CGBuiltin.cpp 602 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516
  1. //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This contains code to emit Builtin calls as LLVM code.
  10. //
  11. //===----------------------------------------------------------------------===//
  12. #include "CGCXXABI.h"
  13. #include "CGObjCRuntime.h"
  14. #include "CGOpenCLRuntime.h"
  15. #include "CGRecordLayout.h"
  16. #include "CodeGenFunction.h"
  17. #include "CodeGenModule.h"
  18. #include "ConstantEmitter.h"
  19. #include "PatternInit.h"
  20. #include "TargetInfo.h"
  21. #include "clang/AST/ASTContext.h"
  22. #include "clang/AST/Decl.h"
  23. #include "clang/AST/OSLog.h"
  24. #include "clang/Basic/TargetBuiltins.h"
  25. #include "clang/Basic/TargetInfo.h"
  26. #include "clang/CodeGen/CGFunctionInfo.h"
  27. #include "llvm/ADT/SmallPtrSet.h"
  28. #include "llvm/ADT/StringExtras.h"
  29. #include "llvm/IR/DataLayout.h"
  30. #include "llvm/IR/InlineAsm.h"
  31. #include "llvm/IR/Intrinsics.h"
  32. #include "llvm/IR/MDBuilder.h"
  33. #include "llvm/Support/ConvertUTF.h"
  34. #include "llvm/Support/ScopedPrinter.h"
  35. #include "llvm/Support/TargetParser.h"
  36. #include <sstream>
  37. using namespace clang;
  38. using namespace CodeGen;
  39. using namespace llvm;
  40. static
  41. int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
  42. return std::min(High, std::max(Low, Value));
  43. }
  44. static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, unsigned AlignmentInBytes) {
  45. ConstantInt *Byte;
  46. switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
  47. case LangOptions::TrivialAutoVarInitKind::Uninitialized:
  48. // Nothing to initialize.
  49. return;
  50. case LangOptions::TrivialAutoVarInitKind::Zero:
  51. Byte = CGF.Builder.getInt8(0x00);
  52. break;
  53. case LangOptions::TrivialAutoVarInitKind::Pattern: {
  54. llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
  55. Byte = llvm::dyn_cast<llvm::ConstantInt>(
  56. initializationPatternFor(CGF.CGM, Int8));
  57. break;
  58. }
  59. }
  60. CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
  61. }
  62. /// getBuiltinLibFunction - Given a builtin id for a function like
  63. /// "__builtin_fabsf", return a Function* for "fabsf".
  64. llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
  65. unsigned BuiltinID) {
  66. assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
  67. // Get the name, skip over the __builtin_ prefix (if necessary).
  68. StringRef Name;
  69. GlobalDecl D(FD);
  70. // If the builtin has been declared explicitly with an assembler label,
  71. // use the mangled name. This differs from the plain label on platforms
  72. // that prefix labels.
  73. if (FD->hasAttr<AsmLabelAttr>())
  74. Name = getMangledName(D);
  75. else
  76. Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
  77. llvm::FunctionType *Ty =
  78. cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
  79. return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
  80. }
  81. /// Emit the conversions required to turn the given value into an
  82. /// integer of the given size.
  83. static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
  84. QualType T, llvm::IntegerType *IntType) {
  85. V = CGF.EmitToMemory(V, T);
  86. if (V->getType()->isPointerTy())
  87. return CGF.Builder.CreatePtrToInt(V, IntType);
  88. assert(V->getType() == IntType);
  89. return V;
  90. }
  91. static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
  92. QualType T, llvm::Type *ResultType) {
  93. V = CGF.EmitFromMemory(V, T);
  94. if (ResultType->isPointerTy())
  95. return CGF.Builder.CreateIntToPtr(V, ResultType);
  96. assert(V->getType() == ResultType);
  97. return V;
  98. }
  99. /// Utility to insert an atomic instruction based on Intrinsic::ID
  100. /// and the expression node.
  101. static Value *MakeBinaryAtomicValue(
  102. CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
  103. AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
  104. QualType T = E->getType();
  105. assert(E->getArg(0)->getType()->isPointerType());
  106. assert(CGF.getContext().hasSameUnqualifiedType(T,
  107. E->getArg(0)->getType()->getPointeeType()));
  108. assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
  109. llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
  110. unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
  111. llvm::IntegerType *IntType =
  112. llvm::IntegerType::get(CGF.getLLVMContext(),
  113. CGF.getContext().getTypeSize(T));
  114. llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
  115. llvm::Value *Args[2];
  116. Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
  117. Args[1] = CGF.EmitScalarExpr(E->getArg(1));
  118. llvm::Type *ValueType = Args[1]->getType();
  119. Args[1] = EmitToInt(CGF, Args[1], T, IntType);
  120. llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
  121. Kind, Args[0], Args[1], Ordering);
  122. return EmitFromInt(CGF, Result, T, ValueType);
  123. }
  124. static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
  125. Value *Val = CGF.EmitScalarExpr(E->getArg(0));
  126. Value *Address = CGF.EmitScalarExpr(E->getArg(1));
  127. // Convert the type of the pointer to a pointer to the stored type.
  128. Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
  129. Value *BC = CGF.Builder.CreateBitCast(
  130. Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
  131. LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
  132. LV.setNontemporal(true);
  133. CGF.EmitStoreOfScalar(Val, LV, false);
  134. return nullptr;
  135. }
  136. static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
  137. Value *Address = CGF.EmitScalarExpr(E->getArg(0));
  138. LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
  139. LV.setNontemporal(true);
  140. return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
  141. }
  142. static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
  143. llvm::AtomicRMWInst::BinOp Kind,
  144. const CallExpr *E) {
  145. return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
  146. }
  147. /// Utility to insert an atomic instruction based Intrinsic::ID and
  148. /// the expression node, where the return value is the result of the
  149. /// operation.
  150. static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
  151. llvm::AtomicRMWInst::BinOp Kind,
  152. const CallExpr *E,
  153. Instruction::BinaryOps Op,
  154. bool Invert = false) {
  155. QualType T = E->getType();
  156. assert(E->getArg(0)->getType()->isPointerType());
  157. assert(CGF.getContext().hasSameUnqualifiedType(T,
  158. E->getArg(0)->getType()->getPointeeType()));
  159. assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
  160. llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
  161. unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
  162. llvm::IntegerType *IntType =
  163. llvm::IntegerType::get(CGF.getLLVMContext(),
  164. CGF.getContext().getTypeSize(T));
  165. llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
  166. llvm::Value *Args[2];
  167. Args[1] = CGF.EmitScalarExpr(E->getArg(1));
  168. llvm::Type *ValueType = Args[1]->getType();
  169. Args[1] = EmitToInt(CGF, Args[1], T, IntType);
  170. Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
  171. llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
  172. Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
  173. Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
  174. if (Invert)
  175. Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
  176. llvm::ConstantInt::get(IntType, -1));
  177. Result = EmitFromInt(CGF, Result, T, ValueType);
  178. return RValue::get(Result);
  179. }
  180. /// Utility to insert an atomic cmpxchg instruction.
  181. ///
  182. /// @param CGF The current codegen function.
  183. /// @param E Builtin call expression to convert to cmpxchg.
  184. /// arg0 - address to operate on
  185. /// arg1 - value to compare with
  186. /// arg2 - new value
  187. /// @param ReturnBool Specifies whether to return success flag of
  188. /// cmpxchg result or the old value.
  189. ///
  190. /// @returns result of cmpxchg, according to ReturnBool
  191. ///
  192. /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
  193. /// invoke the function EmitAtomicCmpXchgForMSIntrin.
  194. static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
  195. bool ReturnBool) {
  196. QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
  197. llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
  198. unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
  199. llvm::IntegerType *IntType = llvm::IntegerType::get(
  200. CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
  201. llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
  202. Value *Args[3];
  203. Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
  204. Args[1] = CGF.EmitScalarExpr(E->getArg(1));
  205. llvm::Type *ValueType = Args[1]->getType();
  206. Args[1] = EmitToInt(CGF, Args[1], T, IntType);
  207. Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
  208. Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
  209. Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
  210. llvm::AtomicOrdering::SequentiallyConsistent);
  211. if (ReturnBool)
  212. // Extract boolean success flag and zext it to int.
  213. return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
  214. CGF.ConvertType(E->getType()));
  215. else
  216. // Extract old value and emit it using the same type as compare value.
  217. return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
  218. ValueType);
  219. }
  220. /// This function should be invoked to emit atomic cmpxchg for Microsoft's
  221. /// _InterlockedCompareExchange* intrinsics which have the following signature:
  222. /// T _InterlockedCompareExchange(T volatile *Destination,
  223. /// T Exchange,
  224. /// T Comparand);
  225. ///
  226. /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
  227. /// cmpxchg *Destination, Comparand, Exchange.
  228. /// So we need to swap Comparand and Exchange when invoking
  229. /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
  230. /// function MakeAtomicCmpXchgValue since it expects the arguments to be
  231. /// already swapped.
  232. static
  233. Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
  234. AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
  235. assert(E->getArg(0)->getType()->isPointerType());
  236. assert(CGF.getContext().hasSameUnqualifiedType(
  237. E->getType(), E->getArg(0)->getType()->getPointeeType()));
  238. assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
  239. E->getArg(1)->getType()));
  240. assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
  241. E->getArg(2)->getType()));
  242. auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
  243. auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
  244. auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
  245. // For Release ordering, the failure ordering should be Monotonic.
  246. auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
  247. AtomicOrdering::Monotonic :
  248. SuccessOrdering;
  249. auto *Result = CGF.Builder.CreateAtomicCmpXchg(
  250. Destination, Comparand, Exchange,
  251. SuccessOrdering, FailureOrdering);
  252. Result->setVolatile(true);
  253. return CGF.Builder.CreateExtractValue(Result, 0);
  254. }
  255. static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
  256. AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
  257. assert(E->getArg(0)->getType()->isPointerType());
  258. auto *IntTy = CGF.ConvertType(E->getType());
  259. auto *Result = CGF.Builder.CreateAtomicRMW(
  260. AtomicRMWInst::Add,
  261. CGF.EmitScalarExpr(E->getArg(0)),
  262. ConstantInt::get(IntTy, 1),
  263. Ordering);
  264. return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
  265. }
  266. static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
  267. AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
  268. assert(E->getArg(0)->getType()->isPointerType());
  269. auto *IntTy = CGF.ConvertType(E->getType());
  270. auto *Result = CGF.Builder.CreateAtomicRMW(
  271. AtomicRMWInst::Sub,
  272. CGF.EmitScalarExpr(E->getArg(0)),
  273. ConstantInt::get(IntTy, 1),
  274. Ordering);
  275. return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
  276. }
  277. // Build a plain volatile load.
  278. static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
  279. Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
  280. QualType ElTy = E->getArg(0)->getType()->getPointeeType();
  281. CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
  282. llvm::Type *ITy =
  283. llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
  284. Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
  285. llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize);
  286. Load->setVolatile(true);
  287. return Load;
  288. }
  289. // Build a plain volatile store.
  290. static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
  291. Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
  292. Value *Value = CGF.EmitScalarExpr(E->getArg(1));
  293. QualType ElTy = E->getArg(0)->getType()->getPointeeType();
  294. CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
  295. llvm::Type *ITy =
  296. llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
  297. Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
  298. llvm::StoreInst *Store =
  299. CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
  300. Store->setVolatile(true);
  301. return Store;
  302. }
  303. // Emit a simple mangled intrinsic that has 1 argument and a return type
  304. // matching the argument type.
  305. static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
  306. const CallExpr *E,
  307. unsigned IntrinsicID) {
  308. llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
  309. Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
  310. return CGF.Builder.CreateCall(F, Src0);
  311. }
  312. // Emit an intrinsic that has 2 operands of the same type as its result.
  313. static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
  314. const CallExpr *E,
  315. unsigned IntrinsicID) {
  316. llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
  317. llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
  318. Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
  319. return CGF.Builder.CreateCall(F, { Src0, Src1 });
  320. }
  321. // Emit an intrinsic that has 3 operands of the same type as its result.
  322. static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
  323. const CallExpr *E,
  324. unsigned IntrinsicID) {
  325. llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
  326. llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
  327. llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
  328. Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
  329. return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
  330. }
  331. // Emit an intrinsic that has 1 float or double operand, and 1 integer.
  332. static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
  333. const CallExpr *E,
  334. unsigned IntrinsicID) {
  335. llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
  336. llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
  337. Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
  338. return CGF.Builder.CreateCall(F, {Src0, Src1});
  339. }
  340. // Emit an intrinsic that has overloaded integer result and fp operand.
  341. static Value *emitFPToIntRoundBuiltin(CodeGenFunction &CGF,
  342. const CallExpr *E,
  343. unsigned IntrinsicID) {
  344. llvm::Type *ResultType = CGF.ConvertType(E->getType());
  345. llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
  346. Function *F = CGF.CGM.getIntrinsic(IntrinsicID,
  347. {ResultType, Src0->getType()});
  348. return CGF.Builder.CreateCall(F, Src0);
  349. }
  350. /// EmitFAbs - Emit a call to @llvm.fabs().
  351. static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
  352. Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
  353. llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
  354. Call->setDoesNotAccessMemory();
  355. return Call;
  356. }
  357. /// Emit the computation of the sign bit for a floating point value. Returns
  358. /// the i1 sign bit value.
  359. static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
  360. LLVMContext &C = CGF.CGM.getLLVMContext();
  361. llvm::Type *Ty = V->getType();
  362. int Width = Ty->getPrimitiveSizeInBits();
  363. llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
  364. V = CGF.Builder.CreateBitCast(V, IntTy);
  365. if (Ty->isPPC_FP128Ty()) {
  366. // We want the sign bit of the higher-order double. The bitcast we just
  367. // did works as if the double-double was stored to memory and then
  368. // read as an i128. The "store" will put the higher-order double in the
  369. // lower address in both little- and big-Endian modes, but the "load"
  370. // will treat those bits as a different part of the i128: the low bits in
  371. // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
  372. // we need to shift the high bits down to the low before truncating.
  373. Width >>= 1;
  374. if (CGF.getTarget().isBigEndian()) {
  375. Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
  376. V = CGF.Builder.CreateLShr(V, ShiftCst);
  377. }
  378. // We are truncating value in order to extract the higher-order
  379. // double, which we will be using to extract the sign from.
  380. IntTy = llvm::IntegerType::get(C, Width);
  381. V = CGF.Builder.CreateTrunc(V, IntTy);
  382. }
  383. Value *Zero = llvm::Constant::getNullValue(IntTy);
  384. return CGF.Builder.CreateICmpSLT(V, Zero);
  385. }
  386. static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
  387. const CallExpr *E, llvm::Constant *calleeValue) {
  388. CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
  389. return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
  390. }
  391. /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
  392. /// depending on IntrinsicID.
  393. ///
  394. /// \arg CGF The current codegen function.
  395. /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
  396. /// \arg X The first argument to the llvm.*.with.overflow.*.
  397. /// \arg Y The second argument to the llvm.*.with.overflow.*.
  398. /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
  399. /// \returns The result (i.e. sum/product) returned by the intrinsic.
  400. static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
  401. const llvm::Intrinsic::ID IntrinsicID,
  402. llvm::Value *X, llvm::Value *Y,
  403. llvm::Value *&Carry) {
  404. // Make sure we have integers of the same width.
  405. assert(X->getType() == Y->getType() &&
  406. "Arguments must be the same type. (Did you forget to make sure both "
  407. "arguments have the same integer width?)");
  408. Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
  409. llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
  410. Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
  411. return CGF.Builder.CreateExtractValue(Tmp, 0);
  412. }
  413. static Value *emitRangedBuiltin(CodeGenFunction &CGF,
  414. unsigned IntrinsicID,
  415. int low, int high) {
  416. llvm::MDBuilder MDHelper(CGF.getLLVMContext());
  417. llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
  418. Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
  419. llvm::Instruction *Call = CGF.Builder.CreateCall(F);
  420. Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
  421. return Call;
  422. }
  423. namespace {
  424. struct WidthAndSignedness {
  425. unsigned Width;
  426. bool Signed;
  427. };
  428. }
  429. static WidthAndSignedness
  430. getIntegerWidthAndSignedness(const clang::ASTContext &context,
  431. const clang::QualType Type) {
  432. assert(Type->isIntegerType() && "Given type is not an integer.");
  433. unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
  434. bool Signed = Type->isSignedIntegerType();
  435. return {Width, Signed};
  436. }
  437. // Given one or more integer types, this function produces an integer type that
  438. // encompasses them: any value in one of the given types could be expressed in
  439. // the encompassing type.
  440. static struct WidthAndSignedness
  441. EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
  442. assert(Types.size() > 0 && "Empty list of types.");
  443. // If any of the given types is signed, we must return a signed type.
  444. bool Signed = false;
  445. for (const auto &Type : Types) {
  446. Signed |= Type.Signed;
  447. }
  448. // The encompassing type must have a width greater than or equal to the width
  449. // of the specified types. Additionally, if the encompassing type is signed,
  450. // its width must be strictly greater than the width of any unsigned types
  451. // given.
  452. unsigned Width = 0;
  453. for (const auto &Type : Types) {
  454. unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
  455. if (Width < MinWidth) {
  456. Width = MinWidth;
  457. }
  458. }
  459. return {Width, Signed};
  460. }
  461. Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
  462. llvm::Type *DestType = Int8PtrTy;
  463. if (ArgValue->getType() != DestType)
  464. ArgValue =
  465. Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
  466. Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
  467. return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
  468. }
  469. /// Checks if using the result of __builtin_object_size(p, @p From) in place of
  470. /// __builtin_object_size(p, @p To) is correct
  471. static bool areBOSTypesCompatible(int From, int To) {
  472. // Note: Our __builtin_object_size implementation currently treats Type=0 and
  473. // Type=2 identically. Encoding this implementation detail here may make
  474. // improving __builtin_object_size difficult in the future, so it's omitted.
  475. return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
  476. }
  477. static llvm::Value *
  478. getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
  479. return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
  480. }
  481. llvm::Value *
  482. CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
  483. llvm::IntegerType *ResType,
  484. llvm::Value *EmittedE,
  485. bool IsDynamic) {
  486. uint64_t ObjectSize;
  487. if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
  488. return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
  489. return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
  490. }
  491. /// Returns a Value corresponding to the size of the given expression.
  492. /// This Value may be either of the following:
  493. /// - A llvm::Argument (if E is a param with the pass_object_size attribute on
  494. /// it)
  495. /// - A call to the @llvm.objectsize intrinsic
  496. ///
  497. /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
  498. /// and we wouldn't otherwise try to reference a pass_object_size parameter,
  499. /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
  500. llvm::Value *
  501. CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
  502. llvm::IntegerType *ResType,
  503. llvm::Value *EmittedE, bool IsDynamic) {
  504. // We need to reference an argument if the pointer is a parameter with the
  505. // pass_object_size attribute.
  506. if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
  507. auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
  508. auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
  509. if (Param != nullptr && PS != nullptr &&
  510. areBOSTypesCompatible(PS->getType(), Type)) {
  511. auto Iter = SizeArguments.find(Param);
  512. assert(Iter != SizeArguments.end());
  513. const ImplicitParamDecl *D = Iter->second;
  514. auto DIter = LocalDeclMap.find(D);
  515. assert(DIter != LocalDeclMap.end());
  516. return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
  517. getContext().getSizeType(), E->getBeginLoc());
  518. }
  519. }
  520. // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
  521. // evaluate E for side-effects. In either case, we shouldn't lower to
  522. // @llvm.objectsize.
  523. if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
  524. return getDefaultBuiltinObjectSizeResult(Type, ResType);
  525. Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
  526. assert(Ptr->getType()->isPointerTy() &&
  527. "Non-pointer passed to __builtin_object_size?");
  528. Function *F =
  529. CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
  530. // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
  531. Value *Min = Builder.getInt1((Type & 2) != 0);
  532. // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
  533. Value *NullIsUnknown = Builder.getTrue();
  534. Value *Dynamic = Builder.getInt1(IsDynamic);
  535. return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
  536. }
  537. namespace {
  538. /// A struct to generically describe a bit test intrinsic.
  539. struct BitTest {
  540. enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
  541. enum InterlockingKind : uint8_t {
  542. Unlocked,
  543. Sequential,
  544. Acquire,
  545. Release,
  546. NoFence
  547. };
  548. ActionKind Action;
  549. InterlockingKind Interlocking;
  550. bool Is64Bit;
  551. static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
  552. };
  553. } // namespace
  554. BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
  555. switch (BuiltinID) {
  556. // Main portable variants.
  557. case Builtin::BI_bittest:
  558. return {TestOnly, Unlocked, false};
  559. case Builtin::BI_bittestandcomplement:
  560. return {Complement, Unlocked, false};
  561. case Builtin::BI_bittestandreset:
  562. return {Reset, Unlocked, false};
  563. case Builtin::BI_bittestandset:
  564. return {Set, Unlocked, false};
  565. case Builtin::BI_interlockedbittestandreset:
  566. return {Reset, Sequential, false};
  567. case Builtin::BI_interlockedbittestandset:
  568. return {Set, Sequential, false};
  569. // X86-specific 64-bit variants.
  570. case Builtin::BI_bittest64:
  571. return {TestOnly, Unlocked, true};
  572. case Builtin::BI_bittestandcomplement64:
  573. return {Complement, Unlocked, true};
  574. case Builtin::BI_bittestandreset64:
  575. return {Reset, Unlocked, true};
  576. case Builtin::BI_bittestandset64:
  577. return {Set, Unlocked, true};
  578. case Builtin::BI_interlockedbittestandreset64:
  579. return {Reset, Sequential, true};
  580. case Builtin::BI_interlockedbittestandset64:
  581. return {Set, Sequential, true};
  582. // ARM/AArch64-specific ordering variants.
  583. case Builtin::BI_interlockedbittestandset_acq:
  584. return {Set, Acquire, false};
  585. case Builtin::BI_interlockedbittestandset_rel:
  586. return {Set, Release, false};
  587. case Builtin::BI_interlockedbittestandset_nf:
  588. return {Set, NoFence, false};
  589. case Builtin::BI_interlockedbittestandreset_acq:
  590. return {Reset, Acquire, false};
  591. case Builtin::BI_interlockedbittestandreset_rel:
  592. return {Reset, Release, false};
  593. case Builtin::BI_interlockedbittestandreset_nf:
  594. return {Reset, NoFence, false};
  595. }
  596. llvm_unreachable("expected only bittest intrinsics");
  597. }
  598. static char bitActionToX86BTCode(BitTest::ActionKind A) {
  599. switch (A) {
  600. case BitTest::TestOnly: return '\0';
  601. case BitTest::Complement: return 'c';
  602. case BitTest::Reset: return 'r';
  603. case BitTest::Set: return 's';
  604. }
  605. llvm_unreachable("invalid action");
  606. }
  607. static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
  608. BitTest BT,
  609. const CallExpr *E, Value *BitBase,
  610. Value *BitPos) {
  611. char Action = bitActionToX86BTCode(BT.Action);
  612. char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
  613. // Build the assembly.
  614. SmallString<64> Asm;
  615. raw_svector_ostream AsmOS(Asm);
  616. if (BT.Interlocking != BitTest::Unlocked)
  617. AsmOS << "lock ";
  618. AsmOS << "bt";
  619. if (Action)
  620. AsmOS << Action;
  621. AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}";
  622. // Build the constraints. FIXME: We should support immediates when possible.
  623. std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}";
  624. llvm::IntegerType *IntType = llvm::IntegerType::get(
  625. CGF.getLLVMContext(),
  626. CGF.getContext().getTypeSize(E->getArg(1)->getType()));
  627. llvm::Type *IntPtrType = IntType->getPointerTo();
  628. llvm::FunctionType *FTy =
  629. llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
  630. llvm::InlineAsm *IA =
  631. llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
  632. return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
  633. }
  634. static llvm::AtomicOrdering
  635. getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
  636. switch (I) {
  637. case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
  638. case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
  639. case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
  640. case BitTest::Release: return llvm::AtomicOrdering::Release;
  641. case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
  642. }
  643. llvm_unreachable("invalid interlocking");
  644. }
  645. /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
  646. /// bits and a bit position and read and optionally modify the bit at that
  647. /// position. The position index can be arbitrarily large, i.e. it can be larger
  648. /// than 31 or 63, so we need an indexed load in the general case.
  649. static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
  650. unsigned BuiltinID,
  651. const CallExpr *E) {
  652. Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
  653. Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
  654. BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
  655. // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
  656. // indexing operation internally. Use them if possible.
  657. llvm::Triple::ArchType Arch = CGF.getTarget().getTriple().getArch();
  658. if (Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64)
  659. return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
  660. // Otherwise, use generic code to load one byte and test the bit. Use all but
  661. // the bottom three bits as the array index, and the bottom three bits to form
  662. // a mask.
  663. // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
  664. Value *ByteIndex = CGF.Builder.CreateAShr(
  665. BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
  666. Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
  667. Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
  668. ByteIndex, "bittest.byteaddr"),
  669. CharUnits::One());
  670. Value *PosLow =
  671. CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
  672. llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
  673. // The updating instructions will need a mask.
  674. Value *Mask = nullptr;
  675. if (BT.Action != BitTest::TestOnly) {
  676. Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
  677. "bittest.mask");
  678. }
  679. // Check the action and ordering of the interlocked intrinsics.
  680. llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
  681. Value *OldByte = nullptr;
  682. if (Ordering != llvm::AtomicOrdering::NotAtomic) {
  683. // Emit a combined atomicrmw load/store operation for the interlocked
  684. // intrinsics.
  685. llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
  686. if (BT.Action == BitTest::Reset) {
  687. Mask = CGF.Builder.CreateNot(Mask);
  688. RMWOp = llvm::AtomicRMWInst::And;
  689. }
  690. OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
  691. Ordering);
  692. } else {
  693. // Emit a plain load for the non-interlocked intrinsics.
  694. OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
  695. Value *NewByte = nullptr;
  696. switch (BT.Action) {
  697. case BitTest::TestOnly:
  698. // Don't store anything.
  699. break;
  700. case BitTest::Complement:
  701. NewByte = CGF.Builder.CreateXor(OldByte, Mask);
  702. break;
  703. case BitTest::Reset:
  704. NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
  705. break;
  706. case BitTest::Set:
  707. NewByte = CGF.Builder.CreateOr(OldByte, Mask);
  708. break;
  709. }
  710. if (NewByte)
  711. CGF.Builder.CreateStore(NewByte, ByteAddr);
  712. }
  713. // However we loaded the old byte, either by plain load or atomicrmw, shift
  714. // the bit into the low position and mask it to 0 or 1.
  715. Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
  716. return CGF.Builder.CreateAnd(
  717. ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
  718. }
  719. namespace {
  720. enum class MSVCSetJmpKind {
  721. _setjmpex,
  722. _setjmp3,
  723. _setjmp
  724. };
  725. }
  726. /// MSVC handles setjmp a bit differently on different platforms. On every
  727. /// architecture except 32-bit x86, the frame address is passed. On x86, extra
  728. /// parameters can be passed as variadic arguments, but we always pass none.
  729. static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
  730. const CallExpr *E) {
  731. llvm::Value *Arg1 = nullptr;
  732. llvm::Type *Arg1Ty = nullptr;
  733. StringRef Name;
  734. bool IsVarArg = false;
  735. if (SJKind == MSVCSetJmpKind::_setjmp3) {
  736. Name = "_setjmp3";
  737. Arg1Ty = CGF.Int32Ty;
  738. Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
  739. IsVarArg = true;
  740. } else {
  741. Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
  742. Arg1Ty = CGF.Int8PtrTy;
  743. if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
  744. Arg1 = CGF.Builder.CreateCall(
  745. CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
  746. } else
  747. Arg1 = CGF.Builder.CreateCall(
  748. CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
  749. llvm::ConstantInt::get(CGF.Int32Ty, 0));
  750. }
  751. // Mark the call site and declaration with ReturnsTwice.
  752. llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
  753. llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
  754. CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
  755. llvm::Attribute::ReturnsTwice);
  756. llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
  757. llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
  758. ReturnsTwiceAttr, /*Local=*/true);
  759. llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
  760. CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
  761. llvm::Value *Args[] = {Buf, Arg1};
  762. llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
  763. CB->setAttributes(ReturnsTwiceAttr);
  764. return RValue::get(CB);
  765. }
  766. // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
  767. // we handle them here.
  768. enum class CodeGenFunction::MSVCIntrin {
  769. _BitScanForward,
  770. _BitScanReverse,
  771. _InterlockedAnd,
  772. _InterlockedDecrement,
  773. _InterlockedExchange,
  774. _InterlockedExchangeAdd,
  775. _InterlockedExchangeSub,
  776. _InterlockedIncrement,
  777. _InterlockedOr,
  778. _InterlockedXor,
  779. _InterlockedExchangeAdd_acq,
  780. _InterlockedExchangeAdd_rel,
  781. _InterlockedExchangeAdd_nf,
  782. _InterlockedExchange_acq,
  783. _InterlockedExchange_rel,
  784. _InterlockedExchange_nf,
  785. _InterlockedCompareExchange_acq,
  786. _InterlockedCompareExchange_rel,
  787. _InterlockedCompareExchange_nf,
  788. _InterlockedOr_acq,
  789. _InterlockedOr_rel,
  790. _InterlockedOr_nf,
  791. _InterlockedXor_acq,
  792. _InterlockedXor_rel,
  793. _InterlockedXor_nf,
  794. _InterlockedAnd_acq,
  795. _InterlockedAnd_rel,
  796. _InterlockedAnd_nf,
  797. _InterlockedIncrement_acq,
  798. _InterlockedIncrement_rel,
  799. _InterlockedIncrement_nf,
  800. _InterlockedDecrement_acq,
  801. _InterlockedDecrement_rel,
  802. _InterlockedDecrement_nf,
  803. __fastfail,
  804. };
  805. Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
  806. const CallExpr *E) {
  807. switch (BuiltinID) {
  808. case MSVCIntrin::_BitScanForward:
  809. case MSVCIntrin::_BitScanReverse: {
  810. Value *ArgValue = EmitScalarExpr(E->getArg(1));
  811. llvm::Type *ArgType = ArgValue->getType();
  812. llvm::Type *IndexType =
  813. EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
  814. llvm::Type *ResultType = ConvertType(E->getType());
  815. Value *ArgZero = llvm::Constant::getNullValue(ArgType);
  816. Value *ResZero = llvm::Constant::getNullValue(ResultType);
  817. Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
  818. BasicBlock *Begin = Builder.GetInsertBlock();
  819. BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
  820. Builder.SetInsertPoint(End);
  821. PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
  822. Builder.SetInsertPoint(Begin);
  823. Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
  824. BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
  825. Builder.CreateCondBr(IsZero, End, NotZero);
  826. Result->addIncoming(ResZero, Begin);
  827. Builder.SetInsertPoint(NotZero);
  828. Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
  829. if (BuiltinID == MSVCIntrin::_BitScanForward) {
  830. Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
  831. Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
  832. ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
  833. Builder.CreateStore(ZeroCount, IndexAddress, false);
  834. } else {
  835. unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
  836. Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
  837. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
  838. Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
  839. ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
  840. Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
  841. Builder.CreateStore(Index, IndexAddress, false);
  842. }
  843. Builder.CreateBr(End);
  844. Result->addIncoming(ResOne, NotZero);
  845. Builder.SetInsertPoint(End);
  846. return Result;
  847. }
  848. case MSVCIntrin::_InterlockedAnd:
  849. return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
  850. case MSVCIntrin::_InterlockedExchange:
  851. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
  852. case MSVCIntrin::_InterlockedExchangeAdd:
  853. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
  854. case MSVCIntrin::_InterlockedExchangeSub:
  855. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
  856. case MSVCIntrin::_InterlockedOr:
  857. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
  858. case MSVCIntrin::_InterlockedXor:
  859. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
  860. case MSVCIntrin::_InterlockedExchangeAdd_acq:
  861. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
  862. AtomicOrdering::Acquire);
  863. case MSVCIntrin::_InterlockedExchangeAdd_rel:
  864. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
  865. AtomicOrdering::Release);
  866. case MSVCIntrin::_InterlockedExchangeAdd_nf:
  867. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
  868. AtomicOrdering::Monotonic);
  869. case MSVCIntrin::_InterlockedExchange_acq:
  870. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
  871. AtomicOrdering::Acquire);
  872. case MSVCIntrin::_InterlockedExchange_rel:
  873. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
  874. AtomicOrdering::Release);
  875. case MSVCIntrin::_InterlockedExchange_nf:
  876. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
  877. AtomicOrdering::Monotonic);
  878. case MSVCIntrin::_InterlockedCompareExchange_acq:
  879. return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
  880. case MSVCIntrin::_InterlockedCompareExchange_rel:
  881. return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
  882. case MSVCIntrin::_InterlockedCompareExchange_nf:
  883. return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
  884. case MSVCIntrin::_InterlockedOr_acq:
  885. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
  886. AtomicOrdering::Acquire);
  887. case MSVCIntrin::_InterlockedOr_rel:
  888. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
  889. AtomicOrdering::Release);
  890. case MSVCIntrin::_InterlockedOr_nf:
  891. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
  892. AtomicOrdering::Monotonic);
  893. case MSVCIntrin::_InterlockedXor_acq:
  894. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
  895. AtomicOrdering::Acquire);
  896. case MSVCIntrin::_InterlockedXor_rel:
  897. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
  898. AtomicOrdering::Release);
  899. case MSVCIntrin::_InterlockedXor_nf:
  900. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
  901. AtomicOrdering::Monotonic);
  902. case MSVCIntrin::_InterlockedAnd_acq:
  903. return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
  904. AtomicOrdering::Acquire);
  905. case MSVCIntrin::_InterlockedAnd_rel:
  906. return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
  907. AtomicOrdering::Release);
  908. case MSVCIntrin::_InterlockedAnd_nf:
  909. return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
  910. AtomicOrdering::Monotonic);
  911. case MSVCIntrin::_InterlockedIncrement_acq:
  912. return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
  913. case MSVCIntrin::_InterlockedIncrement_rel:
  914. return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
  915. case MSVCIntrin::_InterlockedIncrement_nf:
  916. return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
  917. case MSVCIntrin::_InterlockedDecrement_acq:
  918. return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
  919. case MSVCIntrin::_InterlockedDecrement_rel:
  920. return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
  921. case MSVCIntrin::_InterlockedDecrement_nf:
  922. return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
  923. case MSVCIntrin::_InterlockedDecrement:
  924. return EmitAtomicDecrementValue(*this, E);
  925. case MSVCIntrin::_InterlockedIncrement:
  926. return EmitAtomicIncrementValue(*this, E);
  927. case MSVCIntrin::__fastfail: {
  928. // Request immediate process termination from the kernel. The instruction
  929. // sequences to do this are documented on MSDN:
  930. // https://msdn.microsoft.com/en-us/library/dn774154.aspx
  931. llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
  932. StringRef Asm, Constraints;
  933. switch (ISA) {
  934. default:
  935. ErrorUnsupported(E, "__fastfail call for this architecture");
  936. break;
  937. case llvm::Triple::x86:
  938. case llvm::Triple::x86_64:
  939. Asm = "int $$0x29";
  940. Constraints = "{cx}";
  941. break;
  942. case llvm::Triple::thumb:
  943. Asm = "udf #251";
  944. Constraints = "{r0}";
  945. break;
  946. case llvm::Triple::aarch64:
  947. Asm = "brk #0xF003";
  948. Constraints = "{w0}";
  949. }
  950. llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
  951. llvm::InlineAsm *IA =
  952. llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
  953. llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
  954. getLLVMContext(), llvm::AttributeList::FunctionIndex,
  955. llvm::Attribute::NoReturn);
  956. llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
  957. CI->setAttributes(NoReturnAttr);
  958. return CI;
  959. }
  960. }
  961. llvm_unreachable("Incorrect MSVC intrinsic!");
  962. }
  963. namespace {
  964. // ARC cleanup for __builtin_os_log_format
  965. struct CallObjCArcUse final : EHScopeStack::Cleanup {
  966. CallObjCArcUse(llvm::Value *object) : object(object) {}
  967. llvm::Value *object;
  968. void Emit(CodeGenFunction &CGF, Flags flags) override {
  969. CGF.EmitARCIntrinsicUse(object);
  970. }
  971. };
  972. }
  973. Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
  974. BuiltinCheckKind Kind) {
  975. assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
  976. && "Unsupported builtin check kind");
  977. Value *ArgValue = EmitScalarExpr(E);
  978. if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
  979. return ArgValue;
  980. SanitizerScope SanScope(this);
  981. Value *Cond = Builder.CreateICmpNE(
  982. ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
  983. EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
  984. SanitizerHandler::InvalidBuiltin,
  985. {EmitCheckSourceLocation(E->getExprLoc()),
  986. llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
  987. None);
  988. return ArgValue;
  989. }
  990. /// Get the argument type for arguments to os_log_helper.
  991. static CanQualType getOSLogArgType(ASTContext &C, int Size) {
  992. QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
  993. return C.getCanonicalType(UnsignedTy);
  994. }
  995. llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
  996. const analyze_os_log::OSLogBufferLayout &Layout,
  997. CharUnits BufferAlignment) {
  998. ASTContext &Ctx = getContext();
  999. llvm::SmallString<64> Name;
  1000. {
  1001. raw_svector_ostream OS(Name);
  1002. OS << "__os_log_helper";
  1003. OS << "_" << BufferAlignment.getQuantity();
  1004. OS << "_" << int(Layout.getSummaryByte());
  1005. OS << "_" << int(Layout.getNumArgsByte());
  1006. for (const auto &Item : Layout.Items)
  1007. OS << "_" << int(Item.getSizeByte()) << "_"
  1008. << int(Item.getDescriptorByte());
  1009. }
  1010. if (llvm::Function *F = CGM.getModule().getFunction(Name))
  1011. return F;
  1012. llvm::SmallVector<QualType, 4> ArgTys;
  1013. FunctionArgList Args;
  1014. Args.push_back(ImplicitParamDecl::Create(
  1015. Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
  1016. ImplicitParamDecl::Other));
  1017. ArgTys.emplace_back(Ctx.VoidPtrTy);
  1018. for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
  1019. char Size = Layout.Items[I].getSizeByte();
  1020. if (!Size)
  1021. continue;
  1022. QualType ArgTy = getOSLogArgType(Ctx, Size);
  1023. Args.push_back(ImplicitParamDecl::Create(
  1024. Ctx, nullptr, SourceLocation(),
  1025. &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
  1026. ImplicitParamDecl::Other));
  1027. ArgTys.emplace_back(ArgTy);
  1028. }
  1029. QualType ReturnTy = Ctx.VoidTy;
  1030. QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
  1031. // The helper function has linkonce_odr linkage to enable the linker to merge
  1032. // identical functions. To ensure the merging always happens, 'noinline' is
  1033. // attached to the function when compiling with -Oz.
  1034. const CGFunctionInfo &FI =
  1035. CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
  1036. llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
  1037. llvm::Function *Fn = llvm::Function::Create(
  1038. FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
  1039. Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
  1040. CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn);
  1041. CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
  1042. Fn->setDoesNotThrow();
  1043. // Attach 'noinline' at -Oz.
  1044. if (CGM.getCodeGenOpts().OptimizeSize == 2)
  1045. Fn->addFnAttr(llvm::Attribute::NoInline);
  1046. auto NL = ApplyDebugLocation::CreateEmpty(*this);
  1047. IdentifierInfo *II = &Ctx.Idents.get(Name);
  1048. FunctionDecl *FD = FunctionDecl::Create(
  1049. Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
  1050. FuncionTy, nullptr, SC_PrivateExtern, false, false);
  1051. StartFunction(FD, ReturnTy, Fn, FI, Args);
  1052. // Create a scope with an artificial location for the body of this function.
  1053. auto AL = ApplyDebugLocation::CreateArtificial(*this);
  1054. CharUnits Offset;
  1055. Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
  1056. BufferAlignment);
  1057. Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
  1058. Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
  1059. Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
  1060. Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
  1061. unsigned I = 1;
  1062. for (const auto &Item : Layout.Items) {
  1063. Builder.CreateStore(
  1064. Builder.getInt8(Item.getDescriptorByte()),
  1065. Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
  1066. Builder.CreateStore(
  1067. Builder.getInt8(Item.getSizeByte()),
  1068. Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
  1069. CharUnits Size = Item.size();
  1070. if (!Size.getQuantity())
  1071. continue;
  1072. Address Arg = GetAddrOfLocalVar(Args[I]);
  1073. Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
  1074. Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
  1075. "argDataCast");
  1076. Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
  1077. Offset += Size;
  1078. ++I;
  1079. }
  1080. FinishFunction();
  1081. return Fn;
  1082. }
  1083. RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
  1084. assert(E.getNumArgs() >= 2 &&
  1085. "__builtin_os_log_format takes at least 2 arguments");
  1086. ASTContext &Ctx = getContext();
  1087. analyze_os_log::OSLogBufferLayout Layout;
  1088. analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
  1089. Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
  1090. llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
  1091. // Ignore argument 1, the format string. It is not currently used.
  1092. CallArgList Args;
  1093. Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
  1094. for (const auto &Item : Layout.Items) {
  1095. int Size = Item.getSizeByte();
  1096. if (!Size)
  1097. continue;
  1098. llvm::Value *ArgVal;
  1099. if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
  1100. uint64_t Val = 0;
  1101. for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
  1102. Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
  1103. ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
  1104. } else if (const Expr *TheExpr = Item.getExpr()) {
  1105. ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
  1106. // Check if this is a retainable type.
  1107. if (TheExpr->getType()->isObjCRetainableType()) {
  1108. assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
  1109. "Only scalar can be a ObjC retainable type");
  1110. // Check if the object is constant, if not, save it in
  1111. // RetainableOperands.
  1112. if (!isa<Constant>(ArgVal))
  1113. RetainableOperands.push_back(ArgVal);
  1114. }
  1115. } else {
  1116. ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
  1117. }
  1118. unsigned ArgValSize =
  1119. CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
  1120. llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
  1121. ArgValSize);
  1122. ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
  1123. CanQualType ArgTy = getOSLogArgType(Ctx, Size);
  1124. // If ArgVal has type x86_fp80, zero-extend ArgVal.
  1125. ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
  1126. Args.add(RValue::get(ArgVal), ArgTy);
  1127. }
  1128. const CGFunctionInfo &FI =
  1129. CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
  1130. llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
  1131. Layout, BufAddr.getAlignment());
  1132. EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
  1133. // Push a clang.arc.use cleanup for each object in RetainableOperands. The
  1134. // cleanup will cause the use to appear after the final log call, keeping
  1135. // the object valid while it’s held in the log buffer. Note that if there’s
  1136. // a release cleanup on the object, it will already be active; since
  1137. // cleanups are emitted in reverse order, the use will occur before the
  1138. // object is released.
  1139. if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount &&
  1140. CGM.getCodeGenOpts().OptimizationLevel != 0)
  1141. for (llvm::Value *Object : RetainableOperands)
  1142. pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), Object);
  1143. return RValue::get(BufAddr.getPointer());
  1144. }
  1145. /// Determine if a binop is a checked mixed-sign multiply we can specialize.
  1146. static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
  1147. WidthAndSignedness Op1Info,
  1148. WidthAndSignedness Op2Info,
  1149. WidthAndSignedness ResultInfo) {
  1150. return BuiltinID == Builtin::BI__builtin_mul_overflow &&
  1151. std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
  1152. Op1Info.Signed != Op2Info.Signed;
  1153. }
  1154. /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
  1155. /// the generic checked-binop irgen.
  1156. static RValue
  1157. EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
  1158. WidthAndSignedness Op1Info, const clang::Expr *Op2,
  1159. WidthAndSignedness Op2Info,
  1160. const clang::Expr *ResultArg, QualType ResultQTy,
  1161. WidthAndSignedness ResultInfo) {
  1162. assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
  1163. Op2Info, ResultInfo) &&
  1164. "Not a mixed-sign multipliction we can specialize");
  1165. // Emit the signed and unsigned operands.
  1166. const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
  1167. const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
  1168. llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
  1169. llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
  1170. unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
  1171. unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
  1172. // One of the operands may be smaller than the other. If so, [s|z]ext it.
  1173. if (SignedOpWidth < UnsignedOpWidth)
  1174. Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
  1175. if (UnsignedOpWidth < SignedOpWidth)
  1176. Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
  1177. llvm::Type *OpTy = Signed->getType();
  1178. llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
  1179. Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
  1180. llvm::Type *ResTy = ResultPtr.getElementType();
  1181. unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
  1182. // Take the absolute value of the signed operand.
  1183. llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
  1184. llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
  1185. llvm::Value *AbsSigned =
  1186. CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
  1187. // Perform a checked unsigned multiplication.
  1188. llvm::Value *UnsignedOverflow;
  1189. llvm::Value *UnsignedResult =
  1190. EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
  1191. Unsigned, UnsignedOverflow);
  1192. llvm::Value *Overflow, *Result;
  1193. if (ResultInfo.Signed) {
  1194. // Signed overflow occurs if the result is greater than INT_MAX or lesser
  1195. // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
  1196. auto IntMax =
  1197. llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
  1198. llvm::Value *MaxResult =
  1199. CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
  1200. CGF.Builder.CreateZExt(IsNegative, OpTy));
  1201. llvm::Value *SignedOverflow =
  1202. CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
  1203. Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
  1204. // Prepare the signed result (possibly by negating it).
  1205. llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
  1206. llvm::Value *SignedResult =
  1207. CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
  1208. Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
  1209. } else {
  1210. // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
  1211. llvm::Value *Underflow = CGF.Builder.CreateAnd(
  1212. IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
  1213. Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
  1214. if (ResultInfo.Width < OpWidth) {
  1215. auto IntMax =
  1216. llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
  1217. llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
  1218. UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
  1219. Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
  1220. }
  1221. // Negate the product if it would be negative in infinite precision.
