eval.pass.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523
  1. //===----------------------------------------------------------------------===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is dual licensed under the MIT and the University of Illinois Open
  6. // Source Licenses. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // REQUIRES: long_tests
  11. // <random>
  12. // template<class IntType = int>
  13. // class binomial_distribution
  14. // template<class _URNG> result_type operator()(_URNG& g);
  15. #include <random>
  16. #include <numeric>
  17. #include <vector>
  18. #include <cassert>
  19. template <class T>
  20. inline
  21. T
  22. sqr(T x)
  23. {
  24. return x * x;
  25. }
  26. void
  27. test1()
  28. {
  29. typedef std::binomial_distribution<> D;
  30. typedef std::mt19937_64 G;
  31. G g;
  32. D d(5, .75);
  33. const int N = 1000000;
  34. std::vector<D::result_type> u;
  35. for (int i = 0; i < N; ++i)
  36. {
  37. D::result_type v = d(g);
  38. assert(d.min() <= v && v <= d.max());
  39. u.push_back(v);
  40. }
  41. double mean = std::accumulate(u.begin(), u.end(),
  42. double(0)) / u.size();
  43. double var = 0;
  44. double skew = 0;
  45. double kurtosis = 0;
  46. for (unsigned i = 0; i < u.size(); ++i)
  47. {
  48. double dbl = (u[i] - mean);
  49. double d2 = sqr(dbl);
  50. var += d2;
  51. skew += dbl * d2;
  52. kurtosis += d2 * d2;
  53. }
  54. var /= u.size();
  55. double dev = std::sqrt(var);
  56. skew /= u.size() * dev * var;
  57. kurtosis /= u.size() * var * var;
  58. kurtosis -= 3;
  59. double x_mean = d.t() * d.p();
  60. double x_var = x_mean*(1-d.p());
  61. double x_skew = (1-2*d.p()) / std::sqrt(x_var);
  62. double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
  63. assert(std::abs((mean - x_mean) / x_mean) < 0.01);
  64. assert(std::abs((var - x_var) / x_var) < 0.01);
  65. assert(std::abs((skew - x_skew) / x_skew) < 0.01);
  66. assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
  67. }
  68. void
  69. test2()
  70. {
  71. typedef std::binomial_distribution<> D;
  72. typedef std::mt19937 G;
  73. G g;
  74. D d(30, .03125);
  75. const int N = 100000;
  76. std::vector<D::result_type> u;
  77. for (int i = 0; i < N; ++i)
  78. {
  79. D::result_type v = d(g);
  80. assert(d.min() <= v && v <= d.max());
  81. u.push_back(v);
  82. }
  83. double mean = std::accumulate(u.begin(), u.end(),
  84. double(0)) / u.size();
  85. double var = 0;
  86. double skew = 0;
  87. double kurtosis = 0;
  88. for (unsigned i = 0; i < u.size(); ++i)
  89. {
  90. double dbl = (u[i] - mean);
  91. double d2 = sqr(dbl);
  92. var += d2;
  93. skew += dbl * d2;
  94. kurtosis += d2 * d2;
  95. }
  96. var /= u.size();
  97. double dev = std::sqrt(var);
  98. skew /= u.size() * dev * var;
  99. kurtosis /= u.size() * var * var;
  100. kurtosis -= 3;
  101. double x_mean = d.t() * d.p();
  102. double x_var = x_mean*(1-d.p());
  103. double x_skew = (1-2*d.p()) / std::sqrt(x_var);
  104. double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
  105. assert(std::abs((mean - x_mean) / x_mean) < 0.01);
  106. assert(std::abs((var - x_var) / x_var) < 0.01);
  107. assert(std::abs((skew - x_skew) / x_skew) < 0.01);
  108. assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
  109. }
  110. void
  111. test3()
  112. {
  113. typedef std::binomial_distribution<> D;
  114. typedef std::mt19937 G;
  115. G g;
  116. D d(40, .25);
  117. const int N = 100000;
  118. std::vector<D::result_type> u;
  119. for (int i = 0; i < N; ++i)
  120. {
  121. D::result_type v = d(g);
  122. assert(d.min() <= v && v <= d.max());
  123. u.push_back(v);
  124. }
  125. double mean = std::accumulate(u.begin(), u.end(),
  126. double(0)) / u.size();
  127. double var = 0;
  128. double skew = 0;
  129. double kurtosis = 0;
