1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317 |
- //===- Reader.cpp - Code to read bytecode files ---------------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file was developed by the LLVM research group and is distributed under
- // the University of Illinois Open Source License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This library implements the functionality defined in llvm/Bytecode/Reader.h
- //
- // Note that this library should be as fast as possible, reentrant, and
- // threadsafe!!
- //
- // TODO: Allow passing in an option to ignore the symbol table
- //
- //===----------------------------------------------------------------------===//
- #include "Reader.h"
- #include "llvm/Bytecode/BytecodeHandler.h"
- #include "llvm/BasicBlock.h"
- #include "llvm/CallingConv.h"
- #include "llvm/Constants.h"
- #include "llvm/Instructions.h"
- #include "llvm/SymbolTable.h"
- #include "llvm/Bytecode/Format.h"
- #include "llvm/Config/alloca.h"
- #include "llvm/Support/GetElementPtrTypeIterator.h"
- #include "llvm/Support/Compressor.h"
- #include "llvm/ADT/StringExtras.h"
- #include <sstream>
- #include <algorithm>
- using namespace llvm;
- namespace {
- /// @brief A class for maintaining the slot number definition
- /// as a placeholder for the actual definition for forward constants defs.
- class ConstantPlaceHolder : public ConstantExpr {
- ConstantPlaceHolder(); // DO NOT IMPLEMENT
- void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
- public:
- Use Op;
- ConstantPlaceHolder(const Type *Ty)
- : ConstantExpr(Ty, Instruction::UserOp1, &Op, 1),
- Op(UndefValue::get(Type::IntTy), this) {
- }
- };
- }
- // Provide some details on error
- inline void BytecodeReader::error(std::string err) {
- err += " (Vers=" ;
- err += itostr(RevisionNum) ;
- err += ", Pos=" ;
- err += itostr(At-MemStart);
- err += ")";
- throw err;
- }
- //===----------------------------------------------------------------------===//
- // Bytecode Reading Methods
- //===----------------------------------------------------------------------===//
- /// Determine if the current block being read contains any more data.
- inline bool BytecodeReader::moreInBlock() {
- return At < BlockEnd;
- }
- /// Throw an error if we've read past the end of the current block
- inline void BytecodeReader::checkPastBlockEnd(const char * block_name) {
- if (At > BlockEnd)
- error(std::string("Attempt to read past the end of ") + block_name +
- " block.");
- }
- /// Align the buffer position to a 32 bit boundary
- inline void BytecodeReader::align32() {
- if (hasAlignment) {
- BufPtr Save = At;
- At = (const unsigned char *)((unsigned long)(At+3) & (~3UL));
- if (At > Save)
- if (Handler) Handler->handleAlignment(At - Save);
- if (At > BlockEnd)
- error("Ran out of data while aligning!");
- }
- }
- /// Read a whole unsigned integer
- inline unsigned BytecodeReader::read_uint() {
- if (At+4 > BlockEnd)
- error("Ran out of data reading uint!");
- At += 4;
- return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24);
- }
- /// Read a variable-bit-rate encoded unsigned integer
- inline unsigned BytecodeReader::read_vbr_uint() {
- unsigned Shift = 0;
- unsigned Result = 0;
- BufPtr Save = At;
- do {
- if (At == BlockEnd)
- error("Ran out of data reading vbr_uint!");
- Result |= (unsigned)((*At++) & 0x7F) << Shift;
- Shift += 7;
- } while (At[-1] & 0x80);
- if (Handler) Handler->handleVBR32(At-Save);
- return Result;
- }
- /// Read a variable-bit-rate encoded unsigned 64-bit integer.
- inline uint64_t BytecodeReader::read_vbr_uint64() {
- unsigned Shift = 0;
- uint64_t Result = 0;
- BufPtr Save = At;
- do {
- if (At == BlockEnd)
- error("Ran out of data reading vbr_uint64!");
- Result |= (uint64_t)((*At++) & 0x7F) << Shift;
- Shift += 7;
- } while (At[-1] & 0x80);
- if (Handler) Handler->handleVBR64(At-Save);
- return Result;
- }
- /// Read a variable-bit-rate encoded signed 64-bit integer.
- inline int64_t BytecodeReader::read_vbr_int64() {
- uint64_t R = read_vbr_uint64();
- if (R & 1) {
- if (R != 1)
- return -(int64_t)(R >> 1);
- else // There is no such thing as -0 with integers. "-0" really means
- // 0x8000000000000000.
- return 1LL << 63;
- } else
- return (int64_t)(R >> 1);
- }
- /// Read a pascal-style string (length followed by text)
- inline std::string BytecodeReader::read_str() {
- unsigned Size = read_vbr_uint();
- const unsigned char *OldAt = At;
- At += Size;
- if (At > BlockEnd) // Size invalid?
- error("Ran out of data reading a string!");
- return std::string((char*)OldAt, Size);
- }
- /// Read an arbitrary block of data
- inline void BytecodeReader::read_data(void *Ptr, void *End) {
- unsigned char *Start = (unsigned char *)Ptr;
- unsigned Amount = (unsigned char *)End - Start;
- if (At+Amount > BlockEnd)
- error("Ran out of data!");
- std::copy(At, At+Amount, Start);
- At += Amount;
- }
- /// Read a float value in little-endian order
- inline void BytecodeReader::read_float(float& FloatVal) {
- /// FIXME: This isn't optimal, it has size problems on some platforms
- /// where FP is not IEEE.
- union {
- float f;
- uint32_t i;
- } FloatUnion;
- FloatUnion.i = At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24);
- At+=sizeof(uint32_t);
- FloatVal = FloatUnion.f;
- }
- /// Read a double value in little-endian order
- inline void BytecodeReader::read_double(double& DoubleVal) {
- /// FIXME: This isn't optimal, it has size problems on some platforms
- /// where FP is not IEEE.
- union {
- double d;
- uint64_t i;
- } DoubleUnion;
- DoubleUnion.i = (uint64_t(At[0]) << 0) | (uint64_t(At[1]) << 8) |
- (uint64_t(At[2]) << 16) | (uint64_t(At[3]) << 24) |
- (uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) |
- (uint64_t(At[6]) << 48) | (uint64_t(At[7]) << 56);
- At+=sizeof(uint64_t);
- DoubleVal = DoubleUnion.d;
- }
- /// Read a block header and obtain its type and size
- inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
- if ( hasLongBlockHeaders ) {
- Type = read_uint();
- Size = read_uint();
- switch (Type) {
- case BytecodeFormat::Reserved_DoNotUse :
- error("Reserved_DoNotUse used as Module Type?");
- Type = BytecodeFormat::ModuleBlockID; break;
- case BytecodeFormat::Module:
- Type = BytecodeFormat::ModuleBlockID; break;
- case BytecodeFormat::Function:
- Type = BytecodeFormat::FunctionBlockID; break;
- case BytecodeFormat::ConstantPool:
- Type = BytecodeFormat::ConstantPoolBlockID; break;
- case BytecodeFormat::SymbolTable:
- Type = BytecodeFormat::SymbolTableBlockID; break;
- case BytecodeFormat::ModuleGlobalInfo:
- Type = BytecodeFormat::ModuleGlobalInfoBlockID; break;
- case BytecodeFormat::GlobalTypePlane:
- Type = BytecodeFormat::GlobalTypePlaneBlockID; break;
- case BytecodeFormat::InstructionList:
- Type = BytecodeFormat::InstructionListBlockID; break;
- case BytecodeFormat::CompactionTable:
- Type = BytecodeFormat::CompactionTableBlockID; break;
- case BytecodeFormat::BasicBlock:
- /// This block type isn't used after version 1.1. However, we have to
- /// still allow the value in case this is an old bc format file.
- /// We just let its value creep thru.
- break;
- default:
- error("Invalid block id found: " + utostr(Type));
- break;
- }
- } else {
- Size = read_uint();
- Type = Size & 0x1F; // mask low order five bits
- Size >>= 5; // get rid of five low order bits, leaving high 27
- }
- BlockStart = At;
- if (At + Size > BlockEnd)
- error("Attempt to size a block past end of memory");
- BlockEnd = At + Size;
- if (Handler) Handler->handleBlock(Type, BlockStart, Size);
- }
- /// In LLVM 1.2 and before, Types were derived from Value and so they were
- /// written as part of the type planes along with any other Value. In LLVM
- /// 1.3 this changed so that Type does not derive from Value. Consequently,
- /// the BytecodeReader's containers for Values can't contain Types because
- /// there's no inheritance relationship. This means that the "Type Type"
- /// plane is defunct along with the Type::TypeTyID TypeID. In LLVM 1.3
- /// whenever a bytecode construct must have both types and values together,
- /// the types are always read/written first and then the Values. Furthermore
- /// since Type::TypeTyID no longer exists, its value (12) now corresponds to
- /// Type::LabelTyID. In order to overcome this we must "sanitize" all the
- /// type TypeIDs we encounter. For LLVM 1.3 bytecode files, there's no change.
- /// For LLVM 1.2 and before, this function will decrement the type id by
- /// one to account for the missing Type::TypeTyID enumerator if the value is
- /// larger than 12 (Type::LabelTyID). If the value is exactly 12, then this
- /// function returns true, otherwise false. This helps detect situations
- /// where the pre 1.3 bytecode is indicating that what follows is a type.
- /// @returns true iff type id corresponds to pre 1.3 "type type"
- inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) {
- if (hasTypeDerivedFromValue) { /// do nothing if 1.3 or later
- if (TypeId == Type::LabelTyID) {
- TypeId = Type::VoidTyID; // sanitize it
- return true; // indicate we got TypeTyID in pre 1.3 bytecode
- } else if (TypeId > Type::LabelTyID)
- --TypeId; // shift all planes down because type type plane is missing
- }
- return false;
- }
- /// Reads a vbr uint to read in a type id and does the necessary
- /// conversion on it by calling sanitizeTypeId.