  1222. Result = CGF.Builder.CreateSelect(
  1223. IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
  1224. Result = CGF.Builder.CreateTrunc(Result, ResTy);
  1225. }
  1226. assert(Overflow && Result && "Missing overflow or result");
  1227. bool isVolatile =
  1228. ResultArg->getType()->getPointeeType().isVolatileQualified();
  1229. CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
  1230. isVolatile);
  1231. return RValue::get(Overflow);
  1232. }
  1233. static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
  1234. Value *&RecordPtr, CharUnits Align,
  1235. llvm::FunctionCallee Func, int Lvl) {
  1236. ASTContext &Context = CGF.getContext();
  1237. RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
  1238. std::string Pad = std::string(Lvl * 4, ' ');
  1239. Value *GString =
  1240. CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
  1241. Value *Res = CGF.Builder.CreateCall(Func, {GString});
  1242. static llvm::DenseMap<QualType, const char *> Types;
  1243. if (Types.empty()) {
  1244. Types[Context.CharTy] = "%c";
  1245. Types[Context.BoolTy] = "%d";
  1246. Types[Context.SignedCharTy] = "%hhd";
  1247. Types[Context.UnsignedCharTy] = "%hhu";
  1248. Types[Context.IntTy] = "%d";
  1249. Types[Context.UnsignedIntTy] = "%u";
  1250. Types[Context.LongTy] = "%ld";
  1251. Types[Context.UnsignedLongTy] = "%lu";
  1252. Types[Context.LongLongTy] = "%lld";
  1253. Types[Context.UnsignedLongLongTy] = "%llu";
  1254. Types[Context.ShortTy] = "%hd";
  1255. Types[Context.UnsignedShortTy] = "%hu";
  1256. Types[Context.VoidPtrTy] = "%p";
  1257. Types[Context.FloatTy] = "%f";
  1258. Types[Context.DoubleTy] = "%f";
  1259. Types[Context.LongDoubleTy] = "%Lf";
  1260. Types[Context.getPointerType(Context.CharTy)] = "%s";
  1261. Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
  1262. }
  1263. for (const auto *FD : RD->fields()) {
  1264. Value *FieldPtr = RecordPtr;
  1265. if (RD->isUnion())
  1266. FieldPtr = CGF.Builder.CreatePointerCast(
  1267. FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
  1268. else
  1269. FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
  1270. FD->getFieldIndex());
  1271. GString = CGF.Builder.CreateGlobalStringPtr(
  1272. llvm::Twine(Pad)
  1273. .concat(FD->getType().getAsString())
  1274. .concat(llvm::Twine(' '))
  1275. .concat(FD->getNameAsString())
  1276. .concat(" : ")
  1277. .str());
  1278. Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
  1279. Res = CGF.Builder.CreateAdd(Res, TmpRes);
  1280. QualType CanonicalType =
  1281. FD->getType().getUnqualifiedType().getCanonicalType();
  1282. // We check whether we are in a recursive type
  1283. if (CanonicalType->isRecordType()) {
  1284. Value *TmpRes =
  1285. dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
  1286. Res = CGF.Builder.CreateAdd(TmpRes, Res);
  1287. continue;
  1288. }
  1289. // We try to determine the best format to print the current field
  1290. llvm::Twine Format = Types.find(CanonicalType) == Types.end()
  1291. ? Types[Context.VoidPtrTy]
  1292. : Types[CanonicalType];
  1293. Address FieldAddress = Address(FieldPtr, Align);
  1294. FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
  1295. // FIXME Need to handle bitfield here
  1296. GString = CGF.Builder.CreateGlobalStringPtr(
  1297. Format.concat(llvm::Twine('\n')).str());
  1298. TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
  1299. Res = CGF.Builder.CreateAdd(Res, TmpRes);
  1300. }
  1301. GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
  1302. Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
  1303. Res = CGF.Builder.CreateAdd(Res, TmpRes);
  1304. return Res;
  1305. }
  1306. static bool
  1307. TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
  1308. llvm::SmallPtrSetImpl<const Decl *> &Seen) {
  1309. if (const auto *Arr = Ctx.getAsArrayType(Ty))
  1310. Ty = Ctx.getBaseElementType(Arr);
  1311. const auto *Record = Ty->getAsCXXRecordDecl();
  1312. if (!Record)
  1313. return false;
  1314. // We've already checked this type, or are in the process of checking it.
  1315. if (!Seen.insert(Record).second)
  1316. return false;
  1317. assert(Record->hasDefinition() &&
  1318. "Incomplete types should already be diagnosed");
  1319. if (Record->isDynamicClass())
  1320. return true;
  1321. for (FieldDecl *F : Record->fields()) {
  1322. if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
  1323. return true;
  1324. }
  1325. return false;
  1326. }
  1327. /// Determine if the specified type requires laundering by checking if it is a
  1328. /// dynamic class type or contains a subobject which is a dynamic class type.
  1329. static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
  1330. if (!CGM.getCodeGenOpts().StrictVTablePointers)
  1331. return false;
  1332. llvm::SmallPtrSet<const Decl *, 16> Seen;
  1333. return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
  1334. }
  1335. RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
  1336. llvm::Value *Src = EmitScalarExpr(E->getArg(0));
  1337. llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
  1338. // The builtin's shift arg may have a different type than the source arg and
  1339. // result, but the LLVM intrinsic uses the same type for all values.
  1340. llvm::Type *Ty = Src->getType();
  1341. ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
  1342. // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
  1343. unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
  1344. Function *F = CGM.getIntrinsic(IID, Ty);
  1345. return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
  1346. }
  1347. RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
  1348. const CallExpr *E,
  1349. ReturnValueSlot ReturnValue) {
  1350. const FunctionDecl *FD = GD.getDecl()->getAsFunction();
  1351. // See if we can constant fold this builtin. If so, don't emit it at all.
  1352. Expr::EvalResult Result;
  1353. if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
  1354. !Result.hasSideEffects()) {
  1355. if (Result.Val.isInt())
  1356. return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
  1357. Result.Val.getInt()));
  1358. if (Result.Val.isFloat())
  1359. return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
  1360. Result.Val.getFloat()));
  1361. }
  1362. // There are LLVM math intrinsics/instructions corresponding to math library
  1363. // functions except the LLVM op will never set errno while the math library
  1364. // might. Also, math builtins have the same semantics as their math library
  1365. // twins. Thus, we can transform math library and builtin calls to their
  1366. // LLVM counterparts if the call is marked 'const' (known to never set errno).
  1367. if (FD->hasAttr<ConstAttr>()) {
  1368. switch (BuiltinID) {
  1369. case Builtin::BIceil:
  1370. case Builtin::BIceilf:
  1371. case Builtin::BIceill:
  1372. case Builtin::BI__builtin_ceil:
  1373. case Builtin::BI__builtin_ceilf:
  1374. case Builtin::BI__builtin_ceilf16:
  1375. case Builtin::BI__builtin_ceill:
  1376. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil));
  1377. case Builtin::BIcopysign:
  1378. case Builtin::BIcopysignf:
  1379. case Builtin::BIcopysignl:
  1380. case Builtin::BI__builtin_copysign:
  1381. case Builtin::BI__builtin_copysignf:
  1382. case Builtin::BI__builtin_copysignf16:
  1383. case Builtin::BI__builtin_copysignl:
  1384. case Builtin::BI__builtin_copysignf128:
  1385. return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
  1386. case Builtin::BIcos:
  1387. case Builtin::BIcosf:
  1388. case Builtin::BIcosl:
  1389. case Builtin::BI__builtin_cos:
  1390. case Builtin::BI__builtin_cosf:
  1391. case Builtin::BI__builtin_cosf16:
  1392. case Builtin::BI__builtin_cosl:
  1393. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::cos));
  1394. case Builtin::BIexp:
  1395. case Builtin::BIexpf:
  1396. case Builtin::BIexpl:
  1397. case Builtin::BI__builtin_exp:
  1398. case Builtin::BI__builtin_expf:
  1399. case Builtin::BI__builtin_expf16:
  1400. case Builtin::BI__builtin_expl:
  1401. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp));
  1402. case Builtin::BIexp2:
  1403. case Builtin::BIexp2f:
  1404. case Builtin::BIexp2l:
  1405. case Builtin::BI__builtin_exp2:
  1406. case Builtin::BI__builtin_exp2f:
  1407. case Builtin::BI__builtin_exp2f16:
  1408. case Builtin::BI__builtin_exp2l:
  1409. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp2));
  1410. case Builtin::BIfabs:
  1411. case Builtin::BIfabsf:
  1412. case Builtin::BIfabsl:
  1413. case Builtin::BI__builtin_fabs:
  1414. case Builtin::BI__builtin_fabsf:
  1415. case Builtin::BI__builtin_fabsf16:
  1416. case Builtin::BI__builtin_fabsl:
  1417. case Builtin::BI__builtin_fabsf128:
  1418. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
  1419. case Builtin::BIfloor:
  1420. case Builtin::BIfloorf:
  1421. case Builtin::BIfloorl:
  1422. case Builtin::BI__builtin_floor:
  1423. case Builtin::BI__builtin_floorf:
  1424. case Builtin::BI__builtin_floorf16:
  1425. case Builtin::BI__builtin_floorl:
  1426. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor));
  1427. case Builtin::BIfma:
  1428. case Builtin::BIfmaf:
  1429. case Builtin::BIfmal:
  1430. case Builtin::BI__builtin_fma:
  1431. case Builtin::BI__builtin_fmaf:
  1432. case Builtin::BI__builtin_fmaf16:
  1433. case Builtin::BI__builtin_fmal:
  1434. return RValue::get(emitTernaryBuiltin(*this, E, Intrinsic::fma));
  1435. case Builtin::BIfmax:
  1436. case Builtin::BIfmaxf:
  1437. case Builtin::BIfmaxl:
  1438. case Builtin::BI__builtin_fmax:
  1439. case Builtin::BI__builtin_fmaxf:
  1440. case Builtin::BI__builtin_fmaxf16:
  1441. case Builtin::BI__builtin_fmaxl:
  1442. return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum));
  1443. case Builtin::BIfmin:
  1444. case Builtin::BIfminf:
  1445. case Builtin::BIfminl:
  1446. case Builtin::BI__builtin_fmin:
  1447. case Builtin::BI__builtin_fminf:
  1448. case Builtin::BI__builtin_fminf16:
  1449. case Builtin::BI__builtin_fminl:
  1450. return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum));
  1451. // fmod() is a special-case. It maps to the frem instruction rather than an
  1452. // LLVM intrinsic.
  1453. case Builtin::BIfmod:
  1454. case Builtin::BIfmodf:
  1455. case Builtin::BIfmodl:
  1456. case Builtin::BI__builtin_fmod:
  1457. case Builtin::BI__builtin_fmodf:
  1458. case Builtin::BI__builtin_fmodf16:
  1459. case Builtin::BI__builtin_fmodl: {
  1460. Value *Arg1 = EmitScalarExpr(E->getArg(0));
  1461. Value *Arg2 = EmitScalarExpr(E->getArg(1));
  1462. return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
  1463. }
  1464. case Builtin::BIlog:
  1465. case Builtin::BIlogf:
  1466. case Builtin::BIlogl:
  1467. case Builtin::BI__builtin_log:
  1468. case Builtin::BI__builtin_logf:
  1469. case Builtin::BI__builtin_logf16:
  1470. case Builtin::BI__builtin_logl:
  1471. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log));
  1472. case Builtin::BIlog10:
  1473. case Builtin::BIlog10f:
  1474. case Builtin::BIlog10l:
  1475. case Builtin::BI__builtin_log10:
  1476. case Builtin::BI__builtin_log10f:
  1477. case Builtin::BI__builtin_log10f16:
  1478. case Builtin::BI__builtin_log10l:
  1479. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log10));
  1480. case Builtin::BIlog2:
  1481. case Builtin::BIlog2f:
  1482. case Builtin::BIlog2l:
  1483. case Builtin::BI__builtin_log2:
  1484. case Builtin::BI__builtin_log2f:
  1485. case Builtin::BI__builtin_log2f16:
  1486. case Builtin::BI__builtin_log2l:
  1487. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log2));
  1488. case Builtin::BInearbyint:
  1489. case Builtin::BInearbyintf:
  1490. case Builtin::BInearbyintl:
  1491. case Builtin::BI__builtin_nearbyint:
  1492. case Builtin::BI__builtin_nearbyintf:
  1493. case Builtin::BI__builtin_nearbyintl:
  1494. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint));
  1495. case Builtin::BIpow:
  1496. case Builtin::BIpowf:
  1497. case Builtin::BIpowl:
  1498. case Builtin::BI__builtin_pow:
  1499. case Builtin::BI__builtin_powf:
  1500. case Builtin::BI__builtin_powf16:
  1501. case Builtin::BI__builtin_powl:
  1502. return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::pow));
  1503. case Builtin::BIrint:
  1504. case Builtin::BIrintf:
  1505. case Builtin::BIrintl:
  1506. case Builtin::BI__builtin_rint:
  1507. case Builtin::BI__builtin_rintf:
  1508. case Builtin::BI__builtin_rintf16:
  1509. case Builtin::BI__builtin_rintl:
  1510. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint));
  1511. case Builtin::BIround:
  1512. case Builtin::BIroundf:
  1513. case Builtin::BIroundl:
  1514. case Builtin::BI__builtin_round:
  1515. case Builtin::BI__builtin_roundf:
  1516. case Builtin::BI__builtin_roundf16:
  1517. case Builtin::BI__builtin_roundl:
  1518. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round));
  1519. case Builtin::BIsin:
  1520. case Builtin::BIsinf:
  1521. case Builtin::BIsinl:
  1522. case Builtin::BI__builtin_sin:
  1523. case Builtin::BI__builtin_sinf:
  1524. case Builtin::BI__builtin_sinf16:
  1525. case Builtin::BI__builtin_sinl:
  1526. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sin));
  1527. case Builtin::BIsqrt:
  1528. case Builtin::BIsqrtf:
  1529. case Builtin::BIsqrtl:
  1530. case Builtin::BI__builtin_sqrt:
  1531. case Builtin::BI__builtin_sqrtf:
  1532. case Builtin::BI__builtin_sqrtf16:
  1533. case Builtin::BI__builtin_sqrtl:
  1534. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sqrt));
  1535. case Builtin::BItrunc:
  1536. case Builtin::BItruncf:
  1537. case Builtin::BItruncl:
  1538. case Builtin::BI__builtin_trunc:
  1539. case Builtin::BI__builtin_truncf:
  1540. case Builtin::BI__builtin_truncf16:
  1541. case Builtin::BI__builtin_truncl:
  1542. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc));
  1543. case Builtin::BIlround:
  1544. case Builtin::BIlroundf:
  1545. case Builtin::BIlroundl:
  1546. case Builtin::BI__builtin_lround:
  1547. case Builtin::BI__builtin_lroundf:
  1548. case Builtin::BI__builtin_lroundl:
  1549. return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lround));
  1550. case Builtin::BIllround:
  1551. case Builtin::BIllroundf:
  1552. case Builtin::BIllroundl:
  1553. case Builtin::BI__builtin_llround:
  1554. case Builtin::BI__builtin_llroundf:
  1555. case Builtin::BI__builtin_llroundl:
  1556. return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llround));
  1557. case Builtin::BIlrint:
  1558. case Builtin::BIlrintf:
  1559. case Builtin::BIlrintl:
  1560. case Builtin::BI__builtin_lrint:
  1561. case Builtin::BI__builtin_lrintf:
  1562. case Builtin::BI__builtin_lrintl:
  1563. return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lrint));
  1564. case Builtin::BIllrint:
  1565. case Builtin::BIllrintf:
  1566. case Builtin::BIllrintl:
  1567. case Builtin::BI__builtin_llrint:
  1568. case Builtin::BI__builtin_llrintf:
  1569. case Builtin::BI__builtin_llrintl:
  1570. return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llrint));
  1571. default:
  1572. break;
  1573. }
  1574. }
  1575. switch (BuiltinID) {
  1576. default: break;
  1577. case Builtin::BI__builtin___CFStringMakeConstantString:
  1578. case Builtin::BI__builtin___NSStringMakeConstantString:
  1579. return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
  1580. case Builtin::BI__builtin_stdarg_start:
  1581. case Builtin::BI__builtin_va_start:
  1582. case Builtin::BI__va_start:
  1583. case Builtin::BI__builtin_va_end:
  1584. return RValue::get(
  1585. EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
  1586. ? EmitScalarExpr(E->getArg(0))
  1587. : EmitVAListRef(E->getArg(0)).getPointer(),
  1588. BuiltinID != Builtin::BI__builtin_va_end));
  1589. case Builtin::BI__builtin_va_copy: {
  1590. Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
  1591. Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
  1592. llvm::Type *Type = Int8PtrTy;
  1593. DstPtr = Builder.CreateBitCast(DstPtr, Type);
  1594. SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
  1595. return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
  1596. {DstPtr, SrcPtr}));
  1597. }
  1598. case Builtin::BI__builtin_abs:
  1599. case Builtin::BI__builtin_labs:
  1600. case Builtin::BI__builtin_llabs: {
  1601. // X < 0 ? -X : X
  1602. // The negation has 'nsw' because abs of INT_MIN is undefined.
  1603. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1604. Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
  1605. Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
  1606. Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
  1607. Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
  1608. return RValue::get(Result);
  1609. }
  1610. case Builtin::BI__builtin_conj:
  1611. case Builtin::BI__builtin_conjf:
  1612. case Builtin::BI__builtin_conjl: {
  1613. ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
  1614. Value *Real = ComplexVal.first;
  1615. Value *Imag = ComplexVal.second;
  1616. Value *Zero =
  1617. Imag->getType()->isFPOrFPVectorTy()
  1618. ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
  1619. : llvm::Constant::getNullValue(Imag->getType());
  1620. Imag = Builder.CreateFSub(Zero, Imag, "sub");
  1621. return RValue::getComplex(std::make_pair(Real, Imag));
  1622. }
  1623. case Builtin::BI__builtin_creal:
  1624. case Builtin::BI__builtin_crealf:
  1625. case Builtin::BI__builtin_creall:
  1626. case Builtin::BIcreal:
  1627. case Builtin::BIcrealf:
  1628. case Builtin::BIcreall: {
  1629. ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
  1630. return RValue::get(ComplexVal.first);
  1631. }
  1632. case Builtin::BI__builtin_dump_struct: {
  1633. llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
  1634. llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
  1635. LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
  1636. Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
  1637. CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
  1638. const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
  1639. QualType Arg0Type = Arg0->getType()->getPointeeType();
  1640. Value *RecordPtr = EmitScalarExpr(Arg0);
  1641. Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
  1642. {LLVMFuncType, Func}, 0);
  1643. return RValue::get(Res);
  1644. }
  1645. case Builtin::BI__builtin_preserve_access_index: {
  1646. // Only enabled preserved access index region when debuginfo
  1647. // is available as debuginfo is needed to preserve user-level
  1648. // access pattern.
  1649. if (!getDebugInfo()) {
  1650. CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
  1651. return RValue::get(EmitScalarExpr(E->getArg(0)));
  1652. }
  1653. // Nested builtin_preserve_access_index() not supported
  1654. if (IsInPreservedAIRegion) {
  1655. CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
  1656. return RValue::get(EmitScalarExpr(E->getArg(0)));
  1657. }
  1658. IsInPreservedAIRegion = true;
  1659. Value *Res = EmitScalarExpr(E->getArg(0));
  1660. IsInPreservedAIRegion = false;
  1661. return RValue::get(Res);
  1662. }
  1663. case Builtin::BI__builtin_cimag:
  1664. case Builtin::BI__builtin_cimagf:
  1665. case Builtin::BI__builtin_cimagl:
  1666. case Builtin::BIcimag:
  1667. case Builtin::BIcimagf:
  1668. case Builtin::BIcimagl: {
  1669. ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
  1670. return RValue::get(ComplexVal.second);
  1671. }
  1672. case Builtin::BI__builtin_clrsb:
  1673. case Builtin::BI__builtin_clrsbl:
  1674. case Builtin::BI__builtin_clrsbll: {
  1675. // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
  1676. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1677. llvm::Type *ArgType = ArgValue->getType();
  1678. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
  1679. llvm::Type *ResultType = ConvertType(E->getType());
  1680. Value *Zero = llvm::Constant::getNullValue(ArgType);
  1681. Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
  1682. Value *Inverse = Builder.CreateNot(ArgValue, "not");
  1683. Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
  1684. Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
  1685. Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
  1686. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  1687. "cast");
  1688. return RValue::get(Result);
  1689. }
  1690. case Builtin::BI__builtin_ctzs:
  1691. case Builtin::BI__builtin_ctz:
  1692. case Builtin::BI__builtin_ctzl:
  1693. case Builtin::BI__builtin_ctzll: {
  1694. Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
  1695. llvm::Type *ArgType = ArgValue->getType();
  1696. Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
  1697. llvm::Type *ResultType = ConvertType(E->getType());
  1698. Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
  1699. Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
  1700. if (Result->getType() != ResultType)
  1701. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  1702. "cast");
  1703. return RValue::get(Result);
  1704. }
  1705. case Builtin::BI__builtin_clzs:
  1706. case Builtin::BI__builtin_clz:
  1707. case Builtin::BI__builtin_clzl:
  1708. case Builtin::BI__builtin_clzll: {
  1709. Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
  1710. llvm::Type *ArgType = ArgValue->getType();
  1711. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
  1712. llvm::Type *ResultType = ConvertType(E->getType());
  1713. Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
  1714. Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
  1715. if (Result->getType() != ResultType)
  1716. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  1717. "cast");
  1718. return RValue::get(Result);
  1719. }
  1720. case Builtin::BI__builtin_ffs:
  1721. case Builtin::BI__builtin_ffsl:
  1722. case Builtin::BI__builtin_ffsll: {
  1723. // ffs(x) -> x ? cttz(x) + 1 : 0
  1724. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1725. llvm::Type *ArgType = ArgValue->getType();
  1726. Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
  1727. llvm::Type *ResultType = ConvertType(E->getType());
  1728. Value *Tmp =
  1729. Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
  1730. llvm::ConstantInt::get(ArgType, 1));
  1731. Value *Zero = llvm::Constant::getNullValue(ArgType);
  1732. Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
  1733. Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
  1734. if (Result->getType() != ResultType)
  1735. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  1736. "cast");
  1737. return RValue::get(Result);
  1738. }
  1739. case Builtin::BI__builtin_parity:
  1740. case Builtin::BI__builtin_parityl:
  1741. case Builtin::BI__builtin_parityll: {
  1742. // parity(x) -> ctpop(x) & 1
  1743. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1744. llvm::Type *ArgType = ArgValue->getType();
  1745. Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
  1746. llvm::Type *ResultType = ConvertType(E->getType());
  1747. Value *Tmp = Builder.CreateCall(F, ArgValue);
  1748. Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
  1749. if (Result->getType() != ResultType)
  1750. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  1751. "cast");
  1752. return RValue::get(Result);
  1753. }
  1754. case Builtin::BI__lzcnt16:
  1755. case Builtin::BI__lzcnt:
  1756. case Builtin::BI__lzcnt64: {
  1757. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1758. llvm::Type *ArgType = ArgValue->getType();
  1759. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
  1760. llvm::Type *ResultType = ConvertType(E->getType());
  1761. Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
  1762. if (Result->getType() != ResultType)
  1763. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  1764. "cast");
  1765. return RValue::get(Result);
  1766. }
  1767. case Builtin::BI__popcnt16:
  1768. case Builtin::BI__popcnt:
  1769. case Builtin::BI__popcnt64:
  1770. case Builtin::BI__builtin_popcount:
  1771. case Builtin::BI__builtin_popcountl:
  1772. case Builtin::BI__builtin_popcountll: {
  1773. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1774. llvm::Type *ArgType = ArgValue->getType();
  1775. Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
  1776. llvm::Type *ResultType = ConvertType(E->getType());
  1777. Value *Result = Builder.CreateCall(F, ArgValue);
  1778. if (Result->getType() != ResultType)
  1779. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  1780. "cast");
  1781. return RValue::get(Result);
  1782. }
  1783. case Builtin::BI__builtin_unpredictable: {
  1784. // Always return the argument of __builtin_unpredictable. LLVM does not
  1785. // handle this builtin. Metadata for this builtin should be added directly
  1786. // to instructions such as branches or switches that use it.
  1787. return RValue::get(EmitScalarExpr(E->getArg(0)));
  1788. }
  1789. case Builtin::BI__builtin_expect: {
  1790. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1791. llvm::Type *ArgType = ArgValue->getType();
  1792. Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
  1793. // Don't generate llvm.expect on -O0 as the backend won't use it for
  1794. // anything.
  1795. // Note, we still IRGen ExpectedValue because it could have side-effects.
  1796. if (CGM.getCodeGenOpts().OptimizationLevel == 0)
  1797. return RValue::get(ArgValue);
  1798. Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
  1799. Value *Result =
  1800. Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
  1801. return RValue::get(Result);
  1802. }
  1803. case Builtin::BI__builtin_assume_aligned: {
  1804. const Expr *Ptr = E->getArg(0);
  1805. Value *PtrValue = EmitScalarExpr(Ptr);
  1806. Value *OffsetValue =
  1807. (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
  1808. Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
  1809. ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
  1810. if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
  1811. AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
  1812. llvm::Value::MaximumAlignment);
  1813. EmitAlignmentAssumption(PtrValue, Ptr,
  1814. /*The expr loc is sufficient.*/ SourceLocation(),
  1815. AlignmentCI, OffsetValue);
  1816. return RValue::get(PtrValue);
  1817. }
  1818. case Builtin::BI__assume:
  1819. case Builtin::BI__builtin_assume: {
  1820. if (E->getArg(0)->HasSideEffects(getContext()))
  1821. return RValue::get(nullptr);
  1822. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1823. Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
  1824. return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
  1825. }
  1826. case Builtin::BI__builtin_bswap16:
  1827. case Builtin::BI__builtin_bswap32:
  1828. case Builtin::BI__builtin_bswap64: {
  1829. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
  1830. }
  1831. case Builtin::BI__builtin_bitreverse8:
  1832. case Builtin::BI__builtin_bitreverse16:
  1833. case Builtin::BI__builtin_bitreverse32:
  1834. case Builtin::BI__builtin_bitreverse64: {
  1835. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
  1836. }
  1837. case Builtin::BI__builtin_rotateleft8:
  1838. case Builtin::BI__builtin_rotateleft16:
  1839. case Builtin::BI__builtin_rotateleft32:
  1840. case Builtin::BI__builtin_rotateleft64:
  1841. case Builtin::BI_rotl8: // Microsoft variants of rotate left
  1842. case Builtin::BI_rotl16:
  1843. case Builtin::BI_rotl:
  1844. case Builtin::BI_lrotl:
  1845. case Builtin::BI_rotl64:
  1846. return emitRotate(E, false);
  1847. case Builtin::BI__builtin_rotateright8:
  1848. case Builtin::BI__builtin_rotateright16:
  1849. case Builtin::BI__builtin_rotateright32:
  1850. case Builtin::BI__builtin_rotateright64:
  1851. case Builtin::BI_rotr8: // Microsoft variants of rotate right
  1852. case Builtin::BI_rotr16:
  1853. case Builtin::BI_rotr:
  1854. case Builtin::BI_lrotr:
  1855. case Builtin::BI_rotr64:
  1856. return emitRotate(E, true);
  1857. case Builtin::BI__builtin_constant_p: {
  1858. llvm::Type *ResultType = ConvertType(E->getType());
  1859. const Expr *Arg = E->getArg(0);
  1860. QualType ArgType = Arg->getType();
  1861. // FIXME: The allowance for Obj-C pointers and block pointers is historical
  1862. // and likely a mistake.
  1863. if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
  1864. !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
  1865. // Per the GCC documentation, only numeric constants are recognized after
  1866. // inlining.
  1867. return RValue::get(ConstantInt::get(ResultType, 0));
  1868. if (Arg->HasSideEffects(getContext()))
  1869. // The argument is unevaluated, so be conservative if it might have
  1870. // side-effects.
  1871. return RValue::get(ConstantInt::get(ResultType, 0));
  1872. Value *ArgValue = EmitScalarExpr(Arg);
  1873. if (ArgType->isObjCObjectPointerType()) {
  1874. // Convert Objective-C objects to id because we cannot distinguish between
  1875. // LLVM types for Obj-C classes as they are opaque.
  1876. ArgType = CGM.getContext().getObjCIdType();
  1877. ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
  1878. }
  1879. Function *F =
  1880. CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
  1881. Value *Result = Builder.CreateCall(F, ArgValue);
  1882. if (Result->getType() != ResultType)
  1883. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
  1884. return RValue::get(Result);
  1885. }
  1886. case Builtin::BI__builtin_dynamic_object_size:
  1887. case Builtin::BI__builtin_object_size: {
  1888. unsigned Type =
  1889. E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
  1890. auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
  1891. // We pass this builtin onto the optimizer so that it can figure out the
  1892. // object size in more complex cases.
  1893. bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
  1894. return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
  1895. /*EmittedE=*/nullptr, IsDynamic));
  1896. }
  1897. case Builtin::BI__builtin_prefetch: {
  1898. Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
  1899. // FIXME: Technically these constants should of type 'int', yes?
  1900. RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
  1901. llvm::ConstantInt::get(Int32Ty, 0);
  1902. Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
  1903. llvm::ConstantInt::get(Int32Ty, 3);
  1904. Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
  1905. Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
  1906. return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
  1907. }
  1908. case Builtin::BI__builtin_readcyclecounter: {
  1909. Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
  1910. return RValue::get(Builder.CreateCall(F));
  1911. }
  1912. case Builtin::BI__builtin___clear_cache: {
  1913. Value *Begin = EmitScalarExpr(E->getArg(0));
  1914. Value *End = EmitScalarExpr(E->getArg(1));
  1915. Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
  1916. return RValue::get(Builder.CreateCall(F, {Begin, End}));
  1917. }
  1918. case Builtin::BI__builtin_trap:
  1919. return RValue::get(EmitTrapCall(Intrinsic::trap));
  1920. case Builtin::BI__debugbreak:
  1921. return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
  1922. case Builtin::BI__builtin_unreachable: {
  1923. EmitUnreachable(E->getExprLoc());
  1924. // We do need to preserve an insertion point.
  1925. EmitBlock(createBasicBlock("unreachable.cont"));
  1926. return RValue::get(nullptr);
  1927. }
  1928. case Builtin::BI__builtin_powi:
  1929. case Builtin::BI__builtin_powif:
  1930. case Builtin::BI__builtin_powil: {
  1931. Value *Base = EmitScalarExpr(E->getArg(0));
  1932. Value *Exponent = EmitScalarExpr(E->getArg(1));
  1933. llvm::Type *ArgType = Base->getType();
  1934. Function *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
  1935. return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
  1936. }
  1937. case Builtin::BI__builtin_isgreater:
  1938. case Builtin::BI__builtin_isgreaterequal:
  1939. case Builtin::BI__builtin_isless:
  1940. case Builtin::BI__builtin_islessequal:
  1941. case Builtin::BI__builtin_islessgreater:
  1942. case Builtin::BI__builtin_isunordered: {
  1943. // Ordered comparisons: we know the arguments to these are matching scalar
  1944. // floating point values.
  1945. Value *LHS = EmitScalarExpr(E->getArg(0));
  1946. Value *RHS = EmitScalarExpr(E->getArg(1));
  1947. switch (BuiltinID) {
  1948. default: llvm_unreachable("Unknown ordered comparison");
  1949. case Builtin::BI__builtin_isgreater:
  1950. LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
  1951. break;
  1952. case Builtin::BI__builtin_isgreaterequal:
  1953. LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
  1954. break;
  1955. case Builtin::BI__builtin_isless:
  1956. LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
  1957. break;
  1958. case Builtin::BI__builtin_islessequal:
  1959. LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
  1960. break;
  1961. case Builtin::BI__builtin_islessgreater:
  1962. LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
  1963. break;
  1964. case Builtin::BI__builtin_isunordered:
  1965. LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
  1966. break;
  1967. }
  1968. // ZExt bool to int type.
  1969. return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
  1970. }
  1971. case Builtin::BI__builtin_isnan: {
  1972. Value *V = EmitScalarExpr(E->getArg(0));
  1973. V = Builder.CreateFCmpUNO(V, V, "cmp");
  1974. return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
  1975. }
  1976. case Builtin::BIfinite:
  1977. case Builtin::BI__finite:
  1978. case Builtin::BIfinitef:
  1979. case Builtin::BI__finitef:
  1980. case Builtin::BIfinitel:
  1981. case Builtin::BI__finitel:
  1982. case Builtin::BI__builtin_isinf:
  1983. case Builtin::BI__builtin_isfinite: {
  1984. // isinf(x) --> fabs(x) == infinity
  1985. // isfinite(x) --> fabs(x) != infinity
  1986. // x != NaN via the ordered compare in either case.
  1987. Value *V = EmitScalarExpr(E->getArg(0));
  1988. Value *Fabs = EmitFAbs(*this, V);
  1989. Constant *Infinity = ConstantFP::getInfinity(V->getType());
  1990. CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
  1991. ? CmpInst::FCMP_OEQ
  1992. : CmpInst::FCMP_ONE;
  1993. Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
  1994. return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
  1995. }
  1996. case Builtin::BI__builtin_isinf_sign: {
  1997. // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
  1998. Value *Arg = EmitScalarExpr(E->getArg(0));
  1999. Value *AbsArg = EmitFAbs(*this, Arg);
  2000. Value *IsInf = Builder.CreateFCmpOEQ(
  2001. AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
  2002. Value *IsNeg = EmitSignBit(*this, Arg);
  2003. llvm::Type *IntTy = ConvertType(E->getType());
  2004. Value *Zero = Constant::getNullValue(IntTy);
  2005. Value *One = ConstantInt::get(IntTy, 1);
  2006. Value *NegativeOne = ConstantInt::get(IntTy, -1);
  2007. Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
  2008. Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
  2009. return RValue::get(Result);
  2010. }
  2011. case Builtin::BI__builtin_isnormal: {
  2012. // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
  2013. Value *V = EmitScalarExpr(E->getArg(0));
  2014. Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
  2015. Value *Abs = EmitFAbs(*this, V);
  2016. Value *IsLessThanInf =
  2017. Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
  2018. APFloat Smallest = APFloat::getSmallestNormalized(
  2019. getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
  2020. Value *IsNormal =
  2021. Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
  2022. "isnormal");
  2023. V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
  2024. V = Builder.CreateAnd(V, IsNormal, "and");
  2025. return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
  2026. }
  2027. case Builtin::BI__builtin_flt_rounds: {
  2028. Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
  2029. llvm::Type *ResultType = ConvertType(E->getType());
  2030. Value *Result = Builder.CreateCall(F);
  2031. if (Result->getType() != ResultType)
  2032. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  2033. "cast");
  2034. return RValue::get(Result);
  2035. }
  2036. case Builtin::BI__builtin_fpclassify: {
  2037. Value *V = EmitScalarExpr(E->getArg(5));
  2038. llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
  2039. // Create Result
  2040. BasicBlock *Begin = Builder.GetInsertBlock();
  2041. BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
  2042. Builder.SetInsertPoint(End);
  2043. PHINode *Result =
  2044. Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
  2045. "fpclassify_result");
  2046. // if (V==0) return FP_ZERO
  2047. Builder.SetInsertPoint(Begin);
  2048. Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
  2049. "iszero");
  2050. Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
  2051. BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
  2052. Builder.CreateCondBr(IsZero, End, NotZero);
  2053. Result->addIncoming(ZeroLiteral, Begin);
  2054. // if (V != V) return FP_NAN
  2055. Builder.SetInsertPoint(NotZero);
  2056. Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
  2057. Value *NanLiteral = EmitScalarExpr(E->getArg(0));
  2058. BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
  2059. Builder.CreateCondBr(IsNan, End, NotNan);
  2060. Result->addIncoming(NanLiteral, NotZero);
  2061. // if (fabs(V) == infinity) return FP_INFINITY
  2062. Builder.SetInsertPoint(NotNan);
  2063. Value *VAbs = EmitFAbs(*this, V);
  2064. Value *IsInf =
  2065. Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
  2066. "isinf");
  2067. Value *InfLiteral = EmitScalarExpr(E->getArg(1));
  2068. BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
  2069. Builder.CreateCondBr(IsInf, End, NotInf);
  2070. Result->addIncoming(InfLiteral, NotNan);
  2071. // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
  2072. Builder.SetInsertPoint(NotInf);
  2073. APFloat Smallest = APFloat::getSmallestNormalized(
  2074. getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
  2075. Value *IsNormal =
  2076. Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
  2077. "isnormal");
  2078. Value *NormalResult =
  2079. Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
  2080. EmitScalarExpr(E->getArg(3)));
  2081. Builder.CreateBr(End);
  2082. Result->addIncoming(NormalResult, NotInf);
  2083. // return Result
  2084. Builder.SetInsertPoint(End);
  2085. return RValue::get(Result);
  2086. }
  2087. case Builtin::BIalloca:
  2088. case Builtin::BI_alloca:
  2089. case Builtin::BI__builtin_alloca: {
  2090. Value *Size = EmitScalarExpr(E->getArg(0));
  2091. const TargetInfo &TI = getContext().getTargetInfo();
  2092. // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
  2093. unsigned SuitableAlignmentInBytes =
  2094. CGM.getContext()
  2095. .toCharUnitsFromBits(TI.getSuitableAlign())
  2096. .getQuantity();
  2097. AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
  2098. AI->setAlignment(MaybeAlign(SuitableAlignmentInBytes));
  2099. initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
  2100. return RValue::get(AI);
  2101. }
  2102. case Builtin::BI__builtin_alloca_with_align: {
  2103. Value *Size = EmitScalarExpr(E->getArg(0));
  2104. Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
  2105. auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
  2106. unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
  2107. unsigned AlignmentInBytes =
  2108. CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity();
  2109. AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
  2110. AI->setAlignment(MaybeAlign(AlignmentInBytes));
  2111. initializeAlloca(*this, AI, Size, AlignmentInBytes);
  2112. return RValue::get(AI);
  2113. }
  2114. case Builtin::BIbzero:
  2115. case Builtin::BI__builtin_bzero: {
  2116. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  2117. Value *SizeVal = EmitScalarExpr(E->getArg(1));
  2118. EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
  2119. E->getArg(0)->getExprLoc(), FD, 0);
  2120. Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
  2121. return RValue::get(nullptr);
  2122. }
  2123. case Builtin::BImemcpy:
  2124. case Builtin::BI__builtin_memcpy: {
  2125. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  2126. Address Src = EmitPointerWithAlignment(E->getArg(1));
  2127. Value *SizeVal = EmitScalarExpr(E->getArg(2));
  2128. EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
  2129. E->getArg(0)->getExprLoc(), FD, 0);
  2130. EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
  2131. E->getArg(1)->getExprLoc(), FD, 1);
  2132. Builder.CreateMemCpy(Dest, Src, SizeVal, false);
  2133. return RValue::get(Dest.getPointer());
  2134. }
  2135. case Builtin::BI__builtin_char_memchr:
  2136. BuiltinID = Builtin::BI__builtin_memchr;
  2137. break;
  2138. case Builtin::BI__builtin___memcpy_chk: {
  2139. // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
  2140. Expr::EvalResult SizeResult, DstSizeResult;
  2141. if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
  2142. !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
  2143. break;
  2144. llvm::APSInt Size = SizeResult.Val.getInt();
  2145. llvm::APSInt DstSize = DstSizeResult.Val.getInt();
  2146. if (Size.ugt(DstSize))
  2147. break;
  2148. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  2149. Address Src = EmitPointerWithAlignment(E->getArg(1));
  2150. Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
  2151. Builder.CreateMemCpy(Dest, Src, SizeVal, false);
  2152. return RValue::get(Dest.getPointer());
  2153. }
  2154. case Builtin::BI__builtin_objc_memmove_collectable: {
  2155. Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
  2156. Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
  2157. Value *SizeVal = EmitScalarExpr(E->getArg(2));
  2158. CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
  2159. DestAddr, SrcAddr, SizeVal);
  2160. return RValue::get(DestAddr.getPointer());
  2161. }
  2162. case Builtin::BI__builtin___memmove_chk: {
  2163. // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
  2164. Expr::EvalResult SizeResult, DstSizeResult;
  2165. if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
  2166. !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
  2167. break;
  2168. llvm::APSInt Size = SizeResult.Val.getInt();
  2169. llvm::APSInt DstSize = DstSizeResult.Val.getInt();
  2170. if (Size.ugt(DstSize))
  2171. break;
  2172. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  2173. Address Src = EmitPointerWithAlignment(E->getArg(1));
  2174. Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
  2175. Builder.CreateMemMove(Dest, Src, SizeVal, false);
  2176. return RValue::get(Dest.getPointer());
  2177. }
  2178. case Builtin::BImemmove:
  2179. case Builtin::BI__builtin_memmove: {
  2180. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  2181. Address Src = EmitPointerWithAlignment(E->getArg(1));
  2182. Value *SizeVal = EmitScalarExpr(E->getArg(2));
  2183. EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
  2184. E->getArg(0)->getExprLoc(), FD, 0);
  2185. EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
  2186. E->getArg(1)->getExprLoc(), FD, 1);
  2187. Builder.CreateMemMove(Dest, Src, SizeVal, false);
  2188. return RValue::get(Dest.getPointer());
  2189. }
  2190. case Builtin::BImemset:
  2191. case Builtin::BI__builtin_memset: {
  2192. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  2193. Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
  2194. Builder.getInt8Ty());
  2195. Value *SizeVal = EmitScalarExpr(E->getArg(2));
  2196. EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
  2197. E->getArg(0)->getExprLoc(), FD, 0);
  2198. Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
  2199. return RValue::get(Dest.getPointer());
  2200. }
  2201. case Builtin::BI__builtin___memset_chk: {
  2202. // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
  2203. Expr::EvalResult SizeResult, DstSizeResult;
  2204. if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
  2205. !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
  2206. break;
  2207. llvm::APSInt Size = SizeResult.Val.getInt();
  2208. llvm::APSInt DstSize = DstSizeResult.Val.getInt();
  2209. if (Size.ugt(DstSize))
  2210. break;
  2211. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  2212. Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
  2213. Builder.getInt8Ty());
  2214. Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
  2215. Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
  2216. return RValue::get(Dest.getPointer());
  2217. }
  2218. case Builtin::BI__builtin_wmemcmp: {
  2219. // The MSVC runtime library does not provide a definition of wmemcmp, so we
  2220. // need an inline implementation.
  2221. if (!getTarget().getTriple().isOSMSVCRT())
  2222. break;
  2223. llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
  2224. Value *Dst = EmitScalarExpr(E->getArg(0));
  2225. Value *Src = EmitScalarExpr(E->getArg(1));
  2226. Value *Size = EmitScalarExpr(E->getArg(2));
  2227. BasicBlock *Entry = Builder.GetInsertBlock();
  2228. BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
  2229. BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
  2230. BasicBlock *Next = createBasicBlock("wmemcmp.next");
  2231. BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
  2232. Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
  2233. Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
  2234. EmitBlock(CmpGT);
  2235. PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
  2236. DstPhi->addIncoming(Dst, Entry);
  2237. PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
  2238. SrcPhi->addIncoming(Src, Entry);
  2239. PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
  2240. SizePhi->addIncoming(Size, Entry);
  2241. CharUnits WCharAlign =
  2242. getContext().getTypeAlignInChars(getContext().WCharTy);
  2243. Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
  2244. Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
  2245. Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
  2246. Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
  2247. EmitBlock(CmpLT);
  2248. Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
  2249. Builder.CreateCondBr(DstLtSrc, Exit, Next);
  2250. EmitBlock(Next);
  2251. Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
  2252. Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
  2253. Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
  2254. Value *NextSizeEq0 =
  2255. Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
  2256. Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
  2257. DstPhi->addIncoming(NextDst, Next);
  2258. SrcPhi->addIncoming(NextSrc, Next);
  2259. SizePhi->addIncoming(NextSize, Next);
  2260. EmitBlock(Exit);
  2261. PHINode *Ret = Builder.CreatePHI(IntTy, 4);
  2262. Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
  2263. Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
  2264. Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
  2265. Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
  2266. return RValue::get(Ret);
  2267. }
  2268. case Builtin::BI__builtin_dwarf_cfa: {
  2269. // The offset in bytes from the first argument to the CFA.
  2270. //
  2271. // Why on earth is this in the frontend? Is there any reason at
  2272. // all that the backend can't reasonably determine this while
  2273. // lowering llvm.eh.dwarf.cfa()?
  2274. //
  2275. // TODO: If there's a satisfactory reason, add a target hook for
  2276. // this instead of hard-coding 0, which is correct for most targets.
  2277. int32_t Offset = 0;
  2278. Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
  2279. return RValue::get(Builder.CreateCall(F,
  2280. llvm::ConstantInt::get(Int32Ty, Offset)));
  2281. }
  2282. case Builtin::BI__builtin_return_address: {
  2283. Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
  2284. getContext().UnsignedIntTy);
  2285. Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
  2286. return RValue::get(Builder.CreateCall(F, Depth));
  2287. }
  2288. case Builtin::BI_ReturnAddress: {
  2289. Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
  2290. return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
  2291. }
  2292. case Builtin::BI__builtin_frame_address: {
  2293. Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
  2294. getContext().UnsignedIntTy);
  2295. Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
  2296. return RValue::get(Builder.CreateCall(F, Depth));
  2297. }
  2298. case Builtin::BI__builtin_extract_return_addr: {
  2299. Value *Address = EmitScalarExpr(E->getArg(0));
  2300. Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
  2301. return RValue::get(Result);
  2302. }
  2303. case Builtin::BI__builtin_frob_return_addr: {
  2304. Value *Address = EmitScalarExpr(E->getArg(0));
  2305. Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
  2306. return RValue::get(Result);
  2307. }
  2308. case Builtin::BI__builtin_dwarf_sp_column: {
  2309. llvm::IntegerType *Ty
  2310. = cast<llvm::IntegerType>(ConvertType(E->getType()));
  2311. int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
  2312. if (Column == -1) {
  2313. CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
  2314. return RValue::get(llvm::UndefValue::get(Ty));
  2315. }
  2316. return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
  2317. }
  2318. case Builtin::BI__builtin_init_dwarf_reg_size_table: {
  2319. Value *Address = EmitScalarExpr(E->getArg(0));
  2320. if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
  2321. CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
  2322. return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
  2323. }
  2324. case Builtin::BI__builtin_eh_return: {
  2325. Value *Int = EmitScalarExpr(E->getArg(0));
  2326. Value *Ptr = EmitScalarExpr(E->getArg(1));
  2327. llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
  2328. assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
  2329. "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
  2330. Function *F =
  2331. CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
  2332. : Intrinsic::eh_return_i64);
  2333. Builder.CreateCall(F, {Int, Ptr});
  2334. Builder.CreateUnreachable();
  2335. // We do need to preserve an insertion point.
