find_end_pred.pass.cpp 3.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586
  1. //===----------------------------------------------------------------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. // <algorithm>
  10. // template<ForwardIterator Iter1, ForwardIterator Iter2,
  11. // Predicate<auto, Iter1::value_type, Iter2::value_type> Pred>
  12. // requires CopyConstructible<Pred>
  13. // Iter1
  14. // find_end(Iter1 first1, Iter1 last1, Iter2 first2, Iter2 last2, Pred pred);
  15. #include <algorithm>
  16. #include <cassert>
  17. #include "../../iterators.h"
  18. struct count_equal
  19. {
  20. static unsigned count;
  21. template <class T>
  22. bool operator()(const T& x, const T& y)
  23. {++count; return x == y;}
  24. };
  25. unsigned count_equal::count = 0;
  26. template <class Iter1, class Iter2>
  27. void
  28. test()
  29. {
  30. int ia[] = {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 0, 1, 2, 3, 0, 1, 2, 0, 1, 0};
  31. const unsigned sa = sizeof(ia)/sizeof(ia[0]);
  32. int b[] = {0};
  33. count_equal::count = 0;
  34. assert(std::find_end(Iter1(ia), Iter1(ia+sa), Iter2(b), Iter2(b+1), count_equal()) == Iter1(ia+sa-1));
  35. assert(count_equal::count <= 1*(sa-1+1));
  36. int c[] = {0, 1};
  37. count_equal::count = 0;
  38. assert(std::find_end(Iter1(ia), Iter1(ia+sa), Iter2(c), Iter2(c+2), count_equal()) == Iter1(ia+18));
  39. assert(count_equal::count <= 2*(sa-2+1));
  40. int d[] = {0, 1, 2};
  41. count_equal::count = 0;
  42. assert(std::find_end(Iter1(ia), Iter1(ia+sa), Iter2(d), Iter2(d+3), count_equal()) == Iter1(ia+15));
  43. assert(count_equal::count <= 3*(sa-3+1));
  44. int e[] = {0, 1, 2, 3};
  45. count_equal::count = 0;
  46. assert(std::find_end(Iter1(ia), Iter1(ia+sa), Iter2(e), Iter2(e+4), count_equal()) == Iter1(ia+11));
  47. assert(count_equal::count <= 4*(sa-4+1));
  48. int f[] = {0, 1, 2, 3, 4};
  49. count_equal::count = 0;
  50. assert(std::find_end(Iter1(ia), Iter1(ia+sa), Iter2(f), Iter2(f+5), count_equal()) == Iter1(ia+6));
  51. assert(count_equal::count <= 5*(sa-5+1));
  52. int g[] = {0, 1, 2, 3, 4, 5};
  53. count_equal::count = 0;
  54. assert(std::find_end(Iter1(ia), Iter1(ia+sa), Iter2(g), Iter2(g+6), count_equal()) == Iter1(ia));
  55. assert(count_equal::count <= 6*(sa-6+1));
  56. int h[] = {0, 1, 2, 3, 4, 5, 6};
  57. count_equal::count = 0;
  58. assert(std::find_end(Iter1(ia), Iter1(ia+sa), Iter2(h), Iter2(h+7), count_equal()) == Iter1(ia+sa));
  59. assert(count_equal::count <= 7*(sa-7+1));
  60. count_equal::count = 0;
  61. assert(std::find_end(Iter1(ia), Iter1(ia+sa), Iter2(b), Iter2(b), count_equal()) == Iter1(ia+sa));
  62. assert(count_equal::count <= 0);
  63. count_equal::count = 0;
  64. assert(std::find_end(Iter1(ia), Iter1(ia), Iter2(b), Iter2(b+1), count_equal()) == Iter1(ia));
  65. assert(count_equal::count <= 0);
  66. }
  67. int main()
  68. {
  69. test<forward_iterator<const int*>, forward_iterator<const int*> >();
  70. test<forward_iterator<const int*>, bidirectional_iterator<const int*> >();
  71. test<forward_iterator<const int*>, random_access_iterator<const int*> >();
  72. test<bidirectional_iterator<const int*>, forward_iterator<const int*> >();
  73. test<bidirectional_iterator<const int*>, bidirectional_iterator<const int*> >();
  74. test<bidirectional_iterator<const int*>, random_access_iterator<const int*> >();
  75. test<random_access_iterator<const int*>, forward_iterator<const int*> >();
  76. test<random_access_iterator<const int*>, bidirectional_iterator<const int*> >();
  77. test<random_access_iterator<const int*>, random_access_iterator<const int*> >();
  78. }