- /// @returns true iff \p TypeId read corresponds to a pre 1.3 "type type"
- /// @see sanitizeTypeId
- inline bool BytecodeReader::read_typeid(unsigned &TypeId) {
- TypeId = read_vbr_uint();
- if ( !has32BitTypes )
- if ( TypeId == 0x00FFFFFF )
- TypeId = read_vbr_uint();
- return sanitizeTypeId(TypeId);
- }
- //===----------------------------------------------------------------------===//
- // IR Lookup Methods
- //===----------------------------------------------------------------------===//
- /// Determine if a type id has an implicit null value
- inline bool BytecodeReader::hasImplicitNull(unsigned TyID) {
- if (!hasExplicitPrimitiveZeros)
- return TyID != Type::LabelTyID && TyID != Type::VoidTyID;
- return TyID >= Type::FirstDerivedTyID;
- }
- /// Obtain a type given a typeid and account for things like compaction tables,
- /// function level vs module level, and the offsetting for the primitive types.
- const Type *BytecodeReader::getType(unsigned ID) {
- if (ID < Type::FirstDerivedTyID)
- if (const Type *T = Type::getPrimitiveType((Type::TypeID)ID))
- return T; // Asked for a primitive type...
- // Otherwise, derived types need offset...
- ID -= Type::FirstDerivedTyID;
- if (!CompactionTypes.empty()) {
- if (ID >= CompactionTypes.size())
- error("Type ID out of range for compaction table!");
- return CompactionTypes[ID].first;
- }
- // Is it a module-level type?
- if (ID < ModuleTypes.size())
- return ModuleTypes[ID].get();
- // Nope, is it a function-level type?
- ID -= ModuleTypes.size();
- if (ID < FunctionTypes.size())
- return FunctionTypes[ID].get();
- error("Illegal type reference!");
- return Type::VoidTy;
- }
- /// Get a sanitized type id. This just makes sure that the \p ID
- /// is both sanitized and not the "type type" of pre-1.3 bytecode.
- /// @see sanitizeTypeId
- inline const Type* BytecodeReader::getSanitizedType(unsigned& ID) {
- if (sanitizeTypeId(ID))
- error("Invalid type id encountered");
- return getType(ID);
- }
- /// This method just saves some coding. It uses read_typeid to read
- /// in a sanitized type id, errors that its not the type type, and
- /// then calls getType to return the type value.
- inline const Type* BytecodeReader::readSanitizedType() {
- unsigned ID;
- if (read_typeid(ID))
- error("Invalid type id encountered");
- return getType(ID);
- }
- /// Get the slot number associated with a type accounting for primitive
- /// types, compaction tables, and function level vs module level.
- unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
- if (Ty->isPrimitiveType())
- return Ty->getTypeID();
- // Scan the compaction table for the type if needed.
- if (!CompactionTypes.empty()) {
- for (unsigned i = 0, e = CompactionTypes.size(); i != e; ++i)
- if (CompactionTypes[i].first == Ty)
- return Type::FirstDerivedTyID + i;
- error("Couldn't find type specified in compaction table!");
- }
- // Check the function level types first...
- TypeListTy::iterator I = std::find(FunctionTypes.begin(),
- FunctionTypes.end(), Ty);
- if (I != FunctionTypes.end())
- return Type::FirstDerivedTyID + ModuleTypes.size() +
- (&*I - &FunctionTypes[0]);
- // Check the module level types now...
- I = std::find(ModuleTypes.begin(), ModuleTypes.end(), Ty);
- if (I == ModuleTypes.end())
- error("Didn't find type in ModuleTypes.");
- return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]);
- }
- /// This is just like getType, but when a compaction table is in use, it is
- /// ignored. It also ignores function level types.
- /// @see getType
- const Type *BytecodeReader::getGlobalTableType(unsigned Slot) {
- if (Slot < Type::FirstDerivedTyID) {
- const Type *Ty = Type::getPrimitiveType((Type::TypeID)Slot);
- if (!Ty)
- error("Not a primitive type ID?");
- return Ty;
- }
- Slot -= Type::FirstDerivedTyID;
- if (Slot >= ModuleTypes.size())
- error("Illegal compaction table type reference!");
- return ModuleTypes[Slot];
- }
- /// This is just like getTypeSlot, but when a compaction table is in use, it
- /// is ignored. It also ignores function level types.
- unsigned BytecodeReader::getGlobalTableTypeSlot(const Type *Ty) {
- if (Ty->isPrimitiveType())
- return Ty->getTypeID();
- TypeListTy::iterator I = std::find(ModuleTypes.begin(),
- ModuleTypes.end(), Ty);
- if (I == ModuleTypes.end())
- error("Didn't find type in ModuleTypes.");
- return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]);
- }
- /// Retrieve a value of a given type and slot number, possibly creating
- /// it if it doesn't already exist.
- Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) {
- assert(type != Type::LabelTyID && "getValue() cannot get blocks!");
- unsigned Num = oNum;
- // If there is a compaction table active, it defines the low-level numbers.
- // If not, the module values define the low-level numbers.
- if (CompactionValues.size() > type && !CompactionValues[type].empty()) {
- if (Num < CompactionValues[type].size())
- return CompactionValues[type][Num];
- Num -= CompactionValues[type].size();
- } else {
- // By default, the global type id is the type id passed in
- unsigned GlobalTyID = type;
- // If the type plane was compactified, figure out the global type ID by
- // adding the derived type ids and the distance.
- if (!CompactionTypes.empty() && type >= Type::FirstDerivedTyID)
- GlobalTyID = CompactionTypes[type-Type::FirstDerivedTyID].second;
- if (hasImplicitNull(GlobalTyID)) {
- const Type *Ty = getType(type);
- if (!isa<OpaqueType>(Ty)) {
- if (Num == 0)
- return Constant::getNullValue(Ty);
- --Num;
- }
- }
- if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) {
- if (Num < ModuleValues[GlobalTyID]->size())
- return ModuleValues[GlobalTyID]->getOperand(Num);
- Num -= ModuleValues[GlobalTyID]->size();
- }
- }
- if (FunctionValues.size() > type &&
- FunctionValues[type] &&
- Num < FunctionValues[type]->size())
- return FunctionValues[type]->getOperand(Num);
- if (!Create) return 0; // Do not create a placeholder?
- // Did we already create a place holder?
- std::pair<unsigned,unsigned> KeyValue(type, oNum);
- ForwardReferenceMap::iterator I = ForwardReferences.lower_bound(KeyValue);
- if (I != ForwardReferences.end() && I->first == KeyValue)
- return I->second; // We have already created this placeholder
- // If the type exists (it should)
- if (const Type* Ty = getType(type)) {
- // Create the place holder
- Value *Val = new Argument(Ty);
- ForwardReferences.insert(I, std::make_pair(KeyValue, Val));
- return Val;
- }
- throw "Can't create placeholder for value of type slot #" + utostr(type);
- }
- /// This is just like getValue, but when a compaction table is in use, it
- /// is ignored. Also, no forward references or other fancy features are
- /// supported.
- Value* BytecodeReader::getGlobalTableValue(unsigned TyID, unsigned SlotNo) {
- if (SlotNo == 0)
- return Constant::getNullValue(getType(TyID));
- if (!CompactionTypes.empty() && TyID >= Type::FirstDerivedTyID) {
- TyID -= Type::FirstDerivedTyID;
- if (TyID >= CompactionTypes.size())
- error("Type ID out of range for compaction table!");
- TyID = CompactionTypes[TyID].second;
- }
- --SlotNo;
- if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 ||
- SlotNo >= ModuleValues[TyID]->size()) {
- if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0)
- error("Corrupt compaction table entry!"
- + utostr(TyID) + ", " + utostr(SlotNo) + ": "
- + utostr(ModuleValues.size()));
- else
- error("Corrupt compaction table entry!"
- + utostr(TyID) + ", " + utostr(SlotNo) + ": "
- + utostr(ModuleValues.size()) + ", "
- + utohexstr(reinterpret_cast<uint64_t>(((void*)ModuleValues[TyID])))
- + ", "
- + utostr(ModuleValues[TyID]->size()));
- }
- return ModuleValues[TyID]->getOperand(SlotNo);
- }
- /// Just like getValue, except that it returns a null pointer
- /// only on error. It always returns a constant (meaning that if the value is
- /// defined, but is not a constant, that is an error). If the specified
- /// constant hasn't been parsed yet, a placeholder is defined and used.
- /// Later, after the real value is parsed, the placeholder is eliminated.
- Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
- if (Value *V = getValue(TypeSlot, Slot, false))
- if (Constant *C = dyn_cast<Constant>(V))
- return C; // If we already have the value parsed, just return it
- else
- error("Value for slot " + utostr(Slot) +
- " is expected to be a constant!");
- std::pair<unsigned, unsigned> Key(TypeSlot, Slot);
- ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key);
- if (I != ConstantFwdRefs.end() && I->first == Key) {
- return I->second;
- } else {
- // Create a placeholder for the constant reference and
- // keep track of the fact that we have a forward ref to recycle it
- Constant *C = new ConstantPlaceHolder(getType(TypeSlot));
- // Keep track of the fact that we have a forward ref to recycle it
- ConstantFwdRefs.insert(I, std::make_pair(Key, C));
- return C;
- }
- }
- //===----------------------------------------------------------------------===//
- // IR Construction Methods
- //===----------------------------------------------------------------------===//
- /// As values are created, they are inserted into the appropriate place
- /// with this method. The ValueTable argument must be one of ModuleValues
- /// or FunctionValues data members of this class.
- unsigned BytecodeReader::insertValue(Value *Val, unsigned type,
- ValueTable &ValueTab) {
- assert((!isa<Constant>(Val) || !cast<Constant>(Val)->isNullValue()) ||
- !hasImplicitNull(type) &&
- "Cannot read null values from bytecode!");
- if (ValueTab.size() <= type)
- ValueTab.resize(type+1);
- if (!ValueTab[type]) ValueTab[type] = new ValueList();
- ValueTab[type]->push_back(Val);
- bool HasOffset = hasImplicitNull(type) && !isa<OpaqueType>(Val->getType());
- return ValueTab[type]->size()-1 + HasOffset;
- }
- /// Insert the arguments of a function as new values in the reader.
