123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This pass transforms loops by placing phi nodes at the end of the loops for
- // all values that are live across the loop boundary. For example, it turns
- // the left into the right code:
- //
- // for (...) for (...)
- // if (c) if (c)
- // X1 = ... X1 = ...
- // else else
- // X2 = ... X2 = ...
- // X3 = phi(X1, X2) X3 = phi(X1, X2)
- // ... = X3 + 4 X4 = phi(X3)
- // ... = X4 + 4
- //
- // This is still valid LLVM; the extra phi nodes are purely redundant, and will
- // be trivially eliminated by InstCombine. The major benefit of this
- // transformation is that it makes many other loop optimizations, such as
- // LoopUnswitching, simpler.
- //
- //===----------------------------------------------------------------------===//
- #define DEBUG_TYPE "lcssa"
- #include "llvm/Transforms/Scalar.h"
- #include "llvm/Constants.h"
- #include "llvm/Pass.h"
- #include "llvm/Function.h"
- #include "llvm/Instructions.h"
- #include "llvm/Analysis/Dominators.h"
- #include "llvm/Analysis/LoopPass.h"
- #include "llvm/Analysis/ScalarEvolution.h"
- #include "llvm/Transforms/Utils/SSAUpdater.h"
- #include "llvm/ADT/Statistic.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/Support/PredIteratorCache.h"
- using namespace llvm;
- STATISTIC(NumLCSSA, "Number of live out of a loop variables");
- namespace {
- struct LCSSA : public LoopPass {
- static char ID; // Pass identification, replacement for typeid
- LCSSA() : LoopPass(ID) {}
- // Cached analysis information for the current function.
- DominatorTree *DT;
- std::vector<BasicBlock*> LoopBlocks;
- PredIteratorCache PredCache;
- Loop *L;
-
- virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG. It maintains both of these,
- /// as well as the CFG. It also requires dominator information.
- ///
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- AU.addRequired<DominatorTree>();
- AU.addPreserved<DominatorTree>();
- AU.addPreserved<DominanceFrontier>();
- AU.addRequired<LoopInfo>();
- AU.addPreserved<LoopInfo>();
- AU.addPreservedID(LoopSimplifyID);
- AU.addPreserved<ScalarEvolution>();
- }
- private:
- bool ProcessInstruction(Instruction *Inst,
- const SmallVectorImpl<BasicBlock*> &ExitBlocks);
-
- /// verifyAnalysis() - Verify loop nest.
- virtual void verifyAnalysis() const {
- // Check the special guarantees that LCSSA makes.
- assert(L->isLCSSAForm(*DT) && "LCSSA form not preserved!");
- }
- /// inLoop - returns true if the given block is within the current loop
- bool inLoop(BasicBlock *B) const {
- return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
- }
- };
- }
-
- char LCSSA::ID = 0;
- INITIALIZE_PASS(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false);
- Pass *llvm::createLCSSAPass() { return new LCSSA(); }
- char &llvm::LCSSAID = LCSSA::ID;
- /// BlockDominatesAnExit - Return true if the specified block dominates at least
- /// one of the blocks in the specified list.
- static bool BlockDominatesAnExit(BasicBlock *BB,
- const SmallVectorImpl<BasicBlock*> &ExitBlocks,
- DominatorTree *DT) {
- DomTreeNode *DomNode = DT->getNode(BB);
- for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
- if (DT->dominates(DomNode, DT->getNode(ExitBlocks[i])))
- return true;
- return false;
- }
- /// runOnFunction - Process all loops in the function, inner-most out.
- bool LCSSA::runOnLoop(Loop *TheLoop, LPPassManager &LPM) {
- L = TheLoop;
-
- DT = &getAnalysis<DominatorTree>();
- // Get the set of exiting blocks.
- SmallVector<BasicBlock*, 8> ExitBlocks;
- L->getExitBlocks(ExitBlocks);
-
- if (ExitBlocks.empty())
- return false;
-
- // Speed up queries by creating a sorted vector of blocks.
- LoopBlocks.clear();
- LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
- array_pod_sort(LoopBlocks.begin(), LoopBlocks.end());
-
- // Look at all the instructions in the loop, checking to see if they have uses
- // outside the loop. If so, rewrite those uses.
- bool MadeChange = false;
-
- for (Loop::block_iterator BBI = L->block_begin(), E = L->block_end();
- BBI != E; ++BBI) {
- BasicBlock *BB = *BBI;
-
- // For large loops, avoid use-scanning by using dominance information: In
- // particular, if a block does not dominate any of the loop exits, then none
- // of the values defined in the block could be used outside the loop.
