunction()->getFnAttributes().
- hasAttribute(Attribute::OptimizeForSize);
- FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
- if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
- DstAlignCanChange = true;
- unsigned SrcAlign = DAG.InferPtrAlignment(Src);
- if (Align > SrcAlign)
- SrcAlign = Align;
- StringRef Str;
- bool CopyFromStr = isMemSrcFromString(Src, Str);
- bool isZeroStr = CopyFromStr && Str.empty();
- unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
- if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
- (DstAlignCanChange ? 0 : Align),
- (isZeroStr ? 0 : SrcAlign),
- false, false, CopyFromStr, true, DAG, TLI))
- return SDValue();
- if (DstAlignCanChange) {
- Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
- unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
- if (NewAlign > Align) {
- // Give the stack frame object a larger alignment if needed.
- if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
- MFI->setObjectAlignment(FI->getIndex(), NewAlign);
- Align = NewAlign;
- }
- }
- SmallVector<SDValue, 8> OutChains;
- unsigned NumMemOps = MemOps.size();
- uint64_t SrcOff = 0, DstOff = 0;
- for (unsigned i = 0; i != NumMemOps; ++i) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Value, Store;
- if (VTSize > Size) {
- // Issuing an unaligned load / store pair that overlaps with the previous
- // pair. Adjust the offset accordingly.
- assert(i == NumMemOps-1 && i != 0);
- SrcOff -= VTSize - Size;
- DstOff -= VTSize - Size;
- }
- if (CopyFromStr &&
- (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
- // It's unlikely a store of a vector immediate can be done in a single
- // instruction. It would require a load from a constantpool first.
- // We only handle zero vectors here.
- // FIXME: Handle other cases where store of vector immediate is done in
- // a single instruction.
- Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
- if (Value.getNode())
- Store = DAG.getStore(Chain, dl, Value,
- getMemBasePlusOffset(Dst, DstOff, DAG),
- DstPtrInfo.getWithOffset(DstOff), isVol,
- false, Align);
- }
- if (!Store.getNode()) {
- // The type might not be legal for the target. This should only happen
- // if the type is smaller than a legal type, as on PPC, so the right
- // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
- // to Load/Store if NVT==VT.
- // FIXME does the case above also need this?
- EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
- assert(NVT.bitsGE(VT));
- Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
- getMemBasePlusOffset(Src, SrcOff, DAG),
- SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
- MinAlign(SrcAlign, SrcOff));
- Store = DAG.getTruncStore(Chain, dl, Value,
- getMemBasePlusOffset(Dst, DstOff, DAG),
- DstPtrInfo.getWithOffset(DstOff), VT, isVol,
- false, Align);
- }
- OutChains.push_back(Store);
- SrcOff += VTSize;
- DstOff += VTSize;
- Size -= VTSize;
- }
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- &OutChains[0], OutChains.size());
- }
- static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
- SDValue Chain, SDValue Dst,
- SDValue Src, uint64_t Size,
- unsigned Align, bool isVol,
- bool AlwaysInline,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- // Turn a memmove of undef to nop.
- if (Src.getOpcode() == ISD::UNDEF)
- return Chain;
- // Expand memmove to a series of load and store ops if the size operand falls
- // below a certain threshold.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- std::vector<EVT> MemOps;
- bool DstAlignCanChange = false;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- bool OptSize = MF.getFunction()->getFnAttributes().
- hasAttribute(Attribute::OptimizeForSize);
- FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
- if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
- DstAlignCanChange = true;
- unsigned SrcAlign = DAG.InferPtrAlignment(Src);
- if (Align > SrcAlign)
- SrcAlign = Align;
- unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
- if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
- (DstAlignCanChange ? 0 : Align), SrcAlign,
- false, false, false, false, DAG, TLI))
- return SDValue();
- if (DstAlignCanChange) {
- Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
- unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
- if (NewAlign > Align) {
- // Give the stack frame object a larger alignment if needed.
- if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
- MFI->setObjectAlignment(FI->getIndex(), NewAlign);
- Align = NewAlign;
- }
- }
- uint64_t SrcOff = 0, DstOff = 0;
- SmallVector<SDValue, 8> LoadValues;
- SmallVector<SDValue, 8> LoadChains;
- SmallVector<SDValue, 8> OutChains;
- unsigned NumMemOps = MemOps.size();
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Value, Store;
- Value = DAG.getLoad(VT, dl, Chain,
- getMemBasePlusOffset(Src, SrcOff, DAG),
- SrcPtrInfo.getWithOffset(SrcOff), isVol,
- false, false, SrcAlign);
- LoadValues.push_back(Value);
- LoadChains.push_back(Value.getValue(1));
- SrcOff += VTSize;
- }
- Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- &LoadChains[0], LoadChains.size());
- OutChains.clear();
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- SDValue Value, Store;
- Store = DAG.getStore(Chain, dl, LoadValues[i],
- getMemBasePlusOffset(Dst, DstOff, DAG),
- DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
- OutChains.push_back(Store);
- DstOff += VTSize;
- }
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- &OutChains[0], OutChains.size());
- }
- static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
- SDValue Chain, SDValue Dst,
- SDValue Src, uint64_t Size,
- unsigned Align, bool isVol,
- MachinePointerInfo DstPtrInfo) {
- // Turn a memset of undef to nop.
- if (Src.getOpcode() == ISD::UNDEF)
- return Chain;
- // Expand memset to a series of load/store ops if the size operand
- // falls below a certain threshold.
- const TargetLowering &TLI = DAG.getTargetLoweringInfo();
- std::vector<EVT> MemOps;
- bool DstAlignCanChange = false;
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
- bool OptSize = MF.getFunction()->getFnAttributes().
- hasAttribute(Attribute::OptimizeForSize);
- FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
- if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
- DstAlignCanChange = true;
- bool IsZeroVal =
- isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
- if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
- Size, (DstAlignCanChange ? 0 : Align), 0,
- true, IsZeroVal, false, true, DAG, TLI))
- return SDValue();
- if (DstAlignCanChange) {
- Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
- unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
- if (NewAlign > Align) {
- // Give the stack frame object a larger alignment if needed.
- if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
- MFI->setObjectAlignment(FI->getIndex(), NewAlign);
- Align = NewAlign;
- }
- }
- SmallVector<SDValue, 8> OutChains;
- uint64_t DstOff = 0;
- unsigned NumMemOps = MemOps.size();
- // Find the largest store and generate the bit pattern for it.
- EVT LargestVT = MemOps[0];
- for (unsigned i = 1; i < NumMemOps; i++)
- if (MemOps[i].bitsGT(LargestVT))
- LargestVT = MemOps[i];
- SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
- for (unsigned i = 0; i < NumMemOps; i++) {
- EVT VT = MemOps[i];
- unsigned VTSize = VT.getSizeInBits() / 8;
- if (VTSize > Size) {
- // Issuing an unaligned load / store pair that overlaps with the previous
- // pair. Adjust the offset accordingly.
- assert(i == NumMemOps-1 && i != 0);
- DstOff -= VTSize - Size;
- }
- // If this store is smaller than the largest store see whether we can get
- // the smaller value for free with a truncate.
- SDValue Value = MemSetValue;
- if (VT.bitsLT(LargestVT)) {
- if (!LargestVT.isVector() && !VT.isVector() &&
- TLI.isTruncateFree(LargestVT, VT))
- Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
- else
- Value = getMemsetValue(Src, VT, DAG, dl);
- }
- assert(Value.getValueType() == VT && "Value with wrong type.");
- SDValue Store = DAG.getStore(Chain, dl, Value,
- getMemBasePlusOffset(Dst, DstOff, DAG),
- DstPtrInfo.getWithOffset(DstOff),
- isVol, false, Align);
- OutChains.push_back(Store);
- DstOff += VT.getSizeInBits() / 8;
- Size -= VTSize;
- }
- return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
- &OutChains[0], OutChains.size());
- }
- SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
- SDValue Src, SDValue Size,
- unsigned Align, bool isVol, bool AlwaysInline,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- // Check to see if we should lower the memcpy to loads and stores first.
- // For cases within the target-specified limits, this is the best choice.
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- if (ConstantSize) {
- // Memcpy with size zero? Just return the original chain.
- if (ConstantSize->isNullValue())
- return Chain;
- SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
- ConstantSize->getZExtValue(),Align,
- isVol, false, DstPtrInfo, SrcPtrInfo);
- if (Result.getNode())
- return Result;
- }
- // Then check to see if we should lower the memcpy with target-specific
- // code. If the target chooses to do this, this is the next best.
- SDValue Result =
- TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
- isVol, AlwaysInline,
- DstPtrInfo, SrcPtrInfo);
- if (Result.getNode())
- return Result;
- // If we really need inline code and the target declined to provide it,
- // use a (potentially long) sequence of loads and stores.
