123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280 |
- //===--- SemaOverload.cpp - C++ Overloading -------------------------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file provides Sema routines for C++ overloading.
- //
- //===----------------------------------------------------------------------===//
- #include "clang/Sema/Overload.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/CXXInheritance.h"
- #include "clang/AST/DeclObjC.h"
- #include "clang/AST/Expr.h"
- #include "clang/AST/ExprCXX.h"
- #include "clang/AST/ExprObjC.h"
- #include "clang/AST/TypeOrdering.h"
- #include "clang/Basic/Diagnostic.h"
- #include "clang/Basic/DiagnosticOptions.h"
- #include "clang/Basic/PartialDiagnostic.h"
- #include "clang/Basic/TargetInfo.h"
- #include "clang/Sema/Initialization.h"
- #include "clang/Sema/Lookup.h"
- #include "clang/Sema/SemaInternal.h"
- #include "clang/Sema/Template.h"
- #include "clang/Sema/TemplateDeduction.h"
- #include "llvm/ADT/DenseSet.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallPtrSet.h"
- #include "llvm/ADT/SmallString.h"
- #include <algorithm>
- #include <cstdlib>
- using namespace clang;
- using namespace sema;
- static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) {
- return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) {
- return P->hasAttr<PassObjectSizeAttr>();
- });
- }
- /// A convenience routine for creating a decayed reference to a function.
- static ExprResult
- CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl,
- const Expr *Base, bool HadMultipleCandidates,
- SourceLocation Loc = SourceLocation(),
- const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
- if (S.DiagnoseUseOfDecl(FoundDecl, Loc))
- return ExprError();
- // If FoundDecl is different from Fn (such as if one is a template
- // and the other a specialization), make sure DiagnoseUseOfDecl is
- // called on both.
- // FIXME: This would be more comprehensively addressed by modifying
- // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
- // being used.
- if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc))
- return ExprError();
- if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
- S.ResolveExceptionSpec(Loc, FPT);
- DeclRefExpr *DRE = new (S.Context)
- DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo);
- if (HadMultipleCandidates)
- DRE->setHadMultipleCandidates(true);
- S.MarkDeclRefReferenced(DRE, Base);
- return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()),
- CK_FunctionToPointerDecay);
- }
- static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
- bool InOverloadResolution,
- StandardConversionSequence &SCS,
- bool CStyle,
- bool AllowObjCWritebackConversion);
- static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From,
- QualType &ToType,
- bool InOverloadResolution,
- StandardConversionSequence &SCS,
- bool CStyle);
- static OverloadingResult
- IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
- UserDefinedConversionSequence& User,
- OverloadCandidateSet& Conversions,
- bool AllowExplicit,
- bool AllowObjCConversionOnExplicit);
- static ImplicitConversionSequence::CompareKind
- CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
- const StandardConversionSequence& SCS1,
- const StandardConversionSequence& SCS2);
- static ImplicitConversionSequence::CompareKind
- CompareQualificationConversions(Sema &S,
- const StandardConversionSequence& SCS1,
- const StandardConversionSequence& SCS2);
- static ImplicitConversionSequence::CompareKind
- CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
- const StandardConversionSequence& SCS1,
- const StandardConversionSequence& SCS2);
- /// GetConversionRank - Retrieve the implicit conversion rank
- /// corresponding to the given implicit conversion kind.
- ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) {
- static const ImplicitConversionRank
- Rank[(int)ICK_Num_Conversion_Kinds] = {
- ICR_Exact_Match,
- ICR_Exact_Match,
- ICR_Exact_Match,
- ICR_Exact_Match,
- ICR_Exact_Match,
- ICR_Exact_Match,
- ICR_Promotion,
- ICR_Promotion,
- ICR_Promotion,
- ICR_Conversion,
- ICR_Conversion,
- ICR_Conversion,
- ICR_Conversion,
- ICR_Conversion,
- ICR_Conversion,
- ICR_Conversion,
- ICR_Conversion,
- ICR_Conversion,
- ICR_Conversion,
- ICR_OCL_Scalar_Widening,
- ICR_Complex_Real_Conversion,
- ICR_Conversion,
- ICR_Conversion,
- ICR_Writeback_Conversion,
- ICR_Exact_Match, // NOTE(gbiv): This may not be completely right --
- // it was omitted by the patch that added
- // ICK_Zero_Event_Conversion
- ICR_C_Conversion,
- ICR_C_Conversion_Extension
- };
- return Rank[(int)Kind];
- }
- /// GetImplicitConversionName - Return the name of this kind of
- /// implicit conversion.
- static const char* GetImplicitConversionName(ImplicitConversionKind Kind) {
- static const char* const Name[(int)ICK_Num_Conversion_Kinds] = {
- "No conversion",
- "Lvalue-to-rvalue",
- "Array-to-pointer",
- "Function-to-pointer",
- "Function pointer conversion",
- "Qualification",
- "Integral promotion",
- "Floating point promotion",
- "Complex promotion",
- "Integral conversion",
- "Floating conversion",
- "Complex conversion",
- "Floating-integral conversion",
- "Pointer conversion",
- "Pointer-to-member conversion",
- "Boolean conversion",
- "Compatible-types conversion",
- "Derived-to-base conversion",
- "Vector conversion",
- "Vector splat",
- "Complex-real conversion",
- "Block Pointer conversion",
- "Transparent Union Conversion",
- "Writeback conversion",
- "OpenCL Zero Event Conversion",
- "C specific type conversion",
- "Incompatible pointer conversion"
- };
- return Name[Kind];
- }
- /// StandardConversionSequence - Set the standard conversion
- /// sequence to the identity conversion.
- void StandardConversionSequence::setAsIdentityConversion() {
- First = ICK_Identity;
- Second = ICK_Identity;
- Third = ICK_Identity;
- DeprecatedStringLiteralToCharPtr = false;
- QualificationIncludesObjCLifetime = false;
- ReferenceBinding = false;
- DirectBinding = false;
- IsLvalueReference = true;
- BindsToFunctionLvalue = false;
- BindsToRvalue = false;
- BindsImplicitObjectArgumentWithoutRefQualifier = false;
- ObjCLifetimeConversionBinding = false;
- CopyConstructor = nullptr;
- }
- /// getRank - Retrieve the rank of this standard conversion sequence
- /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the
- /// implicit conversions.
- ImplicitConversionRank StandardConversionSequence::getRank() const {
- ImplicitConversionRank Rank = ICR_Exact_Match;
- if (GetConversionRank(First) > Rank)
- Rank = GetConversionRank(First);
- if (GetConversionRank(Second) > Rank)
- Rank = GetConversionRank(Second);
- if (GetConversionRank(Third) > Rank)
- Rank = GetConversionRank(Third);
- return Rank;
- }
- /// isPointerConversionToBool - Determines whether this conversion is
- /// a conversion of a pointer or pointer-to-member to bool. This is
- /// used as part of the ranking of standard conversion sequences
- /// (C++ 13.3.3.2p4).
- bool StandardConversionSequence::isPointerConversionToBool() const {
- // Note that FromType has not necessarily been transformed by the
- // array-to-pointer or function-to-pointer implicit conversions, so
- // check for their presence as well as checking whether FromType is
- // a pointer.
- if (getToType(1)->isBooleanType() &&
- (getFromType()->isPointerType() ||
- getFromType()->isMemberPointerType() ||
- getFromType()->isObjCObjectPointerType() ||
- getFromType()->isBlockPointerType() ||
- getFromType()->isNullPtrType() ||
- First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer))
- return true;
- return false;
- }
- /// isPointerConversionToVoidPointer - Determines whether this
- /// conversion is a conversion of a pointer to a void pointer. This is
- /// used as part of the ranking of standard conversion sequences (C++
- /// 13.3.3.2p4).
- bool
- StandardConversionSequence::
- isPointerConversionToVoidPointer(ASTContext& Context) const {
- QualType FromType = getFromType();
- QualType ToType = getToType(1);
- // Note that FromType has not necessarily been transformed by the
- // array-to-pointer implicit conversion, so check for its presence
- // and redo the conversion to get a pointer.
- if (First == ICK_Array_To_Pointer)
- FromType = Context.getArrayDecayedType(FromType);
- if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType())
- if (const PointerType* ToPtrType = ToType->getAs<PointerType>())
- return ToPtrType->getPointeeType()->isVoidType();
- return false;
- }
- /// Skip any implicit casts which could be either part of a narrowing conversion
- /// or after one in an implicit conversion.
- static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx,
- const Expr *Converted) {
- // We can have cleanups wrapping the converted expression; these need to be
- // preserved so that destructors run if necessary.
- if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) {
- Expr *Inner =
- const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr()));
- return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(),
- EWC->getObjects());
- }
- while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
- switch (ICE->getCastKind()) {
- case CK_NoOp:
- case CK_IntegralCast:
- case CK_IntegralToBoolean:
- case CK_IntegralToFloating:
- case CK_BooleanToSignedIntegral:
- case CK_FloatingToIntegral:
- case CK_FloatingToBoolean:
- case CK_FloatingCast:
- Converted = ICE->getSubExpr();
- continue;
- default:
- return Converted;
- }
- }
- return Converted;
- }
- /// Check if this standard conversion sequence represents a narrowing
- /// conversion, according to C++11 [dcl.init.list]p7.
- ///
- /// \param Ctx The AST context.
- /// \param Converted The result of applying this standard conversion sequence.
- /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
- /// value of the expression prior to the narrowing conversion.
- /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
- /// type of the expression prior to the narrowing conversion.
- /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions
- /// from floating point types to integral types should be ignored.
- NarrowingKind StandardConversionSequence::getNarrowingKind(
- ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue,
- QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const {
- assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
- // C++11 [dcl.init.list]p7:
- // A narrowing conversion is an implicit conversion ...
- QualType FromType = getToType(0);
- QualType ToType = getToType(1);
- // A conversion to an enumeration type is narrowing if the conversion to
- // the underlying type is narrowing. This only arises for expressions of
- // the form 'Enum{init}'.
- if (auto *ET = ToType->getAs<EnumType>())
- ToType = ET->getDecl()->getIntegerType();
- switch (Second) {
- // 'bool' is an integral type; dispatch to the right place to handle it.
- case ICK_Boolean_Conversion:
- if (FromType->isRealFloatingType())
- goto FloatingIntegralConversion;
- if (FromType->isIntegralOrUnscopedEnumerationType())
- goto IntegralConversion;
- // Boolean conversions can be from pointers and pointers to members
- // [conv.bool], and those aren't considered narrowing conversions.
- return NK_Not_Narrowing;
- // -- from a floating-point type to an integer type, or
- //
- // -- from an integer type or unscoped enumeration type to a floating-point
- // type, except where the source is a constant expression and the actual
- // value after conversion will fit into the target type and will produce
- // the original value when converted back to the original type, or
- case ICK_Floating_Integral:
- FloatingIntegralConversion:
- if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
- return NK_Type_Narrowing;
- } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
- ToType->isRealFloatingType()) {
- if (IgnoreFloatToIntegralConversion)
- return NK_Not_Narrowing;
- llvm::APSInt IntConstantValue;
- const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
- assert(Initializer && "Unknown conversion expression");
- // If it's value-dependent, we can't tell whether it's narrowing.
- if (Initializer->isValueDependent())
- return NK_Dependent_Narrowing;
- if (Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
- // Convert the integer to the floating type.
- llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
- Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
- llvm::APFloat::rmNearestTiesToEven);
- // And back.
- llvm::APSInt ConvertedValue = IntConstantValue;
- bool ignored;
- Result.convertToInteger(ConvertedValue,
- llvm::APFloat::rmTowardZero, &ignored);
- // If the resulting value is different, this was a narrowing conversion.
- if (IntConstantValue != ConvertedValue) {
- ConstantValue = APValue(IntConstantValue);
- ConstantType = Initializer->getType();
- return NK_Constant_Narrowing;
- }
- } else {
- // Variables are always narrowings.
- return NK_Variable_Narrowing;
- }
- }
- return NK_Not_Narrowing;
- // -- from long double to double or float, or from double to float, except
- // where the source is a constant expression and the actual value after
- // conversion is within the range of values that can be represented (even
- // if it cannot be represented exactly), or
- case ICK_Floating_Conversion:
- if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
- Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
- // FromType is larger than ToType.
- const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
- // If it's value-dependent, we can't tell whether it's narrowing.
- if (Initializer->isValueDependent())
- return NK_Dependent_Narrowing;
- if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
- // Constant!
- assert(ConstantValue.isFloat());
- llvm::APFloat FloatVal = ConstantValue.getFloat();
- // Convert the source value into the target type.
- bool ignored;
- llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
- Ctx.getFloatTypeSemantics(ToType),
- llvm::APFloat::rmNearestTiesToEven, &ignored);
- // If there was no overflow, the source value is within the range of
- // values that can be represented.
- if (ConvertStatus & llvm::APFloat::opOverflow) {
- ConstantType = Initializer->getType();
- return NK_Constant_Narrowing;
- }
- } else {
- return NK_Variable_Narrowing;
- }
- }
- return NK_Not_Narrowing;
- // -- from an integer type or unscoped enumeration type to an integer type
- // that cannot represent all the values of the original type, except where
- // the source is a constant expression and the actual value after
- // conversion will fit into the target type and will produce the original
- // value when converted back to the original type.
- case ICK_Integral_Conversion:
- IntegralConversion: {
- assert(FromType->isIntegralOrUnscopedEnumerationType());
- assert(ToType->isIntegralOrUnscopedEnumerationType());
- const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
- const unsigned FromWidth = Ctx.getIntWidth(FromType);
- const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
- const unsigned ToWidth = Ctx.getIntWidth(ToType);
- if (FromWidth > ToWidth ||
- (FromWidth == ToWidth && FromSigned != ToSigned) ||
- (FromSigned && !ToSigned)) {
- // Not all values of FromType can be represented in ToType.
- llvm::APSInt InitializerValue;
- const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted);
- // If it's value-dependent, we can't tell whether it's narrowing.
- if (Initializer->isValueDependent())
- return NK_Dependent_Narrowing;
- if (!Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
- // Such conversions on variables are always narrowing.
- return NK_Variable_Narrowing;
- }
- bool Narrowing = false;
- if (FromWidth < ToWidth) {
- // Negative -> unsigned is narrowing. Otherwise, more bits is never
- // narrowing.
- if (InitializerValue.isSigned() && InitializerValue.isNegative())
- Narrowing = true;
- } else {
- // Add a bit to the InitializerValue so we don't have to worry about
- // signed vs. unsigned comparisons.
- InitializerValue = InitializerValue.extend(
- InitializerValue.getBitWidth() + 1);
- // Convert the initializer to and from the target width and signed-ness.
- llvm::APSInt ConvertedValue = InitializerValue;
- ConvertedValue = ConvertedValue.trunc(ToWidth);
- ConvertedValue.setIsSigned(ToSigned);
- ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
- ConvertedValue.setIsSigned(InitializerValue.isSigned());
- // If the result is different, this was a narrowing conversion.
- if (ConvertedValue != InitializerValue)
- Narrowing = true;
- }
- if (Narrowing) {
- ConstantType = Initializer->getType();
- ConstantValue = APValue(InitializerValue);
- return NK_Constant_Narrowing;
- }
- }
- return NK_Not_Narrowing;
- }
- default:
- // Other kinds of conversions are not narrowings.
- return NK_Not_Narrowing;
- }
- }
- /// dump - Print this standard conversion sequence to standard
- /// error. Useful for debugging overloading issues.
- LLVM_DUMP_METHOD void StandardConversionSequence::dump() const {
- raw_ostream &OS = llvm::errs();
- bool PrintedSomething = false;
- if (First != ICK_Identity) {
- OS << GetImplicitConversionName(First);
- PrintedSomething = true;
- }
- if (Second != ICK_Identity) {
- if (PrintedSomething) {
- OS << " -> ";
- }
- OS << GetImplicitConversionName(Second);
- if (CopyConstructor) {
- OS << " (by copy constructor)";
- } else if (DirectBinding) {
- OS << " (direct reference binding)";
- } else if (ReferenceBinding) {
- OS << " (reference binding)";
- }
- PrintedSomething = true;
- }
- if (Third != ICK_Identity) {
- if (PrintedSomething) {
- OS << " -> ";
- }
- OS << GetImplicitConversionName(Third);
- PrintedSomething = true;
- }
- if (!PrintedSomething) {
- OS << "No conversions required";
- }
- }
- /// dump - Print this user-defined conversion sequence to standard
- /// error. Useful for debugging overloading issues.
- void UserDefinedConversionSequence::dump() const {
- raw_ostream &OS = llvm::errs();
- if (Before.First || Before.Second || Before.Third) {
- Before.dump();
- OS << " -> ";
- }
- if (ConversionFunction)
- OS << '\'' << *ConversionFunction << '\'';
- else
- OS << "aggregate initialization";
- if (After.First || After.Second || After.Third) {
- OS << " -> ";
- After.dump();
- }
- }
- /// dump - Print this implicit conversion sequence to standard
- /// error. Useful for debugging overloading issues.
- void ImplicitConversionSequence::dump() const {
- raw_ostream &OS = llvm::errs();
- if (isStdInitializerListElement())
- OS << "Worst std::initializer_list element conversion: ";
- switch (ConversionKind) {
- case StandardConversion:
- OS << "Standard conversion: ";
- Standard.dump();
- break;
- case UserDefinedConversion:
- OS << "User-defined conversion: ";
- UserDefined.dump();
- break;
- case EllipsisConversion:
- OS << "Ellipsis conversion";
- break;
- case AmbiguousConversion:
- OS << "Ambiguous conversion";
- break;
- case BadConversion:
- OS << "Bad conversion";
- break;
- }
- OS << "\n";
- }
- void AmbiguousConversionSequence::construct() {
- new (&conversions()) ConversionSet();
- }
- void AmbiguousConversionSequence::destruct() {
- conversions().~ConversionSet();
- }
- void
- AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) {
- FromTypePtr = O.FromTypePtr;
- ToTypePtr = O.ToTypePtr;
- new (&conversions()) ConversionSet(O.conversions());
- }
- namespace {
- // Structure used by DeductionFailureInfo to store
- // template argument information.
- struct DFIArguments {
- TemplateArgument FirstArg;
- TemplateArgument SecondArg;
- };
- // Structure used by DeductionFailureInfo to store
- // template parameter and template argument information.
- struct DFIParamWithArguments : DFIArguments {
- TemplateParameter Param;
- };
- // Structure used by DeductionFailureInfo to store template argument
- // information and the index of the problematic call argument.
- struct DFIDeducedMismatchArgs : DFIArguments {
- TemplateArgumentList *TemplateArgs;
- unsigned CallArgIndex;
- };
- }
- /// Convert from Sema's representation of template deduction information
- /// to the form used in overload-candidate information.
- DeductionFailureInfo
- clang::MakeDeductionFailureInfo(ASTContext &Context,
- Sema::TemplateDeductionResult TDK,
- TemplateDeductionInfo &Info) {
- DeductionFailureInfo Result;
- Result.Result = static_cast<unsigned>(TDK);
- Result.HasDiagnostic = false;
- switch (TDK) {
- case Sema::TDK_Invalid:
- case Sema::TDK_InstantiationDepth:
- case Sema::TDK_TooManyArguments:
- case Sema::TDK_TooFewArguments:
- case Sema::TDK_MiscellaneousDeductionFailure:
- case Sema::TDK_CUDATargetMismatch:
- Result.Data = nullptr;
- break;
- case Sema::TDK_Incomplete:
- case Sema::TDK_InvalidExplicitArguments:
- Result.Data = Info.Param.getOpaqueValue();
- break;
- case Sema::TDK_DeducedMismatch:
- case Sema::TDK_DeducedMismatchNested: {
- // FIXME: Should allocate from normal heap so that we can free this later.
- auto *Saved = new (Context) DFIDeducedMismatchArgs;
- Saved->FirstArg = Info.FirstArg;
- Saved->SecondArg = Info.SecondArg;
- Saved->TemplateArgs = Info.take();
- Saved->CallArgIndex = Info.CallArgIndex;
- Result.Data = Saved;
- break;
- }
- case Sema::TDK_NonDeducedMismatch: {
- // FIXME: Should allocate from normal heap so that we can free this later.
- DFIArguments *Saved = new (Context) DFIArguments;
- Saved->FirstArg = Info.FirstArg;
- Saved->SecondArg = Info.SecondArg;
- Result.Data = Saved;
- break;
- }
- case Sema::TDK_IncompletePack:
- // FIXME: It's slightly wasteful to allocate two TemplateArguments for this.
- case Sema::TDK_Inconsistent:
- case Sema::TDK_Underqualified: {
- // FIXME: Should allocate from normal heap so that we can free this later.
- DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments;
- Saved->Param = Info.Param;
- Saved->FirstArg = Info.FirstArg;
- Saved->SecondArg = Info.SecondArg;
- Result.Data = Saved;
- break;
- }
- case Sema::TDK_SubstitutionFailure:
- Result.Data = Info.take();
- if (Info.hasSFINAEDiagnostic()) {
- PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt(
- SourceLocation(), PartialDiagnostic::NullDiagnostic());
- Info.takeSFINAEDiagnostic(*Diag);
- Result.HasDiagnostic = true;
- }
- break;
- case Sema::TDK_Success:
- case Sema::TDK_NonDependentConversionFailure:
- llvm_unreachable("not a deduction failure");
- }
- return Result;
- }
- void DeductionFailureInfo::Destroy() {
- switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
- case Sema::TDK_Success:
- case Sema::TDK_Invalid:
- case Sema::TDK_InstantiationDepth:
- case Sema::TDK_Incomplete:
- case Sema::TDK_TooManyArguments:
- case Sema::TDK_TooFewArguments:
- case Sema::TDK_InvalidExplicitArguments:
- case Sema::TDK_CUDATargetMismatch:
- case Sema::TDK_NonDependentConversionFailure:
- break;
- case Sema::TDK_IncompletePack:
- case Sema::TDK_Inconsistent:
- case Sema::TDK_Underqualified:
- case Sema::TDK_DeducedMismatch:
- case Sema::TDK_DeducedMismatchNested:
- case Sema::TDK_NonDeducedMismatch:
- // FIXME: Destroy the data?
- Data = nullptr;
- break;
- case Sema::TDK_SubstitutionFailure:
- // FIXME: Destroy the template argument list?
- Data = nullptr;
- if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) {
- Diag->~PartialDiagnosticAt();
- HasDiagnostic = false;
- }
- break;
- // Unhandled
- case Sema::TDK_MiscellaneousDeductionFailure:
- break;
- }
- }
- PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() {
- if (HasDiagnostic)
- return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic));
- return nullptr;
- }
- TemplateParameter DeductionFailureInfo::getTemplateParameter() {
- switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
- case Sema::TDK_Success:
- case Sema::TDK_Invalid:
- case Sema::TDK_InstantiationDepth:
- case Sema::TDK_TooManyArguments:
- case Sema::TDK_TooFewArguments:
- case Sema::TDK_SubstitutionFailure:
- case Sema::TDK_DeducedMismatch:
- case Sema::TDK_DeducedMismatchNested:
- case Sema::TDK_NonDeducedMismatch:
- case Sema::TDK_CUDATargetMismatch:
- case Sema::TDK_NonDependentConversionFailure:
- return TemplateParameter();
- case Sema::TDK_Incomplete:
- case Sema::TDK_InvalidExplicitArguments:
- return TemplateParameter::getFromOpaqueValue(Data);
- case Sema::TDK_IncompletePack:
- case Sema::TDK_Inconsistent:
- case Sema::TDK_Underqualified:
- return static_cast<DFIParamWithArguments*>(Data)->Param;
- // Unhandled
- case Sema::TDK_MiscellaneousDeductionFailure:
- break;
- }
- return TemplateParameter();
- }
- TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() {
- switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
- case Sema::TDK_Success:
- case Sema::TDK_Invalid:
- case Sema::TDK_InstantiationDepth:
- case Sema::TDK_TooManyArguments:
- case Sema::TDK_TooFewArguments:
- case Sema::TDK_Incomplete:
- case Sema::TDK_IncompletePack:
- case Sema::TDK_InvalidExplicitArguments:
- case Sema::TDK_Inconsistent:
- case Sema::TDK_Underqualified:
- case Sema::TDK_NonDeducedMismatch:
- case Sema::TDK_CUDATargetMismatch:
- case Sema::TDK_NonDependentConversionFailure:
- return nullptr;
- case Sema::TDK_DeducedMismatch:
- case Sema::TDK_DeducedMismatchNested:
- return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs;
- case Sema::TDK_SubstitutionFailure:
- return static_cast<TemplateArgumentList*>(Data);
- // Unhandled
- case Sema::TDK_MiscellaneousDeductionFailure:
- break;
- }
- return nullptr;
- }
- const TemplateArgument *DeductionFailureInfo::getFirstArg() {
- switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
- case Sema::TDK_Success:
- case Sema::TDK_Invalid:
- case Sema::TDK_InstantiationDepth:
- case Sema::TDK_Incomplete:
- case Sema::TDK_TooManyArguments:
- case Sema::TDK_TooFewArguments:
- case Sema::TDK_InvalidExplicitArguments:
- case Sema::TDK_SubstitutionFailure:
- case Sema::TDK_CUDATargetMismatch:
- case Sema::TDK_NonDependentConversionFailure:
- return nullptr;
- case Sema::TDK_IncompletePack:
- case Sema::TDK_Inconsistent:
- case Sema::TDK_Underqualified:
- case Sema::TDK_DeducedMismatch:
- case Sema::TDK_DeducedMismatchNested:
- case Sema::TDK_NonDeducedMismatch:
- return &static_cast<DFIArguments*>(Data)->FirstArg;
- // Unhandled
- case Sema::TDK_MiscellaneousDeductionFailure:
- break;
- }
- return nullptr;
- }
- const TemplateArgument *DeductionFailureInfo::getSecondArg() {
- switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
- case Sema::TDK_Success:
- case Sema::TDK_Invalid:
- case Sema::TDK_InstantiationDepth:
- case Sema::TDK_Incomplete:
- case Sema::TDK_IncompletePack:
- case Sema::TDK_TooManyArguments:
- case Sema::TDK_TooFewArguments:
- case Sema::TDK_InvalidExplicitArguments:
- case Sema::TDK_SubstitutionFailure:
- case Sema::TDK_CUDATargetMismatch:
- case Sema::TDK_NonDependentConversionFailure:
- return nullptr;
- case Sema::TDK_Inconsistent:
- case Sema::TDK_Underqualified:
- case Sema::TDK_DeducedMismatch:
- case Sema::TDK_DeducedMismatchNested:
- case Sema::TDK_NonDeducedMismatch:
- return &static_cast<DFIArguments*>(Data)->SecondArg;
- // Unhandled
- case Sema::TDK_MiscellaneousDeductionFailure:
- break;
- }
- return nullptr;
- }
- llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() {
- switch (static_cast<Sema::TemplateDeductionResult>(Result)) {
- case Sema::TDK_DeducedMismatch:
- case Sema::TDK_DeducedMismatchNested:
- return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex;
- default:
- return llvm::None;
- }
- }
- bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
- OverloadedOperatorKind Op) {
- if (!AllowRewrittenCandidates)
- return false;
- return Op == OO_EqualEqual || Op == OO_Spaceship;
- }
- bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed(
- ASTContext &Ctx, const FunctionDecl *FD) {
- if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator()))
- return false;
- // Don't bother adding a reversed candidate that can never be a better
- // match than the non-reversed version.
- return FD->getNumParams() != 2 ||
- !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(),
- FD->getParamDecl(1)->getType()) ||
- FD->hasAttr<EnableIfAttr>();
- }
- void OverloadCandidateSet::destroyCandidates() {
- for (iterator i = begin(), e = end(); i != e; ++i) {
- for (auto &C : i->Conversions)
- C.~ImplicitConversionSequence();
- if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction)
- i->DeductionFailure.Destroy();
- }
- }
- void OverloadCandidateSet::clear(CandidateSetKind CSK) {
- destroyCandidates();
- SlabAllocator.Reset();
- NumInlineBytesUsed = 0;
- Candidates.clear();
- Functions.clear();
- Kind = CSK;
- }
- namespace {
- class UnbridgedCastsSet {
- struct Entry {
- Expr **Addr;
- Expr *Saved;
- };
- SmallVector<Entry, 2> Entries;
- public:
- void save(Sema &S, Expr *&E) {
- assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
- Entry entry = { &E, E };
- Entries.push_back(entry);
- E = S.stripARCUnbridgedCast(E);
- }
- void restore() {
- for (SmallVectorImpl<Entry>::iterator
- i = Entries.begin(), e = Entries.end(); i != e; ++i)
- *i->Addr = i->Saved;
- }
- };
- }
- /// checkPlaceholderForOverload - Do any interesting placeholder-like
- /// preprocessing on the given expression.
- ///
- /// \param unbridgedCasts a collection to which to add unbridged casts;
- /// without this, they will be immediately diagnosed as errors
- ///
- /// Return true on unrecoverable error.
- static bool
- checkPlaceholderForOverload(Sema &S, Expr *&E,
- UnbridgedCastsSet *unbridgedCasts = nullptr) {
- if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
- // We can't handle overloaded expressions here because overload
- // resolution might reasonably tweak them.
- if (placeholder->getKind() == BuiltinType::Overload) return false;
- // If the context potentially accepts unbridged ARC casts, strip
- // the unbridged cast and add it to the collection for later restoration.
- if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
- unbridgedCasts) {
- unbridgedCasts->save(S, E);
- return false;
- }
- // Go ahead and check everything else.
- ExprResult result = S.CheckPlaceholderExpr(E);
- if (result.isInvalid())
- return true;
- E = result.get();
- return false;
- }
- // Nothing to do.
- return false;
- }
- /// checkArgPlaceholdersForOverload - Check a set of call operands for
- /// placeholders.
- static bool checkArgPlaceholdersForOverload(Sema &S,
- MultiExprArg Args,
- UnbridgedCastsSet &unbridged) {
- for (unsigned i = 0, e = Args.size(); i != e; ++i)
- if (checkPlaceholderForOverload(S, Args[i], &unbridged))
- return true;
- return false;
- }
- /// Determine whether the given New declaration is an overload of the
- /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if
- /// New and Old cannot be overloaded, e.g., if New has the same signature as
- /// some function in Old (C++ 1.3.10) or if the Old declarations aren't
- /// functions (or function templates) at all. When it does return Ovl_Match or
- /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be
- /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying
- /// declaration.
- ///
- /// Example: Given the following input:
- ///
- /// void f(int, float); // #1
- /// void f(int, int); // #2
- /// int f(int, int); // #3
- ///
- /// When we process #1, there is no previous declaration of "f", so IsOverload
- /// will not be used.
- ///
- /// When we process #2, Old contains only the FunctionDecl for #1. By comparing
- /// the parameter types, we see that #1 and #2 are overloaded (since they have
- /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is
- /// unchanged.
- ///
- /// When we process #3, Old is an overload set containing #1 and #2. We compare
- /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then
- /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of
- /// functions are not part of the signature), IsOverload returns Ovl_Match and
- /// MatchedDecl will be set to point to the FunctionDecl for #2.
- ///
- /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class
- /// by a using declaration. The rules for whether to hide shadow declarations
- /// ignore some properties which otherwise figure into a function template's
- /// signature.
- Sema::OverloadKind
- Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old,
- NamedDecl *&Match, bool NewIsUsingDecl) {
- for (LookupResult::iterator I = Old.begin(), E = Old.end();
- I != E; ++I) {
- NamedDecl *OldD = *I;
- bool OldIsUsingDecl = false;
- if (isa<UsingShadowDecl>(OldD)) {
- OldIsUsingDecl = true;
- // We can always introduce two using declarations into the same
- // context, even if they have identical signatures.
- if (NewIsUsingDecl) continue;
- OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl();
- }
- // A using-declaration does not conflict with another declaration
- // if one of them is hidden.
- if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I))
- continue;
- // If either declaration was introduced by a using declaration,
- // we'll need to use slightly different rules for matching.
- // Essentially, these rules are the normal rules, except that
- // function templates hide function templates with different
- // return types or template parameter lists.
- bool UseMemberUsingDeclRules =
- (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() &&
- !New->getFriendObjectKind();
- if (FunctionDecl *OldF = OldD->getAsFunction()) {
- if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) {
- if (UseMemberUsingDeclRules && OldIsUsingDecl) {
- HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I));
- continue;
- }
- if (!isa<FunctionTemplateDecl>(OldD) &&
- !shouldLinkPossiblyHiddenDecl(*I, New))
- continue;
- Match = *I;
- return Ovl_Match;
- }
- // Builtins that have custom typechecking or have a reference should
- // not be overloadable or redeclarable.
- if (!getASTContext().canBuiltinBeRedeclared(OldF)) {
- Match = *I;
- return Ovl_NonFunction;
- }
- } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) {
- // We can overload with these, which can show up when doing
- // redeclaration checks for UsingDecls.
- assert(Old.getLookupKind() == LookupUsingDeclName);
- } else if (isa<TagDecl>(OldD)) {
- // We can always overload with tags by hiding them.
- } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) {
- // Optimistically assume that an unresolved using decl will
- // overload; if it doesn't, we'll have to diagnose during
- // template instantiation.
- //
- // Exception: if the scope is dependent and this is not a class
- // member, the using declaration can only introduce an enumerator.
- if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) {
- Match = *I;
- return Ovl_NonFunction;
- }
- } else {
- // (C++ 13p1):
- // Only function declarations can be overloaded; object and type
- // declarations cannot be overloaded.
- Match = *I;
- return Ovl_NonFunction;
- }
- }
- // C++ [temp.friend]p1:
- // For a friend function declaration that is not a template declaration:
- // -- if the name of the friend is a qualified or unqualified template-id,
- // [...], otherwise
- // -- if the name of the friend is a qualified-id and a matching
- // non-template function is found in the specified class or namespace,
- // the friend declaration refers to that function, otherwise,
- // -- if the name of the friend is a qualified-id and a matching function
- // template is found in the specified class or namespace, the friend
- // declaration refers to the deduced specialization of that function
- // template, otherwise
- // -- the name shall be an unqualified-id [...]
- // If we get here for a qualified friend declaration, we've just reached the
- // third bullet. If the type of the friend is dependent, skip this lookup
- // until instantiation.
- if (New->getFriendObjectKind() && New->getQualifier() &&
- !New->getDescribedFunctionTemplate() &&
- !New->getDependentSpecializationInfo() &&
- !New->getType()->isDependentType()) {
- LookupResult TemplateSpecResult(LookupResult::Temporary, Old);
- TemplateSpecResult.addAllDecls(Old);
- if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult,
- /*QualifiedFriend*/true)) {
- New->setInvalidDecl();
- return Ovl_Overload;
- }
- Match = TemplateSpecResult.getAsSingle<FunctionDecl>();
- return Ovl_Match;
- }
- return Ovl_Overload;
- }
- bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old,
- bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) {
- // C++ [basic.start.main]p2: This function shall not be overloaded.
- if (New->isMain())
- return false;
- // MSVCRT user defined entry points cannot be overloaded.
- if (New->isMSVCRTEntryPoint())
- return false;
- FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate();
- FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate();
- // C++ [temp.fct]p2:
- // A function template can be overloaded with other function templates
- // and with normal (non-template) functions.
- if ((OldTemplate == nullptr) != (NewTemplate == nullptr))
- return true;
- // Is the function New an overload of the function Old?
- QualType OldQType = Context.getCanonicalType(Old->getType());
- QualType NewQType = Context.getCanonicalType(New->getType());
- // Compare the signatures (C++ 1.3.10) of the two functions to
- // determine whether they are overloads. If we find any mismatch
- // in the signature, they are overloads.
- // If either of these functions is a K&R-style function (no
- // prototype), then we consider them to have matching signatures.
- if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) ||
- isa<FunctionNoProtoType>(NewQType.getTypePtr()))
- return false;
- const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType);
- const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType);
- // The signature of a function includes the types of its
- // parameters (C++ 1.3.10), which includes the presence or absence
- // of the ellipsis; see C++ DR 357).
- if (OldQType != NewQType &&
- (OldType->getNumParams() != NewType->getNumParams() ||
- OldType->isVariadic() != NewType->isVariadic() ||
- !FunctionParamTypesAreEqual(OldType, NewType)))
- return true;
- // C++ [temp.over.link]p4:
- // The signature of a function template consists of its function
- // signature, its return type and its template parameter list. The names
- // of the template parameters are significant only for establishing the
- // relationship between the template parameters and the rest of the
- // signature.
- //
- // We check the return type and template parameter lists for function
- // templates first; the remaining checks follow.
- //
- // However, we don't consider either of these when deciding whether
- // a member introduced by a shadow declaration is hidden.
- if (!UseMemberUsingDeclRules && NewTemplate &&
- (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
- OldTemplate->getTemplateParameters(),
- false, TPL_TemplateMatch) ||
- !Context.hasSameType(Old->getDeclaredReturnType(),
- New->getDeclaredReturnType())))
- return true;
- // If the function is a class member, its signature includes the
- // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself.
- //
- // As part of this, also check whether one of the member functions
- // is static, in which case they are not overloads (C++
- // 13.1p2). While not part of the definition of the signature,
- // this check is important to determine whether these functions
- // can be overloaded.
- CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
- CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
- if (OldMethod && NewMethod &&
- !OldMethod->isStatic() && !NewMethod->isStatic()) {
- if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) {
- if (!UseMemberUsingDeclRules &&
- (OldMethod->getRefQualifier() == RQ_None ||
- NewMethod->getRefQualifier() == RQ_None)) {
- // C++0x [over.load]p2:
- // - Member function declarations with the same name and the same
- // parameter-type-list as well as member function template
- // declarations with the same name, the same parameter-type-list, and
- // the same template parameter lists cannot be overloaded if any of
- // them, but not all, have a ref-qualifier (8.3.5).
- Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload)
- << NewMethod->getRefQualifier() << OldMethod->getRefQualifier();
- Diag(OldMethod->getLocation(), diag::note_previous_declaration);
- }
- return true;
- }
- // We may not have applied the implicit const for a constexpr member
- // function yet (because we haven't yet resolved whether this is a static
- // or non-static member function). Add it now, on the assumption that this
- // is a redeclaration of OldMethod.
- auto OldQuals = OldMethod->getMethodQualifiers();
- auto NewQuals = NewMethod->getMethodQualifiers();
- if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() &&
- !isa<CXXConstructorDecl>(NewMethod))
- NewQuals.addConst();
- // We do not allow overloading based off of '__restrict'.
- OldQuals.removeRestrict();
- NewQuals.removeRestrict();
- if (OldQuals != NewQuals)
- return true;
- }
- // Though pass_object_size is placed on parameters and takes an argument, we
- // consider it to be a function-level modifier for the sake of function
- // identity. Either the function has one or more parameters with
- // pass_object_size or it doesn't.
- if (functionHasPassObjectSizeParams(New) !=
- functionHasPassObjectSizeParams(Old))
- return true;
- // enable_if attributes are an order-sensitive part of the signature.
- for (specific_attr_iterator<EnableIfAttr>
- NewI = New->specific_attr_begin<EnableIfAttr>(),
- NewE = New->specific_attr_end<EnableIfAttr>(),
- OldI = Old->specific_attr_begin<EnableIfAttr>(),
- OldE = Old->specific_attr_end<EnableIfAttr>();
- NewI != NewE || OldI != OldE; ++NewI, ++OldI) {
- if (NewI == NewE || OldI == OldE)
- return true;
- llvm::FoldingSetNodeID NewID, OldID;
- NewI->getCond()->Profile(NewID, Context, true);
- OldI->getCond()->Profile(OldID, Context, true);
- if (NewID != OldID)
- return true;
- }
- if (getLangOpts().CUDA && ConsiderCudaAttrs) {
- // Don't allow overloading of destructors. (In theory we could, but it
- // would be a giant change to clang.)
- if (isa<CXXDestructorDecl>(New))
- return false;
- CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New),
- OldTarget = IdentifyCUDATarget(Old);
- if (NewTarget == CFT_InvalidTarget)
- return false;
- assert((OldTarget != CFT_InvalidTarget) && "Unexpected invalid target.");
- // Allow overloading of functions with same signature and different CUDA
- // target attributes.
- return NewTarget != OldTarget;
- }
- // The signatures match; this is not an overload.
- return false;
- }
- /// Tries a user-defined conversion from From to ToType.
- ///
- /// Produces an implicit conversion sequence for when a standard conversion
- /// is not an option. See TryImplicitConversion for more information.
- static ImplicitConversionSequence
- TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
- bool SuppressUserConversions,
- bool AllowExplicit,
- bool InOverloadResolution,
- bool CStyle,
- bool AllowObjCWritebackConversion,
- bool AllowObjCConversionOnExplicit) {
- ImplicitConversionSequence ICS;
- if (SuppressUserConversions) {
- // We're not in the case above, so there is no conversion that
- // we can perform.
- ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
- return ICS;
- }
- // Attempt user-defined conversion.
- OverloadCandidateSet Conversions(From->getExprLoc(),
- OverloadCandidateSet::CSK_Normal);
- switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined,
- Conversions, AllowExplicit,
- AllowObjCConversionOnExplicit)) {
- case OR_Success:
- case OR_Deleted:
- ICS.setUserDefined();
- // C++ [over.ics.user]p4:
- // A conversion of an expression of class type to the same class
- // type is given Exact Match rank, and a conversion of an
- // expression of class type to a base class of that type is
- // given Conversion rank, in spite of the fact that a copy
- // constructor (i.e., a user-defined conversion function) is
- // called for those cases.
- if (CXXConstructorDecl *Constructor
- = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
- QualType FromCanon
- = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
- QualType ToCanon
- = S.Context.getCanonicalType(ToType).getUnqualifiedType();
- if (Constructor->isCopyConstructor() &&
- (FromCanon == ToCanon ||
- S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) {
- // Turn this into a "standard" conversion sequence, so that it
- // gets ranked with standard conversion sequences.
- DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction;
- ICS.setStandard();
- ICS.Standard.setAsIdentityConversion();
- ICS.Standard.setFromType(From->getType());
- ICS.Standard.setAllToTypes(ToType);
- ICS.Standard.CopyConstructor = Constructor;
- ICS.Standard.FoundCopyConstructor = Found;
- if (ToCanon != FromCanon)
- ICS.Standard.Second = ICK_Derived_To_Base;
- }
- }
- break;
- case OR_Ambiguous:
- ICS.setAmbiguous();
- ICS.Ambiguous.setFromType(From->getType());
- ICS.Ambiguous.setToType(ToType);
- for (OverloadCandidateSet::iterator Cand = Conversions.begin();
- Cand != Conversions.end(); ++Cand)
- if (Cand->Viable)
- ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
- break;
- // Fall through.
- case OR_No_Viable_Function:
- ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
- break;
- }
- return ICS;
- }
- /// TryImplicitConversion - Attempt to perform an implicit conversion
- /// from the given expression (Expr) to the given type (ToType). This
- /// function returns an implicit conversion sequence that can be used
- /// to perform the initialization. Given
- ///
- /// void f(float f);
- /// void g(int i) { f(i); }
- ///
- /// this routine would produce an implicit conversion sequence to
- /// describe the initialization of f from i, which will be a standard
- /// conversion sequence containing an lvalue-to-rvalue conversion (C++
- /// 4.1) followed by a floating-integral conversion (C++ 4.9).
- //
- /// Note that this routine only determines how the conversion can be
- /// performed; it does not actually perform the conversion. As such,
- /// it will not produce any diagnostics if no conversion is available,
- /// but will instead return an implicit conversion sequence of kind
- /// "BadConversion".
- ///
- /// If @p SuppressUserConversions, then user-defined conversions are
- /// not permitted.
- /// If @p AllowExplicit, then explicit user-defined conversions are
- /// permitted.
- ///
- /// \param AllowObjCWritebackConversion Whether we allow the Objective-C
- /// writeback conversion, which allows __autoreleasing id* parameters to
- /// be initialized with __strong id* or __weak id* arguments.
- static ImplicitConversionSequence
- TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
- bool SuppressUserConversions,
- bool AllowExplicit,
- bool InOverloadResolution,
- bool CStyle,
- bool AllowObjCWritebackConversion,
- bool AllowObjCConversionOnExplicit) {
- ImplicitConversionSequence ICS;
- if (IsStandardConversion(S, From, ToType, InOverloadResolution,
- ICS.Standard, CStyle, AllowObjCWritebackConversion)){
- ICS.setStandard();
- return ICS;
- }
- if (!S.getLangOpts().CPlusPlus) {
- ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
- return ICS;
- }
- // C++ [over.ics.user]p4:
- // A conversion of an expression of class type to the same class
- // type is given Exact Match rank, and a conversion of an
- // expression of class type to a base class of that type is
- // given Conversion rank, in spite of the fact that a copy/move
- // constructor (i.e., a user-defined conversion function) is
- // called for those cases.
- QualType FromType = From->getType();
- if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() &&
- (S.Context.hasSameUnqualifiedType(FromType, ToType) ||
- S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) {
- ICS.setStandard();
- ICS.Standard.setAsIdentityConversion();
- ICS.Standard.setFromType(FromType);
- ICS.Standard.setAllToTypes(ToType);
- // We don't actually check at this point whether there is a valid
- // copy/move constructor, since overloading just assumes that it
- // exists. When we actually perform initialization, we'll find the
- // appropriate constructor to copy the returned object, if needed.
- ICS.Standard.CopyConstructor = nullptr;
- // Determine whether this is considered a derived-to-base conversion.
- if (!S.Context.hasSameUnqualifiedType(FromType, ToType))
- ICS.Standard.Second = ICK_Derived_To_Base;
- return ICS;
- }
- return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
- AllowExplicit, InOverloadResolution, CStyle,
- AllowObjCWritebackConversion,
- AllowObjCConversionOnExplicit);
- }
- ImplicitConversionSequence
- Sema::TryImplicitConversion(Expr *From, QualType ToType,
- bool SuppressUserConversions,
- bool AllowExplicit,
- bool InOverloadResolution,
- bool CStyle,
- bool AllowObjCWritebackConversion) {
- return ::TryImplicitConversion(*this, From, ToType,
- SuppressUserConversions, AllowExplicit,
- InOverloadResolution, CStyle,
- AllowObjCWritebackConversion,
- /*AllowObjCConversionOnExplicit=*/false);
- }
- /// PerformImplicitConversion - Perform an implicit conversion of the
- /// expression From to the type ToType. Returns the
- /// converted expression. Flavor is the kind of conversion we're
- /// performing, used in the error message. If @p AllowExplicit,
- /// explicit user-defined conversions are permitted.
- ExprResult
- Sema::PerformImplicitConversion(Expr *From, QualType ToType,
- AssignmentAction Action, bool AllowExplicit) {
- ImplicitConversionSequence ICS;
- return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
- }
- ExprResult
- Sema::PerformImplicitConversion(Expr *From, QualType ToType,
- AssignmentAction Action, bool AllowExplicit,
- ImplicitConversionSequence& ICS) {
- if (checkPlaceholderForOverload(*this, From))
- return ExprError();
- // Objective-C ARC: Determine whether we will allow the writeback conversion.
- bool AllowObjCWritebackConversion
- = getLangOpts().ObjCAutoRefCount &&
- (Action == AA_Passing || Action == AA_Sending);
- if (getLangOpts().ObjC)
- CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType,
- From->getType(), From);
- ICS = ::TryImplicitConversion(*this, From, ToType,
- /*SuppressUserConversions=*/false,
- AllowExplicit,
- /*InOverloadResolution=*/false,
- /*CStyle=*/false,
- AllowObjCWritebackConversion,
- /*AllowObjCConversionOnExplicit=*/false);
- return PerformImplicitConversion(From, ToType, ICS, Action);
- }
- /// Determine whether the conversion from FromType to ToType is a valid
- /// conversion that strips "noexcept" or "noreturn" off the nested function
- /// type.
- bool Sema::IsFunctionConversion(QualType FromType, QualType ToType,
- QualType &ResultTy) {
- if (Context.hasSameUnqualifiedType(FromType, ToType))
- return false;
- // Permit the conversion F(t __attribute__((noreturn))) -> F(t)
- // or F(t noexcept) -> F(t)
- // where F adds one of the following at most once:
- // - a pointer
- // - a member pointer
- // - a block pointer
- // Changes here need matching changes in FindCompositePointerType.
- CanQualType CanTo = Context.getCanonicalType(ToType);
- CanQualType CanFrom = Context.getCanonicalType(FromType);
- Type::TypeClass TyClass = CanTo->getTypeClass();
- if (TyClass != CanFrom->getTypeClass()) return false;
- if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) {
- if (TyClass == Type::Pointer) {
- CanTo = CanTo.castAs<PointerType>()->getPointeeType();
- CanFrom = CanFrom.castAs<PointerType>()->getPointeeType();
- } else if (TyClass == Type::BlockPointer) {
- CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType();
- CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType();
- } else if (TyClass == Type::MemberPointer) {
- auto ToMPT = CanTo.castAs<MemberPointerType>();
- auto FromMPT = CanFrom.castAs<MemberPointerType>();
- // A function pointer conversion cannot change the class of the function.
- if (ToMPT->getClass() != FromMPT->getClass())
- return false;
- CanTo = ToMPT->getPointeeType();
- CanFrom = FromMPT->getPointeeType();
- } else {
- return false;
- }
- TyClass = CanTo->getTypeClass();
- if (TyClass != CanFrom->getTypeClass()) return false;
- if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto)
- return false;
- }
- const auto *FromFn = cast<FunctionType>(CanFrom);
- FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
- const auto *ToFn = cast<FunctionType>(CanTo);
- FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
- bool Changed = false;
- // Drop 'noreturn' if not present in target type.
- if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) {
- FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false));
- Changed = true;
- }
- // Drop 'noexcept' if not present in target type.
- if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) {
- const auto *ToFPT = cast<FunctionProtoType>(ToFn);
- if (FromFPT->isNothrow() && !ToFPT->isNothrow()) {
- FromFn = cast<FunctionType>(
- Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0),
- EST_None)
- .getTypePtr());
- Changed = true;
- }
- // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid
- // only if the ExtParameterInfo lists of the two function prototypes can be
- // merged and the merged list is identical to ToFPT's ExtParameterInfo list.
- SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
- bool CanUseToFPT, CanUseFromFPT;
- if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT,
- CanUseFromFPT, NewParamInfos) &&
- CanUseToFPT && !CanUseFromFPT) {
- FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo();
- ExtInfo.ExtParameterInfos =
- NewParamInfos.empty() ? nullptr : NewParamInfos.data();
- QualType QT = Context.getFunctionType(FromFPT->getReturnType(),
- FromFPT->getParamTypes(), ExtInfo);
- FromFn = QT->getAs<FunctionType>();
- Changed = true;
- }
- }
- if (!Changed)
- return false;
- assert(QualType(FromFn, 0).isCanonical());
- if (QualType(FromFn, 0) != CanTo) return false;
- ResultTy = ToType;
- return true;
- }
- /// Determine whether the conversion from FromType to ToType is a valid
- /// vector conversion.
- ///
- /// \param ICK Will be set to the vector conversion kind, if this is a vector
- /// conversion.
- static bool IsVectorConversion(Sema &S, QualType FromType,
- QualType ToType, ImplicitConversionKind &ICK) {
- // We need at least one of these types to be a vector type to have a vector
- // conversion.
- if (!ToType->isVectorType() && !FromType->isVectorType())
- return false;
- // Identical types require no conversions.
- if (S.Context.hasSameUnqualifiedType(FromType, ToType))
- return false;
- // There are no conversions between extended vector types, only identity.
- if (ToType->isExtVectorType()) {
- // There are no conversions between extended vector types other than the
- // identity conversion.
- if (FromType->isExtVectorType())
- return false;
- // Vector splat from any arithmetic type to a vector.
- if (FromType->isArithmeticType()) {
- ICK = ICK_Vector_Splat;
- return true;
- }
- }
- // We can perform the conversion between vector types in the following cases:
- // 1)vector types are equivalent AltiVec and GCC vector types
- // 2)lax vector conversions are permitted and the vector types are of the
- // same size
- if (ToType->isVectorType() && FromType->isVectorType()) {
- if (S.Context.areCompatibleVectorTypes(FromType, ToType) ||
- S.isLaxVectorConversion(FromType, ToType)) {
- ICK = ICK_Vector_Conversion;
- return true;
- }
- }
- return false;
- }
- static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
- bool InOverloadResolution,
- StandardConversionSequence &SCS,
- bool CStyle);
- /// IsStandardConversion - Determines whether there is a standard
- /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
- /// expression From to the type ToType. Standard conversion sequences
- /// only consider non-class types; for conversions that involve class
- /// types, use TryImplicitConversion. If a conversion exists, SCS will
- /// contain the standard conversion sequence required to perform this
- /// conversion and this routine will return true. Otherwise, this
- /// routine will return false and the value of SCS is unspecified.
- static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
- bool InOverloadResolution,
- StandardConversionSequence &SCS,
- bool CStyle,
- bool AllowObjCWritebackConversion) {
- QualType FromType = From->getType();
- // Standard conversions (C++ [conv])
- SCS.setAsIdentityConversion();
- SCS.IncompatibleObjC = false;
- SCS.setFromType(FromType);
- SCS.CopyConstructor = nullptr;
- // There are no standard conversions for class types in C++, so
- // abort early. When overloading in C, however, we do permit them.
- if (S.getLangOpts().CPlusPlus &&
- (FromType->isRecordType() || ToType->isRecordType()))
- return false;
- // The first conversion can be an lvalue-to-rvalue conversion,
- // array-to-pointer conversion, or function-to-pointer conversion
- // (C++ 4p1).
- if (FromType == S.Context.OverloadTy) {
- DeclAccessPair AccessPair;
- if (FunctionDecl *Fn
- = S.ResolveAddressOfOverloadedFunction(From, ToType, false,
- AccessPair)) {
- // We were able to resolve the address of the overloaded function,
- // so we can convert to the type of that function.
- FromType = Fn->getType();
- SCS.setFromType(FromType);
- // we can sometimes resolve &foo<int> regardless of ToType, so check
- // if the type matches (identity) or we are converting to bool
- if (!S.Context.hasSameUnqualifiedType(
- S.ExtractUnqualifiedFunctionType(ToType), FromType)) {
- QualType resultTy;
- // if the function type matches except for [[noreturn]], it's ok
- if (!S.IsFunctionConversion(FromType,
- S.ExtractUnqualifiedFunctionType(ToType), resultTy))
- // otherwise, only a boolean conversion is standard
- if (!ToType->isBooleanType())
- return false;
- }
- // Check if the "from" expression is taking the address of an overloaded
- // function and recompute the FromType accordingly. Take advantage of the
- // fact that non-static member functions *must* have such an address-of
- // expression.
- CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn);
- if (Method && !Method->isStatic()) {
- assert(isa<UnaryOperator>(From->IgnoreParens()) &&
- "Non-unary operator on non-static member address");
- assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()
- == UO_AddrOf &&
- "Non-address-of operator on non-static member address");
- const Type *ClassType
- = S.Context.getTypeDeclType(Method->getParent()).getTypePtr();
- FromType = S.Context.getMemberPointerType(FromType, ClassType);
- } else if (isa<UnaryOperator>(From->IgnoreParens())) {
- assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==
- UO_AddrOf &&
- "Non-address-of operator for overloaded function expression");
- FromType = S.Context.getPointerType(FromType);
- }
- // Check that we've computed the proper type after overload resolution.
- // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't
- // be calling it from within an NDEBUG block.
- assert(S.Context.hasSameType(
- FromType,
- S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()));
- } else {
- return false;
- }
- }
- // Lvalue-to-rvalue conversion (C++11 4.1):
- // A glvalue (3.10) of a non-function, non-array type T can
- // be converted to a prvalue.
- bool argIsLValue = From->isGLValue();
- if (argIsLValue &&
- !FromType->isFunctionType() && !FromType->isArrayType() &&
- S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
- SCS.First = ICK_Lvalue_To_Rvalue;
- // C11 6.3.2.1p2:
- // ... if the lvalue has atomic type, the value has the non-atomic version
- // of the type of the lvalue ...
- if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
- FromType = Atomic->getValueType();
- // If T is a non-class type, the type of the rvalue is the
- // cv-unqualified version of T. Otherwise, the type of the rvalue
- // is T (C++ 4.1p1). C++ can't get here with class types; in C, we
- // just strip the qualifiers because they don't matter.
- FromType = FromType.getUnqualifiedType();
- } else if (FromType->isArrayType()) {
- // Array-to-pointer conversion (C++ 4.2)
- SCS.First = ICK_Array_To_Pointer;
- // An lvalue or rvalue of type "array of N T" or "array of unknown
- // bound of T" can be converted to an rvalue of type "pointer to
- // T" (C++ 4.2p1).
- FromType = S.Context.getArrayDecayedType(FromType);
- if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) {
- // This conversion is deprecated in C++03 (D.4)
- SCS.DeprecatedStringLiteralToCharPtr = true;
- // For the purpose of ranking in overload resolution
- // (13.3.3.1.1), this conversion is considered an
- // array-to-pointer conversion followed by a qualification
- // conversion (4.4). (C++ 4.2p2)
- SCS.Second = ICK_Identity;
- SCS.Third = ICK_Qualification;
- SCS.QualificationIncludesObjCLifetime = false;
- SCS.setAllToTypes(FromType);
- return true;
- }
- } else if (FromType->isFunctionType() && argIsLValue) {
- // Function-to-pointer conversion (C++ 4.3).
- SCS.First = ICK_Function_To_Pointer;
- if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts()))
- if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
- if (!S.checkAddressOfFunctionIsAvailable(FD))
- return false;
- // An lvalue of function type T can be converted to an rvalue of
- // type "pointer to T." The result is a pointer to the
- // function. (C++ 4.3p1).
- FromType = S.Context.getPointerType(FromType);
- } else {
- // We don't require any conversions for the first step.
- SCS.First = ICK_Identity;
- }
- SCS.setToType(0, FromType);
- // The second conversion can be an integral promotion, floating
- // point promotion, integral conversion, floating point conversion,
- // floating-integral conversion, pointer conversion,
- // pointer-to-member conversion, or boolean conversion (C++ 4p1).