- if (!BlockDominatesAnExit(BB, ExitBlocks, DT))
- continue;
-
- for (BasicBlock::iterator I = BB->begin(), E = BB->end();
- I != E; ++I) {
- // Reject two common cases fast: instructions with no uses (like stores)
- // and instructions with one use that is in the same block as this.
- if (I->use_empty() ||
- (I->hasOneUse() && I->use_back()->getParent() == BB &&
- !isa<PHINode>(I->use_back())))
- continue;
-
- MadeChange |= ProcessInstruction(I, ExitBlocks);
- }
- }
-
- assert(L->isLCSSAForm(*DT));
- PredCache.clear();
- return MadeChange;
- }
- /// isExitBlock - Return true if the specified block is in the list.
- static bool isExitBlock(BasicBlock *BB,
- const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
- for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
- if (ExitBlocks[i] == BB)
- return true;
- return false;
- }
- /// ProcessInstruction - Given an instruction in the loop, check to see if it
- /// has any uses that are outside the current loop. If so, insert LCSSA PHI
- /// nodes and rewrite the uses.
- bool LCSSA::ProcessInstruction(Instruction *Inst,
- const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
- SmallVector<Use*, 16> UsesToRewrite;
-
- BasicBlock *InstBB = Inst->getParent();
-
- for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
- UI != E; ++UI) {
- User *U = *UI;
- BasicBlock *UserBB = cast<Instruction>(U)->getParent();
- if (PHINode *PN = dyn_cast<PHINode>(U))
- UserBB = PN->getIncomingBlock(UI);
-
- if (InstBB != UserBB && !inLoop(UserBB))
- UsesToRewrite.push_back(&UI.getUse());
- }
- // If there are no uses outside the loop, exit with no change.
- if (UsesToRewrite.empty()) return false;
-
- ++NumLCSSA; // We are applying the transformation
- // Invoke instructions are special in that their result value is not available
- // along their unwind edge. The code below tests to see whether DomBB dominates
- // the value, so adjust DomBB to the normal destination block, which is
- // effectively where the value is first usable.
- BasicBlock *DomBB = Inst->getParent();
- if (InvokeInst *Inv = dyn_cast<InvokeInst>(Inst))
- DomBB = Inv->getNormalDest();
- DomTreeNode *DomNode = DT->getNode(DomBB);
- SSAUpdater SSAUpdate;
- SSAUpdate.Initialize(Inst);
-
- // Insert the LCSSA phi's into all of the exit blocks dominated by the
- // value, and add them to the Phi's map.
- for (SmallVectorImpl<BasicBlock*>::const_iterator BBI = ExitBlocks.begin(),
- BBE = ExitBlocks.end(); BBI != BBE; ++BBI) {
- BasicBlock *ExitBB = *BBI;
- if (!DT->dominates(DomNode, DT->getNode(ExitBB))) continue;
-
- // If we already inserted something for this BB, don't reprocess it.
- if (SSAUpdate.HasValueForBlock(ExitBB)) continue;
-
- PHINode *PN = PHINode::Create(Inst->getType(), Inst->getName()+".lcssa",
- ExitBB->begin());
- PN->reserveOperandSpace(PredCache.GetNumPreds(ExitBB));
- // Add inputs from inside the loop for this PHI.
- for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) {
- PN->addIncoming(Inst, *PI);
- // If the exit block has a predecessor not within the loop, arrange for
- // the incoming value use corresponding to that predecessor to be
- // rewritten in terms of a different LCSSA PHI.
- if (!inLoop(*PI))
- UsesToRewrite.push_back(
- &PN->getOperandUse(
- PN->getOperandNumForIncomingValue(PN->getNumIncomingValues()-1)));
- }
-
- // Remember that this phi makes the value alive in this block.
- SSAUpdate.AddAvailableValue(ExitBB, PN);
- }
-
- // Rewrite all uses outside the loop in terms of the new PHIs we just
- // inserted.
- for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) {
- // If this use is in an exit block, rewrite to use the newly inserted PHI.
- // This is required for correctness because SSAUpdate doesn't handle uses in
- // the same block. It assumes the PHI we inserted is at the end of the
- // block.
- Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser());
- BasicBlock *UserBB = User->getParent();
- if (PHINode *PN = dyn_cast<PHINode>(User))
- UserBB = PN->getIncomingBlock(*UsesToRewrite[i]);
- if (isa<PHINode>(UserBB->begin()) &&
- isExitBlock(UserBB, ExitBlocks)) {
- UsesToRewrite[i]->set(UserBB->begin());
- continue;
- }
-
- // Otherwise, do full PHI insertion.
- SSAUpdate.RewriteUse(*UsesToRewrite[i]);
- }
-
- return true;
- }
|