- if (AlwaysInline) {
- assert(ConstantSize && "AlwaysInline requires a constant size!");
- return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
- ConstantSize->getZExtValue(), Align, isVol,
- true, DstPtrInfo, SrcPtrInfo);
- }
- // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
- // memcpy is not guaranteed to be safe. libc memcpys aren't required to
- // respect volatile, so they may do things like read or write memory
- // beyond the given memory regions. But fixing this isn't easy, and most
- // people don't care.
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
- Entry.Node = Dst; Args.push_back(Entry);
- Entry.Node = Src; Args.push_back(Entry);
- Entry.Node = Size; Args.push_back(Entry);
- // FIXME: pass in DebugLoc
- TargetLowering::
- CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
- false, false, false, false, 0,
- TLI.getLibcallCallingConv(RTLIB::MEMCPY),
- /*isTailCall=*/false,
- /*doesNotReturn=*/false, /*isReturnValueUsed=*/false,
- getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
- TLI.getPointerTy()),
- Args, *this, dl);
- std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
- SDValue Src, SDValue Size,
- unsigned Align, bool isVol,
- MachinePointerInfo DstPtrInfo,
- MachinePointerInfo SrcPtrInfo) {
- // Check to see if we should lower the memmove to loads and stores first.
- // For cases within the target-specified limits, this is the best choice.
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- if (ConstantSize) {
- // Memmove with size zero? Just return the original chain.
- if (ConstantSize->isNullValue())
- return Chain;
- SDValue Result =
- getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
- ConstantSize->getZExtValue(), Align, isVol,
- false, DstPtrInfo, SrcPtrInfo);
- if (Result.getNode())
- return Result;
- }
- // Then check to see if we should lower the memmove with target-specific
- // code. If the target chooses to do this, this is the next best.
- SDValue Result =
- TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
- DstPtrInfo, SrcPtrInfo);
- if (Result.getNode())
- return Result;
- // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
- // not be safe. See memcpy above for more details.
- // Emit a library call.
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
- Entry.Node = Dst; Args.push_back(Entry);
- Entry.Node = Src; Args.push_back(Entry);
- Entry.Node = Size; Args.push_back(Entry);
- // FIXME: pass in DebugLoc
- TargetLowering::
- CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
- false, false, false, false, 0,
- TLI.getLibcallCallingConv(RTLIB::MEMMOVE),
- /*isTailCall=*/false,
- /*doesNotReturn=*/false, /*isReturnValueUsed=*/false,
- getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
- TLI.getPointerTy()),
- Args, *this, dl);
- std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
- SDValue Src, SDValue Size,
- unsigned Align, bool isVol,
- MachinePointerInfo DstPtrInfo) {
- // Check to see if we should lower the memset to stores first.
- // For cases within the target-specified limits, this is the best choice.
- ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
- if (ConstantSize) {
- // Memset with size zero? Just return the original chain.
- if (ConstantSize->isNullValue())
- return Chain;
- SDValue Result =
- getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
- Align, isVol, DstPtrInfo);
- if (Result.getNode())
- return Result;
- }
- // Then check to see if we should lower the memset with target-specific
- // code. If the target chooses to do this, this is the next best.
- SDValue Result =
- TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
- DstPtrInfo);
- if (Result.getNode())
- return Result;
- // Emit a library call.
- Type *IntPtrTy = TLI.getDataLayout()->getIntPtrType(*getContext());
- TargetLowering::ArgListTy Args;
- TargetLowering::ArgListEntry Entry;
- Entry.Node = Dst; Entry.Ty = IntPtrTy;
- Args.push_back(Entry);
- // Extend or truncate the argument to be an i32 value for the call.
- if (Src.getValueType().bitsGT(MVT::i32))
- Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
- else
- Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
- Entry.Node = Src;
- Entry.Ty = Type::getInt32Ty(*getContext());
- Entry.isSExt = true;
- Args.push_back(Entry);
- Entry.Node = Size;
- Entry.Ty = IntPtrTy;
- Entry.isSExt = false;
- Args.push_back(Entry);
- // FIXME: pass in DebugLoc
- TargetLowering::
- CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
- false, false, false, false, 0,
- TLI.getLibcallCallingConv(RTLIB::MEMSET),
- /*isTailCall=*/false,
- /*doesNotReturn*/false, /*isReturnValueUsed=*/false,
- getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
- TLI.getPointerTy()),
- Args, *this, dl);
- std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
- return CallResult.second;
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
- SDValue Chain, SDValue Ptr, SDValue Cmp,
- SDValue Swp, MachinePointerInfo PtrInfo,
- unsigned Alignment,
- AtomicOrdering Ordering,
- SynchronizationScope SynchScope) {
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(MemVT);
- MachineFunction &MF = getMachineFunction();
- // All atomics are load and store, except for ATMOIC_LOAD and ATOMIC_STORE.
- // For now, atomics are considered to be volatile always.
- // FIXME: Volatile isn't really correct; we should keep track of atomic
- // orderings in the memoperand.
- unsigned Flags = MachineMemOperand::MOVolatile;
- if (Opcode != ISD::ATOMIC_STORE)
- Flags |= MachineMemOperand::MOLoad;
- if (Opcode != ISD::ATOMIC_LOAD)
- Flags |= MachineMemOperand::MOStore;
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
- return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
- Ordering, SynchScope);
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
- SDValue Chain,
- SDValue Ptr, SDValue Cmp,
- SDValue Swp, MachineMemOperand *MMO,
- AtomicOrdering Ordering,
- SynchronizationScope SynchScope) {
- assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
- assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
- EVT VT = Cmp.getValueType();
- SDVTList VTs = getVTList(VT, MVT::Other);
- FoldingSetNodeID ID;
- ID.AddInteger(MemVT.getRawBits());
- SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
- AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void* IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
- cast<AtomicSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
- Ptr, Cmp, Swp, MMO, Ordering,
- SynchScope);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
- SDValue Chain,
- SDValue Ptr, SDValue Val,
- const Value* PtrVal,
- unsigned Alignment,
- AtomicOrdering Ordering,
- SynchronizationScope SynchScope) {
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(MemVT);
- MachineFunction &MF = getMachineFunction();
- // An atomic store does not load. An atomic load does not store.
- // (An atomicrmw obviously both loads and stores.)
- // For now, atomics are considered to be volatile always, and they are
- // chained as such.
- // FIXME: Volatile isn't really correct; we should keep track of atomic
- // orderings in the memoperand.
- unsigned Flags = MachineMemOperand::MOVolatile;
- if (Opcode != ISD::ATOMIC_STORE)
- Flags |= MachineMemOperand::MOLoad;
- if (Opcode != ISD::ATOMIC_LOAD)
- Flags |= MachineMemOperand::MOStore;
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
- MemVT.getStoreSize(), Alignment);
- return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
- Ordering, SynchScope);
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
- SDValue Chain,
- SDValue Ptr, SDValue Val,
- MachineMemOperand *MMO,
- AtomicOrdering Ordering,
- SynchronizationScope SynchScope) {
- assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
- Opcode == ISD::ATOMIC_LOAD_SUB ||
- Opcode == ISD::ATOMIC_LOAD_AND ||
- Opcode == ISD::ATOMIC_LOAD_OR ||
- Opcode == ISD::ATOMIC_LOAD_XOR ||
- Opcode == ISD::ATOMIC_LOAD_NAND ||
- Opcode == ISD::ATOMIC_LOAD_MIN ||
- Opcode == ISD::ATOMIC_LOAD_MAX ||
- Opcode == ISD::ATOMIC_LOAD_UMIN ||
- Opcode == ISD::ATOMIC_LOAD_UMAX ||
- Opcode == ISD::ATOMIC_SWAP ||
- Opcode == ISD::ATOMIC_STORE) &&
- "Invalid Atomic Op");
- EVT VT = Val.getValueType();
- SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
- getVTList(VT, MVT::Other);
- FoldingSetNodeID ID;
- ID.AddInteger(MemVT.getRawBits());
- SDValue Ops[] = {Chain, Ptr, Val};
- AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void* IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
- cast<AtomicSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
- Ptr, Val, MMO,
- Ordering, SynchScope);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
- EVT VT, SDValue Chain,
- SDValue Ptr,
- const Value* PtrVal,
- unsigned Alignment,
- AtomicOrdering Ordering,
- SynchronizationScope SynchScope) {
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(MemVT);
- MachineFunction &MF = getMachineFunction();
- // An atomic store does not load. An atomic load does not store.
- // (An atomicrmw obviously both loads and stores.)
- // For now, atomics are considered to be volatile always, and they are
- // chained as such.
- // FIXME: Volatile isn't really correct; we should keep track of atomic
- // orderings in the memoperand.