- // For overloading in C, this can also be a "compatible-type"
- // conversion.
- bool IncompatibleObjC = false;
- ImplicitConversionKind SecondICK = ICK_Identity;
- if (S.Context.hasSameUnqualifiedType(FromType, ToType)) {
- // The unqualified versions of the types are the same: there's no
- // conversion to do.
- SCS.Second = ICK_Identity;
- } else if (S.IsIntegralPromotion(From, FromType, ToType)) {
- // Integral promotion (C++ 4.5).
- SCS.Second = ICK_Integral_Promotion;
- FromType = ToType.getUnqualifiedType();
- } else if (S.IsFloatingPointPromotion(FromType, ToType)) {
- // Floating point promotion (C++ 4.6).
- SCS.Second = ICK_Floating_Promotion;
- FromType = ToType.getUnqualifiedType();
- } else if (S.IsComplexPromotion(FromType, ToType)) {
- // Complex promotion (Clang extension)
- SCS.Second = ICK_Complex_Promotion;
- FromType = ToType.getUnqualifiedType();
- } else if (ToType->isBooleanType() &&
- (FromType->isArithmeticType() ||
- FromType->isAnyPointerType() ||
- FromType->isBlockPointerType() ||
- FromType->isMemberPointerType() ||
- FromType->isNullPtrType())) {
- // Boolean conversions (C++ 4.12).
- SCS.Second = ICK_Boolean_Conversion;
- FromType = S.Context.BoolTy;
- } else if (FromType->isIntegralOrUnscopedEnumerationType() &&
- ToType->isIntegralType(S.Context)) {
- // Integral conversions (C++ 4.7).
- SCS.Second = ICK_Integral_Conversion;
- FromType = ToType.getUnqualifiedType();
- } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) {
- // Complex conversions (C99 6.3.1.6)
- SCS.Second = ICK_Complex_Conversion;
- FromType = ToType.getUnqualifiedType();
- } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) ||
- (ToType->isAnyComplexType() && FromType->isArithmeticType())) {
- // Complex-real conversions (C99 6.3.1.7)
- SCS.Second = ICK_Complex_Real;
- FromType = ToType.getUnqualifiedType();
- } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) {
- // FIXME: disable conversions between long double and __float128 if
- // their representation is different until there is back end support
- // We of course allow this conversion if long double is really double.
- if (&S.Context.getFloatTypeSemantics(FromType) !=
- &S.Context.getFloatTypeSemantics(ToType)) {
- bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty &&
- ToType == S.Context.LongDoubleTy) ||
- (FromType == S.Context.LongDoubleTy &&
- ToType == S.Context.Float128Ty));
- if (Float128AndLongDouble &&
- (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
- &llvm::APFloat::PPCDoubleDouble()))
- return false;
- }
- // Floating point conversions (C++ 4.8).
- SCS.Second = ICK_Floating_Conversion;
- FromType = ToType.getUnqualifiedType();
- } else if ((FromType->isRealFloatingType() &&
- ToType->isIntegralType(S.Context)) ||
- (FromType->isIntegralOrUnscopedEnumerationType() &&
- ToType->isRealFloatingType())) {
- // Floating-integral conversions (C++ 4.9).
- SCS.Second = ICK_Floating_Integral;
- FromType = ToType.getUnqualifiedType();
- } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) {
- SCS.Second = ICK_Block_Pointer_Conversion;
- } else if (AllowObjCWritebackConversion &&
- S.isObjCWritebackConversion(FromType, ToType, FromType)) {
- SCS.Second = ICK_Writeback_Conversion;
- } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution,
- FromType, IncompatibleObjC)) {
- // Pointer conversions (C++ 4.10).
- SCS.Second = ICK_Pointer_Conversion;
- SCS.IncompatibleObjC = IncompatibleObjC;
- FromType = FromType.getUnqualifiedType();
- } else if (S.IsMemberPointerConversion(From, FromType, ToType,
- InOverloadResolution, FromType)) {
- // Pointer to member conversions (4.11).
- SCS.Second = ICK_Pointer_Member;
- } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) {
- SCS.Second = SecondICK;
- FromType = ToType.getUnqualifiedType();
- } else if (!S.getLangOpts().CPlusPlus &&
- S.Context.typesAreCompatible(ToType, FromType)) {
- // Compatible conversions (Clang extension for C function overloading)
- SCS.Second = ICK_Compatible_Conversion;
- FromType = ToType.getUnqualifiedType();
- } else if (IsTransparentUnionStandardConversion(S, From, ToType,
- InOverloadResolution,
- SCS, CStyle)) {
- SCS.Second = ICK_TransparentUnionConversion;
- FromType = ToType;
- } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
- CStyle)) {
- // tryAtomicConversion has updated the standard conversion sequence
- // appropriately.
- return true;
- } else if (ToType->isEventT() &&
- From->isIntegerConstantExpr(S.getASTContext()) &&
- From->EvaluateKnownConstInt(S.getASTContext()) == 0) {
- SCS.Second = ICK_Zero_Event_Conversion;
- FromType = ToType;
- } else if (ToType->isQueueT() &&
- From->isIntegerConstantExpr(S.getASTContext()) &&
- (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) {
- SCS.Second = ICK_Zero_Queue_Conversion;
- FromType = ToType;
- } else if (ToType->isSamplerT() &&
- From->isIntegerConstantExpr(S.getASTContext())) {
- SCS.Second = ICK_Compatible_Conversion;
- FromType = ToType;
- } else {
- // No second conversion required.
- SCS.Second = ICK_Identity;
- }
- SCS.setToType(1, FromType);
- // The third conversion can be a function pointer conversion or a
- // qualification conversion (C++ [conv.fctptr], [conv.qual]).
- bool ObjCLifetimeConversion;
- if (S.IsFunctionConversion(FromType, ToType, FromType)) {
- // Function pointer conversions (removing 'noexcept') including removal of
- // 'noreturn' (Clang extension).
- SCS.Third = ICK_Function_Conversion;
- } else if (S.IsQualificationConversion(FromType, ToType, CStyle,
- ObjCLifetimeConversion)) {
- SCS.Third = ICK_Qualification;
- SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion;
- FromType = ToType;
- } else {
- // No conversion required
- SCS.Third = ICK_Identity;
- }
- // C++ [over.best.ics]p6:
- // [...] Any difference in top-level cv-qualification is
- // subsumed by the initialization itself and does not constitute
- // a conversion. [...]
- QualType CanonFrom = S.Context.getCanonicalType(FromType);
- QualType CanonTo = S.Context.getCanonicalType(ToType);
- if (CanonFrom.getLocalUnqualifiedType()
- == CanonTo.getLocalUnqualifiedType() &&
- CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) {
- FromType = ToType;
- CanonFrom = CanonTo;
- }
- SCS.setToType(2, FromType);
- if (CanonFrom == CanonTo)
- return true;
- // If we have not converted the argument type to the parameter type,
- // this is a bad conversion sequence, unless we're resolving an overload in C.
- if (S.getLangOpts().CPlusPlus || !InOverloadResolution)
- return false;
- ExprResult ER = ExprResult{From};
- Sema::AssignConvertType Conv =
- S.CheckSingleAssignmentConstraints(ToType, ER,
- /*Diagnose=*/false,
- /*DiagnoseCFAudited=*/false,
- /*ConvertRHS=*/false);
- ImplicitConversionKind SecondConv;
- switch (Conv) {
- case Sema::Compatible:
- SecondConv = ICK_C_Only_Conversion;
- break;
- // For our purposes, discarding qualifiers is just as bad as using an
- // incompatible pointer. Note that an IncompatiblePointer conversion can drop
- // qualifiers, as well.
- case Sema::CompatiblePointerDiscardsQualifiers:
- case Sema::IncompatiblePointer:
- case Sema::IncompatiblePointerSign:
- SecondConv = ICK_Incompatible_Pointer_Conversion;
- break;
- default:
- return false;
- }
- // First can only be an lvalue conversion, so we pretend that this was the
- // second conversion. First should already be valid from earlier in the
- // function.
- SCS.Second = SecondConv;
- SCS.setToType(1, ToType);
- // Third is Identity, because Second should rank us worse than any other
- // conversion. This could also be ICK_Qualification, but it's simpler to just
- // lump everything in with the second conversion, and we don't gain anything
- // from making this ICK_Qualification.
- SCS.Third = ICK_Identity;
- SCS.setToType(2, ToType);
- return true;
- }
- static bool
- IsTransparentUnionStandardConversion(Sema &S, Expr* From,
- QualType &ToType,
- bool InOverloadResolution,
- StandardConversionSequence &SCS,
- bool CStyle) {
- const RecordType *UT = ToType->getAsUnionType();
- if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
- return false;
- // The field to initialize within the transparent union.
- RecordDecl *UD = UT->getDecl();
- // It's compatible if the expression matches any of the fields.
- for (const auto *it : UD->fields()) {
- if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS,
- CStyle, /*AllowObjCWritebackConversion=*/false)) {
- ToType = it->getType();
- return true;
- }
- }
- return false;
- }
- /// IsIntegralPromotion - Determines whether the conversion from the
- /// expression From (whose potentially-adjusted type is FromType) to
- /// ToType is an integral promotion (C++ 4.5). If so, returns true and
- /// sets PromotedType to the promoted type.
- bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) {
- const BuiltinType *To = ToType->getAs<BuiltinType>();
- // All integers are built-in.
- if (!To) {
- return false;
- }
- // An rvalue of type char, signed char, unsigned char, short int, or
- // unsigned short int can be converted to an rvalue of type int if
- // int can represent all the values of the source type; otherwise,
- // the source rvalue can be converted to an rvalue of type unsigned
- // int (C++ 4.5p1).
- if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() &&
- !FromType->isEnumeralType()) {
- if (// We can promote any signed, promotable integer type to an int
- (FromType->isSignedIntegerType() ||
- // We can promote any unsigned integer type whose size is
- // less than int to an int.
- Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) {
- return To->getKind() == BuiltinType::Int;
- }
- return To->getKind() == BuiltinType::UInt;
- }
- // C++11 [conv.prom]p3:
- // A prvalue of an unscoped enumeration type whose underlying type is not
- // fixed (7.2) can be converted to an rvalue a prvalue of the first of the
- // following types that can represent all the values of the enumeration
- // (i.e., the values in the range bmin to bmax as described in 7.2): int,
- // unsigned int, long int, unsigned long int, long long int, or unsigned
- // long long int. If none of the types in that list can represent all the
- // values of the enumeration, an rvalue a prvalue of an unscoped enumeration
- // type can be converted to an rvalue a prvalue of the extended integer type
- // with lowest integer conversion rank (4.13) greater than the rank of long
- // long in which all the values of the enumeration can be represented. If
- // there are two such extended types, the signed one is chosen.
- // C++11 [conv.prom]p4:
- // A prvalue of an unscoped enumeration type whose underlying type is fixed
- // can be converted to a prvalue of its underlying type. Moreover, if
- // integral promotion can be applied to its underlying type, a prvalue of an
- // unscoped enumeration type whose underlying type is fixed can also be
- // converted to a prvalue of the promoted underlying type.
- if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) {
- // C++0x 7.2p9: Note that this implicit enum to int conversion is not
- // provided for a scoped enumeration.
- if (FromEnumType->getDecl()->isScoped())
- return false;
- // We can perform an integral promotion to the underlying type of the enum,
- // even if that's not the promoted type. Note that the check for promoting
- // the underlying type is based on the type alone, and does not consider
- // the bitfield-ness of the actual source expression.
- if (FromEnumType->getDecl()->isFixed()) {
- QualType Underlying = FromEnumType->getDecl()->getIntegerType();
- return Context.hasSameUnqualifiedType(Underlying, ToType) ||
- IsIntegralPromotion(nullptr, Underlying, ToType);
- }
- // We have already pre-calculated the promotion type, so this is trivial.
- if (ToType->isIntegerType() &&
- isCompleteType(From->getBeginLoc(), FromType))
- return Context.hasSameUnqualifiedType(
- ToType, FromEnumType->getDecl()->getPromotionType());
- // C++ [conv.prom]p5:
- // If the bit-field has an enumerated type, it is treated as any other
- // value of that type for promotion purposes.
- //
- // ... so do not fall through into the bit-field checks below in C++.
- if (getLangOpts().CPlusPlus)
- return false;
- }
- // C++0x [conv.prom]p2:
- // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted
- // to an rvalue a prvalue of the first of the following types that can
- // represent all the values of its underlying type: int, unsigned int,
- // long int, unsigned long int, long long int, or unsigned long long int.
- // If none of the types in that list can represent all the values of its
- // underlying type, an rvalue a prvalue of type char16_t, char32_t,
- // or wchar_t can be converted to an rvalue a prvalue of its underlying
- // type.
- if (FromType->isAnyCharacterType() && !FromType->isCharType() &&
- ToType->isIntegerType()) {
- // Determine whether the type we're converting from is signed or
- // unsigned.
- bool FromIsSigned = FromType->isSignedIntegerType();
- uint64_t FromSize = Context.getTypeSize(FromType);
- // The types we'll try to promote to, in the appropriate
- // order. Try each of these types.
- QualType PromoteTypes[6] = {
- Context.IntTy, Context.UnsignedIntTy,
- Context.LongTy, Context.UnsignedLongTy ,
- Context.LongLongTy, Context.UnsignedLongLongTy
- };
- for (int Idx = 0; Idx < 6; ++Idx) {
- uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]);
- if (FromSize < ToSize ||
- (FromSize == ToSize &&
- FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) {
- // We found the type that we can promote to. If this is the
- // type we wanted, we have a promotion. Otherwise, no
- // promotion.
- return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]);
- }
- }
- }
- // An rvalue for an integral bit-field (9.6) can be converted to an
- // rvalue of type int if int can represent all the values of the
- // bit-field; otherwise, it can be converted to unsigned int if
- // unsigned int can represent all the values of the bit-field. If
- // the bit-field is larger yet, no integral promotion applies to
- // it. If the bit-field has an enumerated type, it is treated as any
- // other value of that type for promotion purposes (C++ 4.5p3).
- // FIXME: We should delay checking of bit-fields until we actually perform the
- // conversion.
- //
- // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be
- // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum
- // bit-fields and those whose underlying type is larger than int) for GCC
- // compatibility.
- if (From) {
- if (FieldDecl *MemberDecl = From->getSourceBitField()) {
- llvm::APSInt BitWidth;
- if (FromType->isIntegralType(Context) &&
- MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) {
- llvm::APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned());
- ToSize = Context.getTypeSize(ToType);
- // Are we promoting to an int from a bitfield that fits in an int?
- if (BitWidth < ToSize ||
- (FromType->isSignedIntegerType() && BitWidth <= ToSize)) {
- return To->getKind() == BuiltinType::Int;
- }
- // Are we promoting to an unsigned int from an unsigned bitfield
- // that fits into an unsigned int?
- if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) {
- return To->getKind() == BuiltinType::UInt;
- }
- return false;
- }
- }
- }
- // An rvalue of type bool can be converted to an rvalue of type int,
- // with false becoming zero and true becoming one (C++ 4.5p4).
- if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) {
- return true;
- }
- return false;
- }
- /// IsFloatingPointPromotion - Determines whether the conversion from
- /// FromType to ToType is a floating point promotion (C++ 4.6). If so,
- /// returns true and sets PromotedType to the promoted type.
- bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
- if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>())
- if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) {
- /// An rvalue of type float can be converted to an rvalue of type
- /// double. (C++ 4.6p1).
- if (FromBuiltin->getKind() == BuiltinType::Float &&
- ToBuiltin->getKind() == BuiltinType::Double)
- return true;
- // C99 6.3.1.5p1:
- // When a float is promoted to double or long double, or a
- // double is promoted to long double [...].
- if (!getLangOpts().CPlusPlus &&
- (FromBuiltin->getKind() == BuiltinType::Float ||
- FromBuiltin->getKind() == BuiltinType::Double) &&
- (ToBuiltin->getKind() == BuiltinType::LongDouble ||
- ToBuiltin->getKind() == BuiltinType::Float128))
- return true;
- // Half can be promoted to float.
- if (!getLangOpts().NativeHalfType &&
- FromBuiltin->getKind() == BuiltinType::Half &&
- ToBuiltin->getKind() == BuiltinType::Float)
- return true;
- }
- return false;
- }
- /// Determine if a conversion is a complex promotion.
- ///
- /// A complex promotion is defined as a complex -> complex conversion
- /// where the conversion between the underlying real types is a
- /// floating-point or integral promotion.
- bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) {
- const ComplexType *FromComplex = FromType->getAs<ComplexType>();
- if (!FromComplex)
- return false;
- const ComplexType *ToComplex = ToType->getAs<ComplexType>();
- if (!ToComplex)
- return false;
- return IsFloatingPointPromotion(FromComplex->getElementType(),
- ToComplex->getElementType()) ||
- IsIntegralPromotion(nullptr, FromComplex->getElementType(),
- ToComplex->getElementType());
- }
- /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from
- /// the pointer type FromPtr to a pointer to type ToPointee, with the
- /// same type qualifiers as FromPtr has on its pointee type. ToType,
- /// if non-empty, will be a pointer to ToType that may or may not have
- /// the right set of qualifiers on its pointee.
- ///
- static QualType
- BuildSimilarlyQualifiedPointerType(const Type *FromPtr,
- QualType ToPointee, QualType ToType,
- ASTContext &Context,
- bool StripObjCLifetime = false) {
- assert((FromPtr->getTypeClass() == Type::Pointer ||
- FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&
- "Invalid similarly-qualified pointer type");
- /// Conversions to 'id' subsume cv-qualifier conversions.
- if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType())
- return ToType.getUnqualifiedType();
- QualType CanonFromPointee
- = Context.getCanonicalType(FromPtr->getPointeeType());
- QualType CanonToPointee = Context.getCanonicalType(ToPointee);
- Qualifiers Quals = CanonFromPointee.getQualifiers();
- if (StripObjCLifetime)
- Quals.removeObjCLifetime();
- // Exact qualifier match -> return the pointer type we're converting to.
- if (CanonToPointee.getLocalQualifiers() == Quals) {
- // ToType is exactly what we need. Return it.
- if (!ToType.isNull())
- return ToType.getUnqualifiedType();
- // Build a pointer to ToPointee. It has the right qualifiers
- // already.
- if (isa<ObjCObjectPointerType>(ToType))
- return Context.getObjCObjectPointerType(ToPointee);
- return Context.getPointerType(ToPointee);
- }
- // Just build a canonical type that has the right qualifiers.
- QualType QualifiedCanonToPointee
- = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals);
- if (isa<ObjCObjectPointerType>(ToType))
- return Context.getObjCObjectPointerType(QualifiedCanonToPointee);
- return Context.getPointerType(QualifiedCanonToPointee);
- }
- static bool isNullPointerConstantForConversion(Expr *Expr,
- bool InOverloadResolution,
- ASTContext &Context) {
- // Handle value-dependent integral null pointer constants correctly.
- // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
- if (Expr->isValueDependent() && !Expr->isTypeDependent() &&
- Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType())
- return !InOverloadResolution;
- return Expr->isNullPointerConstant(Context,
- InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
- : Expr::NPC_ValueDependentIsNull);
- }
- /// IsPointerConversion - Determines whether the conversion of the
- /// expression From, which has the (possibly adjusted) type FromType,
- /// can be converted to the type ToType via a pointer conversion (C++
- /// 4.10). If so, returns true and places the converted type (that
- /// might differ from ToType in its cv-qualifiers at some level) into
- /// ConvertedType.
- ///
- /// This routine also supports conversions to and from block pointers
- /// and conversions with Objective-C's 'id', 'id<protocols...>', and
- /// pointers to interfaces. FIXME: Once we've determined the
- /// appropriate overloading rules for Objective-C, we may want to
- /// split the Objective-C checks into a different routine; however,
- /// GCC seems to consider all of these conversions to be pointer
- /// conversions, so for now they live here. IncompatibleObjC will be
- /// set if the conversion is an allowed Objective-C conversion that
- /// should result in a warning.
- bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
- bool InOverloadResolution,
- QualType& ConvertedType,
- bool &IncompatibleObjC) {
- IncompatibleObjC = false;
- if (isObjCPointerConversion(FromType, ToType, ConvertedType,
- IncompatibleObjC))
- return true;
- // Conversion from a null pointer constant to any Objective-C pointer type.
- if (ToType->isObjCObjectPointerType() &&
- isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
- ConvertedType = ToType;
- return true;
- }
- // Blocks: Block pointers can be converted to void*.
- if (FromType->isBlockPointerType() && ToType->isPointerType() &&
- ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
- ConvertedType = ToType;
- return true;
- }
- // Blocks: A null pointer constant can be converted to a block
- // pointer type.
- if (ToType->isBlockPointerType() &&
- isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
- ConvertedType = ToType;
- return true;
- }
- // If the left-hand-side is nullptr_t, the right side can be a null
- // pointer constant.
- if (ToType->isNullPtrType() &&
- isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
- ConvertedType = ToType;
- return true;
- }
- const PointerType* ToTypePtr = ToType->getAs<PointerType>();
- if (!ToTypePtr)
- return false;
- // A null pointer constant can be converted to a pointer type (C++ 4.10p1).
- if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) {
- ConvertedType = ToType;
- return true;
- }
- // Beyond this point, both types need to be pointers
- // , including objective-c pointers.
- QualType ToPointeeType = ToTypePtr->getPointeeType();
- if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
- !getLangOpts().ObjCAutoRefCount) {
- ConvertedType = BuildSimilarlyQualifiedPointerType(
- FromType->getAs<ObjCObjectPointerType>(),
- ToPointeeType,
- ToType, Context);
- return true;
- }
- const PointerType *FromTypePtr = FromType->getAs<PointerType>();
- if (!FromTypePtr)
- return false;
- QualType FromPointeeType = FromTypePtr->getPointeeType();
- // If the unqualified pointee types are the same, this can't be a
- // pointer conversion, so don't do all of the work below.
- if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType))
- return false;
- // An rvalue of type "pointer to cv T," where T is an object type,
- // can be converted to an rvalue of type "pointer to cv void" (C++
- // 4.10p2).
- if (FromPointeeType->isIncompleteOrObjectType() &&
- ToPointeeType->isVoidType()) {
- ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
- ToPointeeType,
- ToType, Context,
- /*StripObjCLifetime=*/true);
- return true;
- }
- // MSVC allows implicit function to void* type conversion.
- if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() &&
- ToPointeeType->isVoidType()) {
- ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
- ToPointeeType,
- ToType, Context);
- return true;
- }
- // When we're overloading in C, we allow a special kind of pointer
- // conversion for compatible-but-not-identical pointee types.
- if (!getLangOpts().CPlusPlus &&
- Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
- ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
- ToPointeeType,
- ToType, Context);
- return true;
- }
- // C++ [conv.ptr]p3:
- //
- // An rvalue of type "pointer to cv D," where D is a class type,
- // can be converted to an rvalue of type "pointer to cv B," where
- // B is a base class (clause 10) of D. If B is an inaccessible
- // (clause 11) or ambiguous (10.2) base class of D, a program that
- // necessitates this conversion is ill-formed. The result of the
- // conversion is a pointer to the base class sub-object of the
- // derived class object. The null pointer value is converted to
- // the null pointer value of the destination type.
- //
- // Note that we do not check for ambiguity or inaccessibility
- // here. That is handled by CheckPointerConversion.
- if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() &&
- ToPointeeType->isRecordType() &&
- !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
- IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) {
- ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
- ToPointeeType,
- ToType, Context);
- return true;
- }
- if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() &&
- Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) {
- ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
- ToPointeeType,
- ToType, Context);
- return true;
- }
- return false;
- }
- /// Adopt the given qualifiers for the given type.
- static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
- Qualifiers TQs = T.getQualifiers();
- // Check whether qualifiers already match.
- if (TQs == Qs)
- return T;
- if (Qs.compatiblyIncludes(TQs))
- return Context.getQualifiedType(T, Qs);
- return Context.getQualifiedType(T.getUnqualifiedType(), Qs);
- }
- /// isObjCPointerConversion - Determines whether this is an
- /// Objective-C pointer conversion. Subroutine of IsPointerConversion,
- /// with the same arguments and return values.
- bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
- QualType& ConvertedType,
- bool &IncompatibleObjC) {
- if (!getLangOpts().ObjC)
- return false;
- // The set of qualifiers on the type we're converting from.
- Qualifiers FromQualifiers = FromType.getQualifiers();
- // First, we handle all conversions on ObjC object pointer types.
- const ObjCObjectPointerType* ToObjCPtr =
- ToType->getAs<ObjCObjectPointerType>();
- const ObjCObjectPointerType *FromObjCPtr =
- FromType->getAs<ObjCObjectPointerType>();
- if (ToObjCPtr && FromObjCPtr) {
- // If the pointee types are the same (ignoring qualifications),
- // then this is not a pointer conversion.
- if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(),
- FromObjCPtr->getPointeeType()))
- return false;
- // Conversion between Objective-C pointers.
- if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
- const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
- const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
- if (getLangOpts().CPlusPlus && LHS && RHS &&
- !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
- FromObjCPtr->getPointeeType()))
- return false;
- ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
- ToObjCPtr->getPointeeType(),
- ToType, Context);
- ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
- return true;
- }
- if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) {
- // Okay: this is some kind of implicit downcast of Objective-C
- // interfaces, which is permitted. However, we're going to
- // complain about it.
- IncompatibleObjC = true;
- ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr,
- ToObjCPtr->getPointeeType(),
- ToType, Context);
- ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
- return true;
- }
- }
- // Beyond this point, both types need to be C pointers or block pointers.
- QualType ToPointeeType;
- if (const PointerType *ToCPtr = ToType->getAs<PointerType>())
- ToPointeeType = ToCPtr->getPointeeType();
- else if (const BlockPointerType *ToBlockPtr =
- ToType->getAs<BlockPointerType>()) {
- // Objective C++: We're able to convert from a pointer to any object
- // to a block pointer type.
- if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) {
- ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
- return true;
- }
- ToPointeeType = ToBlockPtr->getPointeeType();
- }
- else if (FromType->getAs<BlockPointerType>() &&
- ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) {
- // Objective C++: We're able to convert from a block pointer type to a
- // pointer to any object.
- ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
- return true;
- }
- else
- return false;
- QualType FromPointeeType;
- if (const PointerType *FromCPtr = FromType->getAs<PointerType>())
- FromPointeeType = FromCPtr->getPointeeType();
- else if (const BlockPointerType *FromBlockPtr =
- FromType->getAs<BlockPointerType>())
- FromPointeeType = FromBlockPtr->getPointeeType();
- else
- return false;
- // If we have pointers to pointers, recursively check whether this
- // is an Objective-C conversion.
- if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() &&
- isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
- IncompatibleObjC)) {
- // We always complain about this conversion.
- IncompatibleObjC = true;
- ConvertedType = Context.getPointerType(ConvertedType);
- ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
- return true;
- }
- // Allow conversion of pointee being objective-c pointer to another one;
- // as in I* to id.
- if (FromPointeeType->getAs<ObjCObjectPointerType>() &&
- ToPointeeType->getAs<ObjCObjectPointerType>() &&
- isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType,
- IncompatibleObjC)) {
- ConvertedType = Context.getPointerType(ConvertedType);
- ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers);
- return true;
- }
- // If we have pointers to functions or blocks, check whether the only
- // differences in the argument and result types are in Objective-C
- // pointer conversions. If so, we permit the conversion (but
- // complain about it).
- const FunctionProtoType *FromFunctionType
- = FromPointeeType->getAs<FunctionProtoType>();
- const FunctionProtoType *ToFunctionType
- = ToPointeeType->getAs<FunctionProtoType>();
- if (FromFunctionType && ToFunctionType) {
- // If the function types are exactly the same, this isn't an
- // Objective-C pointer conversion.
- if (Context.getCanonicalType(FromPointeeType)
- == Context.getCanonicalType(ToPointeeType))
- return false;
- // Perform the quick checks that will tell us whether these
- // function types are obviously different.
- if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
- FromFunctionType->isVariadic() != ToFunctionType->isVariadic() ||
- FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals())
- return false;
- bool HasObjCConversion = false;
- if (Context.getCanonicalType(FromFunctionType->getReturnType()) ==
- Context.getCanonicalType(ToFunctionType->getReturnType())) {
- // Okay, the types match exactly. Nothing to do.
- } else if (isObjCPointerConversion(FromFunctionType->getReturnType(),
- ToFunctionType->getReturnType(),
- ConvertedType, IncompatibleObjC)) {
- // Okay, we have an Objective-C pointer conversion.
- HasObjCConversion = true;
- } else {
- // Function types are too different. Abort.
- return false;
- }
- // Check argument types.
- for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
- ArgIdx != NumArgs; ++ArgIdx) {
- QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
- QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
- if (Context.getCanonicalType(FromArgType)
- == Context.getCanonicalType(ToArgType)) {
- // Okay, the types match exactly. Nothing to do.
- } else if (isObjCPointerConversion(FromArgType, ToArgType,
- ConvertedType, IncompatibleObjC)) {
- // Okay, we have an Objective-C pointer conversion.
- HasObjCConversion = true;
- } else {
- // Argument types are too different. Abort.
- return false;
- }
- }
- if (HasObjCConversion) {
- // We had an Objective-C conversion. Allow this pointer
- // conversion, but complain about it.
- ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers);
- IncompatibleObjC = true;
- return true;
- }
- }
- return false;
- }
- /// Determine whether this is an Objective-C writeback conversion,
- /// used for parameter passing when performing automatic reference counting.
- ///
- /// \param FromType The type we're converting form.
- ///
- /// \param ToType The type we're converting to.
- ///
- /// \param ConvertedType The type that will be produced after applying
- /// this conversion.
- bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
- QualType &ConvertedType) {
- if (!getLangOpts().ObjCAutoRefCount ||
- Context.hasSameUnqualifiedType(FromType, ToType))
- return false;
- // Parameter must be a pointer to __autoreleasing (with no other qualifiers).
- QualType ToPointee;
- if (const PointerType *ToPointer = ToType->getAs<PointerType>())
- ToPointee = ToPointer->getPointeeType();
- else
- return false;
- Qualifiers ToQuals = ToPointee.getQualifiers();
- if (!ToPointee->isObjCLifetimeType() ||
- ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
- !ToQuals.withoutObjCLifetime().empty())
- return false;
- // Argument must be a pointer to __strong to __weak.
- QualType FromPointee;
- if (const PointerType *FromPointer = FromType->getAs<PointerType>())
- FromPointee = FromPointer->getPointeeType();
- else
- return false;
- Qualifiers FromQuals = FromPointee.getQualifiers();
- if (!FromPointee->isObjCLifetimeType() ||
- (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong &&
- FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak))
- return false;
- // Make sure that we have compatible qualifiers.
- FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing);
- if (!ToQuals.compatiblyIncludes(FromQuals))
- return false;
- // Remove qualifiers from the pointee type we're converting from; they
- // aren't used in the compatibility check belong, and we'll be adding back
- // qualifiers (with __autoreleasing) if the compatibility check succeeds.
- FromPointee = FromPointee.getUnqualifiedType();
- // The unqualified form of the pointee types must be compatible.
- ToPointee = ToPointee.getUnqualifiedType();
- bool IncompatibleObjC;
- if (Context.typesAreCompatible(FromPointee, ToPointee))
- FromPointee = ToPointee;
- else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee,
- IncompatibleObjC))
- return false;
- /// Construct the type we're converting to, which is a pointer to
- /// __autoreleasing pointee.
- FromPointee = Context.getQualifiedType(FromPointee, FromQuals);
- ConvertedType = Context.getPointerType(FromPointee);
- return true;
- }
- bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
- QualType& ConvertedType) {
- QualType ToPointeeType;
- if (const BlockPointerType *ToBlockPtr =
- ToType->getAs<BlockPointerType>())
- ToPointeeType = ToBlockPtr->getPointeeType();
- else
- return false;
- QualType FromPointeeType;
- if (const BlockPointerType *FromBlockPtr =
- FromType->getAs<BlockPointerType>())
- FromPointeeType = FromBlockPtr->getPointeeType();
- else
- return false;
- // We have pointer to blocks, check whether the only
- // differences in the argument and result types are in Objective-C
- // pointer conversions. If so, we permit the conversion.
- const FunctionProtoType *FromFunctionType
- = FromPointeeType->getAs<FunctionProtoType>();
- const FunctionProtoType *ToFunctionType
- = ToPointeeType->getAs<FunctionProtoType>();
- if (!FromFunctionType || !ToFunctionType)
- return false;
- if (Context.hasSameType(FromPointeeType, ToPointeeType))
- return true;
- // Perform the quick checks that will tell us whether these
- // function types are obviously different.
- if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() ||
- FromFunctionType->isVariadic() != ToFunctionType->isVariadic())
- return false;
- FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo();
- FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo();
- if (FromEInfo != ToEInfo)
- return false;
- bool IncompatibleObjC = false;
- if (Context.hasSameType(FromFunctionType->getReturnType(),
- ToFunctionType->getReturnType())) {
- // Okay, the types match exactly. Nothing to do.
- } else {
- QualType RHS = FromFunctionType->getReturnType();
- QualType LHS = ToFunctionType->getReturnType();
- if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
- !RHS.hasQualifiers() && LHS.hasQualifiers())
- LHS = LHS.getUnqualifiedType();
- if (Context.hasSameType(RHS,LHS)) {
- // OK exact match.
- } else if (isObjCPointerConversion(RHS, LHS,
- ConvertedType, IncompatibleObjC)) {
- if (IncompatibleObjC)
- return false;
- // Okay, we have an Objective-C pointer conversion.
- }
- else
- return false;
- }
- // Check argument types.
- for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams();
- ArgIdx != NumArgs; ++ArgIdx) {
- IncompatibleObjC = false;
- QualType FromArgType = FromFunctionType->getParamType(ArgIdx);
- QualType ToArgType = ToFunctionType->getParamType(ArgIdx);
- if (Context.hasSameType(FromArgType, ToArgType)) {
- // Okay, the types match exactly. Nothing to do.
- } else if (isObjCPointerConversion(ToArgType, FromArgType,
- ConvertedType, IncompatibleObjC)) {
- if (IncompatibleObjC)
- return false;
- // Okay, we have an Objective-C pointer conversion.
- } else
- // Argument types are too different. Abort.
- return false;
- }
- SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos;
- bool CanUseToFPT, CanUseFromFPT;
- if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType,
- CanUseToFPT, CanUseFromFPT,
- NewParamInfos))
- return false;
- ConvertedType = ToType;
- return true;
- }
- enum {
- ft_default,
- ft_different_class,
- ft_parameter_arity,
- ft_parameter_mismatch,
- ft_return_type,
- ft_qualifer_mismatch,
- ft_noexcept
- };
- /// Attempts to get the FunctionProtoType from a Type. Handles
- /// MemberFunctionPointers properly.
- static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) {
- if (auto *FPT = FromType->getAs<FunctionProtoType>())
- return FPT;
- if (auto *MPT = FromType->getAs<MemberPointerType>())
- return MPT->getPointeeType()->getAs<FunctionProtoType>();
- return nullptr;
- }
- /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
- /// function types. Catches different number of parameter, mismatch in
- /// parameter types, and different return types.
- void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
- QualType FromType, QualType ToType) {
- // If either type is not valid, include no extra info.
- if (FromType.isNull() || ToType.isNull()) {
- PDiag << ft_default;
- return;
- }
- // Get the function type from the pointers.
- if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
- const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
- *ToMember = ToType->getAs<MemberPointerType>();
- if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) {
- PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
- << QualType(FromMember->getClass(), 0);
- return;
- }
- FromType = FromMember->getPointeeType();
- ToType = ToMember->getPointeeType();
- }
- if (FromType->isPointerType())
- FromType = FromType->getPointeeType();
- if (ToType->isPointerType())
- ToType = ToType->getPointeeType();
- // Remove references.
- FromType = FromType.getNonReferenceType();
- ToType = ToType.getNonReferenceType();
- // Don't print extra info for non-specialized template functions.
- if (FromType->isInstantiationDependentType() &&
- !FromType->getAs<TemplateSpecializationType>()) {
- PDiag << ft_default;
- return;
- }
- // No extra info for same types.
- if (Context.hasSameType(FromType, ToType)) {
- PDiag << ft_default;
- return;
- }
- const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType),
- *ToFunction = tryGetFunctionProtoType(ToType);
- // Both types need to be function types.
- if (!FromFunction || !ToFunction) {
- PDiag << ft_default;
- return;
- }
- if (FromFunction->getNumParams() != ToFunction->getNumParams()) {
- PDiag << ft_parameter_arity << ToFunction->getNumParams()
- << FromFunction->getNumParams();
- return;
- }
- // Handle different parameter types.
- unsigned ArgPos;
- if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
- PDiag << ft_parameter_mismatch << ArgPos + 1
- << ToFunction->getParamType(ArgPos)
- << FromFunction->getParamType(ArgPos);
- return;
- }
- // Handle different return type.
- if (!Context.hasSameType(FromFunction->getReturnType(),
- ToFunction->getReturnType())) {
- PDiag << ft_return_type << ToFunction->getReturnType()
- << FromFunction->getReturnType();
- return;
- }
- if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) {
- PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals()
- << FromFunction->getMethodQuals();
- return;
- }
- // Handle exception specification differences on canonical type (in C++17
- // onwards).
- if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified())
- ->isNothrow() !=
- cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified())
- ->isNothrow()) {
- PDiag << ft_noexcept;
- return;
- }
- // Unable to find a difference, so add no extra info.
- PDiag << ft_default;
- }
- /// FunctionParamTypesAreEqual - This routine checks two function proto types
- /// for equality of their argument types. Caller has already checked that
- /// they have same number of arguments. If the parameters are different,
- /// ArgPos will have the parameter index of the first different parameter.
- bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
- const FunctionProtoType *NewType,
- unsigned *ArgPos) {
- for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(),
- N = NewType->param_type_begin(),
- E = OldType->param_type_end();
- O && (O != E); ++O, ++N) {
- if (!Context.hasSameType(O->getUnqualifiedType(),
- N->getUnqualifiedType())) {
- if (ArgPos)
- *ArgPos = O - OldType->param_type_begin();
- return false;
- }
- }
- return true;
- }
- /// CheckPointerConversion - Check the pointer conversion from the
- /// expression From to the type ToType. This routine checks for
- /// ambiguous or inaccessible derived-to-base pointer
- /// conversions for which IsPointerConversion has already returned
- /// true. It returns true and produces a diagnostic if there was an
- /// error, or returns false otherwise.
- bool Sema::CheckPointerConversion(Expr *From, QualType ToType,
- CastKind &Kind,
- CXXCastPath& BasePath,
- bool IgnoreBaseAccess,
- bool Diagnose) {
- QualType FromType = From->getType();
- bool IsCStyleOrFunctionalCast = IgnoreBaseAccess;
- Kind = CK_BitCast;
- if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() &&
- From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) ==
- Expr::NPCK_ZeroExpression) {
- if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy))
- DiagRuntimeBehavior(From->getExprLoc(), From,
- PDiag(diag::warn_impcast_bool_to_null_pointer)
- << ToType << From->getSourceRange());
- else if (!isUnevaluatedContext())
- Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer)
- << ToType << From->getSourceRange();
- }
- if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) {
- if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) {
- QualType FromPointeeType = FromPtrType->getPointeeType(),
- ToPointeeType = ToPtrType->getPointeeType();
- if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
- !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) {
- // We must have a derived-to-base conversion. Check an
- // ambiguous or inaccessible conversion.
- unsigned InaccessibleID = 0;
- unsigned AmbigiousID = 0;
- if (Diagnose) {
- InaccessibleID = diag::err_upcast_to_inaccessible_base;
- AmbigiousID = diag::err_ambiguous_derived_to_base_conv;
- }
- if (CheckDerivedToBaseConversion(
- FromPointeeType, ToPointeeType, InaccessibleID, AmbigiousID,
- From->getExprLoc(), From->getSourceRange(), DeclarationName(),
- &BasePath, IgnoreBaseAccess))
- return true;
- // The conversion was successful.
- Kind = CK_DerivedToBase;
- }
- if (Diagnose && !IsCStyleOrFunctionalCast &&
- FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) {
- assert(getLangOpts().MSVCCompat &&
- "this should only be possible with MSVCCompat!");
- Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj)
- << From->getSourceRange();
- }
- }
- } else if (const ObjCObjectPointerType *ToPtrType =
- ToType->getAs<ObjCObjectPointerType>()) {
- if (const ObjCObjectPointerType *FromPtrType =
- FromType->getAs<ObjCObjectPointerType>()) {
- // Objective-C++ conversions are always okay.
- // FIXME: We should have a different class of conversions for the
- // Objective-C++ implicit conversions.
- if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType())
- return false;
- } else if (FromType->isBlockPointerType()) {
- Kind = CK_BlockPointerToObjCPointerCast;
- } else {
- Kind = CK_CPointerToObjCPointerCast;
- }
- } else if (ToType->isBlockPointerType()) {
- if (!FromType->isBlockPointerType())
- Kind = CK_AnyPointerToBlockPointerCast;
- }
- // We shouldn't fall into this case unless it's valid for other
- // reasons.
- if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
- Kind = CK_NullToPointer;
- return false;
- }
- /// IsMemberPointerConversion - Determines whether the conversion of the
- /// expression From, which has the (possibly adjusted) type FromType, can be
- /// converted to the type ToType via a member pointer conversion (C++ 4.11).
- /// If so, returns true and places the converted type (that might differ from
- /// ToType in its cv-qualifiers at some level) into ConvertedType.
- bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType,
- QualType ToType,
- bool InOverloadResolution,
- QualType &ConvertedType) {
- const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>();
- if (!ToTypePtr)
- return false;
- // A null pointer constant can be converted to a member pointer (C++ 4.11p1)
- if (From->isNullPointerConstant(Context,
- InOverloadResolution? Expr::NPC_ValueDependentIsNotNull
- : Expr::NPC_ValueDependentIsNull)) {
- ConvertedType = ToType;
- return true;
- }
- // Otherwise, both types have to be member pointers.
- const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>();
- if (!FromTypePtr)
- return false;
- // A pointer to member of B can be converted to a pointer to member of D,
- // where D is derived from B (C++ 4.11p2).
- QualType FromClass(FromTypePtr->getClass(), 0);
- QualType ToClass(ToTypePtr->getClass(), 0);
- if (!Context.hasSameUnqualifiedType(FromClass, ToClass) &&
- IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) {
- ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(),
- ToClass.getTypePtr());
- return true;
- }
- return false;
- }
- /// CheckMemberPointerConversion - Check the member pointer conversion from the
- /// expression From to the type ToType. This routine checks for ambiguous or
- /// virtual or inaccessible base-to-derived member pointer conversions
- /// for which IsMemberPointerConversion has already returned true. It returns
- /// true and produces a diagnostic if there was an error, or returns false
- /// otherwise.
- bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType,
- CastKind &Kind,
- CXXCastPath &BasePath,
- bool IgnoreBaseAccess) {
- QualType FromType = From->getType();
- const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>();
- if (!FromPtrType) {
- // This must be a null pointer to member pointer conversion
- assert(From->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull) &&
- "Expr must be null pointer constant!");
- Kind = CK_NullToMemberPointer;
- return false;
- }
- const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>();
- assert(ToPtrType && "No member pointer cast has a target type "
- "that is not a member pointer.");
- QualType FromClass = QualType(FromPtrType->getClass(), 0);
- QualType ToClass = QualType(ToPtrType->getClass(), 0);
- // FIXME: What about dependent types?
- assert(FromClass->isRecordType() && "Pointer into non-class.");
- assert(ToClass->isRecordType() && "Pointer into non-class.");
- CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
- /*DetectVirtual=*/true);
- bool DerivationOkay =
- IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths);
- assert(DerivationOkay &&
- "Should not have been called if derivation isn't OK.");
- (void)DerivationOkay;
- if (Paths.isAmbiguous(Context.getCanonicalType(FromClass).
- getUnqualifiedType())) {
- std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
- Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv)
- << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange();
- return true;
- }
- if (const RecordType *VBase = Paths.getDetectedVirtual()) {
- Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual)
- << FromClass << ToClass << QualType(VBase, 0)
- << From->getSourceRange();
- return true;
- }
- if (!IgnoreBaseAccess)
- CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass,
- Paths.front(),
- diag::err_downcast_from_inaccessible_base);
- // Must be a base to derived member conversion.
- BuildBasePathArray(Paths, BasePath);
- Kind = CK_BaseToDerivedMemberPointer;
- return false;
- }
- /// Determine whether the lifetime conversion between the two given
- /// qualifiers sets is nontrivial.
- static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals,
- Qualifiers ToQuals) {
- // Converting anything to const __unsafe_unretained is trivial.
- if (ToQuals.hasConst() &&
- ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone)
- return false;
- return true;
- }
- /// IsQualificationConversion - Determines whether the conversion from
- /// an rvalue of type FromType to ToType is a qualification conversion
- /// (C++ 4.4).
- ///
- /// \param ObjCLifetimeConversion Output parameter that will be set to indicate
- /// when the qualification conversion involves a change in the Objective-C
- /// object lifetime.
- bool
- Sema::IsQualificationConversion(QualType FromType, QualType ToType,
- bool CStyle, bool &ObjCLifetimeConversion) {
- FromType = Context.getCanonicalType(FromType);
- ToType = Context.getCanonicalType(ToType);
- ObjCLifetimeConversion = false;
- // If FromType and ToType are the same type, this is not a
- // qualification conversion.
- if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType())
- return false;
- // (C++ 4.4p4):
- // A conversion can add cv-qualifiers at levels other than the first
- // in multi-level pointers, subject to the following rules: [...]
- bool PreviousToQualsIncludeConst = true;
- bool UnwrappedAnyPointer = false;
- while (Context.UnwrapSimilarTypes(FromType, ToType)) {
- // Within each iteration of the loop, we check the qualifiers to
- // determine if this still looks like a qualification
- // conversion. Then, if all is well, we unwrap one more level of
- // pointers or pointers-to-members and do it all again
- // until there are no more pointers or pointers-to-members left to
- // unwrap.
- UnwrappedAnyPointer = true;
- Qualifiers FromQuals = FromType.getQualifiers();
- Qualifiers ToQuals = ToType.getQualifiers();
- // Ignore __unaligned qualifier if this type is void.
- if (ToType.getUnqualifiedType()->isVoidType())
- FromQuals.removeUnaligned();
- // Objective-C ARC:
- // Check Objective-C lifetime conversions.
- if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() &&
- UnwrappedAnyPointer) {
- if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) {
- if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals))
- ObjCLifetimeConversion = true;
- FromQuals.removeObjCLifetime();
- ToQuals.removeObjCLifetime();
- } else {
- // Qualification conversions cannot cast between different
- // Objective-C lifetime qualifiers.
- return false;
- }
- }
- // Allow addition/removal of GC attributes but not changing GC attributes.
- if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() &&
- (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) {
- FromQuals.removeObjCGCAttr();
- ToQuals.removeObjCGCAttr();
- }
- // -- for every j > 0, if const is in cv 1,j then const is in cv
- // 2,j, and similarly for volatile.
- if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals))
- return false;
- // -- if the cv 1,j and cv 2,j are different, then const is in
- // every cv for 0 < k < j.
- if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers()
- && !PreviousToQualsIncludeConst)
- return false;
- // Keep track of whether all prior cv-qualifiers in the "to" type
- // include const.
- PreviousToQualsIncludeConst
- = PreviousToQualsIncludeConst && ToQuals.hasConst();
- }
- // Allows address space promotion by language rules implemented in
- // Type::Qualifiers::isAddressSpaceSupersetOf.
- Qualifiers FromQuals = FromType.getQualifiers();
- Qualifiers ToQuals = ToType.getQualifiers();
- if (!ToQuals.isAddressSpaceSupersetOf(FromQuals) &&
- !FromQuals.isAddressSpaceSupersetOf(ToQuals)) {
- return false;
- }
- // We are left with FromType and ToType being the pointee types
- // after unwrapping the original FromType and ToType the same number
- // of types. If we unwrapped any pointers, and if FromType and
- // ToType have the same unqualified type (since we checked
- // qualifiers above), then this is a qualification conversion.
- return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
- }
- /// - Determine whether this is a conversion from a scalar type to an
- /// atomic type.
- ///
- /// If successful, updates \c SCS's second and third steps in the conversion
- /// sequence to finish the conversion.
- static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
- bool InOverloadResolution,
- StandardConversionSequence &SCS,
- bool CStyle) {
- const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
- if (!ToAtomic)
- return false;
- StandardConversionSequence InnerSCS;
- if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
- InOverloadResolution, InnerSCS,
- CStyle, /*AllowObjCWritebackConversion=*/false))
- return false;
- SCS.Second = InnerSCS.Second;
- SCS.setToType(1, InnerSCS.getToType(1));
- SCS.Third = InnerSCS.Third;
- SCS.QualificationIncludesObjCLifetime
- = InnerSCS.QualificationIncludesObjCLifetime;
- SCS.setToType(2, InnerSCS.getToType(2));
- return true;
- }
- static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
- CXXConstructorDecl *Constructor,
- QualType Type) {
- const FunctionProtoType *CtorType =
- Constructor->getType()->getAs<FunctionProtoType>();
- if (CtorType->getNumParams() > 0) {
- QualType FirstArg = CtorType->getParamType(0);
- if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
- return true;
- }
- return false;
- }
- static OverloadingResult
- IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
- CXXRecordDecl *To,
- UserDefinedConversionSequence &User,
- OverloadCandidateSet &CandidateSet,
- bool AllowExplicit) {
- CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
- for (auto *D : S.LookupConstructors(To)) {
- auto Info = getConstructorInfo(D);
- if (!Info)
- continue;
- bool Usable = !Info.Constructor->isInvalidDecl() &&
- S.isInitListConstructor(Info.Constructor) &&
- (AllowExplicit || !Info.Constructor->isExplicit());
- if (Usable) {
- // If the first argument is (a reference to) the target type,
- // suppress conversions.
- bool SuppressUserConversions = isFirstArgumentCompatibleWithType(
- S.Context, Info.Constructor, ToType);
- if (Info.ConstructorTmpl)
- S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
- /*ExplicitArgs*/ nullptr, From,
- CandidateSet, SuppressUserConversions,
- /*PartialOverloading*/ false,
- AllowExplicit);
- else
- S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From,
- CandidateSet, SuppressUserConversions,
- /*PartialOverloading*/ false, AllowExplicit);
- }
- }
- bool HadMultipleCandidates = (CandidateSet.size() > 1);
- OverloadCandidateSet::iterator Best;
- switch (auto Result =
- CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
- case OR_Deleted:
- case OR_Success: {
- // Record the standard conversion we used and the conversion function.
- CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
- QualType ThisType = Constructor->getThisType();
- // Initializer lists don't have conversions as such.
- User.Before.setAsIdentityConversion();
- User.HadMultipleCandidates = HadMultipleCandidates;
- User.ConversionFunction = Constructor;
- User.FoundConversionFunction = Best->FoundDecl;
- User.After.setAsIdentityConversion();
- User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
- User.After.setAllToTypes(ToType);
- return Result;
- }
- case OR_No_Viable_Function:
- return OR_No_Viable_Function;
- case OR_Ambiguous:
- return OR_Ambiguous;
- }
- llvm_unreachable("Invalid OverloadResult!");
- }
- /// Determines whether there is a user-defined conversion sequence
- /// (C++ [over.ics.user]) that converts expression From to the type
- /// ToType. If such a conversion exists, User will contain the
- /// user-defined conversion sequence that performs such a conversion
- /// and this routine will return true. Otherwise, this routine returns
- /// false and User is unspecified.
- ///
- /// \param AllowExplicit true if the conversion should consider C++0x
- /// "explicit" conversion functions as well as non-explicit conversion
- /// functions (C++0x [class.conv.fct]p2).
- ///
- /// \param AllowObjCConversionOnExplicit true if the conversion should
- /// allow an extra Objective-C pointer conversion on uses of explicit
- /// constructors. Requires \c AllowExplicit to also be set.
- static OverloadingResult
- IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
- UserDefinedConversionSequence &User,
- OverloadCandidateSet &CandidateSet,
- bool AllowExplicit,
- bool AllowObjCConversionOnExplicit) {
- assert(AllowExplicit || !AllowObjCConversionOnExplicit);
- CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
- // Whether we will only visit constructors.
- bool ConstructorsOnly = false;
- // If the type we are conversion to is a class type, enumerate its
- // constructors.
- if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) {
- // C++ [over.match.ctor]p1:
- // When objects of class type are direct-initialized (8.5), or
- // copy-initialized from an expression of the same or a
- // derived class type (8.5), overload resolution selects the
- // constructor. [...] For copy-initialization, the candidate
- // functions are all the converting constructors (12.3.1) of
- // that class. The argument list is the expression-list within
- // the parentheses of the initializer.
- if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) ||
- (From->getType()->getAs<RecordType>() &&
- S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType)))
- ConstructorsOnly = true;
- if (!S.isCompleteType(From->getExprLoc(), ToType)) {
- // We're not going to find any constructors.
- } else if (CXXRecordDecl *ToRecordDecl
- = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
- Expr **Args = &From;
- unsigned NumArgs = 1;
- bool ListInitializing = false;
- if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
- // But first, see if there is an init-list-constructor that will work.
- OverloadingResult Result = IsInitializerListConstructorConversion(
- S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
- if (Result != OR_No_Viable_Function)
- return Result;
- // Never mind.
- CandidateSet.clear(
- OverloadCandidateSet::CSK_InitByUserDefinedConversion);
- // If we're list-initializing, we pass the individual elements as
- // arguments, not the entire list.
- Args = InitList->getInits();
- NumArgs = InitList->getNumInits();
- ListInitializing = true;
- }
- for (auto *D : S.LookupConstructors(ToRecordDecl)) {
- auto Info = getConstructorInfo(D);
- if (!Info)
- continue;
- bool Usable = !Info.Constructor->isInvalidDecl();
- if (ListInitializing)
- Usable = Usable && (AllowExplicit || !Info.Constructor->isExplicit());
- else
- Usable = Usable &&
- Info.Constructor->isConvertingConstructor(AllowExplicit);
- if (Usable) {
- bool SuppressUserConversions = !ConstructorsOnly;
- if (SuppressUserConversions && ListInitializing) {
- SuppressUserConversions = false;
- if (NumArgs == 1) {
- // If the first argument is (a reference to) the target type,
- // suppress conversions.
- SuppressUserConversions = isFirstArgumentCompatibleWithType(
- S.Context, Info.Constructor, ToType);
- }
- }
- if (Info.ConstructorTmpl)
- S.AddTemplateOverloadCandidate(
- Info.ConstructorTmpl, Info.FoundDecl,
- /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs),
- CandidateSet, SuppressUserConversions,
- /*PartialOverloading*/ false, AllowExplicit);
- else
- // Allow one user-defined conversion when user specifies a
- // From->ToType conversion via an static cast (c-style, etc).
- S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
- llvm::makeArrayRef(Args, NumArgs),
- CandidateSet, SuppressUserConversions,
- /*PartialOverloading*/ false, AllowExplicit);
- }
- }
- }
- }
- // Enumerate conversion functions, if we're allowed to.
- if (ConstructorsOnly || isa<InitListExpr>(From)) {
- } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) {
- // No conversion functions from incomplete types.
- } else if (const RecordType *FromRecordType =
- From->getType()->getAs<RecordType>()) {
- if (CXXRecordDecl *FromRecordDecl
- = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) {
- // Add all of the conversion functions as candidates.
- const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions();
- for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
- DeclAccessPair FoundDecl = I.getPair();
- NamedDecl *D = FoundDecl.getDecl();
- CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
- if (isa<UsingShadowDecl>(D))
- D = cast<UsingShadowDecl>(D)->getTargetDecl();
- CXXConversionDecl *Conv;
- FunctionTemplateDecl *ConvTemplate;
- if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
- Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
- else
- Conv = cast<CXXConversionDecl>(D);
- if (AllowExplicit || !Conv->isExplicit()) {
- if (ConvTemplate)
- S.AddTemplateConversionCandidate(
- ConvTemplate, FoundDecl, ActingContext, From, ToType,
- CandidateSet, AllowObjCConversionOnExplicit, AllowExplicit);
- else
- S.AddConversionCandidate(
- Conv, FoundDecl, ActingContext, From, ToType, CandidateSet,
- AllowObjCConversionOnExplicit, AllowExplicit);
- }
- }
- }
- }
- bool HadMultipleCandidates = (CandidateSet.size() > 1);
- OverloadCandidateSet::iterator Best;
- switch (auto Result =
- CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) {
- case OR_Success:
- case OR_Deleted:
- // Record the standard conversion we used and the conversion function.
- if (CXXConstructorDecl *Constructor
- = dyn_cast<CXXConstructorDecl>(Best->Function)) {
- // C++ [over.ics.user]p1:
- // If the user-defined conversion is specified by a
- // constructor (12.3.1), the initial standard conversion
- // sequence converts the source type to the type required by
- // the argument of the constructor.
- //
- QualType ThisType = Constructor->getThisType();
- if (isa<InitListExpr>(From)) {
- // Initializer lists don't have conversions as such.
- User.Before.setAsIdentityConversion();
- } else {
- if (Best->Conversions[0].isEllipsis())
- User.EllipsisConversion = true;
- else {
- User.Before = Best->Conversions[0].Standard;
- User.EllipsisConversion = false;
- }
- }
- User.HadMultipleCandidates = HadMultipleCandidates;
- User.ConversionFunction = Constructor;
- User.FoundConversionFunction = Best->FoundDecl;
- User.After.setAsIdentityConversion();
- User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType());
- User.After.setAllToTypes(ToType);
- return Result;
- }
- if (CXXConversionDecl *Conversion
- = dyn_cast<CXXConversionDecl>(Best->Function)) {
- // C++ [over.ics.user]p1:
- //
- // [...] If the user-defined conversion is specified by a
- // conversion function (12.3.2), the initial standard
- // conversion sequence converts the source type to the
- // implicit object parameter of the conversion function.
