123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 |
- //===- InlineFunction.cpp - Code to perform function inlining -------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file was developed by the LLVM research group and is distributed under
- // the University of Illinois Open Source License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements inlining of a function into a call site, resolving
- // parameters and the return value as appropriate.
- //
- // FIXME: This pass should transform alloca instructions in the called function
- // into alloca/dealloca pairs! Or perhaps it should refuse to inline them!
- //
- //===----------------------------------------------------------------------===//
- #include "llvm/Transforms/Utils/Cloning.h"
- #include "llvm/Constants.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Module.h"
- #include "llvm/Instructions.h"
- #include "llvm/Intrinsics.h"
- #include "llvm/Support/CallSite.h"
- using namespace llvm;
- bool llvm::InlineFunction(CallInst *CI) { return InlineFunction(CallSite(CI)); }
- bool llvm::InlineFunction(InvokeInst *II) {return InlineFunction(CallSite(II));}
- // InlineFunction - This function inlines the called function into the basic
- // block of the caller. This returns false if it is not possible to inline this
- // call. The program is still in a well defined state if this occurs though.
- //
- // Note that this only does one level of inlining. For example, if the
- // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
- // exists in the instruction stream. Similiarly this will inline a recursive
- // function by one level.
- //
- bool llvm::InlineFunction(CallSite CS) {
- Instruction *TheCall = CS.getInstruction();
- assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
- "Instruction not in function!");
- const Function *CalledFunc = CS.getCalledFunction();
- if (CalledFunc == 0 || // Can't inline external function or indirect
- CalledFunc->isExternal() || // call, or call to a vararg function!
- CalledFunc->getFunctionType()->isVarArg()) return false;
- // If the call to the callee is a non-tail call, we must clear the 'tail'
- // flags on any calls that we inline.
- bool MustClearTailCallFlags =
- isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
- BasicBlock *OrigBB = TheCall->getParent();
- Function *Caller = OrigBB->getParent();
- // Get an iterator to the last basic block in the function, which will have
- // the new function inlined after it.
- //
- Function::iterator LastBlock = &Caller->back();
- // Make sure to capture all of the return instructions from the cloned
- // function.
- std::vector<ReturnInst*> Returns;
- { // Scope to destroy ValueMap after cloning.
- // Calculate the vector of arguments to pass into the function cloner...
- std::map<const Value*, Value*> ValueMap;
- assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
- std::distance(CS.arg_begin(), CS.arg_end()) &&
- "No varargs calls can be inlined!");
- CallSite::arg_iterator AI = CS.arg_begin();
- for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
- E = CalledFunc->arg_end(); I != E; ++I, ++AI)
- ValueMap[I] = *AI;
- // Clone the entire body of the callee into the caller.
- CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i");
- }
- // Remember the first block that is newly cloned over.
- Function::iterator FirstNewBlock = LastBlock; ++FirstNewBlock;
- // If there are any alloca instructions in the block that used to be the entry
- // block for the callee, move them to the entry block of the caller. First
- // calculate which instruction they should be inserted before. We insert the
- // instructions at the end of the current alloca list.
- //
- if (isa<AllocaInst>(FirstNewBlock->begin())) {
- BasicBlock::iterator InsertPoint = Caller->begin()->begin();
- for (BasicBlock::iterator I = FirstNewBlock->begin(),
- E = FirstNewBlock->end(); I != E; )
- if (AllocaInst *AI = dyn_cast<AllocaInst>(I++))
- if (isa<Constant>(AI->getArraySize())) {
- // Scan for the block of allocas that we can move over.
- while (isa<AllocaInst>(I) &&
- isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
- ++I;
- // Transfer all of the allocas over in a block. Using splice means
- // that they instructions aren't removed from the symbol table, then
- // reinserted.
- Caller->front().getInstList().splice(InsertPoint,
- FirstNewBlock->getInstList(),
- AI, I);
- }
- }
- // If we are inlining tail call instruction through an invoke or
- if (MustClearTailCallFlags) {
- for (Function::iterator BB = FirstNewBlock, E = Caller->end();
- BB != E; ++BB)
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
- if (CallInst *CI = dyn_cast<CallInst>(I))
- CI->setTailCall(false);
- }
- // If we are inlining for an invoke instruction, we must make sure to rewrite
- // any inlined 'unwind' instructions into branches to the invoke exception
- // destination, and call instructions into invoke instructions.