- unsigned Flags = MachineMemOperand::MOVolatile;
- if (Opcode != ISD::ATOMIC_STORE)
- Flags |= MachineMemOperand::MOLoad;
- if (Opcode != ISD::ATOMIC_LOAD)
- Flags |= MachineMemOperand::MOStore;
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
- MemVT.getStoreSize(), Alignment);
- return getAtomic(Opcode, dl, MemVT, VT, Chain, Ptr, MMO,
- Ordering, SynchScope);
- }
- SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
- EVT VT, SDValue Chain,
- SDValue Ptr,
- MachineMemOperand *MMO,
- AtomicOrdering Ordering,
- SynchronizationScope SynchScope) {
- assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
- SDVTList VTs = getVTList(VT, MVT::Other);
- FoldingSetNodeID ID;
- ID.AddInteger(MemVT.getRawBits());
- SDValue Ops[] = {Chain, Ptr};
- AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void* IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
- cast<AtomicSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
- Ptr, MMO, Ordering, SynchScope);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- /// getMergeValues - Create a MERGE_VALUES node from the given operands.
- SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
- DebugLoc dl) {
- if (NumOps == 1)
- return Ops[0];
- SmallVector<EVT, 4> VTs;
- VTs.reserve(NumOps);
- for (unsigned i = 0; i < NumOps; ++i)
- VTs.push_back(Ops[i].getValueType());
- return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
- Ops, NumOps);
- }
- SDValue
- SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
- const EVT *VTs, unsigned NumVTs,
- const SDValue *Ops, unsigned NumOps,
- EVT MemVT, MachinePointerInfo PtrInfo,
- unsigned Align, bool Vol,
- bool ReadMem, bool WriteMem) {
- return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
- MemVT, PtrInfo, Align, Vol,
- ReadMem, WriteMem);
- }
- SDValue
- SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
- const SDValue *Ops, unsigned NumOps,
- EVT MemVT, MachinePointerInfo PtrInfo,
- unsigned Align, bool Vol,
- bool ReadMem, bool WriteMem) {
- if (Align == 0) // Ensure that codegen never sees alignment 0
- Align = getEVTAlignment(MemVT);
- MachineFunction &MF = getMachineFunction();
- unsigned Flags = 0;
- if (WriteMem)
- Flags |= MachineMemOperand::MOStore;
- if (ReadMem)
- Flags |= MachineMemOperand::MOLoad;
- if (Vol)
- Flags |= MachineMemOperand::MOVolatile;
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
- return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
- }
- SDValue
- SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
- const SDValue *Ops, unsigned NumOps,
- EVT MemVT, MachineMemOperand *MMO) {
- assert((Opcode == ISD::INTRINSIC_VOID ||
- Opcode == ISD::INTRINSIC_W_CHAIN ||
- Opcode == ISD::PREFETCH ||
- Opcode == ISD::LIFETIME_START ||
- Opcode == ISD::LIFETIME_END ||
- (Opcode <= INT_MAX &&
- (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
- "Opcode is not a memory-accessing opcode!");
- // Memoize the node unless it returns a flag.
- MemIntrinsicSDNode *N;
- if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
- cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
- MemVT, MMO);
- CSEMap.InsertNode(N, IP);
- } else {
- N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
- MemVT, MMO);
- }
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
- /// MachinePointerInfo record from it. This is particularly useful because the
- /// code generator has many cases where it doesn't bother passing in a
- /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
- static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
- // If this is FI+Offset, we can model it.
- if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
- return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
- // If this is (FI+Offset1)+Offset2, we can model it.
- if (Ptr.getOpcode() != ISD::ADD ||
- !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
- !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
- return MachinePointerInfo();
- int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
- return MachinePointerInfo::getFixedStack(FI, Offset+
- cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
- }
- /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
- /// MachinePointerInfo record from it. This is particularly useful because the
- /// code generator has many cases where it doesn't bother passing in a
- /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
- static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
- // If the 'Offset' value isn't a constant, we can't handle this.
- if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
- return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
- if (OffsetOp.getOpcode() == ISD::UNDEF)
- return InferPointerInfo(Ptr);
- return MachinePointerInfo();
- }
- SDValue
- SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
- EVT VT, DebugLoc dl, SDValue Chain,
- SDValue Ptr, SDValue Offset,
- MachinePointerInfo PtrInfo, EVT MemVT,
- bool isVolatile, bool isNonTemporal, bool isInvariant,
- unsigned Alignment, const MDNode *TBAAInfo,
- const MDNode *Ranges) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(VT);
- unsigned Flags = MachineMemOperand::MOLoad;
- if (isVolatile)
- Flags |= MachineMemOperand::MOVolatile;
- if (isNonTemporal)
- Flags |= MachineMemOperand::MONonTemporal;
- if (isInvariant)
- Flags |= MachineMemOperand::MOInvariant;
- // If we don't have a PtrInfo, infer the trivial frame index case to simplify
- // clients.
- if (PtrInfo.V == 0)
- PtrInfo = InferPointerInfo(Ptr, Offset);
- MachineFunction &MF = getMachineFunction();
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
- TBAAInfo, Ranges);
- return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
- }
- SDValue
- SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
- EVT VT, DebugLoc dl, SDValue Chain,
- SDValue Ptr, SDValue Offset, EVT MemVT,
- MachineMemOperand *MMO) {
- if (VT == MemVT) {
- ExtType = ISD::NON_EXTLOAD;
- } else if (ExtType == ISD::NON_EXTLOAD) {
- assert(VT == MemVT && "Non-extending load from different memory type!");
- } else {
- // Extending load.
- assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
- "Should only be an extending load, not truncating!");
- assert(VT.isInteger() == MemVT.isInteger() &&
- "Cannot convert from FP to Int or Int -> FP!");
- assert(VT.isVector() == MemVT.isVector() &&
- "Cannot use trunc store to convert to or from a vector!");
- assert((!VT.isVector() ||
- VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
- "Cannot use trunc store to change the number of vector elements!");
- }
- bool Indexed = AM != ISD::UNINDEXED;
- assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
- "Unindexed load with an offset!");
- SDVTList VTs = Indexed ?
- getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
- SDValue Ops[] = { Chain, Ptr, Offset };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
- ID.AddInteger(MemVT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
- MMO->isNonTemporal(),
- MMO->isInvariant()));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
- cast<LoadSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
- MemVT, MMO);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
- SDValue Chain, SDValue Ptr,
- MachinePointerInfo PtrInfo,
- bool isVolatile, bool isNonTemporal,
- bool isInvariant, unsigned Alignment,
- const MDNode *TBAAInfo,
- const MDNode *Ranges) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
- PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment,
- TBAAInfo, Ranges);
- }
- SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
- SDValue Chain, SDValue Ptr,
- MachinePointerInfo PtrInfo, EVT MemVT,
- bool isVolatile, bool isNonTemporal,
- unsigned Alignment, const MDNode *TBAAInfo) {
- SDValue Undef = getUNDEF(Ptr.getValueType());
- return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
- PtrInfo, MemVT, isVolatile, isNonTemporal, false, Alignment,
- TBAAInfo);
- }
- SDValue
- SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
- SDValue Offset, ISD::MemIndexedMode AM) {
- LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
- assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
- "Load is already a indexed load!");
- return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
- LD->getChain(), Base, Offset, LD->getPointerInfo(),
- LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(),
- false, LD->getAlignment());
- }
- SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
- SDValue Ptr, MachinePointerInfo PtrInfo,
- bool isVolatile, bool isNonTemporal,
- unsigned Alignment, const MDNode *TBAAInfo) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(Val.getValueType());
- unsigned Flags = MachineMemOperand::MOStore;
- if (isVolatile)
- Flags |= MachineMemOperand::MOVolatile;
- if (isNonTemporal)
- Flags |= MachineMemOperand::MONonTemporal;
- if (PtrInfo.V == 0)
- PtrInfo = InferPointerInfo(Ptr);
- MachineFunction &MF = getMachineFunction();
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(PtrInfo, Flags,
- Val.getValueType().getStoreSize(), Alignment,
- TBAAInfo);
- return getStore(Chain, dl, Val, Ptr, MMO);
- }
- SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
- SDValue Ptr, MachineMemOperand *MMO) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- EVT VT = Val.getValueType();
- SDVTList VTs = getVTList(MVT::Other);
- SDValue Undef = getUNDEF(Ptr.getValueType());
- SDValue Ops[] = { Chain, Val, Ptr, Undef };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
- ID.AddInteger(VT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
- MMO->isNonTemporal(), MMO->isInvariant()));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
- cast<StoreSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
- false, VT, MMO);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
- SDValue Ptr, MachinePointerInfo PtrInfo,
- EVT SVT,bool isVolatile, bool isNonTemporal,
- unsigned Alignment,
- const MDNode *TBAAInfo) {
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- if (Alignment == 0) // Ensure that codegen never sees alignment 0
- Alignment = getEVTAlignment(SVT);
- unsigned Flags = MachineMemOperand::MOStore;
- if (isVolatile)
- Flags |= MachineMemOperand::MOVolatile;
- if (isNonTemporal)
- Flags |= MachineMemOperand::MONonTemporal;
- if (PtrInfo.V == 0)
- PtrInfo = InferPointerInfo(Ptr);
- MachineFunction &MF = getMachineFunction();
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
- TBAAInfo);
- return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
- }
- SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
- SDValue Ptr, EVT SVT,
- MachineMemOperand *MMO) {
- EVT VT = Val.getValueType();
- assert(Chain.getValueType() == MVT::Other &&
- "Invalid chain type");
- if (VT == SVT)
- return getStore(Chain, dl, Val, Ptr, MMO);
- assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
- "Should only be a truncating store, not extending!");
- assert(VT.isInteger() == SVT.isInteger() &&
- "Can't do FP-INT conversion!");
- assert(VT.isVector() == SVT.isVector() &&
- "Cannot use trunc store to convert to or from a vector!");
- assert((!VT.isVector() ||
- VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
- "Cannot use trunc store to change the number of vector elements!");
- SDVTList VTs = getVTList(MVT::Other);
- SDValue Undef = getUNDEF(Ptr.getValueType());
- SDValue Ops[] = { Chain, Val, Ptr, Undef };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
- ID.AddInteger(SVT.getRawBits());
- ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
- MMO->isNonTemporal(), MMO->isInvariant()));
- ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
- cast<StoreSDNode>(E)->refineAlignment(MMO);
- return SDValue(E, 0);
- }
- SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
- true, SVT, MMO);
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue
- SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
- SDValue Offset, ISD::MemIndexedMode AM) {
- StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
- assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
- "Store is already a indexed store!");
- SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
- SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
- ID.AddInteger(ST->getMemoryVT().getRawBits());
- ID.AddInteger(ST->getRawSubclassData());
- ID.AddInteger(ST->getPointerInfo().getAddrSpace());
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
- ST->isTruncatingStore(),
- ST->getMemoryVT(),
- ST->getMemOperand());
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
- SDValue Chain, SDValue Ptr,
- SDValue SV,
- unsigned Align) {
- SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
- return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
- const SDUse *Ops, unsigned NumOps) {
- switch (NumOps) {
- case 0: return getNode(Opcode, DL, VT);
- case 1: return getNode(Opcode, DL, VT, Ops[0]);
- case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
- case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
- default: break;
- }
- // Copy from an SDUse array into an SDValue array for use with
- // the regular getNode logic.
- SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
- return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
- const SDValue *Ops, unsigned NumOps) {
- switch (NumOps) {
- case 0: return getNode(Opcode, DL, VT);
- case 1: return getNode(Opcode, DL, VT, Ops[0]);
- case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
- case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
- default: break;
- }
- switch (Opcode) {
- default: break;
- case ISD::SELECT_CC: {
- assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
- assert(Ops[0].getValueType() == Ops[1].getValueType() &&
- "LHS and RHS of condition must have same type!");
- assert(Ops[2].getValueType() == Ops[3].getValueType() &&
- "True and False arms of SelectCC must have same type!");
- assert(Ops[2].getValueType() == VT &&
- "select_cc node must be of same type as true and false value!");
- break;
- }
- case ISD::BR_CC: {
- assert(NumOps == 5 && "BR_CC takes 5 operands!");
- assert(Ops[2].getValueType() == Ops[3].getValueType() &&
- "LHS/RHS of comparison should match types!");
- break;
- }
- }
- // Memoize nodes.
- SDNode *N;
- SDVTList VTs = getVTList(VT);
- if (VT != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
- CSEMap.InsertNode(N, IP);
- } else {
- N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
- }
- AllNodes.push_back(N);
- #ifndef NDEBUG
- VerifySDNode(N);
- #endif
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
- const std::vector<EVT> &ResultTys,
- const SDValue *Ops, unsigned NumOps) {
- return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
- Ops, NumOps);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
- const EVT *VTs, unsigned NumVTs,
- const SDValue *Ops, unsigned NumOps) {
- if (NumVTs == 1)
- return getNode(Opcode, DL, VTs[0], Ops, NumOps);
- return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
- const SDValue *Ops, unsigned NumOps) {
- if (VTList.NumVTs == 1)
- return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
- #if 0
- switch (Opcode) {
- // FIXME: figure out how to safely handle things like
- // int foo(int x) { return 1 << (x & 255); }
- // int bar() { return foo(256); }
- case ISD::SRA_PARTS:
- case ISD::SRL_PARTS:
- case ISD::SHL_PARTS:
- if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
- cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
- return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
- else if (N3.getOpcode() == ISD::AND)
- if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
- // If the and is only masking out bits that cannot effect the shift,
- // eliminate the and.
- unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
- if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
- return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
- }
- break;
- }
- #endif
- // Memoize the node unless it returns a flag.
- SDNode *N;
- if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return SDValue(E, 0);
- if (NumOps == 1) {
- N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
- } else if (NumOps == 2) {
- N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
- } else if (NumOps == 3) {
- N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
- Ops[2]);
- } else {
- N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
- }
- CSEMap.InsertNode(N, IP);
- } else {
- if (NumOps == 1) {
- N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
- } else if (NumOps == 2) {
- N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
- } else if (NumOps == 3) {
- N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
- Ops[2]);
- } else {
- N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
- }
- }
- AllNodes.push_back(N);
- #ifndef NDEBUG
- VerifySDNode(N);
- #endif
- return SDValue(N, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
- return getNode(Opcode, DL, VTList, 0, 0);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
- SDValue N1) {
- SDValue Ops[] = { N1 };
- return getNode(Opcode, DL, VTList, Ops, 1);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
- SDValue N1, SDValue N2) {
- SDValue Ops[] = { N1, N2 };
- return getNode(Opcode, DL, VTList, Ops, 2);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
- SDValue N1, SDValue N2, SDValue N3) {
- SDValue Ops[] = { N1, N2, N3 };
- return getNode(Opcode, DL, VTList, Ops, 3);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
- SDValue N1, SDValue N2, SDValue N3,
- SDValue N4) {
- SDValue Ops[] = { N1, N2, N3, N4 };
- return getNode(Opcode, DL, VTList, Ops, 4);
- }
- SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
- SDValue N1, SDValue N2, SDValue N3,
- SDValue N4, SDValue N5) {
- SDValue Ops[] = { N1, N2, N3, N4, N5 };
- return getNode(Opcode, DL, VTList, Ops, 5);
- }
- SDVTList SelectionDAG::getVTList(EVT VT) {
- return makeVTList(SDNode::getValueTypeList(VT), 1);
- }
- SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
- for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
- E = VTList.rend(); I != E; ++I)
- if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
- return *I;
- EVT *Array = Allocator.Allocate<EVT>(2);
- Array[0] = VT1;
- Array[1] = VT2;
- SDVTList Result = makeVTList(Array, 2);
- VTList.push_back(Result);
- return Result;
- }
- SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
- for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
- E = VTList.rend(); I != E; ++I)
- if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
- I->VTs[2] == VT3)
- return *I;
- EVT *Array = Allocator.Allocate<EVT>(3);
- Array[0] = VT1;
- Array[1] = VT2;
- Array[2] = VT3;
- SDVTList Result = makeVTList(Array, 3);
- VTList.push_back(Result);
- return Result;
- }
- SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
- for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
- E = VTList.rend(); I != E; ++I)
- if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
- I->VTs[2] == VT3 && I->VTs[3] == VT4)
- return *I;
- EVT *Array = Allocator.Allocate<EVT>(4);
- Array[0] = VT1;
- Array[1] = VT2;
- Array[2] = VT3;
- Array[3] = VT4;
- SDVTList Result = makeVTList(Array, 4);
- VTList.push_back(Result);
- return Result;
- }
- SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
- switch (NumVTs) {
- case 0: llvm_unreachable("Cannot have nodes without results!");
- case 1: return getVTList(VTs[0]);
- case 2: return getVTList(VTs[0], VTs[1]);
- case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
- case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
- default: break;
- }
- for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
- E = VTList.rend(); I != E; ++I) {
- if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
- continue;
- if (std::equal(&VTs[2], &VTs[NumVTs], &I->VTs[2]))
- return *I;
- }
- EVT *Array = Allocator.Allocate<EVT>(NumVTs);
- std::copy(VTs, VTs+NumVTs, Array);
- SDVTList Result = makeVTList(Array, NumVTs);
- VTList.push_back(Result);
- return Result;
- }
- /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
- /// specified operands. If the resultant node already exists in the DAG,
- /// this does not modify the specified node, instead it returns the node that
- /// already exists. If the resultant node does not exist in the DAG, the
- /// input node is returned. As a degenerate case, if you specify the same
- /// input operands as the node already has, the input node is returned.
- SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
- assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
- // Check to see if there is no change.
- if (Op == N->getOperand(0)) return N;
- // See if the modified node already exists.
- void *InsertPos = 0;
- if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
- return Existing;
- // Nope it doesn't. Remove the node from its current place in the maps.
- if (InsertPos)
- if (!RemoveNodeFromCSEMaps(N))
- InsertPos = 0;
- // Now we update the operands.
- N->OperandList[0].set(Op);
- // If this gets put into a CSE map, add it.
- if (InsertPos) CSEMap.InsertNode(N, InsertPos);
- return N;
- }
- SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
- assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
- // Check to see if there is no change.
- if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
- return N; // No operands changed, just return the input node.
- // See if the modified node already exists.