- void BytecodeReader::insertArguments(Function* F) {
- const FunctionType *FT = F->getFunctionType();
- Function::arg_iterator AI = F->arg_begin();
- for (FunctionType::param_iterator It = FT->param_begin();
- It != FT->param_end(); ++It, ++AI)
- insertValue(AI, getTypeSlot(AI->getType()), FunctionValues);
- }
- //===----------------------------------------------------------------------===//
- // Bytecode Parsing Methods
- //===----------------------------------------------------------------------===//
- /// This method parses a single instruction. The instruction is
- /// inserted at the end of the \p BB provided. The arguments of
- /// the instruction are provided in the \p Oprnds vector.
- void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
- BasicBlock* BB) {
- BufPtr SaveAt = At;
- // Clear instruction data
- Oprnds.clear();
- unsigned iType = 0;
- unsigned Opcode = 0;
- unsigned Op = read_uint();
- // bits Instruction format: Common to all formats
- // --------------------------
- // 01-00: Opcode type, fixed to 1.
- // 07-02: Opcode
- Opcode = (Op >> 2) & 63;
- Oprnds.resize((Op >> 0) & 03);
- // Extract the operands
- switch (Oprnds.size()) {
- case 1:
- // bits Instruction format:
- // --------------------------
- // 19-08: Resulting type plane
- // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
- //
- iType = (Op >> 8) & 4095;
- Oprnds[0] = (Op >> 20) & 4095;
- if (Oprnds[0] == 4095) // Handle special encoding for 0 operands...
- Oprnds.resize(0);
- break;
- case 2:
- // bits Instruction format:
- // --------------------------
- // 15-08: Resulting type plane
- // 23-16: Operand #1
- // 31-24: Operand #2
- //
- iType = (Op >> 8) & 255;
- Oprnds[0] = (Op >> 16) & 255;
- Oprnds[1] = (Op >> 24) & 255;
- break;
- case 3:
- // bits Instruction format:
- // --------------------------
- // 13-08: Resulting type plane
- // 19-14: Operand #1
- // 25-20: Operand #2
- // 31-26: Operand #3
- //
- iType = (Op >> 8) & 63;
- Oprnds[0] = (Op >> 14) & 63;
- Oprnds[1] = (Op >> 20) & 63;
- Oprnds[2] = (Op >> 26) & 63;
- break;
- case 0:
- At -= 4; // Hrm, try this again...
- Opcode = read_vbr_uint();
- Opcode >>= 2;
- iType = read_vbr_uint();
- unsigned NumOprnds = read_vbr_uint();
- Oprnds.resize(NumOprnds);
- if (NumOprnds == 0)
- error("Zero-argument instruction found; this is invalid.");
- for (unsigned i = 0; i != NumOprnds; ++i)
- Oprnds[i] = read_vbr_uint();
- align32();
- break;
- }
- const Type *InstTy = getSanitizedType(iType);
- // We have enough info to inform the handler now.
- if (Handler) Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt);
- // Declare the resulting instruction we'll build.
- Instruction *Result = 0;
- // If this is a bytecode format that did not include the unreachable
- // instruction, bump up all opcodes numbers to make space.
- if (hasNoUnreachableInst) {
- if (Opcode >= Instruction::Unreachable &&
- Opcode < 62) {
- ++Opcode;
- }
- }
- // Handle binary operators
- if (Opcode >= Instruction::BinaryOpsBegin &&
- Opcode < Instruction::BinaryOpsEnd && Oprnds.size() == 2)
- Result = BinaryOperator::create((Instruction::BinaryOps)Opcode,
- getValue(iType, Oprnds[0]),
- getValue(iType, Oprnds[1]));
- switch (Opcode) {
- default:
- if (Result == 0)
- error("Illegal instruction read!");
- break;
- case Instruction::VAArg:
- Result = new VAArgInst(getValue(iType, Oprnds[0]),
- getSanitizedType(Oprnds[1]));
- break;
- case 32: { //VANext_old
- const Type* ArgTy = getValue(iType, Oprnds[0])->getType();
- Function* NF = TheModule->getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, 0);
- //b = vanext a, t ->
- //foo = alloca 1 of t
- //bar = vacopy a
- //store bar -> foo
- //tmp = vaarg foo, t
- //b = load foo
- AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
- BB->getInstList().push_back(foo);
- CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0]));
- BB->getInstList().push_back(bar);
- BB->getInstList().push_back(new StoreInst(bar, foo));
- Instruction* tmp = new VAArgInst(foo, getSanitizedType(Oprnds[1]));
- BB->getInstList().push_back(tmp);
- Result = new LoadInst(foo);
- break;
- }
- case 33: { //VAArg_old
- const Type* ArgTy = getValue(iType, Oprnds[0])->getType();
- Function* NF = TheModule->getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, 0);
- //b = vaarg a, t ->
- //foo = alloca 1 of t
- //bar = vacopy a
- //store bar -> foo
- //b = vaarg foo, t
- AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
- BB->getInstList().push_back(foo);
- CallInst* bar = new CallInst(NF, getValue(iType, Oprnds[0]));
- BB->getInstList().push_back(bar);
- BB->getInstList().push_back(new StoreInst(bar, foo));
- Result = new VAArgInst(foo, getSanitizedType(Oprnds[1]));
- break;
- }
- case Instruction::Cast:
- Result = new CastInst(getValue(iType, Oprnds[0]),
- getSanitizedType(Oprnds[1]));
- break;
- case Instruction::Select:
- Result = new SelectInst(getValue(Type::BoolTyID, Oprnds[0]),
- getValue(iType, Oprnds[1]),
- getValue(iType, Oprnds[2]));
- break;
- case Instruction::PHI: {
- if (Oprnds.size() == 0 || (Oprnds.size() & 1))
- error("Invalid phi node encountered!");
- PHINode *PN = new PHINode(InstTy);
- PN->reserveOperandSpace(Oprnds.size());
- for (unsigned i = 0, e = Oprnds.size(); i != e; i += 2)
- PN->addIncoming(getValue(iType, Oprnds[i]), getBasicBlock(Oprnds[i+1]));
- Result = PN;
- break;
- }
- case Instruction::Shl:
- case Instruction::Shr:
- Result = new ShiftInst((Instruction::OtherOps)Opcode,
- getValue(iType, Oprnds[0]),
- getValue(Type::UByteTyID, Oprnds[1]));
- break;
- case Instruction::Ret:
- if (Oprnds.size() == 0)
- Result = new ReturnInst();
- else if (Oprnds.size() == 1)
- Result = new ReturnInst(getValue(iType, Oprnds[0]));
- else
- error("Unrecognized instruction!");
- break;
- case Instruction::Br:
- if (Oprnds.size() == 1)
- Result = new BranchInst(getBasicBlock(Oprnds[0]));
- else if (Oprnds.size() == 3)
- Result = new BranchInst(getBasicBlock(Oprnds[0]),
- getBasicBlock(Oprnds[1]), getValue(Type::BoolTyID , Oprnds[2]));
- else
- error("Invalid number of operands for a 'br' instruction!");
- break;
- case Instruction::Switch: {
- if (Oprnds.size() & 1)
- error("Switch statement with odd number of arguments!");
- SwitchInst *I = new SwitchInst(getValue(iType, Oprnds[0]),
- getBasicBlock(Oprnds[1]),
- Oprnds.size()/2-1);
- for (unsigned i = 2, e = Oprnds.size(); i != e; i += 2)
- I->addCase(cast<ConstantInt>(getValue(iType, Oprnds[i])),
- getBasicBlock(Oprnds[i+1]));
- Result = I;
- break;
- }
- case 58: // Call with extra operand for calling conv
- case 59: // tail call, Fast CC
- case 60: // normal call, Fast CC
- case 61: // tail call, C Calling Conv
- case Instruction::Call: { // Normal Call, C Calling Convention
- if (Oprnds.size() == 0)
- error("Invalid call instruction encountered!");
- Value *F = getValue(iType, Oprnds[0]);
- unsigned CallingConv = CallingConv::C;
- bool isTailCall = false;
- if (Opcode == 61 || Opcode == 59)
- isTailCall = true;
- // Check to make sure we have a pointer to function type
- const PointerType *PTy = dyn_cast<PointerType>(F->getType());
- if (PTy == 0) error("Call to non function pointer value!");
- const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
- if (FTy == 0) error("Call to non function pointer value!");
- std::vector<Value *> Params;
- if (!FTy->isVarArg()) {
- FunctionType::param_iterator It = FTy->param_begin();
- if (Opcode == 58) {
- isTailCall = Oprnds.back() & 1;
- CallingConv = Oprnds.back() >> 1;
- Oprnds.pop_back();
- } else if (Opcode == 59 || Opcode == 60)
- CallingConv = CallingConv::Fast;
- for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
- if (It == FTy->param_end())
- error("Invalid call instruction!");
- Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
- }
- if (It != FTy->param_end())
- error("Invalid call instruction!");
- } else {
- Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
- unsigned FirstVariableOperand;
- if (Oprnds.size() < FTy->getNumParams())
- error("Call instruction missing operands!");
- // Read all of the fixed arguments
- for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
- Params.push_back(getValue(getTypeSlot(FTy->getParamType(i)),Oprnds[i]));
- FirstVariableOperand = FTy->getNumParams();
- if ((Oprnds.size()-FirstVariableOperand) & 1)
- error("Invalid call instruction!"); // Must be pairs of type/value
- for (unsigned i = FirstVariableOperand, e = Oprnds.size();
- i != e; i += 2)
- Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
- }
- Result = new CallInst(F, Params);
- if (isTailCall) cast<CallInst>(Result)->setTailCall();
- if (CallingConv) cast<CallInst>(Result)->setCallingConv(CallingConv);
- break;
- }
- case 56: // Invoke with encoded CC
- case 57: // Invoke Fast CC
- case Instruction::Invoke: { // Invoke C CC
- if (Oprnds.size() < 3)
- error("Invalid invoke instruction!");
- Value *F = getValue(iType, Oprnds[0]);
- // Check to make sure we have a pointer to function type
- const PointerType *PTy = dyn_cast<PointerType>(F->getType());
- if (PTy == 0)
- error("Invoke to non function pointer value!");
- const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
- if (FTy == 0)
- error("Invoke to non function pointer value!");
- std::vector<Value *> Params;
- BasicBlock *Normal, *Except;
- unsigned CallingConv = CallingConv::C;
- if (Opcode == 57)
- CallingConv = CallingConv::Fast;
- else if (Opcode == 56) {
