|
@@ -0,0 +1,285 @@
|
|
|
+//=----------------------- InterleavedAccessPass.cpp -----------------------==//
|
|
|
+//
|
|
|
+// The LLVM Compiler Infrastructure
|
|
|
+//
|
|
|
+// This file is distributed under the University of Illinois Open Source
|
|
|
+// License. See LICENSE.TXT for details.
|
|
|
+//
|
|
|
+//===----------------------------------------------------------------------===//
|
|
|
+//
|
|
|
+// This file implements the Interleaved Access pass, which identifies
|
|
|
+// interleaved memory accesses and transforms into target specific intrinsics.
|
|
|
+//
|
|
|
+// An interleaved load reads data from memory into several vectors, with
|
|
|
+// DE-interleaving the data on a factor. An interleaved store writes several
|
|
|
+// vectors to memory with RE-interleaving the data on a factor.
|
|
|
+//
|
|
|
+// As interleaved accesses are hard to be identified in CodeGen (mainly because
|
|
|
+// the VECTOR_SHUFFLE DAG node is quite different from the shufflevector IR),
|
|
|
+// we identify and transform them to intrinsics in this pass. So the intrinsics
|
|
|
+// can be easily matched into target specific instructions later in CodeGen.
|
|
|
+//
|
|
|
+// E.g. An interleaved load (Factor = 2):
|
|
|
+// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
|
|
|
+// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
|
|
|
+// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
|
|
|
+//
|
|
|
+// It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
|
|
|
+// intrinsic in ARM backend.
|
|
|
+//
|
|
|
+// E.g. An interleaved store (Factor = 3):
|
|
|
+// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
|
|
|
+// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
|
|
|
+// store <12 x i32> %i.vec, <12 x i32>* %ptr
|
|
|
+//
|
|
|
+// It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
|
|
|
+// intrinsic in ARM backend.
|
|
|
+//
|
|
|
+//===----------------------------------------------------------------------===//
|
|
|
+
|
|
|
+#include "llvm/CodeGen/Passes.h"
|
|
|
+#include "llvm/IR/InstIterator.h"
|
|
|
+#include "llvm/Support/Debug.h"
|
|
|
+#include "llvm/Support/MathExtras.h"
|
|
|
+#include "llvm/Target/TargetLowering.h"
|
|
|
+#include "llvm/Target/TargetSubtargetInfo.h"
|
|
|
+
|
|
|
+using namespace llvm;
|
|
|
+
|
|
|
+#define DEBUG_TYPE "interleaved-access"
|
|
|
+
|
|
|
+static cl::opt<bool> LowerInterleavedAccesses(
|
|
|
+ "lower-interleaved-accesses",
|
|
|
+ cl::desc("Enable lowering interleaved accesses to intrinsics"),
|
|
|
+ cl::init(false), cl::Hidden);
|
|
|
+
|
|
|
+static unsigned MaxFactor; // The maximum supported interleave factor.
|
|
|
+
|
|
|
+namespace llvm {
|
|
|
+static void initializeInterleavedAccessPass(PassRegistry &);
|
|
|
+}
|
|
|
+
|
|
|
+namespace {
|
|
|
+
|
|
|
+class InterleavedAccess : public FunctionPass {
|
|
|
+
|
|
|
+public:
|
|
|
+ static char ID;
|
|
|
+ InterleavedAccess(const TargetMachine *TM = nullptr)
|
|
|
+ : FunctionPass(ID), TM(TM), TLI(nullptr) {
|
|
|
+ initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
|
|
|
+ }
|
|
|
+
|
|
|
+ const char *getPassName() const override { return "Interleaved Access Pass"; }
|
|
|
+
|
|
|
+ bool runOnFunction(Function &F) override;
|
|
|
+
|
|
|
+private:
|
|
|
+ const TargetMachine *TM;
|
|
|
+ const TargetLowering *TLI;
|
|
|
+
|
|
|
+ /// \brief Transform an interleaved load into target specific intrinsics.
|
|
|
+ bool lowerInterleavedLoad(LoadInst *LI,
|
|
|
+ SmallVector<Instruction *, 32> &DeadInsts);
|
|
|
+
|
|
|
+ /// \brief Transform an interleaved store into target specific intrinsics.