  130. for (unsigned i = 0; i < u.size(); ++i)
  131. {
  132. double dbl = (u[i] - mean);
  133. double d2 = sqr(dbl);
  134. var += d2;
  135. skew += dbl * d2;
  136. kurtosis += d2 * d2;
  137. }
  138. var /= u.size();
  139. double dev = std::sqrt(var);
  140. skew /= u.size() * dev * var;
  141. kurtosis /= u.size() * var * var;
  142. kurtosis -= 3;
  143. double x_mean = d.t() * d.p();
  144. double x_var = x_mean*(1-d.p());
  145. double x_skew = (1-2*d.p()) / std::sqrt(x_var);
  146. double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
  147. assert(std::abs((mean - x_mean) / x_mean) < 0.01);
  148. assert(std::abs((var - x_var) / x_var) < 0.01);
  149. assert(std::abs((skew - x_skew) / x_skew) < 0.03);
  150. assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.3);
  151. }
  152. void
  153. test4()
  154. {
  155. typedef std::binomial_distribution<> D;
  156. typedef std::mt19937 G;
  157. G g;
  158. D d(40, 0);
  159. const int N = 100000;
  160. std::vector<D::result_type> u;
  161. for (int i = 0; i < N; ++i)
  162. {
  163. D::result_type v = d(g);
  164. assert(d.min() <= v && v <= d.max());
  165. u.push_back(v);
  166. }
  167. double mean = std::accumulate(u.begin(), u.end(),
  168. double(0)) / u.size();
  169. double var = 0;
  170. double skew = 0;
  171. double kurtosis = 0;
  172. for (unsigned i = 0; i < u.size(); ++i)
  173. {
  174. double dbl = (u[i] - mean);
  175. double d2 = sqr(dbl);
  176. var += d2;
  177. skew += dbl * d2;
  178. kurtosis += d2 * d2;
  179. }
  180. var /= u.size();
  181. //double dev = std::sqrt(var);
  182. // In this case:
  183. // skew computes to 0./0. == nan
  184. // kurtosis computes to 0./0. == nan
  185. // x_skew == inf
  186. // x_kurtosis == inf
  187. // These tests are commented out because UBSan warns about division by 0
  188. // skew /= u.size() * dev * var;
  189. // kurtosis /= u.size() * var * var;
  190. // kurtosis -= 3;
  191. double x_mean = d.t() * d.p();
  192. double x_var = x_mean*(1-d.p());
  193. // double x_skew = (1-2*d.p()) / std::sqrt(x_var);
  194. // double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
  195. assert(mean == x_mean);
  196. assert(var == x_var);
  197. // assert(skew == x_skew);
  198. // assert(kurtosis == x_kurtosis);
  199. }
  200. void
  201. test5()
  202. {
  203. typedef std::binomial_distribution<> D;
  204. typedef std::mt19937 G;
  205. G g;
  206. D d(40, 1);
  207. const int N = 100000;
  208. std::vector<D::result_type> u;
  209. for (int i = 0; i < N; ++i)
  210. {
  211. D::result_type v = d(g);
  212. assert(d.min() <= v && v <= d.max());
  213. u.push_back(v);
  214. }
  215. double mean = std::accumulate(u.begin(), u.end(),
  216. double(0)) / u.size();
  217. double var = 0;
  218. double skew = 0;
  219. double kurtosis = 0;
  220. for (unsigned i = 0; i < u.size(); ++i)
  221. {
  222. double dbl = (u[i] - mean);
  223. double d2 = sqr(dbl);
  224. var += d2;
  225. skew += dbl * d2;
  226. kurtosis += d2 * d2;
  227. }
  228. var /= u.size();
  229. // double dev = std::sqrt(var);
  230. // In this case:
  231. // skew computes to 0./0. == nan
  232. // kurtosis computes to 0./0. == nan
  233. // x_skew == -inf
  234. // x_kurtosis == inf
  235. // These tests are commented out because UBSan warns about division by 0
  236. // skew /= u.size() * dev * var;
  237. // kurtosis /= u.size() * var * var;
  238. // kurtosis -= 3;
  239. double x_mean = d.t() * d.p();
  240. double x_var = x_mean*(1-d.p());
  241. // double x_skew = (1-2*d.p()) / std::sqrt(x_var);
  242. // double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
  243. assert(mean == x_mean);
  244. assert(var == x_var);
  245. // assert(skew == x_skew);
  246. // assert(kurtosis == x_kurtosis);
  247. }
  248. void
  249. test6()
  250. {