- CallingConv = Oprnds.back();
- Oprnds.pop_back();
- }
- if (!FTy->isVarArg()) {
- Normal = getBasicBlock(Oprnds[1]);
- Except = getBasicBlock(Oprnds[2]);
- FunctionType::param_iterator It = FTy->param_begin();
- for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) {
- if (It == FTy->param_end())
- error("Invalid invoke instruction!");
- Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
- }
- if (It != FTy->param_end())
- error("Invalid invoke instruction!");
- } else {
- Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
- Normal = getBasicBlock(Oprnds[0]);
- Except = getBasicBlock(Oprnds[1]);
- unsigned FirstVariableArgument = FTy->getNumParams()+2;
- for (unsigned i = 2; i != FirstVariableArgument; ++i)
- Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)),
- Oprnds[i]));
- if (Oprnds.size()-FirstVariableArgument & 1) // Must be type/value pairs
- error("Invalid invoke instruction!");
- for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2)
- Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
- }
- Result = new InvokeInst(F, Normal, Except, Params);
- if (CallingConv) cast<InvokeInst>(Result)->setCallingConv(CallingConv);
- break;
- }
- case Instruction::Malloc:
- if (Oprnds.size() > 2)
- error("Invalid malloc instruction!");
- if (!isa<PointerType>(InstTy))
- error("Invalid malloc instruction!");
- Result = new MallocInst(cast<PointerType>(InstTy)->getElementType(),
- Oprnds.size() ? getValue(Type::UIntTyID,
- Oprnds[0]) : 0);
- break;
- case Instruction::Alloca:
- if (Oprnds.size() > 2)
- error("Invalid alloca instruction!");
- if (!isa<PointerType>(InstTy))
- error("Invalid alloca instruction!");
- Result = new AllocaInst(cast<PointerType>(InstTy)->getElementType(),
- Oprnds.size() ? getValue(Type::UIntTyID,
- Oprnds[0]) :0);
- break;
- case Instruction::Free:
- if (!isa<PointerType>(InstTy))
- error("Invalid free instruction!");
- Result = new FreeInst(getValue(iType, Oprnds[0]));
- break;
- case Instruction::GetElementPtr: {
- if (Oprnds.size() == 0 || !isa<PointerType>(InstTy))
- error("Invalid getelementptr instruction!");
- std::vector<Value*> Idx;
- const Type *NextTy = InstTy;
- for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
- const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
- if (!TopTy)
- error("Invalid getelementptr instruction!");
- unsigned ValIdx = Oprnds[i];
- unsigned IdxTy = 0;
- if (!hasRestrictedGEPTypes) {
- // Struct indices are always uints, sequential type indices can be any
- // of the 32 or 64-bit integer types. The actual choice of type is
- // encoded in the low two bits of the slot number.
- if (isa<StructType>(TopTy))
- IdxTy = Type::UIntTyID;
- else {
- switch (ValIdx & 3) {
- default:
- case 0: IdxTy = Type::UIntTyID; break;
- case 1: IdxTy = Type::IntTyID; break;
- case 2: IdxTy = Type::ULongTyID; break;
- case 3: IdxTy = Type::LongTyID; break;
- }
- ValIdx >>= 2;
- }
- } else {
- IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID;
- }
- Idx.push_back(getValue(IdxTy, ValIdx));
- // Convert ubyte struct indices into uint struct indices.
- if (isa<StructType>(TopTy) && hasRestrictedGEPTypes)
- if (ConstantUInt *C = dyn_cast<ConstantUInt>(Idx.back()))
- Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy);
- NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true);
- }
- Result = new GetElementPtrInst(getValue(iType, Oprnds[0]), Idx);
- break;
- }
- case 62: // volatile load
- case Instruction::Load:
- if (Oprnds.size() != 1 || !isa<PointerType>(InstTy))
- error("Invalid load instruction!");
- Result = new LoadInst(getValue(iType, Oprnds[0]), "", Opcode == 62);
- break;
- case 63: // volatile store
- case Instruction::Store: {
- if (!isa<PointerType>(InstTy) || Oprnds.size() != 2)
- error("Invalid store instruction!");
- Value *Ptr = getValue(iType, Oprnds[1]);
- const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType();
- Result = new StoreInst(getValue(getTypeSlot(ValTy), Oprnds[0]), Ptr,
- Opcode == 63);
- break;
- }
- case Instruction::Unwind:
- if (Oprnds.size() != 0) error("Invalid unwind instruction!");
- Result = new UnwindInst();
- break;
- case Instruction::Unreachable:
- if (Oprnds.size() != 0) error("Invalid unreachable instruction!");
- Result = new UnreachableInst();
- break;
- } // end switch(Opcode)
- unsigned TypeSlot;
- if (Result->getType() == InstTy)
- TypeSlot = iType;
- else
- TypeSlot = getTypeSlot(Result->getType());
- insertValue(Result, TypeSlot, FunctionValues);
- BB->getInstList().push_back(Result);
- }
- /// Get a particular numbered basic block, which might be a forward reference.
- /// This works together with ParseBasicBlock to handle these forward references
- /// in a clean manner. This function is used when constructing phi, br, switch,
- /// and other instructions that reference basic blocks. Blocks are numbered
- /// sequentially as they appear in the function.
- BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) {
- // Make sure there is room in the table...
- if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1);
- // First check to see if this is a backwards reference, i.e., ParseBasicBlock
- // has already created this block, or if the forward reference has already
- // been created.
- if (ParsedBasicBlocks[ID])
- return ParsedBasicBlocks[ID];
- // Otherwise, the basic block has not yet been created. Do so and add it to
- // the ParsedBasicBlocks list.
- return ParsedBasicBlocks[ID] = new BasicBlock();
- }
- /// In LLVM 1.0 bytecode files, we used to output one basicblock at a time.
- /// This method reads in one of the basicblock packets. This method is not used
- /// for bytecode files after LLVM 1.0
- /// @returns The basic block constructed.
- BasicBlock *BytecodeReader::ParseBasicBlock(unsigned BlockNo) {
- if (Handler) Handler->handleBasicBlockBegin(BlockNo);
- BasicBlock *BB = 0;
- if (ParsedBasicBlocks.size() == BlockNo)
- ParsedBasicBlocks.push_back(BB = new BasicBlock());
- else if (ParsedBasicBlocks[BlockNo] == 0)
- BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
- else
- BB = ParsedBasicBlocks[BlockNo];
- std::vector<unsigned> Operands;
- while (moreInBlock())
- ParseInstruction(Operands, BB);
- if (Handler) Handler->handleBasicBlockEnd(BlockNo);
- return BB;
- }
- /// Parse all of the BasicBlock's & Instruction's in the body of a function.
- /// In post 1.0 bytecode files, we no longer emit basic block individually,
- /// in order to avoid per-basic-block overhead.
- /// @returns Rhe number of basic blocks encountered.
- unsigned BytecodeReader::ParseInstructionList(Function* F) {
- unsigned BlockNo = 0;
- std::vector<unsigned> Args;
- while (moreInBlock()) {
- if (Handler) Handler->handleBasicBlockBegin(BlockNo);
- BasicBlock *BB;
- if (ParsedBasicBlocks.size() == BlockNo)
- ParsedBasicBlocks.push_back(BB = new BasicBlock());
- else if (ParsedBasicBlocks[BlockNo] == 0)
- BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
- else
- BB = ParsedBasicBlocks[BlockNo];
- ++BlockNo;
- F->getBasicBlockList().push_back(BB);
- // Read instructions into this basic block until we get to a terminator
- while (moreInBlock() && !BB->getTerminator())
- ParseInstruction(Args, BB);
- if (!BB->getTerminator())
- error("Non-terminated basic block found!");
- if (Handler) Handler->handleBasicBlockEnd(BlockNo-1);
- }
- return BlockNo;
- }
- /// Parse a symbol table. This works for both module level and function
- /// level symbol tables. For function level symbol tables, the CurrentFunction
- /// parameter must be non-zero and the ST parameter must correspond to
- /// CurrentFunction's symbol table. For Module level symbol tables, the
- /// CurrentFunction argument must be zero.
- void BytecodeReader::ParseSymbolTable(Function *CurrentFunction,
- SymbolTable *ST) {
- if (Handler) Handler->handleSymbolTableBegin(CurrentFunction,ST);
- // Allow efficient basic block lookup by number.
- std::vector<BasicBlock*> BBMap;
- if (CurrentFunction)
- for (Function::iterator I = CurrentFunction->begin(),
- E = CurrentFunction->end(); I != E; ++I)
- BBMap.push_back(I);
- /// In LLVM 1.3 we write types separately from values so
- /// The types are always first in the symbol table. This is
- /// because Type no longer derives from Value.
- if (!hasTypeDerivedFromValue) {
- // Symtab block header: [num entries]
- unsigned NumEntries = read_vbr_uint();
- for (unsigned i = 0; i < NumEntries; ++i) {
- // Symtab entry: [def slot #][name]
- unsigned slot = read_vbr_uint();
- std::string Name = read_str();
- const Type* T = getType(slot);
- ST->insert(Name, T);
- }
- }
- while (moreInBlock()) {
- // Symtab block header: [num entries][type id number]
- unsigned NumEntries = read_vbr_uint();
- unsigned Typ = 0;
- bool isTypeType = read_typeid(Typ);
- const Type *Ty = getType(Typ);
- for (unsigned i = 0; i != NumEntries; ++i) {
- // Symtab entry: [def slot #][name]
- unsigned slot = read_vbr_uint();
- std::string Name = read_str();
- // if we're reading a pre 1.3 bytecode file and the type plane
- // is the "type type", handle it here
- if (isTypeType) {
- const Type* T = getType(slot);
- if (T == 0)
- error("Failed type look-up for name '" + Name + "'");
- ST->insert(Name, T);
- continue; // code below must be short circuited
- } else {
- Value *V = 0;
- if (Typ == Type::LabelTyID) {
- if (slot < BBMap.size())
- V = BBMap[slot];
- } else {
- V = getValue(Typ, slot, false); // Find mapping...