|
|
|
+ bool lowerInterleavedStore(StoreInst *SI,
|
|
|
+ SmallVector<Instruction *, 32> &DeadInsts);
|
|
|
+};
|
|
|
+} // end anonymous namespace.
|
|
|
+
|
|
|
+char InterleavedAccess::ID = 0;
|
|
|
+INITIALIZE_TM_PASS(InterleavedAccess, "interleaved-access",
|
|
|
+ "Lower interleaved memory accesses to target specific intrinsics",
|
|
|
+ false, false)
|
|
|
+
|
|
|
+FunctionPass *llvm::createInterleavedAccessPass(const TargetMachine *TM) {
|
|
|
+ return new InterleavedAccess(TM);
|
|
|
+}
|
|
|
+
|
|
|
+/// \brief Check if the mask is a DE-interleave mask of the given factor
|
|
|
+/// \p Factor like:
|
|
|
+/// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
|
|
|
+static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
|
|
|
+ unsigned &Index) {
|
|
|
+ // Check all potential start indices from 0 to (Factor - 1).
|
|
|
+ for (Index = 0; Index < Factor; Index++) {
|
|
|
+ unsigned i = 0;
|
|
|
+
|
|
|
+ // Check that elements are in ascending order by Factor. Ignore undef
|
|
|
+ // elements.
|
|
|
+ for (; i < Mask.size(); i++)
|
|
|
+ if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
|
|
|
+ break;
|
|
|
+
|
|
|
+ if (i == Mask.size())
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ return false;
|
|
|
+}
|
|
|
+
|
|
|
+/// \brief Check if the mask is a DE-interleave mask for an interleaved load.
|
|
|
+///
|
|
|
+/// E.g. DE-interleave masks (Factor = 2) could be:
|
|
|
+/// <0, 2, 4, 6> (mask of index 0 to extract even elements)
|
|
|
+/// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
|
|
|
+static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
|
|
|
+ unsigned &Index) {
|
|
|
+ if (Mask.size() < 2)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ // Check potential Factors.
|
|
|
+ for (Factor = 2; Factor <= MaxFactor; Factor++)
|
|
|
+ if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
|
|
|
+ return true;
|
|
|
+
|
|
|
+ return false;
|
|
|
+}
|
|
|
+
|
|
|
+/// \brief Check if the mask is RE-interleave mask for an interleaved store.
|
|
|
+///
|
|
|
+/// I.e. <0, NumSubElts, ... , NumSubElts*(Factor - 1), 1, NumSubElts + 1, ...>
|
|
|
+///
|
|
|
+/// E.g. The RE-interleave mask (Factor = 2) could be:
|
|
|
+/// <0, 4, 1, 5, 2, 6, 3, 7>
|
|
|
+static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor) {
|
|
|
+ unsigned NumElts = Mask.size();
|
|
|
+ if (NumElts < 4)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ // Check potential Factors.
|
|
|
+ for (Factor = 2; Factor <= MaxFactor; Factor++) {
|
|
|
+ if (NumElts % Factor)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ unsigned NumSubElts = NumElts / Factor;
|
|
|
+ if (!isPowerOf2_32(NumSubElts))
|
|
|
+ continue;
|
|
|
+
|
|
|
+ // Check whether each element matchs the RE-interleaved rule. Ignore undef
|
|
|
+ // elements.
|
|
|
+ unsigned i = 0;
|
|
|
+ for (; i < NumElts; i++)
|
|
|
+ if (Mask[i] >= 0 &&
|
|
|
+ static_cast<unsigned>(Mask[i]) !=
|
|
|
+ (i % Factor) * NumSubElts + i / Factor)
|
|
|
+ break;
|
|
|
+
|
|
|
+ // Find a RE-interleaved mask of current factor.
|
|
|
+ if (i == NumElts)
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
+ return false;
|
|
|
+}
|
|
|
+
|
|
|
+bool InterleavedAccess::lowerInterleavedLoad(
|
|
|
+ LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
|
|
|
+ if (!LI->isSimple())
|
|
|
+ return false;
|
|
|
+
|
|
|
+ SmallVector<ShuffleVectorInst *, 4> Shuffles;
|
|
|
+
|
|
|
+ // Check if all users of this load are shufflevectors.