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
- BasicBlock *InvokeDest = II->getUnwindDest();
- std::vector<Value*> InvokeDestPHIValues;
- // If there are PHI nodes in the exceptional destination block, we need to
- // keep track of which values came into them from this invoke, then remove
- // the entry for this block.
- for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- // Save the value to use for this edge...
- InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(OrigBB));
- }
- for (Function::iterator BB = FirstNewBlock, E = Caller->end();
- BB != E; ++BB) {
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
- // We only need to check for function calls: inlined invoke instructions
- // require no special handling...
- if (CallInst *CI = dyn_cast<CallInst>(I)) {
- // Convert this function call into an invoke instruction... if it's
- // not an intrinsic function call (which are known to not unwind).
- if (CI->getCalledFunction() &&
- CI->getCalledFunction()->getIntrinsicID()) {
- ++I;
- } else {
- // First, split the basic block...
- BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
- // Next, create the new invoke instruction, inserting it at the end
- // of the old basic block.
- InvokeInst *II =
- new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
- std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
- CI->getName(), BB->getTerminator());
- II->setCallingConv(CI->getCallingConv());
- // Make sure that anything using the call now uses the invoke!
- CI->replaceAllUsesWith(II);
- // Delete the unconditional branch inserted by splitBasicBlock
- BB->getInstList().pop_back();
- Split->getInstList().pop_front(); // Delete the original call
- // Update any PHI nodes in the exceptional block to indicate that
- // there is now a new entry in them.
- unsigned i = 0;
- for (BasicBlock::iterator I = InvokeDest->begin();
- isa<PHINode>(I); ++I, ++i) {
- PHINode *PN = cast<PHINode>(I);
- PN->addIncoming(InvokeDestPHIValues[i], BB);
- }
- // This basic block is now complete, start scanning the next one.
- break;
- }
- } else {
- ++I;
- }
- }
- if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
- // An UnwindInst requires special handling when it gets inlined into an
- // invoke site. Once this happens, we know that the unwind would cause
- // a control transfer to the invoke exception destination, so we can
- // transform it into a direct branch to the exception destination.
- new BranchInst(InvokeDest, UI);
- // Delete the unwind instruction!
- UI->getParent()->getInstList().pop_back();
- // Update any PHI nodes in the exceptional block to indicate that
- // there is now a new entry in them.
- unsigned i = 0;
- for (BasicBlock::iterator I = InvokeDest->begin();
- isa<PHINode>(I); ++I, ++i) {
- PHINode *PN = cast<PHINode>(I);
- PN->addIncoming(InvokeDestPHIValues[i], BB);
- }
- }
- }
- // Now that everything is happy, we have one final detail. The PHI nodes in
- // the exception destination block still have entries due to the original
- // invoke instruction. Eliminate these entries (which might even delete the
- // PHI node) now.
- InvokeDest->removePredecessor(II->getParent());
- }
- // If we cloned in _exactly one_ basic block, and if that block ends in a
- // return instruction, we splice the body of the inlined callee directly into
- // the calling basic block.
- if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
- // Move all of the instructions right before the call.
- OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
- FirstNewBlock->begin(), FirstNewBlock->end());
- // Remove the cloned basic block.
- Caller->getBasicBlockList().pop_back();
- // If the call site was an invoke instruction, add a branch to the normal
- // destination.
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
- new BranchInst(II->getNormalDest(), TheCall);
- // If the return instruction returned a value, replace uses of the call with
- // uses of the returned value.
- if (!TheCall->use_empty())
- TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
- // Since we are now done with the Call/Invoke, we can delete it.
- TheCall->getParent()->getInstList().erase(TheCall);
- // Since we are now done with the return instruction, delete it also.
- Returns[0]->getParent()->getInstList().erase(Returns[0]);
- // We are now done with the inlining.