- void *InsertPos = 0;
- if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
- return Existing;
- // Nope it doesn't. Remove the node from its current place in the maps.
- if (InsertPos)
- if (!RemoveNodeFromCSEMaps(N))
- InsertPos = 0;
- // Now we update the operands.
- if (N->OperandList[0] != Op1)
- N->OperandList[0].set(Op1);
- if (N->OperandList[1] != Op2)
- N->OperandList[1].set(Op2);
- // If this gets put into a CSE map, add it.
- if (InsertPos) CSEMap.InsertNode(N, InsertPos);
- return N;
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
- SDValue Ops[] = { Op1, Op2, Op3 };
- return UpdateNodeOperands(N, Ops, 3);
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
- SDValue Op3, SDValue Op4) {
- SDValue Ops[] = { Op1, Op2, Op3, Op4 };
- return UpdateNodeOperands(N, Ops, 4);
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
- SDValue Op3, SDValue Op4, SDValue Op5) {
- SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
- return UpdateNodeOperands(N, Ops, 5);
- }
- SDNode *SelectionDAG::
- UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
- assert(N->getNumOperands() == NumOps &&
- "Update with wrong number of operands");
- // Check to see if there is no change.
- bool AnyChange = false;
- for (unsigned i = 0; i != NumOps; ++i) {
- if (Ops[i] != N->getOperand(i)) {
- AnyChange = true;
- break;
- }
- }
- // No operands changed, just return the input node.
- if (!AnyChange) return N;
- // See if the modified node already exists.
- void *InsertPos = 0;
- if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
- return Existing;
- // Nope it doesn't. Remove the node from its current place in the maps.
- if (InsertPos)
- if (!RemoveNodeFromCSEMaps(N))
- InsertPos = 0;
- // Now we update the operands.
- for (unsigned i = 0; i != NumOps; ++i)
- if (N->OperandList[i] != Ops[i])
- N->OperandList[i].set(Ops[i]);
- // If this gets put into a CSE map, add it.
- if (InsertPos) CSEMap.InsertNode(N, InsertPos);
- return N;
- }
- /// DropOperands - Release the operands and set this node to have
- /// zero operands.
- void SDNode::DropOperands() {
- // Unlike the code in MorphNodeTo that does this, we don't need to
- // watch for dead nodes here.
- for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
- SDUse &Use = *I++;
- Use.set(SDValue());
- }
- }
- /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
- /// machine opcode.
- ///
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT) {
- SDVTList VTs = getVTList(VT);
- return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, SDValue Op1) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, SDValue Op1,
- SDValue Op2) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, SDValue Op1,
- SDValue Op2, SDValue Op3) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT, const SDValue *Ops,
- unsigned NumOps) {
- SDVTList VTs = getVTList(VT);
- return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, const SDValue *Ops,
- unsigned NumOps) {
- SDVTList VTs = getVTList(VT1, VT2);
- return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2) {
- SDVTList VTs = getVTList(VT1, VT2);
- return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, EVT VT3,
- const SDValue *Ops, unsigned NumOps) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, EVT VT3, EVT VT4,
- const SDValue *Ops, unsigned NumOps) {
- SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
- return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2,
- SDValue Op1) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2,
- SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2,
- SDValue Op1, SDValue Op2,
- SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- EVT VT1, EVT VT2, EVT VT3,
- SDValue Op1, SDValue Op2,
- SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
- }
- SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
- SDVTList VTs, const SDValue *Ops,
- unsigned NumOps) {
- N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
- // Reset the NodeID to -1.
- N->setNodeId(-1);
- return N;
- }
- /// UpdadeDebugLocOnMergedSDNode - If the opt level is -O0 then it throws away
- /// the line number information on the merged node since it is not possible to
- /// preserve the information that operation is associated with multiple lines.
- /// This will make the debugger working better at -O0, were there is a higher
- /// probability having other instructions associated with that line.
- ///
- SDNode *SelectionDAG::UpdadeDebugLocOnMergedSDNode(SDNode *N, DebugLoc OLoc) {
- DebugLoc NLoc = N->getDebugLoc();
- if (!(NLoc.isUnknown()) && (OptLevel == CodeGenOpt::None) && (OLoc != NLoc)) {
- N->setDebugLoc(DebugLoc());
- }
- return N;
- }
- /// MorphNodeTo - This *mutates* the specified node to have the specified
- /// return type, opcode, and operands.
- ///
- /// Note that MorphNodeTo returns the resultant node. If there is already a
- /// node of the specified opcode and operands, it returns that node instead of
- /// the current one. Note that the DebugLoc need not be the same.
- ///
- /// Using MorphNodeTo is faster than creating a new node and swapping it in
- /// with ReplaceAllUsesWith both because it often avoids allocating a new
- /// node, and because it doesn't require CSE recalculation for any of
- /// the node's users.
- ///
- SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
- SDVTList VTs, const SDValue *Ops,
- unsigned NumOps) {
- // If an identical node already exists, use it.
- void *IP = 0;
- if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
- if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
- return UpdadeDebugLocOnMergedSDNode(ON, N->getDebugLoc());
- }
- if (!RemoveNodeFromCSEMaps(N))
- IP = 0;
- // Start the morphing.
- N->NodeType = Opc;
- N->ValueList = VTs.VTs;
- N->NumValues = VTs.NumVTs;
- // Clear the operands list, updating used nodes to remove this from their
- // use list. Keep track of any operands that become dead as a result.
- SmallPtrSet<SDNode*, 16> DeadNodeSet;
- for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
- SDUse &Use = *I++;
- SDNode *Used = Use.getNode();
- Use.set(SDValue());
- if (Used->use_empty())
- DeadNodeSet.insert(Used);
- }
- if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
- // Initialize the memory references information.
- MN->setMemRefs(0, 0);
- // If NumOps is larger than the # of operands we can have in a
- // MachineSDNode, reallocate the operand list.
- if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
- if (MN->OperandsNeedDelete)
- delete[] MN->OperandList;
- if (NumOps > array_lengthof(MN->LocalOperands))
- // We're creating a final node that will live unmorphed for the
- // remainder of the current SelectionDAG iteration, so we can allocate
- // the operands directly out of a pool with no recycling metadata.
- MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
- Ops, NumOps);
- else
- MN->InitOperands(MN->LocalOperands, Ops, NumOps);
- MN->OperandsNeedDelete = false;
- } else
- MN->InitOperands(MN->OperandList, Ops, NumOps);
- } else {
- // If NumOps is larger than the # of operands we currently have, reallocate
- // the operand list.
- if (NumOps > N->NumOperands) {
- if (N->OperandsNeedDelete)
- delete[] N->OperandList;
- N->InitOperands(new SDUse[NumOps], Ops, NumOps);
- N->OperandsNeedDelete = true;
- } else
- N->InitOperands(N->OperandList, Ops, NumOps);
- }
- // Delete any nodes that are still dead after adding the uses for the
- // new operands.
- if (!DeadNodeSet.empty()) {
- SmallVector<SDNode *, 16> DeadNodes;
- for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
- E = DeadNodeSet.end(); I != E; ++I)
- if ((*I)->use_empty())
- DeadNodes.push_back(*I);
- RemoveDeadNodes(DeadNodes);
- }
- if (IP)
- CSEMap.InsertNode(N, IP); // Memoize the new node.
- return N;
- }
- /// getMachineNode - These are used for target selectors to create a new node
- /// with specified return type(s), MachineInstr opcode, and operands.
- ///
- /// Note that getMachineNode returns the resultant node. If there is already a
- /// node of the specified opcode and operands, it returns that node instead of
- /// the current one.
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
- SDVTList VTs = getVTList(VT);
- return getMachineNode(Opcode, dl, VTs, 0, 0);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1 };
- return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
- SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2 };
- return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
- SDValue Op1, SDValue Op2, SDValue Op3) {
- SDVTList VTs = getVTList(VT);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
- const SDValue *Ops, unsigned NumOps) {
- SDVTList VTs = getVTList(VT);
- return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
- SDVTList VTs = getVTList(VT1, VT2);
- return getMachineNode(Opcode, dl, VTs, 0, 0);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
- EVT VT1, EVT VT2, SDValue Op1) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1 };
- return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
- EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2 };
- return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
- EVT VT1, EVT VT2, SDValue Op1,
- SDValue Op2, SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
- EVT VT1, EVT VT2,
- const SDValue *Ops, unsigned NumOps) {
- SDVTList VTs = getVTList(VT1, VT2);
- return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
- EVT VT1, EVT VT2, EVT VT3,
- SDValue Op1, SDValue Op2) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- SDValue Ops[] = { Op1, Op2 };
- return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
- EVT VT1, EVT VT2, EVT VT3,
- SDValue Op1, SDValue Op2, SDValue Op3) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- SDValue Ops[] = { Op1, Op2, Op3 };
- return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
- EVT VT1, EVT VT2, EVT VT3,
- const SDValue *Ops, unsigned NumOps) {
- SDVTList VTs = getVTList(VT1, VT2, VT3);
- return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
- EVT VT2, EVT VT3, EVT VT4,
- const SDValue *Ops, unsigned NumOps) {
- SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
- return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
- const std::vector<EVT> &ResultTys,
- const SDValue *Ops, unsigned NumOps) {
- SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
- return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
- }
- MachineSDNode *
- SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
- const SDValue *Ops, unsigned NumOps) {
- bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
- MachineSDNode *N;
- void *IP = 0;
- if (DoCSE) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
- IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
- return cast<MachineSDNode>(UpdadeDebugLocOnMergedSDNode(E, DL));
- }
- }
- // Allocate a new MachineSDNode.
