123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370 |
- //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines several CodeGen-specific LLVM IR analysis utilties.
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/CodeGen/Analysis.h"
- #include "llvm/Analysis/ValueTracking.h"
- #include "llvm/CodeGen/MachineFunction.h"
- #include "llvm/CodeGen/SelectionDAG.h"
- #include "llvm/DataLayout.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Function.h"
- #include "llvm/Instructions.h"
- #include "llvm/IntrinsicInst.h"
- #include "llvm/LLVMContext.h"
- #include "llvm/Module.h"
- #include "llvm/Support/ErrorHandling.h"
- #include "llvm/Support/MathExtras.h"
- #include "llvm/Target/TargetLowering.h"
- #include "llvm/Target/TargetOptions.h"
- using namespace llvm;
- /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
- /// of insertvalue or extractvalue indices that identify a member, return
- /// the linearized index of the start of the member.
- ///
- unsigned llvm::ComputeLinearIndex(Type *Ty,
- const unsigned *Indices,
- const unsigned *IndicesEnd,
- unsigned CurIndex) {
- // Base case: We're done.
- if (Indices && Indices == IndicesEnd)
- return CurIndex;
- // Given a struct type, recursively traverse the elements.
- if (StructType *STy = dyn_cast<StructType>(Ty)) {
- for (StructType::element_iterator EB = STy->element_begin(),
- EI = EB,
- EE = STy->element_end();
- EI != EE; ++EI) {
- if (Indices && *Indices == unsigned(EI - EB))
- return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
- CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex);
- }
- return CurIndex;
- }
- // Given an array type, recursively traverse the elements.
- else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- Type *EltTy = ATy->getElementType();
- for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
- if (Indices && *Indices == i)
- return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
- CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex);
- }
- return CurIndex;
- }
- // We haven't found the type we're looking for, so keep searching.
- return CurIndex + 1;
- }
- /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
- /// EVTs that represent all the individual underlying
- /// non-aggregate types that comprise it.
- ///
- /// If Offsets is non-null, it points to a vector to be filled in
- /// with the in-memory offsets of each of the individual values.
- ///
- void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
- SmallVectorImpl<EVT> &ValueVTs,
- SmallVectorImpl<uint64_t> *Offsets,
- uint64_t StartingOffset) {
- // Given a struct type, recursively traverse the elements.
- if (StructType *STy = dyn_cast<StructType>(Ty)) {
- const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy);
- for (StructType::element_iterator EB = STy->element_begin(),
- EI = EB,
- EE = STy->element_end();
- EI != EE; ++EI)
- ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
- StartingOffset + SL->getElementOffset(EI - EB));
- return;
- }
- // Given an array type, recursively traverse the elements.
- if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
- Type *EltTy = ATy->getElementType();
- uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy);
- for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
- ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
- StartingOffset + i * EltSize);
- return;
- }
- // Interpret void as zero return values.
- if (Ty->isVoidTy())
- return;
- // Base case: we can get an EVT for this LLVM IR type.
- ValueVTs.push_back(TLI.getValueType(Ty));
- if (Offsets)
- Offsets->push_back(StartingOffset);
- }
- /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
- GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
- V = V->stripPointerCasts();
- GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
- if (GV && GV->getName() == "llvm.eh.catch.all.value") {
- assert(GV->hasInitializer() &&
- "The EH catch-all value must have an initializer");
- Value *Init = GV->getInitializer();
- GV = dyn_cast<GlobalVariable>(Init);
- if (!GV) V = cast<ConstantPointerNull>(Init);
- }
- assert((GV || isa<ConstantPointerNull>(V)) &&
- "TypeInfo must be a global variable or NULL");
- return GV;
- }
- /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
- /// processed uses a memory 'm' constraint.
- bool
- llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
- const TargetLowering &TLI) {
- for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
- InlineAsm::ConstraintInfo &CI = CInfos[i];
- for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
- TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
- if (CType == TargetLowering::C_Memory)
- return true;
- }
- // Indirect operand accesses access memory.
- if (CI.isIndirect)
- return true;
- }
- return false;
- }
- /// getFCmpCondCode - Return the ISD condition code corresponding to
- /// the given LLVM IR floating-point condition code. This includes
- /// consideration of global floating-point math flags.