  2336. EmitBlock(createBasicBlock("builtin_eh_return.cont"));
  2337. return RValue::get(nullptr);
  2338. }
  2339. case Builtin::BI__builtin_unwind_init: {
  2340. Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
  2341. return RValue::get(Builder.CreateCall(F));
  2342. }
  2343. case Builtin::BI__builtin_extend_pointer: {
  2344. // Extends a pointer to the size of an _Unwind_Word, which is
  2345. // uint64_t on all platforms. Generally this gets poked into a
  2346. // register and eventually used as an address, so if the
  2347. // addressing registers are wider than pointers and the platform
  2348. // doesn't implicitly ignore high-order bits when doing
  2349. // addressing, we need to make sure we zext / sext based on
  2350. // the platform's expectations.
  2351. //
  2352. // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
  2353. // Cast the pointer to intptr_t.
  2354. Value *Ptr = EmitScalarExpr(E->getArg(0));
  2355. Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
  2356. // If that's 64 bits, we're done.
  2357. if (IntPtrTy->getBitWidth() == 64)
  2358. return RValue::get(Result);
  2359. // Otherwise, ask the codegen data what to do.
  2360. if (getTargetHooks().extendPointerWithSExt())
  2361. return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
  2362. else
  2363. return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
  2364. }
  2365. case Builtin::BI__builtin_setjmp: {
  2366. // Buffer is a void**.
  2367. Address Buf = EmitPointerWithAlignment(E->getArg(0));
  2368. // Store the frame pointer to the setjmp buffer.
  2369. Value *FrameAddr = Builder.CreateCall(
  2370. CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
  2371. ConstantInt::get(Int32Ty, 0));
  2372. Builder.CreateStore(FrameAddr, Buf);
  2373. // Store the stack pointer to the setjmp buffer.
  2374. Value *StackAddr =
  2375. Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
  2376. Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
  2377. Builder.CreateStore(StackAddr, StackSaveSlot);
  2378. // Call LLVM's EH setjmp, which is lightweight.
  2379. Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
  2380. Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
  2381. return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
  2382. }
  2383. case Builtin::BI__builtin_longjmp: {
  2384. Value *Buf = EmitScalarExpr(E->getArg(0));
  2385. Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
  2386. // Call LLVM's EH longjmp, which is lightweight.
  2387. Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
  2388. // longjmp doesn't return; mark this as unreachable.
  2389. Builder.CreateUnreachable();
  2390. // We do need to preserve an insertion point.
  2391. EmitBlock(createBasicBlock("longjmp.cont"));
  2392. return RValue::get(nullptr);
  2393. }
  2394. case Builtin::BI__builtin_launder: {
  2395. const Expr *Arg = E->getArg(0);
  2396. QualType ArgTy = Arg->getType()->getPointeeType();
  2397. Value *Ptr = EmitScalarExpr(Arg);
  2398. if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
  2399. Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
  2400. return RValue::get(Ptr);
  2401. }
  2402. case Builtin::BI__sync_fetch_and_add:
  2403. case Builtin::BI__sync_fetch_and_sub:
  2404. case Builtin::BI__sync_fetch_and_or:
  2405. case Builtin::BI__sync_fetch_and_and:
  2406. case Builtin::BI__sync_fetch_and_xor:
  2407. case Builtin::BI__sync_fetch_and_nand:
  2408. case Builtin::BI__sync_add_and_fetch:
  2409. case Builtin::BI__sync_sub_and_fetch:
  2410. case Builtin::BI__sync_and_and_fetch:
  2411. case Builtin::BI__sync_or_and_fetch:
  2412. case Builtin::BI__sync_xor_and_fetch:
  2413. case Builtin::BI__sync_nand_and_fetch:
  2414. case Builtin::BI__sync_val_compare_and_swap:
  2415. case Builtin::BI__sync_bool_compare_and_swap:
  2416. case Builtin::BI__sync_lock_test_and_set:
  2417. case Builtin::BI__sync_lock_release:
  2418. case Builtin::BI__sync_swap:
  2419. llvm_unreachable("Shouldn't make it through sema");
  2420. case Builtin::BI__sync_fetch_and_add_1:
  2421. case Builtin::BI__sync_fetch_and_add_2:
  2422. case Builtin::BI__sync_fetch_and_add_4:
  2423. case Builtin::BI__sync_fetch_and_add_8:
  2424. case Builtin::BI__sync_fetch_and_add_16:
  2425. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
  2426. case Builtin::BI__sync_fetch_and_sub_1:
  2427. case Builtin::BI__sync_fetch_and_sub_2:
  2428. case Builtin::BI__sync_fetch_and_sub_4:
  2429. case Builtin::BI__sync_fetch_and_sub_8:
  2430. case Builtin::BI__sync_fetch_and_sub_16:
  2431. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
  2432. case Builtin::BI__sync_fetch_and_or_1:
  2433. case Builtin::BI__sync_fetch_and_or_2:
  2434. case Builtin::BI__sync_fetch_and_or_4:
  2435. case Builtin::BI__sync_fetch_and_or_8:
  2436. case Builtin::BI__sync_fetch_and_or_16:
  2437. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
  2438. case Builtin::BI__sync_fetch_and_and_1:
  2439. case Builtin::BI__sync_fetch_and_and_2:
  2440. case Builtin::BI__sync_fetch_and_and_4:
  2441. case Builtin::BI__sync_fetch_and_and_8:
  2442. case Builtin::BI__sync_fetch_and_and_16:
  2443. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
  2444. case Builtin::BI__sync_fetch_and_xor_1:
  2445. case Builtin::BI__sync_fetch_and_xor_2:
  2446. case Builtin::BI__sync_fetch_and_xor_4:
  2447. case Builtin::BI__sync_fetch_and_xor_8:
  2448. case Builtin::BI__sync_fetch_and_xor_16:
  2449. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
  2450. case Builtin::BI__sync_fetch_and_nand_1:
  2451. case Builtin::BI__sync_fetch_and_nand_2:
  2452. case Builtin::BI__sync_fetch_and_nand_4:
  2453. case Builtin::BI__sync_fetch_and_nand_8:
  2454. case Builtin::BI__sync_fetch_and_nand_16:
  2455. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
  2456. // Clang extensions: not overloaded yet.
  2457. case Builtin::BI__sync_fetch_and_min:
  2458. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
  2459. case Builtin::BI__sync_fetch_and_max:
  2460. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
  2461. case Builtin::BI__sync_fetch_and_umin:
  2462. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
  2463. case Builtin::BI__sync_fetch_and_umax:
  2464. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
  2465. case Builtin::BI__sync_add_and_fetch_1:
  2466. case Builtin::BI__sync_add_and_fetch_2:
  2467. case Builtin::BI__sync_add_and_fetch_4:
  2468. case Builtin::BI__sync_add_and_fetch_8:
  2469. case Builtin::BI__sync_add_and_fetch_16:
  2470. return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
  2471. llvm::Instruction::Add);
  2472. case Builtin::BI__sync_sub_and_fetch_1:
  2473. case Builtin::BI__sync_sub_and_fetch_2:
  2474. case Builtin::BI__sync_sub_and_fetch_4:
  2475. case Builtin::BI__sync_sub_and_fetch_8:
  2476. case Builtin::BI__sync_sub_and_fetch_16:
  2477. return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
  2478. llvm::Instruction::Sub);
  2479. case Builtin::BI__sync_and_and_fetch_1:
  2480. case Builtin::BI__sync_and_and_fetch_2:
  2481. case Builtin::BI__sync_and_and_fetch_4:
  2482. case Builtin::BI__sync_and_and_fetch_8:
  2483. case Builtin::BI__sync_and_and_fetch_16:
  2484. return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
  2485. llvm::Instruction::And);
  2486. case Builtin::BI__sync_or_and_fetch_1:
  2487. case Builtin::BI__sync_or_and_fetch_2:
  2488. case Builtin::BI__sync_or_and_fetch_4:
  2489. case Builtin::BI__sync_or_and_fetch_8:
  2490. case Builtin::BI__sync_or_and_fetch_16:
  2491. return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
  2492. llvm::Instruction::Or);
  2493. case Builtin::BI__sync_xor_and_fetch_1:
  2494. case Builtin::BI__sync_xor_and_fetch_2:
  2495. case Builtin::BI__sync_xor_and_fetch_4:
  2496. case Builtin::BI__sync_xor_and_fetch_8:
  2497. case Builtin::BI__sync_xor_and_fetch_16:
  2498. return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
  2499. llvm::Instruction::Xor);
  2500. case Builtin::BI__sync_nand_and_fetch_1:
  2501. case Builtin::BI__sync_nand_and_fetch_2:
  2502. case Builtin::BI__sync_nand_and_fetch_4:
  2503. case Builtin::BI__sync_nand_and_fetch_8:
  2504. case Builtin::BI__sync_nand_and_fetch_16:
  2505. return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
  2506. llvm::Instruction::And, true);
  2507. case Builtin::BI__sync_val_compare_and_swap_1:
  2508. case Builtin::BI__sync_val_compare_and_swap_2:
  2509. case Builtin::BI__sync_val_compare_and_swap_4:
  2510. case Builtin::BI__sync_val_compare_and_swap_8:
  2511. case Builtin::BI__sync_val_compare_and_swap_16:
  2512. return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
  2513. case Builtin::BI__sync_bool_compare_and_swap_1:
  2514. case Builtin::BI__sync_bool_compare_and_swap_2:
  2515. case Builtin::BI__sync_bool_compare_and_swap_4:
  2516. case Builtin::BI__sync_bool_compare_and_swap_8:
  2517. case Builtin::BI__sync_bool_compare_and_swap_16:
  2518. return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
  2519. case Builtin::BI__sync_swap_1:
  2520. case Builtin::BI__sync_swap_2:
  2521. case Builtin::BI__sync_swap_4:
  2522. case Builtin::BI__sync_swap_8:
  2523. case Builtin::BI__sync_swap_16:
  2524. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
  2525. case Builtin::BI__sync_lock_test_and_set_1:
  2526. case Builtin::BI__sync_lock_test_and_set_2:
  2527. case Builtin::BI__sync_lock_test_and_set_4:
  2528. case Builtin::BI__sync_lock_test_and_set_8:
  2529. case Builtin::BI__sync_lock_test_and_set_16:
  2530. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
  2531. case Builtin::BI__sync_lock_release_1:
  2532. case Builtin::BI__sync_lock_release_2:
  2533. case Builtin::BI__sync_lock_release_4:
  2534. case Builtin::BI__sync_lock_release_8:
  2535. case Builtin::BI__sync_lock_release_16: {
  2536. Value *Ptr = EmitScalarExpr(E->getArg(0));
  2537. QualType ElTy = E->getArg(0)->getType()->getPointeeType();
  2538. CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
  2539. llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
  2540. StoreSize.getQuantity() * 8);
  2541. Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
  2542. llvm::StoreInst *Store =
  2543. Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
  2544. StoreSize);
  2545. Store->setAtomic(llvm::AtomicOrdering::Release);
  2546. return RValue::get(nullptr);
  2547. }
  2548. case Builtin::BI__sync_synchronize: {
  2549. // We assume this is supposed to correspond to a C++0x-style
  2550. // sequentially-consistent fence (i.e. this is only usable for
  2551. // synchronization, not device I/O or anything like that). This intrinsic
  2552. // is really badly designed in the sense that in theory, there isn't
  2553. // any way to safely use it... but in practice, it mostly works
  2554. // to use it with non-atomic loads and stores to get acquire/release
  2555. // semantics.
  2556. Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
  2557. return RValue::get(nullptr);
  2558. }
  2559. case Builtin::BI__builtin_nontemporal_load:
  2560. return RValue::get(EmitNontemporalLoad(*this, E));
  2561. case Builtin::BI__builtin_nontemporal_store:
  2562. return RValue::get(EmitNontemporalStore(*this, E));
  2563. case Builtin::BI__c11_atomic_is_lock_free:
  2564. case Builtin::BI__atomic_is_lock_free: {
  2565. // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
  2566. // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
  2567. // _Atomic(T) is always properly-aligned.
  2568. const char *LibCallName = "__atomic_is_lock_free";
  2569. CallArgList Args;
  2570. Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
  2571. getContext().getSizeType());
  2572. if (BuiltinID == Builtin::BI__atomic_is_lock_free)
  2573. Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
  2574. getContext().VoidPtrTy);
  2575. else
  2576. Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
  2577. getContext().VoidPtrTy);
  2578. const CGFunctionInfo &FuncInfo =
  2579. CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
  2580. llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
  2581. llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
  2582. return EmitCall(FuncInfo, CGCallee::forDirect(Func),
  2583. ReturnValueSlot(), Args);
  2584. }
  2585. case Builtin::BI__atomic_test_and_set: {
  2586. // Look at the argument type to determine whether this is a volatile
  2587. // operation. The parameter type is always volatile.
  2588. QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
  2589. bool Volatile =
  2590. PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
  2591. Value *Ptr = EmitScalarExpr(E->getArg(0));
  2592. unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
  2593. Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
  2594. Value *NewVal = Builder.getInt8(1);
  2595. Value *Order = EmitScalarExpr(E->getArg(1));
  2596. if (isa<llvm::ConstantInt>(Order)) {
  2597. int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
  2598. AtomicRMWInst *Result = nullptr;
  2599. switch (ord) {
  2600. case 0: // memory_order_relaxed
  2601. default: // invalid order
  2602. Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
  2603. llvm::AtomicOrdering::Monotonic);
  2604. break;
  2605. case 1: // memory_order_consume
  2606. case 2: // memory_order_acquire
  2607. Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
  2608. llvm::AtomicOrdering::Acquire);
  2609. break;
  2610. case 3: // memory_order_release
  2611. Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
  2612. llvm::AtomicOrdering::Release);
  2613. break;
  2614. case 4: // memory_order_acq_rel
  2615. Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
  2616. llvm::AtomicOrdering::AcquireRelease);
  2617. break;
  2618. case 5: // memory_order_seq_cst
  2619. Result = Builder.CreateAtomicRMW(
  2620. llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
  2621. llvm::AtomicOrdering::SequentiallyConsistent);
  2622. break;
  2623. }
  2624. Result->setVolatile(Volatile);
  2625. return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
  2626. }
  2627. llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
  2628. llvm::BasicBlock *BBs[5] = {
  2629. createBasicBlock("monotonic", CurFn),
  2630. createBasicBlock("acquire", CurFn),
  2631. createBasicBlock("release", CurFn),
  2632. createBasicBlock("acqrel", CurFn),
  2633. createBasicBlock("seqcst", CurFn)
  2634. };
  2635. llvm::AtomicOrdering Orders[5] = {
  2636. llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
  2637. llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
  2638. llvm::AtomicOrdering::SequentiallyConsistent};
  2639. Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
  2640. llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
  2641. Builder.SetInsertPoint(ContBB);
  2642. PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
  2643. for (unsigned i = 0; i < 5; ++i) {
  2644. Builder.SetInsertPoint(BBs[i]);
  2645. AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
  2646. Ptr, NewVal, Orders[i]);
  2647. RMW->setVolatile(Volatile);
  2648. Result->addIncoming(RMW, BBs[i]);
  2649. Builder.CreateBr(ContBB);
  2650. }
  2651. SI->addCase(Builder.getInt32(0), BBs[0]);
  2652. SI->addCase(Builder.getInt32(1), BBs[1]);
  2653. SI->addCase(Builder.getInt32(2), BBs[1]);
  2654. SI->addCase(Builder.getInt32(3), BBs[2]);
  2655. SI->addCase(Builder.getInt32(4), BBs[3]);
  2656. SI->addCase(Builder.getInt32(5), BBs[4]);
  2657. Builder.SetInsertPoint(ContBB);
  2658. return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
  2659. }
  2660. case Builtin::BI__atomic_clear: {
  2661. QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
  2662. bool Volatile =
  2663. PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
  2664. Address Ptr = EmitPointerWithAlignment(E->getArg(0));
  2665. unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
  2666. Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
  2667. Value *NewVal = Builder.getInt8(0);
  2668. Value *Order = EmitScalarExpr(E->getArg(1));
  2669. if (isa<llvm::ConstantInt>(Order)) {
  2670. int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
  2671. StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
  2672. switch (ord) {
  2673. case 0: // memory_order_relaxed
  2674. default: // invalid order
  2675. Store->setOrdering(llvm::AtomicOrdering::Monotonic);
  2676. break;
  2677. case 3: // memory_order_release
  2678. Store->setOrdering(llvm::AtomicOrdering::Release);
  2679. break;
  2680. case 5: // memory_order_seq_cst
  2681. Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
  2682. break;
  2683. }
  2684. return RValue::get(nullptr);
  2685. }
  2686. llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
  2687. llvm::BasicBlock *BBs[3] = {
  2688. createBasicBlock("monotonic", CurFn),
  2689. createBasicBlock("release", CurFn),
  2690. createBasicBlock("seqcst", CurFn)
  2691. };
  2692. llvm::AtomicOrdering Orders[3] = {
  2693. llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
  2694. llvm::AtomicOrdering::SequentiallyConsistent};
  2695. Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
  2696. llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
  2697. for (unsigned i = 0; i < 3; ++i) {
  2698. Builder.SetInsertPoint(BBs[i]);
  2699. StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
  2700. Store->setOrdering(Orders[i]);
  2701. Builder.CreateBr(ContBB);
  2702. }
  2703. SI->addCase(Builder.getInt32(0), BBs[0]);
  2704. SI->addCase(Builder.getInt32(3), BBs[1]);
  2705. SI->addCase(Builder.getInt32(5), BBs[2]);
  2706. Builder.SetInsertPoint(ContBB);
  2707. return RValue::get(nullptr);
  2708. }
  2709. case Builtin::BI__atomic_thread_fence:
  2710. case Builtin::BI__atomic_signal_fence:
  2711. case Builtin::BI__c11_atomic_thread_fence:
  2712. case Builtin::BI__c11_atomic_signal_fence: {
  2713. llvm::SyncScope::ID SSID;
  2714. if (BuiltinID == Builtin::BI__atomic_signal_fence ||
  2715. BuiltinID == Builtin::BI__c11_atomic_signal_fence)
  2716. SSID = llvm::SyncScope::SingleThread;
  2717. else
  2718. SSID = llvm::SyncScope::System;
  2719. Value *Order = EmitScalarExpr(E->getArg(0));
  2720. if (isa<llvm::ConstantInt>(Order)) {
  2721. int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
  2722. switch (ord) {
  2723. case 0: // memory_order_relaxed
  2724. default: // invalid order
  2725. break;
  2726. case 1: // memory_order_consume
  2727. case 2: // memory_order_acquire
  2728. Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
  2729. break;
  2730. case 3: // memory_order_release
  2731. Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
  2732. break;
  2733. case 4: // memory_order_acq_rel
  2734. Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
  2735. break;
  2736. case 5: // memory_order_seq_cst
  2737. Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
  2738. break;
  2739. }
  2740. return RValue::get(nullptr);
  2741. }
  2742. llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
  2743. AcquireBB = createBasicBlock("acquire", CurFn);
  2744. ReleaseBB = createBasicBlock("release", CurFn);
  2745. AcqRelBB = createBasicBlock("acqrel", CurFn);
  2746. SeqCstBB = createBasicBlock("seqcst", CurFn);
  2747. llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
  2748. Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
  2749. llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
  2750. Builder.SetInsertPoint(AcquireBB);
  2751. Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
  2752. Builder.CreateBr(ContBB);
  2753. SI->addCase(Builder.getInt32(1), AcquireBB);
  2754. SI->addCase(Builder.getInt32(2), AcquireBB);
  2755. Builder.SetInsertPoint(ReleaseBB);
  2756. Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
  2757. Builder.CreateBr(ContBB);
  2758. SI->addCase(Builder.getInt32(3), ReleaseBB);
  2759. Builder.SetInsertPoint(AcqRelBB);
  2760. Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
  2761. Builder.CreateBr(ContBB);
  2762. SI->addCase(Builder.getInt32(4), AcqRelBB);
  2763. Builder.SetInsertPoint(SeqCstBB);
  2764. Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
  2765. Builder.CreateBr(ContBB);
  2766. SI->addCase(Builder.getInt32(5), SeqCstBB);
  2767. Builder.SetInsertPoint(ContBB);
  2768. return RValue::get(nullptr);
  2769. }
  2770. case Builtin::BI__builtin_signbit:
  2771. case Builtin::BI__builtin_signbitf:
  2772. case Builtin::BI__builtin_signbitl: {
  2773. return RValue::get(
  2774. Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
  2775. ConvertType(E->getType())));
  2776. }
  2777. case Builtin::BI__annotation: {
  2778. // Re-encode each wide string to UTF8 and make an MDString.
  2779. SmallVector<Metadata *, 1> Strings;
  2780. for (const Expr *Arg : E->arguments()) {
  2781. const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
  2782. assert(Str->getCharByteWidth() == 2);
  2783. StringRef WideBytes = Str->getBytes();
  2784. std::string StrUtf8;
  2785. if (!convertUTF16ToUTF8String(
  2786. makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
  2787. CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
  2788. continue;
  2789. }
  2790. Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
  2791. }
  2792. // Build and MDTuple of MDStrings and emit the intrinsic call.
  2793. llvm::Function *F =
  2794. CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
  2795. MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
  2796. Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
  2797. return RValue::getIgnored();
  2798. }
  2799. case Builtin::BI__builtin_annotation: {
  2800. llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
  2801. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
  2802. AnnVal->getType());
  2803. // Get the annotation string, go through casts. Sema requires this to be a
  2804. // non-wide string literal, potentially casted, so the cast<> is safe.
  2805. const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
  2806. StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
  2807. return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
  2808. }
  2809. case Builtin::BI__builtin_addcb:
  2810. case Builtin::BI__builtin_addcs:
  2811. case Builtin::BI__builtin_addc:
  2812. case Builtin::BI__builtin_addcl:
  2813. case Builtin::BI__builtin_addcll:
  2814. case Builtin::BI__builtin_subcb:
  2815. case Builtin::BI__builtin_subcs:
  2816. case Builtin::BI__builtin_subc:
  2817. case Builtin::BI__builtin_subcl:
  2818. case Builtin::BI__builtin_subcll: {
  2819. // We translate all of these builtins from expressions of the form:
  2820. // int x = ..., y = ..., carryin = ..., carryout, result;
  2821. // result = __builtin_addc(x, y, carryin, &carryout);
  2822. //
  2823. // to LLVM IR of the form:
  2824. //
  2825. // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
  2826. // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
  2827. // %carry1 = extractvalue {i32, i1} %tmp1, 1
  2828. // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
  2829. // i32 %carryin)
  2830. // %result = extractvalue {i32, i1} %tmp2, 0
  2831. // %carry2 = extractvalue {i32, i1} %tmp2, 1
  2832. // %tmp3 = or i1 %carry1, %carry2
  2833. // %tmp4 = zext i1 %tmp3 to i32
  2834. // store i32 %tmp4, i32* %carryout
  2835. // Scalarize our inputs.
  2836. llvm::Value *X = EmitScalarExpr(E->getArg(0));
  2837. llvm::Value *Y = EmitScalarExpr(E->getArg(1));
  2838. llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
  2839. Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
  2840. // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
  2841. llvm::Intrinsic::ID IntrinsicId;
  2842. switch (BuiltinID) {
  2843. default: llvm_unreachable("Unknown multiprecision builtin id.");
  2844. case Builtin::BI__builtin_addcb:
  2845. case Builtin::BI__builtin_addcs:
  2846. case Builtin::BI__builtin_addc:
  2847. case Builtin::BI__builtin_addcl:
  2848. case Builtin::BI__builtin_addcll:
  2849. IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
  2850. break;
  2851. case Builtin::BI__builtin_subcb:
  2852. case Builtin::BI__builtin_subcs:
  2853. case Builtin::BI__builtin_subc:
  2854. case Builtin::BI__builtin_subcl:
  2855. case Builtin::BI__builtin_subcll:
  2856. IntrinsicId = llvm::Intrinsic::usub_with_overflow;
  2857. break;
  2858. }
  2859. // Construct our resulting LLVM IR expression.
  2860. llvm::Value *Carry1;
  2861. llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
  2862. X, Y, Carry1);
  2863. llvm::Value *Carry2;
  2864. llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
  2865. Sum1, Carryin, Carry2);
  2866. llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
  2867. X->getType());
  2868. Builder.CreateStore(CarryOut, CarryOutPtr);
  2869. return RValue::get(Sum2);
  2870. }
  2871. case Builtin::BI__builtin_add_overflow:
  2872. case Builtin::BI__builtin_sub_overflow:
  2873. case Builtin::BI__builtin_mul_overflow: {
  2874. const clang::Expr *LeftArg = E->getArg(0);
  2875. const clang::Expr *RightArg = E->getArg(1);
  2876. const clang::Expr *ResultArg = E->getArg(2);
  2877. clang::QualType ResultQTy =
  2878. ResultArg->getType()->castAs<PointerType>()->getPointeeType();
  2879. WidthAndSignedness LeftInfo =
  2880. getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
  2881. WidthAndSignedness RightInfo =
  2882. getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
  2883. WidthAndSignedness ResultInfo =
  2884. getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
  2885. // Handle mixed-sign multiplication as a special case, because adding
  2886. // runtime or backend support for our generic irgen would be too expensive.
  2887. if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
  2888. return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
  2889. RightInfo, ResultArg, ResultQTy,
  2890. ResultInfo);
  2891. WidthAndSignedness EncompassingInfo =
  2892. EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
  2893. llvm::Type *EncompassingLLVMTy =
  2894. llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
  2895. llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
  2896. llvm::Intrinsic::ID IntrinsicId;
  2897. switch (BuiltinID) {
  2898. default:
  2899. llvm_unreachable("Unknown overflow builtin id.");
  2900. case Builtin::BI__builtin_add_overflow:
  2901. IntrinsicId = EncompassingInfo.Signed
  2902. ? llvm::Intrinsic::sadd_with_overflow
  2903. : llvm::Intrinsic::uadd_with_overflow;
  2904. break;
  2905. case Builtin::BI__builtin_sub_overflow:
  2906. IntrinsicId = EncompassingInfo.Signed
  2907. ? llvm::Intrinsic::ssub_with_overflow
  2908. : llvm::Intrinsic::usub_with_overflow;
  2909. break;
  2910. case Builtin::BI__builtin_mul_overflow:
  2911. IntrinsicId = EncompassingInfo.Signed
  2912. ? llvm::Intrinsic::smul_with_overflow
  2913. : llvm::Intrinsic::umul_with_overflow;
  2914. break;
  2915. }
  2916. llvm::Value *Left = EmitScalarExpr(LeftArg);
  2917. llvm::Value *Right = EmitScalarExpr(RightArg);
  2918. Address ResultPtr = EmitPointerWithAlignment(ResultArg);
  2919. // Extend each operand to the encompassing type.
  2920. Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
  2921. Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
  2922. // Perform the operation on the extended values.
  2923. llvm::Value *Overflow, *Result;
  2924. Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
  2925. if (EncompassingInfo.Width > ResultInfo.Width) {
  2926. // The encompassing type is wider than the result type, so we need to
  2927. // truncate it.
  2928. llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
  2929. // To see if the truncation caused an overflow, we will extend
  2930. // the result and then compare it to the original result.
  2931. llvm::Value *ResultTruncExt = Builder.CreateIntCast(
  2932. ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
  2933. llvm::Value *TruncationOverflow =
  2934. Builder.CreateICmpNE(Result, ResultTruncExt);
  2935. Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
  2936. Result = ResultTrunc;
  2937. }
  2938. // Finally, store the result using the pointer.
  2939. bool isVolatile =
  2940. ResultArg->getType()->getPointeeType().isVolatileQualified();
  2941. Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
  2942. return RValue::get(Overflow);
  2943. }
  2944. case Builtin::BI__builtin_uadd_overflow:
  2945. case Builtin::BI__builtin_uaddl_overflow:
  2946. case Builtin::BI__builtin_uaddll_overflow:
  2947. case Builtin::BI__builtin_usub_overflow:
  2948. case Builtin::BI__builtin_usubl_overflow:
  2949. case Builtin::BI__builtin_usubll_overflow:
  2950. case Builtin::BI__builtin_umul_overflow:
  2951. case Builtin::BI__builtin_umull_overflow:
  2952. case Builtin::BI__builtin_umulll_overflow:
  2953. case Builtin::BI__builtin_sadd_overflow:
  2954. case Builtin::BI__builtin_saddl_overflow:
  2955. case Builtin::BI__builtin_saddll_overflow:
  2956. case Builtin::BI__builtin_ssub_overflow:
  2957. case Builtin::BI__builtin_ssubl_overflow:
  2958. case Builtin::BI__builtin_ssubll_overflow:
  2959. case Builtin::BI__builtin_smul_overflow:
  2960. case Builtin::BI__builtin_smull_overflow:
  2961. case Builtin::BI__builtin_smulll_overflow: {
  2962. // We translate all of these builtins directly to the relevant llvm IR node.
  2963. // Scalarize our inputs.
  2964. llvm::Value *X = EmitScalarExpr(E->getArg(0));
  2965. llvm::Value *Y = EmitScalarExpr(E->getArg(1));
  2966. Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
  2967. // Decide which of the overflow intrinsics we are lowering to:
  2968. llvm::Intrinsic::ID IntrinsicId;
  2969. switch (BuiltinID) {
  2970. default: llvm_unreachable("Unknown overflow builtin id.");
  2971. case Builtin::BI__builtin_uadd_overflow:
  2972. case Builtin::BI__builtin_uaddl_overflow:
  2973. case Builtin::BI__builtin_uaddll_overflow:
  2974. IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
  2975. break;
  2976. case Builtin::BI__builtin_usub_overflow:
  2977. case Builtin::BI__builtin_usubl_overflow:
  2978. case Builtin::BI__builtin_usubll_overflow:
  2979. IntrinsicId = llvm::Intrinsic::usub_with_overflow;
  2980. break;
  2981. case Builtin::BI__builtin_umul_overflow:
  2982. case Builtin::BI__builtin_umull_overflow:
  2983. case Builtin::BI__builtin_umulll_overflow:
  2984. IntrinsicId = llvm::Intrinsic::umul_with_overflow;
  2985. break;
  2986. case Builtin::BI__builtin_sadd_overflow:
  2987. case Builtin::BI__builtin_saddl_overflow:
  2988. case Builtin::BI__builtin_saddll_overflow:
  2989. IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
  2990. break;
  2991. case Builtin::BI__builtin_ssub_overflow:
  2992. case Builtin::BI__builtin_ssubl_overflow:
  2993. case Builtin::BI__builtin_ssubll_overflow:
  2994. IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
  2995. break;
  2996. case Builtin::BI__builtin_smul_overflow:
  2997. case Builtin::BI__builtin_smull_overflow:
  2998. case Builtin::BI__builtin_smulll_overflow:
  2999. IntrinsicId = llvm::Intrinsic::smul_with_overflow;
  3000. break;
  3001. }
  3002. llvm::Value *Carry;
  3003. llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
  3004. Builder.CreateStore(Sum, SumOutPtr);
  3005. return RValue::get(Carry);
  3006. }
  3007. case Builtin::BI__builtin_addressof:
  3008. return RValue::get(EmitLValue(E->getArg(0)).getPointer());
  3009. case Builtin::BI__builtin_operator_new:
  3010. return EmitBuiltinNewDeleteCall(
  3011. E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
  3012. case Builtin::BI__builtin_operator_delete:
  3013. return EmitBuiltinNewDeleteCall(
  3014. E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
  3015. case Builtin::BI__noop:
  3016. // __noop always evaluates to an integer literal zero.
  3017. return RValue::get(ConstantInt::get(IntTy, 0));
  3018. case Builtin::BI__builtin_call_with_static_chain: {
  3019. const CallExpr *Call = cast<CallExpr>(E->getArg(0));
  3020. const Expr *Chain = E->getArg(1);
  3021. return EmitCall(Call->getCallee()->getType(),
  3022. EmitCallee(Call->getCallee()), Call, ReturnValue,
  3023. EmitScalarExpr(Chain));
  3024. }
  3025. case Builtin::BI_InterlockedExchange8:
  3026. case Builtin::BI_InterlockedExchange16:
  3027. case Builtin::BI_InterlockedExchange:
  3028. case Builtin::BI_InterlockedExchangePointer:
  3029. return RValue::get(
  3030. EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
  3031. case Builtin::BI_InterlockedCompareExchangePointer:
  3032. case Builtin::BI_InterlockedCompareExchangePointer_nf: {
  3033. llvm::Type *RTy;
  3034. llvm::IntegerType *IntType =
  3035. IntegerType::get(getLLVMContext(),
  3036. getContext().getTypeSize(E->getType()));
  3037. llvm::Type *IntPtrType = IntType->getPointerTo();
  3038. llvm::Value *Destination =
  3039. Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
  3040. llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
  3041. RTy = Exchange->getType();
  3042. Exchange = Builder.CreatePtrToInt(Exchange, IntType);
  3043. llvm::Value *Comparand =
  3044. Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
  3045. auto Ordering =
  3046. BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
  3047. AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
  3048. auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
  3049. Ordering, Ordering);
  3050. Result->setVolatile(true);
  3051. return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
  3052. 0),
  3053. RTy));
  3054. }
  3055. case Builtin::BI_InterlockedCompareExchange8:
  3056. case Builtin::BI_InterlockedCompareExchange16:
  3057. case Builtin::BI_InterlockedCompareExchange:
  3058. case Builtin::BI_InterlockedCompareExchange64:
  3059. return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
  3060. case Builtin::BI_InterlockedIncrement16:
  3061. case Builtin::BI_InterlockedIncrement:
  3062. return RValue::get(
  3063. EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
  3064. case Builtin::BI_InterlockedDecrement16:
  3065. case Builtin::BI_InterlockedDecrement:
  3066. return RValue::get(
  3067. EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
  3068. case Builtin::BI_InterlockedAnd8:
  3069. case Builtin::BI_InterlockedAnd16:
  3070. case Builtin::BI_InterlockedAnd:
  3071. return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
  3072. case Builtin::BI_InterlockedExchangeAdd8:
  3073. case Builtin::BI_InterlockedExchangeAdd16:
  3074. case Builtin::BI_InterlockedExchangeAdd:
  3075. return RValue::get(
  3076. EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
  3077. case Builtin::BI_InterlockedExchangeSub8:
  3078. case Builtin::BI_InterlockedExchangeSub16:
  3079. case Builtin::BI_InterlockedExchangeSub:
  3080. return RValue::get(
  3081. EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
  3082. case Builtin::BI_InterlockedOr8:
  3083. case Builtin::BI_InterlockedOr16:
  3084. case Builtin::BI_InterlockedOr:
  3085. return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
  3086. case Builtin::BI_InterlockedXor8:
  3087. case Builtin::BI_InterlockedXor16:
  3088. case Builtin::BI_InterlockedXor:
  3089. return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
  3090. case Builtin::BI_bittest64:
  3091. case Builtin::BI_bittest:
  3092. case Builtin::BI_bittestandcomplement64:
  3093. case Builtin::BI_bittestandcomplement:
  3094. case Builtin::BI_bittestandreset64:
  3095. case Builtin::BI_bittestandreset:
  3096. case Builtin::BI_bittestandset64:
  3097. case Builtin::BI_bittestandset:
  3098. case Builtin::BI_interlockedbittestandreset:
  3099. case Builtin::BI_interlockedbittestandreset64:
  3100. case Builtin::BI_interlockedbittestandset64:
  3101. case Builtin::BI_interlockedbittestandset:
  3102. case Builtin::BI_interlockedbittestandset_acq:
  3103. case Builtin::BI_interlockedbittestandset_rel:
  3104. case Builtin::BI_interlockedbittestandset_nf:
  3105. case Builtin::BI_interlockedbittestandreset_acq:
  3106. case Builtin::BI_interlockedbittestandreset_rel:
  3107. case Builtin::BI_interlockedbittestandreset_nf:
  3108. return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
  3109. // These builtins exist to emit regular volatile loads and stores not
  3110. // affected by the -fms-volatile setting.
  3111. case Builtin::BI__iso_volatile_load8:
  3112. case Builtin::BI__iso_volatile_load16:
  3113. case Builtin::BI__iso_volatile_load32:
  3114. case Builtin::BI__iso_volatile_load64:
  3115. return RValue::get(EmitISOVolatileLoad(*this, E));
  3116. case Builtin::BI__iso_volatile_store8:
  3117. case Builtin::BI__iso_volatile_store16:
  3118. case Builtin::BI__iso_volatile_store32:
  3119. case Builtin::BI__iso_volatile_store64:
  3120. return RValue::get(EmitISOVolatileStore(*this, E));
  3121. case Builtin::BI__exception_code:
  3122. case Builtin::BI_exception_code:
  3123. return RValue::get(EmitSEHExceptionCode());
  3124. case Builtin::BI__exception_info:
  3125. case Builtin::BI_exception_info:
  3126. return RValue::get(EmitSEHExceptionInfo());
  3127. case Builtin::BI__abnormal_termination:
  3128. case Builtin::BI_abnormal_termination:
  3129. return RValue::get(EmitSEHAbnormalTermination());
  3130. case Builtin::BI_setjmpex:
  3131. if (getTarget().getTriple().isOSMSVCRT())
  3132. return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
  3133. break;
  3134. case Builtin::BI_setjmp:
  3135. if (getTarget().getTriple().isOSMSVCRT()) {
  3136. if (getTarget().getTriple().getArch() == llvm::Triple::x86)
  3137. return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
  3138. else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
  3139. return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
  3140. return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
  3141. }
  3142. break;
  3143. case Builtin::BI__GetExceptionInfo: {
  3144. if (llvm::GlobalVariable *GV =
  3145. CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
  3146. return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
  3147. break;
  3148. }
  3149. case Builtin::BI__fastfail:
  3150. return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
  3151. case Builtin::BI__builtin_coro_size: {
  3152. auto & Context = getContext();
  3153. auto SizeTy = Context.getSizeType();
  3154. auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
  3155. Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
  3156. return RValue::get(Builder.CreateCall(F));
  3157. }
  3158. case Builtin::BI__builtin_coro_id:
  3159. return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
  3160. case Builtin::BI__builtin_coro_promise:
  3161. return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
  3162. case Builtin::BI__builtin_coro_resume:
  3163. return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
  3164. case Builtin::BI__builtin_coro_frame:
  3165. return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
  3166. case Builtin::BI__builtin_coro_noop:
  3167. return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
  3168. case Builtin::BI__builtin_coro_free:
  3169. return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
  3170. case Builtin::BI__builtin_coro_destroy:
  3171. return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
  3172. case Builtin::BI__builtin_coro_done:
  3173. return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
  3174. case Builtin::BI__builtin_coro_alloc:
  3175. return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
  3176. case Builtin::BI__builtin_coro_begin:
  3177. return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
  3178. case Builtin::BI__builtin_coro_end:
  3179. return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
  3180. case Builtin::BI__builtin_coro_suspend:
  3181. return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
  3182. case Builtin::BI__builtin_coro_param:
  3183. return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
  3184. // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
  3185. case Builtin::BIread_pipe:
  3186. case Builtin::BIwrite_pipe: {
  3187. Value *Arg0 = EmitScalarExpr(E->getArg(0)),
  3188. *Arg1 = EmitScalarExpr(E->getArg(1));
  3189. CGOpenCLRuntime OpenCLRT(CGM);
  3190. Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
  3191. Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
  3192. // Type of the generic packet parameter.
  3193. unsigned GenericAS =
  3194. getContext().getTargetAddressSpace(LangAS::opencl_generic);
  3195. llvm::Type *I8PTy = llvm::PointerType::get(
  3196. llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
  3197. // Testing which overloaded version we should generate the call for.
  3198. if (2U == E->getNumArgs()) {
  3199. const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
  3200. : "__write_pipe_2";
  3201. // Creating a generic function type to be able to call with any builtin or
  3202. // user defined type.
  3203. llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
  3204. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3205. Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3206. Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
  3207. return RValue::get(
  3208. Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
  3209. {Arg0, BCast, PacketSize, PacketAlign}));
  3210. } else {
  3211. assert(4 == E->getNumArgs() &&
  3212. "Illegal number of parameters to pipe function");
  3213. const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
  3214. : "__write_pipe_4";
  3215. llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
  3216. Int32Ty, Int32Ty};
  3217. Value *Arg2 = EmitScalarExpr(E->getArg(2)),
  3218. *Arg3 = EmitScalarExpr(E->getArg(3));
  3219. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3220. Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3221. Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
  3222. // We know the third argument is an integer type, but we may need to cast
  3223. // it to i32.
  3224. if (Arg2->getType() != Int32Ty)
  3225. Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
  3226. return RValue::get(Builder.CreateCall(
  3227. CGM.CreateRuntimeFunction(FTy, Name),
  3228. {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
  3229. }
  3230. }
  3231. // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
  3232. // functions
  3233. case Builtin::BIreserve_read_pipe:
  3234. case Builtin::BIreserve_write_pipe:
  3235. case Builtin::BIwork_group_reserve_read_pipe:
  3236. case Builtin::BIwork_group_reserve_write_pipe:
  3237. case Builtin::BIsub_group_reserve_read_pipe:
  3238. case Builtin::BIsub_group_reserve_write_pipe: {
  3239. // Composing the mangled name for the function.
  3240. const char *Name;
  3241. if (BuiltinID == Builtin::BIreserve_read_pipe)
  3242. Name = "__reserve_read_pipe";
  3243. else if (BuiltinID == Builtin::BIreserve_write_pipe)
  3244. Name = "__reserve_write_pipe";
  3245. else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
  3246. Name = "__work_group_reserve_read_pipe";
  3247. else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
  3248. Name = "__work_group_reserve_write_pipe";
  3249. else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
  3250. Name = "__sub_group_reserve_read_pipe";
  3251. else
  3252. Name = "__sub_group_reserve_write_pipe";
  3253. Value *Arg0 = EmitScalarExpr(E->getArg(0)),
  3254. *Arg1 = EmitScalarExpr(E->getArg(1));
  3255. llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
  3256. CGOpenCLRuntime OpenCLRT(CGM);
  3257. Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
  3258. Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
  3259. // Building the generic function prototype.
  3260. llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
  3261. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3262. ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3263. // We know the second argument is an integer type, but we may need to cast
  3264. // it to i32.
  3265. if (Arg1->getType() != Int32Ty)
  3266. Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
  3267. return RValue::get(
  3268. Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
  3269. {Arg0, Arg1, PacketSize, PacketAlign}));
  3270. }
  3271. // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
  3272. // functions
  3273. case Builtin::BIcommit_read_pipe:
  3274. case Builtin::BIcommit_write_pipe:
  3275. case Builtin::BIwork_group_commit_read_pipe:
  3276. case Builtin::BIwork_group_commit_write_pipe:
  3277. case Builtin::BIsub_group_commit_read_pipe:
  3278. case Builtin::BIsub_group_commit_write_pipe: {
  3279. const char *Name;
  3280. if (BuiltinID == Builtin::BIcommit_read_pipe)
  3281. Name = "__commit_read_pipe";
  3282. else if (BuiltinID == Builtin::BIcommit_write_pipe)
  3283. Name = "__commit_write_pipe";
  3284. else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
  3285. Name = "__work_group_commit_read_pipe";
  3286. else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
  3287. Name = "__work_group_commit_write_pipe";
  3288. else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
  3289. Name = "__sub_group_commit_read_pipe";
  3290. else
  3291. Name = "__sub_group_commit_write_pipe";
  3292. Value *Arg0 = EmitScalarExpr(E->getArg(0)),
  3293. *Arg1 = EmitScalarExpr(E->getArg(1));
  3294. CGOpenCLRuntime OpenCLRT(CGM);
  3295. Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
  3296. Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
  3297. // Building the generic function prototype.
  3298. llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
  3299. llvm::FunctionType *FTy =
  3300. llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
  3301. llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3302. return RValue::get(
  3303. Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
  3304. {Arg0, Arg1, PacketSize, PacketAlign}));
  3305. }
  3306. // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
  3307. case Builtin::BIget_pipe_num_packets:
  3308. case Builtin::BIget_pipe_max_packets: {
  3309. const char *BaseName;
  3310. const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
  3311. if (BuiltinID == Builtin::BIget_pipe_num_packets)
  3312. BaseName = "__get_pipe_num_packets";
  3313. else
  3314. BaseName = "__get_pipe_max_packets";
  3315. std::string Name = std::string(BaseName) +
  3316. std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
  3317. // Building the generic function prototype.
  3318. Value *Arg0 = EmitScalarExpr(E->getArg(0));
  3319. CGOpenCLRuntime OpenCLRT(CGM);
  3320. Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
  3321. Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
  3322. llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
  3323. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3324. Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3325. return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
  3326. {Arg0, PacketSize, PacketAlign}));
  3327. }
  3328. // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
  3329. case Builtin::BIto_global:
  3330. case Builtin::BIto_local:
  3331. case Builtin::BIto_private: {
  3332. auto Arg0 = EmitScalarExpr(E->getArg(0));
  3333. auto NewArgT = llvm::PointerType::get(Int8Ty,
  3334. CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
  3335. auto NewRetT = llvm::PointerType::get(Int8Ty,
  3336. CGM.getContext().getTargetAddressSpace(
  3337. E->getType()->getPointeeType().getAddressSpace()));
  3338. auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
  3339. llvm::Value *NewArg;
  3340. if (Arg0->getType()->getPointerAddressSpace() !=
  3341. NewArgT->getPointerAddressSpace())
  3342. NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
  3343. else
  3344. NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
  3345. auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
  3346. auto NewCall =
  3347. Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
  3348. return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
  3349. ConvertType(E->getType())));
  3350. }
  3351. // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
  3352. // It contains four different overload formats specified in Table 6.13.17.1.