- User.Before = Best->Conversions[0].Standard;
- User.HadMultipleCandidates = HadMultipleCandidates;
- User.ConversionFunction = Conversion;
- User.FoundConversionFunction = Best->FoundDecl;
- User.EllipsisConversion = false;
- // C++ [over.ics.user]p2:
- // The second standard conversion sequence converts the
- // result of the user-defined conversion to the target type
- // for the sequence. Since an implicit conversion sequence
- // is an initialization, the special rules for
- // initialization by user-defined conversion apply when
- // selecting the best user-defined conversion for a
- // user-defined conversion sequence (see 13.3.3 and
- // 13.3.3.1).
- User.After = Best->FinalConversion;
- return Result;
- }
- llvm_unreachable("Not a constructor or conversion function?");
- case OR_No_Viable_Function:
- return OR_No_Viable_Function;
- case OR_Ambiguous:
- return OR_Ambiguous;
- }
- llvm_unreachable("Invalid OverloadResult!");
- }
- bool
- Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
- ImplicitConversionSequence ICS;
- OverloadCandidateSet CandidateSet(From->getExprLoc(),
- OverloadCandidateSet::CSK_Normal);
- OverloadingResult OvResult =
- IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
- CandidateSet, false, false);
- if (!(OvResult == OR_Ambiguous ||
- (OvResult == OR_No_Viable_Function && !CandidateSet.empty())))
- return false;
- auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, From);
- if (OvResult == OR_Ambiguous)
- Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition)
- << From->getType() << ToType << From->getSourceRange();
- else { // OR_No_Viable_Function && !CandidateSet.empty()
- if (!RequireCompleteType(From->getBeginLoc(), ToType,
- diag::err_typecheck_nonviable_condition_incomplete,
- From->getType(), From->getSourceRange()))
- Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition)
- << false << From->getType() << From->getSourceRange() << ToType;
- }
- CandidateSet.NoteCandidates(
- *this, From, Cands);
- return true;
- }
- /// Compare the user-defined conversion functions or constructors
- /// of two user-defined conversion sequences to determine whether any ordering
- /// is possible.
- static ImplicitConversionSequence::CompareKind
- compareConversionFunctions(Sema &S, FunctionDecl *Function1,
- FunctionDecl *Function2) {
- if (!S.getLangOpts().ObjC || !S.getLangOpts().CPlusPlus11)
- return ImplicitConversionSequence::Indistinguishable;
- // Objective-C++:
- // If both conversion functions are implicitly-declared conversions from
- // a lambda closure type to a function pointer and a block pointer,
- // respectively, always prefer the conversion to a function pointer,
- // because the function pointer is more lightweight and is more likely
- // to keep code working.
- CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1);
- if (!Conv1)
- return ImplicitConversionSequence::Indistinguishable;
- CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
- if (!Conv2)
- return ImplicitConversionSequence::Indistinguishable;
- if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
- bool Block1 = Conv1->getConversionType()->isBlockPointerType();
- bool Block2 = Conv2->getConversionType()->isBlockPointerType();
- if (Block1 != Block2)
- return Block1 ? ImplicitConversionSequence::Worse
- : ImplicitConversionSequence::Better;
- }
- return ImplicitConversionSequence::Indistinguishable;
- }
- static bool hasDeprecatedStringLiteralToCharPtrConversion(
- const ImplicitConversionSequence &ICS) {
- return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) ||
- (ICS.isUserDefined() &&
- ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr);
- }
- /// CompareImplicitConversionSequences - Compare two implicit
- /// conversion sequences to determine whether one is better than the
- /// other or if they are indistinguishable (C++ 13.3.3.2).
- static ImplicitConversionSequence::CompareKind
- CompareImplicitConversionSequences(Sema &S, SourceLocation Loc,
- const ImplicitConversionSequence& ICS1,
- const ImplicitConversionSequence& ICS2)
- {
- // (C++ 13.3.3.2p2): When comparing the basic forms of implicit
- // conversion sequences (as defined in 13.3.3.1)
- // -- a standard conversion sequence (13.3.3.1.1) is a better
- // conversion sequence than a user-defined conversion sequence or
- // an ellipsis conversion sequence, and
- // -- a user-defined conversion sequence (13.3.3.1.2) is a better
- // conversion sequence than an ellipsis conversion sequence
- // (13.3.3.1.3).
- //
- // C++0x [over.best.ics]p10:
- // For the purpose of ranking implicit conversion sequences as
- // described in 13.3.3.2, the ambiguous conversion sequence is
- // treated as a user-defined sequence that is indistinguishable
- // from any other user-defined conversion sequence.
- // String literal to 'char *' conversion has been deprecated in C++03. It has
- // been removed from C++11. We still accept this conversion, if it happens at
- // the best viable function. Otherwise, this conversion is considered worse
- // than ellipsis conversion. Consider this as an extension; this is not in the
- // standard. For example:
- //
- // int &f(...); // #1
- // void f(char*); // #2
- // void g() { int &r = f("foo"); }
- //
- // In C++03, we pick #2 as the best viable function.
- // In C++11, we pick #1 as the best viable function, because ellipsis
- // conversion is better than string-literal to char* conversion (since there
- // is no such conversion in C++11). If there was no #1 at all or #1 couldn't
- // convert arguments, #2 would be the best viable function in C++11.
- // If the best viable function has this conversion, a warning will be issued
- // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11.
- if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
- hasDeprecatedStringLiteralToCharPtrConversion(ICS1) !=
- hasDeprecatedStringLiteralToCharPtrConversion(ICS2))
- return hasDeprecatedStringLiteralToCharPtrConversion(ICS1)
- ? ImplicitConversionSequence::Worse
- : ImplicitConversionSequence::Better;
- if (ICS1.getKindRank() < ICS2.getKindRank())
- return ImplicitConversionSequence::Better;
- if (ICS2.getKindRank() < ICS1.getKindRank())
- return ImplicitConversionSequence::Worse;
- // The following checks require both conversion sequences to be of
- // the same kind.
- if (ICS1.getKind() != ICS2.getKind())
- return ImplicitConversionSequence::Indistinguishable;
- ImplicitConversionSequence::CompareKind Result =
- ImplicitConversionSequence::Indistinguishable;
- // Two implicit conversion sequences of the same form are
- // indistinguishable conversion sequences unless one of the
- // following rules apply: (C++ 13.3.3.2p3):
- // List-initialization sequence L1 is a better conversion sequence than
- // list-initialization sequence L2 if:
- // - L1 converts to std::initializer_list<X> for some X and L2 does not, or,
- // if not that,
- // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T",
- // and N1 is smaller than N2.,
- // even if one of the other rules in this paragraph would otherwise apply.
- if (!ICS1.isBad()) {
- if (ICS1.isStdInitializerListElement() &&
- !ICS2.isStdInitializerListElement())
- return ImplicitConversionSequence::Better;
- if (!ICS1.isStdInitializerListElement() &&
- ICS2.isStdInitializerListElement())
- return ImplicitConversionSequence::Worse;
- }
- if (ICS1.isStandard())
- // Standard conversion sequence S1 is a better conversion sequence than
- // standard conversion sequence S2 if [...]
- Result = CompareStandardConversionSequences(S, Loc,
- ICS1.Standard, ICS2.Standard);
- else if (ICS1.isUserDefined()) {
- // User-defined conversion sequence U1 is a better conversion
- // sequence than another user-defined conversion sequence U2 if
- // they contain the same user-defined conversion function or
- // constructor and if the second standard conversion sequence of
- // U1 is better than the second standard conversion sequence of
- // U2 (C++ 13.3.3.2p3).
- if (ICS1.UserDefined.ConversionFunction ==
- ICS2.UserDefined.ConversionFunction)
- Result = CompareStandardConversionSequences(S, Loc,
- ICS1.UserDefined.After,
- ICS2.UserDefined.After);
- else
- Result = compareConversionFunctions(S,
- ICS1.UserDefined.ConversionFunction,
- ICS2.UserDefined.ConversionFunction);
- }
- return Result;
- }
- // Per 13.3.3.2p3, compare the given standard conversion sequences to
- // determine if one is a proper subset of the other.
- static ImplicitConversionSequence::CompareKind
- compareStandardConversionSubsets(ASTContext &Context,
- const StandardConversionSequence& SCS1,
- const StandardConversionSequence& SCS2) {
- ImplicitConversionSequence::CompareKind Result
- = ImplicitConversionSequence::Indistinguishable;
- // the identity conversion sequence is considered to be a subsequence of
- // any non-identity conversion sequence
- if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion())
- return ImplicitConversionSequence::Better;
- else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion())
- return ImplicitConversionSequence::Worse;
- if (SCS1.Second != SCS2.Second) {
- if (SCS1.Second == ICK_Identity)
- Result = ImplicitConversionSequence::Better;
- else if (SCS2.Second == ICK_Identity)
- Result = ImplicitConversionSequence::Worse;
- else
- return ImplicitConversionSequence::Indistinguishable;
- } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1)))
- return ImplicitConversionSequence::Indistinguishable;
- if (SCS1.Third == SCS2.Third) {
- return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result
- : ImplicitConversionSequence::Indistinguishable;
- }
- if (SCS1.Third == ICK_Identity)
- return Result == ImplicitConversionSequence::Worse
- ? ImplicitConversionSequence::Indistinguishable
- : ImplicitConversionSequence::Better;
- if (SCS2.Third == ICK_Identity)
- return Result == ImplicitConversionSequence::Better
- ? ImplicitConversionSequence::Indistinguishable
- : ImplicitConversionSequence::Worse;
- return ImplicitConversionSequence::Indistinguishable;
- }
- /// Determine whether one of the given reference bindings is better
- /// than the other based on what kind of bindings they are.
- static bool
- isBetterReferenceBindingKind(const StandardConversionSequence &SCS1,
- const StandardConversionSequence &SCS2) {
- // C++0x [over.ics.rank]p3b4:
- // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an
- // implicit object parameter of a non-static member function declared
- // without a ref-qualifier, and *either* S1 binds an rvalue reference
- // to an rvalue and S2 binds an lvalue reference *or S1 binds an
- // lvalue reference to a function lvalue and S2 binds an rvalue
- // reference*.
- //
- // FIXME: Rvalue references. We're going rogue with the above edits,
- // because the semantics in the current C++0x working paper (N3225 at the
- // time of this writing) break the standard definition of std::forward
- // and std::reference_wrapper when dealing with references to functions.
- // Proposed wording changes submitted to CWG for consideration.
- if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier ||
- SCS2.BindsImplicitObjectArgumentWithoutRefQualifier)
- return false;
- return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue &&
- SCS2.IsLvalueReference) ||
- (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue &&
- !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue);
- }
- enum class FixedEnumPromotion {
- None,
- ToUnderlyingType,
- ToPromotedUnderlyingType
- };
- /// Returns kind of fixed enum promotion the \a SCS uses.
- static FixedEnumPromotion
- getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) {
- if (SCS.Second != ICK_Integral_Promotion)
- return FixedEnumPromotion::None;
- QualType FromType = SCS.getFromType();
- if (!FromType->isEnumeralType())
- return FixedEnumPromotion::None;
- EnumDecl *Enum = FromType->getAs<EnumType>()->getDecl();
- if (!Enum->isFixed())
- return FixedEnumPromotion::None;
- QualType UnderlyingType = Enum->getIntegerType();
- if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType))
- return FixedEnumPromotion::ToUnderlyingType;
- return FixedEnumPromotion::ToPromotedUnderlyingType;
- }
- /// CompareStandardConversionSequences - Compare two standard
- /// conversion sequences to determine whether one is better than the
- /// other or if they are indistinguishable (C++ 13.3.3.2p3).
- static ImplicitConversionSequence::CompareKind
- CompareStandardConversionSequences(Sema &S, SourceLocation Loc,
- const StandardConversionSequence& SCS1,
- const StandardConversionSequence& SCS2)
- {
- // Standard conversion sequence S1 is a better conversion sequence
- // than standard conversion sequence S2 if (C++ 13.3.3.2p3):
- // -- S1 is a proper subsequence of S2 (comparing the conversion
- // sequences in the canonical form defined by 13.3.3.1.1,
- // excluding any Lvalue Transformation; the identity conversion
- // sequence is considered to be a subsequence of any
- // non-identity conversion sequence) or, if not that,
- if (ImplicitConversionSequence::CompareKind CK
- = compareStandardConversionSubsets(S.Context, SCS1, SCS2))
- return CK;
- // -- the rank of S1 is better than the rank of S2 (by the rules
- // defined below), or, if not that,
- ImplicitConversionRank Rank1 = SCS1.getRank();
- ImplicitConversionRank Rank2 = SCS2.getRank();
- if (Rank1 < Rank2)
- return ImplicitConversionSequence::Better;
- else if (Rank2 < Rank1)
- return ImplicitConversionSequence::Worse;
- // (C++ 13.3.3.2p4): Two conversion sequences with the same rank
- // are indistinguishable unless one of the following rules
- // applies:
- // A conversion that is not a conversion of a pointer, or
- // pointer to member, to bool is better than another conversion
- // that is such a conversion.
- if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool())
- return SCS2.isPointerConversionToBool()
- ? ImplicitConversionSequence::Better
- : ImplicitConversionSequence::Worse;
- // C++14 [over.ics.rank]p4b2:
- // This is retroactively applied to C++11 by CWG 1601.
- //
- // A conversion that promotes an enumeration whose underlying type is fixed
- // to its underlying type is better than one that promotes to the promoted
- // underlying type, if the two are different.
- FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1);
- FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2);
- if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None &&
- FEP1 != FEP2)
- return FEP1 == FixedEnumPromotion::ToUnderlyingType
- ? ImplicitConversionSequence::Better
- : ImplicitConversionSequence::Worse;
- // C++ [over.ics.rank]p4b2:
- //
- // If class B is derived directly or indirectly from class A,
- // conversion of B* to A* is better than conversion of B* to
- // void*, and conversion of A* to void* is better than conversion
- // of B* to void*.
- bool SCS1ConvertsToVoid
- = SCS1.isPointerConversionToVoidPointer(S.Context);
- bool SCS2ConvertsToVoid
- = SCS2.isPointerConversionToVoidPointer(S.Context);
- if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) {
- // Exactly one of the conversion sequences is a conversion to
- // a void pointer; it's the worse conversion.
- return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better
- : ImplicitConversionSequence::Worse;
- } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) {
- // Neither conversion sequence converts to a void pointer; compare
- // their derived-to-base conversions.
- if (ImplicitConversionSequence::CompareKind DerivedCK
- = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2))
- return DerivedCK;
- } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid &&
- !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) {
- // Both conversion sequences are conversions to void
- // pointers. Compare the source types to determine if there's an
- // inheritance relationship in their sources.
- QualType FromType1 = SCS1.getFromType();
- QualType FromType2 = SCS2.getFromType();
- // Adjust the types we're converting from via the array-to-pointer
- // conversion, if we need to.
- if (SCS1.First == ICK_Array_To_Pointer)
- FromType1 = S.Context.getArrayDecayedType(FromType1);
- if (SCS2.First == ICK_Array_To_Pointer)
- FromType2 = S.Context.getArrayDecayedType(FromType2);
- QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType();
- QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType();
- if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
- return ImplicitConversionSequence::Better;
- else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
- return ImplicitConversionSequence::Worse;
- // Objective-C++: If one interface is more specific than the
- // other, it is the better one.
- const ObjCObjectPointerType* FromObjCPtr1
- = FromType1->getAs<ObjCObjectPointerType>();
- const ObjCObjectPointerType* FromObjCPtr2
- = FromType2->getAs<ObjCObjectPointerType>();
- if (FromObjCPtr1 && FromObjCPtr2) {
- bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1,
- FromObjCPtr2);
- bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2,
- FromObjCPtr1);
- if (AssignLeft != AssignRight) {
- return AssignLeft? ImplicitConversionSequence::Better
- : ImplicitConversionSequence::Worse;
- }
- }
- }
- // Compare based on qualification conversions (C++ 13.3.3.2p3,
- // bullet 3).
- if (ImplicitConversionSequence::CompareKind QualCK
- = CompareQualificationConversions(S, SCS1, SCS2))
- return QualCK;
- if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) {
- // Check for a better reference binding based on the kind of bindings.
- if (isBetterReferenceBindingKind(SCS1, SCS2))
- return ImplicitConversionSequence::Better;
- else if (isBetterReferenceBindingKind(SCS2, SCS1))
- return ImplicitConversionSequence::Worse;
- // C++ [over.ics.rank]p3b4:
- // -- S1 and S2 are reference bindings (8.5.3), and the types to
- // which the references refer are the same type except for
- // top-level cv-qualifiers, and the type to which the reference
- // initialized by S2 refers is more cv-qualified than the type
- // to which the reference initialized by S1 refers.
- QualType T1 = SCS1.getToType(2);
- QualType T2 = SCS2.getToType(2);
- T1 = S.Context.getCanonicalType(T1);
- T2 = S.Context.getCanonicalType(T2);
- Qualifiers T1Quals, T2Quals;
- QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
- QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
- if (UnqualT1 == UnqualT2) {
- // Objective-C++ ARC: If the references refer to objects with different
- // lifetimes, prefer bindings that don't change lifetime.
- if (SCS1.ObjCLifetimeConversionBinding !=
- SCS2.ObjCLifetimeConversionBinding) {
- return SCS1.ObjCLifetimeConversionBinding
- ? ImplicitConversionSequence::Worse
- : ImplicitConversionSequence::Better;
- }
- // If the type is an array type, promote the element qualifiers to the
- // type for comparison.
- if (isa<ArrayType>(T1) && T1Quals)
- T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
- if (isa<ArrayType>(T2) && T2Quals)
- T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
- if (T2.isMoreQualifiedThan(T1))
- return ImplicitConversionSequence::Better;
- else if (T1.isMoreQualifiedThan(T2))
- return ImplicitConversionSequence::Worse;
- }
- }
- // In Microsoft mode, prefer an integral conversion to a
- // floating-to-integral conversion if the integral conversion
- // is between types of the same size.
- // For example:
- // void f(float);
- // void f(int);
- // int main {
- // long a;
- // f(a);
- // }
- // Here, MSVC will call f(int) instead of generating a compile error
- // as clang will do in standard mode.
- if (S.getLangOpts().MSVCCompat && SCS1.Second == ICK_Integral_Conversion &&
- SCS2.Second == ICK_Floating_Integral &&
- S.Context.getTypeSize(SCS1.getFromType()) ==
- S.Context.getTypeSize(SCS1.getToType(2)))
- return ImplicitConversionSequence::Better;
- // Prefer a compatible vector conversion over a lax vector conversion
- // For example:
- //
- // typedef float __v4sf __attribute__((__vector_size__(16)));
- // void f(vector float);
- // void f(vector signed int);
- // int main() {
- // __v4sf a;
- // f(a);
- // }
- // Here, we'd like to choose f(vector float) and not
- // report an ambiguous call error
- if (SCS1.Second == ICK_Vector_Conversion &&
- SCS2.Second == ICK_Vector_Conversion) {
- bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
- SCS1.getFromType(), SCS1.getToType(2));
- bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes(
- SCS2.getFromType(), SCS2.getToType(2));
- if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion)
- return SCS1IsCompatibleVectorConversion
- ? ImplicitConversionSequence::Better
- : ImplicitConversionSequence::Worse;
- }
- return ImplicitConversionSequence::Indistinguishable;
- }
- /// CompareQualificationConversions - Compares two standard conversion
- /// sequences to determine whether they can be ranked based on their
- /// qualification conversions (C++ 13.3.3.2p3 bullet 3).
- static ImplicitConversionSequence::CompareKind
- CompareQualificationConversions(Sema &S,
- const StandardConversionSequence& SCS1,
- const StandardConversionSequence& SCS2) {
- // C++ 13.3.3.2p3:
- // -- S1 and S2 differ only in their qualification conversion and
- // yield similar types T1 and T2 (C++ 4.4), respectively, and the
- // cv-qualification signature of type T1 is a proper subset of
- // the cv-qualification signature of type T2, and S1 is not the
- // deprecated string literal array-to-pointer conversion (4.2).
- if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second ||
- SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification)
- return ImplicitConversionSequence::Indistinguishable;
- // FIXME: the example in the standard doesn't use a qualification
- // conversion (!)
- QualType T1 = SCS1.getToType(2);
- QualType T2 = SCS2.getToType(2);
- T1 = S.Context.getCanonicalType(T1);
- T2 = S.Context.getCanonicalType(T2);
- Qualifiers T1Quals, T2Quals;
- QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals);
- QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals);
- // If the types are the same, we won't learn anything by unwrapped
- // them.
- if (UnqualT1 == UnqualT2)
- return ImplicitConversionSequence::Indistinguishable;
- // If the type is an array type, promote the element qualifiers to the type
- // for comparison.
- if (isa<ArrayType>(T1) && T1Quals)
- T1 = S.Context.getQualifiedType(UnqualT1, T1Quals);
- if (isa<ArrayType>(T2) && T2Quals)
- T2 = S.Context.getQualifiedType(UnqualT2, T2Quals);
- ImplicitConversionSequence::CompareKind Result
- = ImplicitConversionSequence::Indistinguishable;
- // Objective-C++ ARC:
- // Prefer qualification conversions not involving a change in lifetime
- // to qualification conversions that do not change lifetime.
- if (SCS1.QualificationIncludesObjCLifetime !=
- SCS2.QualificationIncludesObjCLifetime) {
- Result = SCS1.QualificationIncludesObjCLifetime
- ? ImplicitConversionSequence::Worse
- : ImplicitConversionSequence::Better;
- }
- while (S.Context.UnwrapSimilarTypes(T1, T2)) {
- // Within each iteration of the loop, we check the qualifiers to
- // determine if this still looks like a qualification
- // conversion. Then, if all is well, we unwrap one more level of
- // pointers or pointers-to-members and do it all again
- // until there are no more pointers or pointers-to-members left
- // to unwrap. This essentially mimics what
- // IsQualificationConversion does, but here we're checking for a
- // strict subset of qualifiers.
- if (T1.getQualifiers().withoutObjCLifetime() ==
- T2.getQualifiers().withoutObjCLifetime())
- // The qualifiers are the same, so this doesn't tell us anything
- // about how the sequences rank.
- // ObjC ownership quals are omitted above as they interfere with
- // the ARC overload rule.
- ;
- else if (T2.isMoreQualifiedThan(T1)) {
- // T1 has fewer qualifiers, so it could be the better sequence.
- if (Result == ImplicitConversionSequence::Worse)
- // Neither has qualifiers that are a subset of the other's
- // qualifiers.
- return ImplicitConversionSequence::Indistinguishable;
- Result = ImplicitConversionSequence::Better;
- } else if (T1.isMoreQualifiedThan(T2)) {
- // T2 has fewer qualifiers, so it could be the better sequence.
- if (Result == ImplicitConversionSequence::Better)
- // Neither has qualifiers that are a subset of the other's
- // qualifiers.
- return ImplicitConversionSequence::Indistinguishable;
- Result = ImplicitConversionSequence::Worse;
- } else {
- // Qualifiers are disjoint.
- return ImplicitConversionSequence::Indistinguishable;
- }
- // If the types after this point are equivalent, we're done.
- if (S.Context.hasSameUnqualifiedType(T1, T2))
- break;
- }
- // Check that the winning standard conversion sequence isn't using
- // the deprecated string literal array to pointer conversion.
- switch (Result) {
- case ImplicitConversionSequence::Better:
- if (SCS1.DeprecatedStringLiteralToCharPtr)
- Result = ImplicitConversionSequence::Indistinguishable;
- break;
- case ImplicitConversionSequence::Indistinguishable:
- break;
- case ImplicitConversionSequence::Worse:
- if (SCS2.DeprecatedStringLiteralToCharPtr)
- Result = ImplicitConversionSequence::Indistinguishable;
- break;
- }
- return Result;
- }
- /// CompareDerivedToBaseConversions - Compares two standard conversion
- /// sequences to determine whether they can be ranked based on their
- /// various kinds of derived-to-base conversions (C++
- /// [over.ics.rank]p4b3). As part of these checks, we also look at
- /// conversions between Objective-C interface types.
- static ImplicitConversionSequence::CompareKind
- CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc,
- const StandardConversionSequence& SCS1,
- const StandardConversionSequence& SCS2) {
- QualType FromType1 = SCS1.getFromType();
- QualType ToType1 = SCS1.getToType(1);
- QualType FromType2 = SCS2.getFromType();
- QualType ToType2 = SCS2.getToType(1);
- // Adjust the types we're converting from via the array-to-pointer
- // conversion, if we need to.
- if (SCS1.First == ICK_Array_To_Pointer)
- FromType1 = S.Context.getArrayDecayedType(FromType1);
- if (SCS2.First == ICK_Array_To_Pointer)
- FromType2 = S.Context.getArrayDecayedType(FromType2);
- // Canonicalize all of the types.
- FromType1 = S.Context.getCanonicalType(FromType1);
- ToType1 = S.Context.getCanonicalType(ToType1);
- FromType2 = S.Context.getCanonicalType(FromType2);
- ToType2 = S.Context.getCanonicalType(ToType2);
- // C++ [over.ics.rank]p4b3:
- //
- // If class B is derived directly or indirectly from class A and
- // class C is derived directly or indirectly from B,
- //
- // Compare based on pointer conversions.
- if (SCS1.Second == ICK_Pointer_Conversion &&
- SCS2.Second == ICK_Pointer_Conversion &&
- /*FIXME: Remove if Objective-C id conversions get their own rank*/
- FromType1->isPointerType() && FromType2->isPointerType() &&
- ToType1->isPointerType() && ToType2->isPointerType()) {
- QualType FromPointee1 =
- FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
- QualType ToPointee1 =
- ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
- QualType FromPointee2 =
- FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
- QualType ToPointee2 =
- ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType();
- // -- conversion of C* to B* is better than conversion of C* to A*,
- if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
- if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
- return ImplicitConversionSequence::Better;
- else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
- return ImplicitConversionSequence::Worse;
- }
- // -- conversion of B* to A* is better than conversion of C* to A*,
- if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) {
- if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
- return ImplicitConversionSequence::Better;
- else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
- return ImplicitConversionSequence::Worse;
- }
- } else if (SCS1.Second == ICK_Pointer_Conversion &&
- SCS2.Second == ICK_Pointer_Conversion) {
- const ObjCObjectPointerType *FromPtr1
- = FromType1->getAs<ObjCObjectPointerType>();
- const ObjCObjectPointerType *FromPtr2
- = FromType2->getAs<ObjCObjectPointerType>();
- const ObjCObjectPointerType *ToPtr1
- = ToType1->getAs<ObjCObjectPointerType>();
- const ObjCObjectPointerType *ToPtr2
- = ToType2->getAs<ObjCObjectPointerType>();
- if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) {
- // Apply the same conversion ranking rules for Objective-C pointer types
- // that we do for C++ pointers to class types. However, we employ the
- // Objective-C pseudo-subtyping relationship used for assignment of
- // Objective-C pointer types.
- bool FromAssignLeft
- = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2);
- bool FromAssignRight
- = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1);
- bool ToAssignLeft
- = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2);
- bool ToAssignRight
- = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1);
- // A conversion to an a non-id object pointer type or qualified 'id'
- // type is better than a conversion to 'id'.
- if (ToPtr1->isObjCIdType() &&
- (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl()))
- return ImplicitConversionSequence::Worse;
- if (ToPtr2->isObjCIdType() &&
- (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl()))
- return ImplicitConversionSequence::Better;
- // A conversion to a non-id object pointer type is better than a
- // conversion to a qualified 'id' type
- if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl())
- return ImplicitConversionSequence::Worse;
- if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl())
- return ImplicitConversionSequence::Better;
- // A conversion to an a non-Class object pointer type or qualified 'Class'
- // type is better than a conversion to 'Class'.
- if (ToPtr1->isObjCClassType() &&
- (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl()))
- return ImplicitConversionSequence::Worse;
- if (ToPtr2->isObjCClassType() &&
- (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl()))
- return ImplicitConversionSequence::Better;
- // A conversion to a non-Class object pointer type is better than a
- // conversion to a qualified 'Class' type.
- if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl())
- return ImplicitConversionSequence::Worse;
- if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl())
- return ImplicitConversionSequence::Better;
- // -- "conversion of C* to B* is better than conversion of C* to A*,"
- if (S.Context.hasSameType(FromType1, FromType2) &&
- !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() &&
- (ToAssignLeft != ToAssignRight)) {
- if (FromPtr1->isSpecialized()) {
- // "conversion of B<A> * to B * is better than conversion of B * to
- // C *.
- bool IsFirstSame =
- FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl();
- bool IsSecondSame =
- FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl();
- if (IsFirstSame) {
- if (!IsSecondSame)
- return ImplicitConversionSequence::Better;
- } else if (IsSecondSame)
- return ImplicitConversionSequence::Worse;
- }
- return ToAssignLeft? ImplicitConversionSequence::Worse
- : ImplicitConversionSequence::Better;
- }
- // -- "conversion of B* to A* is better than conversion of C* to A*,"
- if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) &&
- (FromAssignLeft != FromAssignRight))
- return FromAssignLeft? ImplicitConversionSequence::Better
- : ImplicitConversionSequence::Worse;
- }
- }
- // Ranking of member-pointer types.
- if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member &&
- FromType1->isMemberPointerType() && FromType2->isMemberPointerType() &&
- ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) {
- const MemberPointerType * FromMemPointer1 =
- FromType1->getAs<MemberPointerType>();
- const MemberPointerType * ToMemPointer1 =
- ToType1->getAs<MemberPointerType>();
- const MemberPointerType * FromMemPointer2 =
- FromType2->getAs<MemberPointerType>();
- const MemberPointerType * ToMemPointer2 =
- ToType2->getAs<MemberPointerType>();
- const Type *FromPointeeType1 = FromMemPointer1->getClass();
- const Type *ToPointeeType1 = ToMemPointer1->getClass();
- const Type *FromPointeeType2 = FromMemPointer2->getClass();
- const Type *ToPointeeType2 = ToMemPointer2->getClass();
- QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType();
- QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType();
- QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType();
- QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType();
- // conversion of A::* to B::* is better than conversion of A::* to C::*,
- if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) {
- if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2))
- return ImplicitConversionSequence::Worse;
- else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1))
- return ImplicitConversionSequence::Better;
- }
- // conversion of B::* to C::* is better than conversion of A::* to C::*
- if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) {
- if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2))
- return ImplicitConversionSequence::Better;
- else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1))
- return ImplicitConversionSequence::Worse;
- }
- }
- if (SCS1.Second == ICK_Derived_To_Base) {
- // -- conversion of C to B is better than conversion of C to A,
- // -- binding of an expression of type C to a reference of type
- // B& is better than binding an expression of type C to a
- // reference of type A&,
- if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
- !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
- if (S.IsDerivedFrom(Loc, ToType1, ToType2))
- return ImplicitConversionSequence::Better;
- else if (S.IsDerivedFrom(Loc, ToType2, ToType1))
- return ImplicitConversionSequence::Worse;
- }
- // -- conversion of B to A is better than conversion of C to A.
- // -- binding of an expression of type B to a reference of type
- // A& is better than binding an expression of type C to a
- // reference of type A&,
- if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) &&
- S.Context.hasSameUnqualifiedType(ToType1, ToType2)) {
- if (S.IsDerivedFrom(Loc, FromType2, FromType1))
- return ImplicitConversionSequence::Better;
- else if (S.IsDerivedFrom(Loc, FromType1, FromType2))
- return ImplicitConversionSequence::Worse;
- }
- }
- return ImplicitConversionSequence::Indistinguishable;
- }
- /// Determine whether the given type is valid, e.g., it is not an invalid
- /// C++ class.
- static bool isTypeValid(QualType T) {
- if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
- return !Record->isInvalidDecl();
- return true;
- }
- /// CompareReferenceRelationship - Compare the two types T1 and T2 to
- /// determine whether they are reference-related,
- /// reference-compatible, reference-compatible with added
- /// qualification, or incompatible, for use in C++ initialization by
- /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
- /// type, and the first type (T1) is the pointee type of the reference
- /// type being initialized.
- Sema::ReferenceCompareResult
- Sema::CompareReferenceRelationship(SourceLocation Loc,
- QualType OrigT1, QualType OrigT2,
- bool &DerivedToBase,
- bool &ObjCConversion,
- bool &ObjCLifetimeConversion,
- bool &FunctionConversion) {
- assert(!OrigT1->isReferenceType() &&
- "T1 must be the pointee type of the reference type");
- assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type");
- QualType T1 = Context.getCanonicalType(OrigT1);
- QualType T2 = Context.getCanonicalType(OrigT2);
- Qualifiers T1Quals, T2Quals;
- QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals);
- QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals);
- // C++ [dcl.init.ref]p4:
- // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
- // reference-related to "cv2 T2" if T1 is the same type as T2, or
- // T1 is a base class of T2.
- DerivedToBase = false;
- ObjCConversion = false;
- ObjCLifetimeConversion = false;
- QualType ConvertedT2;
- if (UnqualT1 == UnqualT2) {
- // Nothing to do.
- } else if (isCompleteType(Loc, OrigT2) &&
- isTypeValid(UnqualT1) && isTypeValid(UnqualT2) &&
- IsDerivedFrom(Loc, UnqualT2, UnqualT1))
- DerivedToBase = true;
- else if (UnqualT1->isObjCObjectOrInterfaceType() &&
- UnqualT2->isObjCObjectOrInterfaceType() &&
- Context.canBindObjCObjectType(UnqualT1, UnqualT2))
- ObjCConversion = true;
- else if (UnqualT2->isFunctionType() &&
- IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) {
- // C++1z [dcl.init.ref]p4:
- // cv1 T1" is reference-compatible with "cv2 T2" if [...] T2 is "noexcept
- // function" and T1 is "function"
- //
- // We extend this to also apply to 'noreturn', so allow any function
- // conversion between function types.
- FunctionConversion = true;
- return Ref_Compatible;
- } else
- return Ref_Incompatible;
- // At this point, we know that T1 and T2 are reference-related (at
- // least).
- // If the type is an array type, promote the element qualifiers to the type
- // for comparison.
- if (isa<ArrayType>(T1) && T1Quals)
- T1 = Context.getQualifiedType(UnqualT1, T1Quals);
- if (isa<ArrayType>(T2) && T2Quals)
- T2 = Context.getQualifiedType(UnqualT2, T2Quals);
- // C++ [dcl.init.ref]p4:
- // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
- // reference-related to T2 and cv1 is the same cv-qualification
- // as, or greater cv-qualification than, cv2. For purposes of
- // overload resolution, cases for which cv1 is greater
- // cv-qualification than cv2 are identified as
- // reference-compatible with added qualification (see 13.3.3.2).
- //
- // Note that we also require equivalence of Objective-C GC and address-space
- // qualifiers when performing these computations, so that e.g., an int in
- // address space 1 is not reference-compatible with an int in address
- // space 2.
- if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() &&
- T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) {
- if (isNonTrivialObjCLifetimeConversion(T2Quals, T1Quals))
- ObjCLifetimeConversion = true;
- T1Quals.removeObjCLifetime();
- T2Quals.removeObjCLifetime();
- }
- // MS compiler ignores __unaligned qualifier for references; do the same.
- T1Quals.removeUnaligned();
- T2Quals.removeUnaligned();
- if (T1Quals.compatiblyIncludes(T2Quals))
- return Ref_Compatible;
- else
- return Ref_Related;
- }
- /// Look for a user-defined conversion to a value reference-compatible
- /// with DeclType. Return true if something definite is found.
- static bool
- FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
- QualType DeclType, SourceLocation DeclLoc,
- Expr *Init, QualType T2, bool AllowRvalues,
- bool AllowExplicit) {
- assert(T2->isRecordType() && "Can only find conversions of record types.");
- CXXRecordDecl *T2RecordDecl
- = dyn_cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl());
- OverloadCandidateSet CandidateSet(
- DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion);
- const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
- for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
- NamedDecl *D = *I;
- CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
- if (isa<UsingShadowDecl>(D))
- D = cast<UsingShadowDecl>(D)->getTargetDecl();
- FunctionTemplateDecl *ConvTemplate
- = dyn_cast<FunctionTemplateDecl>(D);
- CXXConversionDecl *Conv;
- if (ConvTemplate)
- Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
- else
- Conv = cast<CXXConversionDecl>(D);
- // If this is an explicit conversion, and we're not allowed to consider
- // explicit conversions, skip it.
- if (!AllowExplicit && Conv->isExplicit())
- continue;
- if (AllowRvalues) {
- bool DerivedToBase = false;
- bool ObjCConversion = false;
- bool ObjCLifetimeConversion = false;
- bool FunctionConversion = false;
- // If we are initializing an rvalue reference, don't permit conversion
- // functions that return lvalues.
- if (!ConvTemplate && DeclType->isRValueReferenceType()) {
- const ReferenceType *RefType
- = Conv->getConversionType()->getAs<LValueReferenceType>();
- if (RefType && !RefType->getPointeeType()->isFunctionType())
- continue;
- }
- if (!ConvTemplate &&
- S.CompareReferenceRelationship(
- DeclLoc,
- Conv->getConversionType()
- .getNonReferenceType()
- .getUnqualifiedType(),
- DeclType.getNonReferenceType().getUnqualifiedType(),
- DerivedToBase, ObjCConversion, ObjCLifetimeConversion,
- FunctionConversion) == Sema::Ref_Incompatible)
- continue;
- } else {
- // If the conversion function doesn't return a reference type,
- // it can't be considered for this conversion. An rvalue reference
- // is only acceptable if its referencee is a function type.
- const ReferenceType *RefType =
- Conv->getConversionType()->getAs<ReferenceType>();
- if (!RefType ||
- (!RefType->isLValueReferenceType() &&
- !RefType->getPointeeType()->isFunctionType()))
- continue;
- }
- if (ConvTemplate)
- S.AddTemplateConversionCandidate(
- ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
- /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
- else
- S.AddConversionCandidate(
- Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet,
- /*AllowObjCConversionOnExplicit=*/false, AllowExplicit);
- }
- bool HadMultipleCandidates = (CandidateSet.size() > 1);
- OverloadCandidateSet::iterator Best;
- switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
- case OR_Success:
- // C++ [over.ics.ref]p1:
- //
- // [...] If the parameter binds directly to the result of
- // applying a conversion function to the argument
- // expression, the implicit conversion sequence is a
- // user-defined conversion sequence (13.3.3.1.2), with the
- // second standard conversion sequence either an identity
- // conversion or, if the conversion function returns an
- // entity of a type that is a derived class of the parameter
- // type, a derived-to-base Conversion.
- if (!Best->FinalConversion.DirectBinding)
- return false;
- ICS.setUserDefined();
- ICS.UserDefined.Before = Best->Conversions[0].Standard;
- ICS.UserDefined.After = Best->FinalConversion;
- ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates;
- ICS.UserDefined.ConversionFunction = Best->Function;
- ICS.UserDefined.FoundConversionFunction = Best->FoundDecl;
- ICS.UserDefined.EllipsisConversion = false;
- assert(ICS.UserDefined.After.ReferenceBinding &&
- ICS.UserDefined.After.DirectBinding &&
- "Expected a direct reference binding!");
- return true;
- case OR_Ambiguous:
- ICS.setAmbiguous();
- for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
- Cand != CandidateSet.end(); ++Cand)
- if (Cand->Viable)
- ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function);
- return true;
- case OR_No_Viable_Function:
- case OR_Deleted:
- // There was no suitable conversion, or we found a deleted
- // conversion; continue with other checks.
- return false;
- }
- llvm_unreachable("Invalid OverloadResult!");
- }
- /// Compute an implicit conversion sequence for reference
- /// initialization.
- static ImplicitConversionSequence
- TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
- SourceLocation DeclLoc,
- bool SuppressUserConversions,
- bool AllowExplicit) {
- assert(DeclType->isReferenceType() && "Reference init needs a reference");
- // Most paths end in a failed conversion.
- ImplicitConversionSequence ICS;
- ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
- QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType();
- QualType T2 = Init->getType();
- // If the initializer is the address of an overloaded function, try
- // to resolve the overloaded function. If all goes well, T2 is the
- // type of the resulting function.
- if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
- DeclAccessPair Found;
- if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType,
- false, Found))
- T2 = Fn->getType();
- }
- // Compute some basic properties of the types and the initializer.
- bool isRValRef = DeclType->isRValueReferenceType();
- bool DerivedToBase = false;
- bool ObjCConversion = false;
- bool ObjCLifetimeConversion = false;
- bool FunctionConversion = false;
- Expr::Classification InitCategory = Init->Classify(S.Context);
- Sema::ReferenceCompareResult RefRelationship = S.CompareReferenceRelationship(
- DeclLoc, T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion,
- FunctionConversion);
- // C++0x [dcl.init.ref]p5:
- // A reference to type "cv1 T1" is initialized by an expression
- // of type "cv2 T2" as follows:
- // -- If reference is an lvalue reference and the initializer expression
- if (!isRValRef) {
- // -- is an lvalue (but is not a bit-field), and "cv1 T1" is
- // reference-compatible with "cv2 T2," or
- //
- // Per C++ [over.ics.ref]p4, we don't check the bit-field property here.
- if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) {
- // C++ [over.ics.ref]p1:
- // When a parameter of reference type binds directly (8.5.3)
- // to an argument expression, the implicit conversion sequence
- // is the identity conversion, unless the argument expression
- // has a type that is a derived class of the parameter type,
- // in which case the implicit conversion sequence is a
- // derived-to-base Conversion (13.3.3.1).
- ICS.setStandard();
- ICS.Standard.First = ICK_Identity;
- ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
- : ObjCConversion? ICK_Compatible_Conversion
- : ICK_Identity;
- ICS.Standard.Third = ICK_Identity;
- ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
- ICS.Standard.setToType(0, T2);
- ICS.Standard.setToType(1, T1);
- ICS.Standard.setToType(2, T1);
- ICS.Standard.ReferenceBinding = true;
- ICS.Standard.DirectBinding = true;
- ICS.Standard.IsLvalueReference = !isRValRef;
- ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
- ICS.Standard.BindsToRvalue = false;
- ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
- ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
- ICS.Standard.CopyConstructor = nullptr;
- ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
- // Nothing more to do: the inaccessibility/ambiguity check for
- // derived-to-base conversions is suppressed when we're
- // computing the implicit conversion sequence (C++
- // [over.best.ics]p2).
- return ICS;
- }
- // -- has a class type (i.e., T2 is a class type), where T1 is
- // not reference-related to T2, and can be implicitly
- // converted to an lvalue of type "cv3 T3," where "cv1 T1"
- // is reference-compatible with "cv3 T3" 92) (this
- // conversion is selected by enumerating the applicable
- // conversion functions (13.3.1.6) and choosing the best
- // one through overload resolution (13.3)),
- if (!SuppressUserConversions && T2->isRecordType() &&
- S.isCompleteType(DeclLoc, T2) &&
- RefRelationship == Sema::Ref_Incompatible) {
- if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
- Init, T2, /*AllowRvalues=*/false,
- AllowExplicit))
- return ICS;
- }
- }
- // -- Otherwise, the reference shall be an lvalue reference to a
- // non-volatile const type (i.e., cv1 shall be const), or the reference
- // shall be an rvalue reference.
- if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified()))
- return ICS;
- // -- If the initializer expression
- //
- // -- is an xvalue, class prvalue, array prvalue or function
- // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or
- if (RefRelationship == Sema::Ref_Compatible &&
- (InitCategory.isXValue() ||
- (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) ||
- (InitCategory.isLValue() && T2->isFunctionType()))) {
- ICS.setStandard();
- ICS.Standard.First = ICK_Identity;
- ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base
- : ObjCConversion? ICK_Compatible_Conversion
- : ICK_Identity;
- ICS.Standard.Third = ICK_Identity;
- ICS.Standard.FromTypePtr = T2.getAsOpaquePtr();
- ICS.Standard.setToType(0, T2);
- ICS.Standard.setToType(1, T1);
- ICS.Standard.setToType(2, T1);
- ICS.Standard.ReferenceBinding = true;
- // In C++0x, this is always a direct binding. In C++98/03, it's a direct
- // binding unless we're binding to a class prvalue.
- // Note: Although xvalues wouldn't normally show up in C++98/03 code, we
- // allow the use of rvalue references in C++98/03 for the benefit of
- // standard library implementors; therefore, we need the xvalue check here.
- ICS.Standard.DirectBinding =
- S.getLangOpts().CPlusPlus11 ||
- !(InitCategory.isPRValue() || T2->isRecordType());
- ICS.Standard.IsLvalueReference = !isRValRef;
- ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
- ICS.Standard.BindsToRvalue = InitCategory.isRValue();
- ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
- ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion;
- ICS.Standard.CopyConstructor = nullptr;
- ICS.Standard.DeprecatedStringLiteralToCharPtr = false;
- return ICS;
- }
- // -- has a class type (i.e., T2 is a class type), where T1 is not
- // reference-related to T2, and can be implicitly converted to
- // an xvalue, class prvalue, or function lvalue of type
- // "cv3 T3", where "cv1 T1" is reference-compatible with
- // "cv3 T3",
- //
- // then the reference is bound to the value of the initializer
- // expression in the first case and to the result of the conversion
- // in the second case (or, in either case, to an appropriate base
- // class subobject).
- if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
- T2->isRecordType() && S.isCompleteType(DeclLoc, T2) &&
- FindConversionForRefInit(S, ICS, DeclType, DeclLoc,
- Init, T2, /*AllowRvalues=*/true,
- AllowExplicit)) {
- // In the second case, if the reference is an rvalue reference
- // and the second standard conversion sequence of the
- // user-defined conversion sequence includes an lvalue-to-rvalue
- // conversion, the program is ill-formed.
- if (ICS.isUserDefined() && isRValRef &&
- ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue)
- ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType);
- return ICS;
- }
- // A temporary of function type cannot be created; don't even try.
- if (T1->isFunctionType())
- return ICS;
- // -- Otherwise, a temporary of type "cv1 T1" is created and
- // initialized from the initializer expression using the
- // rules for a non-reference copy initialization (8.5). The
- // reference is then bound to the temporary. If T1 is
- // reference-related to T2, cv1 must be the same
- // cv-qualification as, or greater cv-qualification than,
- // cv2; otherwise, the program is ill-formed.
- if (RefRelationship == Sema::Ref_Related) {
- // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
- // we would be reference-compatible or reference-compatible with
- // added qualification. But that wasn't the case, so the reference
- // initialization fails.
- //
- // Note that we only want to check address spaces and cvr-qualifiers here.
- // ObjC GC, lifetime and unaligned qualifiers aren't important.
- Qualifiers T1Quals = T1.getQualifiers();
- Qualifiers T2Quals = T2.getQualifiers();
- T1Quals.removeObjCGCAttr();
- T1Quals.removeObjCLifetime();
- T2Quals.removeObjCGCAttr();
- T2Quals.removeObjCLifetime();
- // MS compiler ignores __unaligned qualifier for references; do the same.
- T1Quals.removeUnaligned();
- T2Quals.removeUnaligned();
- if (!T1Quals.compatiblyIncludes(T2Quals))
- return ICS;
- }
- // If at least one of the types is a class type, the types are not
- // related, and we aren't allowed any user conversions, the
- // reference binding fails. This case is important for breaking
- // recursion, since TryImplicitConversion below will attempt to
- // create a temporary through the use of a copy constructor.
- if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible &&
- (T1->isRecordType() || T2->isRecordType()))
- return ICS;
- // If T1 is reference-related to T2 and the reference is an rvalue
- // reference, the initializer expression shall not be an lvalue.
- if (RefRelationship >= Sema::Ref_Related &&
- isRValRef && Init->Classify(S.Context).isLValue())
- return ICS;
- // C++ [over.ics.ref]p2:
- // When a parameter of reference type is not bound directly to
- // an argument expression, the conversion sequence is the one
- // required to convert the argument expression to the
- // underlying type of the reference according to
- // 13.3.3.1. Conceptually, this conversion sequence corresponds
- // to copy-initializing a temporary of the underlying type with
- // the argument expression. Any difference in top-level
- // cv-qualification is subsumed by the initialization itself
- // and does not constitute a conversion.
- ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions,
- /*AllowExplicit=*/false,
- /*InOverloadResolution=*/false,
- /*CStyle=*/false,
- /*AllowObjCWritebackConversion=*/false,
- /*AllowObjCConversionOnExplicit=*/false);
- // Of course, that's still a reference binding.
- if (ICS.isStandard()) {
- ICS.Standard.ReferenceBinding = true;
- ICS.Standard.IsLvalueReference = !isRValRef;
- ICS.Standard.BindsToFunctionLvalue = false;
- ICS.Standard.BindsToRvalue = true;
- ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false;
- ICS.Standard.ObjCLifetimeConversionBinding = false;
- } else if (ICS.isUserDefined()) {
- const ReferenceType *LValRefType =
- ICS.UserDefined.ConversionFunction->getReturnType()
- ->getAs<LValueReferenceType>();
- // C++ [over.ics.ref]p3:
- // Except for an implicit object parameter, for which see 13.3.1, a
- // standard conversion sequence cannot be formed if it requires [...]
- // binding an rvalue reference to an lvalue other than a function
- // lvalue.
- // Note that the function case is not possible here.
- if (DeclType->isRValueReferenceType() && LValRefType) {
- // FIXME: This is the wrong BadConversionSequence. The problem is binding
- // an rvalue reference to a (non-function) lvalue, not binding an lvalue
- // reference to an rvalue!
- ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType);
- return ICS;
- }
- ICS.UserDefined.After.ReferenceBinding = true;
- ICS.UserDefined.After.IsLvalueReference = !isRValRef;
- ICS.UserDefined.After.BindsToFunctionLvalue = false;
- ICS.UserDefined.After.BindsToRvalue = !LValRefType;
- ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false;
- ICS.UserDefined.After.ObjCLifetimeConversionBinding = false;
- }
- return ICS;
- }
- static ImplicitConversionSequence
- TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
- bool SuppressUserConversions,
- bool InOverloadResolution,
- bool AllowObjCWritebackConversion,
- bool AllowExplicit = false);
- /// TryListConversion - Try to copy-initialize a value of type ToType from the
- /// initializer list From.
- static ImplicitConversionSequence
- TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
- bool SuppressUserConversions,
- bool InOverloadResolution,
- bool AllowObjCWritebackConversion) {
- // C++11 [over.ics.list]p1:
- // When an argument is an initializer list, it is not an expression and
- // special rules apply for converting it to a parameter type.
- ImplicitConversionSequence Result;
- Result.setBad(BadConversionSequence::no_conversion, From, ToType);
- // We need a complete type for what follows. Incomplete types can never be
- // initialized from init lists.
- if (!S.isCompleteType(From->getBeginLoc(), ToType))
- return Result;
- // Per DR1467:
- // If the parameter type is a class X and the initializer list has a single
- // element of type cv U, where U is X or a class derived from X, the
- // implicit conversion sequence is the one required to convert the element
- // to the parameter type.
- //
- // Otherwise, if the parameter type is a character array [... ]
- // and the initializer list has a single element that is an
- // appropriately-typed string literal (8.5.2 [dcl.init.string]), the
- // implicit conversion sequence is the identity conversion.
- if (From->getNumInits() == 1) {
- if (ToType->isRecordType()) {
- QualType InitType = From->getInit(0)->getType();
- if (S.Context.hasSameUnqualifiedType(InitType, ToType) ||
- S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType))
- return TryCopyInitialization(S, From->getInit(0), ToType,
- SuppressUserConversions,
- InOverloadResolution,
- AllowObjCWritebackConversion);
- }
- // FIXME: Check the other conditions here: array of character type,
- // initializer is a string literal.
- if (ToType->isArrayType()) {
- InitializedEntity Entity =
- InitializedEntity::InitializeParameter(S.Context, ToType,
- /*Consumed=*/false);
- if (S.CanPerformCopyInitialization(Entity, From)) {
- Result.setStandard();
- Result.Standard.setAsIdentityConversion();
- Result.Standard.setFromType(ToType);
- Result.Standard.setAllToTypes(ToType);
- return Result;
- }
- }
- }
- // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below).
- // C++11 [over.ics.list]p2:
- // If the parameter type is std::initializer_list<X> or "array of X" and
- // all the elements can be implicitly converted to X, the implicit
- // conversion sequence is the worst conversion necessary to convert an
- // element of the list to X.
- //
- // C++14 [over.ics.list]p3:
- // Otherwise, if the parameter type is "array of N X", if the initializer
- // list has exactly N elements or if it has fewer than N elements and X is
- // default-constructible, and if all the elements of the initializer list
- // can be implicitly converted to X, the implicit conversion sequence is
- // the worst conversion necessary to convert an element of the list to X.
- //
- // FIXME: We're missing a lot of these checks.
- bool toStdInitializerList = false;
- QualType X;
- if (ToType->isArrayType())
- X = S.Context.getAsArrayType(ToType)->getElementType();
- else
- toStdInitializerList = S.isStdInitializerList(ToType, &X);
- if (!X.isNull()) {
- for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
- Expr *Init = From->getInit(i);
- ImplicitConversionSequence ICS =
- TryCopyInitialization(S, Init, X, SuppressUserConversions,
- InOverloadResolution,
- AllowObjCWritebackConversion);
- // If a single element isn't convertible, fail.
- if (ICS.isBad()) {
- Result = ICS;
- break;
- }
- // Otherwise, look for the worst conversion.
- if (Result.isBad() || CompareImplicitConversionSequences(
- S, From->getBeginLoc(), ICS, Result) ==
- ImplicitConversionSequence::Worse)
- Result = ICS;
- }
- // For an empty list, we won't have computed any conversion sequence.
- // Introduce the identity conversion sequence.
- if (From->getNumInits() == 0) {
- Result.setStandard();
- Result.Standard.setAsIdentityConversion();
- Result.Standard.setFromType(ToType);
- Result.Standard.setAllToTypes(ToType);
- }
- Result.setStdInitializerListElement(toStdInitializerList);
- return Result;
- }
- // C++14 [over.ics.list]p4:
- // C++11 [over.ics.list]p3:
- // Otherwise, if the parameter is a non-aggregate class X and overload
- // resolution chooses a single best constructor [...] the implicit
- // conversion sequence is a user-defined conversion sequence. If multiple
- // constructors are viable but none is better than the others, the
- // implicit conversion sequence is a user-defined conversion sequence.
- if (ToType->isRecordType() && !ToType->isAggregateType()) {
- // This function can deal with initializer lists.
- return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
- /*AllowExplicit=*/false,
- InOverloadResolution, /*CStyle=*/false,
- AllowObjCWritebackConversion,
- /*AllowObjCConversionOnExplicit=*/false);
- }
- // C++14 [over.ics.list]p5:
- // C++11 [over.ics.list]p4:
- // Otherwise, if the parameter has an aggregate type which can be
- // initialized from the initializer list [...] the implicit conversion
- // sequence is a user-defined conversion sequence.
- if (ToType->isAggregateType()) {
- // Type is an aggregate, argument is an init list. At this point it comes
- // down to checking whether the initialization works.
- // FIXME: Find out whether this parameter is consumed or not.
- InitializedEntity Entity =
- InitializedEntity::InitializeParameter(S.Context, ToType,
- /*Consumed=*/false);
- if (S.CanPerformAggregateInitializationForOverloadResolution(Entity,
- From)) {
- Result.setUserDefined();
- Result.UserDefined.Before.setAsIdentityConversion();
- // Initializer lists don't have a type.
- Result.UserDefined.Before.setFromType(QualType());
- Result.UserDefined.Before.setAllToTypes(QualType());
- Result.UserDefined.After.setAsIdentityConversion();
- Result.UserDefined.After.setFromType(ToType);
- Result.UserDefined.After.setAllToTypes(ToType);
- Result.UserDefined.ConversionFunction = nullptr;
- }
- return Result;
- }
- // C++14 [over.ics.list]p6:
- // C++11 [over.ics.list]p5:
- // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
- if (ToType->isReferenceType()) {
- // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
- // mention initializer lists in any way. So we go by what list-
- // initialization would do and try to extrapolate from that.
- QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType();
- // If the initializer list has a single element that is reference-related
- // to the parameter type, we initialize the reference from that.
- if (From->getNumInits() == 1) {
- Expr *Init = From->getInit(0);
- QualType T2 = Init->getType();
- // If the initializer is the address of an overloaded function, try
- // to resolve the overloaded function. If all goes well, T2 is the
- // type of the resulting function.
- if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
- DeclAccessPair Found;
- if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
- Init, ToType, false, Found))
- T2 = Fn->getType();
- }
- // Compute some basic properties of the types and the initializer.
- bool dummy1 = false;
- bool dummy2 = false;
- bool dummy3 = false;
- bool dummy4 = false;
- Sema::ReferenceCompareResult RefRelationship =
- S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2, dummy1,
- dummy2, dummy3, dummy4);
- if (RefRelationship >= Sema::Ref_Related) {
- return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(),
- SuppressUserConversions,
- /*AllowExplicit=*/false);
- }
- }
- // Otherwise, we bind the reference to a temporary created from the
- // initializer list.
- Result = TryListConversion(S, From, T1, SuppressUserConversions,
- InOverloadResolution,
- AllowObjCWritebackConversion);
- if (Result.isFailure())
- return Result;
- assert(!Result.isEllipsis() &&
- "Sub-initialization cannot result in ellipsis conversion.");
- // Can we even bind to a temporary?
- if (ToType->isRValueReferenceType() ||
- (T1.isConstQualified() && !T1.isVolatileQualified())) {
- StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
- Result.UserDefined.After;
- SCS.ReferenceBinding = true;
- SCS.IsLvalueReference = ToType->isLValueReferenceType();
- SCS.BindsToRvalue = true;
- SCS.BindsToFunctionLvalue = false;
- SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
- SCS.ObjCLifetimeConversionBinding = false;
- } else
- Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
- From, ToType);
- return Result;
- }
- // C++14 [over.ics.list]p7:
- // C++11 [over.ics.list]p6:
- // Otherwise, if the parameter type is not a class:
- if (!ToType->isRecordType()) {
- // - if the initializer list has one element that is not itself an
- // initializer list, the implicit conversion sequence is the one
- // required to convert the element to the parameter type.
- unsigned NumInits = From->getNumInits();
- if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0)))
- Result = TryCopyInitialization(S, From->getInit(0), ToType,
- SuppressUserConversions,
- InOverloadResolution,
- AllowObjCWritebackConversion);
- // - if the initializer list has no elements, the implicit conversion
- // sequence is the identity conversion.