- return true;
- }
- // Otherwise, we have the normal case, of more than one block to inline or
- // multiple return sites.
- // We want to clone the entire callee function into the hole between the
- // "starter" and "ender" blocks. How we accomplish this depends on whether
- // this is an invoke instruction or a call instruction.
- BasicBlock *AfterCallBB;
- if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
- // Add an unconditional branch to make this look like the CallInst case...
- BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
- // Split the basic block. This guarantees that no PHI nodes will have to be
- // updated due to new incoming edges, and make the invoke case more
- // symmetric to the call case.
- AfterCallBB = OrigBB->splitBasicBlock(NewBr,
- CalledFunc->getName()+".exit");
- } else { // It's a call
- // If this is a call instruction, we need to split the basic block that
- // the call lives in.
- //
- AfterCallBB = OrigBB->splitBasicBlock(TheCall,
- CalledFunc->getName()+".exit");
- }
- // Change the branch that used to go to AfterCallBB to branch to the first
- // basic block of the inlined function.
- //
- TerminatorInst *Br = OrigBB->getTerminator();
- assert(Br && Br->getOpcode() == Instruction::Br &&
- "splitBasicBlock broken!");
- Br->setOperand(0, FirstNewBlock);
- // Now that the function is correct, make it a little bit nicer. In
- // particular, move the basic blocks inserted from the end of the function
- // into the space made by splitting the source basic block.
- //
- Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
- FirstNewBlock, Caller->end());
- // Handle all of the return instructions that we just cloned in, and eliminate
- // any users of the original call/invoke instruction.
- if (Returns.size() > 1) {
- // The PHI node should go at the front of the new basic block to merge all
- // possible incoming values.
- //
- PHINode *PHI = 0;
- if (!TheCall->use_empty()) {
- PHI = new PHINode(CalledFunc->getReturnType(),
- TheCall->getName(), AfterCallBB->begin());
- // Anything that used the result of the function call should now use the
- // PHI node as their operand.
- //
- TheCall->replaceAllUsesWith(PHI);
- }
- // Loop over all of the return instructions, turning them into unconditional
- // branches to the merge point now, and adding entries to the PHI node as
- // appropriate.
- for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
- ReturnInst *RI = Returns[i];
- if (PHI) {
- assert(RI->getReturnValue() && "Ret should have value!");
- assert(RI->getReturnValue()->getType() == PHI->getType() &&
- "Ret value not consistent in function!");
- PHI->addIncoming(RI->getReturnValue(), RI->getParent());
- }
- // Add a branch to the merge point where the PHI node lives if it exists.
- new BranchInst(AfterCallBB, RI);
- // Delete the return instruction now
- RI->getParent()->getInstList().erase(RI);
- }
- } else if (!Returns.empty()) {
- // Otherwise, if there is exactly one return value, just replace anything
- // using the return value of the call with the computed value.
- if (!TheCall->use_empty())
- TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
- // Splice the code from the return block into the block that it will return
- // to, which contains the code that was after the call.
- BasicBlock *ReturnBB = Returns[0]->getParent();
- AfterCallBB->getInstList().splice(AfterCallBB->begin(),
- ReturnBB->getInstList());
- // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
- ReturnBB->replaceAllUsesWith(AfterCallBB);
- // Delete the return instruction now and empty ReturnBB now.
- Returns[0]->eraseFromParent();
- ReturnBB->eraseFromParent();
- } else if (!TheCall->use_empty()) {
- // No returns, but something is using the return value of the call. Just
- // nuke the result.
- TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
- }
- // Since we are now done with the Call/Invoke, we can delete it.
- TheCall->eraseFromParent();
- // We should always be able to fold the entry block of the function into the
- // single predecessor of the block...
- assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
- BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
- // Splice the code entry block into calling block, right before the
- // unconditional branch.
- OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
- CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
- // Remove the unconditional branch.
- OrigBB->getInstList().erase(Br);
- // Now we can remove the CalleeEntry block, which is now empty.
- Caller->getBasicBlockList().erase(CalleeEntry);
- return true;
- }
|