  3353. case Builtin::BIenqueue_kernel: {
  3354. StringRef Name; // Generated function call name
  3355. unsigned NumArgs = E->getNumArgs();
  3356. llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
  3357. llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
  3358. getContext().getTargetAddressSpace(LangAS::opencl_generic));
  3359. llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
  3360. llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
  3361. LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
  3362. llvm::Value *Range = NDRangeL.getAddress().getPointer();
  3363. llvm::Type *RangeTy = NDRangeL.getAddress().getType();
  3364. if (NumArgs == 4) {
  3365. // The most basic form of the call with parameters:
  3366. // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
  3367. Name = "__enqueue_kernel_basic";
  3368. llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
  3369. GenericVoidPtrTy};
  3370. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3371. Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3372. auto Info =
  3373. CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
  3374. llvm::Value *Kernel =
  3375. Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
  3376. llvm::Value *Block =
  3377. Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
  3378. AttrBuilder B;
  3379. B.addByValAttr(NDRangeL.getAddress().getElementType());
  3380. llvm::AttributeList ByValAttrSet =
  3381. llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
  3382. auto RTCall =
  3383. Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
  3384. {Queue, Flags, Range, Kernel, Block});
  3385. RTCall->setAttributes(ByValAttrSet);
  3386. return RValue::get(RTCall);
  3387. }
  3388. assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
  3389. // Create a temporary array to hold the sizes of local pointer arguments
  3390. // for the block. \p First is the position of the first size argument.
  3391. auto CreateArrayForSizeVar = [=](unsigned First)
  3392. -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
  3393. llvm::APInt ArraySize(32, NumArgs - First);
  3394. QualType SizeArrayTy = getContext().getConstantArrayType(
  3395. getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
  3396. /*IndexTypeQuals=*/0);
  3397. auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
  3398. llvm::Value *TmpPtr = Tmp.getPointer();
  3399. llvm::Value *TmpSize = EmitLifetimeStart(
  3400. CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
  3401. llvm::Value *ElemPtr;
  3402. // Each of the following arguments specifies the size of the corresponding
  3403. // argument passed to the enqueued block.
  3404. auto *Zero = llvm::ConstantInt::get(IntTy, 0);
  3405. for (unsigned I = First; I < NumArgs; ++I) {
  3406. auto *Index = llvm::ConstantInt::get(IntTy, I - First);
  3407. auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index});
  3408. if (I == First)
  3409. ElemPtr = GEP;
  3410. auto *V =
  3411. Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
  3412. Builder.CreateAlignedStore(
  3413. V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy));
  3414. }
  3415. return std::tie(ElemPtr, TmpSize, TmpPtr);
  3416. };
  3417. // Could have events and/or varargs.
  3418. if (E->getArg(3)->getType()->isBlockPointerType()) {
  3419. // No events passed, but has variadic arguments.
  3420. Name = "__enqueue_kernel_varargs";
  3421. auto Info =
  3422. CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
  3423. llvm::Value *Kernel =
  3424. Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
  3425. auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
  3426. llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
  3427. std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
  3428. // Create a vector of the arguments, as well as a constant value to
  3429. // express to the runtime the number of variadic arguments.
  3430. std::vector<llvm::Value *> Args = {
  3431. Queue, Flags, Range,
  3432. Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4),
  3433. ElemPtr};
  3434. std::vector<llvm::Type *> ArgTys = {
  3435. QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
  3436. GenericVoidPtrTy, IntTy, ElemPtr->getType()};
  3437. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3438. Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3439. auto Call =
  3440. RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
  3441. llvm::ArrayRef<llvm::Value *>(Args)));
  3442. if (TmpSize)
  3443. EmitLifetimeEnd(TmpSize, TmpPtr);
  3444. return Call;
  3445. }
  3446. // Any calls now have event arguments passed.
  3447. if (NumArgs >= 7) {
  3448. llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
  3449. llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
  3450. CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
  3451. llvm::Value *NumEvents =
  3452. Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
  3453. // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
  3454. // to be a null pointer constant (including `0` literal), we can take it
  3455. // into account and emit null pointer directly.
  3456. llvm::Value *EventWaitList = nullptr;
  3457. if (E->getArg(4)->isNullPointerConstant(
  3458. getContext(), Expr::NPC_ValueDependentIsNotNull)) {
  3459. EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
  3460. } else {
  3461. EventWaitList = E->getArg(4)->getType()->isArrayType()
  3462. ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
  3463. : EmitScalarExpr(E->getArg(4));
  3464. // Convert to generic address space.
  3465. EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
  3466. }
  3467. llvm::Value *EventRet = nullptr;
  3468. if (E->getArg(5)->isNullPointerConstant(
  3469. getContext(), Expr::NPC_ValueDependentIsNotNull)) {
  3470. EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
  3471. } else {
  3472. EventRet =
  3473. Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
  3474. }
  3475. auto Info =
  3476. CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
  3477. llvm::Value *Kernel =
  3478. Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
  3479. llvm::Value *Block =
  3480. Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
  3481. std::vector<llvm::Type *> ArgTys = {
  3482. QueueTy, Int32Ty, RangeTy, Int32Ty,
  3483. EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
  3484. std::vector<llvm::Value *> Args = {Queue, Flags, Range,
  3485. NumEvents, EventWaitList, EventRet,
  3486. Kernel, Block};
  3487. if (NumArgs == 7) {
  3488. // Has events but no variadics.
  3489. Name = "__enqueue_kernel_basic_events";
  3490. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3491. Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3492. return RValue::get(
  3493. Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
  3494. llvm::ArrayRef<llvm::Value *>(Args)));
  3495. }
  3496. // Has event info and variadics
  3497. // Pass the number of variadics to the runtime function too.
  3498. Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
  3499. ArgTys.push_back(Int32Ty);
  3500. Name = "__enqueue_kernel_events_varargs";
  3501. llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
  3502. std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
  3503. Args.push_back(ElemPtr);
  3504. ArgTys.push_back(ElemPtr->getType());
  3505. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3506. Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3507. auto Call =
  3508. RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
  3509. llvm::ArrayRef<llvm::Value *>(Args)));
  3510. if (TmpSize)
  3511. EmitLifetimeEnd(TmpSize, TmpPtr);
  3512. return Call;
  3513. }
  3514. LLVM_FALLTHROUGH;
  3515. }
  3516. // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
  3517. // parameter.
  3518. case Builtin::BIget_kernel_work_group_size: {
  3519. llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
  3520. getContext().getTargetAddressSpace(LangAS::opencl_generic));
  3521. auto Info =
  3522. CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
  3523. Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
  3524. Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
  3525. return RValue::get(Builder.CreateCall(
  3526. CGM.CreateRuntimeFunction(
  3527. llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
  3528. false),
  3529. "__get_kernel_work_group_size_impl"),
  3530. {Kernel, Arg}));
  3531. }
  3532. case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
  3533. llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
  3534. getContext().getTargetAddressSpace(LangAS::opencl_generic));
  3535. auto Info =
  3536. CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
  3537. Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
  3538. Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
  3539. return RValue::get(Builder.CreateCall(
  3540. CGM.CreateRuntimeFunction(
  3541. llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
  3542. false),
  3543. "__get_kernel_preferred_work_group_size_multiple_impl"),
  3544. {Kernel, Arg}));
  3545. }
  3546. case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
  3547. case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
  3548. llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
  3549. getContext().getTargetAddressSpace(LangAS::opencl_generic));
  3550. LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
  3551. llvm::Value *NDRange = NDRangeL.getAddress().getPointer();
  3552. auto Info =
  3553. CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
  3554. Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
  3555. Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
  3556. const char *Name =
  3557. BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
  3558. ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
  3559. : "__get_kernel_sub_group_count_for_ndrange_impl";
  3560. return RValue::get(Builder.CreateCall(
  3561. CGM.CreateRuntimeFunction(
  3562. llvm::FunctionType::get(
  3563. IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
  3564. false),
  3565. Name),
  3566. {NDRange, Kernel, Block}));
  3567. }
  3568. case Builtin::BI__builtin_store_half:
  3569. case Builtin::BI__builtin_store_halff: {
  3570. Value *Val = EmitScalarExpr(E->getArg(0));
  3571. Address Address = EmitPointerWithAlignment(E->getArg(1));
  3572. Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
  3573. return RValue::get(Builder.CreateStore(HalfVal, Address));
  3574. }
  3575. case Builtin::BI__builtin_load_half: {
  3576. Address Address = EmitPointerWithAlignment(E->getArg(0));
  3577. Value *HalfVal = Builder.CreateLoad(Address);
  3578. return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
  3579. }
  3580. case Builtin::BI__builtin_load_halff: {
  3581. Address Address = EmitPointerWithAlignment(E->getArg(0));
  3582. Value *HalfVal = Builder.CreateLoad(Address);
  3583. return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
  3584. }
  3585. case Builtin::BIprintf:
  3586. if (getTarget().getTriple().isNVPTX())
  3587. return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
  3588. break;
  3589. case Builtin::BI__builtin_canonicalize:
  3590. case Builtin::BI__builtin_canonicalizef:
  3591. case Builtin::BI__builtin_canonicalizef16:
  3592. case Builtin::BI__builtin_canonicalizel:
  3593. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
  3594. case Builtin::BI__builtin_thread_pointer: {
  3595. if (!getContext().getTargetInfo().isTLSSupported())
  3596. CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
  3597. // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
  3598. break;
  3599. }
  3600. case Builtin::BI__builtin_os_log_format:
  3601. return emitBuiltinOSLogFormat(*E);
  3602. case Builtin::BI__xray_customevent: {
  3603. if (!ShouldXRayInstrumentFunction())
  3604. return RValue::getIgnored();
  3605. if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
  3606. XRayInstrKind::Custom))
  3607. return RValue::getIgnored();
  3608. if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
  3609. if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
  3610. return RValue::getIgnored();
  3611. Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
  3612. auto FTy = F->getFunctionType();
  3613. auto Arg0 = E->getArg(0);
  3614. auto Arg0Val = EmitScalarExpr(Arg0);
  3615. auto Arg0Ty = Arg0->getType();
  3616. auto PTy0 = FTy->getParamType(0);
  3617. if (PTy0 != Arg0Val->getType()) {
  3618. if (Arg0Ty->isArrayType())
  3619. Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
  3620. else
  3621. Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
  3622. }
  3623. auto Arg1 = EmitScalarExpr(E->getArg(1));
  3624. auto PTy1 = FTy->getParamType(1);
  3625. if (PTy1 != Arg1->getType())
  3626. Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
  3627. return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
  3628. }
  3629. case Builtin::BI__xray_typedevent: {
  3630. // TODO: There should be a way to always emit events even if the current
  3631. // function is not instrumented. Losing events in a stream can cripple
  3632. // a trace.
  3633. if (!ShouldXRayInstrumentFunction())
  3634. return RValue::getIgnored();
  3635. if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
  3636. XRayInstrKind::Typed))
  3637. return RValue::getIgnored();
  3638. if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
  3639. if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
  3640. return RValue::getIgnored();
  3641. Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
  3642. auto FTy = F->getFunctionType();
  3643. auto Arg0 = EmitScalarExpr(E->getArg(0));
  3644. auto PTy0 = FTy->getParamType(0);
  3645. if (PTy0 != Arg0->getType())
  3646. Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
  3647. auto Arg1 = E->getArg(1);
  3648. auto Arg1Val = EmitScalarExpr(Arg1);
  3649. auto Arg1Ty = Arg1->getType();
  3650. auto PTy1 = FTy->getParamType(1);
  3651. if (PTy1 != Arg1Val->getType()) {
  3652. if (Arg1Ty->isArrayType())
  3653. Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
  3654. else
  3655. Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
  3656. }
  3657. auto Arg2 = EmitScalarExpr(E->getArg(2));
  3658. auto PTy2 = FTy->getParamType(2);
  3659. if (PTy2 != Arg2->getType())
  3660. Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
  3661. return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
  3662. }
  3663. case Builtin::BI__builtin_ms_va_start:
  3664. case Builtin::BI__builtin_ms_va_end:
  3665. return RValue::get(
  3666. EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
  3667. BuiltinID == Builtin::BI__builtin_ms_va_start));
  3668. case Builtin::BI__builtin_ms_va_copy: {
  3669. // Lower this manually. We can't reliably determine whether or not any
  3670. // given va_copy() is for a Win64 va_list from the calling convention
  3671. // alone, because it's legal to do this from a System V ABI function.
  3672. // With opaque pointer types, we won't have enough information in LLVM
  3673. // IR to determine this from the argument types, either. Best to do it
  3674. // now, while we have enough information.
  3675. Address DestAddr = EmitMSVAListRef(E->getArg(0));
  3676. Address SrcAddr = EmitMSVAListRef(E->getArg(1));
  3677. llvm::Type *BPP = Int8PtrPtrTy;
  3678. DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
  3679. DestAddr.getAlignment());
  3680. SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
  3681. SrcAddr.getAlignment());
  3682. Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
  3683. return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
  3684. }
  3685. }
  3686. // If this is an alias for a lib function (e.g. __builtin_sin), emit
  3687. // the call using the normal call path, but using the unmangled
  3688. // version of the function name.
  3689. if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
  3690. return emitLibraryCall(*this, FD, E,
  3691. CGM.getBuiltinLibFunction(FD, BuiltinID));
  3692. // If this is a predefined lib function (e.g. malloc), emit the call
  3693. // using exactly the normal call path.
  3694. if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
  3695. return emitLibraryCall(*this, FD, E,
  3696. cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
  3697. // Check that a call to a target specific builtin has the correct target
  3698. // features.
  3699. // This is down here to avoid non-target specific builtins, however, if
  3700. // generic builtins start to require generic target features then we
  3701. // can move this up to the beginning of the function.
  3702. checkTargetFeatures(E, FD);
  3703. if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
  3704. LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
  3705. // See if we have a target specific intrinsic.
  3706. const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
  3707. Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
  3708. StringRef Prefix =
  3709. llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
  3710. if (!Prefix.empty()) {
  3711. IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
  3712. // NOTE we don't need to perform a compatibility flag check here since the
  3713. // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
  3714. // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
  3715. if (IntrinsicID == Intrinsic::not_intrinsic)
  3716. IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
  3717. }
  3718. if (IntrinsicID != Intrinsic::not_intrinsic) {
  3719. SmallVector<Value*, 16> Args;
  3720. // Find out if any arguments are required to be integer constant
  3721. // expressions.
  3722. unsigned ICEArguments = 0;
  3723. ASTContext::GetBuiltinTypeError Error;
  3724. getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
  3725. assert(Error == ASTContext::GE_None && "Should not codegen an error");
  3726. Function *F = CGM.getIntrinsic(IntrinsicID);
  3727. llvm::FunctionType *FTy = F->getFunctionType();
  3728. for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
  3729. Value *ArgValue;
  3730. // If this is a normal argument, just emit it as a scalar.
  3731. if ((ICEArguments & (1 << i)) == 0) {
  3732. ArgValue = EmitScalarExpr(E->getArg(i));
  3733. } else {
  3734. // If this is required to be a constant, constant fold it so that we
  3735. // know that the generated intrinsic gets a ConstantInt.
  3736. llvm::APSInt Result;
  3737. bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
  3738. assert(IsConst && "Constant arg isn't actually constant?");
  3739. (void)IsConst;
  3740. ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
  3741. }
  3742. // If the intrinsic arg type is different from the builtin arg type
  3743. // we need to do a bit cast.
  3744. llvm::Type *PTy = FTy->getParamType(i);
  3745. if (PTy != ArgValue->getType()) {
  3746. // XXX - vector of pointers?
  3747. if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
  3748. if (PtrTy->getAddressSpace() !=
  3749. ArgValue->getType()->getPointerAddressSpace()) {
  3750. ArgValue = Builder.CreateAddrSpaceCast(
  3751. ArgValue,
  3752. ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
  3753. }
  3754. }
  3755. assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
  3756. "Must be able to losslessly bit cast to param");
  3757. ArgValue = Builder.CreateBitCast(ArgValue, PTy);
  3758. }
  3759. Args.push_back(ArgValue);
  3760. }
  3761. Value *V = Builder.CreateCall(F, Args);
  3762. QualType BuiltinRetType = E->getType();
  3763. llvm::Type *RetTy = VoidTy;
  3764. if (!BuiltinRetType->isVoidType())
  3765. RetTy = ConvertType(BuiltinRetType);
  3766. if (RetTy != V->getType()) {
  3767. // XXX - vector of pointers?
  3768. if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
  3769. if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
  3770. V = Builder.CreateAddrSpaceCast(
  3771. V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
  3772. }
  3773. }
  3774. assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
  3775. "Must be able to losslessly bit cast result type");
  3776. V = Builder.CreateBitCast(V, RetTy);
  3777. }
  3778. return RValue::get(V);
  3779. }
  3780. // See if we have a target specific builtin that needs to be lowered.
  3781. if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
  3782. return RValue::get(V);
  3783. ErrorUnsupported(E, "builtin function");
  3784. // Unknown builtin, for now just dump it out and return undef.
  3785. return GetUndefRValue(E->getType());
  3786. }
  3787. static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
  3788. unsigned BuiltinID, const CallExpr *E,
  3789. llvm::Triple::ArchType Arch) {
  3790. switch (Arch) {
  3791. case llvm::Triple::arm:
  3792. case llvm::Triple::armeb:
  3793. case llvm::Triple::thumb:
  3794. case llvm::Triple::thumbeb:
  3795. return CGF->EmitARMBuiltinExpr(BuiltinID, E, Arch);
  3796. case llvm::Triple::aarch64:
  3797. case llvm::Triple::aarch64_be:
  3798. return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
  3799. case llvm::Triple::bpfeb:
  3800. case llvm::Triple::bpfel:
  3801. return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
  3802. case llvm::Triple::x86:
  3803. case llvm::Triple::x86_64:
  3804. return CGF->EmitX86BuiltinExpr(BuiltinID, E);
  3805. case llvm::Triple::ppc:
  3806. case llvm::Triple::ppc64:
  3807. case llvm::Triple::ppc64le:
  3808. return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
  3809. case llvm::Triple::r600:
  3810. case llvm::Triple::amdgcn:
  3811. return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
  3812. case llvm::Triple::systemz:
  3813. return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
  3814. case llvm::Triple::nvptx:
  3815. case llvm::Triple::nvptx64:
  3816. return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
  3817. case llvm::Triple::wasm32:
  3818. case llvm::Triple::wasm64:
  3819. return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
  3820. case llvm::Triple::hexagon:
  3821. return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
  3822. default:
  3823. return nullptr;
  3824. }
  3825. }
  3826. Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
  3827. const CallExpr *E) {
  3828. if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
  3829. assert(getContext().getAuxTargetInfo() && "Missing aux target info");
  3830. return EmitTargetArchBuiltinExpr(
  3831. this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
  3832. getContext().getAuxTargetInfo()->getTriple().getArch());
  3833. }
  3834. return EmitTargetArchBuiltinExpr(this, BuiltinID, E,
  3835. getTarget().getTriple().getArch());
  3836. }
  3837. static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
  3838. NeonTypeFlags TypeFlags,
  3839. bool HasLegalHalfType=true,
  3840. bool V1Ty=false) {
  3841. int IsQuad = TypeFlags.isQuad();
  3842. switch (TypeFlags.getEltType()) {
  3843. case NeonTypeFlags::Int8:
  3844. case NeonTypeFlags::Poly8:
  3845. return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
  3846. case NeonTypeFlags::Int16:
  3847. case NeonTypeFlags::Poly16:
  3848. return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
  3849. case NeonTypeFlags::Float16:
  3850. if (HasLegalHalfType)
  3851. return llvm::VectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
  3852. else
  3853. return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
  3854. case NeonTypeFlags::Int32:
  3855. return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
  3856. case NeonTypeFlags::Int64:
  3857. case NeonTypeFlags::Poly64:
  3858. return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
  3859. case NeonTypeFlags::Poly128:
  3860. // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
  3861. // There is a lot of i128 and f128 API missing.
  3862. // so we use v16i8 to represent poly128 and get pattern matched.
  3863. return llvm::VectorType::get(CGF->Int8Ty, 16);
  3864. case NeonTypeFlags::Float32:
  3865. return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
  3866. case NeonTypeFlags::Float64:
  3867. return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
  3868. }
  3869. llvm_unreachable("Unknown vector element type!");
  3870. }
  3871. static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
  3872. NeonTypeFlags IntTypeFlags) {
  3873. int IsQuad = IntTypeFlags.isQuad();
  3874. switch (IntTypeFlags.getEltType()) {
  3875. case NeonTypeFlags::Int16:
  3876. return llvm::VectorType::get(CGF->HalfTy, (4 << IsQuad));
  3877. case NeonTypeFlags::Int32:
  3878. return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
  3879. case NeonTypeFlags::Int64:
  3880. return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
  3881. default:
  3882. llvm_unreachable("Type can't be converted to floating-point!");
  3883. }
  3884. }
  3885. Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
  3886. unsigned nElts = V->getType()->getVectorNumElements();
  3887. Value* SV = llvm::ConstantVector::getSplat(nElts, C);
  3888. return Builder.CreateShuffleVector(V, V, SV, "lane");
  3889. }
  3890. Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
  3891. const char *name,
  3892. unsigned shift, bool rightshift) {
  3893. unsigned j = 0;
  3894. for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
  3895. ai != ae; ++ai, ++j)
  3896. if (shift > 0 && shift == j)
  3897. Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
  3898. else
  3899. Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
  3900. return Builder.CreateCall(F, Ops, name);
  3901. }
  3902. Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
  3903. bool neg) {
  3904. int SV = cast<ConstantInt>(V)->getSExtValue();
  3905. return ConstantInt::get(Ty, neg ? -SV : SV);
  3906. }
  3907. // Right-shift a vector by a constant.
  3908. Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
  3909. llvm::Type *Ty, bool usgn,
  3910. const char *name) {
  3911. llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
  3912. int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
  3913. int EltSize = VTy->getScalarSizeInBits();
  3914. Vec = Builder.CreateBitCast(Vec, Ty);
  3915. // lshr/ashr are undefined when the shift amount is equal to the vector
  3916. // element size.
  3917. if (ShiftAmt == EltSize) {
  3918. if (usgn) {
  3919. // Right-shifting an unsigned value by its size yields 0.
  3920. return llvm::ConstantAggregateZero::get(VTy);
  3921. } else {
  3922. // Right-shifting a signed value by its size is equivalent
  3923. // to a shift of size-1.
  3924. --ShiftAmt;
  3925. Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
  3926. }
  3927. }
  3928. Shift = EmitNeonShiftVector(Shift, Ty, false);
  3929. if (usgn)
  3930. return Builder.CreateLShr(Vec, Shift, name);
  3931. else
  3932. return Builder.CreateAShr(Vec, Shift, name);
  3933. }
  3934. enum {
  3935. AddRetType = (1 << 0),
  3936. Add1ArgType = (1 << 1),
  3937. Add2ArgTypes = (1 << 2),
  3938. VectorizeRetType = (1 << 3),
  3939. VectorizeArgTypes = (1 << 4),
  3940. InventFloatType = (1 << 5),
  3941. UnsignedAlts = (1 << 6),
  3942. Use64BitVectors = (1 << 7),
  3943. Use128BitVectors = (1 << 8),
  3944. Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
  3945. VectorRet = AddRetType | VectorizeRetType,
  3946. VectorRetGetArgs01 =
  3947. AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
  3948. FpCmpzModifiers =
  3949. AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
  3950. };
  3951. namespace {
  3952. struct NeonIntrinsicInfo {
  3953. const char *NameHint;
  3954. unsigned BuiltinID;
  3955. unsigned LLVMIntrinsic;
  3956. unsigned AltLLVMIntrinsic;
  3957. unsigned TypeModifier;
  3958. bool operator<(unsigned RHSBuiltinID) const {
  3959. return BuiltinID < RHSBuiltinID;
  3960. }
  3961. bool operator<(const NeonIntrinsicInfo &TE) const {
  3962. return BuiltinID < TE.BuiltinID;
  3963. }
  3964. };
  3965. } // end anonymous namespace
  3966. #define NEONMAP0(NameBase) \
  3967. { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
  3968. #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
  3969. { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
  3970. Intrinsic::LLVMIntrinsic, 0, TypeModifier }
  3971. #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
  3972. { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
  3973. Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
  3974. TypeModifier }
  3975. static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
  3976. NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
  3977. NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
  3978. NEONMAP1(vabs_v, arm_neon_vabs, 0),
  3979. NEONMAP1(vabsq_v, arm_neon_vabs, 0),
  3980. NEONMAP0(vaddhn_v),
  3981. NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
  3982. NEONMAP1(vaeseq_v, arm_neon_aese, 0),
  3983. NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
  3984. NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
  3985. NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
  3986. NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
  3987. NEONMAP1(vcage_v, arm_neon_vacge, 0),
  3988. NEONMAP1(vcageq_v, arm_neon_vacge, 0),
  3989. NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
  3990. NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
  3991. NEONMAP1(vcale_v, arm_neon_vacge, 0),
  3992. NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
  3993. NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
  3994. NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
  3995. NEONMAP0(vceqz_v),
  3996. NEONMAP0(vceqzq_v),
  3997. NEONMAP0(vcgez_v),
  3998. NEONMAP0(vcgezq_v),
  3999. NEONMAP0(vcgtz_v),
  4000. NEONMAP0(vcgtzq_v),
  4001. NEONMAP0(vclez_v),
  4002. NEONMAP0(vclezq_v),
  4003. NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
  4004. NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
  4005. NEONMAP0(vcltz_v),
  4006. NEONMAP0(vcltzq_v),
  4007. NEONMAP1(vclz_v, ctlz, Add1ArgType),
  4008. NEONMAP1(vclzq_v, ctlz, Add1ArgType),
  4009. NEONMAP1(vcnt_v, ctpop, Add1ArgType),
  4010. NEONMAP1(vcntq_v, ctpop, Add1ArgType),
  4011. NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
  4012. NEONMAP0(vcvt_f16_v),
  4013. NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
  4014. NEONMAP0(vcvt_f32_v),
  4015. NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
  4016. NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
  4017. NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
  4018. NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
  4019. NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
  4020. NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
  4021. NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
  4022. NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
  4023. NEONMAP0(vcvt_s16_v),
  4024. NEONMAP0(vcvt_s32_v),
  4025. NEONMAP0(vcvt_s64_v),
  4026. NEONMAP0(vcvt_u16_v),
  4027. NEONMAP0(vcvt_u32_v),
  4028. NEONMAP0(vcvt_u64_v),
  4029. NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
  4030. NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
  4031. NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
  4032. NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
  4033. NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
  4034. NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
  4035. NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
  4036. NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
  4037. NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
  4038. NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
  4039. NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
  4040. NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
  4041. NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
  4042. NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
  4043. NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
  4044. NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
  4045. NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
  4046. NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
  4047. NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
  4048. NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
  4049. NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
  4050. NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
  4051. NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
  4052. NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
  4053. NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
  4054. NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
  4055. NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
  4056. NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
  4057. NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
  4058. NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
  4059. NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
  4060. NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
  4061. NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
  4062. NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
  4063. NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
  4064. NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
  4065. NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
  4066. NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
  4067. NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
  4068. NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
  4069. NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
  4070. NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
  4071. NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
  4072. NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
  4073. NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
  4074. NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
  4075. NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
  4076. NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
  4077. NEONMAP0(vcvtq_f16_v),
  4078. NEONMAP0(vcvtq_f32_v),
  4079. NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
  4080. NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
  4081. NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
  4082. NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
  4083. NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
  4084. NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
  4085. NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
  4086. NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
  4087. NEONMAP0(vcvtq_s16_v),
  4088. NEONMAP0(vcvtq_s32_v),
  4089. NEONMAP0(vcvtq_s64_v),
  4090. NEONMAP0(vcvtq_u16_v),
  4091. NEONMAP0(vcvtq_u32_v),
  4092. NEONMAP0(vcvtq_u64_v),
  4093. NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
  4094. NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
  4095. NEONMAP0(vext_v),
  4096. NEONMAP0(vextq_v),
  4097. NEONMAP0(vfma_v),
  4098. NEONMAP0(vfmaq_v),
  4099. NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
  4100. NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
  4101. NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
  4102. NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
  4103. NEONMAP0(vld1_dup_v),
  4104. NEONMAP1(vld1_v, arm_neon_vld1, 0),
  4105. NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
  4106. NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
  4107. NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
  4108. NEONMAP0(vld1q_dup_v),
  4109. NEONMAP1(vld1q_v, arm_neon_vld1, 0),
  4110. NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
  4111. NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
  4112. NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
  4113. NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
  4114. NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
  4115. NEONMAP1(vld2_v, arm_neon_vld2, 0),
  4116. NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
  4117. NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
  4118. NEONMAP1(vld2q_v, arm_neon_vld2, 0),
  4119. NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
  4120. NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
  4121. NEONMAP1(vld3_v, arm_neon_vld3, 0),
  4122. NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
  4123. NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
  4124. NEONMAP1(vld3q_v, arm_neon_vld3, 0),
  4125. NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
  4126. NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
  4127. NEONMAP1(vld4_v, arm_neon_vld4, 0),
  4128. NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
  4129. NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
  4130. NEONMAP1(vld4q_v, arm_neon_vld4, 0),
  4131. NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
  4132. NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
  4133. NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
  4134. NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
  4135. NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
  4136. NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
  4137. NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
  4138. NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
  4139. NEONMAP0(vmovl_v),
  4140. NEONMAP0(vmovn_v),
  4141. NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
  4142. NEONMAP0(vmull_v),
  4143. NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
  4144. NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
  4145. NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
  4146. NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
  4147. NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
  4148. NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
  4149. NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
  4150. NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
  4151. NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
  4152. NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
  4153. NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
  4154. NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
  4155. NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
  4156. NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
  4157. NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
  4158. NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
  4159. NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
  4160. NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
  4161. NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
  4162. NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
  4163. NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
  4164. NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
  4165. NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
  4166. NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
  4167. NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
  4168. NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
  4169. NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
  4170. NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
  4171. NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
  4172. NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
  4173. NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
  4174. NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
  4175. NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
  4176. NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
  4177. NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
  4178. NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
  4179. NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
  4180. NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
  4181. NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
  4182. NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
  4183. NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
  4184. NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
  4185. NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
  4186. NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
  4187. NEONMAP0(vrndi_v),
  4188. NEONMAP0(vrndiq_v),
  4189. NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
  4190. NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
  4191. NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
  4192. NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
  4193. NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
  4194. NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
  4195. NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
  4196. NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
  4197. NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
  4198. NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
  4199. NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
  4200. NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
  4201. NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
  4202. NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
  4203. NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
  4204. NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
  4205. NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
  4206. NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
  4207. NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
  4208. NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
  4209. NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
  4210. NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
  4211. NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
  4212. NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
  4213. NEONMAP0(vshl_n_v),
  4214. NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
  4215. NEONMAP0(vshll_n_v),
  4216. NEONMAP0(vshlq_n_v),
  4217. NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
  4218. NEONMAP0(vshr_n_v),
  4219. NEONMAP0(vshrn_n_v),
  4220. NEONMAP0(vshrq_n_v),
  4221. NEONMAP1(vst1_v, arm_neon_vst1, 0),
  4222. NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
  4223. NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
  4224. NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
  4225. NEONMAP1(vst1q_v, arm_neon_vst1, 0),
  4226. NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
  4227. NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
  4228. NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
  4229. NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
  4230. NEONMAP1(vst2_v, arm_neon_vst2, 0),
  4231. NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
  4232. NEONMAP1(vst2q_v, arm_neon_vst2, 0),
  4233. NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
  4234. NEONMAP1(vst3_v, arm_neon_vst3, 0),
  4235. NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
  4236. NEONMAP1(vst3q_v, arm_neon_vst3, 0),
  4237. NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
  4238. NEONMAP1(vst4_v, arm_neon_vst4, 0),
  4239. NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
  4240. NEONMAP1(vst4q_v, arm_neon_vst4, 0),
  4241. NEONMAP0(vsubhn_v),
  4242. NEONMAP0(vtrn_v),
  4243. NEONMAP0(vtrnq_v),
  4244. NEONMAP0(vtst_v),
  4245. NEONMAP0(vtstq_v),
  4246. NEONMAP0(vuzp_v),
  4247. NEONMAP0(vuzpq_v),
  4248. NEONMAP0(vzip_v),
  4249. NEONMAP0(vzipq_v)
  4250. };
  4251. static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
  4252. NEONMAP1(vabs_v, aarch64_neon_abs, 0),
  4253. NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
  4254. NEONMAP0(vaddhn_v),
  4255. NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
  4256. NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
  4257. NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
  4258. NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
  4259. NEONMAP1(vcage_v, aarch64_neon_facge, 0),
  4260. NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
  4261. NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
  4262. NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
  4263. NEONMAP1(vcale_v, aarch64_neon_facge, 0),
  4264. NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
  4265. NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
  4266. NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
  4267. NEONMAP0(vceqz_v),
  4268. NEONMAP0(vceqzq_v),
  4269. NEONMAP0(vcgez_v),
  4270. NEONMAP0(vcgezq_v),
  4271. NEONMAP0(vcgtz_v),
  4272. NEONMAP0(vcgtzq_v),
  4273. NEONMAP0(vclez_v),
  4274. NEONMAP0(vclezq_v),
  4275. NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
  4276. NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
  4277. NEONMAP0(vcltz_v),
  4278. NEONMAP0(vcltzq_v),
  4279. NEONMAP1(vclz_v, ctlz, Add1ArgType),
  4280. NEONMAP1(vclzq_v, ctlz, Add1ArgType),
  4281. NEONMAP1(vcnt_v, ctpop, Add1ArgType),
  4282. NEONMAP1(vcntq_v, ctpop, Add1ArgType),
  4283. NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
  4284. NEONMAP0(vcvt_f16_v),
  4285. NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
  4286. NEONMAP0(vcvt_f32_v),
  4287. NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
  4288. NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
  4289. NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
  4290. NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
  4291. NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
  4292. NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
  4293. NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
  4294. NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
  4295. NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
  4296. NEONMAP0(vcvtq_f16_v),
  4297. NEONMAP0(vcvtq_f32_v),
  4298. NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
  4299. NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
  4300. NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
  4301. NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
  4302. NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
  4303. NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
  4304. NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
  4305. NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
  4306. NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
  4307. NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
  4308. NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
  4309. NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
  4310. NEONMAP0(vext_v),
  4311. NEONMAP0(vextq_v),
  4312. NEONMAP0(vfma_v),
  4313. NEONMAP0(vfmaq_v),
  4314. NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
  4315. NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
  4316. NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
  4317. NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
  4318. NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
  4319. NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
  4320. NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
  4321. NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
  4322. NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
  4323. NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
  4324. NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
  4325. NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
  4326. NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
  4327. NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
  4328. NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
  4329. NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
  4330. NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
  4331. NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
  4332. NEONMAP0(vmovl_v),
  4333. NEONMAP0(vmovn_v),
  4334. NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
  4335. NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
  4336. NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
  4337. NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
  4338. NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
  4339. NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
  4340. NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
  4341. NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
  4342. NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
  4343. NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
  4344. NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
  4345. NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
  4346. NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
  4347. NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
  4348. NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
  4349. NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
  4350. NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
  4351. NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
  4352. NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
  4353. NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
  4354. NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
  4355. NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
  4356. NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
  4357. NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
  4358. NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
  4359. NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
  4360. NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
  4361. NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
  4362. NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
  4363. NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
  4364. NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
  4365. NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
  4366. NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
  4367. NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
  4368. NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
  4369. NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
  4370. NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
  4371. NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
  4372. NEONMAP0(vrndi_v),
  4373. NEONMAP0(vrndiq_v),
  4374. NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
  4375. NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
  4376. NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
  4377. NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
  4378. NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
  4379. NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
  4380. NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
  4381. NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
  4382. NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
  4383. NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
  4384. NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
  4385. NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
  4386. NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
  4387. NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
  4388. NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
  4389. NEONMAP0(vshl_n_v),
  4390. NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
  4391. NEONMAP0(vshll_n_v),
  4392. NEONMAP0(vshlq_n_v),
  4393. NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
  4394. NEONMAP0(vshr_n_v),
  4395. NEONMAP0(vshrn_n_v),
  4396. NEONMAP0(vshrq_n_v),
  4397. NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
  4398. NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
  4399. NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
  4400. NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
  4401. NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
  4402. NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
  4403. NEONMAP0(vsubhn_v),
  4404. NEONMAP0(vtst_v),
  4405. NEONMAP0(vtstq_v),
  4406. };
  4407. static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
  4408. NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
  4409. NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
  4410. NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
  4411. NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
  4412. NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
  4413. NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
  4414. NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
  4415. NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
  4416. NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
  4417. NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
  4418. NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
  4419. NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
  4420. NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
  4421. NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
  4422. NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
  4423. NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
  4424. NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
  4425. NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
  4426. NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
  4427. NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
  4428. NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
  4429. NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
  4430. NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
  4431. NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
  4432. NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
  4433. NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
  4434. NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
  4435. NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
  4436. NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
  4437. NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
  4438. NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
  4439. NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
  4440. NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
  4441. NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
  4442. NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
  4443. NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
  4444. NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
  4445. NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
  4446. NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
  4447. NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
  4448. NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
  4449. NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
  4450. NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
  4451. NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
  4452. NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
  4453. NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
  4454. NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
  4455. NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
  4456. NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
  4457. NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
  4458. NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
  4459. NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
  4460. NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
  4461. NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
  4462. NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
  4463. NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
  4464. NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
  4465. NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
  4466. NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
  4467. NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
  4468. NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
  4469. NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
  4470. NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
  4471. NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
  4472. NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
  4473. NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
  4474. NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
  4475. NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
  4476. NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
  4477. NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
  4478. NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
  4479. NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
  4480. NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
  4481. NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
  4482. NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
  4483. NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
  4484. NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
  4485. NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
  4486. NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
  4487. NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
  4488. NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
  4489. NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
  4490. NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
  4491. NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
  4492. NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
  4493. NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
  4494. NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
  4495. NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
  4496. NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
  4497. NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
  4498. NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
  4499. NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
  4500. NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
  4501. NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
  4502. NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
  4503. NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
  4504. NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
  4505. NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
  4506. NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
  4507. NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
  4508. NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
  4509. NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
  4510. NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
  4511. NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
  4512. NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
  4513. NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
  4514. NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
  4515. NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
  4516. NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
  4517. NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
  4518. NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
  4519. NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
  4520. NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
  4521. NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
  4522. NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
  4523. NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
  4524. NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
  4525. NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
  4526. NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
  4527. NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
  4528. NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
  4529. NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
  4530. NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
  4531. NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
  4532. NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
  4533. NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
  4534. NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
  4535. NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
  4536. NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
  4537. NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
  4538. NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
  4539. NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
  4540. NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
  4541. NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
  4542. NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
  4543. NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
  4544. NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
  4545. NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
  4546. NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
  4547. NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
  4548. NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
  4549. NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
  4550. NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
  4551. NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
  4552. NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
  4553. NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
  4554. NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
  4555. NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
  4556. NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
  4557. NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
  4558. NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
  4559. NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
  4560. NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
  4561. NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
  4562. NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
  4563. NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
  4564. NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
  4565. NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
  4566. NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
  4567. NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
  4568. NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
  4569. NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
  4570. NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
  4571. NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
  4572. NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
  4573. NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
  4574. NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
  4575. NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
  4576. NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
  4577. NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
  4578. NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
  4579. NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
  4580. NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
  4581. NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
  4582. NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
  4583. NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
  4584. NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
  4585. NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
  4586. NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
  4587. NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
  4588. NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
  4589. NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
  4590. NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
  4591. NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
  4592. NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
  4593. NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
  4594. NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
  4595. NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
  4596. NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
  4597. NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
  4598. NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
  4599. NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
  4600. // FP16 scalar intrinisics go here.
  4601. NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
  4602. NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
  4603. NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
  4604. NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
  4605. NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
  4606. NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
  4607. NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
  4608. NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
  4609. NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
  4610. NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
  4611. NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
  4612. NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
  4613. NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
  4614. NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
  4615. NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
  4616. NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
  4617. NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
  4618. NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
  4619. NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
  4620. NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
  4621. NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
  4622. NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
  4623. NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
  4624. NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
  4625. NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
  4626. NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
  4627. NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
  4628. NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
  4629. NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
  4630. NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
  4631. };
  4632. #undef NEONMAP0
  4633. #undef NEONMAP1
  4634. #undef NEONMAP2
  4635. static bool NEONSIMDIntrinsicsProvenSorted = false;
  4636. static bool AArch64SIMDIntrinsicsProvenSorted = false;
  4637. static bool AArch64SISDIntrinsicsProvenSorted = false;
  4638. static const NeonIntrinsicInfo *
  4639. findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
  4640. unsigned BuiltinID, bool &MapProvenSorted) {
  4641. #ifndef NDEBUG
  4642. if (!MapProvenSorted) {
  4643. assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)));
  4644. MapProvenSorted = true;
  4645. }
  4646. #endif
  4647. const NeonIntrinsicInfo *Builtin = llvm::lower_bound(IntrinsicMap, BuiltinID);
  4648. if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
  4649. return Builtin;
  4650. return nullptr;
  4651. }
  4652. Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
  4653. unsigned Modifier,
  4654. llvm::Type *ArgType,
  4655. const CallExpr *E) {
  4656. int VectorSize = 0;
  4657. if (Modifier & Use64BitVectors)
  4658. VectorSize = 64;
  4659. else if (Modifier & Use128BitVectors)
  4660. VectorSize = 128;
  4661. // Return type.
  4662. SmallVector<llvm::Type *, 3> Tys;
  4663. if (Modifier & AddRetType) {
  4664. llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
  4665. if (Modifier & VectorizeRetType)
  4666. Ty = llvm::VectorType::get(
  4667. Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
  4668. Tys.push_back(Ty);
  4669. }
  4670. // Arguments.
  4671. if (Modifier & VectorizeArgTypes) {
  4672. int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
  4673. ArgType = llvm::VectorType::get(ArgType, Elts);
  4674. }
  4675. if (Modifier & (Add1ArgType | Add2ArgTypes))
  4676. Tys.push_back(ArgType);
  4677. if (Modifier & Add2ArgTypes)
  4678. Tys.push_back(ArgType);
  4679. if (Modifier & InventFloatType)
  4680. Tys.push_back(FloatTy);
  4681. return CGM.getIntrinsic(IntrinsicID, Tys);
  4682. }
  4683. static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
  4684. const NeonIntrinsicInfo &SISDInfo,
  4685. SmallVectorImpl<Value *> &Ops,
  4686. const CallExpr *E) {
  4687. unsigned BuiltinID = SISDInfo.BuiltinID;
  4688. unsigned int Int = SISDInfo.LLVMIntrinsic;
  4689. unsigned Modifier = SISDInfo.TypeModifier;
  4690. const char *s = SISDInfo.NameHint;
  4691. switch (BuiltinID) {
  4692. case NEON::BI__builtin_neon_vcled_s64:
  4693. case NEON::BI__builtin_neon_vcled_u64:
  4694. case NEON::BI__builtin_neon_vcles_f32:
  4695. case NEON::BI__builtin_neon_vcled_f64:
  4696. case NEON::BI__builtin_neon_vcltd_s64:
  4697. case NEON::BI__builtin_neon_vcltd_u64:
  4698. case NEON::BI__builtin_neon_vclts_f32:
  4699. case NEON::BI__builtin_neon_vcltd_f64:
  4700. case NEON::BI__builtin_neon_vcales_f32:
  4701. case NEON::BI__builtin_neon_vcaled_f64:
  4702. case NEON::BI__builtin_neon_vcalts_f32:
  4703. case NEON::BI__builtin_neon_vcaltd_f64:
  4704. // Only one direction of comparisons actually exist, cmle is actually a cmge
  4705. // with swapped operands. The table gives us the right intrinsic but we
  4706. // still need to do the swap.
  4707. std::swap(Ops[0], Ops[1]);
  4708. break;
  4709. }
  4710. assert(Int && "Generic code assumes a valid intrinsic");
  4711. // Determine the type(s) of this overloaded AArch64 intrinsic.
  4712. const Expr *Arg = E->getArg(0);
  4713. llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
  4714. Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
  4715. int j = 0;
  4716. ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
  4717. for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
  4718. ai != ae; ++ai, ++j) {
  4719. llvm::Type *ArgTy = ai->getType();
  4720. if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
  4721. ArgTy->getPrimitiveSizeInBits())
  4722. continue;
  4723. assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
  4724. // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
  4725. // it before inserting.
  4726. Ops[j] =
  4727. CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
  4728. Ops[j] =
  4729. CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
  4730. }
  4731. Value *Result = CGF.EmitNeonCall(F, Ops, s);
  4732. llvm::Type *ResultType = CGF.ConvertType(E->getType());
  4733. if (ResultType->getPrimitiveSizeInBits() <
  4734. Result->getType()->getPrimitiveSizeInBits())
  4735. return CGF.Builder.CreateExtractElement(Result, C0);
  4736. return CGF.Builder.CreateBitCast(Result, ResultType, s);
  4737. }
  4738. Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
  4739. unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
  4740. const char *NameHint, unsigned Modifier, const CallExpr *E,
  4741. SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
  4742. llvm::Triple::ArchType Arch) {
  4743. // Get the last argument, which specifies the vector type.
  4744. llvm::APSInt NeonTypeConst;
  4745. const Expr *Arg = E->getArg(E->getNumArgs() - 1);
  4746. if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
  4747. return nullptr;
  4748. // Determine the type of this overloaded NEON intrinsic.
