|
@@ -9,34 +9,6 @@
|
|
//
|
|
//
|
|
// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
|
|
// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
|
|
//
|
|
//
|
|
-// Software pipelining (SWP) is an instruction scheduling technique for loops
|
|
|
|
-// that overlap loop iterations and exploits ILP via a compiler transformation.
|
|
|
|
-//
|
|
|
|
-// Swing Modulo Scheduling is an implementation of software pipelining
|
|
|
|
-// that generates schedules that are near optimal in terms of initiation
|
|
|
|
-// interval, register requirements, and stage count. See the papers:
|
|
|
|
-//
|
|
|
|
-// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
|
|
|
|
-// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996
|
|
|
|
-// Conference on Parallel Architectures and Compilation Techiniques.
|
|
|
|
-//
|
|
|
|
-// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
|
|
|
|
-// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
|
|
|
|
-// Transactions on Computers, Vol. 50, No. 3, 2001.
|
|
|
|
-//
|
|
|
|
-// "An Implementation of Swing Modulo Scheduling With Extensions for
|
|
|
|
-// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
|
|
|
|
-// Urbana-Chambpain, 2005.
|
|
|
|
-//
|
|
|
|
-//
|
|
|
|
-// The SMS algorithm consists of three main steps after computing the minimal
|
|
|
|
-// initiation interval (MII).
|
|
|
|
-// 1) Analyze the dependence graph and compute information about each
|
|
|
|
-// instruction in the graph.
|
|
|
|
-// 2) Order the nodes (instructions) by priority based upon the heuristics
|
|
|
|
-// described in the algorithm.
|
|
|
|
-// 3) Attempt to schedule the nodes in the specified order using the MII.
|
|
|
|
-//
|
|
|
|
// This SMS implementation is a target-independent back-end pass. When enabled,
|
|
// This SMS implementation is a target-independent back-end pass. When enabled,
|
|
// the pass runs just prior to the register allocation pass, while the machine
|
|
// the pass runs just prior to the register allocation pass, while the machine
|
|
// IR is in SSA form. If software pipelining is successful, then the original
|
|
// IR is in SSA form. If software pipelining is successful, then the original
|
|
@@ -83,13 +55,11 @@
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
|
|
+#include "llvm/CodeGen/MachinePipeliner.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
-#include "llvm/CodeGen/RegisterClassInfo.h"
|
|
|
|
#include "llvm/CodeGen/RegisterPressure.h"
|
|
#include "llvm/CodeGen/RegisterPressure.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
-#include "llvm/CodeGen/ScheduleDAGInstrs.h"
|
|
|
|
#include "llvm/CodeGen/ScheduleDAGMutation.h"
|
|
#include "llvm/CodeGen/ScheduleDAGMutation.h"
|
|
-#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
@@ -171,575 +141,15 @@ static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
|
|
cl::ReallyHidden, cl::init(false),
|
|
cl::ReallyHidden, cl::init(false),
|
|
cl::ZeroOrMore, cl::desc("Ignore RecMII"));
|
|
cl::ZeroOrMore, cl::desc("Ignore RecMII"));
|
|
|
|
|
|
|
|
+namespace llvm {
|
|
|
|
+
|
|
// A command line option to enable the CopyToPhi DAG mutation.
|
|
// A command line option to enable the CopyToPhi DAG mutation.
|
|
-static cl::opt<bool>
|
|
|
|
|
|
+cl::opt<bool>
|
|
SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
|
|
SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
|
|
cl::init(true), cl::ZeroOrMore,
|
|
cl::init(true), cl::ZeroOrMore,
|
|
cl::desc("Enable CopyToPhi DAG Mutation"));
|
|
cl::desc("Enable CopyToPhi DAG Mutation"));
|
|
|
|
|
|
-namespace {
|
|
|
|
-
|
|
|
|
-class NodeSet;
|
|
|
|
-class SMSchedule;
|
|
|
|
-
|
|
|
|
-/// The main class in the implementation of the target independent
|
|
|
|
-/// software pipeliner pass.
