|
@@ -207,4 +207,52 @@ TEST(MathExtras, SaturatingAdd) {
|
|
|
SaturatingAddTestHelper<uint64_t>();
|
|
|
}
|
|
|
|
|
|
+template<typename T>
|
|
|
+void SaturatingMultiplyTestHelper()
|
|
|
+{
|
|
|
+ const T Max = std::numeric_limits<T>::max();
|
|
|
+
|
|
|
+ // Test basic multiplication.
|
|
|
+ EXPECT_EQ(T(6), SaturatingMultiply(T(2), T(3)));
|
|
|
+ EXPECT_EQ(T(6), SaturatingMultiply(T(3), T(2)));
|
|
|
+
|
|
|
+ // Test multiplication by zero.
|
|
|
+ EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(0)));
|
|
|
+ EXPECT_EQ(T(0), SaturatingMultiply(T(1), T(0)));
|
|
|
+ EXPECT_EQ(T(0), SaturatingMultiply(T(0), T(1)));
|
|
|
+ EXPECT_EQ(T(0), SaturatingMultiply(Max, T(0)));
|
|
|
+ EXPECT_EQ(T(0), SaturatingMultiply(T(0), Max));
|
|
|
+
|
|
|
+ // Test multiplication by maximum value.
|
|
|
+ EXPECT_EQ(Max, SaturatingMultiply(Max, T(2)));
|
|
|
+ EXPECT_EQ(Max, SaturatingMultiply(T(2),Max));
|
|
|
+ EXPECT_EQ(Max, SaturatingMultiply(Max, Max));
|
|
|
+
|
|
|
+ // Test interesting boundary conditions for algorithm -
|
|
|
+ // ((1 << A) - 1) * ((1 << B) + K) for K in [-1, 0, 1]
|
|
|
+ // and A + B == std::numeric_limits<T>::digits.
|
|
|
+ // We expect overflow iff A > B and K = 1.
|
|
|
+ const int Digits = std::numeric_limits<T>::digits;
|
|
|
+ for (int A = 1, B = Digits - 1; B >= 1; ++A, --B) {
|
|
|
+ for (int K = -1; K <= 1; ++K) {
|
|
|
+ T X = (T(1) << A) - T(1);
|
|
|
+ T Y = (T(1) << B) + K;
|
|
|
+ bool OverflowExpected = A > B && K == 1;
|
|
|
+
|
|
|
+ if(OverflowExpected) {
|
|
|
+ EXPECT_EQ(Max, SaturatingMultiply(X, Y));
|
|
|
+ } else {
|
|
|
+ EXPECT_EQ(X * Y, SaturatingMultiply(X, Y));
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+TEST(MathExtras, SaturatingMultiply) {
|
|
|
+ SaturatingMultiplyTestHelper<uint8_t>();
|
|
|
+ SaturatingMultiplyTestHelper<uint16_t>();
|
|
|
+ SaturatingMultiplyTestHelper<uint32_t>();
|
|
|
+ SaturatingMultiplyTestHelper<uint64_t>();
|
|
|
+}
|
|
|
+
|
|
|
}
|