  4749. NeonTypeFlags Type(NeonTypeConst.getZExtValue());
  4750. bool Usgn = Type.isUnsigned();
  4751. bool Quad = Type.isQuad();
  4752. const bool HasLegalHalfType = getTarget().hasLegalHalfType();
  4753. llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType);
  4754. llvm::Type *Ty = VTy;
  4755. if (!Ty)
  4756. return nullptr;
  4757. auto getAlignmentValue32 = [&](Address addr) -> Value* {
  4758. return Builder.getInt32(addr.getAlignment().getQuantity());
  4759. };
  4760. unsigned Int = LLVMIntrinsic;
  4761. if ((Modifier & UnsignedAlts) && !Usgn)
  4762. Int = AltLLVMIntrinsic;
  4763. switch (BuiltinID) {
  4764. default: break;
  4765. case NEON::BI__builtin_neon_vpadd_v:
  4766. case NEON::BI__builtin_neon_vpaddq_v:
  4767. // We don't allow fp/int overloading of intrinsics.
  4768. if (VTy->getElementType()->isFloatingPointTy() &&
  4769. Int == Intrinsic::aarch64_neon_addp)
  4770. Int = Intrinsic::aarch64_neon_faddp;
  4771. break;
  4772. case NEON::BI__builtin_neon_vabs_v:
  4773. case NEON::BI__builtin_neon_vabsq_v:
  4774. if (VTy->getElementType()->isFloatingPointTy())
  4775. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
  4776. return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
  4777. case NEON::BI__builtin_neon_vaddhn_v: {
  4778. llvm::VectorType *SrcTy =
  4779. llvm::VectorType::getExtendedElementVectorType(VTy);
  4780. // %sum = add <4 x i32> %lhs, %rhs
  4781. Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
  4782. Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
  4783. Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
  4784. // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
  4785. Constant *ShiftAmt =
  4786. ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
  4787. Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
  4788. // %res = trunc <4 x i32> %high to <4 x i16>
  4789. return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
  4790. }
  4791. case NEON::BI__builtin_neon_vcale_v:
  4792. case NEON::BI__builtin_neon_vcaleq_v:
  4793. case NEON::BI__builtin_neon_vcalt_v:
  4794. case NEON::BI__builtin_neon_vcaltq_v:
  4795. std::swap(Ops[0], Ops[1]);
  4796. LLVM_FALLTHROUGH;
  4797. case NEON::BI__builtin_neon_vcage_v:
  4798. case NEON::BI__builtin_neon_vcageq_v:
  4799. case NEON::BI__builtin_neon_vcagt_v:
  4800. case NEON::BI__builtin_neon_vcagtq_v: {
  4801. llvm::Type *Ty;
  4802. switch (VTy->getScalarSizeInBits()) {
  4803. default: llvm_unreachable("unexpected type");
  4804. case 32:
  4805. Ty = FloatTy;
  4806. break;
  4807. case 64:
  4808. Ty = DoubleTy;
  4809. break;
  4810. case 16:
  4811. Ty = HalfTy;
  4812. break;
  4813. }
  4814. llvm::Type *VecFlt = llvm::VectorType::get(Ty, VTy->getNumElements());
  4815. llvm::Type *Tys[] = { VTy, VecFlt };
  4816. Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
  4817. return EmitNeonCall(F, Ops, NameHint);
  4818. }
  4819. case NEON::BI__builtin_neon_vceqz_v:
  4820. case NEON::BI__builtin_neon_vceqzq_v:
  4821. return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
  4822. ICmpInst::ICMP_EQ, "vceqz");
  4823. case NEON::BI__builtin_neon_vcgez_v:
  4824. case NEON::BI__builtin_neon_vcgezq_v:
  4825. return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
  4826. ICmpInst::ICMP_SGE, "vcgez");
  4827. case NEON::BI__builtin_neon_vclez_v:
  4828. case NEON::BI__builtin_neon_vclezq_v:
  4829. return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
  4830. ICmpInst::ICMP_SLE, "vclez");
  4831. case NEON::BI__builtin_neon_vcgtz_v:
  4832. case NEON::BI__builtin_neon_vcgtzq_v:
  4833. return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
  4834. ICmpInst::ICMP_SGT, "vcgtz");
  4835. case NEON::BI__builtin_neon_vcltz_v:
  4836. case NEON::BI__builtin_neon_vcltzq_v:
  4837. return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
  4838. ICmpInst::ICMP_SLT, "vcltz");
  4839. case NEON::BI__builtin_neon_vclz_v:
  4840. case NEON::BI__builtin_neon_vclzq_v:
  4841. // We generate target-independent intrinsic, which needs a second argument
  4842. // for whether or not clz of zero is undefined; on ARM it isn't.
  4843. Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
  4844. break;
  4845. case NEON::BI__builtin_neon_vcvt_f32_v:
  4846. case NEON::BI__builtin_neon_vcvtq_f32_v:
  4847. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  4848. Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
  4849. HasLegalHalfType);
  4850. return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
  4851. : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
  4852. case NEON::BI__builtin_neon_vcvt_f16_v:
  4853. case NEON::BI__builtin_neon_vcvtq_f16_v:
  4854. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  4855. Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
  4856. HasLegalHalfType);
  4857. return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
  4858. : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
  4859. case NEON::BI__builtin_neon_vcvt_n_f16_v:
  4860. case NEON::BI__builtin_neon_vcvt_n_f32_v:
  4861. case NEON::BI__builtin_neon_vcvt_n_f64_v:
  4862. case NEON::BI__builtin_neon_vcvtq_n_f16_v:
  4863. case NEON::BI__builtin_neon_vcvtq_n_f32_v:
  4864. case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
  4865. llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
  4866. Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
  4867. Function *F = CGM.getIntrinsic(Int, Tys);
  4868. return EmitNeonCall(F, Ops, "vcvt_n");
  4869. }
  4870. case NEON::BI__builtin_neon_vcvt_n_s16_v:
  4871. case NEON::BI__builtin_neon_vcvt_n_s32_v:
  4872. case NEON::BI__builtin_neon_vcvt_n_u16_v:
  4873. case NEON::BI__builtin_neon_vcvt_n_u32_v:
  4874. case NEON::BI__builtin_neon_vcvt_n_s64_v:
  4875. case NEON::BI__builtin_neon_vcvt_n_u64_v:
  4876. case NEON::BI__builtin_neon_vcvtq_n_s16_v:
  4877. case NEON::BI__builtin_neon_vcvtq_n_s32_v:
  4878. case NEON::BI__builtin_neon_vcvtq_n_u16_v:
  4879. case NEON::BI__builtin_neon_vcvtq_n_u32_v:
  4880. case NEON::BI__builtin_neon_vcvtq_n_s64_v:
  4881. case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
  4882. llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
  4883. Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
  4884. return EmitNeonCall(F, Ops, "vcvt_n");
  4885. }
  4886. case NEON::BI__builtin_neon_vcvt_s32_v:
  4887. case NEON::BI__builtin_neon_vcvt_u32_v:
  4888. case NEON::BI__builtin_neon_vcvt_s64_v:
  4889. case NEON::BI__builtin_neon_vcvt_u64_v:
  4890. case NEON::BI__builtin_neon_vcvt_s16_v:
  4891. case NEON::BI__builtin_neon_vcvt_u16_v:
  4892. case NEON::BI__builtin_neon_vcvtq_s32_v:
  4893. case NEON::BI__builtin_neon_vcvtq_u32_v:
  4894. case NEON::BI__builtin_neon_vcvtq_s64_v:
  4895. case NEON::BI__builtin_neon_vcvtq_u64_v:
  4896. case NEON::BI__builtin_neon_vcvtq_s16_v:
  4897. case NEON::BI__builtin_neon_vcvtq_u16_v: {
  4898. Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
  4899. return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
  4900. : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
  4901. }
  4902. case NEON::BI__builtin_neon_vcvta_s16_v:
  4903. case NEON::BI__builtin_neon_vcvta_s32_v:
  4904. case NEON::BI__builtin_neon_vcvta_s64_v:
  4905. case NEON::BI__builtin_neon_vcvta_u16_v:
  4906. case NEON::BI__builtin_neon_vcvta_u32_v:
  4907. case NEON::BI__builtin_neon_vcvta_u64_v:
  4908. case NEON::BI__builtin_neon_vcvtaq_s16_v:
  4909. case NEON::BI__builtin_neon_vcvtaq_s32_v:
  4910. case NEON::BI__builtin_neon_vcvtaq_s64_v:
  4911. case NEON::BI__builtin_neon_vcvtaq_u16_v:
  4912. case NEON::BI__builtin_neon_vcvtaq_u32_v:
  4913. case NEON::BI__builtin_neon_vcvtaq_u64_v:
  4914. case NEON::BI__builtin_neon_vcvtn_s16_v:
  4915. case NEON::BI__builtin_neon_vcvtn_s32_v:
  4916. case NEON::BI__builtin_neon_vcvtn_s64_v:
  4917. case NEON::BI__builtin_neon_vcvtn_u16_v:
  4918. case NEON::BI__builtin_neon_vcvtn_u32_v:
  4919. case NEON::BI__builtin_neon_vcvtn_u64_v:
  4920. case NEON::BI__builtin_neon_vcvtnq_s16_v:
  4921. case NEON::BI__builtin_neon_vcvtnq_s32_v:
  4922. case NEON::BI__builtin_neon_vcvtnq_s64_v:
  4923. case NEON::BI__builtin_neon_vcvtnq_u16_v:
  4924. case NEON::BI__builtin_neon_vcvtnq_u32_v:
  4925. case NEON::BI__builtin_neon_vcvtnq_u64_v:
  4926. case NEON::BI__builtin_neon_vcvtp_s16_v:
  4927. case NEON::BI__builtin_neon_vcvtp_s32_v:
  4928. case NEON::BI__builtin_neon_vcvtp_s64_v:
  4929. case NEON::BI__builtin_neon_vcvtp_u16_v:
  4930. case NEON::BI__builtin_neon_vcvtp_u32_v:
  4931. case NEON::BI__builtin_neon_vcvtp_u64_v:
  4932. case NEON::BI__builtin_neon_vcvtpq_s16_v:
  4933. case NEON::BI__builtin_neon_vcvtpq_s32_v:
  4934. case NEON::BI__builtin_neon_vcvtpq_s64_v:
  4935. case NEON::BI__builtin_neon_vcvtpq_u16_v:
  4936. case NEON::BI__builtin_neon_vcvtpq_u32_v:
  4937. case NEON::BI__builtin_neon_vcvtpq_u64_v:
  4938. case NEON::BI__builtin_neon_vcvtm_s16_v:
  4939. case NEON::BI__builtin_neon_vcvtm_s32_v:
  4940. case NEON::BI__builtin_neon_vcvtm_s64_v:
  4941. case NEON::BI__builtin_neon_vcvtm_u16_v:
  4942. case NEON::BI__builtin_neon_vcvtm_u32_v:
  4943. case NEON::BI__builtin_neon_vcvtm_u64_v:
  4944. case NEON::BI__builtin_neon_vcvtmq_s16_v:
  4945. case NEON::BI__builtin_neon_vcvtmq_s32_v:
  4946. case NEON::BI__builtin_neon_vcvtmq_s64_v:
  4947. case NEON::BI__builtin_neon_vcvtmq_u16_v:
  4948. case NEON::BI__builtin_neon_vcvtmq_u32_v:
  4949. case NEON::BI__builtin_neon_vcvtmq_u64_v: {
  4950. llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
  4951. return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
  4952. }
  4953. case NEON::BI__builtin_neon_vext_v:
  4954. case NEON::BI__builtin_neon_vextq_v: {
  4955. int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
  4956. SmallVector<uint32_t, 16> Indices;
  4957. for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
  4958. Indices.push_back(i+CV);
  4959. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  4960. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  4961. return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
  4962. }
  4963. case NEON::BI__builtin_neon_vfma_v:
  4964. case NEON::BI__builtin_neon_vfmaq_v: {
  4965. Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
  4966. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  4967. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  4968. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  4969. // NEON intrinsic puts accumulator first, unlike the LLVM fma.
  4970. return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
  4971. }
  4972. case NEON::BI__builtin_neon_vld1_v:
  4973. case NEON::BI__builtin_neon_vld1q_v: {
  4974. llvm::Type *Tys[] = {Ty, Int8PtrTy};
  4975. Ops.push_back(getAlignmentValue32(PtrOp0));
  4976. return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
  4977. }
  4978. case NEON::BI__builtin_neon_vld1_x2_v:
  4979. case NEON::BI__builtin_neon_vld1q_x2_v:
  4980. case NEON::BI__builtin_neon_vld1_x3_v:
  4981. case NEON::BI__builtin_neon_vld1q_x3_v:
  4982. case NEON::BI__builtin_neon_vld1_x4_v:
  4983. case NEON::BI__builtin_neon_vld1q_x4_v: {
  4984. llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
  4985. Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
  4986. llvm::Type *Tys[2] = { VTy, PTy };
  4987. Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
  4988. Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
  4989. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  4990. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  4991. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  4992. }
  4993. case NEON::BI__builtin_neon_vld2_v:
  4994. case NEON::BI__builtin_neon_vld2q_v:
  4995. case NEON::BI__builtin_neon_vld3_v:
  4996. case NEON::BI__builtin_neon_vld3q_v:
  4997. case NEON::BI__builtin_neon_vld4_v:
  4998. case NEON::BI__builtin_neon_vld4q_v:
  4999. case NEON::BI__builtin_neon_vld2_dup_v:
  5000. case NEON::BI__builtin_neon_vld2q_dup_v:
  5001. case NEON::BI__builtin_neon_vld3_dup_v:
  5002. case NEON::BI__builtin_neon_vld3q_dup_v:
  5003. case NEON::BI__builtin_neon_vld4_dup_v:
  5004. case NEON::BI__builtin_neon_vld4q_dup_v: {
  5005. llvm::Type *Tys[] = {Ty, Int8PtrTy};
  5006. Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
  5007. Value *Align = getAlignmentValue32(PtrOp1);
  5008. Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
  5009. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  5010. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  5011. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  5012. }
  5013. case NEON::BI__builtin_neon_vld1_dup_v:
  5014. case NEON::BI__builtin_neon_vld1q_dup_v: {
  5015. Value *V = UndefValue::get(Ty);
  5016. Ty = llvm::PointerType::getUnqual(VTy->getElementType());
  5017. PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
  5018. LoadInst *Ld = Builder.CreateLoad(PtrOp0);
  5019. llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
  5020. Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
  5021. return EmitNeonSplat(Ops[0], CI);
  5022. }
  5023. case NEON::BI__builtin_neon_vld2_lane_v:
  5024. case NEON::BI__builtin_neon_vld2q_lane_v:
  5025. case NEON::BI__builtin_neon_vld3_lane_v:
  5026. case NEON::BI__builtin_neon_vld3q_lane_v:
  5027. case NEON::BI__builtin_neon_vld4_lane_v:
  5028. case NEON::BI__builtin_neon_vld4q_lane_v: {
  5029. llvm::Type *Tys[] = {Ty, Int8PtrTy};
  5030. Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
  5031. for (unsigned I = 2; I < Ops.size() - 1; ++I)
  5032. Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
  5033. Ops.push_back(getAlignmentValue32(PtrOp1));
  5034. Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
  5035. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  5036. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  5037. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  5038. }
  5039. case NEON::BI__builtin_neon_vmovl_v: {
  5040. llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
  5041. Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
  5042. if (Usgn)
  5043. return Builder.CreateZExt(Ops[0], Ty, "vmovl");
  5044. return Builder.CreateSExt(Ops[0], Ty, "vmovl");
  5045. }
  5046. case NEON::BI__builtin_neon_vmovn_v: {
  5047. llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
  5048. Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
  5049. return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
  5050. }
  5051. case NEON::BI__builtin_neon_vmull_v:
  5052. // FIXME: the integer vmull operations could be emitted in terms of pure
  5053. // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
  5054. // hoisting the exts outside loops. Until global ISel comes along that can
  5055. // see through such movement this leads to bad CodeGen. So we need an
  5056. // intrinsic for now.
  5057. Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
  5058. Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
  5059. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
  5060. case NEON::BI__builtin_neon_vpadal_v:
  5061. case NEON::BI__builtin_neon_vpadalq_v: {
  5062. // The source operand type has twice as many elements of half the size.
  5063. unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
  5064. llvm::Type *EltTy =
  5065. llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
  5066. llvm::Type *NarrowTy =
  5067. llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
  5068. llvm::Type *Tys[2] = { Ty, NarrowTy };
  5069. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
  5070. }
  5071. case NEON::BI__builtin_neon_vpaddl_v:
  5072. case NEON::BI__builtin_neon_vpaddlq_v: {
  5073. // The source operand type has twice as many elements of half the size.
  5074. unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
  5075. llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
  5076. llvm::Type *NarrowTy =
  5077. llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
  5078. llvm::Type *Tys[2] = { Ty, NarrowTy };
  5079. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
  5080. }
  5081. case NEON::BI__builtin_neon_vqdmlal_v:
  5082. case NEON::BI__builtin_neon_vqdmlsl_v: {
  5083. SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
  5084. Ops[1] =
  5085. EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
  5086. Ops.resize(2);
  5087. return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
  5088. }
  5089. case NEON::BI__builtin_neon_vqshl_n_v:
  5090. case NEON::BI__builtin_neon_vqshlq_n_v:
  5091. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
  5092. 1, false);
  5093. case NEON::BI__builtin_neon_vqshlu_n_v:
  5094. case NEON::BI__builtin_neon_vqshluq_n_v:
  5095. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
  5096. 1, false);
  5097. case NEON::BI__builtin_neon_vrecpe_v:
  5098. case NEON::BI__builtin_neon_vrecpeq_v:
  5099. case NEON::BI__builtin_neon_vrsqrte_v:
  5100. case NEON::BI__builtin_neon_vrsqrteq_v:
  5101. Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
  5102. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
  5103. case NEON::BI__builtin_neon_vrndi_v:
  5104. case NEON::BI__builtin_neon_vrndiq_v:
  5105. Int = Intrinsic::nearbyint;
  5106. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
  5107. case NEON::BI__builtin_neon_vrshr_n_v:
  5108. case NEON::BI__builtin_neon_vrshrq_n_v:
  5109. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
  5110. 1, true);
  5111. case NEON::BI__builtin_neon_vshl_n_v:
  5112. case NEON::BI__builtin_neon_vshlq_n_v:
  5113. Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
  5114. return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
  5115. "vshl_n");
  5116. case NEON::BI__builtin_neon_vshll_n_v: {
  5117. llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
  5118. Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
  5119. if (Usgn)
  5120. Ops[0] = Builder.CreateZExt(Ops[0], VTy);
  5121. else
  5122. Ops[0] = Builder.CreateSExt(Ops[0], VTy);
  5123. Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
  5124. return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
  5125. }
  5126. case NEON::BI__builtin_neon_vshrn_n_v: {
  5127. llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
  5128. Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
  5129. Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
  5130. if (Usgn)
  5131. Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
  5132. else
  5133. Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
  5134. return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
  5135. }
  5136. case NEON::BI__builtin_neon_vshr_n_v:
  5137. case NEON::BI__builtin_neon_vshrq_n_v:
  5138. return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
  5139. case NEON::BI__builtin_neon_vst1_v:
  5140. case NEON::BI__builtin_neon_vst1q_v:
  5141. case NEON::BI__builtin_neon_vst2_v:
  5142. case NEON::BI__builtin_neon_vst2q_v:
  5143. case NEON::BI__builtin_neon_vst3_v:
  5144. case NEON::BI__builtin_neon_vst3q_v:
  5145. case NEON::BI__builtin_neon_vst4_v:
  5146. case NEON::BI__builtin_neon_vst4q_v:
  5147. case NEON::BI__builtin_neon_vst2_lane_v:
  5148. case NEON::BI__builtin_neon_vst2q_lane_v:
  5149. case NEON::BI__builtin_neon_vst3_lane_v:
  5150. case NEON::BI__builtin_neon_vst3q_lane_v:
  5151. case NEON::BI__builtin_neon_vst4_lane_v:
  5152. case NEON::BI__builtin_neon_vst4q_lane_v: {
  5153. llvm::Type *Tys[] = {Int8PtrTy, Ty};
  5154. Ops.push_back(getAlignmentValue32(PtrOp0));
  5155. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
  5156. }
  5157. case NEON::BI__builtin_neon_vst1_x2_v:
  5158. case NEON::BI__builtin_neon_vst1q_x2_v:
  5159. case NEON::BI__builtin_neon_vst1_x3_v:
  5160. case NEON::BI__builtin_neon_vst1q_x3_v:
  5161. case NEON::BI__builtin_neon_vst1_x4_v:
  5162. case NEON::BI__builtin_neon_vst1q_x4_v: {
  5163. llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
  5164. // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
  5165. // in AArch64 it comes last. We may want to stick to one or another.
  5166. if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) {
  5167. llvm::Type *Tys[2] = { VTy, PTy };
  5168. std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
  5169. return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
  5170. }
  5171. llvm::Type *Tys[2] = { PTy, VTy };
  5172. return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
  5173. }
  5174. case NEON::BI__builtin_neon_vsubhn_v: {
  5175. llvm::VectorType *SrcTy =
  5176. llvm::VectorType::getExtendedElementVectorType(VTy);
  5177. // %sum = add <4 x i32> %lhs, %rhs
  5178. Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
  5179. Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
  5180. Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
  5181. // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
  5182. Constant *ShiftAmt =
  5183. ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
  5184. Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
  5185. // %res = trunc <4 x i32> %high to <4 x i16>
  5186. return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
  5187. }
  5188. case NEON::BI__builtin_neon_vtrn_v:
  5189. case NEON::BI__builtin_neon_vtrnq_v: {
  5190. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
  5191. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  5192. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  5193. Value *SV = nullptr;
  5194. for (unsigned vi = 0; vi != 2; ++vi) {
  5195. SmallVector<uint32_t, 16> Indices;
  5196. for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
  5197. Indices.push_back(i+vi);
  5198. Indices.push_back(i+e+vi);
  5199. }
  5200. Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
  5201. SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
  5202. SV = Builder.CreateDefaultAlignedStore(SV, Addr);
  5203. }
  5204. return SV;
  5205. }
  5206. case NEON::BI__builtin_neon_vtst_v:
  5207. case NEON::BI__builtin_neon_vtstq_v: {
  5208. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  5209. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  5210. Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
  5211. Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
  5212. ConstantAggregateZero::get(Ty));
  5213. return Builder.CreateSExt(Ops[0], Ty, "vtst");
  5214. }
  5215. case NEON::BI__builtin_neon_vuzp_v:
  5216. case NEON::BI__builtin_neon_vuzpq_v: {
  5217. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
  5218. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  5219. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  5220. Value *SV = nullptr;
  5221. for (unsigned vi = 0; vi != 2; ++vi) {
  5222. SmallVector<uint32_t, 16> Indices;
  5223. for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
  5224. Indices.push_back(2*i+vi);
  5225. Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
  5226. SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
  5227. SV = Builder.CreateDefaultAlignedStore(SV, Addr);
  5228. }
  5229. return SV;
  5230. }
  5231. case NEON::BI__builtin_neon_vzip_v:
  5232. case NEON::BI__builtin_neon_vzipq_v: {
  5233. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
  5234. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  5235. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  5236. Value *SV = nullptr;
  5237. for (unsigned vi = 0; vi != 2; ++vi) {
  5238. SmallVector<uint32_t, 16> Indices;
  5239. for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
  5240. Indices.push_back((i + vi*e) >> 1);
  5241. Indices.push_back(((i + vi*e) >> 1)+e);
  5242. }
  5243. Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
  5244. SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
  5245. SV = Builder.CreateDefaultAlignedStore(SV, Addr);
  5246. }
  5247. return SV;
  5248. }
  5249. case NEON::BI__builtin_neon_vdot_v:
  5250. case NEON::BI__builtin_neon_vdotq_v: {
  5251. llvm::Type *InputTy =
  5252. llvm::VectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
  5253. llvm::Type *Tys[2] = { Ty, InputTy };
  5254. Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
  5255. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
  5256. }
  5257. case NEON::BI__builtin_neon_vfmlal_low_v:
  5258. case NEON::BI__builtin_neon_vfmlalq_low_v: {
  5259. llvm::Type *InputTy =
  5260. llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
  5261. llvm::Type *Tys[2] = { Ty, InputTy };
  5262. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
  5263. }
  5264. case NEON::BI__builtin_neon_vfmlsl_low_v:
  5265. case NEON::BI__builtin_neon_vfmlslq_low_v: {
  5266. llvm::Type *InputTy =
  5267. llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
  5268. llvm::Type *Tys[2] = { Ty, InputTy };
  5269. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
  5270. }
  5271. case NEON::BI__builtin_neon_vfmlal_high_v:
  5272. case NEON::BI__builtin_neon_vfmlalq_high_v: {
  5273. llvm::Type *InputTy =
  5274. llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
  5275. llvm::Type *Tys[2] = { Ty, InputTy };
  5276. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
  5277. }
  5278. case NEON::BI__builtin_neon_vfmlsl_high_v:
  5279. case NEON::BI__builtin_neon_vfmlslq_high_v: {
  5280. llvm::Type *InputTy =
  5281. llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
  5282. llvm::Type *Tys[2] = { Ty, InputTy };
  5283. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
  5284. }
  5285. }
  5286. assert(Int && "Expected valid intrinsic number");
  5287. // Determine the type(s) of this overloaded AArch64 intrinsic.
  5288. Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
  5289. Value *Result = EmitNeonCall(F, Ops, NameHint);
  5290. llvm::Type *ResultType = ConvertType(E->getType());
  5291. // AArch64 intrinsic one-element vector type cast to
  5292. // scalar type expected by the builtin
  5293. return Builder.CreateBitCast(Result, ResultType, NameHint);
  5294. }
  5295. Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
  5296. Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
  5297. const CmpInst::Predicate Ip, const Twine &Name) {
  5298. llvm::Type *OTy = Op->getType();
  5299. // FIXME: this is utterly horrific. We should not be looking at previous
  5300. // codegen context to find out what needs doing. Unfortunately TableGen
  5301. // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
  5302. // (etc).
  5303. if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
  5304. OTy = BI->getOperand(0)->getType();
  5305. Op = Builder.CreateBitCast(Op, OTy);
  5306. if (OTy->getScalarType()->isFloatingPointTy()) {
  5307. Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
  5308. } else {
  5309. Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
  5310. }
  5311. return Builder.CreateSExt(Op, Ty, Name);
  5312. }
  5313. static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
  5314. Value *ExtOp, Value *IndexOp,
  5315. llvm::Type *ResTy, unsigned IntID,
  5316. const char *Name) {
  5317. SmallVector<Value *, 2> TblOps;
  5318. if (ExtOp)
  5319. TblOps.push_back(ExtOp);
  5320. // Build a vector containing sequential number like (0, 1, 2, ..., 15)
  5321. SmallVector<uint32_t, 16> Indices;
  5322. llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
  5323. for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
  5324. Indices.push_back(2*i);
  5325. Indices.push_back(2*i+1);
  5326. }
  5327. int PairPos = 0, End = Ops.size() - 1;
  5328. while (PairPos < End) {
  5329. TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
  5330. Ops[PairPos+1], Indices,
  5331. Name));
  5332. PairPos += 2;
  5333. }
  5334. // If there's an odd number of 64-bit lookup table, fill the high 64-bit
  5335. // of the 128-bit lookup table with zero.
  5336. if (PairPos == End) {
  5337. Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
  5338. TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
  5339. ZeroTbl, Indices, Name));
  5340. }
  5341. Function *TblF;
  5342. TblOps.push_back(IndexOp);
  5343. TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
  5344. return CGF.EmitNeonCall(TblF, TblOps, Name);
  5345. }
  5346. Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
  5347. unsigned Value;
  5348. switch (BuiltinID) {
  5349. default:
  5350. return nullptr;
  5351. case ARM::BI__builtin_arm_nop:
  5352. Value = 0;
  5353. break;
  5354. case ARM::BI__builtin_arm_yield:
  5355. case ARM::BI__yield:
  5356. Value = 1;
  5357. break;
  5358. case ARM::BI__builtin_arm_wfe:
  5359. case ARM::BI__wfe:
  5360. Value = 2;
  5361. break;
  5362. case ARM::BI__builtin_arm_wfi:
  5363. case ARM::BI__wfi:
  5364. Value = 3;
  5365. break;
  5366. case ARM::BI__builtin_arm_sev:
  5367. case ARM::BI__sev:
  5368. Value = 4;
  5369. break;
  5370. case ARM::BI__builtin_arm_sevl:
  5371. case ARM::BI__sevl:
  5372. Value = 5;
  5373. break;
  5374. }
  5375. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
  5376. llvm::ConstantInt::get(Int32Ty, Value));
  5377. }
  5378. // Generates the IR for the read/write special register builtin,
  5379. // ValueType is the type of the value that is to be written or read,
  5380. // RegisterType is the type of the register being written to or read from.
  5381. static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
  5382. const CallExpr *E,
  5383. llvm::Type *RegisterType,
  5384. llvm::Type *ValueType,
  5385. bool IsRead,
  5386. StringRef SysReg = "") {
  5387. // write and register intrinsics only support 32 and 64 bit operations.
  5388. assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
  5389. && "Unsupported size for register.");
  5390. CodeGen::CGBuilderTy &Builder = CGF.Builder;
  5391. CodeGen::CodeGenModule &CGM = CGF.CGM;
  5392. LLVMContext &Context = CGM.getLLVMContext();
  5393. if (SysReg.empty()) {
  5394. const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
  5395. SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
  5396. }
  5397. llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
  5398. llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
  5399. llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
  5400. llvm::Type *Types[] = { RegisterType };
  5401. bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
  5402. assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
  5403. && "Can't fit 64-bit value in 32-bit register");
  5404. if (IsRead) {
  5405. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
  5406. llvm::Value *Call = Builder.CreateCall(F, Metadata);
  5407. if (MixedTypes)
  5408. // Read into 64 bit register and then truncate result to 32 bit.
  5409. return Builder.CreateTrunc(Call, ValueType);
  5410. if (ValueType->isPointerTy())
  5411. // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
  5412. return Builder.CreateIntToPtr(Call, ValueType);
  5413. return Call;
  5414. }
  5415. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
  5416. llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
  5417. if (MixedTypes) {
  5418. // Extend 32 bit write value to 64 bit to pass to write.
  5419. ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
  5420. return Builder.CreateCall(F, { Metadata, ArgValue });
  5421. }
  5422. if (ValueType->isPointerTy()) {
  5423. // Have VoidPtrTy ArgValue but want to return an i32/i64.
  5424. ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
  5425. return Builder.CreateCall(F, { Metadata, ArgValue });
  5426. }
  5427. return Builder.CreateCall(F, { Metadata, ArgValue });
  5428. }
  5429. /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
  5430. /// argument that specifies the vector type.
  5431. static bool HasExtraNeonArgument(unsigned BuiltinID) {
  5432. switch (BuiltinID) {
  5433. default: break;
  5434. case NEON::BI__builtin_neon_vget_lane_i8:
  5435. case NEON::BI__builtin_neon_vget_lane_i16:
  5436. case NEON::BI__builtin_neon_vget_lane_i32:
  5437. case NEON::BI__builtin_neon_vget_lane_i64:
  5438. case NEON::BI__builtin_neon_vget_lane_f32:
  5439. case NEON::BI__builtin_neon_vgetq_lane_i8:
  5440. case NEON::BI__builtin_neon_vgetq_lane_i16:
  5441. case NEON::BI__builtin_neon_vgetq_lane_i32:
  5442. case NEON::BI__builtin_neon_vgetq_lane_i64:
  5443. case NEON::BI__builtin_neon_vgetq_lane_f32:
  5444. case NEON::BI__builtin_neon_vset_lane_i8:
  5445. case NEON::BI__builtin_neon_vset_lane_i16:
  5446. case NEON::BI__builtin_neon_vset_lane_i32:
  5447. case NEON::BI__builtin_neon_vset_lane_i64:
  5448. case NEON::BI__builtin_neon_vset_lane_f32:
  5449. case NEON::BI__builtin_neon_vsetq_lane_i8:
  5450. case NEON::BI__builtin_neon_vsetq_lane_i16:
  5451. case NEON::BI__builtin_neon_vsetq_lane_i32:
  5452. case NEON::BI__builtin_neon_vsetq_lane_i64:
  5453. case NEON::BI__builtin_neon_vsetq_lane_f32:
  5454. case NEON::BI__builtin_neon_vsha1h_u32:
  5455. case NEON::BI__builtin_neon_vsha1cq_u32:
  5456. case NEON::BI__builtin_neon_vsha1pq_u32:
  5457. case NEON::BI__builtin_neon_vsha1mq_u32:
  5458. case clang::ARM::BI_MoveToCoprocessor:
  5459. case clang::ARM::BI_MoveToCoprocessor2:
  5460. return false;
  5461. }
  5462. return true;
  5463. }
  5464. Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
  5465. const CallExpr *E,
  5466. llvm::Triple::ArchType Arch) {
  5467. if (auto Hint = GetValueForARMHint(BuiltinID))
  5468. return Hint;
  5469. if (BuiltinID == ARM::BI__emit) {
  5470. bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
  5471. llvm::FunctionType *FTy =
  5472. llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
  5473. Expr::EvalResult Result;
  5474. if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
  5475. llvm_unreachable("Sema will ensure that the parameter is constant");
  5476. llvm::APSInt Value = Result.Val.getInt();
  5477. uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
  5478. llvm::InlineAsm *Emit =
  5479. IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
  5480. /*hasSideEffects=*/true)
  5481. : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
  5482. /*hasSideEffects=*/true);
  5483. return Builder.CreateCall(Emit);
  5484. }
  5485. if (BuiltinID == ARM::BI__builtin_arm_dbg) {
  5486. Value *Option = EmitScalarExpr(E->getArg(0));
  5487. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
  5488. }
  5489. if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
  5490. Value *Address = EmitScalarExpr(E->getArg(0));
  5491. Value *RW = EmitScalarExpr(E->getArg(1));
  5492. Value *IsData = EmitScalarExpr(E->getArg(2));
  5493. // Locality is not supported on ARM target
  5494. Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
  5495. Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
  5496. return Builder.CreateCall(F, {Address, RW, Locality, IsData});
  5497. }
  5498. if (BuiltinID == ARM::BI__builtin_arm_rbit) {
  5499. llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
  5500. return Builder.CreateCall(
  5501. CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
  5502. }
  5503. if (BuiltinID == ARM::BI__clear_cache) {
  5504. assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
  5505. const FunctionDecl *FD = E->getDirectCallee();
  5506. Value *Ops[2];
  5507. for (unsigned i = 0; i < 2; i++)
  5508. Ops[i] = EmitScalarExpr(E->getArg(i));
  5509. llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
  5510. llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
  5511. StringRef Name = FD->getName();
  5512. return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
  5513. }
  5514. if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
  5515. BuiltinID == ARM::BI__builtin_arm_mcrr2) {
  5516. Function *F;
  5517. switch (BuiltinID) {
  5518. default: llvm_unreachable("unexpected builtin");
  5519. case ARM::BI__builtin_arm_mcrr:
  5520. F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
  5521. break;
  5522. case ARM::BI__builtin_arm_mcrr2:
  5523. F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
  5524. break;
  5525. }
  5526. // MCRR{2} instruction has 5 operands but
  5527. // the intrinsic has 4 because Rt and Rt2
  5528. // are represented as a single unsigned 64
  5529. // bit integer in the intrinsic definition
  5530. // but internally it's represented as 2 32
  5531. // bit integers.
  5532. Value *Coproc = EmitScalarExpr(E->getArg(0));
  5533. Value *Opc1 = EmitScalarExpr(E->getArg(1));
  5534. Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
  5535. Value *CRm = EmitScalarExpr(E->getArg(3));
  5536. Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
  5537. Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
  5538. Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
  5539. Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
  5540. return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
  5541. }
  5542. if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
  5543. BuiltinID == ARM::BI__builtin_arm_mrrc2) {
  5544. Function *F;
  5545. switch (BuiltinID) {
  5546. default: llvm_unreachable("unexpected builtin");
  5547. case ARM::BI__builtin_arm_mrrc:
  5548. F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
  5549. break;
  5550. case ARM::BI__builtin_arm_mrrc2:
  5551. F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
  5552. break;
  5553. }
  5554. Value *Coproc = EmitScalarExpr(E->getArg(0));
  5555. Value *Opc1 = EmitScalarExpr(E->getArg(1));
  5556. Value *CRm = EmitScalarExpr(E->getArg(2));
  5557. Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
  5558. // Returns an unsigned 64 bit integer, represented
  5559. // as two 32 bit integers.
  5560. Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
  5561. Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
  5562. Rt = Builder.CreateZExt(Rt, Int64Ty);
  5563. Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
  5564. Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
  5565. RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
  5566. RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
  5567. return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
  5568. }
  5569. if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
  5570. ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
  5571. BuiltinID == ARM::BI__builtin_arm_ldaex) &&
  5572. getContext().getTypeSize(E->getType()) == 64) ||
  5573. BuiltinID == ARM::BI__ldrexd) {
  5574. Function *F;
  5575. switch (BuiltinID) {
  5576. default: llvm_unreachable("unexpected builtin");
  5577. case ARM::BI__builtin_arm_ldaex:
  5578. F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
  5579. break;
  5580. case ARM::BI__builtin_arm_ldrexd:
  5581. case ARM::BI__builtin_arm_ldrex:
  5582. case ARM::BI__ldrexd:
  5583. F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
  5584. break;
  5585. }
  5586. Value *LdPtr = EmitScalarExpr(E->getArg(0));
  5587. Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
  5588. "ldrexd");
  5589. Value *Val0 = Builder.CreateExtractValue(Val, 1);
  5590. Value *Val1 = Builder.CreateExtractValue(Val, 0);
  5591. Val0 = Builder.CreateZExt(Val0, Int64Ty);
  5592. Val1 = Builder.CreateZExt(Val1, Int64Ty);
  5593. Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
  5594. Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
  5595. Val = Builder.CreateOr(Val, Val1);
  5596. return Builder.CreateBitCast(Val, ConvertType(E->getType()));
  5597. }
  5598. if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
  5599. BuiltinID == ARM::BI__builtin_arm_ldaex) {
  5600. Value *LoadAddr = EmitScalarExpr(E->getArg(0));
  5601. QualType Ty = E->getType();
  5602. llvm::Type *RealResTy = ConvertType(Ty);
  5603. llvm::Type *PtrTy = llvm::IntegerType::get(
  5604. getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
  5605. LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
  5606. Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
  5607. ? Intrinsic::arm_ldaex
  5608. : Intrinsic::arm_ldrex,
  5609. PtrTy);
  5610. Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
  5611. if (RealResTy->isPointerTy())
  5612. return Builder.CreateIntToPtr(Val, RealResTy);
  5613. else {
  5614. llvm::Type *IntResTy = llvm::IntegerType::get(
  5615. getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
  5616. Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
  5617. return Builder.CreateBitCast(Val, RealResTy);
  5618. }
  5619. }
  5620. if (BuiltinID == ARM::BI__builtin_arm_strexd ||
  5621. ((BuiltinID == ARM::BI__builtin_arm_stlex ||
  5622. BuiltinID == ARM::BI__builtin_arm_strex) &&
  5623. getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
  5624. Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
  5625. ? Intrinsic::arm_stlexd
  5626. : Intrinsic::arm_strexd);
  5627. llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
  5628. Address Tmp = CreateMemTemp(E->getArg(0)->getType());
  5629. Value *Val = EmitScalarExpr(E->getArg(0));
  5630. Builder.CreateStore(Val, Tmp);
  5631. Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
  5632. Val = Builder.CreateLoad(LdPtr);
  5633. Value *Arg0 = Builder.CreateExtractValue(Val, 0);
  5634. Value *Arg1 = Builder.CreateExtractValue(Val, 1);
  5635. Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
  5636. return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
  5637. }
  5638. if (BuiltinID == ARM::BI__builtin_arm_strex ||
  5639. BuiltinID == ARM::BI__builtin_arm_stlex) {
  5640. Value *StoreVal = EmitScalarExpr(E->getArg(0));
  5641. Value *StoreAddr = EmitScalarExpr(E->getArg(1));
  5642. QualType Ty = E->getArg(0)->getType();
  5643. llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
  5644. getContext().getTypeSize(Ty));
  5645. StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
  5646. if (StoreVal->getType()->isPointerTy())
  5647. StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
  5648. else {
  5649. llvm::Type *IntTy = llvm::IntegerType::get(
  5650. getLLVMContext(),
  5651. CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
  5652. StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
  5653. StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
  5654. }
  5655. Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
  5656. ? Intrinsic::arm_stlex
  5657. : Intrinsic::arm_strex,
  5658. StoreAddr->getType());
  5659. return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
  5660. }
  5661. if (BuiltinID == ARM::BI__builtin_arm_clrex) {
  5662. Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
  5663. return Builder.CreateCall(F);
  5664. }
  5665. // CRC32
  5666. Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
  5667. switch (BuiltinID) {
  5668. case ARM::BI__builtin_arm_crc32b:
  5669. CRCIntrinsicID = Intrinsic::arm_crc32b; break;
  5670. case ARM::BI__builtin_arm_crc32cb:
  5671. CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
  5672. case ARM::BI__builtin_arm_crc32h:
  5673. CRCIntrinsicID = Intrinsic::arm_crc32h; break;
  5674. case ARM::BI__builtin_arm_crc32ch:
  5675. CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
  5676. case ARM::BI__builtin_arm_crc32w:
  5677. case ARM::BI__builtin_arm_crc32d:
  5678. CRCIntrinsicID = Intrinsic::arm_crc32w; break;
  5679. case ARM::BI__builtin_arm_crc32cw:
  5680. case ARM::BI__builtin_arm_crc32cd:
  5681. CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
  5682. }
  5683. if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
  5684. Value *Arg0 = EmitScalarExpr(E->getArg(0));
  5685. Value *Arg1 = EmitScalarExpr(E->getArg(1));
  5686. // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
  5687. // intrinsics, hence we need different codegen for these cases.
  5688. if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
  5689. BuiltinID == ARM::BI__builtin_arm_crc32cd) {
  5690. Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
  5691. Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
  5692. Value *Arg1b = Builder.CreateLShr(Arg1, C1);
  5693. Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
  5694. Function *F = CGM.getIntrinsic(CRCIntrinsicID);
  5695. Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
  5696. return Builder.CreateCall(F, {Res, Arg1b});
  5697. } else {
  5698. Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
  5699. Function *F = CGM.getIntrinsic(CRCIntrinsicID);
  5700. return Builder.CreateCall(F, {Arg0, Arg1});
  5701. }
  5702. }
  5703. if (BuiltinID == ARM::BI__builtin_arm_rsr ||
  5704. BuiltinID == ARM::BI__builtin_arm_rsr64 ||
  5705. BuiltinID == ARM::BI__builtin_arm_rsrp ||
  5706. BuiltinID == ARM::BI__builtin_arm_wsr ||
  5707. BuiltinID == ARM::BI__builtin_arm_wsr64 ||
  5708. BuiltinID == ARM::BI__builtin_arm_wsrp) {
  5709. bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
  5710. BuiltinID == ARM::BI__builtin_arm_rsr64 ||
  5711. BuiltinID == ARM::BI__builtin_arm_rsrp;
  5712. bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
  5713. BuiltinID == ARM::BI__builtin_arm_wsrp;
  5714. bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
  5715. BuiltinID == ARM::BI__builtin_arm_wsr64;
  5716. llvm::Type *ValueType;
  5717. llvm::Type *RegisterType;
  5718. if (IsPointerBuiltin) {
  5719. ValueType = VoidPtrTy;
  5720. RegisterType = Int32Ty;
  5721. } else if (Is64Bit) {
  5722. ValueType = RegisterType = Int64Ty;
  5723. } else {
  5724. ValueType = RegisterType = Int32Ty;
  5725. }
  5726. return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
  5727. }
  5728. // Find out if any arguments are required to be integer constant
  5729. // expressions.
  5730. unsigned ICEArguments = 0;
  5731. ASTContext::GetBuiltinTypeError Error;
  5732. getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
  5733. assert(Error == ASTContext::GE_None && "Should not codegen an error");
  5734. auto getAlignmentValue32 = [&](Address addr) -> Value* {
  5735. return Builder.getInt32(addr.getAlignment().getQuantity());
  5736. };
  5737. Address PtrOp0 = Address::invalid();
  5738. Address PtrOp1 = Address::invalid();
  5739. SmallVector<Value*, 4> Ops;
  5740. bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
  5741. unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
  5742. for (unsigned i = 0, e = NumArgs; i != e; i++) {
  5743. if (i == 0) {
  5744. switch (BuiltinID) {
  5745. case NEON::BI__builtin_neon_vld1_v:
  5746. case NEON::BI__builtin_neon_vld1q_v:
  5747. case NEON::BI__builtin_neon_vld1q_lane_v:
  5748. case NEON::BI__builtin_neon_vld1_lane_v:
  5749. case NEON::BI__builtin_neon_vld1_dup_v:
  5750. case NEON::BI__builtin_neon_vld1q_dup_v:
  5751. case NEON::BI__builtin_neon_vst1_v:
  5752. case NEON::BI__builtin_neon_vst1q_v:
  5753. case NEON::BI__builtin_neon_vst1q_lane_v:
  5754. case NEON::BI__builtin_neon_vst1_lane_v:
  5755. case NEON::BI__builtin_neon_vst2_v:
  5756. case NEON::BI__builtin_neon_vst2q_v:
  5757. case NEON::BI__builtin_neon_vst2_lane_v:
  5758. case NEON::BI__builtin_neon_vst2q_lane_v:
  5759. case NEON::BI__builtin_neon_vst3_v:
  5760. case NEON::BI__builtin_neon_vst3q_v:
  5761. case NEON::BI__builtin_neon_vst3_lane_v:
  5762. case NEON::BI__builtin_neon_vst3q_lane_v:
  5763. case NEON::BI__builtin_neon_vst4_v:
  5764. case NEON::BI__builtin_neon_vst4q_v:
  5765. case NEON::BI__builtin_neon_vst4_lane_v:
  5766. case NEON::BI__builtin_neon_vst4q_lane_v:
  5767. // Get the alignment for the argument in addition to the value;
  5768. // we'll use it later.