- else if (NumInits == 0) {
- Result.setStandard();
- Result.Standard.setAsIdentityConversion();
- Result.Standard.setFromType(ToType);
- Result.Standard.setAllToTypes(ToType);
- }
- return Result;
- }
- // C++14 [over.ics.list]p8:
- // C++11 [over.ics.list]p7:
- // In all cases other than those enumerated above, no conversion is possible
- return Result;
- }
- /// TryCopyInitialization - Try to copy-initialize a value of type
- /// ToType from the expression From. Return the implicit conversion
- /// sequence required to pass this argument, which may be a bad
- /// conversion sequence (meaning that the argument cannot be passed to
- /// a parameter of this type). If @p SuppressUserConversions, then we
- /// do not permit any user-defined conversion sequences.
- static ImplicitConversionSequence
- TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
- bool SuppressUserConversions,
- bool InOverloadResolution,
- bool AllowObjCWritebackConversion,
- bool AllowExplicit) {
- if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
- return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
- InOverloadResolution,AllowObjCWritebackConversion);
- if (ToType->isReferenceType())
- return TryReferenceInit(S, From, ToType,
- /*FIXME:*/ From->getBeginLoc(),
- SuppressUserConversions, AllowExplicit);
- return TryImplicitConversion(S, From, ToType,
- SuppressUserConversions,
- /*AllowExplicit=*/false,
- InOverloadResolution,
- /*CStyle=*/false,
- AllowObjCWritebackConversion,
- /*AllowObjCConversionOnExplicit=*/false);
- }
- static bool TryCopyInitialization(const CanQualType FromQTy,
- const CanQualType ToQTy,
- Sema &S,
- SourceLocation Loc,
- ExprValueKind FromVK) {
- OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK);
- ImplicitConversionSequence ICS =
- TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false);
- return !ICS.isBad();
- }
- /// TryObjectArgumentInitialization - Try to initialize the object
- /// parameter of the given member function (@c Method) from the
- /// expression @p From.
- static ImplicitConversionSequence
- TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType,
- Expr::Classification FromClassification,
- CXXMethodDecl *Method,
- CXXRecordDecl *ActingContext) {
- QualType ClassType = S.Context.getTypeDeclType(ActingContext);
- // [class.dtor]p2: A destructor can be invoked for a const, volatile or
- // const volatile object.
- Qualifiers Quals = Method->getMethodQualifiers();
- if (isa<CXXDestructorDecl>(Method)) {
- Quals.addConst();
- Quals.addVolatile();
- }
- QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals);
- // Set up the conversion sequence as a "bad" conversion, to allow us
- // to exit early.
- ImplicitConversionSequence ICS;
- // We need to have an object of class type.
- if (const PointerType *PT = FromType->getAs<PointerType>()) {
- FromType = PT->getPointeeType();
- // When we had a pointer, it's implicitly dereferenced, so we
- // better have an lvalue.
- assert(FromClassification.isLValue());
- }
- assert(FromType->isRecordType());
- // C++0x [over.match.funcs]p4:
- // For non-static member functions, the type of the implicit object
- // parameter is
- //
- // - "lvalue reference to cv X" for functions declared without a
- // ref-qualifier or with the & ref-qualifier
- // - "rvalue reference to cv X" for functions declared with the &&
- // ref-qualifier
- //
- // where X is the class of which the function is a member and cv is the
- // cv-qualification on the member function declaration.
- //
- // However, when finding an implicit conversion sequence for the argument, we
- // are not allowed to perform user-defined conversions
- // (C++ [over.match.funcs]p5). We perform a simplified version of
- // reference binding here, that allows class rvalues to bind to
- // non-constant references.
- // First check the qualifiers.
- QualType FromTypeCanon = S.Context.getCanonicalType(FromType);
- if (ImplicitParamType.getCVRQualifiers()
- != FromTypeCanon.getLocalCVRQualifiers() &&
- !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) {
- ICS.setBad(BadConversionSequence::bad_qualifiers,
- FromType, ImplicitParamType);
- return ICS;
- }
- if (FromTypeCanon.getQualifiers().hasAddressSpace()) {
- Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers();
- Qualifiers QualsFromType = FromTypeCanon.getQualifiers();
- if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) {
- ICS.setBad(BadConversionSequence::bad_qualifiers,
- FromType, ImplicitParamType);
- return ICS;
- }
- }
- // Check that we have either the same type or a derived type. It
- // affects the conversion rank.
- QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType);
- ImplicitConversionKind SecondKind;
- if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) {
- SecondKind = ICK_Identity;
- } else if (S.IsDerivedFrom(Loc, FromType, ClassType))
- SecondKind = ICK_Derived_To_Base;
- else {
- ICS.setBad(BadConversionSequence::unrelated_class,
- FromType, ImplicitParamType);
- return ICS;
- }
- // Check the ref-qualifier.
- switch (Method->getRefQualifier()) {
- case RQ_None:
- // Do nothing; we don't care about lvalueness or rvalueness.
- break;
- case RQ_LValue:
- if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) {
- // non-const lvalue reference cannot bind to an rvalue
- ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType,
- ImplicitParamType);
- return ICS;
- }
- break;
- case RQ_RValue:
- if (!FromClassification.isRValue()) {
- // rvalue reference cannot bind to an lvalue
- ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType,
- ImplicitParamType);
- return ICS;
- }
- break;
- }
- // Success. Mark this as a reference binding.
- ICS.setStandard();
- ICS.Standard.setAsIdentityConversion();
- ICS.Standard.Second = SecondKind;
- ICS.Standard.setFromType(FromType);
- ICS.Standard.setAllToTypes(ImplicitParamType);
- ICS.Standard.ReferenceBinding = true;
- ICS.Standard.DirectBinding = true;
- ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue;
- ICS.Standard.BindsToFunctionLvalue = false;
- ICS.Standard.BindsToRvalue = FromClassification.isRValue();
- ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier
- = (Method->getRefQualifier() == RQ_None);
- return ICS;
- }
- /// PerformObjectArgumentInitialization - Perform initialization of
- /// the implicit object parameter for the given Method with the given
- /// expression.
- ExprResult
- Sema::PerformObjectArgumentInitialization(Expr *From,
- NestedNameSpecifier *Qualifier,
- NamedDecl *FoundDecl,
- CXXMethodDecl *Method) {
- QualType FromRecordType, DestType;
- QualType ImplicitParamRecordType =
- Method->getThisType()->castAs<PointerType>()->getPointeeType();
- Expr::Classification FromClassification;
- if (const PointerType *PT = From->getType()->getAs<PointerType>()) {
- FromRecordType = PT->getPointeeType();
- DestType = Method->getThisType();
- FromClassification = Expr::Classification::makeSimpleLValue();
- } else {
- FromRecordType = From->getType();
- DestType = ImplicitParamRecordType;
- FromClassification = From->Classify(Context);
- // When performing member access on an rvalue, materialize a temporary.
- if (From->isRValue()) {
- From = CreateMaterializeTemporaryExpr(FromRecordType, From,
- Method->getRefQualifier() !=
- RefQualifierKind::RQ_RValue);
- }
- }
- // Note that we always use the true parent context when performing
- // the actual argument initialization.
- ImplicitConversionSequence ICS = TryObjectArgumentInitialization(
- *this, From->getBeginLoc(), From->getType(), FromClassification, Method,
- Method->getParent());
- if (ICS.isBad()) {
- switch (ICS.Bad.Kind) {
- case BadConversionSequence::bad_qualifiers: {
- Qualifiers FromQs = FromRecordType.getQualifiers();
- Qualifiers ToQs = DestType.getQualifiers();
- unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
- if (CVR) {
- Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr)
- << Method->getDeclName() << FromRecordType << (CVR - 1)
- << From->getSourceRange();
- Diag(Method->getLocation(), diag::note_previous_decl)
- << Method->getDeclName();
- return ExprError();
- }
- break;
- }
- case BadConversionSequence::lvalue_ref_to_rvalue:
- case BadConversionSequence::rvalue_ref_to_lvalue: {
- bool IsRValueQualified =
- Method->getRefQualifier() == RefQualifierKind::RQ_RValue;
- Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref)
- << Method->getDeclName() << FromClassification.isRValue()
- << IsRValueQualified;
- Diag(Method->getLocation(), diag::note_previous_decl)
- << Method->getDeclName();
- return ExprError();
- }
- case BadConversionSequence::no_conversion:
- case BadConversionSequence::unrelated_class:
- break;
- }
- return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type)
- << ImplicitParamRecordType << FromRecordType
- << From->getSourceRange();
- }
- if (ICS.Standard.Second == ICK_Derived_To_Base) {
- ExprResult FromRes =
- PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method);
- if (FromRes.isInvalid())
- return ExprError();
- From = FromRes.get();
- }
- if (!Context.hasSameType(From->getType(), DestType)) {
- CastKind CK;
- if (FromRecordType.getAddressSpace() != DestType.getAddressSpace())
- CK = CK_AddressSpaceConversion;
- else
- CK = CK_NoOp;
- From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get();
- }
- return From;
- }
- /// TryContextuallyConvertToBool - Attempt to contextually convert the
- /// expression From to bool (C++0x [conv]p3).
- static ImplicitConversionSequence
- TryContextuallyConvertToBool(Sema &S, Expr *From) {
- return TryImplicitConversion(S, From, S.Context.BoolTy,
- /*SuppressUserConversions=*/false,
- /*AllowExplicit=*/true,
- /*InOverloadResolution=*/false,
- /*CStyle=*/false,
- /*AllowObjCWritebackConversion=*/false,
- /*AllowObjCConversionOnExplicit=*/false);
- }
- /// PerformContextuallyConvertToBool - Perform a contextual conversion
- /// of the expression From to bool (C++0x [conv]p3).
- ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
- if (checkPlaceholderForOverload(*this, From))
- return ExprError();
- ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
- if (!ICS.isBad())
- return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
- if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
- return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition)
- << From->getType() << From->getSourceRange();
- return ExprError();
- }
- /// Check that the specified conversion is permitted in a converted constant
- /// expression, according to C++11 [expr.const]p3. Return true if the conversion
- /// is acceptable.
- static bool CheckConvertedConstantConversions(Sema &S,
- StandardConversionSequence &SCS) {
- // Since we know that the target type is an integral or unscoped enumeration
- // type, most conversion kinds are impossible. All possible First and Third
- // conversions are fine.
- switch (SCS.Second) {
- case ICK_Identity:
- case ICK_Function_Conversion:
- case ICK_Integral_Promotion:
- case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere.
- case ICK_Zero_Queue_Conversion:
- return true;
- case ICK_Boolean_Conversion:
- // Conversion from an integral or unscoped enumeration type to bool is
- // classified as ICK_Boolean_Conversion, but it's also arguably an integral
- // conversion, so we allow it in a converted constant expression.
- //
- // FIXME: Per core issue 1407, we should not allow this, but that breaks
- // a lot of popular code. We should at least add a warning for this
- // (non-conforming) extension.
- return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
- SCS.getToType(2)->isBooleanType();
- case ICK_Pointer_Conversion:
- case ICK_Pointer_Member:
- // C++1z: null pointer conversions and null member pointer conversions are
- // only permitted if the source type is std::nullptr_t.
- return SCS.getFromType()->isNullPtrType();
- case ICK_Floating_Promotion:
- case ICK_Complex_Promotion:
- case ICK_Floating_Conversion:
- case ICK_Complex_Conversion:
- case ICK_Floating_Integral:
- case ICK_Compatible_Conversion:
- case ICK_Derived_To_Base:
- case ICK_Vector_Conversion:
- case ICK_Vector_Splat:
- case ICK_Complex_Real:
- case ICK_Block_Pointer_Conversion:
- case ICK_TransparentUnionConversion:
- case ICK_Writeback_Conversion:
- case ICK_Zero_Event_Conversion:
- case ICK_C_Only_Conversion:
- case ICK_Incompatible_Pointer_Conversion:
- return false;
- case ICK_Lvalue_To_Rvalue:
- case ICK_Array_To_Pointer:
- case ICK_Function_To_Pointer:
- llvm_unreachable("found a first conversion kind in Second");
- case ICK_Qualification:
- llvm_unreachable("found a third conversion kind in Second");
- case ICK_Num_Conversion_Kinds:
- break;
- }
- llvm_unreachable("unknown conversion kind");
- }
- /// CheckConvertedConstantExpression - Check that the expression From is a
- /// converted constant expression of type T, perform the conversion and produce
- /// the converted expression, per C++11 [expr.const]p3.
- static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From,
- QualType T, APValue &Value,
- Sema::CCEKind CCE,
- bool RequireInt) {
- assert(S.getLangOpts().CPlusPlus11 &&
- "converted constant expression outside C++11");
- if (checkPlaceholderForOverload(S, From))
- return ExprError();
- // C++1z [expr.const]p3:
- // A converted constant expression of type T is an expression,
- // implicitly converted to type T, where the converted
- // expression is a constant expression and the implicit conversion
- // sequence contains only [... list of conversions ...].
- // C++1z [stmt.if]p2:
- // If the if statement is of the form if constexpr, the value of the
- // condition shall be a contextually converted constant expression of type
- // bool.
- ImplicitConversionSequence ICS =
- CCE == Sema::CCEK_ConstexprIf || CCE == Sema::CCEK_ExplicitBool
- ? TryContextuallyConvertToBool(S, From)
- : TryCopyInitialization(S, From, T,
- /*SuppressUserConversions=*/false,
- /*InOverloadResolution=*/false,
- /*AllowObjCWritebackConversion=*/false,
- /*AllowExplicit=*/false);
- StandardConversionSequence *SCS = nullptr;
- switch (ICS.getKind()) {
- case ImplicitConversionSequence::StandardConversion:
- SCS = &ICS.Standard;
- break;
- case ImplicitConversionSequence::UserDefinedConversion:
- // We are converting to a non-class type, so the Before sequence
- // must be trivial.
- SCS = &ICS.UserDefined.After;
- break;
- case ImplicitConversionSequence::AmbiguousConversion:
- case ImplicitConversionSequence::BadConversion:
- if (!S.DiagnoseMultipleUserDefinedConversion(From, T))
- return S.Diag(From->getBeginLoc(),
- diag::err_typecheck_converted_constant_expression)
- << From->getType() << From->getSourceRange() << T;
- return ExprError();
- case ImplicitConversionSequence::EllipsisConversion:
- llvm_unreachable("ellipsis conversion in converted constant expression");
- }
- // Check that we would only use permitted conversions.
- if (!CheckConvertedConstantConversions(S, *SCS)) {
- return S.Diag(From->getBeginLoc(),
- diag::err_typecheck_converted_constant_expression_disallowed)
- << From->getType() << From->getSourceRange() << T;
- }
- // [...] and where the reference binding (if any) binds directly.
- if (SCS->ReferenceBinding && !SCS->DirectBinding) {
- return S.Diag(From->getBeginLoc(),
- diag::err_typecheck_converted_constant_expression_indirect)
- << From->getType() << From->getSourceRange() << T;
- }
- ExprResult Result =
- S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting);
- if (Result.isInvalid())
- return Result;
- // C++2a [intro.execution]p5:
- // A full-expression is [...] a constant-expression [...]
- Result =
- S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(),
- /*DiscardedValue=*/false, /*IsConstexpr=*/true);
- if (Result.isInvalid())
- return Result;
- // Check for a narrowing implicit conversion.
- APValue PreNarrowingValue;
- QualType PreNarrowingType;
- switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue,
- PreNarrowingType)) {
- case NK_Dependent_Narrowing:
- // Implicit conversion to a narrower type, but the expression is
- // value-dependent so we can't tell whether it's actually narrowing.
- case NK_Variable_Narrowing:
- // Implicit conversion to a narrower type, and the value is not a constant
- // expression. We'll diagnose this in a moment.
- case NK_Not_Narrowing:
- break;
- case NK_Constant_Narrowing:
- S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
- << CCE << /*Constant*/ 1
- << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T;
- break;
- case NK_Type_Narrowing:
- S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing)
- << CCE << /*Constant*/ 0 << From->getType() << T;
- break;
- }
- if (Result.get()->isValueDependent()) {
- Value = APValue();
- return Result;
- }
- // Check the expression is a constant expression.
- SmallVector<PartialDiagnosticAt, 8> Notes;
- Expr::EvalResult Eval;
- Eval.Diag = &Notes;
- Expr::ConstExprUsage Usage = CCE == Sema::CCEK_TemplateArg
- ? Expr::EvaluateForMangling
- : Expr::EvaluateForCodeGen;
- if (!Result.get()->EvaluateAsConstantExpr(Eval, Usage, S.Context) ||
- (RequireInt && !Eval.Val.isInt())) {
- // The expression can't be folded, so we can't keep it at this position in
- // the AST.
- Result = ExprError();
- } else {
- Value = Eval.Val;
- if (Notes.empty()) {
- // It's a constant expression.
- return ConstantExpr::Create(S.Context, Result.get(), Value);
- }
- }
- // It's not a constant expression. Produce an appropriate diagnostic.
- if (Notes.size() == 1 &&
- Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
- S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
- else {
- S.Diag(From->getBeginLoc(), diag::err_expr_not_cce)
- << CCE << From->getSourceRange();
- for (unsigned I = 0; I < Notes.size(); ++I)
- S.Diag(Notes[I].first, Notes[I].second);
- }
- return ExprError();
- }
- ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
- APValue &Value, CCEKind CCE) {
- return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false);
- }
- ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
- llvm::APSInt &Value,
- CCEKind CCE) {
- assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
- APValue V;
- auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true);
- if (!R.isInvalid() && !R.get()->isValueDependent())
- Value = V.getInt();
- return R;
- }
- /// dropPointerConversions - If the given standard conversion sequence
- /// involves any pointer conversions, remove them. This may change
- /// the result type of the conversion sequence.
- static void dropPointerConversion(StandardConversionSequence &SCS) {
- if (SCS.Second == ICK_Pointer_Conversion) {
- SCS.Second = ICK_Identity;
- SCS.Third = ICK_Identity;
- SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0];
- }
- }
- /// TryContextuallyConvertToObjCPointer - Attempt to contextually
- /// convert the expression From to an Objective-C pointer type.
- static ImplicitConversionSequence
- TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
- // Do an implicit conversion to 'id'.
- QualType Ty = S.Context.getObjCIdType();
- ImplicitConversionSequence ICS
- = TryImplicitConversion(S, From, Ty,
- // FIXME: Are these flags correct?
- /*SuppressUserConversions=*/false,
- /*AllowExplicit=*/true,
- /*InOverloadResolution=*/false,
- /*CStyle=*/false,
- /*AllowObjCWritebackConversion=*/false,
- /*AllowObjCConversionOnExplicit=*/true);
- // Strip off any final conversions to 'id'.
- switch (ICS.getKind()) {
- case ImplicitConversionSequence::BadConversion:
- case ImplicitConversionSequence::AmbiguousConversion:
- case ImplicitConversionSequence::EllipsisConversion:
- break;
- case ImplicitConversionSequence::UserDefinedConversion:
- dropPointerConversion(ICS.UserDefined.After);
- break;
- case ImplicitConversionSequence::StandardConversion:
- dropPointerConversion(ICS.Standard);
- break;
- }
- return ICS;
- }
- /// PerformContextuallyConvertToObjCPointer - Perform a contextual
- /// conversion of the expression From to an Objective-C pointer type.
- /// Returns a valid but null ExprResult if no conversion sequence exists.
- ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
- if (checkPlaceholderForOverload(*this, From))
- return ExprError();
- QualType Ty = Context.getObjCIdType();
- ImplicitConversionSequence ICS =
- TryContextuallyConvertToObjCPointer(*this, From);
- if (!ICS.isBad())
- return PerformImplicitConversion(From, Ty, ICS, AA_Converting);
- return ExprResult();
- }
- /// Determine whether the provided type is an integral type, or an enumeration
- /// type of a permitted flavor.
- bool Sema::ICEConvertDiagnoser::match(QualType T) {
- return AllowScopedEnumerations ? T->isIntegralOrEnumerationType()
- : T->isIntegralOrUnscopedEnumerationType();
- }
- static ExprResult
- diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From,
- Sema::ContextualImplicitConverter &Converter,
- QualType T, UnresolvedSetImpl &ViableConversions) {
- if (Converter.Suppress)
- return ExprError();
- Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange();
- for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
- CXXConversionDecl *Conv =
- cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl());
- QualType ConvTy = Conv->getConversionType().getNonReferenceType();
- Converter.noteAmbiguous(SemaRef, Conv, ConvTy);
- }
- return From;
- }
- static bool
- diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
- Sema::ContextualImplicitConverter &Converter,
- QualType T, bool HadMultipleCandidates,
- UnresolvedSetImpl &ExplicitConversions) {
- if (ExplicitConversions.size() == 1 && !Converter.Suppress) {
- DeclAccessPair Found = ExplicitConversions[0];
- CXXConversionDecl *Conversion =
- cast<CXXConversionDecl>(Found->getUnderlyingDecl());
- // The user probably meant to invoke the given explicit
- // conversion; use it.
- QualType ConvTy = Conversion->getConversionType().getNonReferenceType();
- std::string TypeStr;
- ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy());
- Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy)
- << FixItHint::CreateInsertion(From->getBeginLoc(),
- "static_cast<" + TypeStr + ">(")
- << FixItHint::CreateInsertion(
- SemaRef.getLocForEndOfToken(From->getEndLoc()), ")");
- Converter.noteExplicitConv(SemaRef, Conversion, ConvTy);
- // If we aren't in a SFINAE context, build a call to the
- // explicit conversion function.
- if (SemaRef.isSFINAEContext())
- return true;
- SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
- ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
- HadMultipleCandidates);
- if (Result.isInvalid())
- return true;
- // Record usage of conversion in an implicit cast.
- From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
- CK_UserDefinedConversion, Result.get(),
- nullptr, Result.get()->getValueKind());
- }
- return false;
- }
- static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From,
- Sema::ContextualImplicitConverter &Converter,
- QualType T, bool HadMultipleCandidates,
- DeclAccessPair &Found) {
- CXXConversionDecl *Conversion =
- cast<CXXConversionDecl>(Found->getUnderlyingDecl());
- SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found);
- QualType ToType = Conversion->getConversionType().getNonReferenceType();
- if (!Converter.SuppressConversion) {
- if (SemaRef.isSFINAEContext())
- return true;
- Converter.diagnoseConversion(SemaRef, Loc, T, ToType)
- << From->getSourceRange();
- }
- ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion,
- HadMultipleCandidates);
- if (Result.isInvalid())
- return true;
- // Record usage of conversion in an implicit cast.
- From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(),
- CK_UserDefinedConversion, Result.get(),
- nullptr, Result.get()->getValueKind());
- return false;
- }
- static ExprResult finishContextualImplicitConversion(
- Sema &SemaRef, SourceLocation Loc, Expr *From,
- Sema::ContextualImplicitConverter &Converter) {
- if (!Converter.match(From->getType()) && !Converter.Suppress)
- Converter.diagnoseNoMatch(SemaRef, Loc, From->getType())
- << From->getSourceRange();
- return SemaRef.DefaultLvalueConversion(From);
- }
- static void
- collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType,
- UnresolvedSetImpl &ViableConversions,
- OverloadCandidateSet &CandidateSet) {
- for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
- DeclAccessPair FoundDecl = ViableConversions[I];
- NamedDecl *D = FoundDecl.getDecl();
- CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
- if (isa<UsingShadowDecl>(D))
- D = cast<UsingShadowDecl>(D)->getTargetDecl();
- CXXConversionDecl *Conv;
- FunctionTemplateDecl *ConvTemplate;
- if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D)))
- Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
- else
- Conv = cast<CXXConversionDecl>(D);
- if (ConvTemplate)
- SemaRef.AddTemplateConversionCandidate(
- ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet,
- /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true);
- else
- SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From,
- ToType, CandidateSet,
- /*AllowObjCConversionOnExplicit=*/false,
- /*AllowExplicit*/ true);
- }
- }
- /// Attempt to convert the given expression to a type which is accepted
- /// by the given converter.
- ///
- /// This routine will attempt to convert an expression of class type to a
- /// type accepted by the specified converter. In C++11 and before, the class
- /// must have a single non-explicit conversion function converting to a matching
- /// type. In C++1y, there can be multiple such conversion functions, but only
- /// one target type.
- ///
- /// \param Loc The source location of the construct that requires the
- /// conversion.
- ///
- /// \param From The expression we're converting from.
- ///
- /// \param Converter Used to control and diagnose the conversion process.
- ///
- /// \returns The expression, converted to an integral or enumeration type if
- /// successful.
- ExprResult Sema::PerformContextualImplicitConversion(
- SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) {
- // We can't perform any more checking for type-dependent expressions.
- if (From->isTypeDependent())
- return From;
- // Process placeholders immediately.
- if (From->hasPlaceholderType()) {
- ExprResult result = CheckPlaceholderExpr(From);
- if (result.isInvalid())
- return result;
- From = result.get();
- }
- // If the expression already has a matching type, we're golden.
- QualType T = From->getType();
- if (Converter.match(T))
- return DefaultLvalueConversion(From);
- // FIXME: Check for missing '()' if T is a function type?
- // We can only perform contextual implicit conversions on objects of class
- // type.
- const RecordType *RecordTy = T->getAs<RecordType>();
- if (!RecordTy || !getLangOpts().CPlusPlus) {
- if (!Converter.Suppress)
- Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange();
- return From;
- }
- // We must have a complete class type.
- struct TypeDiagnoserPartialDiag : TypeDiagnoser {
- ContextualImplicitConverter &Converter;
- Expr *From;
- TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From)
- : Converter(Converter), From(From) {}
- void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
- Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange();
- }
- } IncompleteDiagnoser(Converter, From);
- if (Converter.Suppress ? !isCompleteType(Loc, T)
- : RequireCompleteType(Loc, T, IncompleteDiagnoser))
- return From;
- // Look for a conversion to an integral or enumeration type.
- UnresolvedSet<4>
- ViableConversions; // These are *potentially* viable in C++1y.
- UnresolvedSet<4> ExplicitConversions;
- const auto &Conversions =
- cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions();
- bool HadMultipleCandidates =
- (std::distance(Conversions.begin(), Conversions.end()) > 1);
- // To check that there is only one target type, in C++1y:
- QualType ToType;
- bool HasUniqueTargetType = true;
- // Collect explicit or viable (potentially in C++1y) conversions.
- for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
- NamedDecl *D = (*I)->getUnderlyingDecl();
- CXXConversionDecl *Conversion;
- FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
- if (ConvTemplate) {
- if (getLangOpts().CPlusPlus14)
- Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
- else
- continue; // C++11 does not consider conversion operator templates(?).
- } else
- Conversion = cast<CXXConversionDecl>(D);
- assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&
- "Conversion operator templates are considered potentially "
- "viable in C++1y");
- QualType CurToType = Conversion->getConversionType().getNonReferenceType();
- if (Converter.match(CurToType) || ConvTemplate) {
- if (Conversion->isExplicit()) {
- // FIXME: For C++1y, do we need this restriction?
- // cf. diagnoseNoViableConversion()
- if (!ConvTemplate)
- ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
- } else {
- if (!ConvTemplate && getLangOpts().CPlusPlus14) {
- if (ToType.isNull())
- ToType = CurToType.getUnqualifiedType();
- else if (HasUniqueTargetType &&
- (CurToType.getUnqualifiedType() != ToType))
- HasUniqueTargetType = false;
- }
- ViableConversions.addDecl(I.getDecl(), I.getAccess());
- }
- }
- }
- if (getLangOpts().CPlusPlus14) {
- // C++1y [conv]p6:
- // ... An expression e of class type E appearing in such a context
- // is said to be contextually implicitly converted to a specified
- // type T and is well-formed if and only if e can be implicitly
- // converted to a type T that is determined as follows: E is searched
- // for conversion functions whose return type is cv T or reference to
- // cv T such that T is allowed by the context. There shall be
- // exactly one such T.
- // If no unique T is found:
- if (ToType.isNull()) {
- if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
- HadMultipleCandidates,
- ExplicitConversions))
- return ExprError();
- return finishContextualImplicitConversion(*this, Loc, From, Converter);
- }
- // If more than one unique Ts are found:
- if (!HasUniqueTargetType)
- return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
- ViableConversions);
- // If one unique T is found:
- // First, build a candidate set from the previously recorded
- // potentially viable conversions.
- OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
- collectViableConversionCandidates(*this, From, ToType, ViableConversions,
- CandidateSet);
- // Then, perform overload resolution over the candidate set.
- OverloadCandidateSet::iterator Best;
- switch (CandidateSet.BestViableFunction(*this, Loc, Best)) {
- case OR_Success: {
- // Apply this conversion.
- DeclAccessPair Found =
- DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess());
- if (recordConversion(*this, Loc, From, Converter, T,
- HadMultipleCandidates, Found))
- return ExprError();
- break;
- }
- case OR_Ambiguous:
- return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
- ViableConversions);
- case OR_No_Viable_Function:
- if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
- HadMultipleCandidates,
- ExplicitConversions))
- return ExprError();
- LLVM_FALLTHROUGH;
- case OR_Deleted:
- // We'll complain below about a non-integral condition type.
- break;
- }
- } else {
- switch (ViableConversions.size()) {
- case 0: {
- if (diagnoseNoViableConversion(*this, Loc, From, Converter, T,
- HadMultipleCandidates,
- ExplicitConversions))
- return ExprError();
- // We'll complain below about a non-integral condition type.
- break;
- }
- case 1: {
- // Apply this conversion.
- DeclAccessPair Found = ViableConversions[0];
- if (recordConversion(*this, Loc, From, Converter, T,
- HadMultipleCandidates, Found))
- return ExprError();
- break;
- }
- default:
- return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T,
- ViableConversions);
- }
- }
- return finishContextualImplicitConversion(*this, Loc, From, Converter);
- }
- /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
- /// an acceptable non-member overloaded operator for a call whose
- /// arguments have types T1 (and, if non-empty, T2). This routine
- /// implements the check in C++ [over.match.oper]p3b2 concerning
- /// enumeration types.
- static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context,
- FunctionDecl *Fn,
- ArrayRef<Expr *> Args) {
- QualType T1 = Args[0]->getType();
- QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType();
- if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
- return true;
- if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
- return true;
- const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
- if (Proto->getNumParams() < 1)
- return false;
- if (T1->isEnumeralType()) {
- QualType ArgType = Proto->getParamType(0).getNonReferenceType();
- if (Context.hasSameUnqualifiedType(T1, ArgType))
- return true;
- }
- if (Proto->getNumParams() < 2)
- return false;
- if (!T2.isNull() && T2->isEnumeralType()) {
- QualType ArgType = Proto->getParamType(1).getNonReferenceType();
- if (Context.hasSameUnqualifiedType(T2, ArgType))
- return true;
- }
- return false;
- }
- /// AddOverloadCandidate - Adds the given function to the set of
- /// candidate functions, using the given function call arguments. If
- /// @p SuppressUserConversions, then don't allow user-defined
- /// conversions via constructors or conversion operators.
- ///
- /// \param PartialOverloading true if we are performing "partial" overloading
- /// based on an incomplete set of function arguments. This feature is used by
- /// code completion.
- void Sema::AddOverloadCandidate(
- FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args,
- OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
- bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions,
- ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions,
- OverloadCandidateParamOrder PO) {
- const FunctionProtoType *Proto
- = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
- assert(Proto && "Functions without a prototype cannot be overloaded");
- assert(!Function->getDescribedFunctionTemplate() &&
- "Use AddTemplateOverloadCandidate for function templates");
- if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
- if (!isa<CXXConstructorDecl>(Method)) {
- // If we get here, it's because we're calling a member function
- // that is named without a member access expression (e.g.,
- // "this->f") that was either written explicitly or created
- // implicitly. This can happen with a qualified call to a member
- // function, e.g., X::f(). We use an empty type for the implied
- // object argument (C++ [over.call.func]p3), and the acting context
- // is irrelevant.
- AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(),
- Expr::Classification::makeSimpleLValue(), Args,
- CandidateSet, SuppressUserConversions,
- PartialOverloading, EarlyConversions, PO);
- return;
- }
- // We treat a constructor like a non-member function, since its object
- // argument doesn't participate in overload resolution.
- }
- if (!CandidateSet.isNewCandidate(Function, PO))
- return;
- // C++11 [class.copy]p11: [DR1402]
- // A defaulted move constructor that is defined as deleted is ignored by
- // overload resolution.
- CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function);
- if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() &&
- Constructor->isMoveConstructor())
- return;
- // Overload resolution is always an unevaluated context.
- EnterExpressionEvaluationContext Unevaluated(
- *this, Sema::ExpressionEvaluationContext::Unevaluated);
- // C++ [over.match.oper]p3:
- // if no operand has a class type, only those non-member functions in the
- // lookup set that have a first parameter of type T1 or "reference to
- // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there
- // is a right operand) a second parameter of type T2 or "reference to
- // (possibly cv-qualified) T2", when T2 is an enumeration type, are
- // candidate functions.
- if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator &&
- !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args))
- return;
- // Add this candidate
- OverloadCandidate &Candidate =
- CandidateSet.addCandidate(Args.size(), EarlyConversions);
- Candidate.FoundDecl = FoundDecl;
- Candidate.Function = Function;
- Candidate.Viable = true;
- Candidate.RewriteKind =
- CandidateSet.getRewriteInfo().getRewriteKind(Function, PO);
- Candidate.IsSurrogate = false;
- Candidate.IsADLCandidate = IsADLCandidate;
- Candidate.IgnoreObjectArgument = false;
- Candidate.ExplicitCallArguments = Args.size();
- if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() &&
- !Function->getAttr<TargetAttr>()->isDefaultVersion()) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_non_default_multiversion_function;
- return;
- }
- if (Constructor) {
- // C++ [class.copy]p3:
- // A member function template is never instantiated to perform the copy
- // of a class object to an object of its class type.
- QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
- if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() &&
- (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
- IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(),
- ClassType))) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_illegal_constructor;
- return;
- }
- // C++ [over.match.funcs]p8: (proposed DR resolution)
- // A constructor inherited from class type C that has a first parameter
- // of type "reference to P" (including such a constructor instantiated
- // from a template) is excluded from the set of candidate functions when
- // constructing an object of type cv D if the argument list has exactly
- // one argument and D is reference-related to P and P is reference-related
- // to C.
- auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl());
- if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 &&
- Constructor->getParamDecl(0)->getType()->isReferenceType()) {
- QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType();
- QualType C = Context.getRecordType(Constructor->getParent());
- QualType D = Context.getRecordType(Shadow->getParent());
- SourceLocation Loc = Args.front()->getExprLoc();
- if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) &&
- (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_inhctor_slice;
- return;
- }
- }
- // Check that the constructor is capable of constructing an object in the
- // destination address space.
- if (!Qualifiers::isAddressSpaceSupersetOf(
- Constructor->getMethodQualifiers().getAddressSpace(),
- CandidateSet.getDestAS())) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_object_addrspace_mismatch;
- }
- }
- unsigned NumParams = Proto->getNumParams();
- // (C++ 13.3.2p2): A candidate function having fewer than m
- // parameters is viable only if it has an ellipsis in its parameter
- // list (8.3.5).
- if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
- !Proto->isVariadic()) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_too_many_arguments;
- return;
- }
- // (C++ 13.3.2p2): A candidate function having more than m parameters
- // is viable only if the (m+1)st parameter has a default argument
- // (8.3.6). For the purposes of overload resolution, the
- // parameter list is truncated on the right, so that there are
- // exactly m parameters.
- unsigned MinRequiredArgs = Function->getMinRequiredArguments();
- if (Args.size() < MinRequiredArgs && !PartialOverloading) {
- // Not enough arguments.
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_too_few_arguments;
- return;
- }
- // (CUDA B.1): Check for invalid calls between targets.
- if (getLangOpts().CUDA)
- if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
- // Skip the check for callers that are implicit members, because in this
- // case we may not yet know what the member's target is; the target is
- // inferred for the member automatically, based on the bases and fields of
- // the class.
- if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_bad_target;
- return;
- }
- // Determine the implicit conversion sequences for each of the
- // arguments.
- for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
- unsigned ConvIdx =
- PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx;
- if (Candidate.Conversions[ConvIdx].isInitialized()) {
- // We already formed a conversion sequence for this parameter during
- // template argument deduction.
- } else if (ArgIdx < NumParams) {
- // (C++ 13.3.2p3): for F to be a viable function, there shall
- // exist for each argument an implicit conversion sequence
- // (13.3.3.1) that converts that argument to the corresponding
- // parameter of F.
- QualType ParamType = Proto->getParamType(ArgIdx);
- Candidate.Conversions[ConvIdx] = TryCopyInitialization(
- *this, Args[ArgIdx], ParamType, SuppressUserConversions,
- /*InOverloadResolution=*/true,
- /*AllowObjCWritebackConversion=*/
- getLangOpts().ObjCAutoRefCount, AllowExplicitConversions);
- if (Candidate.Conversions[ConvIdx].isBad()) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_bad_conversion;
- return;
- }
- } else {
- // (C++ 13.3.2p2): For the purposes of overload resolution, any
- // argument for which there is no corresponding parameter is
- // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
- Candidate.Conversions[ConvIdx].setEllipsis();
- }
- }
- if (!AllowExplicit) {
- ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Function);
- if (ES.getKind() != ExplicitSpecKind::ResolvedFalse) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_explicit_resolved;
- return;
- }
- }
- if (EnableIfAttr *FailedAttr = CheckEnableIf(Function, Args)) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_enable_if;
- Candidate.DeductionFailure.Data = FailedAttr;
- return;
- }
- if (LangOpts.OpenCL && isOpenCLDisabledDecl(Function)) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_ext_disabled;
- return;
- }
- }
- ObjCMethodDecl *
- Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance,
- SmallVectorImpl<ObjCMethodDecl *> &Methods) {
- if (Methods.size() <= 1)
- return nullptr;
- for (unsigned b = 0, e = Methods.size(); b < e; b++) {
- bool Match = true;
- ObjCMethodDecl *Method = Methods[b];
- unsigned NumNamedArgs = Sel.getNumArgs();
- // Method might have more arguments than selector indicates. This is due
- // to addition of c-style arguments in method.
- if (Method->param_size() > NumNamedArgs)
- NumNamedArgs = Method->param_size();
- if (Args.size() < NumNamedArgs)
- continue;
- for (unsigned i = 0; i < NumNamedArgs; i++) {
- // We can't do any type-checking on a type-dependent argument.
- if (Args[i]->isTypeDependent()) {
- Match = false;
- break;
- }
- ParmVarDecl *param = Method->parameters()[i];
- Expr *argExpr = Args[i];
- assert(argExpr && "SelectBestMethod(): missing expression");
- // Strip the unbridged-cast placeholder expression off unless it's
- // a consumed argument.
- if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) &&
- !param->hasAttr<CFConsumedAttr>())
- argExpr = stripARCUnbridgedCast(argExpr);
- // If the parameter is __unknown_anytype, move on to the next method.
- if (param->getType() == Context.UnknownAnyTy) {
- Match = false;
- break;
- }
- ImplicitConversionSequence ConversionState
- = TryCopyInitialization(*this, argExpr, param->getType(),
- /*SuppressUserConversions*/false,
- /*InOverloadResolution=*/true,
- /*AllowObjCWritebackConversion=*/
- getLangOpts().ObjCAutoRefCount,
- /*AllowExplicit*/false);
- // This function looks for a reasonably-exact match, so we consider
- // incompatible pointer conversions to be a failure here.
- if (ConversionState.isBad() ||
- (ConversionState.isStandard() &&
- ConversionState.Standard.Second ==
- ICK_Incompatible_Pointer_Conversion)) {
- Match = false;
- break;
- }
- }
- // Promote additional arguments to variadic methods.
- if (Match && Method->isVariadic()) {
- for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) {
- if (Args[i]->isTypeDependent()) {
- Match = false;
- break;
- }
- ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
- nullptr);
- if (Arg.isInvalid()) {
- Match = false;
- break;
- }
- }
- } else {
- // Check for extra arguments to non-variadic methods.
- if (Args.size() != NumNamedArgs)
- Match = false;
- else if (Match && NumNamedArgs == 0 && Methods.size() > 1) {
- // Special case when selectors have no argument. In this case, select
- // one with the most general result type of 'id'.
- for (unsigned b = 0, e = Methods.size(); b < e; b++) {
- QualType ReturnT = Methods[b]->getReturnType();
- if (ReturnT->isObjCIdType())
- return Methods[b];
- }
- }
- }
- if (Match)
- return Method;
- }
- return nullptr;
- }
- static bool
- convertArgsForAvailabilityChecks(Sema &S, FunctionDecl *Function, Expr *ThisArg,
- ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap,
- bool MissingImplicitThis, Expr *&ConvertedThis,
- SmallVectorImpl<Expr *> &ConvertedArgs) {
- if (ThisArg) {
- CXXMethodDecl *Method = cast<CXXMethodDecl>(Function);
- assert(!isa<CXXConstructorDecl>(Method) &&
- "Shouldn't have `this` for ctors!");
- assert(!Method->isStatic() && "Shouldn't have `this` for static methods!");
- ExprResult R = S.PerformObjectArgumentInitialization(
- ThisArg, /*Qualifier=*/nullptr, Method, Method);
- if (R.isInvalid())
- return false;
- ConvertedThis = R.get();
- } else {
- if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) {
- (void)MD;
- assert((MissingImplicitThis || MD->isStatic() ||
- isa<CXXConstructorDecl>(MD)) &&
- "Expected `this` for non-ctor instance methods");
- }
- ConvertedThis = nullptr;
- }
- // Ignore any variadic arguments. Converting them is pointless, since the
- // user can't refer to them in the function condition.
- unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size());
- // Convert the arguments.
- for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) {
- ExprResult R;
- R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
- S.Context, Function->getParamDecl(I)),
- SourceLocation(), Args[I]);
- if (R.isInvalid())
- return false;
- ConvertedArgs.push_back(R.get());
- }
- if (Trap.hasErrorOccurred())
- return false;
- // Push default arguments if needed.
- if (!Function->isVariadic() && Args.size() < Function->getNumParams()) {
- for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) {
- ParmVarDecl *P = Function->getParamDecl(i);
- Expr *DefArg = P->hasUninstantiatedDefaultArg()
- ? P->getUninstantiatedDefaultArg()
- : P->getDefaultArg();
- // This can only happen in code completion, i.e. when PartialOverloading
- // is true.
- if (!DefArg)
- return false;
- ExprResult R =
- S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
- S.Context, Function->getParamDecl(i)),
- SourceLocation(), DefArg);
- if (R.isInvalid())
- return false;
- ConvertedArgs.push_back(R.get());
- }
- if (Trap.hasErrorOccurred())
- return false;
- }
- return true;
- }
- EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, ArrayRef<Expr *> Args,
- bool MissingImplicitThis) {
- auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>();
- if (EnableIfAttrs.begin() == EnableIfAttrs.end())
- return nullptr;
- SFINAETrap Trap(*this);
- SmallVector<Expr *, 16> ConvertedArgs;
- // FIXME: We should look into making enable_if late-parsed.
- Expr *DiscardedThis;
- if (!convertArgsForAvailabilityChecks(
- *this, Function, /*ThisArg=*/nullptr, Args, Trap,
- /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs))
- return *EnableIfAttrs.begin();
- for (auto *EIA : EnableIfAttrs) {
- APValue Result;
- // FIXME: This doesn't consider value-dependent cases, because doing so is
- // very difficult. Ideally, we should handle them more gracefully.
- if (EIA->getCond()->isValueDependent() ||
- !EIA->getCond()->EvaluateWithSubstitution(
- Result, Context, Function, llvm::makeArrayRef(ConvertedArgs)))
- return EIA;
- if (!Result.isInt() || !Result.getInt().getBoolValue())
- return EIA;
- }
- return nullptr;
- }
- template <typename CheckFn>
- static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND,
- bool ArgDependent, SourceLocation Loc,
- CheckFn &&IsSuccessful) {
- SmallVector<const DiagnoseIfAttr *, 8> Attrs;
- for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) {
- if (ArgDependent == DIA->getArgDependent())
- Attrs.push_back(DIA);
- }
- // Common case: No diagnose_if attributes, so we can quit early.
- if (Attrs.empty())
- return false;
- auto WarningBegin = std::stable_partition(
- Attrs.begin(), Attrs.end(),
- [](const DiagnoseIfAttr *DIA) { return DIA->isError(); });
- // Note that diagnose_if attributes are late-parsed, so they appear in the
- // correct order (unlike enable_if attributes).
- auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin),
- IsSuccessful);
- if (ErrAttr != WarningBegin) {
- const DiagnoseIfAttr *DIA = *ErrAttr;
- S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage();
- S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
- << DIA->getParent() << DIA->getCond()->getSourceRange();
- return true;
- }
- for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end()))
- if (IsSuccessful(DIA)) {
- S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage();
- S.Diag(DIA->getLocation(), diag::note_from_diagnose_if)
- << DIA->getParent() << DIA->getCond()->getSourceRange();
- }
- return false;
- }
- bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
- const Expr *ThisArg,
- ArrayRef<const Expr *> Args,
- SourceLocation Loc) {
- return diagnoseDiagnoseIfAttrsWith(
- *this, Function, /*ArgDependent=*/true, Loc,
- [&](const DiagnoseIfAttr *DIA) {
- APValue Result;
- // It's sane to use the same Args for any redecl of this function, since
- // EvaluateWithSubstitution only cares about the position of each
- // argument in the arg list, not the ParmVarDecl* it maps to.
- if (!DIA->getCond()->EvaluateWithSubstitution(
- Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg))
- return false;
- return Result.isInt() && Result.getInt().getBoolValue();
- });
- }
- bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
- SourceLocation Loc) {
- return diagnoseDiagnoseIfAttrsWith(
- *this, ND, /*ArgDependent=*/false, Loc,
- [&](const DiagnoseIfAttr *DIA) {
- bool Result;
- return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) &&
- Result;
- });
- }
- /// Add all of the function declarations in the given function set to
- /// the overload candidate set.
- void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
- ArrayRef<Expr *> Args,
- OverloadCandidateSet &CandidateSet,
- TemplateArgumentListInfo *ExplicitTemplateArgs,
- bool SuppressUserConversions,
- bool PartialOverloading,
- bool FirstArgumentIsBase) {
- for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
- NamedDecl *D = F.getDecl()->getUnderlyingDecl();
- ArrayRef<Expr *> FunctionArgs = Args;
- FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
- FunctionDecl *FD =
- FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
- if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) {
- QualType ObjectType;
- Expr::Classification ObjectClassification;
- if (Args.size() > 0) {
- if (Expr *E = Args[0]) {
- // Use the explicit base to restrict the lookup:
- ObjectType = E->getType();
- // Pointers in the object arguments are implicitly dereferenced, so we
- // always classify them as l-values.
- if (!ObjectType.isNull() && ObjectType->isPointerType())
- ObjectClassification = Expr::Classification::makeSimpleLValue();
- else
- ObjectClassification = E->Classify(Context);
- } // .. else there is an implicit base.
- FunctionArgs = Args.slice(1);
- }
- if (FunTmpl) {
- AddMethodTemplateCandidate(
- FunTmpl, F.getPair(),
- cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
- ExplicitTemplateArgs, ObjectType, ObjectClassification,
- FunctionArgs, CandidateSet, SuppressUserConversions,
- PartialOverloading);
- } else {
- AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
- cast<CXXMethodDecl>(FD)->getParent(), ObjectType,
- ObjectClassification, FunctionArgs, CandidateSet,
- SuppressUserConversions, PartialOverloading);
- }
- } else {
- // This branch handles both standalone functions and static methods.
- // Slice the first argument (which is the base) when we access
- // static method as non-static.
- if (Args.size() > 0 &&
- (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) &&
- !isa<CXXConstructorDecl>(FD)))) {
- assert(cast<CXXMethodDecl>(FD)->isStatic());
- FunctionArgs = Args.slice(1);
- }
- if (FunTmpl) {
- AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
- ExplicitTemplateArgs, FunctionArgs,
- CandidateSet, SuppressUserConversions,
- PartialOverloading);
- } else {
- AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet,
- SuppressUserConversions, PartialOverloading);
- }
- }
- }
- }
- /// AddMethodCandidate - Adds a named decl (which is some kind of
- /// method) as a method candidate to the given overload set.
- void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType,
- Expr::Classification ObjectClassification,
- ArrayRef<Expr *> Args,
- OverloadCandidateSet &CandidateSet,
- bool SuppressUserConversions,
- OverloadCandidateParamOrder PO) {
- NamedDecl *Decl = FoundDecl.getDecl();
- CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext());
- if (isa<UsingShadowDecl>(Decl))
- Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl();
- if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) {
- assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&
- "Expected a member function template");
- AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
- /*ExplicitArgs*/ nullptr, ObjectType,
- ObjectClassification, Args, CandidateSet,
- SuppressUserConversions, false, PO);
- } else {
- AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
- ObjectType, ObjectClassification, Args, CandidateSet,
- SuppressUserConversions, false, None, PO);
- }
- }
- /// AddMethodCandidate - Adds the given C++ member function to the set
- /// of candidate functions, using the given function call arguments
- /// and the object argument (@c Object). For example, in a call
- /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain
- /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't
- /// allow user-defined conversions via constructors or conversion
- /// operators.
- void
- Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
- CXXRecordDecl *ActingContext, QualType ObjectType,
- Expr::Classification ObjectClassification,
- ArrayRef<Expr *> Args,
- OverloadCandidateSet &CandidateSet,
- bool SuppressUserConversions,
- bool PartialOverloading,
- ConversionSequenceList EarlyConversions,
- OverloadCandidateParamOrder PO) {
- const FunctionProtoType *Proto
- = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>());
- assert(Proto && "Methods without a prototype cannot be overloaded");
- assert(!isa<CXXConstructorDecl>(Method) &&
- "Use AddOverloadCandidate for constructors");
- if (!CandidateSet.isNewCandidate(Method, PO))
- return;
- // C++11 [class.copy]p23: [DR1402]
- // A defaulted move assignment operator that is defined as deleted is
- // ignored by overload resolution.
- if (Method->isDefaulted() && Method->isDeleted() &&
- Method->isMoveAssignmentOperator())
- return;
- // Overload resolution is always an unevaluated context.
- EnterExpressionEvaluationContext Unevaluated(
- *this, Sema::ExpressionEvaluationContext::Unevaluated);
- // Add this candidate
- OverloadCandidate &Candidate =
- CandidateSet.addCandidate(Args.size() + 1, EarlyConversions);
- Candidate.FoundDecl = FoundDecl;
- Candidate.Function = Method;
- Candidate.RewriteKind =
- CandidateSet.getRewriteInfo().getRewriteKind(Method, PO);
- Candidate.IsSurrogate = false;
- Candidate.IgnoreObjectArgument = false;
- Candidate.ExplicitCallArguments = Args.size();
- unsigned NumParams = Proto->getNumParams();
- // (C++ 13.3.2p2): A candidate function having fewer than m
- // parameters is viable only if it has an ellipsis in its parameter
- // list (8.3.5).
- if (TooManyArguments(NumParams, Args.size(), PartialOverloading) &&
- !Proto->isVariadic()) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_too_many_arguments;
- return;
- }
- // (C++ 13.3.2p2): A candidate function having more than m parameters
- // is viable only if the (m+1)st parameter has a default argument
- // (8.3.6). For the purposes of overload resolution, the
- // parameter list is truncated on the right, so that there are
- // exactly m parameters.
- unsigned MinRequiredArgs = Method->getMinRequiredArguments();
- if (Args.size() < MinRequiredArgs && !PartialOverloading) {
- // Not enough arguments.
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_too_few_arguments;
- return;
- }
- Candidate.Viable = true;
- if (Method->isStatic() || ObjectType.isNull())
- // The implicit object argument is ignored.
- Candidate.IgnoreObjectArgument = true;
- else {
- unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
- // Determine the implicit conversion sequence for the object
- // parameter.
- Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization(
- *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
- Method, ActingContext);
- if (Candidate.Conversions[ConvIdx].isBad()) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_bad_conversion;
- return;
- }
- }
- // (CUDA B.1): Check for invalid calls between targets.
- if (getLangOpts().CUDA)
- if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
- if (!IsAllowedCUDACall(Caller, Method)) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_bad_target;
- return;
- }
- // Determine the implicit conversion sequences for each of the
- // arguments.
- for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
- unsigned ConvIdx =
- PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1);
- if (Candidate.Conversions[ConvIdx].isInitialized()) {
- // We already formed a conversion sequence for this parameter during
- // template argument deduction.
- } else if (ArgIdx < NumParams) {
- // (C++ 13.3.2p3): for F to be a viable function, there shall
- // exist for each argument an implicit conversion sequence
- // (13.3.3.1) that converts that argument to the corresponding
- // parameter of F.
- QualType ParamType = Proto->getParamType(ArgIdx);
- Candidate.Conversions[ConvIdx]
- = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
- SuppressUserConversions,
- /*InOverloadResolution=*/true,
- /*AllowObjCWritebackConversion=*/
- getLangOpts().ObjCAutoRefCount);
- if (Candidate.Conversions[ConvIdx].isBad()) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_bad_conversion;
- return;
- }
- } else {
- // (C++ 13.3.2p2): For the purposes of overload resolution, any
- // argument for which there is no corresponding parameter is
- // considered to "match the ellipsis" (C+ 13.3.3.1.3).
- Candidate.Conversions[ConvIdx].setEllipsis();
- }
- }
- if (EnableIfAttr *FailedAttr = CheckEnableIf(Method, Args, true)) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_enable_if;
- Candidate.DeductionFailure.Data = FailedAttr;
- return;
- }
- if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() &&
- !Method->getAttr<TargetAttr>()->isDefaultVersion()) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_non_default_multiversion_function;
- }
- }
- /// Add a C++ member function template as a candidate to the candidate
- /// set, using template argument deduction to produce an appropriate member
- /// function template specialization.
- void Sema::AddMethodTemplateCandidate(
- FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl,
- CXXRecordDecl *ActingContext,
- TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType,
- Expr::Classification ObjectClassification, ArrayRef<Expr *> Args,
- OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
- bool PartialOverloading, OverloadCandidateParamOrder PO) {
- if (!CandidateSet.isNewCandidate(MethodTmpl, PO))
- return;
- // C++ [over.match.funcs]p7:
- // In each case where a candidate is a function template, candidate
- // function template specializations are generated using template argument
- // deduction (14.8.3, 14.8.2). Those candidates are then handled as
- // candidate functions in the usual way.113) A given name can refer to one
- // or more function templates and also to a set of overloaded non-template
- // functions. In such a case, the candidate functions generated from each
- // function template are combined with the set of non-template candidate
- // functions.
- TemplateDeductionInfo Info(CandidateSet.getLocation());
- FunctionDecl *Specialization = nullptr;
- ConversionSequenceList Conversions;
- if (TemplateDeductionResult Result = DeduceTemplateArguments(
- MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info,
- PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
- return CheckNonDependentConversions(
- MethodTmpl, ParamTypes, Args, CandidateSet, Conversions,
- SuppressUserConversions, ActingContext, ObjectType,
- ObjectClassification, PO);
- })) {
- OverloadCandidate &Candidate =
- CandidateSet.addCandidate(Conversions.size(), Conversions);
- Candidate.FoundDecl = FoundDecl;
- Candidate.Function = MethodTmpl->getTemplatedDecl();
- Candidate.Viable = false;
- Candidate.RewriteKind =
- CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
- Candidate.IsSurrogate = false;
- Candidate.IgnoreObjectArgument =
- cast<CXXMethodDecl>(Candidate.Function)->isStatic() ||
- ObjectType.isNull();
- Candidate.ExplicitCallArguments = Args.size();
- if (Result == TDK_NonDependentConversionFailure)
- Candidate.FailureKind = ovl_fail_bad_conversion;
- else {
- Candidate.FailureKind = ovl_fail_bad_deduction;
- Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
- Info);
- }
- return;
- }
- // Add the function template specialization produced by template argument
- // deduction as a candidate.
- assert(Specialization && "Missing member function template specialization?");
- assert(isa<CXXMethodDecl>(Specialization) &&
- "Specialization is not a member function?");
- AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
- ActingContext, ObjectType, ObjectClassification, Args,
- CandidateSet, SuppressUserConversions, PartialOverloading,
- Conversions, PO);
- }
- /// Add a C++ function template specialization as a candidate
- /// in the candidate set, using template argument deduction to produce
- /// an appropriate function template specialization.
- void Sema::AddTemplateOverloadCandidate(
- FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
- TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
- OverloadCandidateSet &CandidateSet, bool SuppressUserConversions,
- bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate,
- OverloadCandidateParamOrder PO) {
- if (!CandidateSet.isNewCandidate(FunctionTemplate, PO))
- return;
- // C++ [over.match.funcs]p7:
- // In each case where a candidate is a function template, candidate
- // function template specializations are generated using template argument
- // deduction (14.8.3, 14.8.2). Those candidates are then handled as
- // candidate functions in the usual way.113) A given name can refer to one
- // or more function templates and also to a set of overloaded non-template
- // functions. In such a case, the candidate functions generated from each
- // function template are combined with the set of non-template candidate
- // functions.
- TemplateDeductionInfo Info(CandidateSet.getLocation());
- FunctionDecl *Specialization = nullptr;
- ConversionSequenceList Conversions;
- if (TemplateDeductionResult Result = DeduceTemplateArguments(
- FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info,
- PartialOverloading, [&](ArrayRef<QualType> ParamTypes) {
- return CheckNonDependentConversions(
- FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions,
- SuppressUserConversions, nullptr, QualType(), {}, PO);
- })) {
- OverloadCandidate &Candidate =
- CandidateSet.addCandidate(Conversions.size(), Conversions);
- Candidate.FoundDecl = FoundDecl;
- Candidate.Function = FunctionTemplate->getTemplatedDecl();
- Candidate.Viable = false;
- Candidate.RewriteKind =
- CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO);
- Candidate.IsSurrogate = false;
- Candidate.IsADLCandidate = IsADLCandidate;
- // Ignore the object argument if there is one, since we don't have an object
- // type.