- N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
- // Initialize the operands list.
- if (NumOps > array_lengthof(N->LocalOperands))
- // We're creating a final node that will live unmorphed for the
- // remainder of the current SelectionDAG iteration, so we can allocate
- // the operands directly out of a pool with no recycling metadata.
- N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
- Ops, NumOps);
- else
- N->InitOperands(N->LocalOperands, Ops, NumOps);
- N->OperandsNeedDelete = false;
- if (DoCSE)
- CSEMap.InsertNode(N, IP);
- AllNodes.push_back(N);
- #ifndef NDEBUG
- VerifyMachineNode(N);
- #endif
- return N;
- }
- /// getTargetExtractSubreg - A convenience function for creating
- /// TargetOpcode::EXTRACT_SUBREG nodes.
- SDValue
- SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
- SDValue Operand) {
- SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
- SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
- VT, Operand, SRIdxVal);
- return SDValue(Subreg, 0);
- }
- /// getTargetInsertSubreg - A convenience function for creating
- /// TargetOpcode::INSERT_SUBREG nodes.
- SDValue
- SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
- SDValue Operand, SDValue Subreg) {
- SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
- SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
- VT, Operand, Subreg, SRIdxVal);
- return SDValue(Result, 0);
- }
- /// getNodeIfExists - Get the specified node if it's already available, or
- /// else return NULL.
- SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
- const SDValue *Ops, unsigned NumOps) {
- if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
- FoldingSetNodeID ID;
- AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
- void *IP = 0;
- if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
- return E;
- }
- return NULL;
- }
- /// getDbgValue - Creates a SDDbgValue node.
- ///
- SDDbgValue *
- SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
- DebugLoc DL, unsigned O) {
- return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
- }
- SDDbgValue *
- SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
- DebugLoc DL, unsigned O) {
- return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
- }
- SDDbgValue *
- SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
- DebugLoc DL, unsigned O) {
- return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
- }
- namespace {
- /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
- /// pointed to by a use iterator is deleted, increment the use iterator
- /// so that it doesn't dangle.
- ///
- class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
- SDNode::use_iterator &UI;
- SDNode::use_iterator &UE;
- virtual void NodeDeleted(SDNode *N, SDNode *E) {
- // Increment the iterator as needed.
- while (UI != UE && N == *UI)
- ++UI;
- }
- public:
- RAUWUpdateListener(SelectionDAG &d,
- SDNode::use_iterator &ui,
- SDNode::use_iterator &ue)
- : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
- };
- }
- /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
- /// This can cause recursive merging of nodes in the DAG.
- ///
- /// This version assumes From has a single result value.
- ///
- void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
- SDNode *From = FromN.getNode();
- assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
- "Cannot replace with this method!");
- assert(From != To.getNode() && "Cannot replace uses of with self");
- // Iterate over all the existing uses of From. New uses will be added
- // to the beginning of the use list, which we avoid visiting.
- // This specifically avoids visiting uses of From that arise while the
- // replacement is happening, because any such uses would be the result
- // of CSE: If an existing node looks like From after one of its operands
- // is replaced by To, we don't want to replace of all its users with To
- // too. See PR3018 for more info.
- SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- ++UI;
- Use.set(To);
- } while (UI != UE && *UI == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (FromN == getRoot())
- setRoot(To);
- }
- /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
- /// This can cause recursive merging of nodes in the DAG.
- ///
- /// This version assumes that for each value of From, there is a
- /// corresponding value in To in the same position with the same type.
- ///
- void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
- #ifndef NDEBUG
- for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
- assert((!From->hasAnyUseOfValue(i) ||
- From->getValueType(i) == To->getValueType(i)) &&
- "Cannot use this version of ReplaceAllUsesWith!");
- #endif
- // Handle the trivial case.
- if (From == To)
- return;
- // Iterate over just the existing users of From. See the comments in
- // the ReplaceAllUsesWith above.
- SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- ++UI;
- Use.setNode(To);
- } while (UI != UE && *UI == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (From == getRoot().getNode())
- setRoot(SDValue(To, getRoot().getResNo()));
- }
- /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
- /// This can cause recursive merging of nodes in the DAG.
- ///
- /// This version can replace From with any result values. To must match the
- /// number and types of values returned by From.
- void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
- if (From->getNumValues() == 1) // Handle the simple case efficiently.
- return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
- // Iterate over just the existing users of From. See the comments in
- // the ReplaceAllUsesWith above.
- SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- const SDValue &ToOp = To[Use.getResNo()];
- ++UI;
- Use.set(ToOp);
- } while (UI != UE && *UI == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (From == getRoot().getNode())
- setRoot(SDValue(To[getRoot().getResNo()]));
- }
- /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
- /// uses of other values produced by From.getNode() alone. The Deleted
- /// vector is handled the same way as for ReplaceAllUsesWith.
- void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
- // Handle the really simple, really trivial case efficiently.
- if (From == To) return;
- // Handle the simple, trivial, case efficiently.
- if (From.getNode()->getNumValues() == 1) {
- ReplaceAllUsesWith(From, To);
- return;
- }
- // Iterate over just the existing users of From. See the comments in
- // the ReplaceAllUsesWith above.
- SDNode::use_iterator UI = From.getNode()->use_begin(),
- UE = From.getNode()->use_end();
- RAUWUpdateListener Listener(*this, UI, UE);
- while (UI != UE) {
- SDNode *User = *UI;
- bool UserRemovedFromCSEMaps = false;
- // A user can appear in a use list multiple times, and when this
- // happens the uses are usually next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- SDUse &Use = UI.getUse();
- // Skip uses of different values from the same node.
- if (Use.getResNo() != From.getResNo()) {
- ++UI;
- continue;
- }
- // If this node hasn't been modified yet, it's still in the CSE maps,
- // so remove its old self from the CSE maps.
- if (!UserRemovedFromCSEMaps) {
- RemoveNodeFromCSEMaps(User);
- UserRemovedFromCSEMaps = true;
- }
- ++UI;
- Use.set(To);
- } while (UI != UE && *UI == User);
- // We are iterating over all uses of the From node, so if a use
- // doesn't use the specific value, no changes are made.
- if (!UserRemovedFromCSEMaps)
- continue;
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- // If we just RAUW'd the root, take note.
- if (From == getRoot())
- setRoot(To);
- }
- namespace {
- /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
- /// to record information about a use.
- struct UseMemo {
- SDNode *User;
- unsigned Index;
- SDUse *Use;
- };
- /// operator< - Sort Memos by User.
- bool operator<(const UseMemo &L, const UseMemo &R) {
- return (intptr_t)L.User < (intptr_t)R.User;
- }
- }
- /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
- /// uses of other values produced by From.getNode() alone. The same value
- /// may appear in both the From and To list. The Deleted vector is
- /// handled the same way as for ReplaceAllUsesWith.
- void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
- const SDValue *To,
- unsigned Num){
- // Handle the simple, trivial case efficiently.
- if (Num == 1)
- return ReplaceAllUsesOfValueWith(*From, *To);
- // Read up all the uses and make records of them. This helps
- // processing new uses that are introduced during the
- // replacement process.
- SmallVector<UseMemo, 4> Uses;
- for (unsigned i = 0; i != Num; ++i) {
- unsigned FromResNo = From[i].getResNo();
- SDNode *FromNode = From[i].getNode();
- for (SDNode::use_iterator UI = FromNode->use_begin(),
- E = FromNode->use_end(); UI != E; ++UI) {
- SDUse &Use = UI.getUse();
- if (Use.getResNo() == FromResNo) {
- UseMemo Memo = { *UI, i, &Use };
- Uses.push_back(Memo);
- }
- }
- }
- // Sort the uses, so that all the uses from a given User are together.
- std::sort(Uses.begin(), Uses.end());
- for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
- UseIndex != UseIndexEnd; ) {
- // We know that this user uses some value of From. If it is the right
- // value, update it.
- SDNode *User = Uses[UseIndex].User;
- // This node is about to morph, remove its old self from the CSE maps.
- RemoveNodeFromCSEMaps(User);
- // The Uses array is sorted, so all the uses for a given User
- // are next to each other in the list.
- // To help reduce the number of CSE recomputations, process all
- // the uses of this user that we can find this way.
- do {
- unsigned i = Uses[UseIndex].Index;
- SDUse &Use = *Uses[UseIndex].Use;
- ++UseIndex;
- Use.set(To[i]);
- } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
- // Now that we have modified User, add it back to the CSE maps. If it
- // already exists there, recursively merge the results together.