  5769. PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
  5770. Ops.push_back(PtrOp0.getPointer());
  5771. continue;
  5772. }
  5773. }
  5774. if (i == 1) {
  5775. switch (BuiltinID) {
  5776. case NEON::BI__builtin_neon_vld2_v:
  5777. case NEON::BI__builtin_neon_vld2q_v:
  5778. case NEON::BI__builtin_neon_vld3_v:
  5779. case NEON::BI__builtin_neon_vld3q_v:
  5780. case NEON::BI__builtin_neon_vld4_v:
  5781. case NEON::BI__builtin_neon_vld4q_v:
  5782. case NEON::BI__builtin_neon_vld2_lane_v:
  5783. case NEON::BI__builtin_neon_vld2q_lane_v:
  5784. case NEON::BI__builtin_neon_vld3_lane_v:
  5785. case NEON::BI__builtin_neon_vld3q_lane_v:
  5786. case NEON::BI__builtin_neon_vld4_lane_v:
  5787. case NEON::BI__builtin_neon_vld4q_lane_v:
  5788. case NEON::BI__builtin_neon_vld2_dup_v:
  5789. case NEON::BI__builtin_neon_vld2q_dup_v:
  5790. case NEON::BI__builtin_neon_vld3_dup_v:
  5791. case NEON::BI__builtin_neon_vld3q_dup_v:
  5792. case NEON::BI__builtin_neon_vld4_dup_v:
  5793. case NEON::BI__builtin_neon_vld4q_dup_v:
  5794. // Get the alignment for the argument in addition to the value;
  5795. // we'll use it later.
  5796. PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
  5797. Ops.push_back(PtrOp1.getPointer());
  5798. continue;
  5799. }
  5800. }
  5801. if ((ICEArguments & (1 << i)) == 0) {
  5802. Ops.push_back(EmitScalarExpr(E->getArg(i)));
  5803. } else {
  5804. // If this is required to be a constant, constant fold it so that we know
  5805. // that the generated intrinsic gets a ConstantInt.
  5806. llvm::APSInt Result;
  5807. bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
  5808. assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
  5809. Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
  5810. }
  5811. }
  5812. switch (BuiltinID) {
  5813. default: break;
  5814. case NEON::BI__builtin_neon_vget_lane_i8:
  5815. case NEON::BI__builtin_neon_vget_lane_i16:
  5816. case NEON::BI__builtin_neon_vget_lane_i32:
  5817. case NEON::BI__builtin_neon_vget_lane_i64:
  5818. case NEON::BI__builtin_neon_vget_lane_f32:
  5819. case NEON::BI__builtin_neon_vgetq_lane_i8:
  5820. case NEON::BI__builtin_neon_vgetq_lane_i16:
  5821. case NEON::BI__builtin_neon_vgetq_lane_i32:
  5822. case NEON::BI__builtin_neon_vgetq_lane_i64:
  5823. case NEON::BI__builtin_neon_vgetq_lane_f32:
  5824. return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
  5825. case NEON::BI__builtin_neon_vrndns_f32: {
  5826. Value *Arg = EmitScalarExpr(E->getArg(0));
  5827. llvm::Type *Tys[] = {Arg->getType()};
  5828. Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
  5829. return Builder.CreateCall(F, {Arg}, "vrndn"); }
  5830. case NEON::BI__builtin_neon_vset_lane_i8:
  5831. case NEON::BI__builtin_neon_vset_lane_i16:
  5832. case NEON::BI__builtin_neon_vset_lane_i32:
  5833. case NEON::BI__builtin_neon_vset_lane_i64:
  5834. case NEON::BI__builtin_neon_vset_lane_f32:
  5835. case NEON::BI__builtin_neon_vsetq_lane_i8:
  5836. case NEON::BI__builtin_neon_vsetq_lane_i16:
  5837. case NEON::BI__builtin_neon_vsetq_lane_i32:
  5838. case NEON::BI__builtin_neon_vsetq_lane_i64:
  5839. case NEON::BI__builtin_neon_vsetq_lane_f32:
  5840. return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
  5841. case NEON::BI__builtin_neon_vsha1h_u32:
  5842. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
  5843. "vsha1h");
  5844. case NEON::BI__builtin_neon_vsha1cq_u32:
  5845. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
  5846. "vsha1h");
  5847. case NEON::BI__builtin_neon_vsha1pq_u32:
  5848. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
  5849. "vsha1h");
  5850. case NEON::BI__builtin_neon_vsha1mq_u32:
  5851. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
  5852. "vsha1h");
  5853. // The ARM _MoveToCoprocessor builtins put the input register value as
  5854. // the first argument, but the LLVM intrinsic expects it as the third one.
  5855. case ARM::BI_MoveToCoprocessor:
  5856. case ARM::BI_MoveToCoprocessor2: {
  5857. Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
  5858. Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
  5859. return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
  5860. Ops[3], Ops[4], Ops[5]});
  5861. }
  5862. case ARM::BI_BitScanForward:
  5863. case ARM::BI_BitScanForward64:
  5864. return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
  5865. case ARM::BI_BitScanReverse:
  5866. case ARM::BI_BitScanReverse64:
  5867. return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
  5868. case ARM::BI_InterlockedAnd64:
  5869. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
  5870. case ARM::BI_InterlockedExchange64:
  5871. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
  5872. case ARM::BI_InterlockedExchangeAdd64:
  5873. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
  5874. case ARM::BI_InterlockedExchangeSub64:
  5875. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
  5876. case ARM::BI_InterlockedOr64:
  5877. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
  5878. case ARM::BI_InterlockedXor64:
  5879. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
  5880. case ARM::BI_InterlockedDecrement64:
  5881. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
  5882. case ARM::BI_InterlockedIncrement64:
  5883. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
  5884. case ARM::BI_InterlockedExchangeAdd8_acq:
  5885. case ARM::BI_InterlockedExchangeAdd16_acq:
  5886. case ARM::BI_InterlockedExchangeAdd_acq:
  5887. case ARM::BI_InterlockedExchangeAdd64_acq:
  5888. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
  5889. case ARM::BI_InterlockedExchangeAdd8_rel:
  5890. case ARM::BI_InterlockedExchangeAdd16_rel:
  5891. case ARM::BI_InterlockedExchangeAdd_rel:
  5892. case ARM::BI_InterlockedExchangeAdd64_rel:
  5893. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
  5894. case ARM::BI_InterlockedExchangeAdd8_nf:
  5895. case ARM::BI_InterlockedExchangeAdd16_nf:
  5896. case ARM::BI_InterlockedExchangeAdd_nf:
  5897. case ARM::BI_InterlockedExchangeAdd64_nf:
  5898. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
  5899. case ARM::BI_InterlockedExchange8_acq:
  5900. case ARM::BI_InterlockedExchange16_acq:
  5901. case ARM::BI_InterlockedExchange_acq:
  5902. case ARM::BI_InterlockedExchange64_acq:
  5903. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
  5904. case ARM::BI_InterlockedExchange8_rel:
  5905. case ARM::BI_InterlockedExchange16_rel:
  5906. case ARM::BI_InterlockedExchange_rel:
  5907. case ARM::BI_InterlockedExchange64_rel:
  5908. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
  5909. case ARM::BI_InterlockedExchange8_nf:
  5910. case ARM::BI_InterlockedExchange16_nf:
  5911. case ARM::BI_InterlockedExchange_nf:
  5912. case ARM::BI_InterlockedExchange64_nf:
  5913. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
  5914. case ARM::BI_InterlockedCompareExchange8_acq:
  5915. case ARM::BI_InterlockedCompareExchange16_acq:
  5916. case ARM::BI_InterlockedCompareExchange_acq:
  5917. case ARM::BI_InterlockedCompareExchange64_acq:
  5918. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
  5919. case ARM::BI_InterlockedCompareExchange8_rel:
  5920. case ARM::BI_InterlockedCompareExchange16_rel:
  5921. case ARM::BI_InterlockedCompareExchange_rel:
  5922. case ARM::BI_InterlockedCompareExchange64_rel:
  5923. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
  5924. case ARM::BI_InterlockedCompareExchange8_nf:
  5925. case ARM::BI_InterlockedCompareExchange16_nf:
  5926. case ARM::BI_InterlockedCompareExchange_nf:
  5927. case ARM::BI_InterlockedCompareExchange64_nf:
  5928. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
  5929. case ARM::BI_InterlockedOr8_acq:
  5930. case ARM::BI_InterlockedOr16_acq:
  5931. case ARM::BI_InterlockedOr_acq:
  5932. case ARM::BI_InterlockedOr64_acq:
  5933. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
  5934. case ARM::BI_InterlockedOr8_rel:
  5935. case ARM::BI_InterlockedOr16_rel:
  5936. case ARM::BI_InterlockedOr_rel:
  5937. case ARM::BI_InterlockedOr64_rel:
  5938. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
  5939. case ARM::BI_InterlockedOr8_nf:
  5940. case ARM::BI_InterlockedOr16_nf:
  5941. case ARM::BI_InterlockedOr_nf:
  5942. case ARM::BI_InterlockedOr64_nf:
  5943. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
  5944. case ARM::BI_InterlockedXor8_acq:
  5945. case ARM::BI_InterlockedXor16_acq:
  5946. case ARM::BI_InterlockedXor_acq:
  5947. case ARM::BI_InterlockedXor64_acq:
  5948. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
  5949. case ARM::BI_InterlockedXor8_rel:
  5950. case ARM::BI_InterlockedXor16_rel:
  5951. case ARM::BI_InterlockedXor_rel:
  5952. case ARM::BI_InterlockedXor64_rel:
  5953. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
  5954. case ARM::BI_InterlockedXor8_nf:
  5955. case ARM::BI_InterlockedXor16_nf:
  5956. case ARM::BI_InterlockedXor_nf:
  5957. case ARM::BI_InterlockedXor64_nf:
  5958. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
  5959. case ARM::BI_InterlockedAnd8_acq:
  5960. case ARM::BI_InterlockedAnd16_acq:
  5961. case ARM::BI_InterlockedAnd_acq:
  5962. case ARM::BI_InterlockedAnd64_acq:
  5963. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
  5964. case ARM::BI_InterlockedAnd8_rel:
  5965. case ARM::BI_InterlockedAnd16_rel:
  5966. case ARM::BI_InterlockedAnd_rel:
  5967. case ARM::BI_InterlockedAnd64_rel:
  5968. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
  5969. case ARM::BI_InterlockedAnd8_nf:
  5970. case ARM::BI_InterlockedAnd16_nf:
  5971. case ARM::BI_InterlockedAnd_nf:
  5972. case ARM::BI_InterlockedAnd64_nf:
  5973. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
  5974. case ARM::BI_InterlockedIncrement16_acq:
  5975. case ARM::BI_InterlockedIncrement_acq:
  5976. case ARM::BI_InterlockedIncrement64_acq:
  5977. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
  5978. case ARM::BI_InterlockedIncrement16_rel:
  5979. case ARM::BI_InterlockedIncrement_rel:
  5980. case ARM::BI_InterlockedIncrement64_rel:
  5981. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
  5982. case ARM::BI_InterlockedIncrement16_nf:
  5983. case ARM::BI_InterlockedIncrement_nf:
  5984. case ARM::BI_InterlockedIncrement64_nf:
  5985. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
  5986. case ARM::BI_InterlockedDecrement16_acq:
  5987. case ARM::BI_InterlockedDecrement_acq:
  5988. case ARM::BI_InterlockedDecrement64_acq:
  5989. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
  5990. case ARM::BI_InterlockedDecrement16_rel:
  5991. case ARM::BI_InterlockedDecrement_rel:
  5992. case ARM::BI_InterlockedDecrement64_rel:
  5993. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
  5994. case ARM::BI_InterlockedDecrement16_nf:
  5995. case ARM::BI_InterlockedDecrement_nf:
  5996. case ARM::BI_InterlockedDecrement64_nf:
  5997. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
  5998. }
  5999. // Get the last argument, which specifies the vector type.
  6000. assert(HasExtraArg);
  6001. llvm::APSInt Result;
  6002. const Expr *Arg = E->getArg(E->getNumArgs()-1);
  6003. if (!Arg->isIntegerConstantExpr(Result, getContext()))
  6004. return nullptr;
  6005. if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
  6006. BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
  6007. // Determine the overloaded type of this builtin.
  6008. llvm::Type *Ty;
  6009. if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
  6010. Ty = FloatTy;
  6011. else
  6012. Ty = DoubleTy;
  6013. // Determine whether this is an unsigned conversion or not.
  6014. bool usgn = Result.getZExtValue() == 1;
  6015. unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
  6016. // Call the appropriate intrinsic.
  6017. Function *F = CGM.getIntrinsic(Int, Ty);
  6018. return Builder.CreateCall(F, Ops, "vcvtr");
  6019. }
  6020. // Determine the type of this overloaded NEON intrinsic.
  6021. NeonTypeFlags Type(Result.getZExtValue());
  6022. bool usgn = Type.isUnsigned();
  6023. bool rightShift = false;
  6024. llvm::VectorType *VTy = GetNeonType(this, Type,
  6025. getTarget().hasLegalHalfType());
  6026. llvm::Type *Ty = VTy;
  6027. if (!Ty)
  6028. return nullptr;
  6029. // Many NEON builtins have identical semantics and uses in ARM and
  6030. // AArch64. Emit these in a single function.
  6031. auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
  6032. const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
  6033. IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
  6034. if (Builtin)
  6035. return EmitCommonNeonBuiltinExpr(
  6036. Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
  6037. Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
  6038. unsigned Int;
  6039. switch (BuiltinID) {
  6040. default: return nullptr;
  6041. case NEON::BI__builtin_neon_vld1q_lane_v:
  6042. // Handle 64-bit integer elements as a special case. Use shuffles of
  6043. // one-element vectors to avoid poor code for i64 in the backend.
  6044. if (VTy->getElementType()->isIntegerTy(64)) {
  6045. // Extract the other lane.
  6046. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  6047. uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
  6048. Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
  6049. Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
  6050. // Load the value as a one-element vector.
  6051. Ty = llvm::VectorType::get(VTy->getElementType(), 1);
  6052. llvm::Type *Tys[] = {Ty, Int8PtrTy};
  6053. Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
  6054. Value *Align = getAlignmentValue32(PtrOp0);
  6055. Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
  6056. // Combine them.
  6057. uint32_t Indices[] = {1 - Lane, Lane};
  6058. SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
  6059. return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
  6060. }
  6061. LLVM_FALLTHROUGH;
  6062. case NEON::BI__builtin_neon_vld1_lane_v: {
  6063. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  6064. PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
  6065. Value *Ld = Builder.CreateLoad(PtrOp0);
  6066. return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
  6067. }
  6068. case NEON::BI__builtin_neon_vqrshrn_n_v:
  6069. Int =
  6070. usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
  6071. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
  6072. 1, true);
  6073. case NEON::BI__builtin_neon_vqrshrun_n_v:
  6074. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
  6075. Ops, "vqrshrun_n", 1, true);
  6076. case NEON::BI__builtin_neon_vqshrn_n_v:
  6077. Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
  6078. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
  6079. 1, true);
  6080. case NEON::BI__builtin_neon_vqshrun_n_v:
  6081. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
  6082. Ops, "vqshrun_n", 1, true);
  6083. case NEON::BI__builtin_neon_vrecpe_v:
  6084. case NEON::BI__builtin_neon_vrecpeq_v:
  6085. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
  6086. Ops, "vrecpe");
  6087. case NEON::BI__builtin_neon_vrshrn_n_v:
  6088. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
  6089. Ops, "vrshrn_n", 1, true);
  6090. case NEON::BI__builtin_neon_vrsra_n_v:
  6091. case NEON::BI__builtin_neon_vrsraq_n_v:
  6092. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  6093. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  6094. Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
  6095. Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
  6096. Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
  6097. return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
  6098. case NEON::BI__builtin_neon_vsri_n_v:
  6099. case NEON::BI__builtin_neon_vsriq_n_v:
  6100. rightShift = true;
  6101. LLVM_FALLTHROUGH;
  6102. case NEON::BI__builtin_neon_vsli_n_v:
  6103. case NEON::BI__builtin_neon_vsliq_n_v:
  6104. Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
  6105. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
  6106. Ops, "vsli_n");
  6107. case NEON::BI__builtin_neon_vsra_n_v:
  6108. case NEON::BI__builtin_neon_vsraq_n_v:
  6109. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  6110. Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
  6111. return Builder.CreateAdd(Ops[0], Ops[1]);
  6112. case NEON::BI__builtin_neon_vst1q_lane_v:
  6113. // Handle 64-bit integer elements as a special case. Use a shuffle to get
  6114. // a one-element vector and avoid poor code for i64 in the backend.
  6115. if (VTy->getElementType()->isIntegerTy(64)) {
  6116. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  6117. Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
  6118. Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
  6119. Ops[2] = getAlignmentValue32(PtrOp0);
  6120. llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
  6121. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
  6122. Tys), Ops);
  6123. }
  6124. LLVM_FALLTHROUGH;
  6125. case NEON::BI__builtin_neon_vst1_lane_v: {
  6126. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  6127. Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
  6128. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  6129. auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
  6130. return St;
  6131. }
  6132. case NEON::BI__builtin_neon_vtbl1_v:
  6133. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
  6134. Ops, "vtbl1");
  6135. case NEON::BI__builtin_neon_vtbl2_v:
  6136. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
  6137. Ops, "vtbl2");
  6138. case NEON::BI__builtin_neon_vtbl3_v:
  6139. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
  6140. Ops, "vtbl3");
  6141. case NEON::BI__builtin_neon_vtbl4_v:
  6142. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
  6143. Ops, "vtbl4");
  6144. case NEON::BI__builtin_neon_vtbx1_v:
  6145. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
  6146. Ops, "vtbx1");
  6147. case NEON::BI__builtin_neon_vtbx2_v:
  6148. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
  6149. Ops, "vtbx2");
  6150. case NEON::BI__builtin_neon_vtbx3_v:
  6151. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
  6152. Ops, "vtbx3");
  6153. case NEON::BI__builtin_neon_vtbx4_v:
  6154. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
  6155. Ops, "vtbx4");
  6156. }
  6157. }
  6158. static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
  6159. const CallExpr *E,
  6160. SmallVectorImpl<Value *> &Ops,
  6161. llvm::Triple::ArchType Arch) {
  6162. unsigned int Int = 0;
  6163. const char *s = nullptr;
  6164. switch (BuiltinID) {
  6165. default:
  6166. return nullptr;
  6167. case NEON::BI__builtin_neon_vtbl1_v:
  6168. case NEON::BI__builtin_neon_vqtbl1_v:
  6169. case NEON::BI__builtin_neon_vqtbl1q_v:
  6170. case NEON::BI__builtin_neon_vtbl2_v:
  6171. case NEON::BI__builtin_neon_vqtbl2_v:
  6172. case NEON::BI__builtin_neon_vqtbl2q_v:
  6173. case NEON::BI__builtin_neon_vtbl3_v:
  6174. case NEON::BI__builtin_neon_vqtbl3_v:
  6175. case NEON::BI__builtin_neon_vqtbl3q_v:
  6176. case NEON::BI__builtin_neon_vtbl4_v:
  6177. case NEON::BI__builtin_neon_vqtbl4_v:
  6178. case NEON::BI__builtin_neon_vqtbl4q_v:
  6179. break;
  6180. case NEON::BI__builtin_neon_vtbx1_v:
  6181. case NEON::BI__builtin_neon_vqtbx1_v:
  6182. case NEON::BI__builtin_neon_vqtbx1q_v:
  6183. case NEON::BI__builtin_neon_vtbx2_v:
  6184. case NEON::BI__builtin_neon_vqtbx2_v:
  6185. case NEON::BI__builtin_neon_vqtbx2q_v:
  6186. case NEON::BI__builtin_neon_vtbx3_v:
  6187. case NEON::BI__builtin_neon_vqtbx3_v:
  6188. case NEON::BI__builtin_neon_vqtbx3q_v:
  6189. case NEON::BI__builtin_neon_vtbx4_v:
  6190. case NEON::BI__builtin_neon_vqtbx4_v:
  6191. case NEON::BI__builtin_neon_vqtbx4q_v:
  6192. break;
  6193. }
  6194. assert(E->getNumArgs() >= 3);
  6195. // Get the last argument, which specifies the vector type.
  6196. llvm::APSInt Result;
  6197. const Expr *Arg = E->getArg(E->getNumArgs() - 1);
  6198. if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
  6199. return nullptr;
  6200. // Determine the type of this overloaded NEON intrinsic.
  6201. NeonTypeFlags Type(Result.getZExtValue());
  6202. llvm::VectorType *Ty = GetNeonType(&CGF, Type);
  6203. if (!Ty)
  6204. return nullptr;
  6205. CodeGen::CGBuilderTy &Builder = CGF.Builder;
  6206. // AArch64 scalar builtins are not overloaded, they do not have an extra
  6207. // argument that specifies the vector type, need to handle each case.
  6208. switch (BuiltinID) {
  6209. case NEON::BI__builtin_neon_vtbl1_v: {
  6210. return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
  6211. Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
  6212. "vtbl1");
  6213. }
  6214. case NEON::BI__builtin_neon_vtbl2_v: {
  6215. return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
  6216. Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
  6217. "vtbl1");
  6218. }
  6219. case NEON::BI__builtin_neon_vtbl3_v: {
  6220. return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
  6221. Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
  6222. "vtbl2");
  6223. }
  6224. case NEON::BI__builtin_neon_vtbl4_v: {
  6225. return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
  6226. Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
  6227. "vtbl2");
  6228. }
  6229. case NEON::BI__builtin_neon_vtbx1_v: {
  6230. Value *TblRes =
  6231. packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
  6232. Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
  6233. llvm::Constant *EightV = ConstantInt::get(Ty, 8);
  6234. Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
  6235. CmpRes = Builder.CreateSExt(CmpRes, Ty);
  6236. Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
  6237. Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
  6238. return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
  6239. }
  6240. case NEON::BI__builtin_neon_vtbx2_v: {
  6241. return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
  6242. Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
  6243. "vtbx1");
  6244. }
  6245. case NEON::BI__builtin_neon_vtbx3_v: {
  6246. Value *TblRes =
  6247. packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
  6248. Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
  6249. llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
  6250. Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
  6251. TwentyFourV);
  6252. CmpRes = Builder.CreateSExt(CmpRes, Ty);
  6253. Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
  6254. Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
  6255. return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
  6256. }
  6257. case NEON::BI__builtin_neon_vtbx4_v: {
  6258. return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
  6259. Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
  6260. "vtbx2");
  6261. }
  6262. case NEON::BI__builtin_neon_vqtbl1_v:
  6263. case NEON::BI__builtin_neon_vqtbl1q_v:
  6264. Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
  6265. case NEON::BI__builtin_neon_vqtbl2_v:
  6266. case NEON::BI__builtin_neon_vqtbl2q_v: {
  6267. Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
  6268. case NEON::BI__builtin_neon_vqtbl3_v:
  6269. case NEON::BI__builtin_neon_vqtbl3q_v:
  6270. Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
  6271. case NEON::BI__builtin_neon_vqtbl4_v:
  6272. case NEON::BI__builtin_neon_vqtbl4q_v:
  6273. Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
  6274. case NEON::BI__builtin_neon_vqtbx1_v:
  6275. case NEON::BI__builtin_neon_vqtbx1q_v:
  6276. Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
  6277. case NEON::BI__builtin_neon_vqtbx2_v:
  6278. case NEON::BI__builtin_neon_vqtbx2q_v:
  6279. Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
  6280. case NEON::BI__builtin_neon_vqtbx3_v:
  6281. case NEON::BI__builtin_neon_vqtbx3q_v:
  6282. Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
  6283. case NEON::BI__builtin_neon_vqtbx4_v:
  6284. case NEON::BI__builtin_neon_vqtbx4q_v:
  6285. Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
  6286. }
  6287. }
  6288. if (!Int)
  6289. return nullptr;
  6290. Function *F = CGF.CGM.getIntrinsic(Int, Ty);
  6291. return CGF.EmitNeonCall(F, Ops, s);
  6292. }
  6293. Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
  6294. llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
  6295. Op = Builder.CreateBitCast(Op, Int16Ty);
  6296. Value *V = UndefValue::get(VTy);
  6297. llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
  6298. Op = Builder.CreateInsertElement(V, Op, CI);
  6299. return Op;
  6300. }
  6301. Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
  6302. const CallExpr *E,
  6303. llvm::Triple::ArchType Arch) {
  6304. unsigned HintID = static_cast<unsigned>(-1);
  6305. switch (BuiltinID) {
  6306. default: break;
  6307. case AArch64::BI__builtin_arm_nop:
  6308. HintID = 0;
  6309. break;
  6310. case AArch64::BI__builtin_arm_yield:
  6311. case AArch64::BI__yield:
  6312. HintID = 1;
  6313. break;
  6314. case AArch64::BI__builtin_arm_wfe:
  6315. case AArch64::BI__wfe:
  6316. HintID = 2;
  6317. break;
  6318. case AArch64::BI__builtin_arm_wfi:
  6319. case AArch64::BI__wfi:
  6320. HintID = 3;
  6321. break;
  6322. case AArch64::BI__builtin_arm_sev:
  6323. case AArch64::BI__sev:
  6324. HintID = 4;
  6325. break;
  6326. case AArch64::BI__builtin_arm_sevl:
  6327. case AArch64::BI__sevl:
  6328. HintID = 5;
  6329. break;
  6330. }
  6331. if (HintID != static_cast<unsigned>(-1)) {
  6332. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
  6333. return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
  6334. }
  6335. if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
  6336. Value *Address = EmitScalarExpr(E->getArg(0));
  6337. Value *RW = EmitScalarExpr(E->getArg(1));
  6338. Value *CacheLevel = EmitScalarExpr(E->getArg(2));
  6339. Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
  6340. Value *IsData = EmitScalarExpr(E->getArg(4));
  6341. Value *Locality = nullptr;
  6342. if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
  6343. // Temporal fetch, needs to convert cache level to locality.
  6344. Locality = llvm::ConstantInt::get(Int32Ty,
  6345. -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
  6346. } else {
  6347. // Streaming fetch.
  6348. Locality = llvm::ConstantInt::get(Int32Ty, 0);
  6349. }
  6350. // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
  6351. // PLDL3STRM or PLDL2STRM.
  6352. Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
  6353. return Builder.CreateCall(F, {Address, RW, Locality, IsData});
  6354. }
  6355. if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
  6356. assert((getContext().getTypeSize(E->getType()) == 32) &&
  6357. "rbit of unusual size!");
  6358. llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
  6359. return Builder.CreateCall(
  6360. CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
  6361. }
  6362. if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
  6363. assert((getContext().getTypeSize(E->getType()) == 64) &&
  6364. "rbit of unusual size!");
  6365. llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
  6366. return Builder.CreateCall(
  6367. CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
  6368. }
  6369. if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
  6370. assert((getContext().getTypeSize(E->getType()) == 32) &&
  6371. "__jcvt of unusual size!");
  6372. llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
  6373. return Builder.CreateCall(
  6374. CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
  6375. }
  6376. if (BuiltinID == AArch64::BI__clear_cache) {
  6377. assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
  6378. const FunctionDecl *FD = E->getDirectCallee();
  6379. Value *Ops[2];
  6380. for (unsigned i = 0; i < 2; i++)
  6381. Ops[i] = EmitScalarExpr(E->getArg(i));
  6382. llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
  6383. llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
  6384. StringRef Name = FD->getName();
  6385. return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
  6386. }
  6387. if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
  6388. BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
  6389. getContext().getTypeSize(E->getType()) == 128) {
  6390. Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
  6391. ? Intrinsic::aarch64_ldaxp
  6392. : Intrinsic::aarch64_ldxp);
  6393. Value *LdPtr = EmitScalarExpr(E->getArg(0));
  6394. Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
  6395. "ldxp");
  6396. Value *Val0 = Builder.CreateExtractValue(Val, 1);
  6397. Value *Val1 = Builder.CreateExtractValue(Val, 0);
  6398. llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
  6399. Val0 = Builder.CreateZExt(Val0, Int128Ty);
  6400. Val1 = Builder.CreateZExt(Val1, Int128Ty);
  6401. Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
  6402. Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
  6403. Val = Builder.CreateOr(Val, Val1);
  6404. return Builder.CreateBitCast(Val, ConvertType(E->getType()));
  6405. } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
  6406. BuiltinID == AArch64::BI__builtin_arm_ldaex) {
  6407. Value *LoadAddr = EmitScalarExpr(E->getArg(0));
  6408. QualType Ty = E->getType();
  6409. llvm::Type *RealResTy = ConvertType(Ty);
  6410. llvm::Type *PtrTy = llvm::IntegerType::get(
  6411. getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
  6412. LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
  6413. Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
  6414. ? Intrinsic::aarch64_ldaxr
  6415. : Intrinsic::aarch64_ldxr,
  6416. PtrTy);
  6417. Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
  6418. if (RealResTy->isPointerTy())
  6419. return Builder.CreateIntToPtr(Val, RealResTy);
  6420. llvm::Type *IntResTy = llvm::IntegerType::get(
  6421. getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
  6422. Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
  6423. return Builder.CreateBitCast(Val, RealResTy);
  6424. }
  6425. if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
  6426. BuiltinID == AArch64::BI__builtin_arm_stlex) &&
  6427. getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
  6428. Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
  6429. ? Intrinsic::aarch64_stlxp
  6430. : Intrinsic::aarch64_stxp);
  6431. llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
  6432. Address Tmp = CreateMemTemp(E->getArg(0)->getType());
  6433. EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
  6434. Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
  6435. llvm::Value *Val = Builder.CreateLoad(Tmp);
  6436. Value *Arg0 = Builder.CreateExtractValue(Val, 0);
  6437. Value *Arg1 = Builder.CreateExtractValue(Val, 1);
  6438. Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
  6439. Int8PtrTy);
  6440. return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
  6441. }
  6442. if (BuiltinID == AArch64::BI__builtin_arm_strex ||
  6443. BuiltinID == AArch64::BI__builtin_arm_stlex) {
  6444. Value *StoreVal = EmitScalarExpr(E->getArg(0));
  6445. Value *StoreAddr = EmitScalarExpr(E->getArg(1));
  6446. QualType Ty = E->getArg(0)->getType();
  6447. llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
  6448. getContext().getTypeSize(Ty));
  6449. StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
  6450. if (StoreVal->getType()->isPointerTy())
  6451. StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
  6452. else {
  6453. llvm::Type *IntTy = llvm::IntegerType::get(
  6454. getLLVMContext(),
  6455. CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
  6456. StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
  6457. StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
  6458. }
  6459. Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
  6460. ? Intrinsic::aarch64_stlxr
  6461. : Intrinsic::aarch64_stxr,
  6462. StoreAddr->getType());
  6463. return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
  6464. }
  6465. if (BuiltinID == AArch64::BI__getReg) {
  6466. Expr::EvalResult Result;
  6467. if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
  6468. llvm_unreachable("Sema will ensure that the parameter is constant");
  6469. llvm::APSInt Value = Result.Val.getInt();
  6470. LLVMContext &Context = CGM.getLLVMContext();
  6471. std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
  6472. llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
  6473. llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
  6474. llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
  6475. llvm::Function *F =
  6476. CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
  6477. return Builder.CreateCall(F, Metadata);
  6478. }
  6479. if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
  6480. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
  6481. return Builder.CreateCall(F);
  6482. }
  6483. if (BuiltinID == AArch64::BI_ReadWriteBarrier)
  6484. return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
  6485. llvm::SyncScope::SingleThread);
  6486. // CRC32
  6487. Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
  6488. switch (BuiltinID) {
  6489. case AArch64::BI__builtin_arm_crc32b:
  6490. CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
  6491. case AArch64::BI__builtin_arm_crc32cb:
  6492. CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
  6493. case AArch64::BI__builtin_arm_crc32h:
  6494. CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
  6495. case AArch64::BI__builtin_arm_crc32ch:
  6496. CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
  6497. case AArch64::BI__builtin_arm_crc32w:
  6498. CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
  6499. case AArch64::BI__builtin_arm_crc32cw:
  6500. CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
  6501. case AArch64::BI__builtin_arm_crc32d:
  6502. CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
  6503. case AArch64::BI__builtin_arm_crc32cd:
  6504. CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
  6505. }
  6506. if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
  6507. Value *Arg0 = EmitScalarExpr(E->getArg(0));
  6508. Value *Arg1 = EmitScalarExpr(E->getArg(1));
  6509. Function *F = CGM.getIntrinsic(CRCIntrinsicID);
  6510. llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
  6511. Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
  6512. return Builder.CreateCall(F, {Arg0, Arg1});
  6513. }
  6514. // Memory Tagging Extensions (MTE) Intrinsics
  6515. Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
  6516. switch (BuiltinID) {
  6517. case AArch64::BI__builtin_arm_irg:
  6518. MTEIntrinsicID = Intrinsic::aarch64_irg; break;
  6519. case AArch64::BI__builtin_arm_addg:
  6520. MTEIntrinsicID = Intrinsic::aarch64_addg; break;
  6521. case AArch64::BI__builtin_arm_gmi:
  6522. MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
  6523. case AArch64::BI__builtin_arm_ldg:
  6524. MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
  6525. case AArch64::BI__builtin_arm_stg:
  6526. MTEIntrinsicID = Intrinsic::aarch64_stg; break;
  6527. case AArch64::BI__builtin_arm_subp:
  6528. MTEIntrinsicID = Intrinsic::aarch64_subp; break;
  6529. }
  6530. if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
  6531. llvm::Type *T = ConvertType(E->getType());
  6532. if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
  6533. Value *Pointer = EmitScalarExpr(E->getArg(0));
  6534. Value *Mask = EmitScalarExpr(E->getArg(1));
  6535. Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
  6536. Mask = Builder.CreateZExt(Mask, Int64Ty);
  6537. Value *RV = Builder.CreateCall(
  6538. CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
  6539. return Builder.CreatePointerCast(RV, T);
  6540. }
  6541. if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
  6542. Value *Pointer = EmitScalarExpr(E->getArg(0));
  6543. Value *TagOffset = EmitScalarExpr(E->getArg(1));
  6544. Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
  6545. TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
  6546. Value *RV = Builder.CreateCall(
  6547. CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
  6548. return Builder.CreatePointerCast(RV, T);
  6549. }
  6550. if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
  6551. Value *Pointer = EmitScalarExpr(E->getArg(0));
  6552. Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
  6553. ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
  6554. Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
  6555. return Builder.CreateCall(
  6556. CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
  6557. }
  6558. // Although it is possible to supply a different return
  6559. // address (first arg) to this intrinsic, for now we set
  6560. // return address same as input address.
  6561. if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
  6562. Value *TagAddress = EmitScalarExpr(E->getArg(0));
  6563. TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
  6564. Value *RV = Builder.CreateCall(
  6565. CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
  6566. return Builder.CreatePointerCast(RV, T);
  6567. }
  6568. // Although it is possible to supply a different tag (to set)
  6569. // to this intrinsic (as first arg), for now we supply
  6570. // the tag that is in input address arg (common use case).
  6571. if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
  6572. Value *TagAddress = EmitScalarExpr(E->getArg(0));
  6573. TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
  6574. return Builder.CreateCall(
  6575. CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
  6576. }
  6577. if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
  6578. Value *PointerA = EmitScalarExpr(E->getArg(0));
  6579. Value *PointerB = EmitScalarExpr(E->getArg(1));
  6580. PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
  6581. PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
  6582. return Builder.CreateCall(
  6583. CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
  6584. }
  6585. }
  6586. if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
  6587. BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
  6588. BuiltinID == AArch64::BI__builtin_arm_rsrp ||
  6589. BuiltinID == AArch64::BI__builtin_arm_wsr ||
  6590. BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
  6591. BuiltinID == AArch64::BI__builtin_arm_wsrp) {
  6592. bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
  6593. BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
  6594. BuiltinID == AArch64::BI__builtin_arm_rsrp;
  6595. bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
  6596. BuiltinID == AArch64::BI__builtin_arm_wsrp;
  6597. bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
  6598. BuiltinID != AArch64::BI__builtin_arm_wsr;
  6599. llvm::Type *ValueType;
  6600. llvm::Type *RegisterType = Int64Ty;
  6601. if (IsPointerBuiltin) {
  6602. ValueType = VoidPtrTy;
  6603. } else if (Is64Bit) {
  6604. ValueType = Int64Ty;
  6605. } else {
  6606. ValueType = Int32Ty;
  6607. }
  6608. return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
  6609. }
  6610. if (BuiltinID == AArch64::BI_ReadStatusReg ||
  6611. BuiltinID == AArch64::BI_WriteStatusReg) {
  6612. LLVMContext &Context = CGM.getLLVMContext();
  6613. unsigned SysReg =
  6614. E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
  6615. std::string SysRegStr;
  6616. llvm::raw_string_ostream(SysRegStr) <<
  6617. ((1 << 1) | ((SysReg >> 14) & 1)) << ":" <<
  6618. ((SysReg >> 11) & 7) << ":" <<
  6619. ((SysReg >> 7) & 15) << ":" <<
  6620. ((SysReg >> 3) & 15) << ":" <<
  6621. ( SysReg & 7);
  6622. llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
  6623. llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
  6624. llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
  6625. llvm::Type *RegisterType = Int64Ty;
  6626. llvm::Type *Types[] = { RegisterType };
  6627. if (BuiltinID == AArch64::BI_ReadStatusReg) {
  6628. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
  6629. return Builder.CreateCall(F, Metadata);
  6630. }
  6631. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
  6632. llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
  6633. return Builder.CreateCall(F, { Metadata, ArgValue });
  6634. }
  6635. if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
  6636. llvm::Function *F =
  6637. CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
  6638. return Builder.CreateCall(F);
  6639. }
  6640. if (BuiltinID == AArch64::BI__builtin_sponentry) {
  6641. llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
  6642. return Builder.CreateCall(F);
  6643. }
  6644. // Find out if any arguments are required to be integer constant
  6645. // expressions.
  6646. unsigned ICEArguments = 0;
  6647. ASTContext::GetBuiltinTypeError Error;
  6648. getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
  6649. assert(Error == ASTContext::GE_None && "Should not codegen an error");
  6650. llvm::SmallVector<Value*, 4> Ops;
  6651. for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
  6652. if ((ICEArguments & (1 << i)) == 0) {
  6653. Ops.push_back(EmitScalarExpr(E->getArg(i)));
  6654. } else {
  6655. // If this is required to be a constant, constant fold it so that we know
  6656. // that the generated intrinsic gets a ConstantInt.
  6657. llvm::APSInt Result;
  6658. bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
  6659. assert(IsConst && "Constant arg isn't actually constant?");
  6660. (void)IsConst;
  6661. Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
  6662. }
  6663. }
  6664. auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
  6665. const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
  6666. SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
  6667. if (Builtin) {
  6668. Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
  6669. Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
  6670. assert(Result && "SISD intrinsic should have been handled");
  6671. return Result;
  6672. }
  6673. llvm::APSInt Result;
  6674. const Expr *Arg = E->getArg(E->getNumArgs()-1);
  6675. NeonTypeFlags Type(0);
  6676. if (Arg->isIntegerConstantExpr(Result, getContext()))
  6677. // Determine the type of this overloaded NEON intrinsic.
  6678. Type = NeonTypeFlags(Result.getZExtValue());
  6679. bool usgn = Type.isUnsigned();
  6680. bool quad = Type.isQuad();
  6681. // Handle non-overloaded intrinsics first.
  6682. switch (BuiltinID) {
  6683. default: break;
  6684. case NEON::BI__builtin_neon_vabsh_f16:
  6685. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6686. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
  6687. case NEON::BI__builtin_neon_vldrq_p128: {
  6688. llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
  6689. llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
  6690. Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
  6691. return Builder.CreateAlignedLoad(Int128Ty, Ptr,
  6692. CharUnits::fromQuantity(16));
  6693. }
  6694. case NEON::BI__builtin_neon_vstrq_p128: {
  6695. llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
  6696. Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
  6697. return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
  6698. }
  6699. case NEON::BI__builtin_neon_vcvts_u32_f32:
  6700. case NEON::BI__builtin_neon_vcvtd_u64_f64:
  6701. usgn = true;
  6702. LLVM_FALLTHROUGH;
  6703. case NEON::BI__builtin_neon_vcvts_s32_f32:
  6704. case NEON::BI__builtin_neon_vcvtd_s64_f64: {
  6705. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6706. bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
  6707. llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
  6708. llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
  6709. Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
  6710. if (usgn)
  6711. return Builder.CreateFPToUI(Ops[0], InTy);
  6712. return Builder.CreateFPToSI(Ops[0], InTy);
  6713. }
  6714. case NEON::BI__builtin_neon_vcvts_f32_u32:
  6715. case NEON::BI__builtin_neon_vcvtd_f64_u64:
  6716. usgn = true;
  6717. LLVM_FALLTHROUGH;
  6718. case NEON::BI__builtin_neon_vcvts_f32_s32:
  6719. case NEON::BI__builtin_neon_vcvtd_f64_s64: {
  6720. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6721. bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
  6722. llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
  6723. llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
  6724. Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
  6725. if (usgn)
  6726. return Builder.CreateUIToFP(Ops[0], FTy);
  6727. return Builder.CreateSIToFP(Ops[0], FTy);
  6728. }
  6729. case NEON::BI__builtin_neon_vcvth_f16_u16:
  6730. case NEON::BI__builtin_neon_vcvth_f16_u32:
  6731. case NEON::BI__builtin_neon_vcvth_f16_u64:
  6732. usgn = true;
  6733. LLVM_FALLTHROUGH;
  6734. case NEON::BI__builtin_neon_vcvth_f16_s16:
  6735. case NEON::BI__builtin_neon_vcvth_f16_s32:
  6736. case NEON::BI__builtin_neon_vcvth_f16_s64: {
  6737. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6738. llvm::Type *FTy = HalfTy;
  6739. llvm::Type *InTy;
  6740. if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
  6741. InTy = Int64Ty;
  6742. else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
  6743. InTy = Int32Ty;
  6744. else
  6745. InTy = Int16Ty;
  6746. Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
  6747. if (usgn)
  6748. return Builder.CreateUIToFP(Ops[0], FTy);
  6749. return Builder.CreateSIToFP(Ops[0], FTy);
  6750. }
  6751. case NEON::BI__builtin_neon_vcvth_u16_f16:
  6752. usgn = true;
  6753. LLVM_FALLTHROUGH;
  6754. case NEON::BI__builtin_neon_vcvth_s16_f16: {
  6755. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6756. Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
  6757. if (usgn)
  6758. return Builder.CreateFPToUI(Ops[0], Int16Ty);
  6759. return Builder.CreateFPToSI(Ops[0], Int16Ty);
  6760. }
  6761. case NEON::BI__builtin_neon_vcvth_u32_f16:
  6762. usgn = true;
  6763. LLVM_FALLTHROUGH;
  6764. case NEON::BI__builtin_neon_vcvth_s32_f16: {
  6765. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6766. Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
  6767. if (usgn)
  6768. return Builder.CreateFPToUI(Ops[0], Int32Ty);
  6769. return Builder.CreateFPToSI(Ops[0], Int32Ty);
  6770. }
  6771. case NEON::BI__builtin_neon_vcvth_u64_f16:
  6772. usgn = true;
  6773. LLVM_FALLTHROUGH;
  6774. case NEON::BI__builtin_neon_vcvth_s64_f16: {
  6775. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6776. Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
  6777. if (usgn)
  6778. return Builder.CreateFPToUI(Ops[0], Int64Ty);
  6779. return Builder.CreateFPToSI(Ops[0], Int64Ty);
  6780. }
  6781. case NEON::BI__builtin_neon_vcvtah_u16_f16:
  6782. case NEON::BI__builtin_neon_vcvtmh_u16_f16:
  6783. case NEON::BI__builtin_neon_vcvtnh_u16_f16:
  6784. case NEON::BI__builtin_neon_vcvtph_u16_f16:
  6785. case NEON::BI__builtin_neon_vcvtah_s16_f16:
  6786. case NEON::BI__builtin_neon_vcvtmh_s16_f16:
  6787. case NEON::BI__builtin_neon_vcvtnh_s16_f16:
  6788. case NEON::BI__builtin_neon_vcvtph_s16_f16: {
  6789. unsigned Int;
  6790. llvm::Type* InTy = Int32Ty;
  6791. llvm::Type* FTy = HalfTy;
  6792. llvm::Type *Tys[2] = {InTy, FTy};
  6793. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6794. switch (BuiltinID) {
  6795. default: llvm_unreachable("missing builtin ID in switch!");
  6796. case NEON::BI__builtin_neon_vcvtah_u16_f16:
  6797. Int = Intrinsic::aarch64_neon_fcvtau; break;
  6798. case NEON::BI__builtin_neon_vcvtmh_u16_f16:
  6799. Int = Intrinsic::aarch64_neon_fcvtmu; break;
  6800. case NEON::BI__builtin_neon_vcvtnh_u16_f16:
  6801. Int = Intrinsic::aarch64_neon_fcvtnu; break;
  6802. case NEON::BI__builtin_neon_vcvtph_u16_f16:
  6803. Int = Intrinsic::aarch64_neon_fcvtpu; break;
  6804. case NEON::BI__builtin_neon_vcvtah_s16_f16:
  6805. Int = Intrinsic::aarch64_neon_fcvtas; break;
  6806. case NEON::BI__builtin_neon_vcvtmh_s16_f16:
  6807. Int = Intrinsic::aarch64_neon_fcvtms; break;
  6808. case NEON::BI__builtin_neon_vcvtnh_s16_f16:
  6809. Int = Intrinsic::aarch64_neon_fcvtns; break;
  6810. case NEON::BI__builtin_neon_vcvtph_s16_f16:
  6811. Int = Intrinsic::aarch64_neon_fcvtps; break;
  6812. }
  6813. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
  6814. return Builder.CreateTrunc(Ops[0], Int16Ty);
  6815. }
  6816. case NEON::BI__builtin_neon_vcaleh_f16:
  6817. case NEON::BI__builtin_neon_vcalth_f16:
  6818. case NEON::BI__builtin_neon_vcageh_f16:
  6819. case NEON::BI__builtin_neon_vcagth_f16: {
  6820. unsigned Int;
  6821. llvm::Type* InTy = Int32Ty;
  6822. llvm::Type* FTy = HalfTy;
  6823. llvm::Type *Tys[2] = {InTy, FTy};
  6824. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  6825. switch (BuiltinID) {
  6826. default: llvm_unreachable("missing builtin ID in switch!");
  6827. case NEON::BI__builtin_neon_vcageh_f16:
  6828. Int = Intrinsic::aarch64_neon_facge; break;
  6829. case NEON::BI__builtin_neon_vcagth_f16:
  6830. Int = Intrinsic::aarch64_neon_facgt; break;
  6831. case NEON::BI__builtin_neon_vcaleh_f16:
  6832. Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
  6833. case NEON::BI__builtin_neon_vcalth_f16:
  6834. Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
  6835. }
  6836. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
  6837. return Builder.CreateTrunc(Ops[0], Int16Ty);
  6838. }
  6839. case NEON::BI__builtin_neon_vcvth_n_s16_f16:
  6840. case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
  6841. unsigned Int;
  6842. llvm::Type* InTy = Int32Ty;
  6843. llvm::Type* FTy = HalfTy;
  6844. llvm::Type *Tys[2] = {InTy, FTy};
  6845. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  6846. switch (BuiltinID) {
  6847. default: llvm_unreachable("missing builtin ID in switch!");
  6848. case NEON::BI__builtin_neon_vcvth_n_s16_f16:
  6849. Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
  6850. case NEON::BI__builtin_neon_vcvth_n_u16_f16:
  6851. Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
  6852. }
  6853. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
  6854. return Builder.CreateTrunc(Ops[0], Int16Ty);
  6855. }
  6856. case NEON::BI__builtin_neon_vcvth_n_f16_s16:
  6857. case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
  6858. unsigned Int;
  6859. llvm::Type* FTy = HalfTy;
  6860. llvm::Type* InTy = Int32Ty;
  6861. llvm::Type *Tys[2] = {FTy, InTy};
  6862. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  6863. switch (BuiltinID) {
  6864. default: llvm_unreachable("missing builtin ID in switch!");
  6865. case NEON::BI__builtin_neon_vcvth_n_f16_s16:
  6866. Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
  6867. Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
  6868. break;
  6869. case NEON::BI__builtin_neon_vcvth_n_f16_u16:
  6870. Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
  6871. Ops[0] = Builder.CreateZExt(Ops[0], InTy);
  6872. break;
  6873. }
  6874. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
  6875. }
  6876. case NEON::BI__builtin_neon_vpaddd_s64: {
  6877. llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
  6878. Value *Vec = EmitScalarExpr(E->getArg(0));
  6879. // The vector is v2f64, so make sure it's bitcast to that.