|
|
|
|
-class MachinePipeliner : public MachineFunctionPass {
|
|
|
|
-public:
|
|
|
|
- MachineFunction *MF = nullptr;
|
|
|
|
- const MachineLoopInfo *MLI = nullptr;
|
|
|
|
- const MachineDominatorTree *MDT = nullptr;
|
|
|
|
- const InstrItineraryData *InstrItins;
|
|
|
|
- const TargetInstrInfo *TII = nullptr;
|
|
|
|
- RegisterClassInfo RegClassInfo;
|
|
|
|
-
|
|
|
|
-#ifndef NDEBUG
|
|
|
|
- static int NumTries;
|
|
|
|
-#endif
|
|
|
|
-
|
|
|
|
- /// Cache the target analysis information about the loop.
|
|
|
|
- struct LoopInfo {
|
|
|
|
- MachineBasicBlock *TBB = nullptr;
|
|
|
|
- MachineBasicBlock *FBB = nullptr;
|
|
|
|
- SmallVector<MachineOperand, 4> BrCond;
|
|
|
|
- MachineInstr *LoopInductionVar = nullptr;
|
|
|
|
- MachineInstr *LoopCompare = nullptr;
|
|
|
|
- };
|
|
|
|
- LoopInfo LI;
|
|
|
|
-
|
|
|
|
- static char ID;
|
|
|
|
-
|
|
|
|
- MachinePipeliner() : MachineFunctionPass(ID) {
|
|
|
|
- initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
-
|
|
|
|
- void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
|
|
- AU.addRequired<AAResultsWrapperPass>();
|
|
|
|
- AU.addPreserved<AAResultsWrapperPass>();
|
|
|
|
- AU.addRequired<MachineLoopInfo>();
|
|
|
|
- AU.addRequired<MachineDominatorTree>();
|
|
|
|
- AU.addRequired<LiveIntervals>();
|
|
|
|
- MachineFunctionPass::getAnalysisUsage(AU);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-private:
|
|
|
|
- void preprocessPhiNodes(MachineBasicBlock &B);
|
|
|
|
- bool canPipelineLoop(MachineLoop &L);
|
|
|
|
- bool scheduleLoop(MachineLoop &L);
|
|
|
|
- bool swingModuloScheduler(MachineLoop &L);
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-/// This class builds the dependence graph for the instructions in a loop,
|
|
|
|
-/// and attempts to schedule the instructions using the SMS algorithm.
|
|
|
|
-class SwingSchedulerDAG : public ScheduleDAGInstrs {
|
|
|
|
- MachinePipeliner &Pass;
|
|
|
|
- /// The minimum initiation interval between iterations for this schedule.
|
|
|
|
- unsigned MII = 0;
|
|
|
|
- /// Set to true if a valid pipelined schedule is found for the loop.
|
|
|
|
- bool Scheduled = false;
|
|
|
|
- MachineLoop &Loop;
|
|
|
|
- LiveIntervals &LIS;
|
|
|
|
- const RegisterClassInfo &RegClassInfo;
|
|
|
|
-
|
|
|
|
- /// A toplogical ordering of the SUnits, which is needed for changing
|
|
|
|
- /// dependences and iterating over the SUnits.
|
|
|
|
- ScheduleDAGTopologicalSort Topo;
|
|
|
|
-
|
|
|
|
- struct NodeInfo {
|
|
|
|
- int ASAP = 0;
|
|
|
|
- int ALAP = 0;
|
|
|
|
- int ZeroLatencyDepth = 0;
|
|
|
|
- int ZeroLatencyHeight = 0;
|
|
|
|
-
|
|
|
|
- NodeInfo() = default;
|
|
|
|
- };
|
|
|
|
- /// Computed properties for each node in the graph.