- ///
- ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
- switch (Pred) {
- case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
- case FCmpInst::FCMP_OEQ: return ISD::SETOEQ;
- case FCmpInst::FCMP_OGT: return ISD::SETOGT;
- case FCmpInst::FCMP_OGE: return ISD::SETOGE;
- case FCmpInst::FCMP_OLT: return ISD::SETOLT;
- case FCmpInst::FCMP_OLE: return ISD::SETOLE;
- case FCmpInst::FCMP_ONE: return ISD::SETONE;
- case FCmpInst::FCMP_ORD: return ISD::SETO;
- case FCmpInst::FCMP_UNO: return ISD::SETUO;
- case FCmpInst::FCMP_UEQ: return ISD::SETUEQ;
- case FCmpInst::FCMP_UGT: return ISD::SETUGT;
- case FCmpInst::FCMP_UGE: return ISD::SETUGE;
- case FCmpInst::FCMP_ULT: return ISD::SETULT;
- case FCmpInst::FCMP_ULE: return ISD::SETULE;
- case FCmpInst::FCMP_UNE: return ISD::SETUNE;
- case FCmpInst::FCMP_TRUE: return ISD::SETTRUE;
- default: llvm_unreachable("Invalid FCmp predicate opcode!");
- }
- }
- ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
- switch (CC) {
- case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
- case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
- case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
- case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
- case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
- case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
- default: return CC;
- }
- }
- /// getICmpCondCode - Return the ISD condition code corresponding to
- /// the given LLVM IR integer condition code.
- ///
- ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
- switch (Pred) {
- case ICmpInst::ICMP_EQ: return ISD::SETEQ;
- case ICmpInst::ICMP_NE: return ISD::SETNE;
- case ICmpInst::ICMP_SLE: return ISD::SETLE;
- case ICmpInst::ICMP_ULE: return ISD::SETULE;
- case ICmpInst::ICMP_SGE: return ISD::SETGE;
- case ICmpInst::ICMP_UGE: return ISD::SETUGE;
- case ICmpInst::ICMP_SLT: return ISD::SETLT;
- case ICmpInst::ICMP_ULT: return ISD::SETULT;
- case ICmpInst::ICMP_SGT: return ISD::SETGT;
- case ICmpInst::ICMP_UGT: return ISD::SETUGT;
- default:
- llvm_unreachable("Invalid ICmp predicate opcode!");
- }
- }
- /// getNoopInput - If V is a noop (i.e., lowers to no machine code), look
- /// through it (and any transitive noop operands to it) and return its input
- /// value. This is used to determine if a tail call can be formed.
- ///
- static const Value *getNoopInput(const Value *V, const TargetLowering &TLI) {
- // If V is not an instruction, it can't be looked through.
- const Instruction *I = dyn_cast<Instruction>(V);
- if (I == 0 || !I->hasOneUse() || I->getNumOperands() == 0) return V;
-
- Value *Op = I->getOperand(0);
- // Look through truly no-op truncates.
- if (isa<TruncInst>(I) &&
- TLI.isTruncateFree(I->getOperand(0)->getType(), I->getType()))
- return getNoopInput(I->getOperand(0), TLI);
-
- // Look through truly no-op bitcasts.
- if (isa<BitCastInst>(I)) {
- // No type change at all.
- if (Op->getType() == I->getType())
- return getNoopInput(Op, TLI);
- // Pointer to pointer cast.
- if (Op->getType()->isPointerTy() && I->getType()->isPointerTy())
- return getNoopInput(Op, TLI);
-
- if (isa<VectorType>(Op->getType()) && isa<VectorType>(I->getType()) &&
- TLI.isTypeLegal(EVT::getEVT(Op->getType())) &&
- TLI.isTypeLegal(EVT::getEVT(I->getType())))
- return getNoopInput(Op, TLI);
- }
-
- // Look through inttoptr.
- if (isa<IntToPtrInst>(I) && !isa<VectorType>(I->getType())) {
- // Make sure this isn't a truncating or extending cast. We could support
- // this eventually, but don't bother for now.
- if (TLI.getPointerTy().getSizeInBits() ==
- cast<IntegerType>(Op->getType())->getBitWidth())
- return getNoopInput(Op, TLI);
- }
- // Look through ptrtoint.
- if (isa<PtrToIntInst>(I) && !isa<VectorType>(I->getType())) {
- // Make sure this isn't a truncating or extending cast. We could support
- // this eventually, but don't bother for now.
- if (TLI.getPointerTy().getSizeInBits() ==
- cast<IntegerType>(I->getType())->getBitWidth())
- return getNoopInput(Op, TLI);
- }
- // Otherwise it's not something we can look through.