  6880. Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
  6881. llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
  6882. llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
  6883. Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
  6884. Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
  6885. // Pairwise addition of a v2f64 into a scalar f64.
  6886. return Builder.CreateAdd(Op0, Op1, "vpaddd");
  6887. }
  6888. case NEON::BI__builtin_neon_vpaddd_f64: {
  6889. llvm::Type *Ty =
  6890. llvm::VectorType::get(DoubleTy, 2);
  6891. Value *Vec = EmitScalarExpr(E->getArg(0));
  6892. // The vector is v2f64, so make sure it's bitcast to that.
  6893. Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
  6894. llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
  6895. llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
  6896. Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
  6897. Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
  6898. // Pairwise addition of a v2f64 into a scalar f64.
  6899. return Builder.CreateFAdd(Op0, Op1, "vpaddd");
  6900. }
  6901. case NEON::BI__builtin_neon_vpadds_f32: {
  6902. llvm::Type *Ty =
  6903. llvm::VectorType::get(FloatTy, 2);
  6904. Value *Vec = EmitScalarExpr(E->getArg(0));
  6905. // The vector is v2f32, so make sure it's bitcast to that.
  6906. Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
  6907. llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
  6908. llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
  6909. Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
  6910. Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
  6911. // Pairwise addition of a v2f32 into a scalar f32.
  6912. return Builder.CreateFAdd(Op0, Op1, "vpaddd");
  6913. }
  6914. case NEON::BI__builtin_neon_vceqzd_s64:
  6915. case NEON::BI__builtin_neon_vceqzd_f64:
  6916. case NEON::BI__builtin_neon_vceqzs_f32:
  6917. case NEON::BI__builtin_neon_vceqzh_f16:
  6918. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6919. return EmitAArch64CompareBuiltinExpr(
  6920. Ops[0], ConvertType(E->getCallReturnType(getContext())),
  6921. ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
  6922. case NEON::BI__builtin_neon_vcgezd_s64:
  6923. case NEON::BI__builtin_neon_vcgezd_f64:
  6924. case NEON::BI__builtin_neon_vcgezs_f32:
  6925. case NEON::BI__builtin_neon_vcgezh_f16:
  6926. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6927. return EmitAArch64CompareBuiltinExpr(
  6928. Ops[0], ConvertType(E->getCallReturnType(getContext())),
  6929. ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
  6930. case NEON::BI__builtin_neon_vclezd_s64:
  6931. case NEON::BI__builtin_neon_vclezd_f64:
  6932. case NEON::BI__builtin_neon_vclezs_f32:
  6933. case NEON::BI__builtin_neon_vclezh_f16:
  6934. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6935. return EmitAArch64CompareBuiltinExpr(
  6936. Ops[0], ConvertType(E->getCallReturnType(getContext())),
  6937. ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
  6938. case NEON::BI__builtin_neon_vcgtzd_s64:
  6939. case NEON::BI__builtin_neon_vcgtzd_f64:
  6940. case NEON::BI__builtin_neon_vcgtzs_f32:
  6941. case NEON::BI__builtin_neon_vcgtzh_f16:
  6942. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6943. return EmitAArch64CompareBuiltinExpr(
  6944. Ops[0], ConvertType(E->getCallReturnType(getContext())),
  6945. ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
  6946. case NEON::BI__builtin_neon_vcltzd_s64:
  6947. case NEON::BI__builtin_neon_vcltzd_f64:
  6948. case NEON::BI__builtin_neon_vcltzs_f32:
  6949. case NEON::BI__builtin_neon_vcltzh_f16:
  6950. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6951. return EmitAArch64CompareBuiltinExpr(
  6952. Ops[0], ConvertType(E->getCallReturnType(getContext())),
  6953. ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
  6954. case NEON::BI__builtin_neon_vceqzd_u64: {
  6955. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6956. Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
  6957. Ops[0] =
  6958. Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
  6959. return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
  6960. }
  6961. case NEON::BI__builtin_neon_vceqd_f64:
  6962. case NEON::BI__builtin_neon_vcled_f64:
  6963. case NEON::BI__builtin_neon_vcltd_f64:
  6964. case NEON::BI__builtin_neon_vcged_f64:
  6965. case NEON::BI__builtin_neon_vcgtd_f64: {
  6966. llvm::CmpInst::Predicate P;
  6967. switch (BuiltinID) {
  6968. default: llvm_unreachable("missing builtin ID in switch!");
  6969. case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
  6970. case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
  6971. case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
  6972. case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
  6973. case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
  6974. }
  6975. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  6976. Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
  6977. Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
  6978. Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
  6979. return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
  6980. }
  6981. case NEON::BI__builtin_neon_vceqs_f32:
  6982. case NEON::BI__builtin_neon_vcles_f32:
  6983. case NEON::BI__builtin_neon_vclts_f32:
  6984. case NEON::BI__builtin_neon_vcges_f32:
  6985. case NEON::BI__builtin_neon_vcgts_f32: {
  6986. llvm::CmpInst::Predicate P;
  6987. switch (BuiltinID) {
  6988. default: llvm_unreachable("missing builtin ID in switch!");
  6989. case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
  6990. case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
  6991. case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
  6992. case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
  6993. case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
  6994. }
  6995. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  6996. Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
  6997. Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
  6998. Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
  6999. return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
  7000. }
  7001. case NEON::BI__builtin_neon_vceqh_f16:
  7002. case NEON::BI__builtin_neon_vcleh_f16:
  7003. case NEON::BI__builtin_neon_vclth_f16:
  7004. case NEON::BI__builtin_neon_vcgeh_f16:
  7005. case NEON::BI__builtin_neon_vcgth_f16: {
  7006. llvm::CmpInst::Predicate P;
  7007. switch (BuiltinID) {
  7008. default: llvm_unreachable("missing builtin ID in switch!");
  7009. case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
  7010. case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
  7011. case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
  7012. case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
  7013. case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
  7014. }
  7015. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7016. Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
  7017. Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
  7018. Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
  7019. return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
  7020. }
  7021. case NEON::BI__builtin_neon_vceqd_s64:
  7022. case NEON::BI__builtin_neon_vceqd_u64:
  7023. case NEON::BI__builtin_neon_vcgtd_s64:
  7024. case NEON::BI__builtin_neon_vcgtd_u64:
  7025. case NEON::BI__builtin_neon_vcltd_s64:
  7026. case NEON::BI__builtin_neon_vcltd_u64:
  7027. case NEON::BI__builtin_neon_vcged_u64:
  7028. case NEON::BI__builtin_neon_vcged_s64:
  7029. case NEON::BI__builtin_neon_vcled_u64:
  7030. case NEON::BI__builtin_neon_vcled_s64: {
  7031. llvm::CmpInst::Predicate P;
  7032. switch (BuiltinID) {
  7033. default: llvm_unreachable("missing builtin ID in switch!");
  7034. case NEON::BI__builtin_neon_vceqd_s64:
  7035. case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
  7036. case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
  7037. case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
  7038. case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
  7039. case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
  7040. case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
  7041. case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
  7042. case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
  7043. case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
  7044. }
  7045. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7046. Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
  7047. Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
  7048. Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
  7049. return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
  7050. }
  7051. case NEON::BI__builtin_neon_vtstd_s64:
  7052. case NEON::BI__builtin_neon_vtstd_u64: {
  7053. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7054. Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
  7055. Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
  7056. Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
  7057. Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
  7058. llvm::Constant::getNullValue(Int64Ty));
  7059. return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
  7060. }
  7061. case NEON::BI__builtin_neon_vset_lane_i8:
  7062. case NEON::BI__builtin_neon_vset_lane_i16:
  7063. case NEON::BI__builtin_neon_vset_lane_i32:
  7064. case NEON::BI__builtin_neon_vset_lane_i64:
  7065. case NEON::BI__builtin_neon_vset_lane_f32:
  7066. case NEON::BI__builtin_neon_vsetq_lane_i8:
  7067. case NEON::BI__builtin_neon_vsetq_lane_i16:
  7068. case NEON::BI__builtin_neon_vsetq_lane_i32:
  7069. case NEON::BI__builtin_neon_vsetq_lane_i64:
  7070. case NEON::BI__builtin_neon_vsetq_lane_f32:
  7071. Ops.push_back(EmitScalarExpr(E->getArg(2)));
  7072. return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
  7073. case NEON::BI__builtin_neon_vset_lane_f64:
  7074. // The vector type needs a cast for the v1f64 variant.
  7075. Ops[1] = Builder.CreateBitCast(Ops[1],
  7076. llvm::VectorType::get(DoubleTy, 1));
  7077. Ops.push_back(EmitScalarExpr(E->getArg(2)));
  7078. return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
  7079. case NEON::BI__builtin_neon_vsetq_lane_f64:
  7080. // The vector type needs a cast for the v2f64 variant.
  7081. Ops[1] = Builder.CreateBitCast(Ops[1],
  7082. llvm::VectorType::get(DoubleTy, 2));
  7083. Ops.push_back(EmitScalarExpr(E->getArg(2)));
  7084. return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
  7085. case NEON::BI__builtin_neon_vget_lane_i8:
  7086. case NEON::BI__builtin_neon_vdupb_lane_i8:
  7087. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
  7088. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7089. "vget_lane");
  7090. case NEON::BI__builtin_neon_vgetq_lane_i8:
  7091. case NEON::BI__builtin_neon_vdupb_laneq_i8:
  7092. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
  7093. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7094. "vgetq_lane");
  7095. case NEON::BI__builtin_neon_vget_lane_i16:
  7096. case NEON::BI__builtin_neon_vduph_lane_i16:
  7097. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
  7098. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7099. "vget_lane");
  7100. case NEON::BI__builtin_neon_vgetq_lane_i16:
  7101. case NEON::BI__builtin_neon_vduph_laneq_i16:
  7102. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
  7103. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7104. "vgetq_lane");
  7105. case NEON::BI__builtin_neon_vget_lane_i32:
  7106. case NEON::BI__builtin_neon_vdups_lane_i32:
  7107. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
  7108. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7109. "vget_lane");
  7110. case NEON::BI__builtin_neon_vdups_lane_f32:
  7111. Ops[0] = Builder.CreateBitCast(Ops[0],
  7112. llvm::VectorType::get(FloatTy, 2));
  7113. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7114. "vdups_lane");
  7115. case NEON::BI__builtin_neon_vgetq_lane_i32:
  7116. case NEON::BI__builtin_neon_vdups_laneq_i32:
  7117. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
  7118. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7119. "vgetq_lane");
  7120. case NEON::BI__builtin_neon_vget_lane_i64:
  7121. case NEON::BI__builtin_neon_vdupd_lane_i64:
  7122. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
  7123. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7124. "vget_lane");
  7125. case NEON::BI__builtin_neon_vdupd_lane_f64:
  7126. Ops[0] = Builder.CreateBitCast(Ops[0],
  7127. llvm::VectorType::get(DoubleTy, 1));
  7128. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7129. "vdupd_lane");
  7130. case NEON::BI__builtin_neon_vgetq_lane_i64:
  7131. case NEON::BI__builtin_neon_vdupd_laneq_i64:
  7132. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
  7133. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7134. "vgetq_lane");
  7135. case NEON::BI__builtin_neon_vget_lane_f32:
  7136. Ops[0] = Builder.CreateBitCast(Ops[0],
  7137. llvm::VectorType::get(FloatTy, 2));
  7138. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7139. "vget_lane");
  7140. case NEON::BI__builtin_neon_vget_lane_f64:
  7141. Ops[0] = Builder.CreateBitCast(Ops[0],
  7142. llvm::VectorType::get(DoubleTy, 1));
  7143. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7144. "vget_lane");
  7145. case NEON::BI__builtin_neon_vgetq_lane_f32:
  7146. case NEON::BI__builtin_neon_vdups_laneq_f32:
  7147. Ops[0] = Builder.CreateBitCast(Ops[0],
  7148. llvm::VectorType::get(FloatTy, 4));
  7149. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7150. "vgetq_lane");
  7151. case NEON::BI__builtin_neon_vgetq_lane_f64:
  7152. case NEON::BI__builtin_neon_vdupd_laneq_f64:
  7153. Ops[0] = Builder.CreateBitCast(Ops[0],
  7154. llvm::VectorType::get(DoubleTy, 2));
  7155. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7156. "vgetq_lane");
  7157. case NEON::BI__builtin_neon_vaddh_f16:
  7158. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7159. return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
  7160. case NEON::BI__builtin_neon_vsubh_f16:
  7161. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7162. return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
  7163. case NEON::BI__builtin_neon_vmulh_f16:
  7164. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7165. return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
  7166. case NEON::BI__builtin_neon_vdivh_f16:
  7167. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7168. return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
  7169. case NEON::BI__builtin_neon_vfmah_f16: {
  7170. Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
  7171. // NEON intrinsic puts accumulator first, unlike the LLVM fma.
  7172. return Builder.CreateCall(F,
  7173. {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
  7174. }
  7175. case NEON::BI__builtin_neon_vfmsh_f16: {
  7176. Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
  7177. Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
  7178. Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
  7179. // NEON intrinsic puts accumulator first, unlike the LLVM fma.
  7180. return Builder.CreateCall(F, {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
  7181. }
  7182. case NEON::BI__builtin_neon_vaddd_s64:
  7183. case NEON::BI__builtin_neon_vaddd_u64:
  7184. return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
  7185. case NEON::BI__builtin_neon_vsubd_s64:
  7186. case NEON::BI__builtin_neon_vsubd_u64:
  7187. return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
  7188. case NEON::BI__builtin_neon_vqdmlalh_s16:
  7189. case NEON::BI__builtin_neon_vqdmlslh_s16: {
  7190. SmallVector<Value *, 2> ProductOps;
  7191. ProductOps.push_back(vectorWrapScalar16(Ops[1]));
  7192. ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
  7193. llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
  7194. Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
  7195. ProductOps, "vqdmlXl");
  7196. Constant *CI = ConstantInt::get(SizeTy, 0);
  7197. Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
  7198. unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
  7199. ? Intrinsic::aarch64_neon_sqadd
  7200. : Intrinsic::aarch64_neon_sqsub;
  7201. return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
  7202. }
  7203. case NEON::BI__builtin_neon_vqshlud_n_s64: {
  7204. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7205. Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
  7206. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
  7207. Ops, "vqshlu_n");
  7208. }
  7209. case NEON::BI__builtin_neon_vqshld_n_u64:
  7210. case NEON::BI__builtin_neon_vqshld_n_s64: {
  7211. unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
  7212. ? Intrinsic::aarch64_neon_uqshl
  7213. : Intrinsic::aarch64_neon_sqshl;
  7214. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7215. Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
  7216. return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
  7217. }
  7218. case NEON::BI__builtin_neon_vrshrd_n_u64:
  7219. case NEON::BI__builtin_neon_vrshrd_n_s64: {
  7220. unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
  7221. ? Intrinsic::aarch64_neon_urshl
  7222. : Intrinsic::aarch64_neon_srshl;
  7223. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7224. int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
  7225. Ops[1] = ConstantInt::get(Int64Ty, -SV);
  7226. return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
  7227. }
  7228. case NEON::BI__builtin_neon_vrsrad_n_u64:
  7229. case NEON::BI__builtin_neon_vrsrad_n_s64: {
  7230. unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
  7231. ? Intrinsic::aarch64_neon_urshl
  7232. : Intrinsic::aarch64_neon_srshl;
  7233. Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
  7234. Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
  7235. Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
  7236. {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
  7237. return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
  7238. }
  7239. case NEON::BI__builtin_neon_vshld_n_s64:
  7240. case NEON::BI__builtin_neon_vshld_n_u64: {
  7241. llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
  7242. return Builder.CreateShl(
  7243. Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
  7244. }
  7245. case NEON::BI__builtin_neon_vshrd_n_s64: {
  7246. llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
  7247. return Builder.CreateAShr(
  7248. Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
  7249. Amt->getZExtValue())),
  7250. "shrd_n");
  7251. }
  7252. case NEON::BI__builtin_neon_vshrd_n_u64: {
  7253. llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
  7254. uint64_t ShiftAmt = Amt->getZExtValue();
  7255. // Right-shifting an unsigned value by its size yields 0.
  7256. if (ShiftAmt == 64)
  7257. return ConstantInt::get(Int64Ty, 0);
  7258. return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
  7259. "shrd_n");
  7260. }
  7261. case NEON::BI__builtin_neon_vsrad_n_s64: {
  7262. llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
  7263. Ops[1] = Builder.CreateAShr(
  7264. Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
  7265. Amt->getZExtValue())),
  7266. "shrd_n");
  7267. return Builder.CreateAdd(Ops[0], Ops[1]);
  7268. }
  7269. case NEON::BI__builtin_neon_vsrad_n_u64: {
  7270. llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
  7271. uint64_t ShiftAmt = Amt->getZExtValue();
  7272. // Right-shifting an unsigned value by its size yields 0.
  7273. // As Op + 0 = Op, return Ops[0] directly.
  7274. if (ShiftAmt == 64)
  7275. return Ops[0];
  7276. Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
  7277. "shrd_n");
  7278. return Builder.CreateAdd(Ops[0], Ops[1]);
  7279. }
  7280. case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
  7281. case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
  7282. case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
  7283. case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
  7284. Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
  7285. "lane");
  7286. SmallVector<Value *, 2> ProductOps;
  7287. ProductOps.push_back(vectorWrapScalar16(Ops[1]));
  7288. ProductOps.push_back(vectorWrapScalar16(Ops[2]));
  7289. llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
  7290. Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
  7291. ProductOps, "vqdmlXl");
  7292. Constant *CI = ConstantInt::get(SizeTy, 0);
  7293. Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
  7294. Ops.pop_back();
  7295. unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
  7296. BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
  7297. ? Intrinsic::aarch64_neon_sqadd
  7298. : Intrinsic::aarch64_neon_sqsub;
  7299. return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
  7300. }
  7301. case NEON::BI__builtin_neon_vqdmlals_s32:
  7302. case NEON::BI__builtin_neon_vqdmlsls_s32: {
  7303. SmallVector<Value *, 2> ProductOps;
  7304. ProductOps.push_back(Ops[1]);
  7305. ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
  7306. Ops[1] =
  7307. EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
  7308. ProductOps, "vqdmlXl");
  7309. unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
  7310. ? Intrinsic::aarch64_neon_sqadd
  7311. : Intrinsic::aarch64_neon_sqsub;
  7312. return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
  7313. }
  7314. case NEON::BI__builtin_neon_vqdmlals_lane_s32:
  7315. case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
  7316. case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
  7317. case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
  7318. Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
  7319. "lane");
  7320. SmallVector<Value *, 2> ProductOps;
  7321. ProductOps.push_back(Ops[1]);
  7322. ProductOps.push_back(Ops[2]);
  7323. Ops[1] =
  7324. EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
  7325. ProductOps, "vqdmlXl");
  7326. Ops.pop_back();
  7327. unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
  7328. BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
  7329. ? Intrinsic::aarch64_neon_sqadd
  7330. : Intrinsic::aarch64_neon_sqsub;
  7331. return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
  7332. }
  7333. case NEON::BI__builtin_neon_vduph_lane_f16: {
  7334. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7335. "vget_lane");
  7336. }
  7337. case NEON::BI__builtin_neon_vduph_laneq_f16: {
  7338. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7339. "vgetq_lane");
  7340. }
  7341. case AArch64::BI_BitScanForward:
  7342. case AArch64::BI_BitScanForward64:
  7343. return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
  7344. case AArch64::BI_BitScanReverse:
  7345. case AArch64::BI_BitScanReverse64:
  7346. return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
  7347. case AArch64::BI_InterlockedAnd64:
  7348. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
  7349. case AArch64::BI_InterlockedExchange64:
  7350. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
  7351. case AArch64::BI_InterlockedExchangeAdd64:
  7352. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
  7353. case AArch64::BI_InterlockedExchangeSub64:
  7354. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
  7355. case AArch64::BI_InterlockedOr64:
  7356. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
  7357. case AArch64::BI_InterlockedXor64:
  7358. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
  7359. case AArch64::BI_InterlockedDecrement64:
  7360. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
  7361. case AArch64::BI_InterlockedIncrement64:
  7362. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
  7363. case AArch64::BI_InterlockedExchangeAdd8_acq:
  7364. case AArch64::BI_InterlockedExchangeAdd16_acq:
  7365. case AArch64::BI_InterlockedExchangeAdd_acq:
  7366. case AArch64::BI_InterlockedExchangeAdd64_acq:
  7367. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
  7368. case AArch64::BI_InterlockedExchangeAdd8_rel:
  7369. case AArch64::BI_InterlockedExchangeAdd16_rel:
  7370. case AArch64::BI_InterlockedExchangeAdd_rel:
  7371. case AArch64::BI_InterlockedExchangeAdd64_rel:
  7372. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
  7373. case AArch64::BI_InterlockedExchangeAdd8_nf:
  7374. case AArch64::BI_InterlockedExchangeAdd16_nf:
  7375. case AArch64::BI_InterlockedExchangeAdd_nf:
  7376. case AArch64::BI_InterlockedExchangeAdd64_nf:
  7377. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
  7378. case AArch64::BI_InterlockedExchange8_acq:
  7379. case AArch64::BI_InterlockedExchange16_acq:
  7380. case AArch64::BI_InterlockedExchange_acq:
  7381. case AArch64::BI_InterlockedExchange64_acq:
  7382. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
  7383. case AArch64::BI_InterlockedExchange8_rel:
  7384. case AArch64::BI_InterlockedExchange16_rel:
  7385. case AArch64::BI_InterlockedExchange_rel:
  7386. case AArch64::BI_InterlockedExchange64_rel:
  7387. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
  7388. case AArch64::BI_InterlockedExchange8_nf:
  7389. case AArch64::BI_InterlockedExchange16_nf:
  7390. case AArch64::BI_InterlockedExchange_nf:
  7391. case AArch64::BI_InterlockedExchange64_nf:
  7392. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
  7393. case AArch64::BI_InterlockedCompareExchange8_acq:
  7394. case AArch64::BI_InterlockedCompareExchange16_acq:
  7395. case AArch64::BI_InterlockedCompareExchange_acq:
  7396. case AArch64::BI_InterlockedCompareExchange64_acq:
  7397. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
  7398. case AArch64::BI_InterlockedCompareExchange8_rel:
  7399. case AArch64::BI_InterlockedCompareExchange16_rel:
  7400. case AArch64::BI_InterlockedCompareExchange_rel:
  7401. case AArch64::BI_InterlockedCompareExchange64_rel:
  7402. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
  7403. case AArch64::BI_InterlockedCompareExchange8_nf:
  7404. case AArch64::BI_InterlockedCompareExchange16_nf:
  7405. case AArch64::BI_InterlockedCompareExchange_nf:
  7406. case AArch64::BI_InterlockedCompareExchange64_nf:
  7407. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
  7408. case AArch64::BI_InterlockedOr8_acq:
  7409. case AArch64::BI_InterlockedOr16_acq:
  7410. case AArch64::BI_InterlockedOr_acq:
  7411. case AArch64::BI_InterlockedOr64_acq:
  7412. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
  7413. case AArch64::BI_InterlockedOr8_rel:
  7414. case AArch64::BI_InterlockedOr16_rel:
  7415. case AArch64::BI_InterlockedOr_rel:
  7416. case AArch64::BI_InterlockedOr64_rel:
  7417. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
  7418. case AArch64::BI_InterlockedOr8_nf:
  7419. case AArch64::BI_InterlockedOr16_nf:
  7420. case AArch64::BI_InterlockedOr_nf:
  7421. case AArch64::BI_InterlockedOr64_nf:
  7422. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
  7423. case AArch64::BI_InterlockedXor8_acq:
  7424. case AArch64::BI_InterlockedXor16_acq:
  7425. case AArch64::BI_InterlockedXor_acq:
  7426. case AArch64::BI_InterlockedXor64_acq:
  7427. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
  7428. case AArch64::BI_InterlockedXor8_rel:
  7429. case AArch64::BI_InterlockedXor16_rel:
  7430. case AArch64::BI_InterlockedXor_rel:
  7431. case AArch64::BI_InterlockedXor64_rel:
  7432. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
  7433. case AArch64::BI_InterlockedXor8_nf:
  7434. case AArch64::BI_InterlockedXor16_nf:
  7435. case AArch64::BI_InterlockedXor_nf:
  7436. case AArch64::BI_InterlockedXor64_nf:
  7437. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
  7438. case AArch64::BI_InterlockedAnd8_acq:
  7439. case AArch64::BI_InterlockedAnd16_acq:
  7440. case AArch64::BI_InterlockedAnd_acq:
  7441. case AArch64::BI_InterlockedAnd64_acq:
  7442. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
  7443. case AArch64::BI_InterlockedAnd8_rel:
  7444. case AArch64::BI_InterlockedAnd16_rel:
  7445. case AArch64::BI_InterlockedAnd_rel:
  7446. case AArch64::BI_InterlockedAnd64_rel:
  7447. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
  7448. case AArch64::BI_InterlockedAnd8_nf:
  7449. case AArch64::BI_InterlockedAnd16_nf:
  7450. case AArch64::BI_InterlockedAnd_nf:
  7451. case AArch64::BI_InterlockedAnd64_nf:
  7452. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
  7453. case AArch64::BI_InterlockedIncrement16_acq:
  7454. case AArch64::BI_InterlockedIncrement_acq:
  7455. case AArch64::BI_InterlockedIncrement64_acq:
  7456. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
  7457. case AArch64::BI_InterlockedIncrement16_rel:
  7458. case AArch64::BI_InterlockedIncrement_rel:
  7459. case AArch64::BI_InterlockedIncrement64_rel:
  7460. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
  7461. case AArch64::BI_InterlockedIncrement16_nf:
  7462. case AArch64::BI_InterlockedIncrement_nf:
  7463. case AArch64::BI_InterlockedIncrement64_nf:
  7464. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
  7465. case AArch64::BI_InterlockedDecrement16_acq:
  7466. case AArch64::BI_InterlockedDecrement_acq:
  7467. case AArch64::BI_InterlockedDecrement64_acq:
  7468. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
  7469. case AArch64::BI_InterlockedDecrement16_rel:
  7470. case AArch64::BI_InterlockedDecrement_rel:
  7471. case AArch64::BI_InterlockedDecrement64_rel:
  7472. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
  7473. case AArch64::BI_InterlockedDecrement16_nf:
  7474. case AArch64::BI_InterlockedDecrement_nf:
  7475. case AArch64::BI_InterlockedDecrement64_nf:
  7476. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
  7477. case AArch64::BI_InterlockedAdd: {
  7478. Value *Arg0 = EmitScalarExpr(E->getArg(0));
  7479. Value *Arg1 = EmitScalarExpr(E->getArg(1));
  7480. AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
  7481. AtomicRMWInst::Add, Arg0, Arg1,
  7482. llvm::AtomicOrdering::SequentiallyConsistent);
  7483. return Builder.CreateAdd(RMWI, Arg1);
  7484. }
  7485. }
  7486. llvm::VectorType *VTy = GetNeonType(this, Type);
  7487. llvm::Type *Ty = VTy;
  7488. if (!Ty)
  7489. return nullptr;
  7490. // Not all intrinsics handled by the common case work for AArch64 yet, so only
  7491. // defer to common code if it's been added to our special map.
  7492. Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
  7493. AArch64SIMDIntrinsicsProvenSorted);
  7494. if (Builtin)
  7495. return EmitCommonNeonBuiltinExpr(
  7496. Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
  7497. Builtin->NameHint, Builtin->TypeModifier, E, Ops,
  7498. /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
  7499. if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
  7500. return V;
  7501. unsigned Int;
  7502. switch (BuiltinID) {
  7503. default: return nullptr;
  7504. case NEON::BI__builtin_neon_vbsl_v:
  7505. case NEON::BI__builtin_neon_vbslq_v: {
  7506. llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
  7507. Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
  7508. Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
  7509. Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
  7510. Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
  7511. Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
  7512. Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
  7513. return Builder.CreateBitCast(Ops[0], Ty);
  7514. }
  7515. case NEON::BI__builtin_neon_vfma_lane_v:
  7516. case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
  7517. // The ARM builtins (and instructions) have the addend as the first
  7518. // operand, but the 'fma' intrinsics have it last. Swap it around here.
  7519. Value *Addend = Ops[0];
  7520. Value *Multiplicand = Ops[1];
  7521. Value *LaneSource = Ops[2];
  7522. Ops[0] = Multiplicand;
  7523. Ops[1] = LaneSource;
  7524. Ops[2] = Addend;
  7525. // Now adjust things to handle the lane access.
  7526. llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
  7527. llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
  7528. VTy;
  7529. llvm::Constant *cst = cast<Constant>(Ops[3]);
  7530. Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
  7531. Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
  7532. Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
  7533. Ops.pop_back();
  7534. Int = Intrinsic::fma;
  7535. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
  7536. }
  7537. case NEON::BI__builtin_neon_vfma_laneq_v: {
  7538. llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
  7539. // v1f64 fma should be mapped to Neon scalar f64 fma
  7540. if (VTy && VTy->getElementType() == DoubleTy) {
  7541. Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
  7542. Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
  7543. llvm::Type *VTy = GetNeonType(this,
  7544. NeonTypeFlags(NeonTypeFlags::Float64, false, true));
  7545. Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
  7546. Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
  7547. Function *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
  7548. Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
  7549. return Builder.CreateBitCast(Result, Ty);
  7550. }
  7551. Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
  7552. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  7553. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  7554. llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
  7555. VTy->getNumElements() * 2);
  7556. Ops[2] = Builder.CreateBitCast(Ops[2], STy);
  7557. Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
  7558. cast<ConstantInt>(Ops[3]));
  7559. Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
  7560. return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
  7561. }
  7562. case NEON::BI__builtin_neon_vfmaq_laneq_v: {
  7563. Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
  7564. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  7565. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  7566. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  7567. Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
  7568. return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
  7569. }
  7570. case NEON::BI__builtin_neon_vfmah_lane_f16:
  7571. case NEON::BI__builtin_neon_vfmas_lane_f32:
  7572. case NEON::BI__builtin_neon_vfmah_laneq_f16:
  7573. case NEON::BI__builtin_neon_vfmas_laneq_f32:
  7574. case NEON::BI__builtin_neon_vfmad_lane_f64:
  7575. case NEON::BI__builtin_neon_vfmad_laneq_f64: {
  7576. Ops.push_back(EmitScalarExpr(E->getArg(3)));
  7577. llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
  7578. Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
  7579. Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
  7580. return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
  7581. }
  7582. case NEON::BI__builtin_neon_vmull_v:
  7583. // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
  7584. Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
  7585. if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
  7586. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
  7587. case NEON::BI__builtin_neon_vmax_v:
  7588. case NEON::BI__builtin_neon_vmaxq_v:
  7589. // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
  7590. Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
  7591. if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
  7592. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
  7593. case NEON::BI__builtin_neon_vmaxh_f16: {
  7594. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7595. Int = Intrinsic::aarch64_neon_fmax;
  7596. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
  7597. }
  7598. case NEON::BI__builtin_neon_vmin_v:
  7599. case NEON::BI__builtin_neon_vminq_v:
  7600. // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
  7601. Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
  7602. if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
  7603. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
  7604. case NEON::BI__builtin_neon_vminh_f16: {
  7605. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7606. Int = Intrinsic::aarch64_neon_fmin;
  7607. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
  7608. }
  7609. case NEON::BI__builtin_neon_vabd_v:
  7610. case NEON::BI__builtin_neon_vabdq_v:
  7611. // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
  7612. Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
  7613. if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
  7614. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
  7615. case NEON::BI__builtin_neon_vpadal_v:
  7616. case NEON::BI__builtin_neon_vpadalq_v: {
  7617. unsigned ArgElts = VTy->getNumElements();
  7618. llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
  7619. unsigned BitWidth = EltTy->getBitWidth();
  7620. llvm::Type *ArgTy = llvm::VectorType::get(
  7621. llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
  7622. llvm::Type* Tys[2] = { VTy, ArgTy };
  7623. Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
  7624. SmallVector<llvm::Value*, 1> TmpOps;
  7625. TmpOps.push_back(Ops[1]);
  7626. Function *F = CGM.getIntrinsic(Int, Tys);
  7627. llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
  7628. llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
  7629. return Builder.CreateAdd(tmp, addend);
  7630. }
  7631. case NEON::BI__builtin_neon_vpmin_v:
  7632. case NEON::BI__builtin_neon_vpminq_v:
  7633. // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
  7634. Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
  7635. if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
  7636. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
  7637. case NEON::BI__builtin_neon_vpmax_v:
  7638. case NEON::BI__builtin_neon_vpmaxq_v:
  7639. // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
  7640. Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
  7641. if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
  7642. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
  7643. case NEON::BI__builtin_neon_vminnm_v:
  7644. case NEON::BI__builtin_neon_vminnmq_v:
  7645. Int = Intrinsic::aarch64_neon_fminnm;
  7646. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
  7647. case NEON::BI__builtin_neon_vminnmh_f16:
  7648. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7649. Int = Intrinsic::aarch64_neon_fminnm;
  7650. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
  7651. case NEON::BI__builtin_neon_vmaxnm_v:
  7652. case NEON::BI__builtin_neon_vmaxnmq_v:
  7653. Int = Intrinsic::aarch64_neon_fmaxnm;
  7654. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
  7655. case NEON::BI__builtin_neon_vmaxnmh_f16:
  7656. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7657. Int = Intrinsic::aarch64_neon_fmaxnm;
  7658. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
  7659. case NEON::BI__builtin_neon_vrecpss_f32: {
  7660. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7661. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
  7662. Ops, "vrecps");
  7663. }
  7664. case NEON::BI__builtin_neon_vrecpsd_f64:
  7665. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7666. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
  7667. Ops, "vrecps");
  7668. case NEON::BI__builtin_neon_vrecpsh_f16:
  7669. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7670. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
  7671. Ops, "vrecps");
  7672. case NEON::BI__builtin_neon_vqshrun_n_v:
  7673. Int = Intrinsic::aarch64_neon_sqshrun;
  7674. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
  7675. case NEON::BI__builtin_neon_vqrshrun_n_v:
  7676. Int = Intrinsic::aarch64_neon_sqrshrun;
  7677. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
  7678. case NEON::BI__builtin_neon_vqshrn_n_v:
  7679. Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
  7680. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
  7681. case NEON::BI__builtin_neon_vrshrn_n_v:
  7682. Int = Intrinsic::aarch64_neon_rshrn;
  7683. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
  7684. case NEON::BI__builtin_neon_vqrshrn_n_v:
  7685. Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
  7686. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
  7687. case NEON::BI__builtin_neon_vrndah_f16: {
  7688. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7689. Int = Intrinsic::round;
  7690. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
  7691. }
  7692. case NEON::BI__builtin_neon_vrnda_v:
  7693. case NEON::BI__builtin_neon_vrndaq_v: {
  7694. Int = Intrinsic::round;
  7695. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
  7696. }
  7697. case NEON::BI__builtin_neon_vrndih_f16: {
  7698. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7699. Int = Intrinsic::nearbyint;
  7700. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
  7701. }
  7702. case NEON::BI__builtin_neon_vrndmh_f16: {
  7703. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7704. Int = Intrinsic::floor;
  7705. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
  7706. }
  7707. case NEON::BI__builtin_neon_vrndm_v:
  7708. case NEON::BI__builtin_neon_vrndmq_v: {
  7709. Int = Intrinsic::floor;
  7710. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
  7711. }
  7712. case NEON::BI__builtin_neon_vrndnh_f16: {
  7713. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7714. Int = Intrinsic::aarch64_neon_frintn;
  7715. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
  7716. }
  7717. case NEON::BI__builtin_neon_vrndn_v:
  7718. case NEON::BI__builtin_neon_vrndnq_v: {
  7719. Int = Intrinsic::aarch64_neon_frintn;
  7720. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
  7721. }
  7722. case NEON::BI__builtin_neon_vrndns_f32: {
  7723. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7724. Int = Intrinsic::aarch64_neon_frintn;
  7725. return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
  7726. }
  7727. case NEON::BI__builtin_neon_vrndph_f16: {
  7728. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7729. Int = Intrinsic::ceil;
  7730. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
  7731. }
  7732. case NEON::BI__builtin_neon_vrndp_v:
  7733. case NEON::BI__builtin_neon_vrndpq_v: {
  7734. Int = Intrinsic::ceil;
  7735. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
  7736. }
  7737. case NEON::BI__builtin_neon_vrndxh_f16: {
  7738. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7739. Int = Intrinsic::rint;
  7740. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
  7741. }
  7742. case NEON::BI__builtin_neon_vrndx_v:
  7743. case NEON::BI__builtin_neon_vrndxq_v: {
  7744. Int = Intrinsic::rint;
  7745. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
  7746. }
  7747. case NEON::BI__builtin_neon_vrndh_f16: {
  7748. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7749. Int = Intrinsic::trunc;
  7750. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
  7751. }
  7752. case NEON::BI__builtin_neon_vrnd_v:
  7753. case NEON::BI__builtin_neon_vrndq_v: {
  7754. Int = Intrinsic::trunc;
  7755. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
  7756. }
  7757. case NEON::BI__builtin_neon_vcvt_f64_v:
  7758. case NEON::BI__builtin_neon_vcvtq_f64_v:
  7759. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  7760. Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
  7761. return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
  7762. : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
  7763. case NEON::BI__builtin_neon_vcvt_f64_f32: {
  7764. assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
  7765. "unexpected vcvt_f64_f32 builtin");
  7766. NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
  7767. Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
  7768. return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
  7769. }
  7770. case NEON::BI__builtin_neon_vcvt_f32_f64: {
  7771. assert(Type.getEltType() == NeonTypeFlags::Float32 &&
  7772. "unexpected vcvt_f32_f64 builtin");
  7773. NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
  7774. Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
  7775. return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
  7776. }
  7777. case NEON::BI__builtin_neon_vcvt_s32_v:
  7778. case NEON::BI__builtin_neon_vcvt_u32_v:
  7779. case NEON::BI__builtin_neon_vcvt_s64_v:
  7780. case NEON::BI__builtin_neon_vcvt_u64_v:
  7781. case NEON::BI__builtin_neon_vcvt_s16_v:
  7782. case NEON::BI__builtin_neon_vcvt_u16_v:
  7783. case NEON::BI__builtin_neon_vcvtq_s32_v:
  7784. case NEON::BI__builtin_neon_vcvtq_u32_v:
  7785. case NEON::BI__builtin_neon_vcvtq_s64_v:
  7786. case NEON::BI__builtin_neon_vcvtq_u64_v:
  7787. case NEON::BI__builtin_neon_vcvtq_s16_v:
  7788. case NEON::BI__builtin_neon_vcvtq_u16_v: {
  7789. Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
  7790. if (usgn)
  7791. return Builder.CreateFPToUI(Ops[0], Ty);
  7792. return Builder.CreateFPToSI(Ops[0], Ty);
  7793. }
  7794. case NEON::BI__builtin_neon_vcvta_s16_v:
  7795. case NEON::BI__builtin_neon_vcvta_u16_v:
  7796. case NEON::BI__builtin_neon_vcvta_s32_v:
  7797. case NEON::BI__builtin_neon_vcvtaq_s16_v:
  7798. case NEON::BI__builtin_neon_vcvtaq_s32_v:
  7799. case NEON::BI__builtin_neon_vcvta_u32_v:
  7800. case NEON::BI__builtin_neon_vcvtaq_u16_v:
  7801. case NEON::BI__builtin_neon_vcvtaq_u32_v:
  7802. case NEON::BI__builtin_neon_vcvta_s64_v:
  7803. case NEON::BI__builtin_neon_vcvtaq_s64_v:
  7804. case NEON::BI__builtin_neon_vcvta_u64_v:
  7805. case NEON::BI__builtin_neon_vcvtaq_u64_v: {
  7806. Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
  7807. llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
  7808. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
  7809. }
  7810. case NEON::BI__builtin_neon_vcvtm_s16_v:
  7811. case NEON::BI__builtin_neon_vcvtm_s32_v:
  7812. case NEON::BI__builtin_neon_vcvtmq_s16_v:
  7813. case NEON::BI__builtin_neon_vcvtmq_s32_v:
  7814. case NEON::BI__builtin_neon_vcvtm_u16_v:
  7815. case NEON::BI__builtin_neon_vcvtm_u32_v:
  7816. case NEON::BI__builtin_neon_vcvtmq_u16_v:
  7817. case NEON::BI__builtin_neon_vcvtmq_u32_v:
  7818. case NEON::BI__builtin_neon_vcvtm_s64_v:
  7819. case NEON::BI__builtin_neon_vcvtmq_s64_v:
  7820. case NEON::BI__builtin_neon_vcvtm_u64_v:
  7821. case NEON::BI__builtin_neon_vcvtmq_u64_v: {
  7822. Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
  7823. llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
  7824. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
  7825. }
  7826. case NEON::BI__builtin_neon_vcvtn_s16_v:
  7827. case NEON::BI__builtin_neon_vcvtn_s32_v:
  7828. case NEON::BI__builtin_neon_vcvtnq_s16_v:
  7829. case NEON::BI__builtin_neon_vcvtnq_s32_v:
  7830. case NEON::BI__builtin_neon_vcvtn_u16_v:
  7831. case NEON::BI__builtin_neon_vcvtn_u32_v:
  7832. case NEON::BI__builtin_neon_vcvtnq_u16_v:
  7833. case NEON::BI__builtin_neon_vcvtnq_u32_v:
  7834. case NEON::BI__builtin_neon_vcvtn_s64_v:
  7835. case NEON::BI__builtin_neon_vcvtnq_s64_v:
  7836. case NEON::BI__builtin_neon_vcvtn_u64_v:
  7837. case NEON::BI__builtin_neon_vcvtnq_u64_v: {
  7838. Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
  7839. llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
  7840. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
  7841. }
  7842. case NEON::BI__builtin_neon_vcvtp_s16_v:
  7843. case NEON::BI__builtin_neon_vcvtp_s32_v:
  7844. case NEON::BI__builtin_neon_vcvtpq_s16_v:
  7845. case NEON::BI__builtin_neon_vcvtpq_s32_v:
  7846. case NEON::BI__builtin_neon_vcvtp_u16_v:
  7847. case NEON::BI__builtin_neon_vcvtp_u32_v:
  7848. case NEON::BI__builtin_neon_vcvtpq_u16_v:
  7849. case NEON::BI__builtin_neon_vcvtpq_u32_v:
  7850. case NEON::BI__builtin_neon_vcvtp_s64_v:
  7851. case NEON::BI__builtin_neon_vcvtpq_s64_v:
  7852. case NEON::BI__builtin_neon_vcvtp_u64_v:
  7853. case NEON::BI__builtin_neon_vcvtpq_u64_v: {
  7854. Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
  7855. llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
  7856. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
  7857. }
  7858. case NEON::BI__builtin_neon_vmulx_v:
  7859. case NEON::BI__builtin_neon_vmulxq_v: {
  7860. Int = Intrinsic::aarch64_neon_fmulx;
  7861. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
  7862. }
  7863. case NEON::BI__builtin_neon_vmulxh_lane_f16:
  7864. case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
  7865. // vmulx_lane should be mapped to Neon scalar mulx after
  7866. // extracting the scalar element
  7867. Ops.push_back(EmitScalarExpr(E->getArg(2)));
  7868. Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
  7869. Ops.pop_back();
  7870. Int = Intrinsic::aarch64_neon_fmulx;
  7871. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
  7872. }
  7873. case NEON::BI__builtin_neon_vmul_lane_v:
  7874. case NEON::BI__builtin_neon_vmul_laneq_v: {
  7875. // v1f64 vmul_lane should be mapped to Neon scalar mul lane
  7876. bool Quad = false;
  7877. if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
  7878. Quad = true;
  7879. Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
  7880. llvm::Type *VTy = GetNeonType(this,
  7881. NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
  7882. Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
  7883. Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
  7884. Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
  7885. return Builder.CreateBitCast(Result, Ty);
  7886. }
  7887. case NEON::BI__builtin_neon_vnegd_s64:
  7888. return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
  7889. case NEON::BI__builtin_neon_vnegh_f16:
  7890. return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
  7891. case NEON::BI__builtin_neon_vpmaxnm_v:
  7892. case NEON::BI__builtin_neon_vpmaxnmq_v: {
  7893. Int = Intrinsic::aarch64_neon_fmaxnmp;
  7894. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
  7895. }
  7896. case NEON::BI__builtin_neon_vpminnm_v:
  7897. case NEON::BI__builtin_neon_vpminnmq_v: {
  7898. Int = Intrinsic::aarch64_neon_fminnmp;
  7899. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
  7900. }
  7901. case NEON::BI__builtin_neon_vsqrth_f16: {
  7902. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7903. Int = Intrinsic::sqrt;
  7904. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
  7905. }
  7906. case NEON::BI__builtin_neon_vsqrt_v:
  7907. case NEON::BI__builtin_neon_vsqrtq_v: {
  7908. Int = Intrinsic::sqrt;
  7909. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  7910. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
  7911. }
  7912. case NEON::BI__builtin_neon_vrbit_v:
  7913. case NEON::BI__builtin_neon_vrbitq_v: {
  7914. Int = Intrinsic::aarch64_neon_rbit;
  7915. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
  7916. }
  7917. case NEON::BI__builtin_neon_vaddv_u8:
  7918. // FIXME: These are handled by the AArch64 scalar code.