|
|
|
|
- std::vector<NodeInfo> ScheduleInfo;
|
|
|
|
-
|
|
|
|
- enum OrderKind { BottomUp = 0, TopDown = 1 };
|
|
|
|
- /// Computed node ordering for scheduling.
|
|
|
|
- SetVector<SUnit *> NodeOrder;
|
|
|
|
-
|
|
|
|
- using NodeSetType = SmallVector<NodeSet, 8>;
|
|
|
|
- using ValueMapTy = DenseMap<unsigned, unsigned>;
|
|
|
|
- using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
|
|
|
|
- using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
|
|
|
|
-
|
|
|
|
- /// Instructions to change when emitting the final schedule.
|
|
|
|
- DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
|
|
|
|
-
|
|
|
|
- /// We may create a new instruction, so remember it because it
|
|
|
|
- /// must be deleted when the pass is finished.
|
|
|
|
- SmallPtrSet<MachineInstr *, 4> NewMIs;
|
|
|
|
-
|
|
|
|
- /// Ordered list of DAG postprocessing steps.
|
|
|
|
- std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
|
|
|
|
-
|
|
|
|
- /// Helper class to implement Johnson's circuit finding algorithm.
|
|
|
|
- class Circuits {
|
|
|
|
- std::vector<SUnit> &SUnits;
|
|
|
|
- SetVector<SUnit *> Stack;
|
|
|
|
- BitVector Blocked;
|
|
|
|
- SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
|
|
|
|
- SmallVector<SmallVector<int, 4>, 16> AdjK;
|
|
|
|
- // Node to Index from ScheduleDAGTopologicalSort
|
|
|
|
- std::vector<int> *Node2Idx;
|
|
|
|
- unsigned NumPaths;
|
|
|
|
- static unsigned MaxPaths;
|
|
|
|
-
|
|
|
|
- public:
|
|
|
|
- Circuits(std::vector<SUnit> &SUs, ScheduleDAGTopologicalSort &Topo)
|
|
|
|
- : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {
|
|
|
|
- Node2Idx = new std::vector<int>(SUs.size());
|
|
|
|
- unsigned Idx = 0;
|
|
|
|
- for (const auto &NodeNum : Topo)
|
|
|
|
- Node2Idx->at(NodeNum) = Idx++;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- ~Circuits() { delete Node2Idx; }
|
|
|
|
-
|
|
|
|
- /// Reset the data structures used in the circuit algorithm.
|
|
|
|
- void reset() {
|
|
|
|
- Stack.clear();
|
|
|
|
- Blocked.reset();
|
|
|
|
- B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
|
|
|
|
- NumPaths = 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- void createAdjacencyStructure(SwingSchedulerDAG *DAG);
|
|
|
|
- bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
|
|
|
|
- void unblock(int U);
|
|
|
|
- };
|
|
|
|
-
|
|
|
|
- struct CopyToPhiMutation : public ScheduleDAGMutation {
|
|
|
|
- void apply(ScheduleDAGInstrs *DAG) override;
|
|
|
|
- };
|
|
|
|
-
|
|
|
|
-public:
|
|
|
|
- SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
|
|
|
|
- const RegisterClassInfo &rci)
|
|
|
|
- : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
|
|
|
|
- RegClassInfo(rci), Topo(SUnits, &ExitSU) {
|
|
|
|
- P.MF->getSubtarget().getSMSMutations(Mutations);
|
|
|
|
- if (SwpEnableCopyToPhi)
|
|
|
|
- Mutations.push_back(llvm::make_unique<CopyToPhiMutation>());
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- void schedule() override;
|
|
|
|
- void finishBlock() override;
|
|
|
|
-
|
|
|
|
- /// Return true if the loop kernel has been scheduled.
|
|
|
|
- bool hasNewSchedule() { return Scheduled; }
|
|
|
|
-
|
|
|
|
- /// Return the earliest time an instruction may be scheduled.