- return V;
- }
- /// Test if the given instruction is in a position to be optimized
- /// with a tail-call. This roughly means that it's in a block with
- /// a return and there's nothing that needs to be scheduled
- /// between it and the return.
- ///
- /// This function only tests target-independent requirements.
- bool llvm::isInTailCallPosition(ImmutableCallSite CS, Attribute CalleeRetAttr,
- const TargetLowering &TLI) {
- const Instruction *I = CS.getInstruction();
- const BasicBlock *ExitBB = I->getParent();
- const TerminatorInst *Term = ExitBB->getTerminator();
- const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
- // The block must end in a return statement or unreachable.
- //
- // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
- // an unreachable, for now. The way tailcall optimization is currently
- // implemented means it will add an epilogue followed by a jump. That is
- // not profitable. Also, if the callee is a special function (e.g.
- // longjmp on x86), it can end up causing miscompilation that has not
- // been fully understood.
- if (!Ret &&
- (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt ||
- !isa<UnreachableInst>(Term)))
- return false;
- // If I will have a chain, make sure no other instruction that will have a
- // chain interposes between I and the return.
- if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
- !isSafeToSpeculativelyExecute(I))
- for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
- --BBI) {
- if (&*BBI == I)
- break;
- // Debug info intrinsics do not get in the way of tail call optimization.
- if (isa<DbgInfoIntrinsic>(BBI))
- continue;
- if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
- !isSafeToSpeculativelyExecute(BBI))
- return false;
- }
- // If the block ends with a void return or unreachable, it doesn't matter
- // what the call's return type is.
- if (!Ret || Ret->getNumOperands() == 0) return true;
- // If the return value is undef, it doesn't matter what the call's
- // return type is.
- if (isa<UndefValue>(Ret->getOperand(0))) return true;
- // Conservatively require the attributes of the call to match those of
- // the return. Ignore noalias because it doesn't affect the call sequence.
- const Function *F = ExitBB->getParent();
- Attribute CallerRetAttr = F->getAttributes().getRetAttributes();
- if (AttrBuilder(CalleeRetAttr).removeAttribute(Attribute::NoAlias) !=
- AttrBuilder(CallerRetAttr).removeAttribute(Attribute::NoAlias))
- return false;
- // It's not safe to eliminate the sign / zero extension of the return value.
- if (CallerRetAttr.hasAttribute(Attribute::ZExt) ||
- CallerRetAttr.hasAttribute(Attribute::SExt))
- return false;
- // Otherwise, make sure the unmodified return value of I is the return value.
- // We handle two cases: multiple return values + scalars.
- Value *RetVal = Ret->getOperand(0);
- if (!isa<InsertValueInst>(RetVal) || !isa<StructType>(RetVal->getType()))
- // Handle scalars first.
- return getNoopInput(Ret->getOperand(0), TLI) == I;
-
- // If this is an aggregate return, look through the insert/extract values and
- // see if each is transparent.
- for (unsigned i = 0, e =cast<StructType>(RetVal->getType())->getNumElements();
- i != e; ++i) {
- const Value *InScalar = FindInsertedValue(RetVal, i);
- if (InScalar == 0) return false;
- InScalar = getNoopInput(InScalar, TLI);
-
- // If the scalar value being inserted is an extractvalue of the right index
- // from the call, then everything is good.
- const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(InScalar);
- if (EVI == 0 || EVI->getOperand(0) != I || EVI->getNumIndices() != 1 ||
- EVI->getIndices()[0] != i)
- return false;
- }
-
- return true;
- }
- bool llvm::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
- SDValue &Chain, const TargetLowering &TLI) {
- const Function *F = DAG.getMachineFunction().getFunction();
- // Conservatively require the attributes of the call to match those of
- // the return. Ignore noalias because it doesn't affect the call sequence.
- Attribute CallerRetAttr = F->getAttributes().getRetAttributes();
- if (AttrBuilder(CallerRetAttr)
- .removeAttribute(Attribute::NoAlias).hasAttributes())
- return false;
- // It's not safe to eliminate the sign / zero extension of the return value.
- if (CallerRetAttr.hasAttribute(Attribute::ZExt) ||
- CallerRetAttr.hasAttribute(Attribute::SExt))
- return false;
- // Check if the only use is a function return node.
- return TLI.isUsedByReturnOnly(Node, Chain);
- }
|