- }
- if (V == 0)
- error("Failed value look-up for name '" + Name + "'");
- V->setName(Name);
- }
- }
- }
- checkPastBlockEnd("Symbol Table");
- if (Handler) Handler->handleSymbolTableEnd();
- }
- /// Read in the types portion of a compaction table.
- void BytecodeReader::ParseCompactionTypes(unsigned NumEntries) {
- for (unsigned i = 0; i != NumEntries; ++i) {
- unsigned TypeSlot = 0;
- if (read_typeid(TypeSlot))
- error("Invalid type in compaction table: type type");
- const Type *Typ = getGlobalTableType(TypeSlot);
- CompactionTypes.push_back(std::make_pair(Typ, TypeSlot));
- if (Handler) Handler->handleCompactionTableType(i, TypeSlot, Typ);
- }
- }
- /// Parse a compaction table.
- void BytecodeReader::ParseCompactionTable() {
- // Notify handler that we're beginning a compaction table.
- if (Handler) Handler->handleCompactionTableBegin();
- // In LLVM 1.3 Type no longer derives from Value. So,
- // we always write them first in the compaction table
- // because they can't occupy a "type plane" where the
- // Values reside.
- if (! hasTypeDerivedFromValue) {
- unsigned NumEntries = read_vbr_uint();
- ParseCompactionTypes(NumEntries);
- }
- // Compaction tables live in separate blocks so we have to loop
- // until we've read the whole thing.
- while (moreInBlock()) {
- // Read the number of Value* entries in the compaction table
- unsigned NumEntries = read_vbr_uint();
- unsigned Ty = 0;
- unsigned isTypeType = false;
- // Decode the type from value read in. Most compaction table
- // planes will have one or two entries in them. If that's the
- // case then the length is encoded in the bottom two bits and
- // the higher bits encode the type. This saves another VBR value.
- if ((NumEntries & 3) == 3) {
- // In this case, both low-order bits are set (value 3). This
- // is a signal that the typeid follows.
- NumEntries >>= 2;
- isTypeType = read_typeid(Ty);
- } else {
- // In this case, the low-order bits specify the number of entries
- // and the high order bits specify the type.
- Ty = NumEntries >> 2;
- isTypeType = sanitizeTypeId(Ty);
- NumEntries &= 3;
- }
- // if we're reading a pre 1.3 bytecode file and the type plane
- // is the "type type", handle it here
- if (isTypeType) {
- ParseCompactionTypes(NumEntries);
- } else {
- // Make sure we have enough room for the plane.
- if (Ty >= CompactionValues.size())
- CompactionValues.resize(Ty+1);
- // Make sure the plane is empty or we have some kind of error.
- if (!CompactionValues[Ty].empty())
- error("Compaction table plane contains multiple entries!");
- // Notify handler about the plane.
- if (Handler) Handler->handleCompactionTablePlane(Ty, NumEntries);
- // Push the implicit zero.
- CompactionValues[Ty].push_back(Constant::getNullValue(getType(Ty)));
- // Read in each of the entries, put them in the compaction table
- // and notify the handler that we have a new compaction table value.
- for (unsigned i = 0; i != NumEntries; ++i) {
- unsigned ValSlot = read_vbr_uint();
- Value *V = getGlobalTableValue(Ty, ValSlot);
- CompactionValues[Ty].push_back(V);
- if (Handler) Handler->handleCompactionTableValue(i, Ty, ValSlot);
- }
- }
- }
- // Notify handler that the compaction table is done.
- if (Handler) Handler->handleCompactionTableEnd();
- }
- // Parse a single type. The typeid is read in first. If its a primitive type
- // then nothing else needs to be read, we know how to instantiate it. If its
- // a derived type, then additional data is read to fill out the type
- // definition.
- const Type *BytecodeReader::ParseType() {
- unsigned PrimType = 0;
- if (read_typeid(PrimType))
- error("Invalid type (type type) in type constants!");
- const Type *Result = 0;
- if ((Result = Type::getPrimitiveType((Type::TypeID)PrimType)))
- return Result;
- switch (PrimType) {
- case Type::FunctionTyID: {
- const Type *RetType = readSanitizedType();
- unsigned NumParams = read_vbr_uint();
- std::vector<const Type*> Params;
- while (NumParams--)
- Params.push_back(readSanitizedType());
- bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
- if (isVarArg) Params.pop_back();
- Result = FunctionType::get(RetType, Params, isVarArg);
- break;
- }
- case Type::ArrayTyID: {
- const Type *ElementType = readSanitizedType();
- unsigned NumElements = read_vbr_uint();
- Result = ArrayType::get(ElementType, NumElements);
- break;
- }
- case Type::PackedTyID: {
- const Type *ElementType = readSanitizedType();
- unsigned NumElements = read_vbr_uint();
- Result = PackedType::get(ElementType, NumElements);
- break;
- }
- case Type::StructTyID: {
- std::vector<const Type*> Elements;
- unsigned Typ = 0;
- if (read_typeid(Typ))
- error("Invalid element type (type type) for structure!");
- while (Typ) { // List is terminated by void/0 typeid
- Elements.push_back(getType(Typ));
- if (read_typeid(Typ))
- error("Invalid element type (type type) for structure!");
- }
- Result = StructType::get(Elements);
- break;
- }
- case Type::PointerTyID: {
- Result = PointerType::get(readSanitizedType());
- break;
- }
- case Type::OpaqueTyID: {
- Result = OpaqueType::get();
- break;
- }
- default:
- error("Don't know how to deserialize primitive type " + utostr(PrimType));
- break;
- }
- if (Handler) Handler->handleType(Result);
- return Result;
- }
- // ParseTypes - We have to use this weird code to handle recursive
- // types. We know that recursive types will only reference the current slab of
- // values in the type plane, but they can forward reference types before they
- // have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might
- // be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix
- // this ugly problem, we pessimistically insert an opaque type for each type we
- // are about to read. This means that forward references will resolve to
- // something and when we reread the type later, we can replace the opaque type
- // with a new resolved concrete type.
- //
- void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
- assert(Tab.size() == 0 && "should not have read type constants in before!");
- // Insert a bunch of opaque types to be resolved later...
- Tab.reserve(NumEntries);
- for (unsigned i = 0; i != NumEntries; ++i)
- Tab.push_back(OpaqueType::get());
- if (Handler)
- Handler->handleTypeList(NumEntries);
- // Loop through reading all of the types. Forward types will make use of the
- // opaque types just inserted.
- //
- for (unsigned i = 0; i != NumEntries; ++i) {
- const Type* NewTy = ParseType();
- const Type* OldTy = Tab[i].get();
- if (NewTy == 0)
- error("Couldn't parse type!");
- // Don't directly push the new type on the Tab. Instead we want to replace
- // the opaque type we previously inserted with the new concrete value. This
- // approach helps with forward references to types. The refinement from the
- // abstract (opaque) type to the new type causes all uses of the abstract
- // type to use the concrete type (NewTy). This will also cause the opaque
- // type to be deleted.
- cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);
- // This should have replaced the old opaque type with the new type in the
- // value table... or with a preexisting type that was already in the system.
- // Let's just make sure it did.
- assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
- }
- }
- /// Parse a single constant value
- Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
- // We must check for a ConstantExpr before switching by type because
- // a ConstantExpr can be of any type, and has no explicit value.
- //
- // 0 if not expr; numArgs if is expr
- unsigned isExprNumArgs = read_vbr_uint();
- if (isExprNumArgs) {
- // 'undef' is encoded with 'exprnumargs' == 1.
- if (!hasNoUndefValue)
- if (--isExprNumArgs == 0)
- return UndefValue::get(getType(TypeID));
- // FIXME: Encoding of constant exprs could be much more compact!
- std::vector<Constant*> ArgVec;
- ArgVec.reserve(isExprNumArgs);
- unsigned Opcode = read_vbr_uint();
- // Bytecode files before LLVM 1.4 need have a missing terminator inst.
- if (hasNoUnreachableInst) Opcode++;
- // Read the slot number and types of each of the arguments
- for (unsigned i = 0; i != isExprNumArgs; ++i) {
- unsigned ArgValSlot = read_vbr_uint();
- unsigned ArgTypeSlot = 0;
- if (read_typeid(ArgTypeSlot))
- error("Invalid argument type (type type) for constant value");
- // Get the arg value from its slot if it exists, otherwise a placeholder
- ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot));
- }
- // Construct a ConstantExpr of the appropriate kind
- if (isExprNumArgs == 1) { // All one-operand expressions
- if (Opcode != Instruction::Cast)
- error("Only cast instruction has one argument for ConstantExpr");
- Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID));
- if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
- return Result;
- } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
- std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
- if (hasRestrictedGEPTypes) {
- const Type *BaseTy = ArgVec[0]->getType();
- generic_gep_type_iterator<std::vector<Constant*>::iterator>
- GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()),
- E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end());
- for (unsigned i = 0; GTI != E; ++GTI, ++i)
- if (isa<StructType>(*GTI)) {
- if (IdxList[i]->getType() != Type::UByteTy)
- error("Invalid index for getelementptr!");
- IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy);
- }
- }
- Constant* Result = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
- if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
- return Result;
- } else if (Opcode == Instruction::Select) {
- if (ArgVec.size() != 3)
- error("Select instruction must have three arguments.");
- Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1],
- ArgVec[2]);
- if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
- return Result;
- } else { // All other 2-operand expressions
- Constant* Result = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]);
- if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
- return Result;
- }
- }
- // Ok, not an ConstantExpr. We now know how to read the given type...