|
|
|
|
- int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
|
|
|
|
-
|
|
|
|
- /// Return the latest time an instruction my be scheduled.
|
|
|
|
- int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
|
|
|
|
-
|
|
|
|
- /// The mobility function, which the number of slots in which
|
|
|
|
- /// an instruction may be scheduled.
|
|
|
|
- int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
|
|
|
|
-
|
|
|
|
- /// The depth, in the dependence graph, for a node.
|
|
|
|
- unsigned getDepth(SUnit *Node) { return Node->getDepth(); }
|
|
|
|
-
|
|
|
|
- /// The maximum unweighted length of a path from an arbitrary node to the
|
|
|
|
- /// given node in which each edge has latency 0
|
|
|
|
- int getZeroLatencyDepth(SUnit *Node) {
|
|
|
|
- return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /// The height, in the dependence graph, for a node.
|
|
|
|
- unsigned getHeight(SUnit *Node) { return Node->getHeight(); }
|
|
|
|
-
|
|
|
|
- /// The maximum unweighted length of a path from the given node to an
|
|
|
|
- /// arbitrary node in which each edge has latency 0
|
|
|
|
- int getZeroLatencyHeight(SUnit *Node) {
|
|
|
|
- return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /// Return true if the dependence is a back-edge in the data dependence graph.
|
|
|
|
- /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
|
|
|
|
- /// using an anti dependence from a Phi to an instruction.
|
|
|
|
- bool isBackedge(SUnit *Source, const SDep &Dep) {
|
|
|
|
- if (Dep.getKind() != SDep::Anti)
|
|
|
|
- return false;
|
|
|
|
- return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true);
|
|
|
|
-
|
|
|
|
- /// The distance function, which indicates that operation V of iteration I
|
|
|
|
- /// depends on operations U of iteration I-distance.
|
|
|
|
- unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
|
|
|
|
- // Instructions that feed a Phi have a distance of 1. Computing larger
|
|
|
|
- // values for arrays requires data dependence information.
|
|
|
|
- if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
|
|
|
|
- return 1;
|
|
|
|
- return 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /// Set the Minimum Initiation Interval for this schedule attempt.
|
|
|
|
- void setMII(unsigned mii) { MII = mii; }
|
|
|
|
-
|
|
|
|
- void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
|
|
|
|
-
|
|
|
|
- void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
|
|
|
|
-
|
|
|
|
- /// Return the new base register that was stored away for the changed
|
|
|
|
- /// instruction.
|
|
|
|
- unsigned getInstrBaseReg(SUnit *SU) {
|
|
|
|
- DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
|
|
|
|
- InstrChanges.find(SU);
|
|
|
|
- if (It != InstrChanges.end())
|
|
|
|
- return It->second.first;
|
|
|
|
- return 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
|
|
|
|
- Mutations.push_back(std::move(Mutation));
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- static bool classof(const ScheduleDAGInstrs *DAG) { return true; }
|
|
|
|
-
|
|
|
|
-private:
|
|
|
|
- void addLoopCarriedDependences(AliasAnalysis *AA);
|
|
|
|
- void updatePhiDependences();
|
|
|
|
- void changeDependences();
|
|
|
|
- unsigned calculateResMII();
|
|
|
|
- unsigned calculateRecMII(NodeSetType &RecNodeSets);
|
|
|
|
- void findCircuits(NodeSetType &NodeSets);
|
|
|
|
- void fuseRecs(NodeSetType &NodeSets);
|
|
|
|
- void removeDuplicateNodes(NodeSetType &NodeSets);
|
|
|
|