- AddModifiedNodeToCSEMaps(User);
- }
- }
- /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
- /// based on their topological order. It returns the maximum id and a vector
- /// of the SDNodes* in assigned order by reference.
- unsigned SelectionDAG::AssignTopologicalOrder() {
- unsigned DAGSize = 0;
- // SortedPos tracks the progress of the algorithm. Nodes before it are
- // sorted, nodes after it are unsorted. When the algorithm completes
- // it is at the end of the list.
- allnodes_iterator SortedPos = allnodes_begin();
- // Visit all the nodes. Move nodes with no operands to the front of
- // the list immediately. Annotate nodes that do have operands with their
- // operand count. Before we do this, the Node Id fields of the nodes
- // may contain arbitrary values. After, the Node Id fields for nodes
- // before SortedPos will contain the topological sort index, and the
- // Node Id fields for nodes At SortedPos and after will contain the
- // count of outstanding operands.
- for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
- SDNode *N = I++;
- checkForCycles(N);
- unsigned Degree = N->getNumOperands();
- if (Degree == 0) {
- // A node with no uses, add it to the result array immediately.
- N->setNodeId(DAGSize++);
- allnodes_iterator Q = N;
- if (Q != SortedPos)
- SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
- assert(SortedPos != AllNodes.end() && "Overran node list");
- ++SortedPos;
- } else {
- // Temporarily use the Node Id as scratch space for the degree count.
- N->setNodeId(Degree);
- }
- }
- // Visit all the nodes. As we iterate, move nodes into sorted order,
- // such that by the time the end is reached all nodes will be sorted.
- for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
- SDNode *N = I;
- checkForCycles(N);
- // N is in sorted position, so all its uses have one less operand
- // that needs to be sorted.
- for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
- UI != UE; ++UI) {
- SDNode *P = *UI;
- unsigned Degree = P->getNodeId();
- assert(Degree != 0 && "Invalid node degree");
- --Degree;
- if (Degree == 0) {
- // All of P's operands are sorted, so P may sorted now.
- P->setNodeId(DAGSize++);
- if (P != SortedPos)
- SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
- assert(SortedPos != AllNodes.end() && "Overran node list");
- ++SortedPos;
- } else {
- // Update P's outstanding operand count.
- P->setNodeId(Degree);
- }
- }
- if (I == SortedPos) {
- #ifndef NDEBUG
- SDNode *S = ++I;
- dbgs() << "Overran sorted position:\n";
- S->dumprFull();
- #endif
- llvm_unreachable(0);
- }
- }
- assert(SortedPos == AllNodes.end() &&
- "Topological sort incomplete!");
- assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
- "First node in topological sort is not the entry token!");
- assert(AllNodes.front().getNodeId() == 0 &&
- "First node in topological sort has non-zero id!");
- assert(AllNodes.front().getNumOperands() == 0 &&
- "First node in topological sort has operands!");
- assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
- "Last node in topologic sort has unexpected id!");
- assert(AllNodes.back().use_empty() &&
- "Last node in topologic sort has users!");
- assert(DAGSize == allnodes_size() && "Node count mismatch!");
- return DAGSize;
- }
- /// AssignOrdering - Assign an order to the SDNode.
- void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
- assert(SD && "Trying to assign an order to a null node!");
- Ordering->add(SD, Order);
- }
- /// GetOrdering - Get the order for the SDNode.
- unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
- assert(SD && "Trying to get the order of a null node!");
- return Ordering->getOrder(SD);
- }
- /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
- /// value is produced by SD.
- void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
- DbgInfo->add(DB, SD, isParameter);
- if (SD)
- SD->setHasDebugValue(true);
- }
- /// TransferDbgValues - Transfer SDDbgValues.
- void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
- if (From == To || !From.getNode()->getHasDebugValue())
- return;
- SDNode *FromNode = From.getNode();
- SDNode *ToNode = To.getNode();
- ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
- SmallVector<SDDbgValue *, 2> ClonedDVs;
- for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
- I != E; ++I) {
- SDDbgValue *Dbg = *I;
- if (Dbg->getKind() == SDDbgValue::SDNODE) {
- SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
- Dbg->getOffset(), Dbg->getDebugLoc(),
- Dbg->getOrder());
- ClonedDVs.push_back(Clone);
- }
- }
- for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
- E = ClonedDVs.end(); I != E; ++I)
- AddDbgValue(*I, ToNode, false);
- }
- //===----------------------------------------------------------------------===//
- // SDNode Class
- //===----------------------------------------------------------------------===//
- HandleSDNode::~HandleSDNode() {
- DropOperands();
- }
- GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
- const GlobalValue *GA,
- EVT VT, int64_t o, unsigned char TF)
- : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
- TheGlobal = GA;
- }
- MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
- MachineMemOperand *mmo)
- : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
- SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
- MMO->isNonTemporal(), MMO->isInvariant());
- assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
- assert(isNonTemporal() == MMO->isNonTemporal() &&
- "Non-temporal encoding error!");
- assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
- }
- MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
- const SDValue *Ops, unsigned NumOps, EVT memvt,
- MachineMemOperand *mmo)
- : SDNode(Opc, dl, VTs, Ops, NumOps),
- MemoryVT(memvt), MMO(mmo) {
- SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
- MMO->isNonTemporal(), MMO->isInvariant());
- assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
- assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
- }
- /// Profile - Gather unique data for the node.
- ///
- void SDNode::Profile(FoldingSetNodeID &ID) const {
- AddNodeIDNode(ID, this);
- }
- namespace {
- struct EVTArray {
- std::vector<EVT> VTs;
- EVTArray() {
- VTs.reserve(MVT::LAST_VALUETYPE);
- for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
- VTs.push_back(MVT((MVT::SimpleValueType)i));
- }
- };
- }
- static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
- static ManagedStatic<EVTArray> SimpleVTArray;
- static ManagedStatic<sys::SmartMutex<true> > VTMutex;
- /// getValueTypeList - Return a pointer to the specified value type.
- ///
- const EVT *SDNode::getValueTypeList(EVT VT) {
- if (VT.isExtended()) {
- sys::SmartScopedLock<true> Lock(*VTMutex);
- return &(*EVTs->insert(VT).first);
- } else {
- assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
- "Value type out of range!");
- return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
- }
- }
- /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
- /// indicated value. This method ignores uses of other values defined by this
- /// operation.
- bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
- assert(Value < getNumValues() && "Bad value!");
- // TODO: Only iterate over uses of a given value of the node
- for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
- if (UI.getUse().getResNo() == Value) {
- if (NUses == 0)
- return false;
- --NUses;
- }
- }
- // Found exactly the right number of uses?
- return NUses == 0;
- }
- /// hasAnyUseOfValue - Return true if there are any use of the indicated
- /// value. This method ignores uses of other values defined by this operation.
- bool SDNode::hasAnyUseOfValue(unsigned Value) const {
- assert(Value < getNumValues() && "Bad value!");
- for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
- if (UI.getUse().getResNo() == Value)
- return true;
- return false;
- }
- /// isOnlyUserOf - Return true if this node is the only use of N.
- ///
- bool SDNode::isOnlyUserOf(SDNode *N) const {
- bool Seen = false;
- for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
- SDNode *User = *I;
- if (User == this)
- Seen = true;
- else
- return false;
- }
- return Seen;
- }
- /// isOperand - Return true if this node is an operand of N.
- ///
- bool SDValue::isOperandOf(SDNode *N) const {
- for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
- if (*this == N->getOperand(i))
- return true;
- return false;
- }
- bool SDNode::isOperandOf(SDNode *N) const {
- for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
- if (this == N->OperandList[i].getNode())
- return true;
- return false;
- }
- /// reachesChainWithoutSideEffects - Return true if this operand (which must
- /// be a chain) reaches the specified operand without crossing any
- /// side-effecting instructions on any chain path. In practice, this looks
- /// through token factors and non-volatile loads. In order to remain efficient,
- /// this only looks a couple of nodes in, it does not do an exhaustive search.
- bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
- unsigned Depth) const {
- if (*this == Dest) return true;
- // Don't search too deeply, we just want to be able to see through
- // TokenFactor's etc.
- if (Depth == 0) return false;
- // If this is a token factor, all inputs to the TF happen in parallel. If any
- // of the operands of the TF does not reach dest, then we cannot do the xform.
- if (getOpcode() == ISD::TokenFactor) {
- for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
- if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
- return false;
- return true;
- }
- // Loads don't have side effects, look through them.
- if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
- if (!Ld->isVolatile())
- return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
- }
- return false;
- }
- /// hasPredecessor - Return true if N is a predecessor of this node.
- /// N is either an operand of this node, or can be reached by recursively
- /// traversing up the operands.
- /// NOTE: This is an expensive method. Use it carefully.