|
|
|
+ for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
|
|
|
+ ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
|
|
|
+ if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
|
|
|
+ return false;
|
|
|
+
|
|
|
+ Shuffles.push_back(SVI);
|
|
|
+ }
|
|
|
+
|
|
|
+ if (Shuffles.empty())
|
|
|
+ return false;
|
|
|
+
|
|
|
+ unsigned Factor, Index;
|
|
|
+
|
|
|
+ // Check if the first shufflevector is DE-interleave shuffle.
|
|
|
+ if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index))
|
|
|
+ return false;
|
|
|
+
|
|
|
+ // Holds the corresponding index for each DE-interleave shuffle.
|
|
|
+ SmallVector<unsigned, 4> Indices;
|
|
|
+ Indices.push_back(Index);
|
|
|
+
|
|
|
+ Type *VecTy = Shuffles[0]->getType();
|
|
|
+
|
|
|
+ // Check if other shufflevectors are also DE-interleaved of the same type
|
|
|
+ // and factor as the first shufflevector.
|
|
|
+ for (unsigned i = 1; i < Shuffles.size(); i++) {
|
|
|
+ if (Shuffles[i]->getType() != VecTy)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
|
|
|
+ Index))
|
|
|
+ return false;
|
|
|
+
|
|
|
+ Indices.push_back(Index);
|
|
|
+ }
|
|
|
+
|
|
|
+ DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
|
|
|
+
|
|
|
+ // Try to create target specific intrinsics to replace the load and shuffles.
|
|
|
+ if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
|
|
|
+ return false;
|
|
|
+
|
|
|
+ for (auto SVI : Shuffles)
|
|
|
+ DeadInsts.push_back(SVI);
|
|
|
+
|
|
|
+ DeadInsts.push_back(LI);
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+bool InterleavedAccess::lowerInterleavedStore(
|
|
|
+ StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
|
|
|
+ if (!SI->isSimple())
|
|
|
+ return false;
|
|
|
+
|
|
|
+ ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
|
|
|
+ if (!SVI || !SVI->hasOneUse())
|
|
|
+ return false;
|
|
|
+
|
|
|
+ // Check if the shufflevector is RE-interleave shuffle.
|
|
|
+ unsigned Factor;
|
|
|
+ if (!isReInterleaveMask(SVI->getShuffleMask(), Factor))
|
|
|
+ return false;
|
|
|
+
|
|
|
+ DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
|
|
|
+
|
|
|
+ // Try to create target specific intrinsics to replace the store and shuffle.
|
|
|
+ if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
|
|
|
+ return false;
|
|
|
+
|
|
|
+ // Already have a new target specific interleaved store. Erase the old store.
|
|
|
+ DeadInsts.push_back(SI);
|
|
|
+ DeadInsts.push_back(SVI);
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+bool InterleavedAccess::runOnFunction(Function &F) {
|
|
|
+ if (!TM || !LowerInterleavedAccesses)
|
|
|
+ return false;
|
|
|
+
|
|
|
+ DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
|
|
|
+
|
|
|
+ TLI = TM->getSubtargetImpl(F)->getTargetLowering();
|
|
|
+ MaxFactor = TLI->getMaxSupportedInterleaveFactor();
|
|
|
+
|
|
|
+ // Holds dead instructions that will be erased later.
|
|
|
+ SmallVector<Instruction *, 32> DeadInsts;
|
|
|
+ bool Changed = false;
|
|
|
+
|
|
|
+ for (auto &I : inst_range(F)) {
|
|
|
+ if (LoadInst *LI = dyn_cast<LoadInst>(&I))
|
|
|
+ Changed |= lowerInterleavedLoad(LI, DeadInsts);
|
|
|
+
|
|
|
+ if (StoreInst *SI = dyn_cast<StoreInst>(&I))
|
|
|
+ Changed |= lowerInterleavedStore(SI, DeadInsts);
|
|
|
+ }
|
|
|
+
|
|
|
+ for (auto I : DeadInsts)
|
|
|
+ I->eraseFromParent();
|
|
|
+
|
|
|
+ return Changed;
|
|
|
+}
|