- void computeNodeFunctions(NodeSetType &NodeSets);
|
|
|
|
- void registerPressureFilter(NodeSetType &NodeSets);
|
|
|
|
- void colocateNodeSets(NodeSetType &NodeSets);
|
|
|
|
- void checkNodeSets(NodeSetType &NodeSets);
|
|
|
|
- void groupRemainingNodes(NodeSetType &NodeSets);
|
|
|
|
- void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
|
|
|
|
- SetVector<SUnit *> &NodesAdded);
|
|
|
|
- void computeNodeOrder(NodeSetType &NodeSets);
|
|
|
|
- void checkValidNodeOrder(const NodeSetType &Circuits) const;
|
|
|
|
- bool schedulePipeline(SMSchedule &Schedule);
|
|
|
|
- void generatePipelinedLoop(SMSchedule &Schedule);
|
|
|
|
- void generateProlog(SMSchedule &Schedule, unsigned LastStage,
|
|
|
|
- MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
|
|
|
|
- MBBVectorTy &PrologBBs);
|
|
|
|
- void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
|
|
|
|
- MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
|
|
|
|
- MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
|
|
|
|
- void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
|
|
|
|
- MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
|
|
|
|
- SMSchedule &Schedule, ValueMapTy *VRMap,
|
|
|
|
- InstrMapTy &InstrMap, unsigned LastStageNum,
|
|
|
|
- unsigned CurStageNum, bool IsLast);
|
|
|
|
- void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
|
|
|
|
- MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
|
|
|
|
- SMSchedule &Schedule, ValueMapTy *VRMap,
|
|
|
|
- InstrMapTy &InstrMap, unsigned LastStageNum,
|
|
|
|
- unsigned CurStageNum, bool IsLast);
|
|
|
|
- void removeDeadInstructions(MachineBasicBlock *KernelBB,
|
|
|
|
- MBBVectorTy &EpilogBBs);
|
|
|
|
- void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
|
|
|
|
- SMSchedule &Schedule);
|
|
|
|
- void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
|
|
|
|
- MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
|
|
|
|
- ValueMapTy *VRMap);
|
|
|
|
- bool computeDelta(MachineInstr &MI, unsigned &Delta);
|
|
|
|
- void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
|
|
|
|
- unsigned Num);
|
|
|
|
- MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
|
|
|
|
- unsigned InstStageNum);
|
|
|
|
- MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
|
|
|
|
- unsigned InstStageNum,
|
|
|
|
- SMSchedule &Schedule);
|
|
|
|
- void updateInstruction(MachineInstr *NewMI, bool LastDef,
|
|
|
|
- unsigned CurStageNum, unsigned InstrStageNum,
|
|
|
|
- SMSchedule &Schedule, ValueMapTy *VRMap);
|
|
|
|
- MachineInstr *findDefInLoop(unsigned Reg);
|
|
|
|
- unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
|
|
|
|
- unsigned LoopStage, ValueMapTy *VRMap,
|
|
|
|
- MachineBasicBlock *BB);
|
|
|
|
- void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
|
|
|
|
- SMSchedule &Schedule, ValueMapTy *VRMap,
|
|
|
|
- InstrMapTy &InstrMap);
|
|
|
|
- void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
|
|
|
|
- InstrMapTy &InstrMap, unsigned CurStageNum,
|
|
|
|
- unsigned PhiNum, MachineInstr *Phi,
|
|
|
|
- unsigned OldReg, unsigned NewReg,
|
|
|
|
- unsigned PrevReg = 0);
|
|
|
|
- bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
|
|
|
|
- unsigned &OffsetPos, unsigned &NewBase,
|
|
|
|
- int64_t &NewOffset);
|
|
|
|
- void postprocessDAG();
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-/// A NodeSet contains a set of SUnit DAG nodes with additional information
|
|
|
|
-/// that assigns a priority to the set.