  251. typedef std::binomial_distribution<> D;
  252. typedef std::mt19937 G;
  253. G g;
  254. D d(400, 0.5);
  255. const int N = 100000;
  256. std::vector<D::result_type> u;
  257. for (int i = 0; i < N; ++i)
  258. {
  259. D::result_type v = d(g);
  260. assert(d.min() <= v && v <= d.max());
  261. u.push_back(v);
  262. }
  263. double mean = std::accumulate(u.begin(), u.end(),
  264. double(0)) / u.size();
  265. double var = 0;
  266. double skew = 0;
  267. double kurtosis = 0;
  268. for (unsigned i = 0; i < u.size(); ++i)
  269. {
  270. double dbl = (u[i] - mean);
  271. double d2 = sqr(dbl);
  272. var += d2;
  273. skew += dbl * d2;
  274. kurtosis += d2 * d2;
  275. }
  276. var /= u.size();
  277. double dev = std::sqrt(var);
  278. skew /= u.size() * dev * var;
  279. kurtosis /= u.size() * var * var;
  280. kurtosis -= 3;
  281. double x_mean = d.t() * d.p();
  282. double x_var = x_mean*(1-d.p());
  283. double x_skew = (1-2*d.p()) / std::sqrt(x_var);
  284. double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
  285. assert(std::abs((mean - x_mean) / x_mean) < 0.01);
  286. assert(std::abs((var - x_var) / x_var) < 0.01);
  287. assert(std::abs(skew - x_skew) < 0.01);
  288. assert(std::abs(kurtosis - x_kurtosis) < 0.01);
  289. }
  290. void
  291. test7()
  292. {
  293. typedef std::binomial_distribution<> D;
  294. typedef std::mt19937 G;
  295. G g;
  296. D d(1, 0.5);
  297. const int N = 100000;
  298. std::vector<D::result_type> u;
  299. for (int i = 0; i < N; ++i)
  300. {
  301. D::result_type v = d(g);
  302. assert(d.min() <= v && v <= d.max());
  303. u.push_back(v);
  304. }
  305. double mean = std::accumulate(u.begin(), u.end(),
  306. double(0)) / u.size();
  307. double var = 0;
  308. double skew = 0;
  309. double kurtosis = 0;
  310. for (unsigned i = 0; i < u.size(); ++i)
  311. {
  312. double dbl = (u[i] - mean);
  313. double d2 = sqr(dbl);
  314. var += d2;
  315. skew += dbl * d2;
  316. kurtosis += d2 * d2;
  317. }
  318. var /= u.size();
  319. double dev = std::sqrt(var);
  320. skew /= u.size() * dev * var;
  321. kurtosis /= u.size() * var * var;
  322. kurtosis -= 3;
  323. double x_mean = d.t() * d.p();
  324. double x_var = x_mean*(1-d.p());
  325. double x_skew = (1-2*d.p()) / std::sqrt(x_var);
  326. double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
  327. assert(std::abs((mean - x_mean) / x_mean) < 0.01);
  328. assert(std::abs((var - x_var) / x_var) < 0.01);
  329. assert(std::abs(skew - x_skew) < 0.01);
  330. assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
  331. }
  332. void
  333. test8()
  334. {
  335. const int N = 100000;
  336. std::mt19937 gen1;
  337. std::mt19937 gen2;
  338. std::binomial_distribution<> dist1(5, 0.1);
  339. std::binomial_distribution<unsigned> dist2(5, 0.1);
  340. for(int i = 0; i < N; ++i) {
  341. int r1 = dist1(gen1);
  342. unsigned r2 = dist2(gen2);
  343. assert(r1 >= 0);
  344. assert(static_cast<unsigned>(r1) == r2);
  345. }
  346. }
  347. void
  348. test9()
  349. {
  350. typedef std::binomial_distribution<> D;
  351. typedef std::mt19937 G;
  352. G g;
  353. D d(0, 0.005);
  354. const int N = 100000;
  355. std::vector<D::result_type> u;
  356. for (int i = 0; i < N; ++i)
  357. {
  358. D::result_type v = d(g);
  359. assert(d.min() <= v && v <= d.max());
  360. u.push_back(v);
  361. }
  362. double mean = std::accumulate(u.begin(), u.end(),
  363. double(0)) / u.size();
  364. double var = 0;
  365. double skew = 0;
  366. double kurtosis = 0;
  367. for (unsigned i = 0; i < u.size(); ++i)
  368. {
  369. double dbl = (u[i] - mean);
  370. double d2 = sqr(dbl);
  371. var += d2;
  372. skew += dbl * d2;
  373. kurtosis += d2 * d2;
  374. }
  375. var /= u.size();
  376. // double dev = std::sqrt(var);
  377. // In this case:
  378. // skew computes to 0./0. == nan
