//===-------- llvm/unittest/CodeGen/ScalableVectorMVTsTest.cpp ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/LLVMContext.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/TypeSize.h" #include "gtest/gtest.h" using namespace llvm; namespace { TEST(ScalableVectorMVTsTest, IntegerMVTs) { for (auto VecTy : MVT::integer_scalable_vector_valuetypes()) { ASSERT_TRUE(VecTy.isValid()); ASSERT_TRUE(VecTy.isInteger()); ASSERT_TRUE(VecTy.isVector()); ASSERT_TRUE(VecTy.isScalableVector()); ASSERT_TRUE(VecTy.getScalarType().isValid()); ASSERT_FALSE(VecTy.isFloatingPoint()); } } TEST(ScalableVectorMVTsTest, FloatMVTs) { for (auto VecTy : MVT::fp_scalable_vector_valuetypes()) { ASSERT_TRUE(VecTy.isValid()); ASSERT_TRUE(VecTy.isFloatingPoint()); ASSERT_TRUE(VecTy.isVector()); ASSERT_TRUE(VecTy.isScalableVector()); ASSERT_TRUE(VecTy.getScalarType().isValid()); ASSERT_FALSE(VecTy.isInteger()); } } TEST(ScalableVectorMVTsTest, HelperFuncs) { LLVMContext Ctx; // Create with scalable flag EVT Vnx4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/true); ASSERT_TRUE(Vnx4i32.isScalableVector()); // Create with separate llvm::ElementCount auto EltCnt = ElementCount(2, true); EVT Vnx2i32 = EVT::getVectorVT(Ctx, MVT::i32, EltCnt); ASSERT_TRUE(Vnx2i32.isScalableVector()); // Create with inline llvm::ElementCount EVT Vnx2i64 = EVT::getVectorVT(Ctx, MVT::i64, {2, true}); ASSERT_TRUE(Vnx2i64.isScalableVector()); // Check that changing scalar types/element count works EXPECT_EQ(Vnx2i32.widenIntegerVectorElementType(Ctx), Vnx2i64); EXPECT_EQ(Vnx4i32.getHalfNumVectorElementsVT(Ctx), Vnx2i32); // Check that overloaded '*' and '/' operators work EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt * 2), MVT::nxv4i64); EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt / 2), MVT::nxv1i64); // Check that float->int conversion works EVT Vnx2f64 = EVT::getVectorVT(Ctx, MVT::f64, {2, true}); EXPECT_EQ(Vnx2f64.changeTypeToInteger(), Vnx2i64); // Check fields inside llvm::ElementCount EltCnt = Vnx4i32.getVectorElementCount(); EXPECT_EQ(EltCnt.Min, 4U); ASSERT_TRUE(EltCnt.Scalable); // Check that fixed-length vector types aren't scalable. EVT V8i32 = EVT::getVectorVT(Ctx, MVT::i32, 8); ASSERT_FALSE(V8i32.isScalableVector()); EVT V4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, false}); ASSERT_FALSE(V4f64.isScalableVector()); // Check that llvm::ElementCount works for fixed-length types. EltCnt = V8i32.getVectorElementCount(); EXPECT_EQ(EltCnt.Min, 8U); ASSERT_FALSE(EltCnt.Scalable); } TEST(ScalableVectorMVTsTest, IRToVTTranslation) { LLVMContext Ctx; Type *Int64Ty = Type::getInt64Ty(Ctx); VectorType *ScV8Int64Ty = VectorType::get(Int64Ty, {8, true}); // Check that we can map a scalable IR type to an MVT MVT Mnxv8i64 = MVT::getVT(ScV8Int64Ty); ASSERT_TRUE(Mnxv8i64.isScalableVector()); ASSERT_EQ(ScV8Int64Ty->getElementCount(), Mnxv8i64.getVectorElementCount()); ASSERT_EQ(MVT::getVT(ScV8Int64Ty->getElementType()), Mnxv8i64.getScalarType()); // Check that we can map a scalable IR type to an EVT EVT Enxv8i64 = EVT::getEVT(ScV8Int64Ty); ASSERT_TRUE(Enxv8i64.isScalableVector()); ASSERT_EQ(ScV8Int64Ty->getElementCount(), Enxv8i64.getVectorElementCount()); ASSERT_EQ(EVT::getEVT(ScV8Int64Ty->getElementType()), Enxv8i64.getScalarType()); } TEST(ScalableVectorMVTsTest, VTToIRTranslation) { LLVMContext Ctx; EVT Enxv4f64 = EVT::getVectorVT(Ctx, MVT::f64, {4, true}); Type *Ty = Enxv4f64.getTypeForEVT(Ctx); VectorType *ScV4Float64Ty = cast(Ty); ASSERT_TRUE(ScV4Float64Ty->isScalable()); ASSERT_EQ(Enxv4f64.getVectorElementCount(), ScV4Float64Ty->getElementCount()); ASSERT_EQ(Enxv4f64.getScalarType().getTypeForEVT(Ctx), ScV4Float64Ty->getElementType()); } } // end anonymous namespace