|
|
|
|
-class NodeSet {
|
|
|
|
- SetVector<SUnit *> Nodes;
|
|
|
|
- bool HasRecurrence = false;
|
|
|
|
- unsigned RecMII = 0;
|
|
|
|
- int MaxMOV = 0;
|
|
|
|
- unsigned MaxDepth = 0;
|
|
|
|
- unsigned Colocate = 0;
|
|
|
|
- SUnit *ExceedPressure = nullptr;
|
|
|
|
- unsigned Latency = 0;
|
|
|
|
-
|
|
|
|
-public:
|
|
|
|
- using iterator = SetVector<SUnit *>::const_iterator;
|
|
|
|
-
|
|
|
|
- NodeSet() = default;
|
|
|
|
- NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {
|
|
|
|
- Latency = 0;
|
|
|
|
- for (unsigned i = 0, e = Nodes.size(); i < e; ++i)
|
|
|
|
- for (const SDep &Succ : Nodes[i]->Succs)
|
|
|
|
- if (Nodes.count(Succ.getSUnit()))
|
|
|
|
- Latency += Succ.getLatency();
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- bool insert(SUnit *SU) { return Nodes.insert(SU); }
|
|
|
|
-
|
|
|
|
- void insert(iterator S, iterator E) { Nodes.insert(S, E); }
|
|
|
|
-
|
|
|
|
- template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
|
|
|
|
- return Nodes.remove_if(P);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- unsigned count(SUnit *SU) const { return Nodes.count(SU); }
|
|
|
|
-
|
|
|
|
- bool hasRecurrence() { return HasRecurrence; };
|
|
|
|
-
|
|
|
|
- unsigned size() const { return Nodes.size(); }
|
|
|
|
-
|
|
|
|
- bool empty() const { return Nodes.empty(); }
|
|
|
|
-
|
|
|
|
- SUnit *getNode(unsigned i) const { return Nodes[i]; };
|
|
|
|
-
|
|
|
|
- void setRecMII(unsigned mii) { RecMII = mii; };
|
|
|
|
-
|
|
|
|
- void setColocate(unsigned c) { Colocate = c; };
|
|
|
|
-
|
|
|
|
- void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
|
|
|
|
-
|
|
|
|
- bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
|
|
|
|
-
|
|
|
|
- int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
|
|
|
|
-
|
|
|
|
- int getRecMII() { return RecMII; }
|
|
|
|
-
|
|
|
|
- /// Summarize node functions for the entire node set.
|
|
|
|
- void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
|
|
|
|
- for (SUnit *SU : *this) {
|
|
|
|
- MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
|
|
|
|
- MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- unsigned getLatency() { return Latency; }
|
|
|
|
-
|
|
|
|
- unsigned getMaxDepth() { return MaxDepth; }
|
|
|
|
-
|
|
|
|
- void clear() {
|
|
|
|
- Nodes.clear();
|
|
|
|
- RecMII = 0;
|
|
|
|
- HasRecurrence = false;
|
|
|
|
- MaxMOV = 0;
|
|
|
|
- MaxDepth = 0;
|
|
|
|
- Colocate = 0;
|
|
|
|
- ExceedPressure = nullptr;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- operator SetVector<SUnit *> &() { return Nodes; }
|
|
|
|
-
|
|
|
|
- /// Sort the node sets by importance. First, rank them by recurrence MII,
|
|
|
|
- /// then by mobility (least mobile done first), and finally by depth.
|
|
|
|
- /// Each node set may contain a colocate value which is used as the first
|
|
|
|
- /// tie breaker, if it's set.