- Candidate.IgnoreObjectArgument =
- isa<CXXMethodDecl>(Candidate.Function) &&
- !isa<CXXConstructorDecl>(Candidate.Function);
- Candidate.ExplicitCallArguments = Args.size();
- if (Result == TDK_NonDependentConversionFailure)
- Candidate.FailureKind = ovl_fail_bad_conversion;
- else {
- Candidate.FailureKind = ovl_fail_bad_deduction;
- Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
- Info);
- }
- return;
- }
- // Add the function template specialization produced by template argument
- // deduction as a candidate.
- assert(Specialization && "Missing function template specialization?");
- AddOverloadCandidate(
- Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions,
- PartialOverloading, AllowExplicit,
- /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO);
- }
- /// Check that implicit conversion sequences can be formed for each argument
- /// whose corresponding parameter has a non-dependent type, per DR1391's
- /// [temp.deduct.call]p10.
- bool Sema::CheckNonDependentConversions(
- FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
- ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
- ConversionSequenceList &Conversions, bool SuppressUserConversions,
- CXXRecordDecl *ActingContext, QualType ObjectType,
- Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) {
- // FIXME: The cases in which we allow explicit conversions for constructor
- // arguments never consider calling a constructor template. It's not clear
- // that is correct.
- const bool AllowExplicit = false;
- auto *FD = FunctionTemplate->getTemplatedDecl();
- auto *Method = dyn_cast<CXXMethodDecl>(FD);
- bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method);
- unsigned ThisConversions = HasThisConversion ? 1 : 0;
- Conversions =
- CandidateSet.allocateConversionSequences(ThisConversions + Args.size());
- // Overload resolution is always an unevaluated context.
- EnterExpressionEvaluationContext Unevaluated(
- *this, Sema::ExpressionEvaluationContext::Unevaluated);
- // For a method call, check the 'this' conversion here too. DR1391 doesn't
- // require that, but this check should never result in a hard error, and
- // overload resolution is permitted to sidestep instantiations.
- if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() &&
- !ObjectType.isNull()) {
- unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0;
- Conversions[ConvIdx] = TryObjectArgumentInitialization(
- *this, CandidateSet.getLocation(), ObjectType, ObjectClassification,
- Method, ActingContext);
- if (Conversions[ConvIdx].isBad())
- return true;
- }
- for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N;
- ++I) {
- QualType ParamType = ParamTypes[I];
- if (!ParamType->isDependentType()) {
- unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed
- ? 0
- : (ThisConversions + I);
- Conversions[ConvIdx]
- = TryCopyInitialization(*this, Args[I], ParamType,
- SuppressUserConversions,
- /*InOverloadResolution=*/true,
- /*AllowObjCWritebackConversion=*/
- getLangOpts().ObjCAutoRefCount,
- AllowExplicit);
- if (Conversions[ConvIdx].isBad())
- return true;
- }
- }
- return false;
- }
- /// Determine whether this is an allowable conversion from the result
- /// of an explicit conversion operator to the expected type, per C++
- /// [over.match.conv]p1 and [over.match.ref]p1.
- ///
- /// \param ConvType The return type of the conversion function.
- ///
- /// \param ToType The type we are converting to.
- ///
- /// \param AllowObjCPointerConversion Allow a conversion from one
- /// Objective-C pointer to another.
- ///
- /// \returns true if the conversion is allowable, false otherwise.
- static bool isAllowableExplicitConversion(Sema &S,
- QualType ConvType, QualType ToType,
- bool AllowObjCPointerConversion) {
- QualType ToNonRefType = ToType.getNonReferenceType();
- // Easy case: the types are the same.
- if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType))
- return true;
- // Allow qualification conversions.
- bool ObjCLifetimeConversion;
- if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false,
- ObjCLifetimeConversion))
- return true;
- // If we're not allowed to consider Objective-C pointer conversions,
- // we're done.
- if (!AllowObjCPointerConversion)
- return false;
- // Is this an Objective-C pointer conversion?
- bool IncompatibleObjC = false;
- QualType ConvertedType;
- return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType,
- IncompatibleObjC);
- }
- /// AddConversionCandidate - Add a C++ conversion function as a
- /// candidate in the candidate set (C++ [over.match.conv],
- /// C++ [over.match.copy]). From is the expression we're converting from,
- /// and ToType is the type that we're eventually trying to convert to
- /// (which may or may not be the same type as the type that the
- /// conversion function produces).
- void Sema::AddConversionCandidate(
- CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
- CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
- OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
- bool AllowExplicit, bool AllowResultConversion) {
- assert(!Conversion->getDescribedFunctionTemplate() &&
- "Conversion function templates use AddTemplateConversionCandidate");
- QualType ConvType = Conversion->getConversionType().getNonReferenceType();
- if (!CandidateSet.isNewCandidate(Conversion))
- return;
- // If the conversion function has an undeduced return type, trigger its
- // deduction now.
- if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) {
- if (DeduceReturnType(Conversion, From->getExprLoc()))
- return;
- ConvType = Conversion->getConversionType().getNonReferenceType();
- }
- // If we don't allow any conversion of the result type, ignore conversion
- // functions that don't convert to exactly (possibly cv-qualified) T.
- if (!AllowResultConversion &&
- !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType))
- return;
- // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion
- // operator is only a candidate if its return type is the target type or
- // can be converted to the target type with a qualification conversion.
- if (Conversion->isExplicit() &&
- !isAllowableExplicitConversion(*this, ConvType, ToType,
- AllowObjCConversionOnExplicit))
- return;
- // Overload resolution is always an unevaluated context.
- EnterExpressionEvaluationContext Unevaluated(
- *this, Sema::ExpressionEvaluationContext::Unevaluated);
- // Add this candidate
- OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
- Candidate.FoundDecl = FoundDecl;
- Candidate.Function = Conversion;
- Candidate.IsSurrogate = false;
- Candidate.IgnoreObjectArgument = false;
- Candidate.FinalConversion.setAsIdentityConversion();
- Candidate.FinalConversion.setFromType(ConvType);
- Candidate.FinalConversion.setAllToTypes(ToType);
- Candidate.Viable = true;
- Candidate.ExplicitCallArguments = 1;
- // C++ [over.match.funcs]p4:
- // For conversion functions, the function is considered to be a member of
- // the class of the implicit implied object argument for the purpose of
- // defining the type of the implicit object parameter.
- //
- // Determine the implicit conversion sequence for the implicit
- // object parameter.
- QualType ImplicitParamType = From->getType();
- if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>())
- ImplicitParamType = FromPtrType->getPointeeType();
- CXXRecordDecl *ConversionContext
- = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl());
- Candidate.Conversions[0] = TryObjectArgumentInitialization(
- *this, CandidateSet.getLocation(), From->getType(),
- From->Classify(Context), Conversion, ConversionContext);
- if (Candidate.Conversions[0].isBad()) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_bad_conversion;
- return;
- }
- // We won't go through a user-defined type conversion function to convert a
- // derived to base as such conversions are given Conversion Rank. They only
- // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user]
- QualType FromCanon
- = Context.getCanonicalType(From->getType().getUnqualifiedType());
- QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType();
- if (FromCanon == ToCanon ||
- IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_trivial_conversion;
- return;
- }
- // To determine what the conversion from the result of calling the
- // conversion function to the type we're eventually trying to
- // convert to (ToType), we need to synthesize a call to the
- // conversion function and attempt copy initialization from it. This
- // makes sure that we get the right semantics with respect to
- // lvalues/rvalues and the type. Fortunately, we can allocate this
- // call on the stack and we don't need its arguments to be
- // well-formed.
- DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(),
- VK_LValue, From->getBeginLoc());
- ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
- Context.getPointerType(Conversion->getType()),
- CK_FunctionToPointerDecay,
- &ConversionRef, VK_RValue);
- QualType ConversionType = Conversion->getConversionType();
- if (!isCompleteType(From->getBeginLoc(), ConversionType)) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_bad_final_conversion;
- return;
- }
- ExprValueKind VK = Expr::getValueKindForType(ConversionType);
- // Note that it is safe to allocate CallExpr on the stack here because
- // there are 0 arguments (i.e., nothing is allocated using ASTContext's
- // allocator).
- QualType CallResultType = ConversionType.getNonLValueExprType(Context);
- alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)];
- CallExpr *TheTemporaryCall = CallExpr::CreateTemporary(
- Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc());
- ImplicitConversionSequence ICS =
- TryCopyInitialization(*this, TheTemporaryCall, ToType,
- /*SuppressUserConversions=*/true,
- /*InOverloadResolution=*/false,
- /*AllowObjCWritebackConversion=*/false);
- switch (ICS.getKind()) {
- case ImplicitConversionSequence::StandardConversion:
- Candidate.FinalConversion = ICS.Standard;
- // C++ [over.ics.user]p3:
- // If the user-defined conversion is specified by a specialization of a
- // conversion function template, the second standard conversion sequence
- // shall have exact match rank.
- if (Conversion->getPrimaryTemplate() &&
- GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_final_conversion_not_exact;
- return;
- }
- // C++0x [dcl.init.ref]p5:
- // In the second case, if the reference is an rvalue reference and
- // the second standard conversion sequence of the user-defined
- // conversion sequence includes an lvalue-to-rvalue conversion, the
- // program is ill-formed.
- if (ToType->isRValueReferenceType() &&
- ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_bad_final_conversion;
- return;
- }
- break;
- case ImplicitConversionSequence::BadConversion:
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_bad_final_conversion;
- return;
- default:
- llvm_unreachable(
- "Can only end up with a standard conversion sequence or failure");
- }
- if (!AllowExplicit && Conversion->getExplicitSpecifier().getKind() !=
- ExplicitSpecKind::ResolvedFalse) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_explicit_resolved;
- return;
- }
- if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_enable_if;
- Candidate.DeductionFailure.Data = FailedAttr;
- return;
- }
- if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() &&
- !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_non_default_multiversion_function;
- }
- }
- /// Adds a conversion function template specialization
- /// candidate to the overload set, using template argument deduction
- /// to deduce the template arguments of the conversion function
- /// template from the type that we are converting to (C++
- /// [temp.deduct.conv]).
- void Sema::AddTemplateConversionCandidate(
- FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
- CXXRecordDecl *ActingDC, Expr *From, QualType ToType,
- OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
- bool AllowExplicit, bool AllowResultConversion) {
- assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&
- "Only conversion function templates permitted here");
- if (!CandidateSet.isNewCandidate(FunctionTemplate))
- return;
- TemplateDeductionInfo Info(CandidateSet.getLocation());
- CXXConversionDecl *Specialization = nullptr;
- if (TemplateDeductionResult Result
- = DeduceTemplateArguments(FunctionTemplate, ToType,
- Specialization, Info)) {
- OverloadCandidate &Candidate = CandidateSet.addCandidate();
- Candidate.FoundDecl = FoundDecl;
- Candidate.Function = FunctionTemplate->getTemplatedDecl();
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_bad_deduction;
- Candidate.IsSurrogate = false;
- Candidate.IgnoreObjectArgument = false;
- Candidate.ExplicitCallArguments = 1;
- Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
- Info);
- return;
- }
- // Add the conversion function template specialization produced by
- // template argument deduction as a candidate.
- assert(Specialization && "Missing function template specialization?");
- AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType,
- CandidateSet, AllowObjCConversionOnExplicit,
- AllowExplicit, AllowResultConversion);
- }
- /// AddSurrogateCandidate - Adds a "surrogate" candidate function that
- /// converts the given @c Object to a function pointer via the
- /// conversion function @c Conversion, and then attempts to call it
- /// with the given arguments (C++ [over.call.object]p2-4). Proto is
- /// the type of function that we'll eventually be calling.
- void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
- DeclAccessPair FoundDecl,
- CXXRecordDecl *ActingContext,
- const FunctionProtoType *Proto,
- Expr *Object,
- ArrayRef<Expr *> Args,
- OverloadCandidateSet& CandidateSet) {
- if (!CandidateSet.isNewCandidate(Conversion))
- return;
- // Overload resolution is always an unevaluated context.
- EnterExpressionEvaluationContext Unevaluated(
- *this, Sema::ExpressionEvaluationContext::Unevaluated);
- OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
- Candidate.FoundDecl = FoundDecl;
- Candidate.Function = nullptr;
- Candidate.Surrogate = Conversion;
- Candidate.Viable = true;
- Candidate.IsSurrogate = true;
- Candidate.IgnoreObjectArgument = false;
- Candidate.ExplicitCallArguments = Args.size();
- // Determine the implicit conversion sequence for the implicit
- // object parameter.
- ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization(
- *this, CandidateSet.getLocation(), Object->getType(),
- Object->Classify(Context), Conversion, ActingContext);
- if (ObjectInit.isBad()) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_bad_conversion;
- Candidate.Conversions[0] = ObjectInit;
- return;
- }
- // The first conversion is actually a user-defined conversion whose
- // first conversion is ObjectInit's standard conversion (which is
- // effectively a reference binding). Record it as such.
- Candidate.Conversions[0].setUserDefined();
- Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard;
- Candidate.Conversions[0].UserDefined.EllipsisConversion = false;
- Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false;
- Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion;
- Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl;
- Candidate.Conversions[0].UserDefined.After
- = Candidate.Conversions[0].UserDefined.Before;
- Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion();
- // Find the
- unsigned NumParams = Proto->getNumParams();
- // (C++ 13.3.2p2): A candidate function having fewer than m
- // parameters is viable only if it has an ellipsis in its parameter
- // list (8.3.5).
- if (Args.size() > NumParams && !Proto->isVariadic()) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_too_many_arguments;
- return;
- }
- // Function types don't have any default arguments, so just check if
- // we have enough arguments.
- if (Args.size() < NumParams) {
- // Not enough arguments.
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_too_few_arguments;
- return;
- }
- // Determine the implicit conversion sequences for each of the
- // arguments.
- for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
- if (ArgIdx < NumParams) {
- // (C++ 13.3.2p3): for F to be a viable function, there shall
- // exist for each argument an implicit conversion sequence
- // (13.3.3.1) that converts that argument to the corresponding
- // parameter of F.
- QualType ParamType = Proto->getParamType(ArgIdx);
- Candidate.Conversions[ArgIdx + 1]
- = TryCopyInitialization(*this, Args[ArgIdx], ParamType,
- /*SuppressUserConversions=*/false,
- /*InOverloadResolution=*/false,
- /*AllowObjCWritebackConversion=*/
- getLangOpts().ObjCAutoRefCount);
- if (Candidate.Conversions[ArgIdx + 1].isBad()) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_bad_conversion;
- return;
- }
- } else {
- // (C++ 13.3.2p2): For the purposes of overload resolution, any
- // argument for which there is no corresponding parameter is
- // considered to ""match the ellipsis" (C+ 13.3.3.1.3).
- Candidate.Conversions[ArgIdx + 1].setEllipsis();
- }
- }
- if (EnableIfAttr *FailedAttr = CheckEnableIf(Conversion, None)) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_enable_if;
- Candidate.DeductionFailure.Data = FailedAttr;
- return;
- }
- }
- /// Add all of the non-member operator function declarations in the given
- /// function set to the overload candidate set.
- void Sema::AddNonMemberOperatorCandidates(
- const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args,
- OverloadCandidateSet &CandidateSet,
- TemplateArgumentListInfo *ExplicitTemplateArgs) {
- for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
- NamedDecl *D = F.getDecl()->getUnderlyingDecl();
- ArrayRef<Expr *> FunctionArgs = Args;
- FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D);
- FunctionDecl *FD =
- FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D);
- // Don't consider rewritten functions if we're not rewriting.
- if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD))
- continue;
- assert(!isa<CXXMethodDecl>(FD) &&
- "unqualified operator lookup found a member function");
- if (FunTmpl) {
- AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs,
- FunctionArgs, CandidateSet);
- if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
- AddTemplateOverloadCandidate(
- FunTmpl, F.getPair(), ExplicitTemplateArgs,
- {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false,
- true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed);
- } else {
- if (ExplicitTemplateArgs)
- continue;
- AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet);
- if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD))
- AddOverloadCandidate(FD, F.getPair(),
- {FunctionArgs[1], FunctionArgs[0]}, CandidateSet,
- false, false, true, false, ADLCallKind::NotADL,
- None, OverloadCandidateParamOrder::Reversed);
- }
- }
- }
- /// Add overload candidates for overloaded operators that are
- /// member functions.
- ///
- /// Add the overloaded operator candidates that are member functions
- /// for the operator Op that was used in an operator expression such
- /// as "x Op y". , Args/NumArgs provides the operator arguments, and
- /// CandidateSet will store the added overload candidates. (C++
- /// [over.match.oper]).
- void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op,
- SourceLocation OpLoc,
- ArrayRef<Expr *> Args,
- OverloadCandidateSet &CandidateSet,
- OverloadCandidateParamOrder PO) {
- DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
- // C++ [over.match.oper]p3:
- // For a unary operator @ with an operand of a type whose
- // cv-unqualified version is T1, and for a binary operator @ with
- // a left operand of a type whose cv-unqualified version is T1 and
- // a right operand of a type whose cv-unqualified version is T2,
- // three sets of candidate functions, designated member
- // candidates, non-member candidates and built-in candidates, are
- // constructed as follows:
- QualType T1 = Args[0]->getType();
- // -- If T1 is a complete class type or a class currently being
- // defined, the set of member candidates is the result of the
- // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise,
- // the set of member candidates is empty.
- if (const RecordType *T1Rec = T1->getAs<RecordType>()) {
- // Complete the type if it can be completed.
- if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined())
- return;
- // If the type is neither complete nor being defined, bail out now.
- if (!T1Rec->getDecl()->getDefinition())
- return;
- LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName);
- LookupQualifiedName(Operators, T1Rec->getDecl());
- Operators.suppressDiagnostics();
- for (LookupResult::iterator Oper = Operators.begin(),
- OperEnd = Operators.end();
- Oper != OperEnd;
- ++Oper)
- AddMethodCandidate(Oper.getPair(), Args[0]->getType(),
- Args[0]->Classify(Context), Args.slice(1),
- CandidateSet, /*SuppressUserConversion=*/false, PO);
- }
- }
- /// AddBuiltinCandidate - Add a candidate for a built-in
- /// operator. ResultTy and ParamTys are the result and parameter types
- /// of the built-in candidate, respectively. Args and NumArgs are the
- /// arguments being passed to the candidate. IsAssignmentOperator
- /// should be true when this built-in candidate is an assignment
- /// operator. NumContextualBoolArguments is the number of arguments
- /// (at the beginning of the argument list) that will be contextually
- /// converted to bool.
- void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
- OverloadCandidateSet& CandidateSet,
- bool IsAssignmentOperator,
- unsigned NumContextualBoolArguments) {
- // Overload resolution is always an unevaluated context.
- EnterExpressionEvaluationContext Unevaluated(
- *this, Sema::ExpressionEvaluationContext::Unevaluated);
- // Add this candidate
- OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
- Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none);
- Candidate.Function = nullptr;
- Candidate.IsSurrogate = false;
- Candidate.IgnoreObjectArgument = false;
- std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes);
- // Determine the implicit conversion sequences for each of the
- // arguments.
- Candidate.Viable = true;
- Candidate.ExplicitCallArguments = Args.size();
- for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
- // C++ [over.match.oper]p4:
- // For the built-in assignment operators, conversions of the
- // left operand are restricted as follows:
- // -- no temporaries are introduced to hold the left operand, and
- // -- no user-defined conversions are applied to the left
- // operand to achieve a type match with the left-most
- // parameter of a built-in candidate.
- //
- // We block these conversions by turning off user-defined
- // conversions, since that is the only way that initialization of
- // a reference to a non-class type can occur from something that
- // is not of the same type.
- if (ArgIdx < NumContextualBoolArguments) {
- assert(ParamTys[ArgIdx] == Context.BoolTy &&
- "Contextual conversion to bool requires bool type");
- Candidate.Conversions[ArgIdx]
- = TryContextuallyConvertToBool(*this, Args[ArgIdx]);
- } else {
- Candidate.Conversions[ArgIdx]
- = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx],
- ArgIdx == 0 && IsAssignmentOperator,
- /*InOverloadResolution=*/false,
- /*AllowObjCWritebackConversion=*/
- getLangOpts().ObjCAutoRefCount);
- }
- if (Candidate.Conversions[ArgIdx].isBad()) {
- Candidate.Viable = false;
- Candidate.FailureKind = ovl_fail_bad_conversion;
- break;
- }
- }
- }
- namespace {
- /// BuiltinCandidateTypeSet - A set of types that will be used for the
- /// candidate operator functions for built-in operators (C++
- /// [over.built]). The types are separated into pointer types and
- /// enumeration types.
- class BuiltinCandidateTypeSet {
- /// TypeSet - A set of types.
- typedef llvm::SetVector<QualType, SmallVector<QualType, 8>,
- llvm::SmallPtrSet<QualType, 8>> TypeSet;
- /// PointerTypes - The set of pointer types that will be used in the
- /// built-in candidates.
- TypeSet PointerTypes;
- /// MemberPointerTypes - The set of member pointer types that will be
- /// used in the built-in candidates.
- TypeSet MemberPointerTypes;
- /// EnumerationTypes - The set of enumeration types that will be
- /// used in the built-in candidates.
- TypeSet EnumerationTypes;
- /// The set of vector types that will be used in the built-in
- /// candidates.
- TypeSet VectorTypes;
- /// A flag indicating non-record types are viable candidates
- bool HasNonRecordTypes;
- /// A flag indicating whether either arithmetic or enumeration types
- /// were present in the candidate set.
- bool HasArithmeticOrEnumeralTypes;
- /// A flag indicating whether the nullptr type was present in the
- /// candidate set.
- bool HasNullPtrType;
- /// Sema - The semantic analysis instance where we are building the
- /// candidate type set.
- Sema &SemaRef;
- /// Context - The AST context in which we will build the type sets.
- ASTContext &Context;
- bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
- const Qualifiers &VisibleQuals);
- bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty);
- public:
- /// iterator - Iterates through the types that are part of the set.
- typedef TypeSet::iterator iterator;
- BuiltinCandidateTypeSet(Sema &SemaRef)
- : HasNonRecordTypes(false),
- HasArithmeticOrEnumeralTypes(false),
- HasNullPtrType(false),
- SemaRef(SemaRef),
- Context(SemaRef.Context) { }
- void AddTypesConvertedFrom(QualType Ty,
- SourceLocation Loc,
- bool AllowUserConversions,
- bool AllowExplicitConversions,
- const Qualifiers &VisibleTypeConversionsQuals);
- /// pointer_begin - First pointer type found;
- iterator pointer_begin() { return PointerTypes.begin(); }
- /// pointer_end - Past the last pointer type found;
- iterator pointer_end() { return PointerTypes.end(); }
- /// member_pointer_begin - First member pointer type found;
- iterator member_pointer_begin() { return MemberPointerTypes.begin(); }
- /// member_pointer_end - Past the last member pointer type found;
- iterator member_pointer_end() { return MemberPointerTypes.end(); }
- /// enumeration_begin - First enumeration type found;
- iterator enumeration_begin() { return EnumerationTypes.begin(); }
- /// enumeration_end - Past the last enumeration type found;
- iterator enumeration_end() { return EnumerationTypes.end(); }
- iterator vector_begin() { return VectorTypes.begin(); }
- iterator vector_end() { return VectorTypes.end(); }
- bool hasNonRecordTypes() { return HasNonRecordTypes; }
- bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; }
- bool hasNullPtrType() const { return HasNullPtrType; }
- };
- } // end anonymous namespace
- /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to
- /// the set of pointer types along with any more-qualified variants of
- /// that type. For example, if @p Ty is "int const *", this routine
- /// will add "int const *", "int const volatile *", "int const
- /// restrict *", and "int const volatile restrict *" to the set of
- /// pointer types. Returns true if the add of @p Ty itself succeeded,
- /// false otherwise.
- ///
- /// FIXME: what to do about extended qualifiers?
- bool
- BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty,
- const Qualifiers &VisibleQuals) {
- // Insert this type.
- if (!PointerTypes.insert(Ty))
- return false;
- QualType PointeeTy;
- const PointerType *PointerTy = Ty->getAs<PointerType>();
- bool buildObjCPtr = false;
- if (!PointerTy) {
- const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>();
- PointeeTy = PTy->getPointeeType();
- buildObjCPtr = true;
- } else {
- PointeeTy = PointerTy->getPointeeType();
- }
- // Don't add qualified variants of arrays. For one, they're not allowed
- // (the qualifier would sink to the element type), and for another, the
- // only overload situation where it matters is subscript or pointer +- int,
- // and those shouldn't have qualifier variants anyway.
- if (PointeeTy->isArrayType())
- return true;
- unsigned BaseCVR = PointeeTy.getCVRQualifiers();
- bool hasVolatile = VisibleQuals.hasVolatile();
- bool hasRestrict = VisibleQuals.hasRestrict();
- // Iterate through all strict supersets of BaseCVR.
- for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
- if ((CVR | BaseCVR) != CVR) continue;
- // Skip over volatile if no volatile found anywhere in the types.
- if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue;
- // Skip over restrict if no restrict found anywhere in the types, or if
- // the type cannot be restrict-qualified.
- if ((CVR & Qualifiers::Restrict) &&
- (!hasRestrict ||
- (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType()))))
- continue;
- // Build qualified pointee type.
- QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
- // Build qualified pointer type.
- QualType QPointerTy;
- if (!buildObjCPtr)
- QPointerTy = Context.getPointerType(QPointeeTy);
- else
- QPointerTy = Context.getObjCObjectPointerType(QPointeeTy);
- // Insert qualified pointer type.
- PointerTypes.insert(QPointerTy);
- }
- return true;
- }
- /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty
- /// to the set of pointer types along with any more-qualified variants of
- /// that type. For example, if @p Ty is "int const *", this routine
- /// will add "int const *", "int const volatile *", "int const
- /// restrict *", and "int const volatile restrict *" to the set of
- /// pointer types. Returns true if the add of @p Ty itself succeeded,
- /// false otherwise.
- ///
- /// FIXME: what to do about extended qualifiers?
- bool
- BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants(
- QualType Ty) {
- // Insert this type.
- if (!MemberPointerTypes.insert(Ty))
- return false;
- const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>();
- assert(PointerTy && "type was not a member pointer type!");
- QualType PointeeTy = PointerTy->getPointeeType();
- // Don't add qualified variants of arrays. For one, they're not allowed
- // (the qualifier would sink to the element type), and for another, the
- // only overload situation where it matters is subscript or pointer +- int,
- // and those shouldn't have qualifier variants anyway.
- if (PointeeTy->isArrayType())
- return true;
- const Type *ClassTy = PointerTy->getClass();
- // Iterate through all strict supersets of the pointee type's CVR
- // qualifiers.
- unsigned BaseCVR = PointeeTy.getCVRQualifiers();
- for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) {
- if ((CVR | BaseCVR) != CVR) continue;
- QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR);
- MemberPointerTypes.insert(
- Context.getMemberPointerType(QPointeeTy, ClassTy));
- }
- return true;
- }
- /// AddTypesConvertedFrom - Add each of the types to which the type @p
- /// Ty can be implicit converted to the given set of @p Types. We're
- /// primarily interested in pointer types and enumeration types. We also
- /// take member pointer types, for the conditional operator.
- /// AllowUserConversions is true if we should look at the conversion
- /// functions of a class type, and AllowExplicitConversions if we
- /// should also include the explicit conversion functions of a class
- /// type.
- void
- BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty,
- SourceLocation Loc,
- bool AllowUserConversions,
- bool AllowExplicitConversions,
- const Qualifiers &VisibleQuals) {
- // Only deal with canonical types.
- Ty = Context.getCanonicalType(Ty);
- // Look through reference types; they aren't part of the type of an
- // expression for the purposes of conversions.
- if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>())
- Ty = RefTy->getPointeeType();
- // If we're dealing with an array type, decay to the pointer.
- if (Ty->isArrayType())
- Ty = SemaRef.Context.getArrayDecayedType(Ty);
- // Otherwise, we don't care about qualifiers on the type.
- Ty = Ty.getLocalUnqualifiedType();
- // Flag if we ever add a non-record type.
- const RecordType *TyRec = Ty->getAs<RecordType>();
- HasNonRecordTypes = HasNonRecordTypes || !TyRec;
- // Flag if we encounter an arithmetic type.
- HasArithmeticOrEnumeralTypes =
- HasArithmeticOrEnumeralTypes || Ty->isArithmeticType();
- if (Ty->isObjCIdType() || Ty->isObjCClassType())
- PointerTypes.insert(Ty);
- else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) {
- // Insert our type, and its more-qualified variants, into the set
- // of types.
- if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals))
- return;
- } else if (Ty->isMemberPointerType()) {
- // Member pointers are far easier, since the pointee can't be converted.
- if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty))
- return;
- } else if (Ty->isEnumeralType()) {
- HasArithmeticOrEnumeralTypes = true;
- EnumerationTypes.insert(Ty);
- } else if (Ty->isVectorType()) {
- // We treat vector types as arithmetic types in many contexts as an
- // extension.
- HasArithmeticOrEnumeralTypes = true;
- VectorTypes.insert(Ty);
- } else if (Ty->isNullPtrType()) {
- HasNullPtrType = true;
- } else if (AllowUserConversions && TyRec) {
- // No conversion functions in incomplete types.
- if (!SemaRef.isCompleteType(Loc, Ty))
- return;
- CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
- for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
- if (isa<UsingShadowDecl>(D))
- D = cast<UsingShadowDecl>(D)->getTargetDecl();
- // Skip conversion function templates; they don't tell us anything
- // about which builtin types we can convert to.
- if (isa<FunctionTemplateDecl>(D))
- continue;
- CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
- if (AllowExplicitConversions || !Conv->isExplicit()) {
- AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false,
- VisibleQuals);
- }
- }
- }
- }
- /// Helper function for adjusting address spaces for the pointer or reference
- /// operands of builtin operators depending on the argument.
- static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T,
- Expr *Arg) {
- return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace());
- }
- /// Helper function for AddBuiltinOperatorCandidates() that adds
- /// the volatile- and non-volatile-qualified assignment operators for the
- /// given type to the candidate set.
- static void AddBuiltinAssignmentOperatorCandidates(Sema &S,
- QualType T,
- ArrayRef<Expr *> Args,
- OverloadCandidateSet &CandidateSet) {
- QualType ParamTypes[2];
- // T& operator=(T&, T)
- ParamTypes[0] = S.Context.getLValueReferenceType(
- AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0]));
- ParamTypes[1] = T;
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
- /*IsAssignmentOperator=*/true);
- if (!S.Context.getCanonicalType(T).isVolatileQualified()) {
- // volatile T& operator=(volatile T&, T)
- ParamTypes[0] = S.Context.getLValueReferenceType(
- AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T),
- Args[0]));
- ParamTypes[1] = T;
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
- /*IsAssignmentOperator=*/true);
- }
- }
- /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers,
- /// if any, found in visible type conversion functions found in ArgExpr's type.
- static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) {
- Qualifiers VRQuals;
- const RecordType *TyRec;
- if (const MemberPointerType *RHSMPType =
- ArgExpr->getType()->getAs<MemberPointerType>())
- TyRec = RHSMPType->getClass()->getAs<RecordType>();
- else
- TyRec = ArgExpr->getType()->getAs<RecordType>();
- if (!TyRec) {
- // Just to be safe, assume the worst case.
- VRQuals.addVolatile();
- VRQuals.addRestrict();
- return VRQuals;
- }
- CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl());
- if (!ClassDecl->hasDefinition())
- return VRQuals;
- for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) {
- if (isa<UsingShadowDecl>(D))
- D = cast<UsingShadowDecl>(D)->getTargetDecl();
- if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) {
- QualType CanTy = Context.getCanonicalType(Conv->getConversionType());
- if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>())
- CanTy = ResTypeRef->getPointeeType();
- // Need to go down the pointer/mempointer chain and add qualifiers
- // as see them.
- bool done = false;
- while (!done) {
- if (CanTy.isRestrictQualified())
- VRQuals.addRestrict();
- if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>())
- CanTy = ResTypePtr->getPointeeType();
- else if (const MemberPointerType *ResTypeMPtr =
- CanTy->getAs<MemberPointerType>())
- CanTy = ResTypeMPtr->getPointeeType();
- else
- done = true;
- if (CanTy.isVolatileQualified())
- VRQuals.addVolatile();
- if (VRQuals.hasRestrict() && VRQuals.hasVolatile())
- return VRQuals;
- }
- }
- }
- return VRQuals;
- }
- namespace {
- /// Helper class to manage the addition of builtin operator overload
- /// candidates. It provides shared state and utility methods used throughout
- /// the process, as well as a helper method to add each group of builtin
- /// operator overloads from the standard to a candidate set.
- class BuiltinOperatorOverloadBuilder {
- // Common instance state available to all overload candidate addition methods.
- Sema &S;
- ArrayRef<Expr *> Args;
- Qualifiers VisibleTypeConversionsQuals;
- bool HasArithmeticOrEnumeralCandidateType;
- SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes;
- OverloadCandidateSet &CandidateSet;
- static constexpr int ArithmeticTypesCap = 24;
- SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes;
- // Define some indices used to iterate over the arithmetic types in
- // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic
- // types are that preserved by promotion (C++ [over.built]p2).
- unsigned FirstIntegralType,
- LastIntegralType;
- unsigned FirstPromotedIntegralType,
- LastPromotedIntegralType;
- unsigned FirstPromotedArithmeticType,
- LastPromotedArithmeticType;
- unsigned NumArithmeticTypes;
- void InitArithmeticTypes() {
- // Start of promoted types.
- FirstPromotedArithmeticType = 0;
- ArithmeticTypes.push_back(S.Context.FloatTy);
- ArithmeticTypes.push_back(S.Context.DoubleTy);
- ArithmeticTypes.push_back(S.Context.LongDoubleTy);
- if (S.Context.getTargetInfo().hasFloat128Type())
- ArithmeticTypes.push_back(S.Context.Float128Ty);
- // Start of integral types.
- FirstIntegralType = ArithmeticTypes.size();
- FirstPromotedIntegralType = ArithmeticTypes.size();
- ArithmeticTypes.push_back(S.Context.IntTy);
- ArithmeticTypes.push_back(S.Context.LongTy);
- ArithmeticTypes.push_back(S.Context.LongLongTy);
- if (S.Context.getTargetInfo().hasInt128Type())
- ArithmeticTypes.push_back(S.Context.Int128Ty);
- ArithmeticTypes.push_back(S.Context.UnsignedIntTy);
- ArithmeticTypes.push_back(S.Context.UnsignedLongTy);
- ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy);
- if (S.Context.getTargetInfo().hasInt128Type())
- ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty);
- LastPromotedIntegralType = ArithmeticTypes.size();
- LastPromotedArithmeticType = ArithmeticTypes.size();
- // End of promoted types.
- ArithmeticTypes.push_back(S.Context.BoolTy);
- ArithmeticTypes.push_back(S.Context.CharTy);
- ArithmeticTypes.push_back(S.Context.WCharTy);
- if (S.Context.getLangOpts().Char8)
- ArithmeticTypes.push_back(S.Context.Char8Ty);
- ArithmeticTypes.push_back(S.Context.Char16Ty);
- ArithmeticTypes.push_back(S.Context.Char32Ty);
- ArithmeticTypes.push_back(S.Context.SignedCharTy);
- ArithmeticTypes.push_back(S.Context.ShortTy);
- ArithmeticTypes.push_back(S.Context.UnsignedCharTy);
- ArithmeticTypes.push_back(S.Context.UnsignedShortTy);
- LastIntegralType = ArithmeticTypes.size();
- NumArithmeticTypes = ArithmeticTypes.size();
- // End of integral types.
- // FIXME: What about complex? What about half?
- assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&
- "Enough inline storage for all arithmetic types.");
- }
- /// Helper method to factor out the common pattern of adding overloads
- /// for '++' and '--' builtin operators.
- void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy,
- bool HasVolatile,
- bool HasRestrict) {
- QualType ParamTypes[2] = {
- S.Context.getLValueReferenceType(CandidateTy),
- S.Context.IntTy
- };
- // Non-volatile version.
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- // Use a heuristic to reduce number of builtin candidates in the set:
- // add volatile version only if there are conversions to a volatile type.
- if (HasVolatile) {
- ParamTypes[0] =
- S.Context.getLValueReferenceType(
- S.Context.getVolatileType(CandidateTy));
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- }
- // Add restrict version only if there are conversions to a restrict type
- // and our candidate type is a non-restrict-qualified pointer.
- if (HasRestrict && CandidateTy->isAnyPointerType() &&
- !CandidateTy.isRestrictQualified()) {
- ParamTypes[0]
- = S.Context.getLValueReferenceType(
- S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict));
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- if (HasVolatile) {
- ParamTypes[0]
- = S.Context.getLValueReferenceType(
- S.Context.getCVRQualifiedType(CandidateTy,
- (Qualifiers::Volatile |
- Qualifiers::Restrict)));
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- }
- }
- }
- public:
- BuiltinOperatorOverloadBuilder(
- Sema &S, ArrayRef<Expr *> Args,
- Qualifiers VisibleTypeConversionsQuals,
- bool HasArithmeticOrEnumeralCandidateType,
- SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes,
- OverloadCandidateSet &CandidateSet)
- : S(S), Args(Args),
- VisibleTypeConversionsQuals(VisibleTypeConversionsQuals),
- HasArithmeticOrEnumeralCandidateType(
- HasArithmeticOrEnumeralCandidateType),
- CandidateTypes(CandidateTypes),
- CandidateSet(CandidateSet) {
- InitArithmeticTypes();
- }
- // Increment is deprecated for bool since C++17.
- //
- // C++ [over.built]p3:
- //
- // For every pair (T, VQ), where T is an arithmetic type other
- // than bool, and VQ is either volatile or empty, there exist
- // candidate operator functions of the form
- //
- // VQ T& operator++(VQ T&);
- // T operator++(VQ T&, int);
- //
- // C++ [over.built]p4:
- //
- // For every pair (T, VQ), where T is an arithmetic type other
- // than bool, and VQ is either volatile or empty, there exist
- // candidate operator functions of the form
- //
- // VQ T& operator--(VQ T&);
- // T operator--(VQ T&, int);
- void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) {
- if (!HasArithmeticOrEnumeralCandidateType)
- return;
- for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) {
- const auto TypeOfT = ArithmeticTypes[Arith];
- if (TypeOfT == S.Context.BoolTy) {
- if (Op == OO_MinusMinus)
- continue;
- if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17)
- continue;
- }
- addPlusPlusMinusMinusStyleOverloads(
- TypeOfT,
- VisibleTypeConversionsQuals.hasVolatile(),
- VisibleTypeConversionsQuals.hasRestrict());
- }
- }
- // C++ [over.built]p5:
- //
- // For every pair (T, VQ), where T is a cv-qualified or
- // cv-unqualified object type, and VQ is either volatile or
- // empty, there exist candidate operator functions of the form
- //
- // T*VQ& operator++(T*VQ&);
- // T*VQ& operator--(T*VQ&);
- // T* operator++(T*VQ&, int);
- // T* operator--(T*VQ&, int);
- void addPlusPlusMinusMinusPointerOverloads() {
- for (BuiltinCandidateTypeSet::iterator
- Ptr = CandidateTypes[0].pointer_begin(),
- PtrEnd = CandidateTypes[0].pointer_end();
- Ptr != PtrEnd; ++Ptr) {
- // Skip pointer types that aren't pointers to object types.
- if (!(*Ptr)->getPointeeType()->isObjectType())
- continue;
- addPlusPlusMinusMinusStyleOverloads(*Ptr,
- (!(*Ptr).isVolatileQualified() &&
- VisibleTypeConversionsQuals.hasVolatile()),
- (!(*Ptr).isRestrictQualified() &&
- VisibleTypeConversionsQuals.hasRestrict()));
- }
- }
- // C++ [over.built]p6:
- // For every cv-qualified or cv-unqualified object type T, there
- // exist candidate operator functions of the form
- //
- // T& operator*(T*);
- //
- // C++ [over.built]p7:
- // For every function type T that does not have cv-qualifiers or a
- // ref-qualifier, there exist candidate operator functions of the form
- // T& operator*(T*);
- void addUnaryStarPointerOverloads() {
- for (BuiltinCandidateTypeSet::iterator
- Ptr = CandidateTypes[0].pointer_begin(),
- PtrEnd = CandidateTypes[0].pointer_end();
- Ptr != PtrEnd; ++Ptr) {
- QualType ParamTy = *Ptr;
- QualType PointeeTy = ParamTy->getPointeeType();
- if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType())
- continue;
- if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>())
- if (Proto->getMethodQuals() || Proto->getRefQualifier())
- continue;
- S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
- }
- }
- // C++ [over.built]p9:
- // For every promoted arithmetic type T, there exist candidate
- // operator functions of the form
- //
- // T operator+(T);
- // T operator-(T);
- void addUnaryPlusOrMinusArithmeticOverloads() {
- if (!HasArithmeticOrEnumeralCandidateType)
- return;
- for (unsigned Arith = FirstPromotedArithmeticType;
- Arith < LastPromotedArithmeticType; ++Arith) {
- QualType ArithTy = ArithmeticTypes[Arith];
- S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet);
- }
- // Extension: We also add these operators for vector types.
- for (BuiltinCandidateTypeSet::iterator
- Vec = CandidateTypes[0].vector_begin(),
- VecEnd = CandidateTypes[0].vector_end();
- Vec != VecEnd; ++Vec) {
- QualType VecTy = *Vec;
- S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
- }
- }
- // C++ [over.built]p8:
- // For every type T, there exist candidate operator functions of
- // the form
- //
- // T* operator+(T*);
- void addUnaryPlusPointerOverloads() {
- for (BuiltinCandidateTypeSet::iterator
- Ptr = CandidateTypes[0].pointer_begin(),
- PtrEnd = CandidateTypes[0].pointer_end();
- Ptr != PtrEnd; ++Ptr) {
- QualType ParamTy = *Ptr;
- S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet);
- }
- }
- // C++ [over.built]p10:
- // For every promoted integral type T, there exist candidate
- // operator functions of the form
- //
- // T operator~(T);
- void addUnaryTildePromotedIntegralOverloads() {
- if (!HasArithmeticOrEnumeralCandidateType)
- return;
- for (unsigned Int = FirstPromotedIntegralType;
- Int < LastPromotedIntegralType; ++Int) {
- QualType IntTy = ArithmeticTypes[Int];
- S.AddBuiltinCandidate(&IntTy, Args, CandidateSet);
- }
- // Extension: We also add this operator for vector types.
- for (BuiltinCandidateTypeSet::iterator
- Vec = CandidateTypes[0].vector_begin(),
- VecEnd = CandidateTypes[0].vector_end();
- Vec != VecEnd; ++Vec) {
- QualType VecTy = *Vec;
- S.AddBuiltinCandidate(&VecTy, Args, CandidateSet);
- }
- }
- // C++ [over.match.oper]p16:
- // For every pointer to member type T or type std::nullptr_t, there
- // exist candidate operator functions of the form
- //
- // bool operator==(T,T);
- // bool operator!=(T,T);
- void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() {
- /// Set of (canonical) types that we've already handled.
- llvm::SmallPtrSet<QualType, 8> AddedTypes;
- for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
- for (BuiltinCandidateTypeSet::iterator
- MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
- MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
- MemPtr != MemPtrEnd;
- ++MemPtr) {
- // Don't add the same builtin candidate twice.
- if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
- continue;
- QualType ParamTypes[2] = { *MemPtr, *MemPtr };
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- }
- if (CandidateTypes[ArgIdx].hasNullPtrType()) {
- CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy);
- if (AddedTypes.insert(NullPtrTy).second) {
- QualType ParamTypes[2] = { NullPtrTy, NullPtrTy };
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- }
- }
- }
- }
- // C++ [over.built]p15:
- //
- // For every T, where T is an enumeration type or a pointer type,
- // there exist candidate operator functions of the form
- //
- // bool operator<(T, T);
- // bool operator>(T, T);
- // bool operator<=(T, T);
- // bool operator>=(T, T);
- // bool operator==(T, T);
- // bool operator!=(T, T);
- // R operator<=>(T, T)
- void addGenericBinaryPointerOrEnumeralOverloads() {
- // C++ [over.match.oper]p3:
- // [...]the built-in candidates include all of the candidate operator
- // functions defined in 13.6 that, compared to the given operator, [...]
- // do not have the same parameter-type-list as any non-template non-member
- // candidate.
- //
- // Note that in practice, this only affects enumeration types because there
- // aren't any built-in candidates of record type, and a user-defined operator
- // must have an operand of record or enumeration type. Also, the only other
- // overloaded operator with enumeration arguments, operator=,
- // cannot be overloaded for enumeration types, so this is the only place
- // where we must suppress candidates like this.
- llvm::DenseSet<std::pair<CanQualType, CanQualType> >
- UserDefinedBinaryOperators;
- for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
- if (CandidateTypes[ArgIdx].enumeration_begin() !=
- CandidateTypes[ArgIdx].enumeration_end()) {
- for (OverloadCandidateSet::iterator C = CandidateSet.begin(),
- CEnd = CandidateSet.end();
- C != CEnd; ++C) {
- if (!C->Viable || !C->Function || C->Function->getNumParams() != 2)
- continue;
- if (C->Function->isFunctionTemplateSpecialization())
- continue;
- // We interpret "same parameter-type-list" as applying to the
- // "synthesized candidate, with the order of the two parameters
- // reversed", not to the original function.
- bool Reversed = C->RewriteKind & CRK_Reversed;
- QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0)
- ->getType()
- .getUnqualifiedType();
- QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1)
- ->getType()
- .getUnqualifiedType();
- // Skip if either parameter isn't of enumeral type.
- if (!FirstParamType->isEnumeralType() ||
- !SecondParamType->isEnumeralType())
- continue;
- // Add this operator to the set of known user-defined operators.
- UserDefinedBinaryOperators.insert(
- std::make_pair(S.Context.getCanonicalType(FirstParamType),
- S.Context.getCanonicalType(SecondParamType)));
- }
- }
- }
- /// Set of (canonical) types that we've already handled.
- llvm::SmallPtrSet<QualType, 8> AddedTypes;
- for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
- for (BuiltinCandidateTypeSet::iterator
- Ptr = CandidateTypes[ArgIdx].pointer_begin(),
- PtrEnd = CandidateTypes[ArgIdx].pointer_end();
- Ptr != PtrEnd; ++Ptr) {
- // Don't add the same builtin candidate twice.
- if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
- continue;
- QualType ParamTypes[2] = { *Ptr, *Ptr };
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- }
- for (BuiltinCandidateTypeSet::iterator
- Enum = CandidateTypes[ArgIdx].enumeration_begin(),
- EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
- Enum != EnumEnd; ++Enum) {
- CanQualType CanonType = S.Context.getCanonicalType(*Enum);
- // Don't add the same builtin candidate twice, or if a user defined
- // candidate exists.
- if (!AddedTypes.insert(CanonType).second ||
- UserDefinedBinaryOperators.count(std::make_pair(CanonType,
- CanonType)))
- continue;
- QualType ParamTypes[2] = { *Enum, *Enum };
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- }
- }
- }
- // C++ [over.built]p13:
- //
- // For every cv-qualified or cv-unqualified object type T
- // there exist candidate operator functions of the form
- //
- // T* operator+(T*, ptrdiff_t);
- // T& operator[](T*, ptrdiff_t); [BELOW]
- // T* operator-(T*, ptrdiff_t);
- // T* operator+(ptrdiff_t, T*);
- // T& operator[](ptrdiff_t, T*); [BELOW]
- //
- // C++ [over.built]p14:
- //
- // For every T, where T is a pointer to object type, there
- // exist candidate operator functions of the form
- //
- // ptrdiff_t operator-(T, T);
- void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) {
- /// Set of (canonical) types that we've already handled.
- llvm::SmallPtrSet<QualType, 8> AddedTypes;
- for (int Arg = 0; Arg < 2; ++Arg) {
- QualType AsymmetricParamTypes[2] = {
- S.Context.getPointerDiffType(),
- S.Context.getPointerDiffType(),
- };
- for (BuiltinCandidateTypeSet::iterator
- Ptr = CandidateTypes[Arg].pointer_begin(),
- PtrEnd = CandidateTypes[Arg].pointer_end();
- Ptr != PtrEnd; ++Ptr) {
- QualType PointeeTy = (*Ptr)->getPointeeType();
- if (!PointeeTy->isObjectType())
- continue;
- AsymmetricParamTypes[Arg] = *Ptr;
- if (Arg == 0 || Op == OO_Plus) {
- // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t)
- // T* operator+(ptrdiff_t, T*);
- S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet);
- }
- if (Op == OO_Minus) {
- // ptrdiff_t operator-(T, T);
- if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
- continue;
- QualType ParamTypes[2] = { *Ptr, *Ptr };
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- }
- }
- }
- }
- // C++ [over.built]p12:
- //
- // For every pair of promoted arithmetic types L and R, there
- // exist candidate operator functions of the form
- //
- // LR operator*(L, R);
- // LR operator/(L, R);
- // LR operator+(L, R);
- // LR operator-(L, R);
- // bool operator<(L, R);
- // bool operator>(L, R);
- // bool operator<=(L, R);
- // bool operator>=(L, R);
- // bool operator==(L, R);
- // bool operator!=(L, R);
- //
- // where LR is the result of the usual arithmetic conversions
- // between types L and R.
- //
- // C++ [over.built]p24:
- //
- // For every pair of promoted arithmetic types L and R, there exist
- // candidate operator functions of the form
- //
- // LR operator?(bool, L, R);
- //
- // where LR is the result of the usual arithmetic conversions
- // between types L and R.
- // Our candidates ignore the first parameter.
- void addGenericBinaryArithmeticOverloads() {
- if (!HasArithmeticOrEnumeralCandidateType)
- return;
- for (unsigned Left = FirstPromotedArithmeticType;
- Left < LastPromotedArithmeticType; ++Left) {
- for (unsigned Right = FirstPromotedArithmeticType;
- Right < LastPromotedArithmeticType; ++Right) {
- QualType LandR[2] = { ArithmeticTypes[Left],
- ArithmeticTypes[Right] };
- S.AddBuiltinCandidate(LandR, Args, CandidateSet);
- }
- }
- // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the
- // conditional operator for vector types.
- for (BuiltinCandidateTypeSet::iterator
- Vec1 = CandidateTypes[0].vector_begin(),
- Vec1End = CandidateTypes[0].vector_end();
- Vec1 != Vec1End; ++Vec1) {
- for (BuiltinCandidateTypeSet::iterator
- Vec2 = CandidateTypes[1].vector_begin(),
- Vec2End = CandidateTypes[1].vector_end();
- Vec2 != Vec2End; ++Vec2) {
- QualType LandR[2] = { *Vec1, *Vec2 };
- S.AddBuiltinCandidate(LandR, Args, CandidateSet);
- }
- }
- }
- // C++2a [over.built]p14:
- //
- // For every integral type T there exists a candidate operator function
- // of the form
- //
- // std::strong_ordering operator<=>(T, T)
- //
- // C++2a [over.built]p15:
- //
- // For every pair of floating-point types L and R, there exists a candidate
- // operator function of the form
- //
- // std::partial_ordering operator<=>(L, R);
- //
- // FIXME: The current specification for integral types doesn't play nice with
- // the direction of p0946r0, which allows mixed integral and unscoped-enum
- // comparisons. Under the current spec this can lead to ambiguity during
- // overload resolution. For example:
- //
- // enum A : int {a};
- // auto x = (a <=> (long)42);
- //
- // error: call is ambiguous for arguments 'A' and 'long'.
- // note: candidate operator<=>(int, int)
- // note: candidate operator<=>(long, long)
- //
- // To avoid this error, this function deviates from the specification and adds
- // the mixed overloads `operator<=>(L, R)` where L and R are promoted
- // arithmetic types (the same as the generic relational overloads).
- //
- // For now this function acts as a placeholder.
- void addThreeWayArithmeticOverloads() {
- addGenericBinaryArithmeticOverloads();
- }
- // C++ [over.built]p17:
- //
- // For every pair of promoted integral types L and R, there
- // exist candidate operator functions of the form
- //
- // LR operator%(L, R);
- // LR operator&(L, R);
- // LR operator^(L, R);
- // LR operator|(L, R);
- // L operator<<(L, R);
- // L operator>>(L, R);
- //
- // where LR is the result of the usual arithmetic conversions
- // between types L and R.
- void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) {
- if (!HasArithmeticOrEnumeralCandidateType)
- return;
- for (unsigned Left = FirstPromotedIntegralType;
- Left < LastPromotedIntegralType; ++Left) {
- for (unsigned Right = FirstPromotedIntegralType;
- Right < LastPromotedIntegralType; ++Right) {
- QualType LandR[2] = { ArithmeticTypes[Left],
- ArithmeticTypes[Right] };
- S.AddBuiltinCandidate(LandR, Args, CandidateSet);
- }
- }
- }
- // C++ [over.built]p20:
- //
- // For every pair (T, VQ), where T is an enumeration or
- // pointer to member type and VQ is either volatile or
- // empty, there exist candidate operator functions of the form
- //
- // VQ T& operator=(VQ T&, T);
- void addAssignmentMemberPointerOrEnumeralOverloads() {
- /// Set of (canonical) types that we've already handled.
- llvm::SmallPtrSet<QualType, 8> AddedTypes;
- for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
- for (BuiltinCandidateTypeSet::iterator
- Enum = CandidateTypes[ArgIdx].enumeration_begin(),
- EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
- Enum != EnumEnd; ++Enum) {
- if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
- continue;
- AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, CandidateSet);
- }
- for (BuiltinCandidateTypeSet::iterator
- MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
- MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
- MemPtr != MemPtrEnd; ++MemPtr) {
- if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
- continue;
- AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, CandidateSet);
- }
- }
- }
- // C++ [over.built]p19:
- //
- // For every pair (T, VQ), where T is any type and VQ is either
- // volatile or empty, there exist candidate operator functions
- // of the form
- //
- // T*VQ& operator=(T*VQ&, T*);
- //
- // C++ [over.built]p21:
- //
- // For every pair (T, VQ), where T is a cv-qualified or
- // cv-unqualified object type and VQ is either volatile or
- // empty, there exist candidate operator functions of the form
- //
- // T*VQ& operator+=(T*VQ&, ptrdiff_t);
- // T*VQ& operator-=(T*VQ&, ptrdiff_t);
- void addAssignmentPointerOverloads(bool isEqualOp) {
- /// Set of (canonical) types that we've already handled.
- llvm::SmallPtrSet<QualType, 8> AddedTypes;
- for (BuiltinCandidateTypeSet::iterator
- Ptr = CandidateTypes[0].pointer_begin(),
- PtrEnd = CandidateTypes[0].pointer_end();
- Ptr != PtrEnd; ++Ptr) {
- // If this is operator=, keep track of the builtin candidates we added.
- if (isEqualOp)
- AddedTypes.insert(S.Context.getCanonicalType(*Ptr));
- else if (!(*Ptr)->getPointeeType()->isObjectType())
- continue;
- // non-volatile version
- QualType ParamTypes[2] = {
- S.Context.getLValueReferenceType(*Ptr),
- isEqualOp ? *Ptr : S.Context.getPointerDiffType(),
- };
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
- /*IsAssignmentOperator=*/ isEqualOp);
- bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
- VisibleTypeConversionsQuals.hasVolatile();
- if (NeedVolatile) {
- // volatile version
- ParamTypes[0] =
- S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
- /*IsAssignmentOperator=*/isEqualOp);
- }
- if (!(*Ptr).isRestrictQualified() &&
- VisibleTypeConversionsQuals.hasRestrict()) {
- // restrict version
- ParamTypes[0]
- = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
- /*IsAssignmentOperator=*/isEqualOp);
- if (NeedVolatile) {
- // volatile restrict version
- ParamTypes[0]
- = S.Context.getLValueReferenceType(
- S.Context.getCVRQualifiedType(*Ptr,
- (Qualifiers::Volatile |
- Qualifiers::Restrict)));
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
- /*IsAssignmentOperator=*/isEqualOp);
- }
- }
- }
- if (isEqualOp) {
- for (BuiltinCandidateTypeSet::iterator
- Ptr = CandidateTypes[1].pointer_begin(),
- PtrEnd = CandidateTypes[1].pointer_end();
- Ptr != PtrEnd; ++Ptr) {
- // Make sure we don't add the same candidate twice.
- if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
- continue;
- QualType ParamTypes[2] = {
- S.Context.getLValueReferenceType(*Ptr),
- *Ptr,
- };
- // non-volatile version
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
- /*IsAssignmentOperator=*/true);
- bool NeedVolatile = !(*Ptr).isVolatileQualified() &&
- VisibleTypeConversionsQuals.hasVolatile();
- if (NeedVolatile) {
- // volatile version
- ParamTypes[0] =
- S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr));
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
- /*IsAssignmentOperator=*/true);
- }
- if (!(*Ptr).isRestrictQualified() &&
- VisibleTypeConversionsQuals.hasRestrict()) {
- // restrict version
- ParamTypes[0]
- = S.Context.getLValueReferenceType(S.Context.getRestrictType(*Ptr));
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
- /*IsAssignmentOperator=*/true);
- if (NeedVolatile) {
- // volatile restrict version
- ParamTypes[0]
- = S.Context.getLValueReferenceType(
- S.Context.getCVRQualifiedType(*Ptr,
- (Qualifiers::Volatile |
- Qualifiers::Restrict)));
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
- /*IsAssignmentOperator=*/true);
- }
- }
- }
- }
- }
- // C++ [over.built]p18:
- //
- // For every triple (L, VQ, R), where L is an arithmetic type,
- // VQ is either volatile or empty, and R is a promoted
- // arithmetic type, there exist candidate operator functions of
- // the form
- //
- // VQ L& operator=(VQ L&, R);
- // VQ L& operator*=(VQ L&, R);
- // VQ L& operator/=(VQ L&, R);
- // VQ L& operator+=(VQ L&, R);
- // VQ L& operator-=(VQ L&, R);
- void addAssignmentArithmeticOverloads(bool isEqualOp) {
- if (!HasArithmeticOrEnumeralCandidateType)
- return;
- for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) {
- for (unsigned Right = FirstPromotedArithmeticType;
- Right < LastPromotedArithmeticType; ++Right) {
- QualType ParamTypes[2];
- ParamTypes[1] = ArithmeticTypes[Right];
- auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
- S, ArithmeticTypes[Left], Args[0]);
- // Add this built-in operator as a candidate (VQ is empty).
- ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
- /*IsAssignmentOperator=*/isEqualOp);
- // Add this built-in operator as a candidate (VQ is 'volatile').
- if (VisibleTypeConversionsQuals.hasVolatile()) {
- ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy);
- ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
- /*IsAssignmentOperator=*/isEqualOp);
- }
- }
- }
- // Extension: Add the binary operators =, +=, -=, *=, /= for vector types.
- for (BuiltinCandidateTypeSet::iterator
- Vec1 = CandidateTypes[0].vector_begin(),
- Vec1End = CandidateTypes[0].vector_end();
- Vec1 != Vec1End; ++Vec1) {
- for (BuiltinCandidateTypeSet::iterator
- Vec2 = CandidateTypes[1].vector_begin(),
- Vec2End = CandidateTypes[1].vector_end();
- Vec2 != Vec2End; ++Vec2) {
- QualType ParamTypes[2];
- ParamTypes[1] = *Vec2;
- // Add this built-in operator as a candidate (VQ is empty).
- ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1);
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
- /*IsAssignmentOperator=*/isEqualOp);
- // Add this built-in operator as a candidate (VQ is 'volatile').
- if (VisibleTypeConversionsQuals.hasVolatile()) {
- ParamTypes[0] = S.Context.getVolatileType(*Vec1);
- ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
- /*IsAssignmentOperator=*/isEqualOp);
- }
- }
- }
- }
- // C++ [over.built]p22:
- //
- // For every triple (L, VQ, R), where L is an integral type, VQ
- // is either volatile or empty, and R is a promoted integral
- // type, there exist candidate operator functions of the form
- //
- // VQ L& operator%=(VQ L&, R);
- // VQ L& operator<<=(VQ L&, R);
- // VQ L& operator>>=(VQ L&, R);
- // VQ L& operator&=(VQ L&, R);
- // VQ L& operator^=(VQ L&, R);
- // VQ L& operator|=(VQ L&, R);
- void addAssignmentIntegralOverloads() {
- if (!HasArithmeticOrEnumeralCandidateType)
- return;
- for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) {
- for (unsigned Right = FirstPromotedIntegralType;
- Right < LastPromotedIntegralType; ++Right) {
- QualType ParamTypes[2];
- ParamTypes[1] = ArithmeticTypes[Right];
- auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType(
- S, ArithmeticTypes[Left], Args[0]);
- // Add this built-in operator as a candidate (VQ is empty).
- ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy);
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- if (VisibleTypeConversionsQuals.hasVolatile()) {
- // Add this built-in operator as a candidate (VQ is 'volatile').
- ParamTypes[0] = LeftBaseTy;
- ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]);
- ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]);
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- }
- }
- }
- }
- // C++ [over.operator]p23:
- //
- // There also exist candidate operator functions of the form
- //
- // bool operator!(bool);
- // bool operator&&(bool, bool);
- // bool operator||(bool, bool);
- void addExclaimOverload() {
- QualType ParamTy = S.Context.BoolTy;
- S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet,
- /*IsAssignmentOperator=*/false,
- /*NumContextualBoolArguments=*/1);
- }
- void addAmpAmpOrPipePipeOverload() {
- QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy };
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet,
- /*IsAssignmentOperator=*/false,
- /*NumContextualBoolArguments=*/2);
- }
- // C++ [over.built]p13:
- //
- // For every cv-qualified or cv-unqualified object type T there
- // exist candidate operator functions of the form
- //
- // T* operator+(T*, ptrdiff_t); [ABOVE]
- // T& operator[](T*, ptrdiff_t);
- // T* operator-(T*, ptrdiff_t); [ABOVE]
- // T* operator+(ptrdiff_t, T*); [ABOVE]
- // T& operator[](ptrdiff_t, T*);
- void addSubscriptOverloads() {
- for (BuiltinCandidateTypeSet::iterator
- Ptr = CandidateTypes[0].pointer_begin(),
- PtrEnd = CandidateTypes[0].pointer_end();
- Ptr != PtrEnd; ++Ptr) {
- QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() };
- QualType PointeeType = (*Ptr)->getPointeeType();
- if (!PointeeType->isObjectType())
- continue;
- // T& operator[](T*, ptrdiff_t)
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- }
- for (BuiltinCandidateTypeSet::iterator
- Ptr = CandidateTypes[1].pointer_begin(),
- PtrEnd = CandidateTypes[1].pointer_end();
- Ptr != PtrEnd; ++Ptr) {
- QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr };
- QualType PointeeType = (*Ptr)->getPointeeType();
- if (!PointeeType->isObjectType())
- continue;
- // T& operator[](ptrdiff_t, T*)
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- }
- }
- // C++ [over.built]p11:
- // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type,
- // C1 is the same type as C2 or is a derived class of C2, T is an object
- // type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
- // there exist candidate operator functions of the form
- //
- // CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
- //
- // where CV12 is the union of CV1 and CV2.
- void addArrowStarOverloads() {
- for (BuiltinCandidateTypeSet::iterator
- Ptr = CandidateTypes[0].pointer_begin(),
- PtrEnd = CandidateTypes[0].pointer_end();
- Ptr != PtrEnd; ++Ptr) {
- QualType C1Ty = (*Ptr);
- QualType C1;
- QualifierCollector Q1;
- C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0);
- if (!isa<RecordType>(C1))
- continue;
- // heuristic to reduce number of builtin candidates in the set.
- // Add volatile/restrict version only if there are conversions to a
- // volatile/restrict type.
- if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile())
- continue;
- if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict())
- continue;
- for (BuiltinCandidateTypeSet::iterator
- MemPtr = CandidateTypes[1].member_pointer_begin(),
- MemPtrEnd = CandidateTypes[1].member_pointer_end();
- MemPtr != MemPtrEnd; ++MemPtr) {
- const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr);
- QualType C2 = QualType(mptr->getClass(), 0);
- C2 = C2.getUnqualifiedType();
- if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2))
- break;
- QualType ParamTypes[2] = { *Ptr, *MemPtr };
- // build CV12 T&
- QualType T = mptr->getPointeeType();
- if (!VisibleTypeConversionsQuals.hasVolatile() &&
- T.isVolatileQualified())
- continue;
- if (!VisibleTypeConversionsQuals.hasRestrict() &&
- T.isRestrictQualified())
- continue;
- T = Q1.apply(S.Context, T);
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- }
- }
- }
- // Note that we don't consider the first argument, since it has been
- // contextually converted to bool long ago. The candidates below are
- // therefore added as binary.
- //
- // C++ [over.built]p25:
- // For every type T, where T is a pointer, pointer-to-member, or scoped
- // enumeration type, there exist candidate operator functions of the form
- //
- // T operator?(bool, T, T);
- //
- void addConditionalOperatorOverloads() {
- /// Set of (canonical) types that we've already handled.
- llvm::SmallPtrSet<QualType, 8> AddedTypes;
- for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
- for (BuiltinCandidateTypeSet::iterator
- Ptr = CandidateTypes[ArgIdx].pointer_begin(),
- PtrEnd = CandidateTypes[ArgIdx].pointer_end();
- Ptr != PtrEnd; ++Ptr) {
- if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr)).second)
- continue;
- QualType ParamTypes[2] = { *Ptr, *Ptr };
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- }
- for (BuiltinCandidateTypeSet::iterator
- MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(),
- MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end();
- MemPtr != MemPtrEnd; ++MemPtr) {
- if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr)).second)
- continue;
- QualType ParamTypes[2] = { *MemPtr, *MemPtr };
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- }
- if (S.getLangOpts().CPlusPlus11) {
- for (BuiltinCandidateTypeSet::iterator
- Enum = CandidateTypes[ArgIdx].enumeration_begin(),
- EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
- Enum != EnumEnd; ++Enum) {
- if (!(*Enum)->castAs<EnumType>()->getDecl()->isScoped())
- continue;
- if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum)).second)
- continue;
- QualType ParamTypes[2] = { *Enum, *Enum };
- S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet);
- }
- }
- }
- }
- };
- } // end anonymous namespace
- /// AddBuiltinOperatorCandidates - Add the appropriate built-in
- /// operator overloads to the candidate set (C++ [over.built]), based
- /// on the operator @p Op and the arguments given. For example, if the
- /// operator is a binary '+', this routine might add "int
- /// operator+(int, int)" to cover integer addition.
- void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
- SourceLocation OpLoc,
- ArrayRef<Expr *> Args,
- OverloadCandidateSet &CandidateSet) {
- // Find all of the types that the arguments can convert to, but only
- // if the operator we're looking at has built-in operator candidates
- // that make use of these types. Also record whether we encounter non-record
- // candidate types or either arithmetic or enumeral candidate types.
- Qualifiers VisibleTypeConversionsQuals;
- VisibleTypeConversionsQuals.addConst();
- for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx)
- VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]);
- bool HasNonRecordCandidateType = false;
- bool HasArithmeticOrEnumeralCandidateType = false;
- SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes;
- for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
- CandidateTypes.emplace_back(*this);
- CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(),
- OpLoc,
- true,
- (Op == OO_Exclaim ||
- Op == OO_AmpAmp ||
- Op == OO_PipePipe),
- VisibleTypeConversionsQuals);
- HasNonRecordCandidateType = HasNonRecordCandidateType ||
- CandidateTypes[ArgIdx].hasNonRecordTypes();
- HasArithmeticOrEnumeralCandidateType =
- HasArithmeticOrEnumeralCandidateType ||
- CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes();
- }
- // Exit early when no non-record types have been added to the candidate set
- // for any of the arguments to the operator.
- //
- // We can't exit early for !, ||, or &&, since there we have always have
- // 'bool' overloads.
- if (!HasNonRecordCandidateType &&
- !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe))
- return;
- // Setup an object to manage the common state for building overloads.
- BuiltinOperatorOverloadBuilder OpBuilder(*this, Args,
- VisibleTypeConversionsQuals,
- HasArithmeticOrEnumeralCandidateType,
- CandidateTypes, CandidateSet);
- // Dispatch over the operation to add in only those overloads which apply.
- switch (Op) {
- case OO_None:
- case NUM_OVERLOADED_OPERATORS:
- llvm_unreachable("Expected an overloaded operator");
- case OO_New:
- case OO_Delete:
- case OO_Array_New:
- case OO_Array_Delete:
- case OO_Call:
- llvm_unreachable(
- "Special operators don't use AddBuiltinOperatorCandidates");
- case OO_Comma:
- case OO_Arrow:
- case OO_Coawait:
- // C++ [over.match.oper]p3:
- // -- For the operator ',', the unary operator '&', the
- // operator '->', or the operator 'co_await', the
- // built-in candidates set is empty.
- break;
- case OO_Plus: // '+' is either unary or binary
- if (Args.size() == 1)
- OpBuilder.addUnaryPlusPointerOverloads();
- LLVM_FALLTHROUGH;
- case OO_Minus: // '-' is either unary or binary
- if (Args.size() == 1) {
- OpBuilder.addUnaryPlusOrMinusArithmeticOverloads();
- } else {
- OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op);
- OpBuilder.addGenericBinaryArithmeticOverloads();
- }
- break;
- case OO_Star: // '*' is either unary or binary
- if (Args.size() == 1)
- OpBuilder.addUnaryStarPointerOverloads();
- else
- OpBuilder.addGenericBinaryArithmeticOverloads();
- break;
- case OO_Slash:
- OpBuilder.addGenericBinaryArithmeticOverloads();
- break;
- case OO_PlusPlus:
- case OO_MinusMinus:
- OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op);
- OpBuilder.addPlusPlusMinusMinusPointerOverloads();
- break;
- case OO_EqualEqual:
- case OO_ExclaimEqual:
- OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads();
- LLVM_FALLTHROUGH;
- case OO_Less:
- case OO_Greater:
- case OO_LessEqual:
- case OO_GreaterEqual:
- OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
- OpBuilder.addGenericBinaryArithmeticOverloads();
- break;
- case OO_Spaceship:
- OpBuilder.addGenericBinaryPointerOrEnumeralOverloads();
- OpBuilder.addThreeWayArithmeticOverloads();
- break;
- case OO_Percent:
- case OO_Caret:
- case OO_Pipe:
- case OO_LessLess:
- case OO_GreaterGreater:
- OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
- break;
- case OO_Amp: // '&' is either unary or binary
- if (Args.size() == 1)
- // C++ [over.match.oper]p3:
- // -- For the operator ',', the unary operator '&', or the
- // operator '->', the built-in candidates set is empty.
- break;
- OpBuilder.addBinaryBitwiseArithmeticOverloads(Op);
- break;
- case OO_Tilde:
- OpBuilder.addUnaryTildePromotedIntegralOverloads();
- break;
- case OO_Equal:
- OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads();
- LLVM_FALLTHROUGH;
- case OO_PlusEqual:
- case OO_MinusEqual:
- OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal);
- LLVM_FALLTHROUGH;
- case OO_StarEqual:
- case OO_SlashEqual:
- OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal);
- break;
- case OO_PercentEqual:
- case OO_LessLessEqual:
- case OO_GreaterGreaterEqual:
- case OO_AmpEqual:
- case OO_CaretEqual:
- case OO_PipeEqual:
- OpBuilder.addAssignmentIntegralOverloads();
- break;
- case OO_Exclaim:
- OpBuilder.addExclaimOverload();
- break;
- case OO_AmpAmp:
- case OO_PipePipe:
- OpBuilder.addAmpAmpOrPipePipeOverload();
- break;
- case OO_Subscript:
- OpBuilder.addSubscriptOverloads();
- break;
- case OO_ArrowStar:
- OpBuilder.addArrowStarOverloads();
- break;
- case OO_Conditional:
- OpBuilder.addConditionalOperatorOverloads();
- OpBuilder.addGenericBinaryArithmeticOverloads();
- break;
- }
- }
- /// Add function candidates found via argument-dependent lookup
- /// to the set of overloading candidates.
- ///
- /// This routine performs argument-dependent name lookup based on the
- /// given function name (which may also be an operator name) and adds
- /// all of the overload candidates found by ADL to the overload
- /// candidate set (C++ [basic.lookup.argdep]).
- void
- Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
- SourceLocation Loc,
- ArrayRef<Expr *> Args,
- TemplateArgumentListInfo *ExplicitTemplateArgs,
- OverloadCandidateSet& CandidateSet,
- bool PartialOverloading) {
- ADLResult Fns;
- // FIXME: This approach for uniquing ADL results (and removing
- // redundant candidates from the set) relies on pointer-equality,
- // which means we need to key off the canonical decl. However,
- // always going back to the canonical decl might not get us the
- // right set of default arguments. What default arguments are
- // we supposed to consider on ADL candidates, anyway?
- // FIXME: Pass in the explicit template arguments?
- ArgumentDependentLookup(Name, Loc, Args, Fns);
- // Erase all of the candidates we already knew about.
- for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(),
- CandEnd = CandidateSet.end();
- Cand != CandEnd; ++Cand)
- if (Cand->Function) {
- Fns.erase(Cand->Function);
- if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate())
- Fns.erase(FunTmpl);
- }
- // For each of the ADL candidates we found, add it to the overload
- // set.
- for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
- DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none);
- if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
- if (ExplicitTemplateArgs)
- continue;
- AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet,
- /*SuppressUserConversions=*/false, PartialOverloading,
- /*AllowExplicit*/ true,
- /*AllowExplicitConversions*/ false,
- ADLCallKind::UsesADL);
- } else {
- AddTemplateOverloadCandidate(
- cast<FunctionTemplateDecl>(*I), FoundDecl, ExplicitTemplateArgs, Args,
- CandidateSet,
- /*SuppressUserConversions=*/false, PartialOverloading,
- /*AllowExplicit*/true, ADLCallKind::UsesADL);
- }
- }
- }
- namespace {
- enum class Comparison { Equal, Better, Worse };
- }
- /// Compares the enable_if attributes of two FunctionDecls, for the purposes of
- /// overload resolution.
- ///
- /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff
- /// Cand1's first N enable_if attributes have precisely the same conditions as
- /// Cand2's first N enable_if attributes (where N = the number of enable_if
- /// attributes on Cand2), and Cand1 has more than N enable_if attributes.
- ///
- /// Note that you can have a pair of candidates such that Cand1's enable_if
- /// attributes are worse than Cand2's, and Cand2's enable_if attributes are
- /// worse than Cand1's.
- static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1,
- const FunctionDecl *Cand2) {
- // Common case: One (or both) decls don't have enable_if attrs.
- bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>();
- bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>();
- if (!Cand1Attr || !Cand2Attr) {
- if (Cand1Attr == Cand2Attr)
- return Comparison::Equal;
- return Cand1Attr ? Comparison::Better : Comparison::Worse;
- }
- auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>();
- auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>();
- llvm::FoldingSetNodeID Cand1ID, Cand2ID;
- for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) {
- Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
- Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
- // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1
- // has fewer enable_if attributes than Cand2, and vice versa.
- if (!Cand1A)
- return Comparison::Worse;
- if (!Cand2A)
- return Comparison::Better;
- Cand1ID.clear();
- Cand2ID.clear();
- (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true);
- (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true);
- if (Cand1ID != Cand2ID)
- return Comparison::Worse;
- }
- return Comparison::Equal;
- }
- static bool isBetterMultiversionCandidate(const OverloadCandidate &Cand1,
- const OverloadCandidate &Cand2) {
- if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function ||
- !Cand2.Function->isMultiVersion())
- return false;
- // If Cand1 is invalid, it cannot be a better match, if Cand2 is invalid, this
- // is obviously better.
- if (Cand1.Function->isInvalidDecl()) return false;
- if (Cand2.Function->isInvalidDecl()) return true;
- // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer
- // cpu_dispatch, else arbitrarily based on the identifiers.
- bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>();
- bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>();
- const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>();
- const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>();
- if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec)
- return false;
- if (Cand1CPUDisp && !Cand2CPUDisp)
- return true;
- if (Cand2CPUDisp && !Cand1CPUDisp)
- return false;
- if (Cand1CPUSpec && Cand2CPUSpec) {
- if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size())
- return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size();
- std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator>
- FirstDiff = std::mismatch(
- Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(),
- Cand2CPUSpec->cpus_begin(),
- [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) {
- return LHS->getName() == RHS->getName();
- });
- assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&
- "Two different cpu-specific versions should not have the same "
- "identifier list, otherwise they'd be the same decl!");
- return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName();
- }
- llvm_unreachable("No way to get here unless both had cpu_dispatch");
- }
- /// isBetterOverloadCandidate - Determines whether the first overload
- /// candidate is a better candidate than the second (C++ 13.3.3p1).
- bool clang::isBetterOverloadCandidate(
- Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2,
- SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) {
- // Define viable functions to be better candidates than non-viable
- // functions.
- if (!Cand2.Viable)
- return Cand1.Viable;
- else if (!Cand1.Viable)
- return false;
- // C++ [over.match.best]p1:
- //
- // -- if F is a static member function, ICS1(F) is defined such
- // that ICS1(F) is neither better nor worse than ICS1(G) for
- // any function G, and, symmetrically, ICS1(G) is neither
- // better nor worse than ICS1(F).
- unsigned StartArg = 0;
- if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument)
- StartArg = 1;
- auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) {
- // We don't allow incompatible pointer conversions in C++.
- if (!S.getLangOpts().CPlusPlus)
- return ICS.isStandard() &&
- ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion;
- // The only ill-formed conversion we allow in C++ is the string literal to
- // char* conversion, which is only considered ill-formed after C++11.
- return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings &&
- hasDeprecatedStringLiteralToCharPtrConversion(ICS);
- };
- // Define functions that don't require ill-formed conversions for a given
- // argument to be better candidates than functions that do.
- unsigned NumArgs = Cand1.Conversions.size();
- assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
- bool HasBetterConversion = false;
- for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
- bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]);
- bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]);
- if (Cand1Bad != Cand2Bad) {
- if (Cand1Bad)
- return false;
- HasBetterConversion = true;
- }
- }
- if (HasBetterConversion)
- return true;
- // C++ [over.match.best]p1:
- // A viable function F1 is defined to be a better function than another
- // viable function F2 if for all arguments i, ICSi(F1) is not a worse
- // conversion sequence than ICSi(F2), and then...
- bool HasWorseConversion = false;
- for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
- switch (CompareImplicitConversionSequences(S, Loc,
- Cand1.Conversions[ArgIdx],
- Cand2.Conversions[ArgIdx])) {
- case ImplicitConversionSequence::Better:
- // Cand1 has a better conversion sequence.
- HasBetterConversion = true;
- break;
- case ImplicitConversionSequence::Worse:
- if (Cand1.Function && Cand1.Function == Cand2.Function &&
- (Cand2.RewriteKind & CRK_Reversed) != 0) {
- // Work around large-scale breakage caused by considering reversed
- // forms of operator== in C++20:
- //
- // When comparing a function against its reversed form, if we have a
- // better conversion for one argument and a worse conversion for the
- // other, we prefer the non-reversed form.
- //
- // This prevents a conversion function from being considered ambiguous
- // with its own reversed form in various where it's only incidentally
- // heterogeneous.
- //
- // We diagnose this as an extension from CreateOverloadedBinOp.
- HasWorseConversion = true;
- break;
- }
- // Cand1 can't be better than Cand2.
- return false;
- case ImplicitConversionSequence::Indistinguishable:
- // Do nothing.
- break;
- }
- }
- // -- for some argument j, ICSj(F1) is a better conversion sequence than
- // ICSj(F2), or, if not that,
- if (HasBetterConversion)
- return true;
- if (HasWorseConversion)
- return false;
- // -- the context is an initialization by user-defined conversion
- // (see 8.5, 13.3.1.5) and the standard conversion sequence
- // from the return type of F1 to the destination type (i.e.,
- // the type of the entity being initialized) is a better
- // conversion sequence than the standard conversion sequence
- // from the return type of F2 to the destination type.
- if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion &&
- Cand1.Function && Cand2.Function &&
- isa<CXXConversionDecl>(Cand1.Function) &&
- isa<CXXConversionDecl>(Cand2.Function)) {
- // First check whether we prefer one of the conversion functions over the
- // other. This only distinguishes the results in non-standard, extension
- // cases such as the conversion from a lambda closure type to a function
- // pointer or block.
- ImplicitConversionSequence::CompareKind Result =
- compareConversionFunctions(S, Cand1.Function, Cand2.Function);
- if (Result == ImplicitConversionSequence::Indistinguishable)
- Result = CompareStandardConversionSequences(S, Loc,
- Cand1.FinalConversion,
- Cand2.FinalConversion);
- if (Result != ImplicitConversionSequence::Indistinguishable)
- return Result == ImplicitConversionSequence::Better;
- // FIXME: Compare kind of reference binding if conversion functions
- // convert to a reference type used in direct reference binding, per
- // C++14 [over.match.best]p1 section 2 bullet 3.
- }
- // FIXME: Work around a defect in the C++17 guaranteed copy elision wording,
- // as combined with the resolution to CWG issue 243.
- //
- // When the context is initialization by constructor ([over.match.ctor] or
- // either phase of [over.match.list]), a constructor is preferred over
- // a conversion function.
- if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 &&
- Cand1.Function && Cand2.Function &&
- isa<CXXConstructorDecl>(Cand1.Function) !=
- isa<CXXConstructorDecl>(Cand2.Function))
- return isa<CXXConstructorDecl>(Cand1.Function);
- // -- F1 is a non-template function and F2 is a function template
- // specialization, or, if not that,
- bool Cand1IsSpecialization = Cand1.Function &&
- Cand1.Function->getPrimaryTemplate();
- bool Cand2IsSpecialization = Cand2.Function &&
- Cand2.Function->getPrimaryTemplate();
- if (Cand1IsSpecialization != Cand2IsSpecialization)
- return Cand2IsSpecialization;
- // -- F1 and F2 are function template specializations, and the function
- // template for F1 is more specialized than the template for F2
- // according to the partial ordering rules described in 14.5.5.2, or,
- // if not that,
- if (Cand1IsSpecialization && Cand2IsSpecialization) {
- if (FunctionTemplateDecl *BetterTemplate
- = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(),
- Cand2.Function->getPrimaryTemplate(),
- Loc,
- isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion
- : TPOC_Call,
- Cand1.ExplicitCallArguments,
- Cand2.ExplicitCallArguments))
- return BetterTemplate == Cand1.Function->getPrimaryTemplate();
- }
- // -- F1 is a constructor for a class D, F2 is a constructor for a base
- // class B of D, and for all arguments the corresponding parameters of
- // F1 and F2 have the same type.
- // FIXME: Implement the "all parameters have the same type" check.
- bool Cand1IsInherited =
- dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl());
- bool Cand2IsInherited =
- dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl());
- if (Cand1IsInherited != Cand2IsInherited)
- return Cand2IsInherited;
- else if (Cand1IsInherited) {
- assert(Cand2IsInherited);
- auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext());
- auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext());
- if (Cand1Class->isDerivedFrom(Cand2Class))
- return true;
- if (Cand2Class->isDerivedFrom(Cand1Class))
- return false;
- // Inherited from sibling base classes: still ambiguous.
- }
- // -- F2 is a rewritten candidate (12.4.1.2) and F1 is not
- // -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate
- // with reversed order of parameters and F1 is not
- //
- // We rank reversed + different operator as worse than just reversed, but
- // that comparison can never happen, because we only consider reversing for
- // the maximally-rewritten operator (== or <=>).
- if (Cand1.RewriteKind != Cand2.RewriteKind)
- return Cand1.RewriteKind < Cand2.RewriteKind;
- // Check C++17 tie-breakers for deduction guides.
- {
- auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function);
- auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function);
- if (Guide1 && Guide2) {
- // -- F1 is generated from a deduction-guide and F2 is not
- if (Guide1->isImplicit() != Guide2->isImplicit())
- return Guide2->isImplicit();
- // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not
- if (Guide1->isCopyDeductionCandidate())
- return true;
- }
- }
- // Check for enable_if value-based overload resolution.
- if (Cand1.Function && Cand2.Function) {
- Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function);
- if (Cmp != Comparison::Equal)
- return Cmp == Comparison::Better;
- }
- if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) {
- FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
- return S.IdentifyCUDAPreference(Caller, Cand1.Function) >
- S.IdentifyCUDAPreference(Caller, Cand2.Function);
- }
- bool HasPS1 = Cand1.Function != nullptr &&
- functionHasPassObjectSizeParams(Cand1.Function);
- bool HasPS2 = Cand2.Function != nullptr &&
- functionHasPassObjectSizeParams(Cand2.Function);
- if (HasPS1 != HasPS2 && HasPS1)
- return true;
- return isBetterMultiversionCandidate(Cand1, Cand2);
- }
- /// Determine whether two declarations are "equivalent" for the purposes of
- /// name lookup and overload resolution. This applies when the same internal/no
- /// linkage entity is defined by two modules (probably by textually including
- /// the same header). In such a case, we don't consider the declarations to
- /// declare the same entity, but we also don't want lookups with both
- /// declarations visible to be ambiguous in some cases (this happens when using
- /// a modularized libstdc++).
- bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
- const NamedDecl *B) {
- auto *VA = dyn_cast_or_null<ValueDecl>(A);
- auto *VB = dyn_cast_or_null<ValueDecl>(B);
- if (!VA || !VB)
- return false;
- // The declarations must be declaring the same name as an internal linkage
- // entity in different modules.
- if (!VA->getDeclContext()->getRedeclContext()->Equals(
- VB->getDeclContext()->getRedeclContext()) ||
- getOwningModule(const_cast<ValueDecl *>(VA)) ==
- getOwningModule(const_cast<ValueDecl *>(VB)) ||
- VA->isExternallyVisible() || VB->isExternallyVisible())
- return false;
- // Check that the declarations appear to be equivalent.
- //
- // FIXME: Checking the type isn't really enough to resolve the ambiguity.
- // For constants and functions, we should check the initializer or body is
- // the same. For non-constant variables, we shouldn't allow it at all.
- if (Context.hasSameType(VA->getType(), VB->getType()))
- return true;
- // Enum constants within unnamed enumerations will have different types, but
- // may still be similar enough to be interchangeable for our purposes.
- if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) {
- if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) {
- // Only handle anonymous enums. If the enumerations were named and
- // equivalent, they would have been merged to the same type.
- auto *EnumA = cast<EnumDecl>(EA->getDeclContext());
- auto *EnumB = cast<EnumDecl>(EB->getDeclContext());
- if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() ||
- !Context.hasSameType(EnumA->getIntegerType(),
- EnumB->getIntegerType()))
- return false;
- // Allow this only if the value is the same for both enumerators.
- return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal());
- }
- }
- // Nothing else is sufficiently similar.
- return false;
- }
- void Sema::diagnoseEquivalentInternalLinkageDeclarations(
- SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) {
- Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D;
- Module *M = getOwningModule(const_cast<NamedDecl*>(D));
- Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl)
- << !M << (M ? M->getFullModuleName() : "");
- for (auto *E : Equiv) {
- Module *M = getOwningModule(const_cast<NamedDecl*>(E));
- Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl)
- << !M << (M ? M->getFullModuleName() : "");
- }
- }
- /// Computes the best viable function (C++ 13.3.3)
- /// within an overload candidate set.
- ///
- /// \param Loc The location of the function name (or operator symbol) for
- /// which overload resolution occurs.
- ///
- /// \param Best If overload resolution was successful or found a deleted
- /// function, \p Best points to the candidate function found.
- ///
- /// \returns The result of overload resolution.
- OverloadingResult
- OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc,
- iterator &Best) {
- llvm::SmallVector<OverloadCandidate *, 16> Candidates;
- std::transform(begin(), end(), std::back_inserter(Candidates),
- [](OverloadCandidate &Cand) { return &Cand; });
- // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but
- // are accepted by both clang and NVCC. However, during a particular
- // compilation mode only one call variant is viable. We need to
- // exclude non-viable overload candidates from consideration based
- // only on their host/device attributes. Specifically, if one
- // candidate call is WrongSide and the other is SameSide, we ignore
- // the WrongSide candidate.
- if (S.getLangOpts().CUDA) {
- const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext);
- bool ContainsSameSideCandidate =
- llvm::any_of(Candidates, [&](OverloadCandidate *Cand) {
- // Check viable function only.
- return Cand->Viable && Cand->Function &&
- S.IdentifyCUDAPreference(Caller, Cand->Function) ==
- Sema::CFP_SameSide;
- });
- if (ContainsSameSideCandidate) {
- auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) {
- // Check viable function only to avoid unnecessary data copying/moving.
- return Cand->Viable && Cand->Function &&
- S.IdentifyCUDAPreference(Caller, Cand->Function) ==
- Sema::CFP_WrongSide;
- };
- llvm::erase_if(Candidates, IsWrongSideCandidate);
- }
- }
- // Find the best viable function.
- Best = end();
- for (auto *Cand : Candidates)
- if (Cand->Viable)
- if (Best == end() ||
- isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind))
- Best = Cand;
- // If we didn't find any viable functions, abort.
- if (Best == end())
- return OR_No_Viable_Function;
- llvm::SmallVector<const NamedDecl *, 4> EquivalentCands;
- // Make sure that this function is better than every other viable
- // function. If not, we have an ambiguity.
- for (auto *Cand : Candidates) {
- if (Cand->Viable && Cand != Best &&
- !isBetterOverloadCandidate(S, *Best, *Cand, Loc, Kind)) {
- if (S.isEquivalentInternalLinkageDeclaration(Best->Function,
- Cand->Function)) {
- EquivalentCands.push_back(Cand->Function);
- continue;
- }
- Best = end();
- return OR_Ambiguous;
- }
- }
- // Best is the best viable function.
- if (Best->Function && Best->Function->isDeleted())
- return OR_Deleted;
- if (!EquivalentCands.empty())
- S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function,
- EquivalentCands);
- return OR_Success;
- }
- namespace {
- enum OverloadCandidateKind {
- oc_function,
- oc_method,
- oc_reversed_binary_operator,
- oc_constructor,
- oc_implicit_default_constructor,
- oc_implicit_copy_constructor,
- oc_implicit_move_constructor,
- oc_implicit_copy_assignment,
- oc_implicit_move_assignment,
- oc_inherited_constructor
- };
- enum OverloadCandidateSelect {
- ocs_non_template,
- ocs_template,
- ocs_described_template,
- };
- static std::pair<OverloadCandidateKind, OverloadCandidateSelect>
- ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn,
- OverloadCandidateRewriteKind CRK,
- std::string &Description) {
- bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl();
- if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) {
- isTemplate = true;
- Description = S.getTemplateArgumentBindingsText(
- FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs());
- }
- OverloadCandidateSelect Select = [&]() {
- if (!Description.empty())
- return ocs_described_template;
- return isTemplate ? ocs_template : ocs_non_template;
- }();
- OverloadCandidateKind Kind = [&]() {
- if (CRK & CRK_Reversed)
- return oc_reversed_binary_operator;
- if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) {
- if (!Ctor->isImplicit()) {
- if (isa<ConstructorUsingShadowDecl>(Found))
- return oc_inherited_constructor;
- else
- return oc_constructor;
- }
- if (Ctor->isDefaultConstructor())
- return oc_implicit_default_constructor;
- if (Ctor->isMoveConstructor())
- return oc_implicit_move_constructor;
- assert(Ctor->isCopyConstructor() &&
- "unexpected sort of implicit constructor");
- return oc_implicit_copy_constructor;
- }
- if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) {
- // This actually gets spelled 'candidate function' for now, but
- // it doesn't hurt to split it out.
- if (!Meth->isImplicit())
- return oc_method;
- if (Meth->isMoveAssignmentOperator())
- return oc_implicit_move_assignment;
- if (Meth->isCopyAssignmentOperator())
- return oc_implicit_copy_assignment;
- assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
- return oc_method;
- }
- return oc_function;
- }();
- return std::make_pair(Kind, Select);
- }
- void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) {
- // FIXME: It'd be nice to only emit a note once per using-decl per overload
- // set.
- if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl))
- S.Diag(FoundDecl->getLocation(),
- diag::note_ovl_candidate_inherited_constructor)
- << Shadow->getNominatedBaseClass();
- }
- } // end anonymous namespace
- static bool isFunctionAlwaysEnabled(const ASTContext &Ctx,
- const FunctionDecl *FD) {
- for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) {
- bool AlwaysTrue;
- if (EnableIf->getCond()->isValueDependent() ||
- !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx))
- return false;
- if (!AlwaysTrue)
- return false;
- }
- return true;
- }
- /// Returns true if we can take the address of the function.
- ///
- /// \param Complain - If true, we'll emit a diagnostic
- /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are
- /// we in overload resolution?
- /// \param Loc - The location of the statement we're complaining about. Ignored
- /// if we're not complaining, or if we're in overload resolution.
- static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD,
- bool Complain,
- bool InOverloadResolution,
- SourceLocation Loc) {
- if (!isFunctionAlwaysEnabled(S.Context, FD)) {
- if (Complain) {
- if (InOverloadResolution)
- S.Diag(FD->getBeginLoc(),
- diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr);
- else
- S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD;
- }
- return false;
- }
- auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) {
- return P->hasAttr<PassObjectSizeAttr>();
- });
- if (I == FD->param_end())
- return true;
- if (Complain) {
- // Add one to ParamNo because it's user-facing
- unsigned ParamNo = std::distance(FD->param_begin(), I) + 1;
- if (InOverloadResolution)
- S.Diag(FD->getLocation(),
- diag::note_ovl_candidate_has_pass_object_size_params)
- << ParamNo;
- else
- S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params)
- << FD << ParamNo;
- }
- return false;
- }
- static bool checkAddressOfCandidateIsAvailable(Sema &S,
- const FunctionDecl *FD) {
- return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true,
- /*InOverloadResolution=*/true,
- /*Loc=*/SourceLocation());
- }
- bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
- bool Complain,
- SourceLocation Loc) {
- return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain,
- /*InOverloadResolution=*/false,
- Loc);
- }
- // Notes the location of an overload candidate.
- void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn,
- OverloadCandidateRewriteKind RewriteKind,
- QualType DestType, bool TakingAddress) {
- if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn))
- return;
- if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() &&
- !Fn->getAttr<TargetAttr>()->isDefaultVersion())
- return;
- std::string FnDesc;
- std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair =
- ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc);
- PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
- << (unsigned)KSPair.first << (unsigned)KSPair.second
- << Fn << FnDesc;
- HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
- Diag(Fn->getLocation(), PD);
- MaybeEmitInheritedConstructorNote(*this, Found);
- }
- // Notes the location of all overload candidates designated through
- // OverloadedExpr
- void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType,
- bool TakingAddress) {
- assert(OverloadedExpr->getType() == Context.OverloadTy);
- OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
- OverloadExpr *OvlExpr = Ovl.Expression;
- for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
- IEnd = OvlExpr->decls_end();
- I != IEnd; ++I) {
- if (FunctionTemplateDecl *FunTmpl =
- dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
- NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType,
- TakingAddress);
- } else if (FunctionDecl *Fun
- = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
- NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress);
- }
- }
- }
- /// Diagnoses an ambiguous conversion. The partial diagnostic is the
- /// "lead" diagnostic; it will be given two arguments, the source and
- /// target types of the conversion.
- void ImplicitConversionSequence::DiagnoseAmbiguousConversion(
- Sema &S,
- SourceLocation CaretLoc,
- const PartialDiagnostic &PDiag) const {
- S.Diag(CaretLoc, PDiag)
- << Ambiguous.getFromType() << Ambiguous.getToType();
- // FIXME: The note limiting machinery is borrowed from
- // OverloadCandidateSet::NoteCandidates; there's an opportunity for
- // refactoring here.
- const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
- unsigned CandsShown = 0;
- AmbiguousConversionSequence::const_iterator I, E;
- for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) {
- if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
- break;
- ++CandsShown;
- S.NoteOverloadCandidate(I->first, I->second);
- }
- if (I != E)
- S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I);
- }
- static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand,
- unsigned I, bool TakingCandidateAddress) {
- const ImplicitConversionSequence &Conv = Cand->Conversions[I];
- assert(Conv.isBad());
- assert(Cand->Function && "for now, candidate must be a function");
- FunctionDecl *Fn = Cand->Function;
- // There's a conversion slot for the object argument if this is a
- // non-constructor method. Note that 'I' corresponds the
- // conversion-slot index.
- bool isObjectArgument = false;
- if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) {
- if (I == 0)
- isObjectArgument = true;
- else
- I--;
- }
- std::string FnDesc;
- std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
- ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->RewriteKind,
- FnDesc);
- Expr *FromExpr = Conv.Bad.FromExpr;
- QualType FromTy = Conv.Bad.getFromType();
- QualType ToTy = Conv.Bad.getToType();
- if (FromTy == S.Context.OverloadTy) {
- assert(FromExpr && "overload set argument came from implicit argument?");
- Expr *E = FromExpr->IgnoreParens();
- if (isa<UnaryOperator>(E))
- E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
- DeclarationName Name = cast<OverloadExpr>(E)->getName();
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload)
- << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
- << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy
- << Name << I + 1;
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- return;
- }
- // Do some hand-waving analysis to see if the non-viability is due
- // to a qualifier mismatch.
- CanQualType CFromTy = S.Context.getCanonicalType(FromTy);
- CanQualType CToTy = S.Context.getCanonicalType(ToTy);
- if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>())
- CToTy = RT->getPointeeType();
- else {
- // TODO: detect and diagnose the full richness of const mismatches.
- if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>())
- if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) {
- CFromTy = FromPT->getPointeeType();
- CToTy = ToPT->getPointeeType();
- }
- }
- if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
- !CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
- Qualifiers FromQs = CFromTy.getQualifiers();
- Qualifiers ToQs = CToTy.getQualifiers();
- if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) {
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace)
- << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
- << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
- << ToTy << (unsigned)isObjectArgument << I + 1;
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- return;
- }
- if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership)
- << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
- << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
- << FromQs.getObjCLifetime() << ToQs.getObjCLifetime()
- << (unsigned)isObjectArgument << I + 1;
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- return;
- }
- if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) {
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc)
- << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
- << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
- << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr()
- << (unsigned)isObjectArgument << I + 1;
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- return;
- }
- if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) {
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned)
- << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
- << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
- << FromQs.hasUnaligned() << I + 1;
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- return;
- }
- unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
- assert(CVR && "unexpected qualifiers mismatch");
- if (isObjectArgument) {
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this)
- << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
- << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
- << (CVR - 1);
- } else {
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr)
- << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
- << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
- << (CVR - 1) << I + 1;
- }
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- return;
- }
- // Special diagnostic for failure to convert an initializer list, since
- // telling the user that it has type void is not useful.
- if (FromExpr && isa<InitListExpr>(FromExpr)) {
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument)
- << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
- << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
- << ToTy << (unsigned)isObjectArgument << I + 1;
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- return;
- }
- // Diagnose references or pointers to incomplete types differently,
- // since it's far from impossible that the incompleteness triggered
- // the failure.
- QualType TempFromTy = FromTy.getNonReferenceType();
- if (const PointerType *PTy = TempFromTy->getAs<PointerType>())
- TempFromTy = PTy->getPointeeType();
- if (TempFromTy->isIncompleteType()) {
- // Emit the generic diagnostic and, optionally, add the hints to it.
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete)
- << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
- << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
- << ToTy << (unsigned)isObjectArgument << I + 1
- << (unsigned)(Cand->Fix.Kind);
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- return;
- }
- // Diagnose base -> derived pointer conversions.
- unsigned BaseToDerivedConversion = 0;
- if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) {
- if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) {
- if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
- FromPtrTy->getPointeeType()) &&
- !FromPtrTy->getPointeeType()->isIncompleteType() &&
- !ToPtrTy->getPointeeType()->isIncompleteType() &&
- S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(),
- FromPtrTy->getPointeeType()))
- BaseToDerivedConversion = 1;
- }
- } else if (const ObjCObjectPointerType *FromPtrTy
- = FromTy->getAs<ObjCObjectPointerType>()) {
- if (const ObjCObjectPointerType *ToPtrTy
- = ToTy->getAs<ObjCObjectPointerType>())
- if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl())
- if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl())
- if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs(
- FromPtrTy->getPointeeType()) &&
- FromIface->isSuperClassOf(ToIface))
- BaseToDerivedConversion = 2;
- } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) {
- if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) &&
- !FromTy->isIncompleteType() &&
- !ToRefTy->getPointeeType()->isIncompleteType() &&
- S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) {
- BaseToDerivedConversion = 3;
- } else if (ToTy->isLValueReferenceType() && !FromExpr->isLValue() &&
- ToTy.getNonReferenceType().getCanonicalType() ==
- FromTy.getNonReferenceType().getCanonicalType()) {
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_lvalue)
- << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
- << (unsigned)isObjectArgument << I + 1
- << (FromExpr ? FromExpr->getSourceRange() : SourceRange());
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- return;
- }
- }
- if (BaseToDerivedConversion) {
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv)
- << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
- << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
- << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1;
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- return;
- }
- if (isa<ObjCObjectPointerType>(CFromTy) &&
- isa<PointerType>(CToTy)) {
- Qualifiers FromQs = CFromTy.getQualifiers();
- Qualifiers ToQs = CToTy.getQualifiers();
- if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) {
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv)
- << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
- << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange())
- << FromTy << ToTy << (unsigned)isObjectArgument << I + 1;
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- return;
- }
- }
- if (TakingCandidateAddress &&
- !checkAddressOfCandidateIsAvailable(S, Cand->Function))
- return;
- // Emit the generic diagnostic and, optionally, add the hints to it.
- PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv);
- FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
- << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy
- << ToTy << (unsigned)isObjectArgument << I + 1
- << (unsigned)(Cand->Fix.Kind);
- // If we can fix the conversion, suggest the FixIts.
- for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
- HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
- FDiag << *HI;
- S.Diag(Fn->getLocation(), FDiag);
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- }
- /// Additional arity mismatch diagnosis specific to a function overload
- /// candidates. This is not covered by the more general DiagnoseArityMismatch()
- /// over a candidate in any candidate set.
- static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand,
- unsigned NumArgs) {
- FunctionDecl *Fn = Cand->Function;
- unsigned MinParams = Fn->getMinRequiredArguments();
- // With invalid overloaded operators, it's possible that we think we
- // have an arity mismatch when in fact it looks like we have the
- // right number of arguments, because only overloaded operators have
- // the weird behavior of overloading member and non-member functions.
- // Just don't report anything.
- if (Fn->isInvalidDecl() &&
- Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
- return true;
- if (NumArgs < MinParams) {
- assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||
- (Cand->FailureKind == ovl_fail_bad_deduction &&
- Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments));
- } else {
- assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||
- (Cand->FailureKind == ovl_fail_bad_deduction &&
- Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments));
- }
- return false;
- }
- /// General arity mismatch diagnosis over a candidate in a candidate set.
- static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D,
- unsigned NumFormalArgs) {
- assert(isa<FunctionDecl>(D) &&
- "The templated declaration should at least be a function"
- " when diagnosing bad template argument deduction due to too many"
- " or too few arguments");
- FunctionDecl *Fn = cast<FunctionDecl>(D);
- // TODO: treat calls to a missing default constructor as a special case
- const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>();
- unsigned MinParams = Fn->getMinRequiredArguments();
- // at least / at most / exactly
- unsigned mode, modeCount;
- if (NumFormalArgs < MinParams) {
- if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() ||
- FnTy->isTemplateVariadic())
- mode = 0; // "at least"
- else
- mode = 2; // "exactly"
- modeCount = MinParams;
- } else {
- if (MinParams != FnTy->getNumParams())
- mode = 1; // "at most"
- else
- mode = 2; // "exactly"
- modeCount = FnTy->getNumParams();
- }
- std::string Description;
- std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
- ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description);
- if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName())
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one)
- << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
- << Description << mode << Fn->getParamDecl(0) << NumFormalArgs;
- else
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity)
- << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second
- << Description << mode << modeCount << NumFormalArgs;
- MaybeEmitInheritedConstructorNote(S, Found);
- }
- /// Arity mismatch diagnosis specific to a function overload candidate.
- static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
- unsigned NumFormalArgs) {
- if (!CheckArityMismatch(S, Cand, NumFormalArgs))
- DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs);
- }
- static TemplateDecl *getDescribedTemplate(Decl *Templated) {
- if (TemplateDecl *TD = Templated->getDescribedTemplate())
- return TD;
- llvm_unreachable("Unsupported: Getting the described template declaration"
- " for bad deduction diagnosis");
- }
- /// Diagnose a failed template-argument deduction.
- static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated,
- DeductionFailureInfo &DeductionFailure,
- unsigned NumArgs,
- bool TakingCandidateAddress) {
- TemplateParameter Param = DeductionFailure.getTemplateParameter();
- NamedDecl *ParamD;
- (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) ||
- (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) ||
- (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>());
- switch (DeductionFailure.Result) {
- case Sema::TDK_Success:
- llvm_unreachable("TDK_success while diagnosing bad deduction");
- case Sema::TDK_Incomplete: {
- assert(ParamD && "no parameter found for incomplete deduction result");
- S.Diag(Templated->getLocation(),
- diag::note_ovl_candidate_incomplete_deduction)
- << ParamD->getDeclName();
- MaybeEmitInheritedConstructorNote(S, Found);
- return;
- }
- case Sema::TDK_IncompletePack: {
- assert(ParamD && "no parameter found for incomplete deduction result");
- S.Diag(Templated->getLocation(),
- diag::note_ovl_candidate_incomplete_deduction_pack)
- << ParamD->getDeclName()
- << (DeductionFailure.getFirstArg()->pack_size() + 1)
- << *DeductionFailure.getFirstArg();
- MaybeEmitInheritedConstructorNote(S, Found);
- return;
- }
- case Sema::TDK_Underqualified: {
- assert(ParamD && "no parameter found for bad qualifiers deduction result");
- TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD);
- QualType Param = DeductionFailure.getFirstArg()->getAsType();
- // Param will have been canonicalized, but it should just be a
- // qualified version of ParamD, so move the qualifiers to that.
- QualifierCollector Qs;
- Qs.strip(Param);
- QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl());
- assert(S.Context.hasSameType(Param, NonCanonParam));
- // Arg has also been canonicalized, but there's nothing we can do
- // about that. It also doesn't matter as much, because it won't
- // have any template parameters in it (because deduction isn't
- // done on dependent types).
- QualType Arg = DeductionFailure.getSecondArg()->getAsType();
- S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified)
- << ParamD->getDeclName() << Arg << NonCanonParam;
- MaybeEmitInheritedConstructorNote(S, Found);
- return;
- }
- case Sema::TDK_Inconsistent: {
- assert(ParamD && "no parameter found for inconsistent deduction result");
- int which = 0;
- if (isa<TemplateTypeParmDecl>(ParamD))
- which = 0;
- else if (isa<NonTypeTemplateParmDecl>(ParamD)) {
- // Deduction might have failed because we deduced arguments of two
- // different types for a non-type template parameter.
- // FIXME: Use a different TDK value for this.
- QualType T1 =
- DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType();
- QualType T2 =
- DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType();
- if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) {
- S.Diag(Templated->getLocation(),
- diag::note_ovl_candidate_inconsistent_deduction_types)
- << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1
- << *DeductionFailure.getSecondArg() << T2;
- MaybeEmitInheritedConstructorNote(S, Found);
- return;
- }
- which = 1;
- } else {
- which = 2;
- }
- S.Diag(Templated->getLocation(),
- diag::note_ovl_candidate_inconsistent_deduction)
- << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg()
- << *DeductionFailure.getSecondArg();
- MaybeEmitInheritedConstructorNote(S, Found);
- return;
- }
- case Sema::TDK_InvalidExplicitArguments:
- assert(ParamD && "no parameter found for invalid explicit arguments");
- if (ParamD->getDeclName())
- S.Diag(Templated->getLocation(),
- diag::note_ovl_candidate_explicit_arg_mismatch_named)
- << ParamD->getDeclName();
- else {
- int index = 0;
- if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD))
- index = TTP->getIndex();
- else if (NonTypeTemplateParmDecl *NTTP
- = dyn_cast<NonTypeTemplateParmDecl>(ParamD))
- index = NTTP->getIndex();
- else
- index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex();
- S.Diag(Templated->getLocation(),
- diag::note_ovl_candidate_explicit_arg_mismatch_unnamed)
- << (index + 1);
- }
- MaybeEmitInheritedConstructorNote(S, Found);
- return;
- case Sema::TDK_TooManyArguments:
- case Sema::TDK_TooFewArguments:
- DiagnoseArityMismatch(S, Found, Templated, NumArgs);
- return;
- case Sema::TDK_InstantiationDepth:
- S.Diag(Templated->getLocation(),
- diag::note_ovl_candidate_instantiation_depth);
- MaybeEmitInheritedConstructorNote(S, Found);
- return;
- case Sema::TDK_SubstitutionFailure: {
- // Format the template argument list into the argument string.
- SmallString<128> TemplateArgString;
- if (TemplateArgumentList *Args =
- DeductionFailure.getTemplateArgumentList()) {
- TemplateArgString = " ";
- TemplateArgString += S.getTemplateArgumentBindingsText(
- getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
- }
- // If this candidate was disabled by enable_if, say so.
- PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic();
- if (PDiag && PDiag->second.getDiagID() ==
- diag::err_typename_nested_not_found_enable_if) {
- // FIXME: Use the source range of the condition, and the fully-qualified
- // name of the enable_if template. These are both present in PDiag.
- S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if)
- << "'enable_if'" << TemplateArgString;
- return;
- }
- // We found a specific requirement that disabled the enable_if.
- if (PDiag && PDiag->second.getDiagID() ==
- diag::err_typename_nested_not_found_requirement) {
- S.Diag(Templated->getLocation(),
- diag::note_ovl_candidate_disabled_by_requirement)
- << PDiag->second.getStringArg(0) << TemplateArgString;
- return;
- }
- // Format the SFINAE diagnostic into the argument string.
- // FIXME: Add a general mechanism to include a PartialDiagnostic *'s
- // formatted message in another diagnostic.
- SmallString<128> SFINAEArgString;
- SourceRange R;
- if (PDiag) {
- SFINAEArgString = ": ";
- R = SourceRange(PDiag->first, PDiag->first);
- PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString);
- }
- S.Diag(Templated->getLocation(),
- diag::note_ovl_candidate_substitution_failure)
- << TemplateArgString << SFINAEArgString << R;
- MaybeEmitInheritedConstructorNote(S, Found);
- return;
- }
- case Sema::TDK_DeducedMismatch:
- case Sema::TDK_DeducedMismatchNested: {
- // Format the template argument list into the argument string.
- SmallString<128> TemplateArgString;
- if (TemplateArgumentList *Args =
- DeductionFailure.getTemplateArgumentList()) {
- TemplateArgString = " ";
- TemplateArgString += S.getTemplateArgumentBindingsText(
- getDescribedTemplate(Templated)->getTemplateParameters(), *Args);
- }
- S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch)
- << (*DeductionFailure.getCallArgIndex() + 1)
- << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg()
- << TemplateArgString
- << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested);
- break;
- }
- case Sema::TDK_NonDeducedMismatch: {
- // FIXME: Provide a source location to indicate what we couldn't match.
- TemplateArgument FirstTA = *DeductionFailure.getFirstArg();
- TemplateArgument SecondTA = *DeductionFailure.getSecondArg();
- if (FirstTA.getKind() == TemplateArgument::Template &&
- SecondTA.getKind() == TemplateArgument::Template) {
- TemplateName FirstTN = FirstTA.getAsTemplate();
- TemplateName SecondTN = SecondTA.getAsTemplate();
- if (FirstTN.getKind() == TemplateName::Template &&
- SecondTN.getKind() == TemplateName::Template) {
- if (FirstTN.getAsTemplateDecl()->getName() ==
- SecondTN.getAsTemplateDecl()->getName()) {
- // FIXME: This fixes a bad diagnostic where both templates are named
- // the same. This particular case is a bit difficult since:
- // 1) It is passed as a string to the diagnostic printer.
- // 2) The diagnostic printer only attempts to find a better
- // name for types, not decls.
- // Ideally, this should folded into the diagnostic printer.
- S.Diag(Templated->getLocation(),
- diag::note_ovl_candidate_non_deduced_mismatch_qualified)
- << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl();
- return;
- }
- }
- }
- if (TakingCandidateAddress && isa<FunctionDecl>(Templated) &&
- !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated)))
- return;
- // FIXME: For generic lambda parameters, check if the function is a lambda
- // call operator, and if so, emit a prettier and more informative
- // diagnostic that mentions 'auto' and lambda in addition to
- // (or instead of?) the canonical template type parameters.
- S.Diag(Templated->getLocation(),
- diag::note_ovl_candidate_non_deduced_mismatch)
- << FirstTA << SecondTA;
- return;
- }
- // TODO: diagnose these individually, then kill off
- // note_ovl_candidate_bad_deduction, which is uselessly vague.
- case Sema::TDK_MiscellaneousDeductionFailure:
- S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction);
- MaybeEmitInheritedConstructorNote(S, Found);
- return;
- case Sema::TDK_CUDATargetMismatch:
- S.Diag(Templated->getLocation(),
- diag::note_cuda_ovl_candidate_target_mismatch);
- return;
- }
- }
- /// Diagnose a failed template-argument deduction, for function calls.
- static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
- unsigned NumArgs,
- bool TakingCandidateAddress) {
- unsigned TDK = Cand->DeductionFailure.Result;
- if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) {
- if (CheckArityMismatch(S, Cand, NumArgs))
- return;
- }
- DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern
- Cand->DeductionFailure, NumArgs, TakingCandidateAddress);
- }
- /// CUDA: diagnose an invalid call across targets.
- static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
- FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext);
- FunctionDecl *Callee = Cand->Function;
- Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller),
- CalleeTarget = S.IdentifyCUDATarget(Callee);
- std::string FnDesc;
- std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
- ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, Cand->RewriteKind,
- FnDesc);
- S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target)
- << (unsigned)FnKindPair.first << (unsigned)ocs_non_template
- << FnDesc /* Ignored */
- << CalleeTarget << CallerTarget;
- // This could be an implicit constructor for which we could not infer the
- // target due to a collsion. Diagnose that case.
- CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee);
- if (Meth != nullptr && Meth->isImplicit()) {
- CXXRecordDecl *ParentClass = Meth->getParent();
- Sema::CXXSpecialMember CSM;
- switch (FnKindPair.first) {
- default:
- return;
- case oc_implicit_default_constructor:
- CSM = Sema::CXXDefaultConstructor;
- break;
- case oc_implicit_copy_constructor:
- CSM = Sema::CXXCopyConstructor;
- break;
- case oc_implicit_move_constructor:
- CSM = Sema::CXXMoveConstructor;
- break;
- case oc_implicit_copy_assignment:
- CSM = Sema::CXXCopyAssignment;
- break;
- case oc_implicit_move_assignment:
- CSM = Sema::CXXMoveAssignment;
- break;
- };
- bool ConstRHS = false;
- if (Meth->getNumParams()) {
- if (const ReferenceType *RT =
- Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) {
- ConstRHS = RT->getPointeeType().isConstQualified();
- }
- }
- S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth,
- /* ConstRHS */ ConstRHS,
- /* Diagnose */ true);
- }
- }
- static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) {
- FunctionDecl *Callee = Cand->Function;
- EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data);
- S.Diag(Callee->getLocation(),
- diag::note_ovl_candidate_disabled_by_function_cond_attr)
- << Attr->getCond()->getSourceRange() << Attr->getMessage();
- }
- static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) {
- ExplicitSpecifier ES;
- const char *DeclName;
- switch (Cand->Function->getDeclKind()) {
- case Decl::Kind::CXXConstructor:
- ES = cast<CXXConstructorDecl>(Cand->Function)->getExplicitSpecifier();
- DeclName = "constructor";
- break;
- case Decl::Kind::CXXConversion:
- ES = cast<CXXConversionDecl>(Cand->Function)->getExplicitSpecifier();
- DeclName = "conversion operator";
- break;
- case Decl::Kind::CXXDeductionGuide:
- ES = cast<CXXDeductionGuideDecl>(Cand->Function)->getExplicitSpecifier();
- DeclName = "deductiong guide";
- break;
- default:
- llvm_unreachable("invalid Decl");
- }
- assert(ES.getExpr() && "null expression should be handled before");
- S.Diag(Cand->Function->getLocation(),
- diag::note_ovl_candidate_explicit_forbidden)
- << DeclName;
- S.Diag(ES.getExpr()->getBeginLoc(),
- diag::note_explicit_bool_resolved_to_true);
- }
- static void DiagnoseOpenCLExtensionDisabled(Sema &S, OverloadCandidate *Cand) {
- FunctionDecl *Callee = Cand->Function;
- S.Diag(Callee->getLocation(),
- diag::note_ovl_candidate_disabled_by_extension)
- << S.getOpenCLExtensionsFromDeclExtMap(Callee);
- }
- /// Generates a 'note' diagnostic for an overload candidate. We've
- /// already generated a primary error at the call site.