- const Type *Ty = getType(TypeID);
- switch (Ty->getTypeID()) {
- case Type::BoolTyID: {
- unsigned Val = read_vbr_uint();
- if (Val != 0 && Val != 1)
- error("Invalid boolean value read.");
- Constant* Result = ConstantBool::get(Val == 1);
- if (Handler) Handler->handleConstantValue(Result);
- return Result;
- }
- case Type::UByteTyID: // Unsigned integer types...
- case Type::UShortTyID:
- case Type::UIntTyID: {
- unsigned Val = read_vbr_uint();
- if (!ConstantUInt::isValueValidForType(Ty, Val))
- error("Invalid unsigned byte/short/int read.");
- Constant* Result = ConstantUInt::get(Ty, Val);
- if (Handler) Handler->handleConstantValue(Result);
- return Result;
- }
- case Type::ULongTyID: {
- Constant* Result = ConstantUInt::get(Ty, read_vbr_uint64());
- if (Handler) Handler->handleConstantValue(Result);
- return Result;
- }
- case Type::SByteTyID: // Signed integer types...
- case Type::ShortTyID:
- case Type::IntTyID: {
- case Type::LongTyID:
- int64_t Val = read_vbr_int64();
- if (!ConstantSInt::isValueValidForType(Ty, Val))
- error("Invalid signed byte/short/int/long read.");
- Constant* Result = ConstantSInt::get(Ty, Val);
- if (Handler) Handler->handleConstantValue(Result);
- return Result;
- }
- case Type::FloatTyID: {
- float Val;
- read_float(Val);
- Constant* Result = ConstantFP::get(Ty, Val);
- if (Handler) Handler->handleConstantValue(Result);
- return Result;
- }
- case Type::DoubleTyID: {
- double Val;
- read_double(Val);
- Constant* Result = ConstantFP::get(Ty, Val);
- if (Handler) Handler->handleConstantValue(Result);
- return Result;
- }
- case Type::ArrayTyID: {
- const ArrayType *AT = cast<ArrayType>(Ty);
- unsigned NumElements = AT->getNumElements();
- unsigned TypeSlot = getTypeSlot(AT->getElementType());
- std::vector<Constant*> Elements;
- Elements.reserve(NumElements);
- while (NumElements--) // Read all of the elements of the constant.
- Elements.push_back(getConstantValue(TypeSlot,
- read_vbr_uint()));
- Constant* Result = ConstantArray::get(AT, Elements);
- if (Handler) Handler->handleConstantArray(AT, Elements, TypeSlot, Result);
- return Result;
- }
- case Type::StructTyID: {
- const StructType *ST = cast<StructType>(Ty);
- std::vector<Constant *> Elements;
- Elements.reserve(ST->getNumElements());
- for (unsigned i = 0; i != ST->getNumElements(); ++i)
- Elements.push_back(getConstantValue(ST->getElementType(i),
- read_vbr_uint()));
- Constant* Result = ConstantStruct::get(ST, Elements);
- if (Handler) Handler->handleConstantStruct(ST, Elements, Result);
- return Result;
- }
- case Type::PackedTyID: {
- const PackedType *PT = cast<PackedType>(Ty);
- unsigned NumElements = PT->getNumElements();
- unsigned TypeSlot = getTypeSlot(PT->getElementType());
- std::vector<Constant*> Elements;
- Elements.reserve(NumElements);
- while (NumElements--) // Read all of the elements of the constant.
- Elements.push_back(getConstantValue(TypeSlot,
- read_vbr_uint()));
- Constant* Result = ConstantPacked::get(PT, Elements);
- if (Handler) Handler->handleConstantPacked(PT, Elements, TypeSlot, Result);
- return Result;
- }
- case Type::PointerTyID: { // ConstantPointerRef value (backwards compat).
- const PointerType *PT = cast<PointerType>(Ty);
- unsigned Slot = read_vbr_uint();
- // Check to see if we have already read this global variable...
- Value *Val = getValue(TypeID, Slot, false);
- if (Val) {
- GlobalValue *GV = dyn_cast<GlobalValue>(Val);
- if (!GV) error("GlobalValue not in ValueTable!");
- if (Handler) Handler->handleConstantPointer(PT, Slot, GV);
- return GV;
- } else {
- error("Forward references are not allowed here.");
- }
- }
- default:
- error("Don't know how to deserialize constant value of type '" +
- Ty->getDescription());
- break;
- }
- return 0;
- }
- /// Resolve references for constants. This function resolves the forward
- /// referenced constants in the ConstantFwdRefs map. It uses the
- /// replaceAllUsesWith method of Value class to substitute the placeholder
- /// instance with the actual instance.
- void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Typ,
- unsigned Slot) {
- ConstantRefsType::iterator I =
- ConstantFwdRefs.find(std::make_pair(Typ, Slot));
- if (I == ConstantFwdRefs.end()) return; // Never forward referenced?
- Value *PH = I->second; // Get the placeholder...
- PH->replaceAllUsesWith(NewV);
- delete PH; // Delete the old placeholder
- ConstantFwdRefs.erase(I); // Remove the map entry for it
- }
- /// Parse the constant strings section.
- void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){
- for (; NumEntries; --NumEntries) {
- unsigned Typ = 0;
- if (read_typeid(Typ))
- error("Invalid type (type type) for string constant");
- const Type *Ty = getType(Typ);
- if (!isa<ArrayType>(Ty))
- error("String constant data invalid!");
- const ArrayType *ATy = cast<ArrayType>(Ty);
- if (ATy->getElementType() != Type::SByteTy &&
- ATy->getElementType() != Type::UByteTy)
- error("String constant data invalid!");
- // Read character data. The type tells us how long the string is.
- char *Data = reinterpret_cast<char *>(alloca(ATy->getNumElements()));
- read_data(Data, Data+ATy->getNumElements());
- std::vector<Constant*> Elements(ATy->getNumElements());
- if (ATy->getElementType() == Type::SByteTy)
- for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
- Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]);
- else
- for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
- Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]);
- // Create the constant, inserting it as needed.
- Constant *C = ConstantArray::get(ATy, Elements);
- unsigned Slot = insertValue(C, Typ, Tab);
- ResolveReferencesToConstant(C, Typ, Slot);
- if (Handler) Handler->handleConstantString(cast<ConstantArray>(C));
- }
- }
- /// Parse the constant pool.
- void BytecodeReader::ParseConstantPool(ValueTable &Tab,
- TypeListTy &TypeTab,
- bool isFunction) {
- if (Handler) Handler->handleGlobalConstantsBegin();
- /// In LLVM 1.3 Type does not derive from Value so the types
- /// do not occupy a plane. Consequently, we read the types
- /// first in the constant pool.
- if (isFunction && !hasTypeDerivedFromValue) {
- unsigned NumEntries = read_vbr_uint();
- ParseTypes(TypeTab, NumEntries);
- }
- while (moreInBlock()) {
- unsigned NumEntries = read_vbr_uint();
- unsigned Typ = 0;
- bool isTypeType = read_typeid(Typ);
- /// In LLVM 1.2 and before, Types were written to the
- /// bytecode file in the "Type Type" plane (#12).
- /// In 1.3 plane 12 is now the label plane. Handle this here.
- if (isTypeType) {
- ParseTypes(TypeTab, NumEntries);
- } else if (Typ == Type::VoidTyID) {
- /// Use of Type::VoidTyID is a misnomer. It actually means
- /// that the following plane is constant strings
- assert(&Tab == &ModuleValues && "Cannot read strings in functions!");
- ParseStringConstants(NumEntries, Tab);
- } else {
- for (unsigned i = 0; i < NumEntries; ++i) {
- Constant *C = ParseConstantValue(Typ);
- assert(C && "ParseConstantValue returned NULL!");
- unsigned Slot = insertValue(C, Typ, Tab);
- // If we are reading a function constant table, make sure that we adjust
- // the slot number to be the real global constant number.
- //
- if (&Tab != &ModuleValues && Typ < ModuleValues.size() &&
- ModuleValues[Typ])
- Slot += ModuleValues[Typ]->size();
- ResolveReferencesToConstant(C, Typ, Slot);
- }
- }
- }
- // After we have finished parsing the constant pool, we had better not have
- // any dangling references left.
- if (!ConstantFwdRefs.empty()) {
- ConstantRefsType::const_iterator I = ConstantFwdRefs.begin();
- Constant* missingConst = I->second;
- error(utostr(ConstantFwdRefs.size()) +
- " unresolved constant reference exist. First one is '" +
- missingConst->getName() + "' of type '" +
- missingConst->getType()->getDescription() + "'.");
- }
- checkPastBlockEnd("Constant Pool");
- if (Handler) Handler->handleGlobalConstantsEnd();
- }
- /// Parse the contents of a function. Note that this function can be
- /// called lazily by materializeFunction
- /// @see materializeFunction
- void BytecodeReader::ParseFunctionBody(Function* F) {
- unsigned FuncSize = BlockEnd - At;
- GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
- unsigned LinkageType = read_vbr_uint();
- switch (LinkageType) {
- case 0: Linkage = GlobalValue::ExternalLinkage; break;
- case 1: Linkage = GlobalValue::WeakLinkage; break;
- case 2: Linkage = GlobalValue::AppendingLinkage; break;
- case 3: Linkage = GlobalValue::InternalLinkage; break;
- case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
- default:
- error("Invalid linkage type for Function.");
- Linkage = GlobalValue::InternalLinkage;
- break;
- }
- F->setLinkage(Linkage);
- if (Handler) Handler->handleFunctionBegin(F,FuncSize);
- // Keep track of how many basic blocks we have read in...
- unsigned BlockNum = 0;
- bool InsertedArguments = false;
- BufPtr MyEnd = BlockEnd;
- while (At < MyEnd) {
- unsigned Type, Size;
- BufPtr OldAt = At;
- read_block(Type, Size);
- switch (Type) {
- case BytecodeFormat::ConstantPoolBlockID:
- if (!InsertedArguments) {
- // Insert arguments into the value table before we parse the first basic
- // block in the function, but after we potentially read in the
- // compaction table.