|
|
|
|
- bool operator>(const NodeSet &RHS) const {
|
|
|
|
- if (RecMII == RHS.RecMII) {
|
|
|
|
- if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
|
|
|
|
- return Colocate < RHS.Colocate;
|
|
|
|
- if (MaxMOV == RHS.MaxMOV)
|
|
|
|
- return MaxDepth > RHS.MaxDepth;
|
|
|
|
- return MaxMOV < RHS.MaxMOV;
|
|
|
|
- }
|
|
|
|
- return RecMII > RHS.RecMII;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- bool operator==(const NodeSet &RHS) const {
|
|
|
|
- return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
|
|
|
|
- MaxDepth == RHS.MaxDepth;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
|
|
|
|
-
|
|
|
|
- iterator begin() { return Nodes.begin(); }
|
|
|
|
- iterator end() { return Nodes.end(); }
|
|
|
|
-
|
|
|
|
- void print(raw_ostream &os) const {
|
|
|
|
- os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
|
|
|
|
- << " depth " << MaxDepth << " col " << Colocate << "\n";
|
|
|
|
- for (const auto &I : Nodes)
|
|
|
|
- os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
|
|
|
|
- os << "\n";
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
|
|
- LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
|
|
|
|
-#endif
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-/// This class represents the scheduled code. The main data structure is a
|
|
|
|
-/// map from scheduled cycle to instructions. During scheduling, the
|
|
|
|
-/// data structure explicitly represents all stages/iterations. When
|
|
|
|
-/// the algorithm finshes, the schedule is collapsed into a single stage,
|
|
|
|
-/// which represents instructions from different loop iterations.
|
|
|
|
-///
|
|
|
|
-/// The SMS algorithm allows negative values for cycles, so the first cycle
|
|
|
|
-/// in the schedule is the smallest cycle value.
|
|
|
|
-class SMSchedule {
|
|
|
|
-private:
|
|
|
|
- /// Map from execution cycle to instructions.
|
|
|
|
- DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
|
|
|
|
-
|
|
|
|
- /// Map from instruction to execution cycle.
|
|
|
|
- std::map<SUnit *, int> InstrToCycle;
|
|
|
|
-
|
|
|
|
- /// Map for each register and the max difference between its uses and def.
|
|
|
|
- /// The first element in the pair is the max difference in stages. The
|
|
|
|
- /// second is true if the register defines a Phi value and loop value is
|
|
|
|
- /// scheduled before the Phi.
|
|
|
|
- std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
|
|
|
|
-
|
|
|
|
- /// Keep track of the first cycle value in the schedule. It starts
|
|
|
|
- /// as zero, but the algorithm allows negative values.
|
|
|
|
- int FirstCycle = 0;
|
|
|
|
-
|
|
|
|
- /// Keep track of the last cycle value in the schedule.
|
|
|
|
- int LastCycle = 0;
|
|
|
|
-
|
|
|
|
- /// The initiation interval (II) for the schedule.
|
|
|
|
- int InitiationInterval = 0;
|
|
|
|
-
|
|
|
|
- /// Target machine information.
|
|
|
|
- const TargetSubtargetInfo &ST;
|
|
|
|
-
|
|
|
|
- /// Virtual register information.
|
|
|
|
- MachineRegisterInfo &MRI;
|
|
|
|
-
|
|
|
|
- std::unique_ptr<DFAPacketizer> Resources;
|
|
|
|
-
|
|
|
|
-public:
|
|
|
|
- SMSchedule(MachineFunction *mf)
|
|
|
|
- : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
|
|
|
|
- Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {}
|
|
|
|
-
|
|
|
|
- void reset() {
|
|
|
|
- ScheduledInstrs.clear();
|
|
|
|
- InstrToCycle.clear();
|
|
|
|
- RegToStageDiff.clear();
|
|
|
|
- FirstCycle = 0;
|
|
|
|
- LastCycle = 0;
|
|
|
|
- InitiationInterval = 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /// Set the initiation interval for this schedule.
|
|
|
|
- void setInitiationInterval(int ii) { InitiationInterval = ii; }
|
|
|
|
-
|
|
|
|
- /// Return the first cycle in the completed schedule. This
|
|
|
|
- /// can be a negative value.
|
|
|
|
- int getFirstCycle() const { return FirstCycle; }
|
|
|
|
-
|
|
|
|
- /// Return the last cycle in the finalized schedule.
|
|
|
|
- int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
|
|
|
|
-
|
|
|
|
- /// Return the cycle of the earliest scheduled instruction in the dependence
|
|
|
|
- /// chain.