- ///
- /// It really does need to be a single diagnostic with its caret
- /// pointed at the candidate declaration. Yes, this creates some
- /// major challenges of technical writing. Yes, this makes pointing
- /// out problems with specific arguments quite awkward. It's still
- /// better than generating twenty screens of text for every failed
- /// overload.
- ///
- /// It would be great to be able to express per-candidate problems
- /// more richly for those diagnostic clients that cared, but we'd
- /// still have to be just as careful with the default diagnostics.
- /// \param CtorDestAS Addr space of object being constructed (for ctor
- /// candidates only).
- static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
- unsigned NumArgs,
- bool TakingCandidateAddress,
- LangAS CtorDestAS = LangAS::Default) {
- FunctionDecl *Fn = Cand->Function;
- // Note deleted candidates, but only if they're viable.
- if (Cand->Viable) {
- if (Fn->isDeleted()) {
- std::string FnDesc;
- std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair =
- ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->RewriteKind,
- FnDesc);
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
- << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc
- << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- return;
- }
- // We don't really have anything else to say about viable candidates.
- S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->RewriteKind);
- return;
- }
- switch (Cand->FailureKind) {
- case ovl_fail_too_many_arguments:
- case ovl_fail_too_few_arguments:
- return DiagnoseArityMismatch(S, Cand, NumArgs);
- case ovl_fail_bad_deduction:
- return DiagnoseBadDeduction(S, Cand, NumArgs,
- TakingCandidateAddress);
- case ovl_fail_illegal_constructor: {
- S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor)
- << (Fn->getPrimaryTemplate() ? 1 : 0);
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- return;
- }
- case ovl_fail_object_addrspace_mismatch: {
- Qualifiers QualsForPrinting;
- QualsForPrinting.setAddressSpace(CtorDestAS);
- S.Diag(Fn->getLocation(),
- diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch)
- << QualsForPrinting;
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- return;
- }
- case ovl_fail_trivial_conversion:
- case ovl_fail_bad_final_conversion:
- case ovl_fail_final_conversion_not_exact:
- return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->RewriteKind);
- case ovl_fail_bad_conversion: {
- unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
- for (unsigned N = Cand->Conversions.size(); I != N; ++I)
- if (Cand->Conversions[I].isBad())
- return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress);
- // FIXME: this currently happens when we're called from SemaInit
- // when user-conversion overload fails. Figure out how to handle
- // those conditions and diagnose them well.
- return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->RewriteKind);
- }
- case ovl_fail_bad_target:
- return DiagnoseBadTarget(S, Cand);
- case ovl_fail_enable_if:
- return DiagnoseFailedEnableIfAttr(S, Cand);
- case ovl_fail_explicit_resolved:
- return DiagnoseFailedExplicitSpec(S, Cand);
- case ovl_fail_ext_disabled:
- return DiagnoseOpenCLExtensionDisabled(S, Cand);
- case ovl_fail_inhctor_slice:
- // It's generally not interesting to note copy/move constructors here.
- if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor())
- return;
- S.Diag(Fn->getLocation(),
- diag::note_ovl_candidate_inherited_constructor_slice)
- << (Fn->getPrimaryTemplate() ? 1 : 0)
- << Fn->getParamDecl(0)->getType()->isRValueReferenceType();
- MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl);
- return;
- case ovl_fail_addr_not_available: {
- bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function);
- (void)Available;
- assert(!Available);
- break;
- }
- case ovl_non_default_multiversion_function:
- // Do nothing, these should simply be ignored.
- break;
- }
- }
- static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) {
- // Desugar the type of the surrogate down to a function type,
- // retaining as many typedefs as possible while still showing
- // the function type (and, therefore, its parameter types).
- QualType FnType = Cand->Surrogate->getConversionType();
- bool isLValueReference = false;
- bool isRValueReference = false;
- bool isPointer = false;
- if (const LValueReferenceType *FnTypeRef =
- FnType->getAs<LValueReferenceType>()) {
- FnType = FnTypeRef->getPointeeType();
- isLValueReference = true;
- } else if (const RValueReferenceType *FnTypeRef =
- FnType->getAs<RValueReferenceType>()) {
- FnType = FnTypeRef->getPointeeType();
- isRValueReference = true;
- }
- if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) {
- FnType = FnTypePtr->getPointeeType();
- isPointer = true;
- }
- // Desugar down to a function type.
- FnType = QualType(FnType->getAs<FunctionType>(), 0);
- // Reconstruct the pointer/reference as appropriate.
- if (isPointer) FnType = S.Context.getPointerType(FnType);
- if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType);
- if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType);
- S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand)
- << FnType;
- }
- static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc,
- SourceLocation OpLoc,
- OverloadCandidate *Cand) {
- assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
- std::string TypeStr("operator");
- TypeStr += Opc;
- TypeStr += "(";
- TypeStr += Cand->BuiltinParamTypes[0].getAsString();
- if (Cand->Conversions.size() == 1) {
- TypeStr += ")";
- S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
- } else {
- TypeStr += ", ";
- TypeStr += Cand->BuiltinParamTypes[1].getAsString();
- TypeStr += ")";
- S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr;
- }
- }
- static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
- OverloadCandidate *Cand) {
- for (const ImplicitConversionSequence &ICS : Cand->Conversions) {
- if (ICS.isBad()) break; // all meaningless after first invalid
- if (!ICS.isAmbiguous()) continue;
- ICS.DiagnoseAmbiguousConversion(
- S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion));
- }
- }
- static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) {
- if (Cand->Function)
- return Cand->Function->getLocation();
- if (Cand->IsSurrogate)
- return Cand->Surrogate->getLocation();
- return SourceLocation();
- }
- static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) {
- switch ((Sema::TemplateDeductionResult)DFI.Result) {
- case Sema::TDK_Success:
- case Sema::TDK_NonDependentConversionFailure:
- llvm_unreachable("non-deduction failure while diagnosing bad deduction");
- case Sema::TDK_Invalid:
- case Sema::TDK_Incomplete:
- case Sema::TDK_IncompletePack:
- return 1;
- case Sema::TDK_Underqualified:
- case Sema::TDK_Inconsistent:
- return 2;
- case Sema::TDK_SubstitutionFailure:
- case Sema::TDK_DeducedMismatch:
- case Sema::TDK_DeducedMismatchNested:
- case Sema::TDK_NonDeducedMismatch:
- case Sema::TDK_MiscellaneousDeductionFailure:
- case Sema::TDK_CUDATargetMismatch:
- return 3;
- case Sema::TDK_InstantiationDepth:
- return 4;
- case Sema::TDK_InvalidExplicitArguments:
- return 5;
- case Sema::TDK_TooManyArguments:
- case Sema::TDK_TooFewArguments:
- return 6;
- }
- llvm_unreachable("Unhandled deduction result");
- }
- namespace {
- struct CompareOverloadCandidatesForDisplay {
- Sema &S;
- SourceLocation Loc;
- size_t NumArgs;
- OverloadCandidateSet::CandidateSetKind CSK;
- CompareOverloadCandidatesForDisplay(
- Sema &S, SourceLocation Loc, size_t NArgs,
- OverloadCandidateSet::CandidateSetKind CSK)
- : S(S), NumArgs(NArgs), CSK(CSK) {}
- bool operator()(const OverloadCandidate *L,
- const OverloadCandidate *R) {
- // Fast-path this check.
- if (L == R) return false;
- // Order first by viability.
- if (L->Viable) {
- if (!R->Viable) return true;
- // TODO: introduce a tri-valued comparison for overload
- // candidates. Would be more worthwhile if we had a sort
- // that could exploit it.
- if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK))
- return true;
- if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK))
- return false;
- } else if (R->Viable)
- return false;
- assert(L->Viable == R->Viable);
- // Criteria by which we can sort non-viable candidates:
- if (!L->Viable) {
- // 1. Arity mismatches come after other candidates.
- if (L->FailureKind == ovl_fail_too_many_arguments ||
- L->FailureKind == ovl_fail_too_few_arguments) {
- if (R->FailureKind == ovl_fail_too_many_arguments ||
- R->FailureKind == ovl_fail_too_few_arguments) {
- int LDist = std::abs((int)L->getNumParams() - (int)NumArgs);
- int RDist = std::abs((int)R->getNumParams() - (int)NumArgs);
- if (LDist == RDist) {
- if (L->FailureKind == R->FailureKind)
- // Sort non-surrogates before surrogates.
- return !L->IsSurrogate && R->IsSurrogate;
- // Sort candidates requiring fewer parameters than there were
- // arguments given after candidates requiring more parameters
- // than there were arguments given.
- return L->FailureKind == ovl_fail_too_many_arguments;
- }
- return LDist < RDist;
- }
- return false;
- }
- if (R->FailureKind == ovl_fail_too_many_arguments ||
- R->FailureKind == ovl_fail_too_few_arguments)
- return true;
- // 2. Bad conversions come first and are ordered by the number
- // of bad conversions and quality of good conversions.
- if (L->FailureKind == ovl_fail_bad_conversion) {
- if (R->FailureKind != ovl_fail_bad_conversion)
- return true;
- // The conversion that can be fixed with a smaller number of changes,
- // comes first.
- unsigned numLFixes = L->Fix.NumConversionsFixed;
- unsigned numRFixes = R->Fix.NumConversionsFixed;
- numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes;
- numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes;
- if (numLFixes != numRFixes) {
- return numLFixes < numRFixes;
- }
- // If there's any ordering between the defined conversions...
- // FIXME: this might not be transitive.
- assert(L->Conversions.size() == R->Conversions.size());
- int leftBetter = 0;
- unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
- for (unsigned E = L->Conversions.size(); I != E; ++I) {
- switch (CompareImplicitConversionSequences(S, Loc,
- L->Conversions[I],
- R->Conversions[I])) {
- case ImplicitConversionSequence::Better:
- leftBetter++;
- break;
- case ImplicitConversionSequence::Worse:
- leftBetter--;
- break;
- case ImplicitConversionSequence::Indistinguishable:
- break;
- }
- }
- if (leftBetter > 0) return true;
- if (leftBetter < 0) return false;
- } else if (R->FailureKind == ovl_fail_bad_conversion)
- return false;
- if (L->FailureKind == ovl_fail_bad_deduction) {
- if (R->FailureKind != ovl_fail_bad_deduction)
- return true;
- if (L->DeductionFailure.Result != R->DeductionFailure.Result)
- return RankDeductionFailure(L->DeductionFailure)
- < RankDeductionFailure(R->DeductionFailure);
- } else if (R->FailureKind == ovl_fail_bad_deduction)
- return false;
- // TODO: others?
- }
- // Sort everything else by location.
- SourceLocation LLoc = GetLocationForCandidate(L);
- SourceLocation RLoc = GetLocationForCandidate(R);
- // Put candidates without locations (e.g. builtins) at the end.
- if (LLoc.isInvalid()) return false;
- if (RLoc.isInvalid()) return true;
- return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
- }
- };
- }
- /// CompleteNonViableCandidate - Normally, overload resolution only
- /// computes up to the first bad conversion. Produces the FixIt set if
- /// possible.
- static void
- CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
- ArrayRef<Expr *> Args,
- OverloadCandidateSet::CandidateSetKind CSK) {
- assert(!Cand->Viable);
- // Don't do anything on failures other than bad conversion.
- if (Cand->FailureKind != ovl_fail_bad_conversion) return;
- // We only want the FixIts if all the arguments can be corrected.
- bool Unfixable = false;
- // Use a implicit copy initialization to check conversion fixes.
- Cand->Fix.setConversionChecker(TryCopyInitialization);
- // Attempt to fix the bad conversion.
- unsigned ConvCount = Cand->Conversions.size();
- for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/;
- ++ConvIdx) {
- assert(ConvIdx != ConvCount && "no bad conversion in candidate");
- if (Cand->Conversions[ConvIdx].isInitialized() &&
- Cand->Conversions[ConvIdx].isBad()) {
- Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
- break;
- }
- }
- // FIXME: this should probably be preserved from the overload
- // operation somehow.
- bool SuppressUserConversions = false;
- unsigned ConvIdx = 0;
- unsigned ArgIdx = 0;
- ArrayRef<QualType> ParamTypes;
- if (Cand->IsSurrogate) {
- QualType ConvType
- = Cand->Surrogate->getConversionType().getNonReferenceType();
- if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
- ConvType = ConvPtrType->getPointeeType();
- ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes();
- // Conversion 0 is 'this', which doesn't have a corresponding parameter.
- ConvIdx = 1;
- } else if (Cand->Function) {
- ParamTypes =
- Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes();
- if (isa<CXXMethodDecl>(Cand->Function) &&
- !isa<CXXConstructorDecl>(Cand->Function)) {
- // Conversion 0 is 'this', which doesn't have a corresponding parameter.
- ConvIdx = 1;
- if (CSK == OverloadCandidateSet::CSK_Operator)
- // Argument 0 is 'this', which doesn't have a corresponding parameter.
- ArgIdx = 1;
- }
- } else {
- // Builtin operator.
- assert(ConvCount <= 3);
- ParamTypes = Cand->BuiltinParamTypes;
- }
- // Fill in the rest of the conversions.
- bool Reversed = Cand->RewriteKind & CRK_Reversed;
- for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0;
- ConvIdx != ConvCount;
- ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) {
- if (Cand->Conversions[ConvIdx].isInitialized()) {
- // We've already checked this conversion.
- } else if (ArgIdx < ParamTypes.size()) {
- if (ParamTypes[ParamIdx]->isDependentType())
- Cand->Conversions[ConvIdx].setAsIdentityConversion(
- Args[ArgIdx]->getType());
- else {
- Cand->Conversions[ConvIdx] =
- TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx],
- SuppressUserConversions,
- /*InOverloadResolution=*/true,
- /*AllowObjCWritebackConversion=*/
- S.getLangOpts().ObjCAutoRefCount);
- // Store the FixIt in the candidate if it exists.
- if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
- Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
- }
- } else
- Cand->Conversions[ConvIdx].setEllipsis();
- }
- }
- SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates(
- Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
- SourceLocation OpLoc,
- llvm::function_ref<bool(OverloadCandidate &)> Filter) {
- // Sort the candidates by viability and position. Sorting directly would
- // be prohibitive, so we make a set of pointers and sort those.
- SmallVector<OverloadCandidate*, 32> Cands;
- if (OCD == OCD_AllCandidates) Cands.reserve(size());
- for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
- if (!Filter(*Cand))
- continue;
- if (Cand->Viable)
- Cands.push_back(Cand);
- else if (OCD == OCD_AllCandidates) {
- CompleteNonViableCandidate(S, Cand, Args, Kind);
- if (Cand->Function || Cand->IsSurrogate)
- Cands.push_back(Cand);
- // Otherwise, this a non-viable builtin candidate. We do not, in general,
- // want to list every possible builtin candidate.
- }
- }
- llvm::stable_sort(
- Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind));
- return Cands;
- }
- /// When overload resolution fails, prints diagnostic messages containing the
- /// candidates in the candidate set.
- void OverloadCandidateSet::NoteCandidates(PartialDiagnosticAt PD,
- Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args,
- StringRef Opc, SourceLocation OpLoc,
- llvm::function_ref<bool(OverloadCandidate &)> Filter) {
- auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter);
- S.Diag(PD.first, PD.second);
- NoteCandidates(S, Args, Cands, Opc, OpLoc);
- }
- void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args,
- ArrayRef<OverloadCandidate *> Cands,
- StringRef Opc, SourceLocation OpLoc) {
- bool ReportedAmbiguousConversions = false;
- const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
- unsigned CandsShown = 0;
- auto I = Cands.begin(), E = Cands.end();
- for (; I != E; ++I) {
- OverloadCandidate *Cand = *I;
- // Set an arbitrary limit on the number of candidate functions we'll spam
- // the user with. FIXME: This limit should depend on details of the
- // candidate list.
- if (CandsShown >= 4 && ShowOverloads == Ovl_Best) {
- break;
- }
- ++CandsShown;
- if (Cand->Function)
- NoteFunctionCandidate(S, Cand, Args.size(),
- /*TakingCandidateAddress=*/false, DestAS);
- else if (Cand->IsSurrogate)
- NoteSurrogateCandidate(S, Cand);
- else {
- assert(Cand->Viable &&
- "Non-viable built-in candidates are not added to Cands.");
- // Generally we only see ambiguities including viable builtin
- // operators if overload resolution got screwed up by an
- // ambiguous user-defined conversion.
- //
- // FIXME: It's quite possible for different conversions to see
- // different ambiguities, though.
- if (!ReportedAmbiguousConversions) {
- NoteAmbiguousUserConversions(S, OpLoc, Cand);
- ReportedAmbiguousConversions = true;
- }
- // If this is a viable builtin, print it.
- NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand);
- }
- }
- if (I != E)
- S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I);
- }
- static SourceLocation
- GetLocationForCandidate(const TemplateSpecCandidate *Cand) {
- return Cand->Specialization ? Cand->Specialization->getLocation()
- : SourceLocation();
- }
- namespace {
- struct CompareTemplateSpecCandidatesForDisplay {
- Sema &S;
- CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {}
- bool operator()(const TemplateSpecCandidate *L,
- const TemplateSpecCandidate *R) {
- // Fast-path this check.
- if (L == R)
- return false;
- // Assuming that both candidates are not matches...
- // Sort by the ranking of deduction failures.
- if (L->DeductionFailure.Result != R->DeductionFailure.Result)
- return RankDeductionFailure(L->DeductionFailure) <
- RankDeductionFailure(R->DeductionFailure);
- // Sort everything else by location.
- SourceLocation LLoc = GetLocationForCandidate(L);
- SourceLocation RLoc = GetLocationForCandidate(R);
- // Put candidates without locations (e.g. builtins) at the end.
- if (LLoc.isInvalid())
- return false;
- if (RLoc.isInvalid())
- return true;
- return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc);
- }
- };
- }
- /// Diagnose a template argument deduction failure.
- /// We are treating these failures as overload failures due to bad
- /// deductions.
- void TemplateSpecCandidate::NoteDeductionFailure(Sema &S,
- bool ForTakingAddress) {
- DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern
- DeductionFailure, /*NumArgs=*/0, ForTakingAddress);
- }
- void TemplateSpecCandidateSet::destroyCandidates() {
- for (iterator i = begin(), e = end(); i != e; ++i) {
- i->DeductionFailure.Destroy();
- }
- }
- void TemplateSpecCandidateSet::clear() {
- destroyCandidates();
- Candidates.clear();
- }
- /// NoteCandidates - When no template specialization match is found, prints
- /// diagnostic messages containing the non-matching specializations that form
- /// the candidate set.
- /// This is analoguous to OverloadCandidateSet::NoteCandidates() with
- /// OCD == OCD_AllCandidates and Cand->Viable == false.
- void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) {
- // Sort the candidates by position (assuming no candidate is a match).
- // Sorting directly would be prohibitive, so we make a set of pointers
- // and sort those.
- SmallVector<TemplateSpecCandidate *, 32> Cands;
- Cands.reserve(size());
- for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) {
- if (Cand->Specialization)
- Cands.push_back(Cand);
- // Otherwise, this is a non-matching builtin candidate. We do not,
- // in general, want to list every possible builtin candidate.
- }
- llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S));
- // FIXME: Perhaps rename OverloadsShown and getShowOverloads()
- // for generalization purposes (?).
- const OverloadsShown ShowOverloads = S.Diags.getShowOverloads();
- SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E;
- unsigned CandsShown = 0;
- for (I = Cands.begin(), E = Cands.end(); I != E; ++I) {
- TemplateSpecCandidate *Cand = *I;
- // Set an arbitrary limit on the number of candidates we'll spam
- // the user with. FIXME: This limit should depend on details of the
- // candidate list.
- if (CandsShown >= 4 && ShowOverloads == Ovl_Best)
- break;
- ++CandsShown;
- assert(Cand->Specialization &&
- "Non-matching built-in candidates are not added to Cands.");
- Cand->NoteDeductionFailure(S, ForTakingAddress);
- }
- if (I != E)
- S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I);
- }
- // [PossiblyAFunctionType] --> [Return]
- // NonFunctionType --> NonFunctionType
- // R (A) --> R(A)
- // R (*)(A) --> R (A)
- // R (&)(A) --> R (A)
- // R (S::*)(A) --> R (A)
- QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) {
- QualType Ret = PossiblyAFunctionType;
- if (const PointerType *ToTypePtr =
- PossiblyAFunctionType->getAs<PointerType>())
- Ret = ToTypePtr->getPointeeType();
- else if (const ReferenceType *ToTypeRef =
- PossiblyAFunctionType->getAs<ReferenceType>())
- Ret = ToTypeRef->getPointeeType();
- else if (const MemberPointerType *MemTypePtr =
- PossiblyAFunctionType->getAs<MemberPointerType>())
- Ret = MemTypePtr->getPointeeType();
- Ret =
- Context.getCanonicalType(Ret).getUnqualifiedType();
- return Ret;
- }
- static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc,
- bool Complain = true) {
- if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
- S.DeduceReturnType(FD, Loc, Complain))
- return true;
- auto *FPT = FD->getType()->castAs<FunctionProtoType>();
- if (S.getLangOpts().CPlusPlus17 &&
- isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
- !S.ResolveExceptionSpec(Loc, FPT))
- return true;
- return false;
- }
- namespace {
- // A helper class to help with address of function resolution
- // - allows us to avoid passing around all those ugly parameters
- class AddressOfFunctionResolver {
- Sema& S;
- Expr* SourceExpr;
- const QualType& TargetType;
- QualType TargetFunctionType; // Extracted function type from target type
- bool Complain;
- //DeclAccessPair& ResultFunctionAccessPair;
- ASTContext& Context;
- bool TargetTypeIsNonStaticMemberFunction;
- bool FoundNonTemplateFunction;
- bool StaticMemberFunctionFromBoundPointer;
- bool HasComplained;
- OverloadExpr::FindResult OvlExprInfo;
- OverloadExpr *OvlExpr;
- TemplateArgumentListInfo OvlExplicitTemplateArgs;
- SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches;
- TemplateSpecCandidateSet FailedCandidates;
- public:
- AddressOfFunctionResolver(Sema &S, Expr *SourceExpr,
- const QualType &TargetType, bool Complain)
- : S(S), SourceExpr(SourceExpr), TargetType(TargetType),
- Complain(Complain), Context(S.getASTContext()),
- TargetTypeIsNonStaticMemberFunction(
- !!TargetType->getAs<MemberPointerType>()),
- FoundNonTemplateFunction(false),
- StaticMemberFunctionFromBoundPointer(false),
- HasComplained(false),
- OvlExprInfo(OverloadExpr::find(SourceExpr)),
- OvlExpr(OvlExprInfo.Expression),
- FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) {
- ExtractUnqualifiedFunctionTypeFromTargetType();
- if (TargetFunctionType->isFunctionType()) {
- if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr))
- if (!UME->isImplicitAccess() &&
- !S.ResolveSingleFunctionTemplateSpecialization(UME))
- StaticMemberFunctionFromBoundPointer = true;
- } else if (OvlExpr->hasExplicitTemplateArgs()) {
- DeclAccessPair dap;
- if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization(
- OvlExpr, false, &dap)) {
- if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
- if (!Method->isStatic()) {
- // If the target type is a non-function type and the function found
- // is a non-static member function, pretend as if that was the
- // target, it's the only possible type to end up with.
- TargetTypeIsNonStaticMemberFunction = true;
- // And skip adding the function if its not in the proper form.
- // We'll diagnose this due to an empty set of functions.
- if (!OvlExprInfo.HasFormOfMemberPointer)
- return;
- }
- Matches.push_back(std::make_pair(dap, Fn));
- }
- return;
- }
- if (OvlExpr->hasExplicitTemplateArgs())
- OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs);
- if (FindAllFunctionsThatMatchTargetTypeExactly()) {
- // C++ [over.over]p4:
- // If more than one function is selected, [...]
- if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) {
- if (FoundNonTemplateFunction)
- EliminateAllTemplateMatches();
- else
- EliminateAllExceptMostSpecializedTemplate();
- }
- }
- if (S.getLangOpts().CUDA && Matches.size() > 1)
- EliminateSuboptimalCudaMatches();
- }
- bool hasComplained() const { return HasComplained; }
- private:
- bool candidateHasExactlyCorrectType(const FunctionDecl *FD) {
- QualType Discard;
- return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) ||
- S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard);
- }
- /// \return true if A is considered a better overload candidate for the
- /// desired type than B.
- bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) {
- // If A doesn't have exactly the correct type, we don't want to classify it
- // as "better" than anything else. This way, the user is required to
- // disambiguate for us if there are multiple candidates and no exact match.
- return candidateHasExactlyCorrectType(A) &&
- (!candidateHasExactlyCorrectType(B) ||
- compareEnableIfAttrs(S, A, B) == Comparison::Better);
- }
- /// \return true if we were able to eliminate all but one overload candidate,
- /// false otherwise.
- bool eliminiateSuboptimalOverloadCandidates() {
- // Same algorithm as overload resolution -- one pass to pick the "best",
- // another pass to be sure that nothing is better than the best.
- auto Best = Matches.begin();
- for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I)
- if (isBetterCandidate(I->second, Best->second))
- Best = I;
- const FunctionDecl *BestFn = Best->second;
- auto IsBestOrInferiorToBest = [this, BestFn](
- const std::pair<DeclAccessPair, FunctionDecl *> &Pair) {
- return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second);
- };
- // Note: We explicitly leave Matches unmodified if there isn't a clear best
- // option, so we can potentially give the user a better error
- if (!llvm::all_of(Matches, IsBestOrInferiorToBest))
- return false;
- Matches[0] = *Best;
- Matches.resize(1);
- return true;
- }
- bool isTargetTypeAFunction() const {
- return TargetFunctionType->isFunctionType();
- }
- // [ToType] [Return]
- // R (*)(A) --> R (A), IsNonStaticMemberFunction = false
- // R (&)(A) --> R (A), IsNonStaticMemberFunction = false
- // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true
- void inline ExtractUnqualifiedFunctionTypeFromTargetType() {
- TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType);
- }
- // return true if any matching specializations were found
- bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate,
- const DeclAccessPair& CurAccessFunPair) {
- if (CXXMethodDecl *Method
- = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) {
- // Skip non-static function templates when converting to pointer, and
- // static when converting to member pointer.
- if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
- return false;
- }
- else if (TargetTypeIsNonStaticMemberFunction)
- return false;
- // C++ [over.over]p2:
- // If the name is a function template, template argument deduction is
- // done (14.8.2.2), and if the argument deduction succeeds, the
- // resulting template argument list is used to generate a single
- // function template specialization, which is added to the set of
- // overloaded functions considered.
- FunctionDecl *Specialization = nullptr;
- TemplateDeductionInfo Info(FailedCandidates.getLocation());
- if (Sema::TemplateDeductionResult Result
- = S.DeduceTemplateArguments(FunctionTemplate,
- &OvlExplicitTemplateArgs,
- TargetFunctionType, Specialization,
- Info, /*IsAddressOfFunction*/true)) {
- // Make a note of the failed deduction for diagnostics.
- FailedCandidates.addCandidate()
- .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(),
- MakeDeductionFailureInfo(Context, Result, Info));
- return false;
- }
- // Template argument deduction ensures that we have an exact match or
- // compatible pointer-to-function arguments that would be adjusted by ICS.
- // This function template specicalization works.
- assert(S.isSameOrCompatibleFunctionType(
- Context.getCanonicalType(Specialization->getType()),
- Context.getCanonicalType(TargetFunctionType)));
- if (!S.checkAddressOfFunctionIsAvailable(Specialization))
- return false;
- Matches.push_back(std::make_pair(CurAccessFunPair, Specialization));
- return true;
- }
- bool AddMatchingNonTemplateFunction(NamedDecl* Fn,
- const DeclAccessPair& CurAccessFunPair) {
- if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
- // Skip non-static functions when converting to pointer, and static
- // when converting to member pointer.
- if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction)
- return false;
- }
- else if (TargetTypeIsNonStaticMemberFunction)
- return false;
- if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
- if (S.getLangOpts().CUDA)
- if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
- if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl))
- return false;
- if (FunDecl->isMultiVersion()) {
- const auto *TA = FunDecl->getAttr<TargetAttr>();
- if (TA && !TA->isDefaultVersion())
- return false;
- }
- // If any candidate has a placeholder return type, trigger its deduction
- // now.
- if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(),
- Complain)) {
- HasComplained |= Complain;
- return false;
- }
- if (!S.checkAddressOfFunctionIsAvailable(FunDecl))
- return false;
- // If we're in C, we need to support types that aren't exactly identical.
- if (!S.getLangOpts().CPlusPlus ||
- candidateHasExactlyCorrectType(FunDecl)) {
- Matches.push_back(std::make_pair(
- CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl())));
- FoundNonTemplateFunction = true;
- return true;
- }
- }
- return false;
- }
- bool FindAllFunctionsThatMatchTargetTypeExactly() {
- bool Ret = false;
- // If the overload expression doesn't have the form of a pointer to
- // member, don't try to convert it to a pointer-to-member type.
- if (IsInvalidFormOfPointerToMemberFunction())
- return false;
- for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
- E = OvlExpr->decls_end();
- I != E; ++I) {
- // Look through any using declarations to find the underlying function.
- NamedDecl *Fn = (*I)->getUnderlyingDecl();
- // C++ [over.over]p3:
- // Non-member functions and static member functions match
- // targets of type "pointer-to-function" or "reference-to-function."
- // Nonstatic member functions match targets of
- // type "pointer-to-member-function."
- // Note that according to DR 247, the containing class does not matter.
- if (FunctionTemplateDecl *FunctionTemplate
- = dyn_cast<FunctionTemplateDecl>(Fn)) {
- if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair()))
- Ret = true;
- }
- // If we have explicit template arguments supplied, skip non-templates.
- else if (!OvlExpr->hasExplicitTemplateArgs() &&
- AddMatchingNonTemplateFunction(Fn, I.getPair()))
- Ret = true;
- }
- assert(Ret || Matches.empty());
- return Ret;
- }
- void EliminateAllExceptMostSpecializedTemplate() {
- // [...] and any given function template specialization F1 is
- // eliminated if the set contains a second function template
- // specialization whose function template is more specialized
- // than the function template of F1 according to the partial
- // ordering rules of 14.5.5.2.
- // The algorithm specified above is quadratic. We instead use a
- // two-pass algorithm (similar to the one used to identify the
- // best viable function in an overload set) that identifies the
- // best function template (if it exists).
- UnresolvedSet<4> MatchesCopy; // TODO: avoid!
- for (unsigned I = 0, E = Matches.size(); I != E; ++I)
- MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess());
- // TODO: It looks like FailedCandidates does not serve much purpose
- // here, since the no_viable diagnostic has index 0.
- UnresolvedSetIterator Result = S.getMostSpecialized(
- MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates,
- SourceExpr->getBeginLoc(), S.PDiag(),
- S.PDiag(diag::err_addr_ovl_ambiguous)
- << Matches[0].second->getDeclName(),
- S.PDiag(diag::note_ovl_candidate)
- << (unsigned)oc_function << (unsigned)ocs_described_template,
- Complain, TargetFunctionType);
- if (Result != MatchesCopy.end()) {
- // Make it the first and only element
- Matches[0].first = Matches[Result - MatchesCopy.begin()].first;
- Matches[0].second = cast<FunctionDecl>(*Result);
- Matches.resize(1);
- } else
- HasComplained |= Complain;
- }
- void EliminateAllTemplateMatches() {
- // [...] any function template specializations in the set are
- // eliminated if the set also contains a non-template function, [...]
- for (unsigned I = 0, N = Matches.size(); I != N; ) {
- if (Matches[I].second->getPrimaryTemplate() == nullptr)
- ++I;
- else {
- Matches[I] = Matches[--N];
- Matches.resize(N);
- }
- }
- }
- void EliminateSuboptimalCudaMatches() {
- S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches);
- }
- public:
- void ComplainNoMatchesFound() const {
- assert(Matches.empty());
- S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable)
- << OvlExpr->getName() << TargetFunctionType
- << OvlExpr->getSourceRange();
- if (FailedCandidates.empty())
- S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
- /*TakingAddress=*/true);
- else {
- // We have some deduction failure messages. Use them to diagnose
- // the function templates, and diagnose the non-template candidates
- // normally.
- for (UnresolvedSetIterator I = OvlExpr->decls_begin(),
- IEnd = OvlExpr->decls_end();
- I != IEnd; ++I)
- if (FunctionDecl *Fun =
- dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()))
- if (!functionHasPassObjectSizeParams(Fun))
- S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType,
- /*TakingAddress=*/true);
- FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc());
- }
- }
- bool IsInvalidFormOfPointerToMemberFunction() const {
- return TargetTypeIsNonStaticMemberFunction &&
- !OvlExprInfo.HasFormOfMemberPointer;
- }
- void ComplainIsInvalidFormOfPointerToMemberFunction() const {
- // TODO: Should we condition this on whether any functions might
- // have matched, or is it more appropriate to do that in callers?
- // TODO: a fixit wouldn't hurt.
- S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier)
- << TargetType << OvlExpr->getSourceRange();
- }
- bool IsStaticMemberFunctionFromBoundPointer() const {
- return StaticMemberFunctionFromBoundPointer;
- }
- void ComplainIsStaticMemberFunctionFromBoundPointer() const {
- S.Diag(OvlExpr->getBeginLoc(),
- diag::err_invalid_form_pointer_member_function)
- << OvlExpr->getSourceRange();
- }
- void ComplainOfInvalidConversion() const {
- S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref)
- << OvlExpr->getName() << TargetType;
- }
- void ComplainMultipleMatchesFound() const {
- assert(Matches.size() > 1);
- S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous)
- << OvlExpr->getName() << OvlExpr->getSourceRange();
- S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType,
- /*TakingAddress=*/true);
- }
- bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
- int getNumMatches() const { return Matches.size(); }
- FunctionDecl* getMatchingFunctionDecl() const {
- if (Matches.size() != 1) return nullptr;
- return Matches[0].second;
- }
- const DeclAccessPair* getMatchingFunctionAccessPair() const {
- if (Matches.size() != 1) return nullptr;
- return &Matches[0].first;
- }
- };
- }
- /// ResolveAddressOfOverloadedFunction - Try to resolve the address of
- /// an overloaded function (C++ [over.over]), where @p From is an
- /// expression with overloaded function type and @p ToType is the type
- /// we're trying to resolve to. For example:
- ///
- /// @code
- /// int f(double);
- /// int f(int);
- ///
- /// int (*pfd)(double) = f; // selects f(double)
- /// @endcode
- ///
- /// This routine returns the resulting FunctionDecl if it could be
- /// resolved, and NULL otherwise. When @p Complain is true, this
- /// routine will emit diagnostics if there is an error.
- FunctionDecl *
- Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
- QualType TargetType,
- bool Complain,
- DeclAccessPair &FoundResult,
- bool *pHadMultipleCandidates) {
- assert(AddressOfExpr->getType() == Context.OverloadTy);
- AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
- Complain);
- int NumMatches = Resolver.getNumMatches();
- FunctionDecl *Fn = nullptr;
- bool ShouldComplain = Complain && !Resolver.hasComplained();
- if (NumMatches == 0 && ShouldComplain) {
- if (Resolver.IsInvalidFormOfPointerToMemberFunction())
- Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
- else
- Resolver.ComplainNoMatchesFound();
- }
- else if (NumMatches > 1 && ShouldComplain)
- Resolver.ComplainMultipleMatchesFound();
- else if (NumMatches == 1) {
- Fn = Resolver.getMatchingFunctionDecl();
- assert(Fn);
- if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
- ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT);
- FoundResult = *Resolver.getMatchingFunctionAccessPair();
- if (Complain) {
- if (Resolver.IsStaticMemberFunctionFromBoundPointer())
- Resolver.ComplainIsStaticMemberFunctionFromBoundPointer();
- else
- CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
- }
- }
- if (pHadMultipleCandidates)
- *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
- return Fn;
- }
- /// Given an expression that refers to an overloaded function, try to
- /// resolve that function to a single function that can have its address taken.
- /// This will modify `Pair` iff it returns non-null.
- ///
- /// This routine can only realistically succeed if all but one candidates in the
- /// overload set for SrcExpr cannot have their addresses taken.
- FunctionDecl *
- Sema::resolveAddressOfOnlyViableOverloadCandidate(Expr *E,
- DeclAccessPair &Pair) {
- OverloadExpr::FindResult R = OverloadExpr::find(E);
- OverloadExpr *Ovl = R.Expression;
- FunctionDecl *Result = nullptr;
- DeclAccessPair DAP;
- // Don't use the AddressOfResolver because we're specifically looking for
- // cases where we have one overload candidate that lacks
- // enable_if/pass_object_size/...
- for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) {
- auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl());
- if (!FD)
- return nullptr;
- if (!checkAddressOfFunctionIsAvailable(FD))
- continue;
- // We have more than one result; quit.
- if (Result)
- return nullptr;
- DAP = I.getPair();
- Result = FD;
- }
- if (Result)
- Pair = DAP;
- return Result;
- }
- /// Given an overloaded function, tries to turn it into a non-overloaded
- /// function reference using resolveAddressOfOnlyViableOverloadCandidate. This
- /// will perform access checks, diagnose the use of the resultant decl, and, if
- /// requested, potentially perform a function-to-pointer decay.
- ///
- /// Returns false if resolveAddressOfOnlyViableOverloadCandidate fails.
- /// Otherwise, returns true. This may emit diagnostics and return true.
- bool Sema::resolveAndFixAddressOfOnlyViableOverloadCandidate(
- ExprResult &SrcExpr, bool DoFunctionPointerConverion) {
- Expr *E = SrcExpr.get();
- assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload");
- DeclAccessPair DAP;
- FunctionDecl *Found = resolveAddressOfOnlyViableOverloadCandidate(E, DAP);
- if (!Found || Found->isCPUDispatchMultiVersion() ||
- Found->isCPUSpecificMultiVersion())
- return false;
- // Emitting multiple diagnostics for a function that is both inaccessible and
- // unavailable is consistent with our behavior elsewhere. So, always check
- // for both.
- DiagnoseUseOfDecl(Found, E->getExprLoc());
- CheckAddressOfMemberAccess(E, DAP);
- Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found);
- if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType())
- SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false);
- else
- SrcExpr = Fixed;
- return true;
- }
- /// Given an expression that refers to an overloaded function, try to
- /// resolve that overloaded function expression down to a single function.
- ///
- /// This routine can only resolve template-ids that refer to a single function
- /// template, where that template-id refers to a single template whose template
- /// arguments are either provided by the template-id or have defaults,
- /// as described in C++0x [temp.arg.explicit]p3.
- ///
- /// If no template-ids are found, no diagnostics are emitted and NULL is
- /// returned.
- FunctionDecl *
- Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
- bool Complain,
- DeclAccessPair *FoundResult) {
- // C++ [over.over]p1:
- // [...] [Note: any redundant set of parentheses surrounding the
- // overloaded function name is ignored (5.1). ]
- // C++ [over.over]p1:
- // [...] The overloaded function name can be preceded by the &
- // operator.
- // If we didn't actually find any template-ids, we're done.
- if (!ovl->hasExplicitTemplateArgs())
- return nullptr;
- TemplateArgumentListInfo ExplicitTemplateArgs;
- ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs);
- TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc());
- // Look through all of the overloaded functions, searching for one
- // whose type matches exactly.
- FunctionDecl *Matched = nullptr;
- for (UnresolvedSetIterator I = ovl->decls_begin(),
- E = ovl->decls_end(); I != E; ++I) {
- // C++0x [temp.arg.explicit]p3:
- // [...] In contexts where deduction is done and fails, or in contexts
- // where deduction is not done, if a template argument list is
- // specified and it, along with any default template arguments,
- // identifies a single function template specialization, then the
- // template-id is an lvalue for the function template specialization.
- FunctionTemplateDecl *FunctionTemplate
- = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl());
- // C++ [over.over]p2:
- // If the name is a function template, template argument deduction is
- // done (14.8.2.2), and if the argument deduction succeeds, the
- // resulting template argument list is used to generate a single
- // function template specialization, which is added to the set of
- // overloaded functions considered.
- FunctionDecl *Specialization = nullptr;
- TemplateDeductionInfo Info(FailedCandidates.getLocation());
- if (TemplateDeductionResult Result
- = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs,
- Specialization, Info,
- /*IsAddressOfFunction*/true)) {
- // Make a note of the failed deduction for diagnostics.
- // TODO: Actually use the failed-deduction info?
- FailedCandidates.addCandidate()
- .set(I.getPair(), FunctionTemplate->getTemplatedDecl(),
- MakeDeductionFailureInfo(Context, Result, Info));
- continue;
- }
- assert(Specialization && "no specialization and no error?");
- // Multiple matches; we can't resolve to a single declaration.
- if (Matched) {
- if (Complain) {
- Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous)
- << ovl->getName();
- NoteAllOverloadCandidates(ovl);
- }
- return nullptr;
- }
- Matched = Specialization;
- if (FoundResult) *FoundResult = I.getPair();
- }
- if (Matched &&
- completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain))
- return nullptr;
- return Matched;
- }
- // Resolve and fix an overloaded expression that can be resolved
- // because it identifies a single function template specialization.
- //
- // Last three arguments should only be supplied if Complain = true
- //
- // Return true if it was logically possible to so resolve the
- // expression, regardless of whether or not it succeeded. Always
- // returns true if 'complain' is set.
- bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
- ExprResult &SrcExpr, bool doFunctionPointerConverion,
- bool complain, SourceRange OpRangeForComplaining,
- QualType DestTypeForComplaining,
- unsigned DiagIDForComplaining) {
- assert(SrcExpr.get()->getType() == Context.OverloadTy);
- OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get());
- DeclAccessPair found;
- ExprResult SingleFunctionExpression;
- if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
- ovl.Expression, /*complain*/ false, &found)) {
- if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) {
- SrcExpr = ExprError();
- return true;
- }
- // It is only correct to resolve to an instance method if we're
- // resolving a form that's permitted to be a pointer to member.
- // Otherwise we'll end up making a bound member expression, which
- // is illegal in all the contexts we resolve like this.
- if (!ovl.HasFormOfMemberPointer &&
- isa<CXXMethodDecl>(fn) &&
- cast<CXXMethodDecl>(fn)->isInstance()) {
- if (!complain) return false;
- Diag(ovl.Expression->getExprLoc(),
- diag::err_bound_member_function)
- << 0 << ovl.Expression->getSourceRange();
- // TODO: I believe we only end up here if there's a mix of
- // static and non-static candidates (otherwise the expression
- // would have 'bound member' type, not 'overload' type).
- // Ideally we would note which candidate was chosen and why
- // the static candidates were rejected.
- SrcExpr = ExprError();
- return true;
- }
- // Fix the expression to refer to 'fn'.
- SingleFunctionExpression =
- FixOverloadedFunctionReference(SrcExpr.get(), found, fn);
- // If desired, do function-to-pointer decay.
- if (doFunctionPointerConverion) {
- SingleFunctionExpression =
- DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get());
- if (SingleFunctionExpression.isInvalid()) {
- SrcExpr = ExprError();
- return true;
- }
- }
- }
- if (!SingleFunctionExpression.isUsable()) {
- if (complain) {
- Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining)
- << ovl.Expression->getName()
- << DestTypeForComplaining
- << OpRangeForComplaining
- << ovl.Expression->getQualifierLoc().getSourceRange();
- NoteAllOverloadCandidates(SrcExpr.get());
- SrcExpr = ExprError();
- return true;
- }
- return false;
- }
- SrcExpr = SingleFunctionExpression;
- return true;
- }
- /// Add a single candidate to the overload set.
- static void AddOverloadedCallCandidate(Sema &S,
- DeclAccessPair FoundDecl,
- TemplateArgumentListInfo *ExplicitTemplateArgs,
- ArrayRef<Expr *> Args,
- OverloadCandidateSet &CandidateSet,
- bool PartialOverloading,
- bool KnownValid) {
- NamedDecl *Callee = FoundDecl.getDecl();
- if (isa<UsingShadowDecl>(Callee))
- Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl();
- if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) {
- if (ExplicitTemplateArgs) {
- assert(!KnownValid && "Explicit template arguments?");
- return;
- }
- // Prevent ill-formed function decls to be added as overload candidates.
- if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>()))
- return;
- S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet,
- /*SuppressUserConversions=*/false,
- PartialOverloading);
- return;
- }
- if (FunctionTemplateDecl *FuncTemplate
- = dyn_cast<FunctionTemplateDecl>(Callee)) {
- S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
- ExplicitTemplateArgs, Args, CandidateSet,
- /*SuppressUserConversions=*/false,
- PartialOverloading);
- return;
- }
- assert(!KnownValid && "unhandled case in overloaded call candidate");
- }
- /// Add the overload candidates named by callee and/or found by argument
- /// dependent lookup to the given overload set.
- void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
- ArrayRef<Expr *> Args,
- OverloadCandidateSet &CandidateSet,
- bool PartialOverloading) {
- #ifndef NDEBUG
- // Verify that ArgumentDependentLookup is consistent with the rules
- // in C++0x [basic.lookup.argdep]p3:
- //
- // Let X be the lookup set produced by unqualified lookup (3.4.1)
- // and let Y be the lookup set produced by argument dependent
- // lookup (defined as follows). If X contains
- //
- // -- a declaration of a class member, or
- //
- // -- a block-scope function declaration that is not a
- // using-declaration, or
- //
- // -- a declaration that is neither a function or a function
- // template
- //
- // then Y is empty.
- if (ULE->requiresADL()) {
- for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
- E = ULE->decls_end(); I != E; ++I) {
- assert(!(*I)->getDeclContext()->isRecord());
- assert(isa<UsingShadowDecl>(*I) ||
- !(*I)->getDeclContext()->isFunctionOrMethod());
- assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate());
- }
- }
- #endif
- // It would be nice to avoid this copy.
- TemplateArgumentListInfo TABuffer;
- TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
- if (ULE->hasExplicitTemplateArgs()) {
- ULE->copyTemplateArgumentsInto(TABuffer);
- ExplicitTemplateArgs = &TABuffer;
- }
- for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
- E = ULE->decls_end(); I != E; ++I)
- AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
- CandidateSet, PartialOverloading,
- /*KnownValid*/ true);
- if (ULE->requiresADL())
- AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(),
- Args, ExplicitTemplateArgs,
- CandidateSet, PartialOverloading);
- }
- /// Determine whether a declaration with the specified name could be moved into
- /// a different namespace.
- static bool canBeDeclaredInNamespace(const DeclarationName &Name) {
- switch (Name.getCXXOverloadedOperator()) {
- case OO_New: case OO_Array_New:
- case OO_Delete: case OO_Array_Delete:
- return false;
- default:
- return true;
- }
- }
- /// Attempt to recover from an ill-formed use of a non-dependent name in a
- /// template, where the non-dependent name was declared after the template
- /// was defined. This is common in code written for a compilers which do not
- /// correctly implement two-stage name lookup.
- ///
- /// Returns true if a viable candidate was found and a diagnostic was issued.
- static bool
- DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
- const CXXScopeSpec &SS, LookupResult &R,
- OverloadCandidateSet::CandidateSetKind CSK,
- TemplateArgumentListInfo *ExplicitTemplateArgs,
- ArrayRef<Expr *> Args,
- bool *DoDiagnoseEmptyLookup = nullptr) {
- if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty())
- return false;
- for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
- if (DC->isTransparentContext())
- continue;
- SemaRef.LookupQualifiedName(R, DC);
- if (!R.empty()) {
- R.suppressDiagnostics();
- if (isa<CXXRecordDecl>(DC)) {
- // Don't diagnose names we find in classes; we get much better
- // diagnostics for these from DiagnoseEmptyLookup.
- R.clear();
- if (DoDiagnoseEmptyLookup)
- *DoDiagnoseEmptyLookup = true;
- return false;
- }
- OverloadCandidateSet Candidates(FnLoc, CSK);
- for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
- AddOverloadedCallCandidate(SemaRef, I.getPair(),
- ExplicitTemplateArgs, Args,
- Candidates, false, /*KnownValid*/ false);
- OverloadCandidateSet::iterator Best;
- if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) {
- // No viable functions. Don't bother the user with notes for functions
- // which don't work and shouldn't be found anyway.
- R.clear();
- return false;
- }
- // Find the namespaces where ADL would have looked, and suggest
- // declaring the function there instead.
- Sema::AssociatedNamespaceSet AssociatedNamespaces;
- Sema::AssociatedClassSet AssociatedClasses;
- SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args,
- AssociatedNamespaces,
- AssociatedClasses);
- Sema::AssociatedNamespaceSet SuggestedNamespaces;
- if (canBeDeclaredInNamespace(R.getLookupName())) {
- DeclContext *Std = SemaRef.getStdNamespace();
- for (Sema::AssociatedNamespaceSet::iterator
- it = AssociatedNamespaces.begin(),
- end = AssociatedNamespaces.end(); it != end; ++it) {
- // Never suggest declaring a function within namespace 'std'.
- if (Std && Std->Encloses(*it))
- continue;
- // Never suggest declaring a function within a namespace with a
- // reserved name, like __gnu_cxx.
- NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it);
- if (NS &&
- NS->getQualifiedNameAsString().find("__") != std::string::npos)
- continue;
- SuggestedNamespaces.insert(*it);
- }
- }
- SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup)
- << R.getLookupName();
- if (SuggestedNamespaces.empty()) {
- SemaRef.Diag(Best->Function->getLocation(),
- diag::note_not_found_by_two_phase_lookup)
- << R.getLookupName() << 0;
- } else if (SuggestedNamespaces.size() == 1) {
- SemaRef.Diag(Best->Function->getLocation(),
- diag::note_not_found_by_two_phase_lookup)
- << R.getLookupName() << 1 << *SuggestedNamespaces.begin();
- } else {
- // FIXME: It would be useful to list the associated namespaces here,
- // but the diagnostics infrastructure doesn't provide a way to produce
- // a localized representation of a list of items.
- SemaRef.Diag(Best->Function->getLocation(),
- diag::note_not_found_by_two_phase_lookup)
- << R.getLookupName() << 2;
- }
- // Try to recover by calling this function.
- return true;
- }
- R.clear();
- }
- return false;
- }
- /// Attempt to recover from ill-formed use of a non-dependent operator in a
- /// template, where the non-dependent operator was declared after the template
- /// was defined.
- ///
- /// Returns true if a viable candidate was found and a diagnostic was issued.
- static bool
- DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
- SourceLocation OpLoc,
- ArrayRef<Expr *> Args) {
- DeclarationName OpName =
- SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
- LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
- return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
- OverloadCandidateSet::CSK_Operator,
- /*ExplicitTemplateArgs=*/nullptr, Args);
- }
- namespace {
- class BuildRecoveryCallExprRAII {
- Sema &SemaRef;
- public:
- BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) {
- assert(SemaRef.IsBuildingRecoveryCallExpr == false);
- SemaRef.IsBuildingRecoveryCallExpr = true;
- }
- ~BuildRecoveryCallExprRAII() {
- SemaRef.IsBuildingRecoveryCallExpr = false;
- }
- };
- }
- /// Attempts to recover from a call where no functions were found.
- ///
- /// Returns true if new candidates were found.
- static ExprResult
- BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
- UnresolvedLookupExpr *ULE,
- SourceLocation LParenLoc,
- MutableArrayRef<Expr *> Args,
- SourceLocation RParenLoc,
- bool EmptyLookup, bool AllowTypoCorrection) {
- // Do not try to recover if it is already building a recovery call.
- // This stops infinite loops for template instantiations like
- //
- // template <typename T> auto foo(T t) -> decltype(foo(t)) {}
- // template <typename T> auto foo(T t) -> decltype(foo(&t)) {}
- //
- if (SemaRef.IsBuildingRecoveryCallExpr)
- return ExprError();
- BuildRecoveryCallExprRAII RCE(SemaRef);
- CXXScopeSpec SS;
- SS.Adopt(ULE->getQualifierLoc());
- SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
- TemplateArgumentListInfo TABuffer;
- TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr;
- if (ULE->hasExplicitTemplateArgs()) {
- ULE->copyTemplateArgumentsInto(TABuffer);
- ExplicitTemplateArgs = &TABuffer;
- }
- LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
- Sema::LookupOrdinaryName);
- bool DoDiagnoseEmptyLookup = EmptyLookup;
- if (!DiagnoseTwoPhaseLookup(
- SemaRef, Fn->getExprLoc(), SS, R, OverloadCandidateSet::CSK_Normal,
- ExplicitTemplateArgs, Args, &DoDiagnoseEmptyLookup)) {
- NoTypoCorrectionCCC NoTypoValidator{};
- FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(),
- ExplicitTemplateArgs != nullptr,
- dyn_cast<MemberExpr>(Fn));
- CorrectionCandidateCallback &Validator =
- AllowTypoCorrection
- ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator)
- : static_cast<CorrectionCandidateCallback &>(NoTypoValidator);
- if (!DoDiagnoseEmptyLookup ||
- SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs,
- Args))
- return ExprError();
- }
- assert(!R.empty() && "lookup results empty despite recovery");
- // If recovery created an ambiguity, just bail out.
- if (R.isAmbiguous()) {
- R.suppressDiagnostics();
- return ExprError();
- }
- // Build an implicit member call if appropriate. Just drop the
- // casts and such from the call, we don't really care.
- ExprResult NewFn = ExprError();
- if ((*R.begin())->isCXXClassMember())
- NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R,
- ExplicitTemplateArgs, S);
- else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
- NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
- ExplicitTemplateArgs);
- else
- NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
- if (NewFn.isInvalid())
- return ExprError();
- // This shouldn't cause an infinite loop because we're giving it
- // an expression with viable lookup results, which should never
- // end up here.
- return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc,
- MultiExprArg(Args.data(), Args.size()),
- RParenLoc);
- }
- /// Constructs and populates an OverloadedCandidateSet from
- /// the given function.
- /// \returns true when an the ExprResult output parameter has been set.
- bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn,
- UnresolvedLookupExpr *ULE,
- MultiExprArg Args,
- SourceLocation RParenLoc,
- OverloadCandidateSet *CandidateSet,
- ExprResult *Result) {
- #ifndef NDEBUG
- if (ULE->requiresADL()) {
- // To do ADL, we must have found an unqualified name.
- assert(!ULE->getQualifier() && "qualified name with ADL");
- // We don't perform ADL for implicit declarations of builtins.
- // Verify that this was correctly set up.
- FunctionDecl *F;
- if (ULE->decls_begin() != ULE->decls_end() &&
- ULE->decls_begin() + 1 == ULE->decls_end() &&
- (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) &&
- F->getBuiltinID() && F->isImplicit())
- llvm_unreachable("performing ADL for builtin");
- // We don't perform ADL in C.
- assert(getLangOpts().CPlusPlus && "ADL enabled in C");
- }
- #endif
- UnbridgedCastsSet UnbridgedCasts;
- if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) {
- *Result = ExprError();
- return true;
- }
- // Add the functions denoted by the callee to the set of candidate
- // functions, including those from argument-dependent lookup.
- AddOverloadedCallCandidates(ULE, Args, *CandidateSet);
- if (getLangOpts().MSVCCompat &&
- CurContext->isDependentContext() && !isSFINAEContext() &&
- (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
- OverloadCandidateSet::iterator Best;
- if (CandidateSet->empty() ||
- CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) ==
- OR_No_Viable_Function) {
- // In Microsoft mode, if we are inside a template class member function
- // then create a type dependent CallExpr. The goal is to postpone name
- // lookup to instantiation time to be able to search into type dependent
- // base classes.
- CallExpr *CE = CallExpr::Create(Context, Fn, Args, Context.DependentTy,
- VK_RValue, RParenLoc);
- CE->setTypeDependent(true);
- CE->setValueDependent(true);
- CE->setInstantiationDependent(true);
- *Result = CE;
- return true;
- }
- }
- if (CandidateSet->empty())
- return false;
- UnbridgedCasts.restore();
- return false;
- }
- /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns
- /// the completed call expression. If overload resolution fails, emits
- /// diagnostics and returns ExprError()
- static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
- UnresolvedLookupExpr *ULE,
- SourceLocation LParenLoc,
- MultiExprArg Args,
- SourceLocation RParenLoc,
- Expr *ExecConfig,
- OverloadCandidateSet *CandidateSet,
- OverloadCandidateSet::iterator *Best,
- OverloadingResult OverloadResult,
- bool AllowTypoCorrection) {
- if (CandidateSet->empty())
- return BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, Args,
- RParenLoc, /*EmptyLookup=*/true,
- AllowTypoCorrection);
- switch (OverloadResult) {
- case OR_Success: {
- FunctionDecl *FDecl = (*Best)->Function;
- SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl);
- if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()))
- return ExprError();
- Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
- return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
- ExecConfig, /*IsExecConfig=*/false,
- (*Best)->IsADLCandidate);
- }
- case OR_No_Viable_Function: {
- // Try to recover by looking for viable functions which the user might
- // have meant to call.
- ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc,
- Args, RParenLoc,
- /*EmptyLookup=*/false,
- AllowTypoCorrection);
- if (!Recovery.isInvalid())
- return Recovery;
- // If the user passes in a function that we can't take the address of, we
- // generally end up emitting really bad error messages. Here, we attempt to
- // emit better ones.