  379. // kurtosis computes to 0./0. == nan
  380. // x_skew == inf
  381. // x_kurtosis == inf
  382. // These tests are commented out because UBSan warns about division by 0
  383. // skew /= u.size() * dev * var;
  384. // kurtosis /= u.size() * var * var;
  385. // kurtosis -= 3;
  386. double x_mean = d.t() * d.p();
  387. double x_var = x_mean*(1-d.p());
  388. // double x_skew = (1-2*d.p()) / std::sqrt(x_var);
  389. // double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
  390. assert(mean == x_mean);
  391. assert(var == x_var);
  392. // assert(skew == x_skew);
  393. // assert(kurtosis == x_kurtosis);
  394. }
  395. void
  396. test10()
  397. {
  398. typedef std::binomial_distribution<> D;
  399. typedef std::mt19937 G;
  400. G g;
  401. D d(0, 0);
  402. const int N = 100000;
  403. std::vector<D::result_type> u;
  404. for (int i = 0; i < N; ++i)
  405. {
  406. D::result_type v = d(g);
  407. assert(d.min() <= v && v <= d.max());
  408. u.push_back(v);
  409. }
  410. double mean = std::accumulate(u.begin(), u.end(),
  411. double(0)) / u.size();
  412. double var = 0;
  413. double skew = 0;
  414. double kurtosis = 0;
  415. for (unsigned i = 0; i < u.size(); ++i)
  416. {
  417. double dbl = (u[i] - mean);
  418. double d2 = sqr(dbl);
  419. var += d2;
  420. skew += dbl * d2;
  421. kurtosis += d2 * d2;
  422. }
  423. var /= u.size();
  424. // double dev = std::sqrt(var);
  425. // In this case:
  426. // skew computes to 0./0. == nan
  427. // kurtosis computes to 0./0. == nan
  428. // x_skew == inf
  429. // x_kurtosis == inf
  430. // These tests are commented out because UBSan warns about division by 0
  431. // skew /= u.size() * dev * var;
  432. // kurtosis /= u.size() * var * var;
  433. // kurtosis -= 3;
  434. double x_mean = d.t() * d.p();
  435. double x_var = x_mean*(1-d.p());
  436. // double x_skew = (1-2*d.p()) / std::sqrt(x_var);
  437. // double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
  438. assert(mean == x_mean);
  439. assert(var == x_var);
  440. // assert(skew == x_skew);
  441. // assert(kurtosis == x_kurtosis);
  442. }
  443. void
  444. test11()
  445. {
  446. typedef std::binomial_distribution<> D;
  447. typedef std::mt19937 G;
  448. G g;
  449. D d(0, 1);
  450. const int N = 100000;
  451. std::vector<D::result_type> u;
  452. for (int i = 0; i < N; ++i)
  453. {
  454. D::result_type v = d(g);
  455. assert(d.min() <= v && v <= d.max());
  456. u.push_back(v);
  457. }
  458. double mean = std::accumulate(u.begin(), u.end(),
  459. double(0)) / u.size();
  460. double var = 0;
  461. double skew = 0;
  462. double kurtosis = 0;
  463. for (unsigned i = 0; i < u.size(); ++i)
  464. {
  465. double dbl = (u[i] - mean);
  466. double d2 = sqr(dbl);
  467. var += d2;
  468. skew += dbl * d2;
  469. kurtosis += d2 * d2;
  470. }
  471. var /= u.size();
  472. // double dev = std::sqrt(var);
  473. // In this case:
  474. // skew computes to 0./0. == nan
  475. // kurtosis computes to 0./0. == nan
  476. // x_skew == -inf
  477. // x_kurtosis == inf
  478. // These tests are commented out because UBSan warns about division by 0
  479. // skew /= u.size() * dev * var;
  480. // kurtosis /= u.size() * var * var;
  481. // kurtosis -= 3;
  482. double x_mean = d.t() * d.p();
  483. double x_var = x_mean*(1-d.p());
  484. // double x_skew = (1-2*d.p()) / std::sqrt(x_var);
  485. // double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
  486. assert(mean == x_mean);
  487. assert(var == x_var);
  488. // assert(skew == x_skew);
  489. // assert(kurtosis == x_kurtosis);
  490. }
  491. int main()
  492. {
  493. test1();
  494. test2();
  495. test3();
  496. test4();
  497. test5();
  498. test6();
  499. test7();
  500. test8();
  501. test9();
  502. test10();
  503. test11();
  504. }