- insertArguments(F);
- InsertedArguments = true;
- }
- ParseConstantPool(FunctionValues, FunctionTypes, true);
- break;
- case BytecodeFormat::CompactionTableBlockID:
- ParseCompactionTable();
- break;
- case BytecodeFormat::BasicBlock: {
- if (!InsertedArguments) {
- // Insert arguments into the value table before we parse the first basic
- // block in the function, but after we potentially read in the
- // compaction table.
- insertArguments(F);
- InsertedArguments = true;
- }
- BasicBlock *BB = ParseBasicBlock(BlockNum++);
- F->getBasicBlockList().push_back(BB);
- break;
- }
- case BytecodeFormat::InstructionListBlockID: {
- // Insert arguments into the value table before we parse the instruction
- // list for the function, but after we potentially read in the compaction
- // table.
- if (!InsertedArguments) {
- insertArguments(F);
- InsertedArguments = true;
- }
- if (BlockNum)
- error("Already parsed basic blocks!");
- BlockNum = ParseInstructionList(F);
- break;
- }
- case BytecodeFormat::SymbolTableBlockID:
- ParseSymbolTable(F, &F->getSymbolTable());
- break;
- default:
- At += Size;
- if (OldAt > At)
- error("Wrapped around reading bytecode.");
- break;
- }
- BlockEnd = MyEnd;
- // Malformed bc file if read past end of block.
- align32();
- }
- // Make sure there were no references to non-existant basic blocks.
- if (BlockNum != ParsedBasicBlocks.size())
- error("Illegal basic block operand reference");
- ParsedBasicBlocks.clear();
- // Resolve forward references. Replace any uses of a forward reference value
- // with the real value.
- while (!ForwardReferences.empty()) {
- std::map<std::pair<unsigned,unsigned>, Value*>::iterator
- I = ForwardReferences.begin();
- Value *V = getValue(I->first.first, I->first.second, false);
- Value *PlaceHolder = I->second;
- PlaceHolder->replaceAllUsesWith(V);
- ForwardReferences.erase(I);
- delete PlaceHolder;
- }
- // Clear out function-level types...
- FunctionTypes.clear();
- CompactionTypes.clear();
- CompactionValues.clear();
- freeTable(FunctionValues);
- if (Handler) Handler->handleFunctionEnd(F);
- }
- /// This function parses LLVM functions lazily. It obtains the type of the
- /// function and records where the body of the function is in the bytecode
- /// buffer. The caller can then use the ParseNextFunction and
- /// ParseAllFunctionBodies to get handler events for the functions.
- void BytecodeReader::ParseFunctionLazily() {
- if (FunctionSignatureList.empty())
- error("FunctionSignatureList empty!");
- Function *Func = FunctionSignatureList.back();
- FunctionSignatureList.pop_back();
- // Save the information for future reading of the function
- LazyFunctionLoadMap[Func] = LazyFunctionInfo(BlockStart, BlockEnd);
- // This function has a body but it's not loaded so it appears `External'.
- // Mark it as a `Ghost' instead to notify the users that it has a body.
- Func->setLinkage(GlobalValue::GhostLinkage);
- // Pretend we've `parsed' this function
- At = BlockEnd;
- }
- /// The ParserFunction method lazily parses one function. Use this method to
- /// casue the parser to parse a specific function in the module. Note that
- /// this will remove the function from what is to be included by
- /// ParseAllFunctionBodies.
- /// @see ParseAllFunctionBodies
- /// @see ParseBytecode
- void BytecodeReader::ParseFunction(Function* Func) {
- // Find {start, end} pointers and slot in the map. If not there, we're done.
- LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func);
- // Make sure we found it
- if (Fi == LazyFunctionLoadMap.end()) {
- error("Unrecognized function of type " + Func->getType()->getDescription());
- return;
- }
- BlockStart = At = Fi->second.Buf;
- BlockEnd = Fi->second.EndBuf;
- assert(Fi->first == Func && "Found wrong function?");
- LazyFunctionLoadMap.erase(Fi);
- this->ParseFunctionBody(Func);
- }
- /// The ParseAllFunctionBodies method parses through all the previously
- /// unparsed functions in the bytecode file. If you want to completely parse
- /// a bytecode file, this method should be called after Parsebytecode because
- /// Parsebytecode only records the locations in the bytecode file of where
- /// the function definitions are located. This function uses that information
- /// to materialize the functions.
- /// @see ParseBytecode
- void BytecodeReader::ParseAllFunctionBodies() {
- LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
- LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();
- while (Fi != Fe) {
- Function* Func = Fi->first;
- BlockStart = At = Fi->second.Buf;
- BlockEnd = Fi->second.EndBuf;
- ParseFunctionBody(Func);
- ++Fi;
- }
- LazyFunctionLoadMap.clear();
- }
- /// Parse the global type list
- void BytecodeReader::ParseGlobalTypes() {
- // Read the number of types
- unsigned NumEntries = read_vbr_uint();
- // Ignore the type plane identifier for types if the bc file is pre 1.3
- if (hasTypeDerivedFromValue)
- read_vbr_uint();
- ParseTypes(ModuleTypes, NumEntries);
- }
- /// Parse the Global info (types, global vars, constants)
- void BytecodeReader::ParseModuleGlobalInfo() {
- if (Handler) Handler->handleModuleGlobalsBegin();
- // Read global variables...
- unsigned VarType = read_vbr_uint();
- while (VarType != Type::VoidTyID) { // List is terminated by Void
- // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
- // Linkage, bit4+ = slot#
- unsigned SlotNo = VarType >> 5;
- if (sanitizeTypeId(SlotNo))
- error("Invalid type (type type) for global var!");
- unsigned LinkageID = (VarType >> 2) & 7;
- bool isConstant = VarType & 1;
- bool hasInitializer = VarType & 2;
- GlobalValue::LinkageTypes Linkage;
- switch (LinkageID) {
- case 0: Linkage = GlobalValue::ExternalLinkage; break;
- case 1: Linkage = GlobalValue::WeakLinkage; break;
- case 2: Linkage = GlobalValue::AppendingLinkage; break;
- case 3: Linkage = GlobalValue::InternalLinkage; break;
- case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
- default:
- error("Unknown linkage type: " + utostr(LinkageID));
- Linkage = GlobalValue::InternalLinkage;
- break;
- }
- const Type *Ty = getType(SlotNo);
- if (!Ty) {
- error("Global has no type! SlotNo=" + utostr(SlotNo));
- }
- if (!isa<PointerType>(Ty)) {
- error("Global not a pointer type! Ty= " + Ty->getDescription());
- }
- const Type *ElTy = cast<PointerType>(Ty)->getElementType();
- // Create the global variable...
- GlobalVariable *GV = new GlobalVariable(ElTy, isConstant, Linkage,
- 0, "", TheModule);
- insertValue(GV, SlotNo, ModuleValues);
- unsigned initSlot = 0;
- if (hasInitializer) {
- initSlot = read_vbr_uint();
- GlobalInits.push_back(std::make_pair(GV, initSlot));
- }
- // Notify handler about the global value.
- if (Handler)
- Handler->handleGlobalVariable(ElTy, isConstant, Linkage, SlotNo,initSlot);
- // Get next item
- VarType = read_vbr_uint();
- }
- // Read the function objects for all of the functions that are coming
- unsigned FnSignature = read_vbr_uint();
- if (hasNoFlagsForFunctions)
- FnSignature = (FnSignature << 5) + 1;
- // List is terminated by VoidTy.
- while ((FnSignature >> 5) != Type::VoidTyID) {
- const Type *Ty = getType(FnSignature >> 5);
- if (!isa<PointerType>(Ty) ||
- !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
- error("Function not a pointer to function type! Ty = " +
- Ty->getDescription());
- }
- // We create functions by passing the underlying FunctionType to create...
- const FunctionType* FTy =
- cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
- // Insert the place holder.
- Function* Func = new Function(FTy, GlobalValue::ExternalLinkage,
- "", TheModule);
- insertValue(Func, FnSignature >> 5, ModuleValues);
- // Flags are not used yet.
- unsigned Flags = FnSignature & 31;
- // Save this for later so we know type of lazily instantiated functions.
- // Note that known-external functions do not have FunctionInfo blocks, so we
- // do not add them to the FunctionSignatureList.
- if ((Flags & (1 << 4)) == 0)
- FunctionSignatureList.push_back(Func);
- // Look at the low bits. If there is a calling conv here, apply it,
- // read it as a vbr.
- Flags &= 15;
- if (Flags)
- Func->setCallingConv(Flags-1);
- else
- Func->setCallingConv(read_vbr_uint());
- if (Handler) Handler->handleFunctionDeclaration(Func);
- // Get the next function signature.
- FnSignature = read_vbr_uint();
- if (hasNoFlagsForFunctions)
- FnSignature = (FnSignature << 5) + 1;
- }
- // Now that the function signature list is set up, reverse it so that we can
- // remove elements efficiently from the back of the vector.
- std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
- // If this bytecode format has dependent library information in it ..
- if (!hasNoDependentLibraries) {
- // Read in the number of dependent library items that follow
- unsigned num_dep_libs = read_vbr_uint();
- std::string dep_lib;
- while( num_dep_libs-- ) {
- dep_lib = read_str();
- TheModule->addLibrary(dep_lib);
- if (Handler)
- Handler->handleDependentLibrary(dep_lib);
- }
- // Read target triple and place into the module
- std::string triple = read_str();
- TheModule->setTargetTriple(triple);
- if (Handler)
- Handler->handleTargetTriple(triple);
- }
- if (hasInconsistentModuleGlobalInfo)
- align32();
- // This is for future proofing... in the future extra fields may be added that
- // we don't understand, so we transparently ignore them.
- //
- At = BlockEnd;
- if (Handler) Handler->handleModuleGlobalsEnd();
- }
- /// Parse the version information and decode it by setting flags on the
- /// Reader that enable backward compatibility of the reader.