- for (const Expr *Arg : Args) {
- if (!Arg->getType()->isFunctionType())
- continue;
- if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) {
- auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
- if (FD &&
- !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
- Arg->getExprLoc()))
- return ExprError();
- }
- }
- CandidateSet->NoteCandidates(
- PartialDiagnosticAt(
- Fn->getBeginLoc(),
- SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call)
- << ULE->getName() << Fn->getSourceRange()),
- SemaRef, OCD_AllCandidates, Args);
- break;
- }
- case OR_Ambiguous:
- CandidateSet->NoteCandidates(
- PartialDiagnosticAt(Fn->getBeginLoc(),
- SemaRef.PDiag(diag::err_ovl_ambiguous_call)
- << ULE->getName() << Fn->getSourceRange()),
- SemaRef, OCD_ViableCandidates, Args);
- break;
- case OR_Deleted: {
- CandidateSet->NoteCandidates(
- PartialDiagnosticAt(Fn->getBeginLoc(),
- SemaRef.PDiag(diag::err_ovl_deleted_call)
- << ULE->getName() << Fn->getSourceRange()),
- SemaRef, OCD_AllCandidates, Args);
- // We emitted an error for the unavailable/deleted function call but keep
- // the call in the AST.
- FunctionDecl *FDecl = (*Best)->Function;
- Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl);
- return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc,
- ExecConfig, /*IsExecConfig=*/false,
- (*Best)->IsADLCandidate);
- }
- }
- // Overload resolution failed.
- return ExprError();
- }
- static void markUnaddressableCandidatesUnviable(Sema &S,
- OverloadCandidateSet &CS) {
- for (auto I = CS.begin(), E = CS.end(); I != E; ++I) {
- if (I->Viable &&
- !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) {
- I->Viable = false;
- I->FailureKind = ovl_fail_addr_not_available;
- }
- }
- }
- /// BuildOverloadedCallExpr - Given the call expression that calls Fn
- /// (which eventually refers to the declaration Func) and the call
- /// arguments Args/NumArgs, attempt to resolve the function call down
- /// to a specific function. If overload resolution succeeds, returns
- /// the call expression produced by overload resolution.
- /// Otherwise, emits diagnostics and returns ExprError.
- ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn,
- UnresolvedLookupExpr *ULE,
- SourceLocation LParenLoc,
- MultiExprArg Args,
- SourceLocation RParenLoc,
- Expr *ExecConfig,
- bool AllowTypoCorrection,
- bool CalleesAddressIsTaken) {
- OverloadCandidateSet CandidateSet(Fn->getExprLoc(),
- OverloadCandidateSet::CSK_Normal);
- ExprResult result;
- if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet,
- &result))
- return result;
- // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that
- // functions that aren't addressible are considered unviable.
- if (CalleesAddressIsTaken)
- markUnaddressableCandidatesUnviable(*this, CandidateSet);
- OverloadCandidateSet::iterator Best;
- OverloadingResult OverloadResult =
- CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best);
- return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc,
- ExecConfig, &CandidateSet, &Best,
- OverloadResult, AllowTypoCorrection);
- }
- static bool IsOverloaded(const UnresolvedSetImpl &Functions) {
- return Functions.size() > 1 ||
- (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
- }
- /// Create a unary operation that may resolve to an overloaded
- /// operator.
- ///
- /// \param OpLoc The location of the operator itself (e.g., '*').
- ///
- /// \param Opc The UnaryOperatorKind that describes this operator.
- ///
- /// \param Fns The set of non-member functions that will be
- /// considered by overload resolution. The caller needs to build this
- /// set based on the context using, e.g.,
- /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
- /// set should not contain any member functions; those will be added
- /// by CreateOverloadedUnaryOp().
- ///
- /// \param Input The input argument.
- ExprResult
- Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
- const UnresolvedSetImpl &Fns,
- Expr *Input, bool PerformADL) {
- OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc);
- assert(Op != OO_None && "Invalid opcode for overloaded unary operator");
- DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
- // TODO: provide better source location info.
- DeclarationNameInfo OpNameInfo(OpName, OpLoc);
- if (checkPlaceholderForOverload(*this, Input))
- return ExprError();
- Expr *Args[2] = { Input, nullptr };
- unsigned NumArgs = 1;
- // For post-increment and post-decrement, add the implicit '0' as
- // the second argument, so that we know this is a post-increment or
- // post-decrement.
- if (Opc == UO_PostInc || Opc == UO_PostDec) {
- llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
- Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy,
- SourceLocation());
- NumArgs = 2;
- }
- ArrayRef<Expr *> ArgsArray(Args, NumArgs);
- if (Input->isTypeDependent()) {
- if (Fns.empty())
- return new (Context) UnaryOperator(Input, Opc, Context.DependentTy,
- VK_RValue, OK_Ordinary, OpLoc, false);
- CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
- UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
- Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
- /*ADL*/ true, IsOverloaded(Fns), Fns.begin(), Fns.end());
- return CXXOperatorCallExpr::Create(Context, Op, Fn, ArgsArray,
- Context.DependentTy, VK_RValue, OpLoc,
- FPOptions());
- }
- // Build an empty overload set.
- OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator);
- // Add the candidates from the given function set.
- AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet);
- // Add operator candidates that are member functions.
- AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
- // Add candidates from ADL.
- if (PerformADL) {
- AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray,
- /*ExplicitTemplateArgs*/nullptr,
- CandidateSet);
- }
- // Add builtin operator candidates.
- AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet);
- bool HadMultipleCandidates = (CandidateSet.size() > 1);
- // Perform overload resolution.
- OverloadCandidateSet::iterator Best;
- switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
- case OR_Success: {
- // We found a built-in operator or an overloaded operator.
- FunctionDecl *FnDecl = Best->Function;
- if (FnDecl) {
- Expr *Base = nullptr;
- // We matched an overloaded operator. Build a call to that
- // operator.
- // Convert the arguments.
- if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
- CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl);
- ExprResult InputRes =
- PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr,
- Best->FoundDecl, Method);
- if (InputRes.isInvalid())
- return ExprError();
- Base = Input = InputRes.get();
- } else {
- // Convert the arguments.
- ExprResult InputInit
- = PerformCopyInitialization(InitializedEntity::InitializeParameter(
- Context,
- FnDecl->getParamDecl(0)),
- SourceLocation(),
- Input);
- if (InputInit.isInvalid())
- return ExprError();
- Input = InputInit.get();
- }
- // Build the actual expression node.
- ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl,
- Base, HadMultipleCandidates,
- OpLoc);
- if (FnExpr.isInvalid())
- return ExprError();
- // Determine the result type.
- QualType ResultTy = FnDecl->getReturnType();
- ExprValueKind VK = Expr::getValueKindForType(ResultTy);
- ResultTy = ResultTy.getNonLValueExprType(Context);
- Args[0] = Input;
- CallExpr *TheCall = CXXOperatorCallExpr::Create(
- Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc,
- FPOptions(), Best->IsADLCandidate);
- if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl))
- return ExprError();
- if (CheckFunctionCall(FnDecl, TheCall,
- FnDecl->getType()->castAs<FunctionProtoType>()))
- return ExprError();
- return MaybeBindToTemporary(TheCall);
- } else {
- // We matched a built-in operator. Convert the arguments, then
- // break out so that we will build the appropriate built-in
- // operator node.
- ExprResult InputRes = PerformImplicitConversion(
- Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing,
- CCK_ForBuiltinOverloadedOp);
- if (InputRes.isInvalid())
- return ExprError();
- Input = InputRes.get();
- break;
- }
- }
- case OR_No_Viable_Function:
- // This is an erroneous use of an operator which can be overloaded by
- // a non-member function. Check for non-member operators which were
- // defined too late to be candidates.
- if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray))
- // FIXME: Recover by calling the found function.
- return ExprError();
- // No viable function; fall through to handling this as a
- // built-in operator, which will produce an error message for us.
- break;
- case OR_Ambiguous:
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(OpLoc,
- PDiag(diag::err_ovl_ambiguous_oper_unary)
- << UnaryOperator::getOpcodeStr(Opc)
- << Input->getType() << Input->getSourceRange()),
- *this, OCD_ViableCandidates, ArgsArray,
- UnaryOperator::getOpcodeStr(Opc), OpLoc);
- return ExprError();
- case OR_Deleted:
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
- << UnaryOperator::getOpcodeStr(Opc)
- << Input->getSourceRange()),
- *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc),
- OpLoc);
- return ExprError();
- }
- // Either we found no viable overloaded operator or we matched a
- // built-in operator. In either case, fall through to trying to
- // build a built-in operation.
- return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
- }
- /// Create a binary operation that may resolve to an overloaded
- /// operator.
- ///
- /// \param OpLoc The location of the operator itself (e.g., '+').
- ///
- /// \param Opc The BinaryOperatorKind that describes this operator.
- ///
- /// \param Fns The set of non-member functions that will be
- /// considered by overload resolution. The caller needs to build this
- /// set based on the context using, e.g.,
- /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This
- /// set should not contain any member functions; those will be added
- /// by CreateOverloadedBinOp().
- ///
- /// \param LHS Left-hand argument.
- /// \param RHS Right-hand argument.
- ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
- BinaryOperatorKind Opc,
- const UnresolvedSetImpl &Fns, Expr *LHS,
- Expr *RHS, bool PerformADL,
- bool AllowRewrittenCandidates) {
- Expr *Args[2] = { LHS, RHS };
- LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple
- if (!getLangOpts().CPlusPlus2a)
- AllowRewrittenCandidates = false;
- OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc);
- DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
- // If either side is type-dependent, create an appropriate dependent
- // expression.
- if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
- if (Fns.empty()) {
- // If there are no functions to store, just build a dependent
- // BinaryOperator or CompoundAssignment.
- if (Opc <= BO_Assign || Opc > BO_OrAssign)
- return new (Context) BinaryOperator(
- Args[0], Args[1], Opc, Context.DependentTy, VK_RValue, OK_Ordinary,
- OpLoc, FPFeatures);
- return new (Context) CompoundAssignOperator(
- Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, OK_Ordinary,
- Context.DependentTy, Context.DependentTy, OpLoc,
- FPFeatures);
- }
- // FIXME: save results of ADL from here?
- CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
- // TODO: provide better source location info in DNLoc component.
- DeclarationNameInfo OpNameInfo(OpName, OpLoc);
- UnresolvedLookupExpr *Fn = UnresolvedLookupExpr::Create(
- Context, NamingClass, NestedNameSpecifierLoc(), OpNameInfo,
- /*ADL*/ PerformADL, IsOverloaded(Fns), Fns.begin(), Fns.end());
- return CXXOperatorCallExpr::Create(Context, Op, Fn, Args,
- Context.DependentTy, VK_RValue, OpLoc,
- FPFeatures);
- }
- // Always do placeholder-like conversions on the RHS.
- if (checkPlaceholderForOverload(*this, Args[1]))
- return ExprError();
- // Do placeholder-like conversion on the LHS; note that we should
- // not get here with a PseudoObject LHS.
- assert(Args[0]->getObjectKind() != OK_ObjCProperty);
- if (checkPlaceholderForOverload(*this, Args[0]))
- return ExprError();
- // If this is the assignment operator, we only perform overload resolution
- // if the left-hand side is a class or enumeration type. This is actually
- // a hack. The standard requires that we do overload resolution between the
- // various built-in candidates, but as DR507 points out, this can lead to
- // problems. So we do it this way, which pretty much follows what GCC does.
- // Note that we go the traditional code path for compound assignment forms.
- if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType())
- return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
- // If this is the .* operator, which is not overloadable, just
- // create a built-in binary operator.
- if (Opc == BO_PtrMemD)
- return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
- // Build an empty overload set.
- OverloadCandidateSet CandidateSet(
- OpLoc, OverloadCandidateSet::CSK_Operator,
- OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates));
- OverloadedOperatorKind ExtraOp =
- AllowRewrittenCandidates ? getRewrittenOverloadedOperator(Op) : OO_None;
- // Add the candidates from the given function set. This also adds the
- // rewritten candidates using these functions if necessary.
- AddNonMemberOperatorCandidates(Fns, Args, CandidateSet);
- // Add operator candidates that are member functions.
- AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet);
- if (CandidateSet.getRewriteInfo().shouldAddReversed(Op))
- AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet,
- OverloadCandidateParamOrder::Reversed);
- // In C++20, also add any rewritten member candidates.
- if (ExtraOp) {
- AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet);
- if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp))
- AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]},
- CandidateSet,
- OverloadCandidateParamOrder::Reversed);
- }
- // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not
- // performed for an assignment operator (nor for operator[] nor operator->,
- // which don't get here).
- if (Opc != BO_Assign && PerformADL) {
- AddArgumentDependentLookupCandidates(OpName, OpLoc, Args,
- /*ExplicitTemplateArgs*/ nullptr,
- CandidateSet);
- if (ExtraOp) {
- DeclarationName ExtraOpName =
- Context.DeclarationNames.getCXXOperatorName(ExtraOp);
- AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args,
- /*ExplicitTemplateArgs*/ nullptr,
- CandidateSet);
- }
- }
- // Add builtin operator candidates.
- //
- // FIXME: We don't add any rewritten candidates here. This is strictly
- // incorrect; a builtin candidate could be hidden by a non-viable candidate,
- // resulting in our selecting a rewritten builtin candidate. For example:
- //
- // enum class E { e };
- // bool operator!=(E, E) requires false;
- // bool k = E::e != E::e;
- //
- // ... should select the rewritten builtin candidate 'operator==(E, E)'. But
- // it seems unreasonable to consider rewritten builtin candidates. A core
- // issue has been filed proposing to removed this requirement.
- AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet);
- bool HadMultipleCandidates = (CandidateSet.size() > 1);
- // Perform overload resolution.
- OverloadCandidateSet::iterator Best;
- switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
- case OR_Success: {
- // We found a built-in operator or an overloaded operator.
- FunctionDecl *FnDecl = Best->Function;
- bool IsReversed = (Best->RewriteKind & CRK_Reversed);
- if (IsReversed)
- std::swap(Args[0], Args[1]);
- if (FnDecl) {
- Expr *Base = nullptr;
- // We matched an overloaded operator. Build a call to that
- // operator.
- OverloadedOperatorKind ChosenOp =
- FnDecl->getDeclName().getCXXOverloadedOperator();
- // C++2a [over.match.oper]p9:
- // If a rewritten operator== candidate is selected by overload
- // resolution for an operator@, its return type shall be cv bool
- if (Best->RewriteKind && ChosenOp == OO_EqualEqual &&
- !FnDecl->getReturnType()->isBooleanType()) {
- Diag(OpLoc, diag::err_ovl_rewrite_equalequal_not_bool)
- << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc)
- << Args[0]->getSourceRange() << Args[1]->getSourceRange();
- Diag(FnDecl->getLocation(), diag::note_declared_at);
- return ExprError();
- }
- if (AllowRewrittenCandidates && !IsReversed &&
- CandidateSet.getRewriteInfo().shouldAddReversed(ChosenOp)) {
- // We could have reversed this operator, but didn't. Check if the
- // reversed form was a viable candidate, and if so, if it had a
- // better conversion for either parameter. If so, this call is
- // formally ambiguous, and allowing it is an extension.
- for (OverloadCandidate &Cand : CandidateSet) {
- if (Cand.Viable && Cand.Function == FnDecl &&
- Cand.RewriteKind & CRK_Reversed) {
- for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) {
- if (CompareImplicitConversionSequences(
- *this, OpLoc, Cand.Conversions[ArgIdx],
- Best->Conversions[ArgIdx]) ==
- ImplicitConversionSequence::Better) {
- Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed)
- << BinaryOperator::getOpcodeStr(Opc)
- << Args[0]->getType() << Args[1]->getType()
- << Args[0]->getSourceRange() << Args[1]->getSourceRange();
- Diag(FnDecl->getLocation(),
- diag::note_ovl_ambiguous_oper_binary_reversed_candidate);
- }
- }
- break;
- }
- }
- }
- // Convert the arguments.
- if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
- // Best->Access is only meaningful for class members.
- CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl);
- ExprResult Arg1 =
- PerformCopyInitialization(
- InitializedEntity::InitializeParameter(Context,
- FnDecl->getParamDecl(0)),
- SourceLocation(), Args[1]);
- if (Arg1.isInvalid())
- return ExprError();
- ExprResult Arg0 =
- PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
- Best->FoundDecl, Method);
- if (Arg0.isInvalid())
- return ExprError();
- Base = Args[0] = Arg0.getAs<Expr>();
- Args[1] = RHS = Arg1.getAs<Expr>();
- } else {
- // Convert the arguments.
- ExprResult Arg0 = PerformCopyInitialization(
- InitializedEntity::InitializeParameter(Context,
- FnDecl->getParamDecl(0)),
- SourceLocation(), Args[0]);
- if (Arg0.isInvalid())
- return ExprError();
- ExprResult Arg1 =
- PerformCopyInitialization(
- InitializedEntity::InitializeParameter(Context,
- FnDecl->getParamDecl(1)),
- SourceLocation(), Args[1]);
- if (Arg1.isInvalid())
- return ExprError();
- Args[0] = LHS = Arg0.getAs<Expr>();
- Args[1] = RHS = Arg1.getAs<Expr>();
- }
- // Build the actual expression node.
- ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
- Best->FoundDecl, Base,
- HadMultipleCandidates, OpLoc);
- if (FnExpr.isInvalid())
- return ExprError();
- // Determine the result type.
- QualType ResultTy = FnDecl->getReturnType();
- ExprValueKind VK = Expr::getValueKindForType(ResultTy);
- ResultTy = ResultTy.getNonLValueExprType(Context);
- CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
- Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc,
- FPFeatures, Best->IsADLCandidate);
- if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall,
- FnDecl))
- return ExprError();
- ArrayRef<const Expr *> ArgsArray(Args, 2);
- const Expr *ImplicitThis = nullptr;
- // Cut off the implicit 'this'.
- if (isa<CXXMethodDecl>(FnDecl)) {
- ImplicitThis = ArgsArray[0];
- ArgsArray = ArgsArray.slice(1);
- }
- // Check for a self move.
- if (Op == OO_Equal)
- DiagnoseSelfMove(Args[0], Args[1], OpLoc);
- checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray,
- isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(),
- VariadicDoesNotApply);
- ExprResult R = MaybeBindToTemporary(TheCall);
- if (R.isInvalid())
- return ExprError();
- // For a rewritten candidate, we've already reversed the arguments
- // if needed. Perform the rest of the rewrite now.
- if ((Best->RewriteKind & CRK_DifferentOperator) ||
- (Op == OO_Spaceship && IsReversed)) {
- if (Op == OO_ExclaimEqual) {
- assert(ChosenOp == OO_EqualEqual && "unexpected operator name");
- R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get());
- } else {
- assert(ChosenOp == OO_Spaceship && "unexpected operator name");
- llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false);
- Expr *ZeroLiteral =
- IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc);
- Sema::CodeSynthesisContext Ctx;
- Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship;
- Ctx.Entity = FnDecl;
- pushCodeSynthesisContext(Ctx);
- R = CreateOverloadedBinOp(
- OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(),
- IsReversed ? R.get() : ZeroLiteral, PerformADL,
- /*AllowRewrittenCandidates=*/false);
- popCodeSynthesisContext();
- }
- if (R.isInvalid())
- return ExprError();
- } else {
- assert(ChosenOp == Op && "unexpected operator name");
- }
- // Make a note in the AST if we did any rewriting.
- if (Best->RewriteKind != CRK_None)
- R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed);
- return R;
- } else {
- // We matched a built-in operator. Convert the arguments, then
- // break out so that we will build the appropriate built-in
- // operator node.
- ExprResult ArgsRes0 = PerformImplicitConversion(
- Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
- AA_Passing, CCK_ForBuiltinOverloadedOp);
- if (ArgsRes0.isInvalid())
- return ExprError();
- Args[0] = ArgsRes0.get();
- ExprResult ArgsRes1 = PerformImplicitConversion(
- Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
- AA_Passing, CCK_ForBuiltinOverloadedOp);
- if (ArgsRes1.isInvalid())
- return ExprError();
- Args[1] = ArgsRes1.get();
- break;
- }
- }
- case OR_No_Viable_Function: {
- // C++ [over.match.oper]p9:
- // If the operator is the operator , [...] and there are no
- // viable functions, then the operator is assumed to be the
- // built-in operator and interpreted according to clause 5.
- if (Opc == BO_Comma)
- break;
- // For class as left operand for assignment or compound assignment
- // operator do not fall through to handling in built-in, but report that
- // no overloaded assignment operator found
- ExprResult Result = ExprError();
- StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc);
- auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates,
- Args, OpLoc);
- if (Args[0]->getType()->isRecordType() &&
- Opc >= BO_Assign && Opc <= BO_OrAssign) {
- Diag(OpLoc, diag::err_ovl_no_viable_oper)
- << BinaryOperator::getOpcodeStr(Opc)
- << Args[0]->getSourceRange() << Args[1]->getSourceRange();
- if (Args[0]->getType()->isIncompleteType()) {
- Diag(OpLoc, diag::note_assign_lhs_incomplete)
- << Args[0]->getType()
- << Args[0]->getSourceRange() << Args[1]->getSourceRange();
- }
- } else {
- // This is an erroneous use of an operator which can be overloaded by
- // a non-member function. Check for non-member operators which were
- // defined too late to be candidates.
- if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
- // FIXME: Recover by calling the found function.
- return ExprError();
- // No viable function; try to create a built-in operation, which will
- // produce an error. Then, show the non-viable candidates.
- Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
- }
- assert(Result.isInvalid() &&
- "C++ binary operator overloading is missing candidates!");
- CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc);
- return Result;
- }
- case OR_Ambiguous:
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
- << BinaryOperator::getOpcodeStr(Opc)
- << Args[0]->getType()
- << Args[1]->getType()
- << Args[0]->getSourceRange()
- << Args[1]->getSourceRange()),
- *this, OCD_ViableCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
- OpLoc);
- return ExprError();
- case OR_Deleted:
- if (isImplicitlyDeleted(Best->Function)) {
- CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
- Diag(OpLoc, diag::err_ovl_deleted_special_oper)
- << Context.getRecordType(Method->getParent())
- << getSpecialMember(Method);
- // The user probably meant to call this special member. Just
- // explain why it's deleted.
- NoteDeletedFunction(Method);
- return ExprError();
- }
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(
- OpLoc, PDiag(diag::err_ovl_deleted_oper)
- << getOperatorSpelling(Best->Function->getDeclName()
- .getCXXOverloadedOperator())
- << Args[0]->getSourceRange()
- << Args[1]->getSourceRange()),
- *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc),
- OpLoc);
- return ExprError();
- }
- // We matched a built-in operator; build it.
- return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
- }
- ExprResult
- Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
- SourceLocation RLoc,
- Expr *Base, Expr *Idx) {
- Expr *Args[2] = { Base, Idx };
- DeclarationName OpName =
- Context.DeclarationNames.getCXXOperatorName(OO_Subscript);
- // If either side is type-dependent, create an appropriate dependent
- // expression.
- if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) {
- CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators
- // CHECKME: no 'operator' keyword?
- DeclarationNameInfo OpNameInfo(OpName, LLoc);
- OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
- UnresolvedLookupExpr *Fn
- = UnresolvedLookupExpr::Create(Context, NamingClass,
- NestedNameSpecifierLoc(), OpNameInfo,
- /*ADL*/ true, /*Overloaded*/ false,
- UnresolvedSetIterator(),
- UnresolvedSetIterator());
- // Can't add any actual overloads yet
- return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn, Args,
- Context.DependentTy, VK_RValue, RLoc,
- FPOptions());
- }
- // Handle placeholders on both operands.
- if (checkPlaceholderForOverload(*this, Args[0]))
- return ExprError();
- if (checkPlaceholderForOverload(*this, Args[1]))
- return ExprError();
- // Build an empty overload set.
- OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator);
- // Subscript can only be overloaded as a member function.
- // Add operator candidates that are member functions.
- AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
- // Add builtin operator candidates.
- AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet);
- bool HadMultipleCandidates = (CandidateSet.size() > 1);
- // Perform overload resolution.
- OverloadCandidateSet::iterator Best;
- switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) {
- case OR_Success: {
- // We found a built-in operator or an overloaded operator.
- FunctionDecl *FnDecl = Best->Function;
- if (FnDecl) {
- // We matched an overloaded operator. Build a call to that
- // operator.
- CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
- // Convert the arguments.
- CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
- ExprResult Arg0 =
- PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr,
- Best->FoundDecl, Method);
- if (Arg0.isInvalid())
- return ExprError();
- Args[0] = Arg0.get();
- // Convert the arguments.
- ExprResult InputInit
- = PerformCopyInitialization(InitializedEntity::InitializeParameter(
- Context,
- FnDecl->getParamDecl(0)),
- SourceLocation(),
- Args[1]);
- if (InputInit.isInvalid())
- return ExprError();
- Args[1] = InputInit.getAs<Expr>();
- // Build the actual expression node.
- DeclarationNameInfo OpLocInfo(OpName, LLoc);
- OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
- ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
- Best->FoundDecl,
- Base,
- HadMultipleCandidates,
- OpLocInfo.getLoc(),
- OpLocInfo.getInfo());
- if (FnExpr.isInvalid())
- return ExprError();
- // Determine the result type
- QualType ResultTy = FnDecl->getReturnType();
- ExprValueKind VK = Expr::getValueKindForType(ResultTy);
- ResultTy = ResultTy.getNonLValueExprType(Context);
- CXXOperatorCallExpr *TheCall =
- CXXOperatorCallExpr::Create(Context, OO_Subscript, FnExpr.get(),
- Args, ResultTy, VK, RLoc, FPOptions());
- if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl))
- return ExprError();
- if (CheckFunctionCall(Method, TheCall,
- Method->getType()->castAs<FunctionProtoType>()))
- return ExprError();
- return MaybeBindToTemporary(TheCall);
- } else {
- // We matched a built-in operator. Convert the arguments, then
- // break out so that we will build the appropriate built-in
- // operator node.
- ExprResult ArgsRes0 = PerformImplicitConversion(
- Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0],
- AA_Passing, CCK_ForBuiltinOverloadedOp);
- if (ArgsRes0.isInvalid())
- return ExprError();
- Args[0] = ArgsRes0.get();
- ExprResult ArgsRes1 = PerformImplicitConversion(
- Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1],
- AA_Passing, CCK_ForBuiltinOverloadedOp);
- if (ArgsRes1.isInvalid())
- return ExprError();
- Args[1] = ArgsRes1.get();
- break;
- }
- }
- case OR_No_Viable_Function: {
- PartialDiagnostic PD = CandidateSet.empty()
- ? (PDiag(diag::err_ovl_no_oper)
- << Args[0]->getType() << /*subscript*/ 0
- << Args[0]->getSourceRange() << Args[1]->getSourceRange())
- : (PDiag(diag::err_ovl_no_viable_subscript)
- << Args[0]->getType() << Args[0]->getSourceRange()
- << Args[1]->getSourceRange());
- CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this,
- OCD_AllCandidates, Args, "[]", LLoc);
- return ExprError();
- }
- case OR_Ambiguous:
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary)
- << "[]" << Args[0]->getType()
- << Args[1]->getType()
- << Args[0]->getSourceRange()
- << Args[1]->getSourceRange()),
- *this, OCD_ViableCandidates, Args, "[]", LLoc);
- return ExprError();
- case OR_Deleted:
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper)
- << "[]" << Args[0]->getSourceRange()
- << Args[1]->getSourceRange()),
- *this, OCD_AllCandidates, Args, "[]", LLoc);
- return ExprError();
- }
- // We matched a built-in operator; build it.
- return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc);
- }
- /// BuildCallToMemberFunction - Build a call to a member
- /// function. MemExpr is the expression that refers to the member
- /// function (and includes the object parameter), Args/NumArgs are the
- /// arguments to the function call (not including the object
- /// parameter). The caller needs to validate that the member
- /// expression refers to a non-static member function or an overloaded
- /// member function.
- ExprResult
- Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
- SourceLocation LParenLoc,
- MultiExprArg Args,
- SourceLocation RParenLoc) {
- assert(MemExprE->getType() == Context.BoundMemberTy ||
- MemExprE->getType() == Context.OverloadTy);
- // Dig out the member expression. This holds both the object
- // argument and the member function we're referring to.
- Expr *NakedMemExpr = MemExprE->IgnoreParens();
- // Determine whether this is a call to a pointer-to-member function.
- if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) {
- assert(op->getType() == Context.BoundMemberTy);
- assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI);
- QualType fnType =
- op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType();
- const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>();
- QualType resultType = proto->getCallResultType(Context);
- ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType());
- // Check that the object type isn't more qualified than the
- // member function we're calling.
- Qualifiers funcQuals = proto->getMethodQuals();
- QualType objectType = op->getLHS()->getType();
- if (op->getOpcode() == BO_PtrMemI)
- objectType = objectType->castAs<PointerType>()->getPointeeType();
- Qualifiers objectQuals = objectType.getQualifiers();
- Qualifiers difference = objectQuals - funcQuals;
- difference.removeObjCGCAttr();
- difference.removeAddressSpace();
- if (difference) {
- std::string qualsString = difference.getAsString();
- Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals)
- << fnType.getUnqualifiedType()
- << qualsString
- << (qualsString.find(' ') == std::string::npos ? 1 : 2);
- }
- CXXMemberCallExpr *call =
- CXXMemberCallExpr::Create(Context, MemExprE, Args, resultType,
- valueKind, RParenLoc, proto->getNumParams());
- if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(),
- call, nullptr))
- return ExprError();
- if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc))
- return ExprError();
- if (CheckOtherCall(call, proto))
- return ExprError();
- return MaybeBindToTemporary(call);
- }
- if (isa<CXXPseudoDestructorExpr>(NakedMemExpr))
- return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_RValue,
- RParenLoc);
- UnbridgedCastsSet UnbridgedCasts;
- if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
- return ExprError();
- MemberExpr *MemExpr;
- CXXMethodDecl *Method = nullptr;
- DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public);
- NestedNameSpecifier *Qualifier = nullptr;
- if (isa<MemberExpr>(NakedMemExpr)) {
- MemExpr = cast<MemberExpr>(NakedMemExpr);
- Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
- FoundDecl = MemExpr->getFoundDecl();
- Qualifier = MemExpr->getQualifier();
- UnbridgedCasts.restore();
- } else {
- UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
- Qualifier = UnresExpr->getQualifier();
- QualType ObjectType = UnresExpr->getBaseType();
- Expr::Classification ObjectClassification
- = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue()
- : UnresExpr->getBase()->Classify(Context);
- // Add overload candidates
- OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(),
- OverloadCandidateSet::CSK_Normal);
- // FIXME: avoid copy.
- TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
- if (UnresExpr->hasExplicitTemplateArgs()) {
- UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
- TemplateArgs = &TemplateArgsBuffer;
- }
- for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(),
- E = UnresExpr->decls_end(); I != E; ++I) {
- NamedDecl *Func = *I;
- CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext());
- if (isa<UsingShadowDecl>(Func))
- Func = cast<UsingShadowDecl>(Func)->getTargetDecl();
- // Microsoft supports direct constructor calls.
- if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
- AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args,
- CandidateSet,
- /*SuppressUserConversions*/ false);
- } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
- // If explicit template arguments were provided, we can't call a
- // non-template member function.
- if (TemplateArgs)
- continue;
- AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
- ObjectClassification, Args, CandidateSet,
- /*SuppressUserConversions=*/false);
- } else {
- AddMethodTemplateCandidate(
- cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC,
- TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet,
- /*SuppressUserConversions=*/false);
- }
- }
- DeclarationName DeclName = UnresExpr->getMemberName();
- UnbridgedCasts.restore();
- OverloadCandidateSet::iterator Best;
- switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(),
- Best)) {
- case OR_Success:
- Method = cast<CXXMethodDecl>(Best->Function);
- FoundDecl = Best->FoundDecl;
- CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
- if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()))
- return ExprError();
- // If FoundDecl is different from Method (such as if one is a template
- // and the other a specialization), make sure DiagnoseUseOfDecl is
- // called on both.
- // FIXME: This would be more comprehensively addressed by modifying
- // DiagnoseUseOfDecl to accept both the FoundDecl and the decl
- // being used.
- if (Method != FoundDecl.getDecl() &&
- DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc()))
- return ExprError();
- break;
- case OR_No_Viable_Function:
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(
- UnresExpr->getMemberLoc(),
- PDiag(diag::err_ovl_no_viable_member_function_in_call)
- << DeclName << MemExprE->getSourceRange()),
- *this, OCD_AllCandidates, Args);
- // FIXME: Leaking incoming expressions!
- return ExprError();
- case OR_Ambiguous:
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(UnresExpr->getMemberLoc(),
- PDiag(diag::err_ovl_ambiguous_member_call)
- << DeclName << MemExprE->getSourceRange()),
- *this, OCD_AllCandidates, Args);
- // FIXME: Leaking incoming expressions!
- return ExprError();
- case OR_Deleted:
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(UnresExpr->getMemberLoc(),
- PDiag(diag::err_ovl_deleted_member_call)
- << DeclName << MemExprE->getSourceRange()),
- *this, OCD_AllCandidates, Args);
- // FIXME: Leaking incoming expressions!
- return ExprError();
- }
- MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method);
- // If overload resolution picked a static member, build a
- // non-member call based on that function.
- if (Method->isStatic()) {
- return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args,
- RParenLoc);
- }
- MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens());
- }
- QualType ResultType = Method->getReturnType();
- ExprValueKind VK = Expr::getValueKindForType(ResultType);
- ResultType = ResultType.getNonLValueExprType(Context);
- assert(Method && "Member call to something that isn't a method?");
- const auto *Proto = Method->getType()->getAs<FunctionProtoType>();
- CXXMemberCallExpr *TheCall =
- CXXMemberCallExpr::Create(Context, MemExprE, Args, ResultType, VK,
- RParenLoc, Proto->getNumParams());
- // Check for a valid return type.
- if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(),
- TheCall, Method))
- return ExprError();
- // Convert the object argument (for a non-static member function call).
- // We only need to do this if there was actually an overload; otherwise
- // it was done at lookup.
- if (!Method->isStatic()) {
- ExprResult ObjectArg =
- PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier,
- FoundDecl, Method);
- if (ObjectArg.isInvalid())
- return ExprError();
- MemExpr->setBase(ObjectArg.get());
- }
- // Convert the rest of the arguments
- if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args,
- RParenLoc))
- return ExprError();
- DiagnoseSentinelCalls(Method, LParenLoc, Args);
- if (CheckFunctionCall(Method, TheCall, Proto))
- return ExprError();
- // In the case the method to call was not selected by the overloading
- // resolution process, we still need to handle the enable_if attribute. Do
- // that here, so it will not hide previous -- and more relevant -- errors.
- if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) {
- if (const EnableIfAttr *Attr = CheckEnableIf(Method, Args, true)) {
- Diag(MemE->getMemberLoc(),
- diag::err_ovl_no_viable_member_function_in_call)
- << Method << Method->getSourceRange();
- Diag(Method->getLocation(),
- diag::note_ovl_candidate_disabled_by_function_cond_attr)
- << Attr->getCond()->getSourceRange() << Attr->getMessage();
- return ExprError();
- }
- }
- if ((isa<CXXConstructorDecl>(CurContext) ||
- isa<CXXDestructorDecl>(CurContext)) &&
- TheCall->getMethodDecl()->isPure()) {
- const CXXMethodDecl *MD = TheCall->getMethodDecl();
- if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) &&
- MemExpr->performsVirtualDispatch(getLangOpts())) {
- Diag(MemExpr->getBeginLoc(),
- diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor)
- << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext)
- << MD->getParent()->getDeclName();
- Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName();
- if (getLangOpts().AppleKext)
- Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext)
- << MD->getParent()->getDeclName() << MD->getDeclName();
- }
- }
- if (CXXDestructorDecl *DD =
- dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) {
- // a->A::f() doesn't go through the vtable, except in AppleKext mode.
- bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext;
- CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false,
- CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true,
- MemExpr->getMemberLoc());
- }
- return MaybeBindToTemporary(TheCall);
- }
- /// BuildCallToObjectOfClassType - Build a call to an object of class
- /// type (C++ [over.call.object]), which can end up invoking an
- /// overloaded function call operator (@c operator()) or performing a
- /// user-defined conversion on the object argument.
- ExprResult
- Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
- SourceLocation LParenLoc,
- MultiExprArg Args,
- SourceLocation RParenLoc) {
- if (checkPlaceholderForOverload(*this, Obj))
- return ExprError();
- ExprResult Object = Obj;
- UnbridgedCastsSet UnbridgedCasts;
- if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts))
- return ExprError();
- assert(Object.get()->getType()->isRecordType() &&
- "Requires object type argument");
- const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
- // C++ [over.call.object]p1:
- // If the primary-expression E in the function call syntax
- // evaluates to a class object of type "cv T", then the set of
- // candidate functions includes at least the function call
- // operators of T. The function call operators of T are obtained by
- // ordinary lookup of the name operator() in the context of
- // (E).operator().
- OverloadCandidateSet CandidateSet(LParenLoc,
- OverloadCandidateSet::CSK_Operator);
- DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call);
- if (RequireCompleteType(LParenLoc, Object.get()->getType(),
- diag::err_incomplete_object_call, Object.get()))
- return true;
- LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName);
- LookupQualifiedName(R, Record->getDecl());
- R.suppressDiagnostics();
- for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
- Oper != OperEnd; ++Oper) {
- AddMethodCandidate(Oper.getPair(), Object.get()->getType(),
- Object.get()->Classify(Context), Args, CandidateSet,
- /*SuppressUserConversion=*/false);
- }
- // C++ [over.call.object]p2:
- // In addition, for each (non-explicit in C++0x) conversion function
- // declared in T of the form
- //
- // operator conversion-type-id () cv-qualifier;
- //
- // where cv-qualifier is the same cv-qualification as, or a
- // greater cv-qualification than, cv, and where conversion-type-id
- // denotes the type "pointer to function of (P1,...,Pn) returning
- // R", or the type "reference to pointer to function of
- // (P1,...,Pn) returning R", or the type "reference to function
- // of (P1,...,Pn) returning R", a surrogate call function [...]
- // is also considered as a candidate function. Similarly,
- // surrogate call functions are added to the set of candidate
- // functions for each conversion function declared in an
- // accessible base class provided the function is not hidden
- // within T by another intervening declaration.
- const auto &Conversions =
- cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions();
- for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
- NamedDecl *D = *I;
- CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext());
- if (isa<UsingShadowDecl>(D))
- D = cast<UsingShadowDecl>(D)->getTargetDecl();
- // Skip over templated conversion functions; they aren't
- // surrogates.
- if (isa<FunctionTemplateDecl>(D))
- continue;
- CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
- if (!Conv->isExplicit()) {
- // Strip the reference type (if any) and then the pointer type (if
- // any) to get down to what might be a function type.
- QualType ConvType = Conv->getConversionType().getNonReferenceType();
- if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
- ConvType = ConvPtrType->getPointeeType();
- if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
- {
- AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
- Object.get(), Args, CandidateSet);
- }
- }
- }
- bool HadMultipleCandidates = (CandidateSet.size() > 1);
- // Perform overload resolution.
- OverloadCandidateSet::iterator Best;
- switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(),
- Best)) {
- case OR_Success:
- // Overload resolution succeeded; we'll build the appropriate call
- // below.
- break;
- case OR_No_Viable_Function: {
- PartialDiagnostic PD =
- CandidateSet.empty()
- ? (PDiag(diag::err_ovl_no_oper)
- << Object.get()->getType() << /*call*/ 1
- << Object.get()->getSourceRange())
- : (PDiag(diag::err_ovl_no_viable_object_call)
- << Object.get()->getType() << Object.get()->getSourceRange());
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this,
- OCD_AllCandidates, Args);
- break;
- }
- case OR_Ambiguous:
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(Object.get()->getBeginLoc(),
- PDiag(diag::err_ovl_ambiguous_object_call)
- << Object.get()->getType()
- << Object.get()->getSourceRange()),
- *this, OCD_ViableCandidates, Args);
- break;
- case OR_Deleted:
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(Object.get()->getBeginLoc(),
- PDiag(diag::err_ovl_deleted_object_call)
- << Object.get()->getType()
- << Object.get()->getSourceRange()),
- *this, OCD_AllCandidates, Args);
- break;
- }
- if (Best == CandidateSet.end())
- return true;
- UnbridgedCasts.restore();
- if (Best->Function == nullptr) {
- // Since there is no function declaration, this is one of the
- // surrogate candidates. Dig out the conversion function.
- CXXConversionDecl *Conv
- = cast<CXXConversionDecl>(
- Best->Conversions[0].UserDefined.ConversionFunction);
- CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr,
- Best->FoundDecl);
- if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc))
- return ExprError();
- assert(Conv == Best->FoundDecl.getDecl() &&
- "Found Decl & conversion-to-functionptr should be same, right?!");
- // We selected one of the surrogate functions that converts the
- // object parameter to a function pointer. Perform the conversion
- // on the object argument, then let BuildCallExpr finish the job.
- // Create an implicit member expr to refer to the conversion operator.
- // and then call it.
- ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl,
- Conv, HadMultipleCandidates);
- if (Call.isInvalid())
- return ExprError();
- // Record usage of conversion in an implicit cast.
- Call = ImplicitCastExpr::Create(Context, Call.get()->getType(),
- CK_UserDefinedConversion, Call.get(),
- nullptr, VK_RValue);
- return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc);
- }
- CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl);
- // We found an overloaded operator(). Build a CXXOperatorCallExpr
- // that calls this method, using Object for the implicit object
- // parameter and passing along the remaining arguments.
- CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
- // An error diagnostic has already been printed when parsing the declaration.
- if (Method->isInvalidDecl())
- return ExprError();
- const FunctionProtoType *Proto =
- Method->getType()->getAs<FunctionProtoType>();
- unsigned NumParams = Proto->getNumParams();
- DeclarationNameInfo OpLocInfo(
- Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
- OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
- ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
- Obj, HadMultipleCandidates,
- OpLocInfo.getLoc(),
- OpLocInfo.getInfo());
- if (NewFn.isInvalid())
- return true;
- // The number of argument slots to allocate in the call. If we have default
- // arguments we need to allocate space for them as well. We additionally
- // need one more slot for the object parameter.
- unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams);
- // Build the full argument list for the method call (the implicit object
- // parameter is placed at the beginning of the list).
- SmallVector<Expr *, 8> MethodArgs(NumArgsSlots);
- bool IsError = false;
- // Initialize the implicit object parameter.
- ExprResult ObjRes =
- PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr,
- Best->FoundDecl, Method);
- if (ObjRes.isInvalid())
- IsError = true;
- else
- Object = ObjRes;
- MethodArgs[0] = Object.get();
- // Check the argument types.
- for (unsigned i = 0; i != NumParams; i++) {
- Expr *Arg;
- if (i < Args.size()) {
- Arg = Args[i];
- // Pass the argument.
- ExprResult InputInit
- = PerformCopyInitialization(InitializedEntity::InitializeParameter(
- Context,
- Method->getParamDecl(i)),
- SourceLocation(), Arg);
- IsError |= InputInit.isInvalid();
- Arg = InputInit.getAs<Expr>();
- } else {
- ExprResult DefArg
- = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i));
- if (DefArg.isInvalid()) {
- IsError = true;
- break;
- }
- Arg = DefArg.getAs<Expr>();
- }
- MethodArgs[i + 1] = Arg;
- }
- // If this is a variadic call, handle args passed through "...".
- if (Proto->isVariadic()) {
- // Promote the arguments (C99 6.5.2.2p7).
- for (unsigned i = NumParams, e = Args.size(); i < e; i++) {
- ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod,
- nullptr);
- IsError |= Arg.isInvalid();
- MethodArgs[i + 1] = Arg.get();
- }
- }
- if (IsError)
- return true;
- DiagnoseSentinelCalls(Method, LParenLoc, Args);
- // Once we've built TheCall, all of the expressions are properly owned.
- QualType ResultTy = Method->getReturnType();
- ExprValueKind VK = Expr::getValueKindForType(ResultTy);
- ResultTy = ResultTy.getNonLValueExprType(Context);
- CXXOperatorCallExpr *TheCall =
- CXXOperatorCallExpr::Create(Context, OO_Call, NewFn.get(), MethodArgs,
- ResultTy, VK, RParenLoc, FPOptions());
- if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method))
- return true;
- if (CheckFunctionCall(Method, TheCall, Proto))
- return true;
- return MaybeBindToTemporary(TheCall);
- }
- /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator->
- /// (if one exists), where @c Base is an expression of class type and
- /// @c Member is the name of the member we're trying to find.
- ExprResult
- Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc,
- bool *NoArrowOperatorFound) {
- assert(Base->getType()->isRecordType() &&
- "left-hand side must have class type");
- if (checkPlaceholderForOverload(*this, Base))
- return ExprError();
- SourceLocation Loc = Base->getExprLoc();
- // C++ [over.ref]p1:
- //
- // [...] An expression x->m is interpreted as (x.operator->())->m
- // for a class object x of type T if T::operator->() exists and if
- // the operator is selected as the best match function by the
- // overload resolution mechanism (13.3).
- DeclarationName OpName =
- Context.DeclarationNames.getCXXOperatorName(OO_Arrow);
- OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator);
- const RecordType *BaseRecord = Base->getType()->getAs<RecordType>();
- if (RequireCompleteType(Loc, Base->getType(),
- diag::err_typecheck_incomplete_tag, Base))
- return ExprError();
- LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName);
- LookupQualifiedName(R, BaseRecord->getDecl());
- R.suppressDiagnostics();
- for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end();
- Oper != OperEnd; ++Oper) {
- AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context),
- None, CandidateSet, /*SuppressUserConversion=*/false);
- }
- bool HadMultipleCandidates = (CandidateSet.size() > 1);
- // Perform overload resolution.
- OverloadCandidateSet::iterator Best;
- switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) {
- case OR_Success:
- // Overload resolution succeeded; we'll build the call below.
- break;
- case OR_No_Viable_Function: {
- auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base);
- if (CandidateSet.empty()) {
- QualType BaseType = Base->getType();
- if (NoArrowOperatorFound) {
- // Report this specific error to the caller instead of emitting a
- // diagnostic, as requested.
- *NoArrowOperatorFound = true;
- return ExprError();
- }
- Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
- << BaseType << Base->getSourceRange();
- if (BaseType->isRecordType() && !BaseType->isPointerType()) {
- Diag(OpLoc, diag::note_typecheck_member_reference_suggestion)
- << FixItHint::CreateReplacement(OpLoc, ".");
- }
- } else
- Diag(OpLoc, diag::err_ovl_no_viable_oper)
- << "operator->" << Base->getSourceRange();
- CandidateSet.NoteCandidates(*this, Base, Cands);
- return ExprError();
- }
- case OR_Ambiguous:
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary)
- << "->" << Base->getType()
- << Base->getSourceRange()),
- *this, OCD_ViableCandidates, Base);
- return ExprError();
- case OR_Deleted:
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper)
- << "->" << Base->getSourceRange()),
- *this, OCD_AllCandidates, Base);
- return ExprError();
- }
- CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl);
- // Convert the object parameter.
- CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
- ExprResult BaseResult =
- PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr,
- Best->FoundDecl, Method);
- if (BaseResult.isInvalid())
- return ExprError();
- Base = BaseResult.get();
- // Build the operator call.
- ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl,
- Base, HadMultipleCandidates, OpLoc);
- if (FnExpr.isInvalid())
- return ExprError();
- QualType ResultTy = Method->getReturnType();
- ExprValueKind VK = Expr::getValueKindForType(ResultTy);
- ResultTy = ResultTy.getNonLValueExprType(Context);
- CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create(
- Context, OO_Arrow, FnExpr.get(), Base, ResultTy, VK, OpLoc, FPOptions());
- if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method))
- return ExprError();
- if (CheckFunctionCall(Method, TheCall,
- Method->getType()->castAs<FunctionProtoType>()))
- return ExprError();
- return MaybeBindToTemporary(TheCall);
- }
- /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
- /// a literal operator described by the provided lookup results.
- ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
- DeclarationNameInfo &SuffixInfo,
- ArrayRef<Expr*> Args,
- SourceLocation LitEndLoc,
- TemplateArgumentListInfo *TemplateArgs) {
- SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
- OverloadCandidateSet CandidateSet(UDSuffixLoc,
- OverloadCandidateSet::CSK_Normal);
- AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet,
- TemplateArgs);
- bool HadMultipleCandidates = (CandidateSet.size() > 1);
- // Perform overload resolution. This will usually be trivial, but might need
- // to perform substitutions for a literal operator template.
- OverloadCandidateSet::iterator Best;
- switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
- case OR_Success:
- case OR_Deleted:
- break;
- case OR_No_Viable_Function:
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(UDSuffixLoc,
- PDiag(diag::err_ovl_no_viable_function_in_call)
- << R.getLookupName()),
- *this, OCD_AllCandidates, Args);
- return ExprError();
- case OR_Ambiguous:
- CandidateSet.NoteCandidates(
- PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call)
- << R.getLookupName()),
- *this, OCD_ViableCandidates, Args);
- return ExprError();
- }
- FunctionDecl *FD = Best->Function;
- ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl,
- nullptr, HadMultipleCandidates,
- SuffixInfo.getLoc(),
- SuffixInfo.getInfo());
- if (Fn.isInvalid())
- return true;
- // Check the argument types. This should almost always be a no-op, except
- // that array-to-pointer decay is applied to string literals.
- Expr *ConvArgs[2];
- for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) {
- ExprResult InputInit = PerformCopyInitialization(
- InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
- SourceLocation(), Args[ArgIdx]);
- if (InputInit.isInvalid())
- return true;
- ConvArgs[ArgIdx] = InputInit.get();
- }
- QualType ResultTy = FD->getReturnType();
- ExprValueKind VK = Expr::getValueKindForType(ResultTy);
- ResultTy = ResultTy.getNonLValueExprType(Context);
- UserDefinedLiteral *UDL = UserDefinedLiteral::Create(
- Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy,
- VK, LitEndLoc, UDSuffixLoc);
- if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD))
- return ExprError();
- if (CheckFunctionCall(FD, UDL, nullptr))
- return ExprError();
- return MaybeBindToTemporary(UDL);
- }
- /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the
- /// given LookupResult is non-empty, it is assumed to describe a member which
- /// will be invoked. Otherwise, the function will be found via argument
- /// dependent lookup.
- /// CallExpr is set to a valid expression and FRS_Success returned on success,
- /// otherwise CallExpr is set to ExprError() and some non-success value
- /// is returned.
- Sema::ForRangeStatus
- Sema::BuildForRangeBeginEndCall(SourceLocation Loc,
- SourceLocation RangeLoc,
- const DeclarationNameInfo &NameInfo,
- LookupResult &MemberLookup,
- OverloadCandidateSet *CandidateSet,
- Expr *Range, ExprResult *CallExpr) {
- Scope *S = nullptr;
- CandidateSet->clear(OverloadCandidateSet::CSK_Normal);
- if (!MemberLookup.empty()) {
- ExprResult MemberRef =
- BuildMemberReferenceExpr(Range, Range->getType(), Loc,
- /*IsPtr=*/false, CXXScopeSpec(),
- /*TemplateKWLoc=*/SourceLocation(),
- /*FirstQualifierInScope=*/nullptr,
- MemberLookup,
- /*TemplateArgs=*/nullptr, S);
- if (MemberRef.isInvalid()) {
- *CallExpr = ExprError();
- return FRS_DiagnosticIssued;
- }
- *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr);
- if (CallExpr->isInvalid()) {
- *CallExpr = ExprError();
- return FRS_DiagnosticIssued;
- }
- } else {
- UnresolvedSet<0> FoundNames;
- UnresolvedLookupExpr *Fn =
- UnresolvedLookupExpr::Create(Context, /*NamingClass=*/nullptr,
- NestedNameSpecifierLoc(), NameInfo,
- /*NeedsADL=*/true, /*Overloaded=*/false,
- FoundNames.begin(), FoundNames.end());
- bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc,
- CandidateSet, CallExpr);
- if (CandidateSet->empty() || CandidateSetError) {
- *CallExpr = ExprError();
- return FRS_NoViableFunction;
- }
- OverloadCandidateSet::iterator Best;
- OverloadingResult OverloadResult =
- CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best);
- if (OverloadResult == OR_No_Viable_Function) {
- *CallExpr = ExprError();
- return FRS_NoViableFunction;
- }
- *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range,
- Loc, nullptr, CandidateSet, &Best,
- OverloadResult,
- /*AllowTypoCorrection=*/false);
- if (CallExpr->isInvalid() || OverloadResult != OR_Success) {
- *CallExpr = ExprError();
- return FRS_DiagnosticIssued;
- }
- }
- return FRS_Success;
- }
- /// FixOverloadedFunctionReference - E is an expression that refers to
- /// a C++ overloaded function (possibly with some parentheses and
- /// perhaps a '&' around it). We have resolved the overloaded function
- /// to the function declaration Fn, so patch up the expression E to
- /// refer (possibly indirectly) to Fn. Returns the new expr.
- Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
- FunctionDecl *Fn) {
- if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
- Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(),
- Found, Fn);
- if (SubExpr == PE->getSubExpr())
- return PE;
- return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr);
- }
- if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
- Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(),
- Found, Fn);
- assert(Context.hasSameType(ICE->getSubExpr()->getType(),
- SubExpr->getType()) &&
- "Implicit cast type cannot be determined from overload");
- assert(ICE->path_empty() && "fixing up hierarchy conversion?");
- if (SubExpr == ICE->getSubExpr())
- return ICE;
- return ImplicitCastExpr::Create(Context, ICE->getType(),
- ICE->getCastKind(),
- SubExpr, nullptr,
- ICE->getValueKind());
- }
- if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
- if (!GSE->isResultDependent()) {
- Expr *SubExpr =
- FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn);
- if (SubExpr == GSE->getResultExpr())
- return GSE;
- // Replace the resulting type information before rebuilding the generic
- // selection expression.
- ArrayRef<Expr *> A = GSE->getAssocExprs();
- SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end());
- unsigned ResultIdx = GSE->getResultIndex();
- AssocExprs[ResultIdx] = SubExpr;
- return GenericSelectionExpr::Create(
- Context, GSE->getGenericLoc(), GSE->getControllingExpr(),
- GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(),
- GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(),
- ResultIdx);
- }
- // Rather than fall through to the unreachable, return the original generic
- // selection expression.
- return GSE;
- }
- if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) {
- assert(UnOp->getOpcode() == UO_AddrOf &&
- "Can only take the address of an overloaded function");
- if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) {
- if (Method->isStatic()) {
- // Do nothing: static member functions aren't any different
- // from non-member functions.
- } else {
- // Fix the subexpression, which really has to be an
- // UnresolvedLookupExpr holding an overloaded member function
- // or template.
- Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
- Found, Fn);
- if (SubExpr == UnOp->getSubExpr())
- return UnOp;
- assert(isa<DeclRefExpr>(SubExpr)
- && "fixed to something other than a decl ref");
- assert(cast<DeclRefExpr>(SubExpr)->getQualifier()
- && "fixed to a member ref with no nested name qualifier");
- // We have taken the address of a pointer to member
- // function. Perform the computation here so that we get the
- // appropriate pointer to member type.
- QualType ClassType
- = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
- QualType MemPtrType
- = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr());
- // Under the MS ABI, lock down the inheritance model now.
- if (Context.getTargetInfo().getCXXABI().isMicrosoft())
- (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType);
- return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType,
- VK_RValue, OK_Ordinary,
- UnOp->getOperatorLoc(), false);
- }
- }
- Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(),
- Found, Fn);
- if (SubExpr == UnOp->getSubExpr())
- return UnOp;
- return new (Context) UnaryOperator(SubExpr, UO_AddrOf,
- Context.getPointerType(SubExpr->getType()),
- VK_RValue, OK_Ordinary,
- UnOp->getOperatorLoc(), false);
- }
- // C++ [except.spec]p17:
- // An exception-specification is considered to be needed when:
- // - in an expression the function is the unique lookup result or the
- // selected member of a set of overloaded functions
- if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>())
- ResolveExceptionSpec(E->getExprLoc(), FPT);
- if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
- // FIXME: avoid copy.
- TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
- if (ULE->hasExplicitTemplateArgs()) {
- ULE->copyTemplateArgumentsInto(TemplateArgsBuffer);
- TemplateArgs = &TemplateArgsBuffer;
- }
- DeclRefExpr *DRE =
- BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(),
- ULE->getQualifierLoc(), Found.getDecl(),
- ULE->getTemplateKeywordLoc(), TemplateArgs);
- DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1);
- return DRE;
- }
- if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) {
- // FIXME: avoid copy.
- TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr;
- if (MemExpr->hasExplicitTemplateArgs()) {
- MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer);
- TemplateArgs = &TemplateArgsBuffer;
- }
- Expr *Base;
- // If we're filling in a static method where we used to have an
- // implicit member access, rewrite to a simple decl ref.
- if (MemExpr->isImplicitAccess()) {
- if (cast<CXXMethodDecl>(Fn)->isStatic()) {
- DeclRefExpr *DRE = BuildDeclRefExpr(
- Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(),
- MemExpr->getQualifierLoc(), Found.getDecl(),
- MemExpr->getTemplateKeywordLoc(), TemplateArgs);
- DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1);
- return DRE;
- } else {
- SourceLocation Loc = MemExpr->getMemberLoc();
- if (MemExpr->getQualifier())
- Loc = MemExpr->getQualifierLoc().getBeginLoc();
- Base =
- BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true);
- }
- } else
- Base = MemExpr->getBase();
- ExprValueKind valueKind;
- QualType type;
- if (cast<CXXMethodDecl>(Fn)->isStatic()) {
- valueKind = VK_LValue;
- type = Fn->getType();
- } else {
- valueKind = VK_RValue;
- type = Context.BoundMemberTy;
- }
- return BuildMemberExpr(
- Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(),
- MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found,
- /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(),
- type, valueKind, OK_Ordinary, TemplateArgs);
- }
- llvm_unreachable("Invalid reference to overloaded function");
- }
- ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,
- DeclAccessPair Found,
- FunctionDecl *Fn) {
- return FixOverloadedFunctionReference(E.get(), Found, Fn);
- }
|