|
|
|
|
- int earliestCycleInChain(const SDep &Dep);
|
|
|
|
-
|
|
|
|
- /// Return the cycle of the latest scheduled instruction in the dependence
|
|
|
|
- /// chain.
|
|
|
|
- int latestCycleInChain(const SDep &Dep);
|
|
|
|
-
|
|
|
|
- void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
|
|
|
|
- int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
|
|
|
|
- bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
|
|
|
|
-
|
|
|
|
- /// Iterators for the cycle to instruction map.
|
|
|
|
- using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
|
|
|
|
- using const_sched_iterator =
|
|
|
|
- DenseMap<int, std::deque<SUnit *>>::const_iterator;
|
|
|
|
-
|
|
|
|
- /// Return true if the instruction is scheduled at the specified stage.
|
|
|
|
- bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
|
|
|
|
- return (stageScheduled(SU) == (int)StageNum);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /// Return the stage for a scheduled instruction. Return -1 if
|
|
|
|
- /// the instruction has not been scheduled.
|
|
|
|
- int stageScheduled(SUnit *SU) const {
|
|
|
|
- std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
|
|
|
|
- if (it == InstrToCycle.end())
|
|
|
|
- return -1;
|
|
|
|
- return (it->second - FirstCycle) / InitiationInterval;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /// Return the cycle for a scheduled instruction. This function normalizes
|
|
|
|
- /// the first cycle to be 0.
|
|
|
|
- unsigned cycleScheduled(SUnit *SU) const {
|
|
|
|
- std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
|
|
|
|
- assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
|
|
|
|
- return (it->second - FirstCycle) % InitiationInterval;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /// Return the maximum stage count needed for this schedule.
|
|
|
|
- unsigned getMaxStageCount() {
|
|
|
|
- return (LastCycle - FirstCycle) / InitiationInterval;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /// Return the max. number of stages/iterations that can occur between a
|
|
|
|
- /// register definition and its uses.
|
|
|
|
- unsigned getStagesForReg(int Reg, unsigned CurStage) {
|
|
|
|
- std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
|
|
|
|
- if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
|
|
|
|
- return 1;
|
|
|
|
- return Stages.first;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /// The number of stages for a Phi is a little different than other
|
|
|
|
- /// instructions. The minimum value computed in RegToStageDiff is 1
|
|
|
|
- /// because we assume the Phi is needed for at least 1 iteration.
|
|
|
|
- /// This is not the case if the loop value is scheduled prior to the
|
|
|
|
- /// Phi in the same stage. This function returns the number of stages
|
|
|
|
- /// or iterations needed between the Phi definition and any uses.
|
|
|
|
- unsigned getStagesForPhi(int Reg) {
|
|
|
|
- std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
|
|
|
|
- if (Stages.second)
|
|
|
|
- return Stages.first;
|
|
|
|
- return Stages.first - 1;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /// Return the instructions that are scheduled at the specified cycle.
|
|
|
|
- std::deque<SUnit *> &getInstructions(int cycle) {
|
|
|
|
- return ScheduledInstrs[cycle];
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- bool isValidSchedule(SwingSchedulerDAG *SSD);
|
|
|
|
- void finalizeSchedule(SwingSchedulerDAG *SSD);
|
|
|
|
- void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
|
|
|
|
- std::deque<SUnit *> &Insts);
|
|
|
|
- bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
|
|
|
|
- bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def,
|
|
|
|
- MachineOperand &MO);
|
|
|
|
- void print(raw_ostream &os) const;
|
|
|
|
- void dump() const;
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-} // end anonymous namespace
|
|
|
|
|
|
+} // end namespace llvm
|
|
|
|
|
|
unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
|
|
unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
|
|
char MachinePipeliner::ID = 0;
|
|
char MachinePipeliner::ID = 0;
|