- void BytecodeReader::ParseVersionInfo() {
- unsigned Version = read_vbr_uint();
- // Unpack version number: low four bits are for flags, top bits = version
- Module::Endianness Endianness;
- Module::PointerSize PointerSize;
- Endianness = (Version & 1) ? Module::BigEndian : Module::LittleEndian;
- PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32;
- bool hasNoEndianness = Version & 4;
- bool hasNoPointerSize = Version & 8;
- RevisionNum = Version >> 4;
- // Default values for the current bytecode version
- hasInconsistentModuleGlobalInfo = false;
- hasExplicitPrimitiveZeros = false;
- hasRestrictedGEPTypes = false;
- hasTypeDerivedFromValue = false;
- hasLongBlockHeaders = false;
- has32BitTypes = false;
- hasNoDependentLibraries = false;
- hasAlignment = false;
- hasNoUndefValue = false;
- hasNoFlagsForFunctions = false;
- hasNoUnreachableInst = false;
- switch (RevisionNum) {
- case 0: // LLVM 1.0, 1.1 (Released)
- // Base LLVM 1.0 bytecode format.
- hasInconsistentModuleGlobalInfo = true;
- hasExplicitPrimitiveZeros = true;
- // FALL THROUGH
- case 1: // LLVM 1.2 (Released)
- // LLVM 1.2 added explicit support for emitting strings efficiently.
- // Also, it fixed the problem where the size of the ModuleGlobalInfo block
- // included the size for the alignment at the end, where the rest of the
- // blocks did not.
- // LLVM 1.2 and before required that GEP indices be ubyte constants for
- // structures and longs for sequential types.
- hasRestrictedGEPTypes = true;
- // LLVM 1.2 and before had the Type class derive from Value class. This
- // changed in release 1.3 and consequently LLVM 1.3 bytecode files are
- // written differently because Types can no longer be part of the
- // type planes for Values.
- hasTypeDerivedFromValue = true;
- // FALL THROUGH
- case 2: // 1.2.5 (Not Released)
- // LLVM 1.2 and earlier had two-word block headers. This is a bit wasteful,
- // especially for small files where the 8 bytes per block is a large
- // fraction of the total block size. In LLVM 1.3, the block type and length
- // are compressed into a single 32-bit unsigned integer. 27 bits for length,
- // 5 bits for block type.
- hasLongBlockHeaders = true;
- // LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3
- // this has been reduced to vbr_uint24. It shouldn't make much difference
- // since we haven't run into a module with > 24 million types, but for
- // safety the 24-bit restriction has been enforced in 1.3 to free some bits
- // in various places and to ensure consistency.
- has32BitTypes = true;
- // LLVM 1.2 and earlier did not provide a target triple nor a list of
- // libraries on which the bytecode is dependent. LLVM 1.3 provides these
- // features, for use in future versions of LLVM.
- hasNoDependentLibraries = true;
- // FALL THROUGH
- case 3: // LLVM 1.3 (Released)
- // LLVM 1.3 and earlier caused alignment bytes to be written on some block
- // boundaries and at the end of some strings. In extreme cases (e.g. lots
- // of GEP references to a constant array), this can increase the file size
- // by 30% or more. In version 1.4 alignment is done away with completely.
- hasAlignment = true;
- // FALL THROUGH
- case 4: // 1.3.1 (Not Released)
- // In version 4, we did not support the 'undef' constant.
- hasNoUndefValue = true;
- // In version 4 and above, we did not include space for flags for functions
- // in the module info block.
- hasNoFlagsForFunctions = true;
- // In version 4 and above, we did not include the 'unreachable' instruction
- // in the opcode numbering in the bytecode file.
- hasNoUnreachableInst = true;
- break;
- // FALL THROUGH
- case 5: // 1.4 (Released)
- break;
- default:
- error("Unknown bytecode version number: " + itostr(RevisionNum));
- }
- if (hasNoEndianness) Endianness = Module::AnyEndianness;
- if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;
- TheModule->setEndianness(Endianness);
- TheModule->setPointerSize(PointerSize);
- if (Handler) Handler->handleVersionInfo(RevisionNum, Endianness, PointerSize);
- }
- /// Parse a whole module.
- void BytecodeReader::ParseModule() {
- unsigned Type, Size;
- FunctionSignatureList.clear(); // Just in case...
- // Read into instance variables...
- ParseVersionInfo();
- align32();
- bool SeenModuleGlobalInfo = false;
- bool SeenGlobalTypePlane = false;
- BufPtr MyEnd = BlockEnd;
- while (At < MyEnd) {
- BufPtr OldAt = At;
- read_block(Type, Size);
- switch (Type) {
- case BytecodeFormat::GlobalTypePlaneBlockID:
- if (SeenGlobalTypePlane)
- error("Two GlobalTypePlane Blocks Encountered!");
- if (Size > 0)
- ParseGlobalTypes();
- SeenGlobalTypePlane = true;
- break;
- case BytecodeFormat::ModuleGlobalInfoBlockID:
- if (SeenModuleGlobalInfo)
- error("Two ModuleGlobalInfo Blocks Encountered!");
- ParseModuleGlobalInfo();
- SeenModuleGlobalInfo = true;
- break;
- case BytecodeFormat::ConstantPoolBlockID:
- ParseConstantPool(ModuleValues, ModuleTypes,false);
- break;
- case BytecodeFormat::FunctionBlockID:
- ParseFunctionLazily();
- break;
- case BytecodeFormat::SymbolTableBlockID:
- ParseSymbolTable(0, &TheModule->getSymbolTable());
- break;
- default:
- At += Size;
- if (OldAt > At) {
- error("Unexpected Block of Type #" + utostr(Type) + " encountered!");
- }
- break;
- }
- BlockEnd = MyEnd;
- align32();
- }
- // After the module constant pool has been read, we can safely initialize
- // global variables...
- while (!GlobalInits.empty()) {
- GlobalVariable *GV = GlobalInits.back().first;
- unsigned Slot = GlobalInits.back().second;
- GlobalInits.pop_back();
- // Look up the initializer value...
- // FIXME: Preserve this type ID!
- const llvm::PointerType* GVType = GV->getType();
- unsigned TypeSlot = getTypeSlot(GVType->getElementType());
- if (Constant *CV = getConstantValue(TypeSlot, Slot)) {
- if (GV->hasInitializer())
- error("Global *already* has an initializer?!");
- if (Handler) Handler->handleGlobalInitializer(GV,CV);
- GV->setInitializer(CV);
- } else
- error("Cannot find initializer value.");
- }
- if (!ConstantFwdRefs.empty())
- error("Use of undefined constants in a module");
- /// Make sure we pulled them all out. If we didn't then there's a declaration
- /// but a missing body. That's not allowed.
- if (!FunctionSignatureList.empty())
- error("Function declared, but bytecode stream ended before definition");
- }
- /// This function completely parses a bytecode buffer given by the \p Buf
- /// and \p Length parameters.
- void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,
- const std::string &ModuleID) {
- try {
- RevisionNum = 0;
- At = MemStart = BlockStart = Buf;
- MemEnd = BlockEnd = Buf + Length;
- // Create the module
- TheModule = new Module(ModuleID);
- if (Handler) Handler->handleStart(TheModule, Length);
- // Read the four bytes of the signature.
- unsigned Sig = read_uint();
- // If this is a compressed file
- if (Sig == ('l' | ('l' << 8) | ('v' << 16) | ('c' << 24))) {
- // Invoke the decompression of the bytecode. Note that we have to skip the
- // file's magic number which is not part of the compressed block. Hence,
- // the Buf+4 and Length-4. The result goes into decompressedBlock, a data
- // member for retention until BytecodeReader is destructed.
- unsigned decompressedLength = Compressor::decompressToNewBuffer(
- (char*)Buf+4,Length-4,decompressedBlock);
- // We must adjust the buffer pointers used by the bytecode reader to point
- // into the new decompressed block. After decompression, the
- // decompressedBlock will point to a contiguous memory area that has
- // the decompressed data.
- At = MemStart = BlockStart = Buf = (BufPtr) decompressedBlock;
- MemEnd = BlockEnd = Buf + decompressedLength;
- // else if this isn't a regular (uncompressed) bytecode file, then its
- // and error, generate that now.
- } else if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
- error("Invalid bytecode signature: " + utohexstr(Sig));
- }
- // Tell the handler we're starting a module
- if (Handler) Handler->handleModuleBegin(ModuleID);
- // Get the module block and size and verify. This is handled specially
- // because the module block/size is always written in long format. Other
- // blocks are written in short format so the read_block method is used.
- unsigned Type, Size;
- Type = read_uint();
- Size = read_uint();
- if (Type != BytecodeFormat::ModuleBlockID) {
- error("Expected Module Block! Type:" + utostr(Type) + ", Size:"
- + utostr(Size));
- }
- // It looks like the darwin ranlib program is broken, and adds trailing
- // garbage to the end of some bytecode files. This hack allows the bc
- // reader to ignore trailing garbage on bytecode files.
- if (At + Size < MemEnd)
- MemEnd = BlockEnd = At+Size;
- if (At + Size != MemEnd)
- error("Invalid Top Level Block Length! Type:" + utostr(Type)
- + ", Size:" + utostr(Size));
- // Parse the module contents
- this->ParseModule();
- // Check for missing functions
- if (hasFunctions())
- error("Function expected, but bytecode stream ended!");
- // Tell the handler we're done with the module
- if (Handler)
- Handler->handleModuleEnd(ModuleID);
- // Tell the handler we're finished the parse
- if (Handler) Handler->handleFinish();
- } catch (std::string& errstr) {
- if (Handler) Handler->handleError(errstr);
- freeState();
- delete TheModule;
- TheModule = 0;
- if (decompressedBlock != 0 ) {
- ::free(decompressedBlock);
- decompressedBlock = 0;
- }
- throw;
- } catch (...) {
- std::string msg("Unknown Exception Occurred");
- if (Handler) Handler->handleError(msg);
- freeState();
- delete TheModule;
- TheModule = 0;
- if (decompressedBlock != 0) {
- ::free(decompressedBlock);
- decompressedBlock = 0;
- }
- throw msg;
- }
- }
- //===----------------------------------------------------------------------===//
- //=== Default Implementations of Handler Methods
- //===----------------------------------------------------------------------===//
- BytecodeHandler::~BytecodeHandler() {}
|