- bool SDNode::hasPredecessor(const SDNode *N) const {
- SmallPtrSet<const SDNode *, 32> Visited;
- SmallVector<const SDNode *, 16> Worklist;
- return hasPredecessorHelper(N, Visited, Worklist);
- }
- bool SDNode::hasPredecessorHelper(const SDNode *N,
- SmallPtrSet<const SDNode *, 32> &Visited,
- SmallVector<const SDNode *, 16> &Worklist) const {
- if (Visited.empty()) {
- Worklist.push_back(this);
- } else {
- // Take a look in the visited set. If we've already encountered this node
- // we needn't search further.
- if (Visited.count(N))
- return true;
- }
- // Haven't visited N yet. Continue the search.
- while (!Worklist.empty()) {
- const SDNode *M = Worklist.pop_back_val();
- for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
- SDNode *Op = M->getOperand(i).getNode();
- if (Visited.insert(Op))
- Worklist.push_back(Op);
- if (Op == N)
- return true;
- }
- }
- return false;
- }
- uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
- assert(Num < NumOperands && "Invalid child # of SDNode!");
- return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
- }
- SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
- assert(N->getNumValues() == 1 &&
- "Can't unroll a vector with multiple results!");
- EVT VT = N->getValueType(0);
- unsigned NE = VT.getVectorNumElements();
- EVT EltVT = VT.getVectorElementType();
- DebugLoc dl = N->getDebugLoc();
- SmallVector<SDValue, 8> Scalars;
- SmallVector<SDValue, 4> Operands(N->getNumOperands());
- // If ResNE is 0, fully unroll the vector op.
- if (ResNE == 0)
- ResNE = NE;
- else if (NE > ResNE)
- NE = ResNE;
- unsigned i;
- for (i= 0; i != NE; ++i) {
- for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
- SDValue Operand = N->getOperand(j);
- EVT OperandVT = Operand.getValueType();
- if (OperandVT.isVector()) {
- // A vector operand; extract a single element.
- EVT OperandEltVT = OperandVT.getVectorElementType();
- Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
- OperandEltVT,
- Operand,
- getConstant(i, TLI.getPointerTy()));
- } else {
- // A scalar operand; just use it as is.
- Operands[j] = Operand;
- }
- }
- switch (N->getOpcode()) {
- default:
- Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
- &Operands[0], Operands.size()));
- break;
- case ISD::VSELECT:
- Scalars.push_back(getNode(ISD::SELECT, dl, EltVT,
- &Operands[0], Operands.size()));
- break;
- case ISD::SHL:
- case ISD::SRA:
- case ISD::SRL:
- case ISD::ROTL:
- case ISD::ROTR:
- Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
- getShiftAmountOperand(Operands[0].getValueType(),
- Operands[1])));
- break;
- case ISD::SIGN_EXTEND_INREG:
- case ISD::FP_ROUND_INREG: {
- EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
- Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
- Operands[0],
- getValueType(ExtVT)));
- }
- }
- }
- for (; i < ResNE; ++i)
- Scalars.push_back(getUNDEF(EltVT));
- return getNode(ISD::BUILD_VECTOR, dl,
- EVT::getVectorVT(*getContext(), EltVT, ResNE),
- &Scalars[0], Scalars.size());
- }
- /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
- /// location that is 'Dist' units away from the location that the 'Base' load
- /// is loading from.
- bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
- unsigned Bytes, int Dist) const {
- if (LD->getChain() != Base->getChain())
- return false;
- EVT VT = LD->getValueType(0);
- if (VT.getSizeInBits() / 8 != Bytes)
- return false;
- SDValue Loc = LD->getOperand(1);
- SDValue BaseLoc = Base->getOperand(1);
- if (Loc.getOpcode() == ISD::FrameIndex) {
- if (BaseLoc.getOpcode() != ISD::FrameIndex)
- return false;
- const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
- int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
- int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
- int FS = MFI->getObjectSize(FI);
- int BFS = MFI->getObjectSize(BFI);
- if (FS != BFS || FS != (int)Bytes) return false;
- return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
- }
- // Handle X+C
- if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
- cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
- return true;
- const GlobalValue *GV1 = NULL;
- const GlobalValue *GV2 = NULL;
- int64_t Offset1 = 0;
- int64_t Offset2 = 0;
- bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
- bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
- if (isGA1 && isGA2 && GV1 == GV2)
- return Offset1 == (Offset2 + Dist*Bytes);
- return false;
- }
- /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
- /// it cannot be inferred.
- unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
- // If this is a GlobalAddress + cst, return the alignment.
- const GlobalValue *GV;
- int64_t GVOffset = 0;
- if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
- unsigned PtrWidth = TLI.getPointerTy().getSizeInBits();
- APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
- llvm::ComputeMaskedBits(const_cast<GlobalValue*>(GV), KnownZero, KnownOne,
- TLI.getDataLayout());
- unsigned AlignBits = KnownZero.countTrailingOnes();
- unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
- if (Align)
- return MinAlign(Align, GVOffset);
- }
- // If this is a direct reference to a stack slot, use information about the
- // stack slot's alignment.
- int FrameIdx = 1 << 31;
- int64_t FrameOffset = 0;
- if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
- FrameIdx = FI->getIndex();
- } else if (isBaseWithConstantOffset(Ptr) &&
- isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
- // Handle FI+Cst
- FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
- FrameOffset = Ptr.getConstantOperandVal(1);
- }
- if (FrameIdx != (1 << 31)) {
- const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
- unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
- FrameOffset);
- return FIInfoAlign;
- }
- return 0;
- }
- // getAddressSpace - Return the address space this GlobalAddress belongs to.
- unsigned GlobalAddressSDNode::getAddressSpace() const {
- return getGlobal()->getType()->getAddressSpace();
- }
- Type *ConstantPoolSDNode::getType() const {
- if (isMachineConstantPoolEntry())
- return Val.MachineCPVal->getType();
- return Val.ConstVal->getType();
- }
- bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
- APInt &SplatUndef,
- unsigned &SplatBitSize,
- bool &HasAnyUndefs,
- unsigned MinSplatBits,
- bool isBigEndian) {
- EVT VT = getValueType(0);
- assert(VT.isVector() && "Expected a vector type");
- unsigned sz = VT.getSizeInBits();
- if (MinSplatBits > sz)
- return false;
- SplatValue = APInt(sz, 0);
- SplatUndef = APInt(sz, 0);
- // Get the bits. Bits with undefined values (when the corresponding element
- // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
- // in SplatValue. If any of the values are not constant, give up and return
- // false.
- unsigned int nOps = getNumOperands();
- assert(nOps > 0 && "isConstantSplat has 0-size build vector");
- unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
- for (unsigned j = 0; j < nOps; ++j) {
- unsigned i = isBigEndian ? nOps-1-j : j;
- SDValue OpVal = getOperand(i);
- unsigned BitPos = j * EltBitSize;
- if (OpVal.getOpcode() == ISD::UNDEF)
- SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
- else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
- SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
- zextOrTrunc(sz) << BitPos;
- else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
- SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
- else
- return false;
- }
- // The build_vector is all constants or undefs. Find the smallest element
- // size that splats the vector.
- HasAnyUndefs = (SplatUndef != 0);
- while (sz > 8) {
- unsigned HalfSize = sz / 2;
- APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
- APInt LowValue = SplatValue.trunc(HalfSize);
- APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
- APInt LowUndef = SplatUndef.trunc(HalfSize);
- // If the two halves do not match (ignoring undef bits), stop here.
- if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
- MinSplatBits > HalfSize)
- break;
- SplatValue = HighValue | LowValue;
- SplatUndef = HighUndef & LowUndef;
- sz = HalfSize;
- }
- SplatBitSize = sz;
- return true;
- }
- bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
- // Find the first non-undef value in the shuffle mask.
- unsigned i, e;
- for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
- /* search */;
- assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
- // Make sure all remaining elements are either undef or the same as the first
- // non-undef value.
- for (int Idx = Mask[i]; i != e; ++i)
- if (Mask[i] >= 0 && Mask[i] != Idx)
- return false;
- return true;
- }
- #ifdef XDEBUG
- static void checkForCyclesHelper(const SDNode *N,
- SmallPtrSet<const SDNode*, 32> &Visited,
- SmallPtrSet<const SDNode*, 32> &Checked) {
- // If this node has already been checked, don't check it again.
- if (Checked.count(N))
- return;
- // If a node has already been visited on this depth-first walk, reject it as
- // a cycle.
- if (!Visited.insert(N)) {
- dbgs() << "Offending node:\n";
- N->dumprFull();
- errs() << "Detected cycle in SelectionDAG\n";
- abort();
- }
- for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
- checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
- Checked.insert(N);
- Visited.erase(N);
- }
- #endif
- void llvm::checkForCycles(const llvm::SDNode *N) {
- #ifdef XDEBUG
- assert(N && "Checking nonexistant SDNode");
- SmallPtrSet<const SDNode*, 32> visited;
- SmallPtrSet<const SDNode*, 32> checked;
- checkForCyclesHelper(N, visited, checked);
- #endif
- }
- void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
- checkForCycles(DAG->getRoot().getNode());
- }
|