  7919. usgn = true;
  7920. LLVM_FALLTHROUGH;
  7921. case NEON::BI__builtin_neon_vaddv_s8: {
  7922. Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
  7923. Ty = Int32Ty;
  7924. VTy = llvm::VectorType::get(Int8Ty, 8);
  7925. llvm::Type *Tys[2] = { Ty, VTy };
  7926. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7927. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
  7928. return Builder.CreateTrunc(Ops[0], Int8Ty);
  7929. }
  7930. case NEON::BI__builtin_neon_vaddv_u16:
  7931. usgn = true;
  7932. LLVM_FALLTHROUGH;
  7933. case NEON::BI__builtin_neon_vaddv_s16: {
  7934. Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
  7935. Ty = Int32Ty;
  7936. VTy = llvm::VectorType::get(Int16Ty, 4);
  7937. llvm::Type *Tys[2] = { Ty, VTy };
  7938. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7939. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
  7940. return Builder.CreateTrunc(Ops[0], Int16Ty);
  7941. }
  7942. case NEON::BI__builtin_neon_vaddvq_u8:
  7943. usgn = true;
  7944. LLVM_FALLTHROUGH;
  7945. case NEON::BI__builtin_neon_vaddvq_s8: {
  7946. Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
  7947. Ty = Int32Ty;
  7948. VTy = llvm::VectorType::get(Int8Ty, 16);
  7949. llvm::Type *Tys[2] = { Ty, VTy };
  7950. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7951. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
  7952. return Builder.CreateTrunc(Ops[0], Int8Ty);
  7953. }
  7954. case NEON::BI__builtin_neon_vaddvq_u16:
  7955. usgn = true;
  7956. LLVM_FALLTHROUGH;
  7957. case NEON::BI__builtin_neon_vaddvq_s16: {
  7958. Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
  7959. Ty = Int32Ty;
  7960. VTy = llvm::VectorType::get(Int16Ty, 8);
  7961. llvm::Type *Tys[2] = { Ty, VTy };
  7962. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7963. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
  7964. return Builder.CreateTrunc(Ops[0], Int16Ty);
  7965. }
  7966. case NEON::BI__builtin_neon_vmaxv_u8: {
  7967. Int = Intrinsic::aarch64_neon_umaxv;
  7968. Ty = Int32Ty;
  7969. VTy = llvm::VectorType::get(Int8Ty, 8);
  7970. llvm::Type *Tys[2] = { Ty, VTy };
  7971. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7972. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  7973. return Builder.CreateTrunc(Ops[0], Int8Ty);
  7974. }
  7975. case NEON::BI__builtin_neon_vmaxv_u16: {
  7976. Int = Intrinsic::aarch64_neon_umaxv;
  7977. Ty = Int32Ty;
  7978. VTy = llvm::VectorType::get(Int16Ty, 4);
  7979. llvm::Type *Tys[2] = { Ty, VTy };
  7980. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7981. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  7982. return Builder.CreateTrunc(Ops[0], Int16Ty);
  7983. }
  7984. case NEON::BI__builtin_neon_vmaxvq_u8: {
  7985. Int = Intrinsic::aarch64_neon_umaxv;
  7986. Ty = Int32Ty;
  7987. VTy = llvm::VectorType::get(Int8Ty, 16);
  7988. llvm::Type *Tys[2] = { Ty, VTy };
  7989. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7990. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  7991. return Builder.CreateTrunc(Ops[0], Int8Ty);
  7992. }
  7993. case NEON::BI__builtin_neon_vmaxvq_u16: {
  7994. Int = Intrinsic::aarch64_neon_umaxv;
  7995. Ty = Int32Ty;
  7996. VTy = llvm::VectorType::get(Int16Ty, 8);
  7997. llvm::Type *Tys[2] = { Ty, VTy };
  7998. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7999. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  8000. return Builder.CreateTrunc(Ops[0], Int16Ty);
  8001. }
  8002. case NEON::BI__builtin_neon_vmaxv_s8: {
  8003. Int = Intrinsic::aarch64_neon_smaxv;
  8004. Ty = Int32Ty;
  8005. VTy = llvm::VectorType::get(Int8Ty, 8);
  8006. llvm::Type *Tys[2] = { Ty, VTy };
  8007. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8008. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  8009. return Builder.CreateTrunc(Ops[0], Int8Ty);
  8010. }
  8011. case NEON::BI__builtin_neon_vmaxv_s16: {
  8012. Int = Intrinsic::aarch64_neon_smaxv;
  8013. Ty = Int32Ty;
  8014. VTy = llvm::VectorType::get(Int16Ty, 4);
  8015. llvm::Type *Tys[2] = { Ty, VTy };
  8016. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8017. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  8018. return Builder.CreateTrunc(Ops[0], Int16Ty);
  8019. }
  8020. case NEON::BI__builtin_neon_vmaxvq_s8: {
  8021. Int = Intrinsic::aarch64_neon_smaxv;
  8022. Ty = Int32Ty;
  8023. VTy = llvm::VectorType::get(Int8Ty, 16);
  8024. llvm::Type *Tys[2] = { Ty, VTy };
  8025. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8026. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  8027. return Builder.CreateTrunc(Ops[0], Int8Ty);
  8028. }
  8029. case NEON::BI__builtin_neon_vmaxvq_s16: {
  8030. Int = Intrinsic::aarch64_neon_smaxv;
  8031. Ty = Int32Ty;
  8032. VTy = llvm::VectorType::get(Int16Ty, 8);
  8033. llvm::Type *Tys[2] = { Ty, VTy };
  8034. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8035. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  8036. return Builder.CreateTrunc(Ops[0], Int16Ty);
  8037. }
  8038. case NEON::BI__builtin_neon_vmaxv_f16: {
  8039. Int = Intrinsic::aarch64_neon_fmaxv;
  8040. Ty = HalfTy;
  8041. VTy = llvm::VectorType::get(HalfTy, 4);
  8042. llvm::Type *Tys[2] = { Ty, VTy };
  8043. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8044. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  8045. return Builder.CreateTrunc(Ops[0], HalfTy);
  8046. }
  8047. case NEON::BI__builtin_neon_vmaxvq_f16: {
  8048. Int = Intrinsic::aarch64_neon_fmaxv;
  8049. Ty = HalfTy;
  8050. VTy = llvm::VectorType::get(HalfTy, 8);
  8051. llvm::Type *Tys[2] = { Ty, VTy };
  8052. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8053. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  8054. return Builder.CreateTrunc(Ops[0], HalfTy);
  8055. }
  8056. case NEON::BI__builtin_neon_vminv_u8: {
  8057. Int = Intrinsic::aarch64_neon_uminv;
  8058. Ty = Int32Ty;
  8059. VTy = llvm::VectorType::get(Int8Ty, 8);
  8060. llvm::Type *Tys[2] = { Ty, VTy };
  8061. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8062. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  8063. return Builder.CreateTrunc(Ops[0], Int8Ty);
  8064. }
  8065. case NEON::BI__builtin_neon_vminv_u16: {
  8066. Int = Intrinsic::aarch64_neon_uminv;
  8067. Ty = Int32Ty;
  8068. VTy = llvm::VectorType::get(Int16Ty, 4);
  8069. llvm::Type *Tys[2] = { Ty, VTy };
  8070. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8071. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  8072. return Builder.CreateTrunc(Ops[0], Int16Ty);
  8073. }
  8074. case NEON::BI__builtin_neon_vminvq_u8: {
  8075. Int = Intrinsic::aarch64_neon_uminv;
  8076. Ty = Int32Ty;
  8077. VTy = llvm::VectorType::get(Int8Ty, 16);
  8078. llvm::Type *Tys[2] = { Ty, VTy };
  8079. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8080. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  8081. return Builder.CreateTrunc(Ops[0], Int8Ty);
  8082. }
  8083. case NEON::BI__builtin_neon_vminvq_u16: {
  8084. Int = Intrinsic::aarch64_neon_uminv;
  8085. Ty = Int32Ty;
  8086. VTy = llvm::VectorType::get(Int16Ty, 8);
  8087. llvm::Type *Tys[2] = { Ty, VTy };
  8088. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8089. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  8090. return Builder.CreateTrunc(Ops[0], Int16Ty);
  8091. }
  8092. case NEON::BI__builtin_neon_vminv_s8: {
  8093. Int = Intrinsic::aarch64_neon_sminv;
  8094. Ty = Int32Ty;
  8095. VTy = llvm::VectorType::get(Int8Ty, 8);
  8096. llvm::Type *Tys[2] = { Ty, VTy };
  8097. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8098. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  8099. return Builder.CreateTrunc(Ops[0], Int8Ty);
  8100. }
  8101. case NEON::BI__builtin_neon_vminv_s16: {
  8102. Int = Intrinsic::aarch64_neon_sminv;
  8103. Ty = Int32Ty;
  8104. VTy = llvm::VectorType::get(Int16Ty, 4);
  8105. llvm::Type *Tys[2] = { Ty, VTy };
  8106. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8107. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  8108. return Builder.CreateTrunc(Ops[0], Int16Ty);
  8109. }
  8110. case NEON::BI__builtin_neon_vminvq_s8: {
  8111. Int = Intrinsic::aarch64_neon_sminv;
  8112. Ty = Int32Ty;
  8113. VTy = llvm::VectorType::get(Int8Ty, 16);
  8114. llvm::Type *Tys[2] = { Ty, VTy };
  8115. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8116. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  8117. return Builder.CreateTrunc(Ops[0], Int8Ty);
  8118. }
  8119. case NEON::BI__builtin_neon_vminvq_s16: {
  8120. Int = Intrinsic::aarch64_neon_sminv;
  8121. Ty = Int32Ty;
  8122. VTy = llvm::VectorType::get(Int16Ty, 8);
  8123. llvm::Type *Tys[2] = { Ty, VTy };
  8124. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8125. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  8126. return Builder.CreateTrunc(Ops[0], Int16Ty);
  8127. }
  8128. case NEON::BI__builtin_neon_vminv_f16: {
  8129. Int = Intrinsic::aarch64_neon_fminv;
  8130. Ty = HalfTy;
  8131. VTy = llvm::VectorType::get(HalfTy, 4);
  8132. llvm::Type *Tys[2] = { Ty, VTy };
  8133. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8134. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  8135. return Builder.CreateTrunc(Ops[0], HalfTy);
  8136. }
  8137. case NEON::BI__builtin_neon_vminvq_f16: {
  8138. Int = Intrinsic::aarch64_neon_fminv;
  8139. Ty = HalfTy;
  8140. VTy = llvm::VectorType::get(HalfTy, 8);
  8141. llvm::Type *Tys[2] = { Ty, VTy };
  8142. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8143. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  8144. return Builder.CreateTrunc(Ops[0], HalfTy);
  8145. }
  8146. case NEON::BI__builtin_neon_vmaxnmv_f16: {
  8147. Int = Intrinsic::aarch64_neon_fmaxnmv;
  8148. Ty = HalfTy;
  8149. VTy = llvm::VectorType::get(HalfTy, 4);
  8150. llvm::Type *Tys[2] = { Ty, VTy };
  8151. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8152. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
  8153. return Builder.CreateTrunc(Ops[0], HalfTy);
  8154. }
  8155. case NEON::BI__builtin_neon_vmaxnmvq_f16: {
  8156. Int = Intrinsic::aarch64_neon_fmaxnmv;
  8157. Ty = HalfTy;
  8158. VTy = llvm::VectorType::get(HalfTy, 8);
  8159. llvm::Type *Tys[2] = { Ty, VTy };
  8160. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8161. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
  8162. return Builder.CreateTrunc(Ops[0], HalfTy);
  8163. }
  8164. case NEON::BI__builtin_neon_vminnmv_f16: {
  8165. Int = Intrinsic::aarch64_neon_fminnmv;
  8166. Ty = HalfTy;
  8167. VTy = llvm::VectorType::get(HalfTy, 4);
  8168. llvm::Type *Tys[2] = { Ty, VTy };
  8169. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8170. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
  8171. return Builder.CreateTrunc(Ops[0], HalfTy);
  8172. }
  8173. case NEON::BI__builtin_neon_vminnmvq_f16: {
  8174. Int = Intrinsic::aarch64_neon_fminnmv;
  8175. Ty = HalfTy;
  8176. VTy = llvm::VectorType::get(HalfTy, 8);
  8177. llvm::Type *Tys[2] = { Ty, VTy };
  8178. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8179. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
  8180. return Builder.CreateTrunc(Ops[0], HalfTy);
  8181. }
  8182. case NEON::BI__builtin_neon_vmul_n_f64: {
  8183. Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
  8184. Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
  8185. return Builder.CreateFMul(Ops[0], RHS);
  8186. }
  8187. case NEON::BI__builtin_neon_vaddlv_u8: {
  8188. Int = Intrinsic::aarch64_neon_uaddlv;
  8189. Ty = Int32Ty;
  8190. VTy = llvm::VectorType::get(Int8Ty, 8);
  8191. llvm::Type *Tys[2] = { Ty, VTy };
  8192. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8193. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8194. return Builder.CreateTrunc(Ops[0], Int16Ty);
  8195. }
  8196. case NEON::BI__builtin_neon_vaddlv_u16: {
  8197. Int = Intrinsic::aarch64_neon_uaddlv;
  8198. Ty = Int32Ty;
  8199. VTy = llvm::VectorType::get(Int16Ty, 4);
  8200. llvm::Type *Tys[2] = { Ty, VTy };
  8201. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8202. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8203. }
  8204. case NEON::BI__builtin_neon_vaddlvq_u8: {
  8205. Int = Intrinsic::aarch64_neon_uaddlv;
  8206. Ty = Int32Ty;
  8207. VTy = llvm::VectorType::get(Int8Ty, 16);
  8208. llvm::Type *Tys[2] = { Ty, VTy };
  8209. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8210. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8211. return Builder.CreateTrunc(Ops[0], Int16Ty);
  8212. }
  8213. case NEON::BI__builtin_neon_vaddlvq_u16: {
  8214. Int = Intrinsic::aarch64_neon_uaddlv;
  8215. Ty = Int32Ty;
  8216. VTy = llvm::VectorType::get(Int16Ty, 8);
  8217. llvm::Type *Tys[2] = { Ty, VTy };
  8218. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8219. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8220. }
  8221. case NEON::BI__builtin_neon_vaddlv_s8: {
  8222. Int = Intrinsic::aarch64_neon_saddlv;
  8223. Ty = Int32Ty;
  8224. VTy = llvm::VectorType::get(Int8Ty, 8);
  8225. llvm::Type *Tys[2] = { Ty, VTy };
  8226. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8227. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8228. return Builder.CreateTrunc(Ops[0], Int16Ty);
  8229. }
  8230. case NEON::BI__builtin_neon_vaddlv_s16: {
  8231. Int = Intrinsic::aarch64_neon_saddlv;
  8232. Ty = Int32Ty;
  8233. VTy = llvm::VectorType::get(Int16Ty, 4);
  8234. llvm::Type *Tys[2] = { Ty, VTy };
  8235. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8236. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8237. }
  8238. case NEON::BI__builtin_neon_vaddlvq_s8: {
  8239. Int = Intrinsic::aarch64_neon_saddlv;
  8240. Ty = Int32Ty;
  8241. VTy = llvm::VectorType::get(Int8Ty, 16);
  8242. llvm::Type *Tys[2] = { Ty, VTy };
  8243. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8244. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8245. return Builder.CreateTrunc(Ops[0], Int16Ty);
  8246. }
  8247. case NEON::BI__builtin_neon_vaddlvq_s16: {
  8248. Int = Intrinsic::aarch64_neon_saddlv;
  8249. Ty = Int32Ty;
  8250. VTy = llvm::VectorType::get(Int16Ty, 8);
  8251. llvm::Type *Tys[2] = { Ty, VTy };
  8252. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8253. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8254. }
  8255. case NEON::BI__builtin_neon_vsri_n_v:
  8256. case NEON::BI__builtin_neon_vsriq_n_v: {
  8257. Int = Intrinsic::aarch64_neon_vsri;
  8258. llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
  8259. return EmitNeonCall(Intrin, Ops, "vsri_n");
  8260. }
  8261. case NEON::BI__builtin_neon_vsli_n_v:
  8262. case NEON::BI__builtin_neon_vsliq_n_v: {
  8263. Int = Intrinsic::aarch64_neon_vsli;
  8264. llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
  8265. return EmitNeonCall(Intrin, Ops, "vsli_n");
  8266. }
  8267. case NEON::BI__builtin_neon_vsra_n_v:
  8268. case NEON::BI__builtin_neon_vsraq_n_v:
  8269. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  8270. Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
  8271. return Builder.CreateAdd(Ops[0], Ops[1]);
  8272. case NEON::BI__builtin_neon_vrsra_n_v:
  8273. case NEON::BI__builtin_neon_vrsraq_n_v: {
  8274. Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
  8275. SmallVector<llvm::Value*,2> TmpOps;
  8276. TmpOps.push_back(Ops[1]);
  8277. TmpOps.push_back(Ops[2]);
  8278. Function* F = CGM.getIntrinsic(Int, Ty);
  8279. llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
  8280. Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
  8281. return Builder.CreateAdd(Ops[0], tmp);
  8282. }
  8283. case NEON::BI__builtin_neon_vld1_v:
  8284. case NEON::BI__builtin_neon_vld1q_v: {
  8285. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
  8286. auto Alignment = CharUnits::fromQuantity(
  8287. BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16);
  8288. return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment);
  8289. }
  8290. case NEON::BI__builtin_neon_vst1_v:
  8291. case NEON::BI__builtin_neon_vst1q_v:
  8292. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
  8293. Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
  8294. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8295. case NEON::BI__builtin_neon_vld1_lane_v:
  8296. case NEON::BI__builtin_neon_vld1q_lane_v: {
  8297. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8298. Ty = llvm::PointerType::getUnqual(VTy->getElementType());
  8299. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  8300. auto Alignment = CharUnits::fromQuantity(
  8301. BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16);
  8302. Ops[0] =
  8303. Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
  8304. return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
  8305. }
  8306. case NEON::BI__builtin_neon_vld1_dup_v:
  8307. case NEON::BI__builtin_neon_vld1q_dup_v: {
  8308. Value *V = UndefValue::get(Ty);
  8309. Ty = llvm::PointerType::getUnqual(VTy->getElementType());
  8310. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  8311. auto Alignment = CharUnits::fromQuantity(
  8312. BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16);
  8313. Ops[0] =
  8314. Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
  8315. llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
  8316. Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
  8317. return EmitNeonSplat(Ops[0], CI);
  8318. }
  8319. case NEON::BI__builtin_neon_vst1_lane_v:
  8320. case NEON::BI__builtin_neon_vst1q_lane_v:
  8321. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8322. Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
  8323. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  8324. return Builder.CreateDefaultAlignedStore(Ops[1],
  8325. Builder.CreateBitCast(Ops[0], Ty));
  8326. case NEON::BI__builtin_neon_vld2_v:
  8327. case NEON::BI__builtin_neon_vld2q_v: {
  8328. llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
  8329. Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
  8330. llvm::Type *Tys[2] = { VTy, PTy };
  8331. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
  8332. Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
  8333. Ops[0] = Builder.CreateBitCast(Ops[0],
  8334. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8335. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8336. }
  8337. case NEON::BI__builtin_neon_vld3_v:
  8338. case NEON::BI__builtin_neon_vld3q_v: {
  8339. llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
  8340. Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
  8341. llvm::Type *Tys[2] = { VTy, PTy };
  8342. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
  8343. Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
  8344. Ops[0] = Builder.CreateBitCast(Ops[0],
  8345. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8346. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8347. }
  8348. case NEON::BI__builtin_neon_vld4_v:
  8349. case NEON::BI__builtin_neon_vld4q_v: {
  8350. llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
  8351. Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
  8352. llvm::Type *Tys[2] = { VTy, PTy };
  8353. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
  8354. Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
  8355. Ops[0] = Builder.CreateBitCast(Ops[0],
  8356. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8357. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8358. }
  8359. case NEON::BI__builtin_neon_vld2_dup_v:
  8360. case NEON::BI__builtin_neon_vld2q_dup_v: {
  8361. llvm::Type *PTy =
  8362. llvm::PointerType::getUnqual(VTy->getElementType());
  8363. Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
  8364. llvm::Type *Tys[2] = { VTy, PTy };
  8365. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
  8366. Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
  8367. Ops[0] = Builder.CreateBitCast(Ops[0],
  8368. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8369. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8370. }
  8371. case NEON::BI__builtin_neon_vld3_dup_v:
  8372. case NEON::BI__builtin_neon_vld3q_dup_v: {
  8373. llvm::Type *PTy =
  8374. llvm::PointerType::getUnqual(VTy->getElementType());
  8375. Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
  8376. llvm::Type *Tys[2] = { VTy, PTy };
  8377. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
  8378. Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
  8379. Ops[0] = Builder.CreateBitCast(Ops[0],
  8380. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8381. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8382. }
  8383. case NEON::BI__builtin_neon_vld4_dup_v:
  8384. case NEON::BI__builtin_neon_vld4q_dup_v: {
  8385. llvm::Type *PTy =
  8386. llvm::PointerType::getUnqual(VTy->getElementType());
  8387. Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
  8388. llvm::Type *Tys[2] = { VTy, PTy };
  8389. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
  8390. Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
  8391. Ops[0] = Builder.CreateBitCast(Ops[0],
  8392. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8393. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8394. }
  8395. case NEON::BI__builtin_neon_vld2_lane_v:
  8396. case NEON::BI__builtin_neon_vld2q_lane_v: {
  8397. llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
  8398. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
  8399. Ops.push_back(Ops[1]);
  8400. Ops.erase(Ops.begin()+1);
  8401. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8402. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  8403. Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
  8404. Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
  8405. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  8406. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  8407. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8408. }
  8409. case NEON::BI__builtin_neon_vld3_lane_v:
  8410. case NEON::BI__builtin_neon_vld3q_lane_v: {
  8411. llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
  8412. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
  8413. Ops.push_back(Ops[1]);
  8414. Ops.erase(Ops.begin()+1);
  8415. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8416. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  8417. Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
  8418. Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
  8419. Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
  8420. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  8421. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  8422. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8423. }
  8424. case NEON::BI__builtin_neon_vld4_lane_v:
  8425. case NEON::BI__builtin_neon_vld4q_lane_v: {
  8426. llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
  8427. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
  8428. Ops.push_back(Ops[1]);
  8429. Ops.erase(Ops.begin()+1);
  8430. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8431. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  8432. Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
  8433. Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
  8434. Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
  8435. Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
  8436. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  8437. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  8438. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8439. }
  8440. case NEON::BI__builtin_neon_vst2_v:
  8441. case NEON::BI__builtin_neon_vst2q_v: {
  8442. Ops.push_back(Ops[0]);
  8443. Ops.erase(Ops.begin());
  8444. llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
  8445. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
  8446. Ops, "");
  8447. }
  8448. case NEON::BI__builtin_neon_vst2_lane_v:
  8449. case NEON::BI__builtin_neon_vst2q_lane_v: {
  8450. Ops.push_back(Ops[0]);
  8451. Ops.erase(Ops.begin());
  8452. Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
  8453. llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
  8454. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
  8455. Ops, "");
  8456. }
  8457. case NEON::BI__builtin_neon_vst3_v:
  8458. case NEON::BI__builtin_neon_vst3q_v: {
  8459. Ops.push_back(Ops[0]);
  8460. Ops.erase(Ops.begin());
  8461. llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
  8462. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
  8463. Ops, "");
  8464. }
  8465. case NEON::BI__builtin_neon_vst3_lane_v:
  8466. case NEON::BI__builtin_neon_vst3q_lane_v: {
  8467. Ops.push_back(Ops[0]);
  8468. Ops.erase(Ops.begin());
  8469. Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
  8470. llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
  8471. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
  8472. Ops, "");
  8473. }
  8474. case NEON::BI__builtin_neon_vst4_v:
  8475. case NEON::BI__builtin_neon_vst4q_v: {
  8476. Ops.push_back(Ops[0]);
  8477. Ops.erase(Ops.begin());
  8478. llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
  8479. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
  8480. Ops, "");
  8481. }
  8482. case NEON::BI__builtin_neon_vst4_lane_v:
  8483. case NEON::BI__builtin_neon_vst4q_lane_v: {
  8484. Ops.push_back(Ops[0]);
  8485. Ops.erase(Ops.begin());
  8486. Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
  8487. llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
  8488. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
  8489. Ops, "");
  8490. }
  8491. case NEON::BI__builtin_neon_vtrn_v:
  8492. case NEON::BI__builtin_neon_vtrnq_v: {
  8493. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
  8494. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8495. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  8496. Value *SV = nullptr;
  8497. for (unsigned vi = 0; vi != 2; ++vi) {
  8498. SmallVector<uint32_t, 16> Indices;
  8499. for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
  8500. Indices.push_back(i+vi);
  8501. Indices.push_back(i+e+vi);
  8502. }
  8503. Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
  8504. SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
  8505. SV = Builder.CreateDefaultAlignedStore(SV, Addr);
  8506. }
  8507. return SV;
  8508. }
  8509. case NEON::BI__builtin_neon_vuzp_v:
  8510. case NEON::BI__builtin_neon_vuzpq_v: {
  8511. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
  8512. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8513. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  8514. Value *SV = nullptr;
  8515. for (unsigned vi = 0; vi != 2; ++vi) {
  8516. SmallVector<uint32_t, 16> Indices;
  8517. for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
  8518. Indices.push_back(2*i+vi);
  8519. Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
  8520. SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
  8521. SV = Builder.CreateDefaultAlignedStore(SV, Addr);
  8522. }
  8523. return SV;
  8524. }
  8525. case NEON::BI__builtin_neon_vzip_v:
  8526. case NEON::BI__builtin_neon_vzipq_v: {
  8527. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
  8528. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8529. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  8530. Value *SV = nullptr;
  8531. for (unsigned vi = 0; vi != 2; ++vi) {
  8532. SmallVector<uint32_t, 16> Indices;
  8533. for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
  8534. Indices.push_back((i + vi*e) >> 1);
  8535. Indices.push_back(((i + vi*e) >> 1)+e);
  8536. }
  8537. Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
  8538. SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
  8539. SV = Builder.CreateDefaultAlignedStore(SV, Addr);
  8540. }
  8541. return SV;
  8542. }
  8543. case NEON::BI__builtin_neon_vqtbl1q_v: {
  8544. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
  8545. Ops, "vtbl1");
  8546. }
  8547. case NEON::BI__builtin_neon_vqtbl2q_v: {
  8548. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
  8549. Ops, "vtbl2");
  8550. }
  8551. case NEON::BI__builtin_neon_vqtbl3q_v: {
  8552. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
  8553. Ops, "vtbl3");
  8554. }
  8555. case NEON::BI__builtin_neon_vqtbl4q_v: {
  8556. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
  8557. Ops, "vtbl4");
  8558. }
  8559. case NEON::BI__builtin_neon_vqtbx1q_v: {
  8560. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
  8561. Ops, "vtbx1");
  8562. }
  8563. case NEON::BI__builtin_neon_vqtbx2q_v: {
  8564. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
  8565. Ops, "vtbx2");
  8566. }
  8567. case NEON::BI__builtin_neon_vqtbx3q_v: {
  8568. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
  8569. Ops, "vtbx3");
  8570. }
  8571. case NEON::BI__builtin_neon_vqtbx4q_v: {
  8572. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
  8573. Ops, "vtbx4");
  8574. }
  8575. case NEON::BI__builtin_neon_vsqadd_v:
  8576. case NEON::BI__builtin_neon_vsqaddq_v: {
  8577. Int = Intrinsic::aarch64_neon_usqadd;
  8578. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
  8579. }
  8580. case NEON::BI__builtin_neon_vuqadd_v:
  8581. case NEON::BI__builtin_neon_vuqaddq_v: {
  8582. Int = Intrinsic::aarch64_neon_suqadd;
  8583. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
  8584. }
  8585. }
  8586. }
  8587. Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
  8588. const CallExpr *E) {
  8589. assert(BuiltinID == BPF::BI__builtin_preserve_field_info &&
  8590. "unexpected ARM builtin");
  8591. const Expr *Arg = E->getArg(0);
  8592. bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
  8593. if (!getDebugInfo()) {
  8594. CGM.Error(E->getExprLoc(), "using builtin_preserve_field_info() without -g");
  8595. return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
  8596. : EmitLValue(Arg).getPointer();
  8597. }
  8598. // Enable underlying preserve_*_access_index() generation.
  8599. bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
  8600. IsInPreservedAIRegion = true;
  8601. Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
  8602. : EmitLValue(Arg).getPointer();
  8603. IsInPreservedAIRegion = OldIsInPreservedAIRegion;
  8604. ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
  8605. Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
  8606. // Built the IR for the preserve_field_info intrinsic.
  8607. llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
  8608. &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
  8609. {FieldAddr->getType()});
  8610. return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
  8611. }
  8612. llvm::Value *CodeGenFunction::
  8613. BuildVector(ArrayRef<llvm::Value*> Ops) {
  8614. assert((Ops.size() & (Ops.size() - 1)) == 0 &&
  8615. "Not a power-of-two sized vector!");
  8616. bool AllConstants = true;
  8617. for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
  8618. AllConstants &= isa<Constant>(Ops[i]);
  8619. // If this is a constant vector, create a ConstantVector.
  8620. if (AllConstants) {
  8621. SmallVector<llvm::Constant*, 16> CstOps;
  8622. for (unsigned i = 0, e = Ops.size(); i != e; ++i)
  8623. CstOps.push_back(cast<Constant>(Ops[i]));
  8624. return llvm::ConstantVector::get(CstOps);
  8625. }
  8626. // Otherwise, insertelement the values to build the vector.
  8627. Value *Result =
  8628. llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
  8629. for (unsigned i = 0, e = Ops.size(); i != e; ++i)
  8630. Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
  8631. return Result;
  8632. }
  8633. // Convert the mask from an integer type to a vector of i1.
  8634. static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
  8635. unsigned NumElts) {
  8636. llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(),
  8637. cast<IntegerType>(Mask->getType())->getBitWidth());
  8638. Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
  8639. // If we have less than 8 elements, then the starting mask was an i8 and
  8640. // we need to extract down to the right number of elements.
  8641. if (NumElts < 8) {
  8642. uint32_t Indices[4];
  8643. for (unsigned i = 0; i != NumElts; ++i)
  8644. Indices[i] = i;
  8645. MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
  8646. makeArrayRef(Indices, NumElts),
  8647. "extract");
  8648. }
  8649. return MaskVec;
  8650. }
  8651. static Value *EmitX86MaskedStore(CodeGenFunction &CGF,
  8652. ArrayRef<Value *> Ops,
  8653. unsigned Align) {
  8654. // Cast the pointer to right type.
  8655. Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
  8656. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8657. Value *MaskVec = getMaskVecValue(CGF, Ops[2],
  8658. Ops[1]->getType()->getVectorNumElements());
  8659. return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Align, MaskVec);
  8660. }
  8661. static Value *EmitX86MaskedLoad(CodeGenFunction &CGF,
  8662. ArrayRef<Value *> Ops, unsigned Align) {
  8663. // Cast the pointer to right type.
  8664. Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
  8665. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8666. Value *MaskVec = getMaskVecValue(CGF, Ops[2],
  8667. Ops[1]->getType()->getVectorNumElements());
  8668. return CGF.Builder.CreateMaskedLoad(Ptr, Align, MaskVec, Ops[1]);
  8669. }
  8670. static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
  8671. ArrayRef<Value *> Ops) {
  8672. llvm::Type *ResultTy = Ops[1]->getType();
  8673. llvm::Type *PtrTy = ResultTy->getVectorElementType();
  8674. // Cast the pointer to element type.
  8675. Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
  8676. llvm::PointerType::getUnqual(PtrTy));
  8677. Value *MaskVec = getMaskVecValue(CGF, Ops[2],
  8678. ResultTy->getVectorNumElements());
  8679. llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
  8680. ResultTy);
  8681. return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
  8682. }
  8683. static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
  8684. ArrayRef<Value *> Ops,
  8685. bool IsCompress) {
  8686. llvm::Type *ResultTy = Ops[1]->getType();
  8687. Value *MaskVec = getMaskVecValue(CGF, Ops[2],
  8688. ResultTy->getVectorNumElements());
  8689. Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
  8690. : Intrinsic::x86_avx512_mask_expand;
  8691. llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
  8692. return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
  8693. }
  8694. static Value *EmitX86CompressStore(CodeGenFunction &CGF,
  8695. ArrayRef<Value *> Ops) {
  8696. llvm::Type *ResultTy = Ops[1]->getType();
  8697. llvm::Type *PtrTy = ResultTy->getVectorElementType();
  8698. // Cast the pointer to element type.
  8699. Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
  8700. llvm::PointerType::getUnqual(PtrTy));
  8701. Value *MaskVec = getMaskVecValue(CGF, Ops[2],
  8702. ResultTy->getVectorNumElements());
  8703. llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
  8704. ResultTy);
  8705. return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
  8706. }
  8707. static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
  8708. ArrayRef<Value *> Ops,
  8709. bool InvertLHS = false) {
  8710. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  8711. Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
  8712. Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
  8713. if (InvertLHS)
  8714. LHS = CGF.Builder.CreateNot(LHS);
  8715. return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
  8716. Ops[0]->getType());
  8717. }
  8718. static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
  8719. Value *Amt, bool IsRight) {
  8720. llvm::Type *Ty = Op0->getType();
  8721. // Amount may be scalar immediate, in which case create a splat vector.
  8722. // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
  8723. // we only care about the lowest log2 bits anyway.
  8724. if (Amt->getType() != Ty) {
  8725. unsigned NumElts = Ty->getVectorNumElements();
  8726. Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
  8727. Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
  8728. }
  8729. unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
  8730. Function *F = CGF.CGM.getIntrinsic(IID, Ty);
  8731. return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
  8732. }
  8733. static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
  8734. bool IsSigned) {
  8735. Value *Op0 = Ops[0];
  8736. Value *Op1 = Ops[1];
  8737. llvm::Type *Ty = Op0->getType();
  8738. uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
  8739. CmpInst::Predicate Pred;
  8740. switch (Imm) {
  8741. case 0x0:
  8742. Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
  8743. break;
  8744. case 0x1:
  8745. Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
  8746. break;
  8747. case 0x2:
  8748. Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
  8749. break;
  8750. case 0x3:
  8751. Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
  8752. break;
  8753. case 0x4:
  8754. Pred = ICmpInst::ICMP_EQ;
  8755. break;
  8756. case 0x5:
  8757. Pred = ICmpInst::ICMP_NE;
  8758. break;
  8759. case 0x6:
  8760. return llvm::Constant::getNullValue(Ty); // FALSE
  8761. case 0x7:
  8762. return llvm::Constant::getAllOnesValue(Ty); // TRUE
  8763. default:
  8764. llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
  8765. }
  8766. Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
  8767. Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
  8768. return Res;
  8769. }
  8770. static Value *EmitX86Select(CodeGenFunction &CGF,
  8771. Value *Mask, Value *Op0, Value *Op1) {
  8772. // If the mask is all ones just return first argument.
  8773. if (const auto *C = dyn_cast<Constant>(Mask))
  8774. if (C->isAllOnesValue())
  8775. return Op0;
  8776. Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements());
  8777. return CGF.Builder.CreateSelect(Mask, Op0, Op1);
  8778. }
  8779. static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
  8780. Value *Mask, Value *Op0, Value *Op1) {
  8781. // If the mask is all ones just return first argument.
  8782. if (const auto *C = dyn_cast<Constant>(Mask))
  8783. if (C->isAllOnesValue())
  8784. return Op0;
  8785. llvm::VectorType *MaskTy =
  8786. llvm::VectorType::get(CGF.Builder.getInt1Ty(),
  8787. Mask->getType()->getIntegerBitWidth());
  8788. Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
  8789. Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
  8790. return CGF.Builder.CreateSelect(Mask, Op0, Op1);
  8791. }
  8792. static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
  8793. unsigned NumElts, Value *MaskIn) {
  8794. if (MaskIn) {
  8795. const auto *C = dyn_cast<Constant>(MaskIn);
  8796. if (!C || !C->isAllOnesValue())
  8797. Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
  8798. }
  8799. if (NumElts < 8) {
  8800. uint32_t Indices[8];
  8801. for (unsigned i = 0; i != NumElts; ++i)
  8802. Indices[i] = i;
  8803. for (unsigned i = NumElts; i != 8; ++i)
  8804. Indices[i] = i % NumElts + NumElts;
  8805. Cmp = CGF.Builder.CreateShuffleVector(
  8806. Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
  8807. }
  8808. return CGF.Builder.CreateBitCast(Cmp,
  8809. IntegerType::get(CGF.getLLVMContext(),
  8810. std::max(NumElts, 8U)));
  8811. }
  8812. static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
  8813. bool Signed, ArrayRef<Value *> Ops) {
  8814. assert((Ops.size() == 2 || Ops.size() == 4) &&
  8815. "Unexpected number of arguments");
  8816. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  8817. Value *Cmp;
  8818. if (CC == 3) {
  8819. Cmp = Constant::getNullValue(
  8820. llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
  8821. } else if (CC == 7) {
  8822. Cmp = Constant::getAllOnesValue(
  8823. llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
  8824. } else {
  8825. ICmpInst::Predicate Pred;
  8826. switch (CC) {
  8827. default: llvm_unreachable("Unknown condition code");
  8828. case 0: Pred = ICmpInst::ICMP_EQ; break;
  8829. case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
  8830. case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
  8831. case 4: Pred = ICmpInst::ICMP_NE; break;
  8832. case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
  8833. case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
  8834. }
  8835. Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
  8836. }
  8837. Value *MaskIn = nullptr;
  8838. if (Ops.size() == 4)
  8839. MaskIn = Ops[3];
  8840. return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
  8841. }
  8842. static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
  8843. Value *Zero = Constant::getNullValue(In->getType());
  8844. return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
  8845. }
  8846. static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF,
  8847. ArrayRef<Value *> Ops, bool IsSigned) {
  8848. unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
  8849. llvm::Type *Ty = Ops[1]->getType();
  8850. Value *Res;
  8851. if (Rnd != 4) {
  8852. Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
  8853. : Intrinsic::x86_avx512_uitofp_round;
  8854. Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
  8855. Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
  8856. } else {
  8857. Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
  8858. : CGF.Builder.CreateUIToFP(Ops[0], Ty);
  8859. }
  8860. return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
  8861. }
  8862. static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) {
  8863. llvm::Type *Ty = Ops[0]->getType();
  8864. Value *Zero = llvm::Constant::getNullValue(Ty);
  8865. Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]);
  8866. Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero);
  8867. Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub);
  8868. return Res;
  8869. }
  8870. static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred,
  8871. ArrayRef<Value *> Ops) {
  8872. Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
  8873. Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]);
  8874. assert(Ops.size() == 2);
  8875. return Res;
  8876. }
  8877. // Lowers X86 FMA intrinsics to IR.
  8878. static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
  8879. unsigned BuiltinID, bool IsAddSub) {
  8880. bool Subtract = false;
  8881. Intrinsic::ID IID = Intrinsic::not_intrinsic;
  8882. switch (BuiltinID) {
  8883. default: break;
  8884. case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
  8885. Subtract = true;
  8886. LLVM_FALLTHROUGH;
  8887. case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
  8888. case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
  8889. case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
  8890. IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
  8891. case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
  8892. Subtract = true;
  8893. LLVM_FALLTHROUGH;
  8894. case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
  8895. case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
  8896. case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
  8897. IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
  8898. case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
  8899. Subtract = true;
  8900. LLVM_FALLTHROUGH;
  8901. case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
  8902. case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
  8903. case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
  8904. IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
  8905. break;
  8906. case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
  8907. Subtract = true;
  8908. LLVM_FALLTHROUGH;
  8909. case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
  8910. case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
  8911. case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
  8912. IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
  8913. break;
  8914. }
  8915. Value *A = Ops[0];
  8916. Value *B = Ops[1];
  8917. Value *C = Ops[2];
  8918. if (Subtract)
  8919. C = CGF.Builder.CreateFNeg(C);
  8920. Value *Res;
  8921. // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
  8922. if (IID != Intrinsic::not_intrinsic &&
  8923. cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4) {
  8924. Function *Intr = CGF.CGM.getIntrinsic(IID);
  8925. Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
  8926. } else {
  8927. llvm::Type *Ty = A->getType();
  8928. Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
  8929. Res = CGF.Builder.CreateCall(FMA, {A, B, C} );
  8930. if (IsAddSub) {
  8931. // Negate even elts in C using a mask.
  8932. unsigned NumElts = Ty->getVectorNumElements();
  8933. SmallVector<uint32_t, 16> Indices(NumElts);
  8934. for (unsigned i = 0; i != NumElts; ++i)
  8935. Indices[i] = i + (i % 2) * NumElts;
  8936. Value *NegC = CGF.Builder.CreateFNeg(C);
  8937. Value *FMSub = CGF.Builder.CreateCall(FMA, {A, B, NegC} );
  8938. Res = CGF.Builder.CreateShuffleVector(FMSub, Res, Indices);
  8939. }
  8940. }
  8941. // Handle any required masking.
  8942. Value *MaskFalseVal = nullptr;
  8943. switch (BuiltinID) {
  8944. case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
  8945. case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
  8946. case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
  8947. case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
  8948. MaskFalseVal = Ops[0];
  8949. break;
  8950. case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
  8951. case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
  8952. case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
  8953. case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
  8954. MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
  8955. break;
  8956. case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
  8957. case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
  8958. case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
  8959. case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
  8960. case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
  8961. case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
  8962. case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
  8963. case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
  8964. MaskFalseVal = Ops[2];
  8965. break;
  8966. }
  8967. if (MaskFalseVal)
  8968. return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
  8969. return Res;
  8970. }
  8971. static Value *
  8972. EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops,
  8973. Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0,
  8974. bool NegAcc = false) {
  8975. unsigned Rnd = 4;
  8976. if (Ops.size() > 4)
  8977. Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
  8978. if (NegAcc)
  8979. Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
  8980. Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
  8981. Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
  8982. Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
  8983. Value *Res;
  8984. if (Rnd != 4) {
  8985. Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
  8986. Intrinsic::x86_avx512_vfmadd_f32 :
  8987. Intrinsic::x86_avx512_vfmadd_f64;
  8988. Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
  8989. {Ops[0], Ops[1], Ops[2], Ops[4]});
  8990. } else {
  8991. Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
  8992. Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
  8993. }
  8994. // If we have more than 3 arguments, we need to do masking.
  8995. if (Ops.size() > 3) {
  8996. Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
  8997. : Ops[PTIdx];
  8998. // If we negated the accumulator and the its the PassThru value we need to
  8999. // bypass the negate. Conveniently Upper should be the same thing in this
  9000. // case.
  9001. if (NegAcc && PTIdx == 2)
  9002. PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
  9003. Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
  9004. }
  9005. return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
  9006. }
  9007. static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
  9008. ArrayRef<Value *> Ops) {
  9009. llvm::Type *Ty = Ops[0]->getType();
  9010. // Arguments have a vXi32 type so cast to vXi64.
  9011. Ty = llvm::VectorType::get(CGF.Int64Ty,
  9012. Ty->getPrimitiveSizeInBits() / 64);
  9013. Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
  9014. Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
  9015. if (IsSigned) {
  9016. // Shift left then arithmetic shift right.
  9017. Constant *ShiftAmt = ConstantInt::get(Ty, 32);
  9018. LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
  9019. LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
  9020. RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
  9021. RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
  9022. } else {
  9023. // Clear the upper bits.
  9024. Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
  9025. LHS = CGF.Builder.CreateAnd(LHS, Mask);
  9026. RHS = CGF.Builder.CreateAnd(RHS, Mask);
  9027. }
  9028. return CGF.Builder.CreateMul(LHS, RHS);
  9029. }
  9030. // Emit a masked pternlog intrinsic. This only exists because the header has to
  9031. // use a macro and we aren't able to pass the input argument to a pternlog
  9032. // builtin and a select builtin without evaluating it twice.
  9033. static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
  9034. ArrayRef<Value *> Ops) {
  9035. llvm::Type *Ty = Ops[0]->getType();
  9036. unsigned VecWidth = Ty->getPrimitiveSizeInBits();
  9037. unsigned EltWidth = Ty->getScalarSizeInBits();
  9038. Intrinsic::ID IID;
  9039. if (VecWidth == 128 && EltWidth == 32)
  9040. IID = Intrinsic::x86_avx512_pternlog_d_128;
  9041. else if (VecWidth == 256 && EltWidth == 32)
  9042. IID = Intrinsic::x86_avx512_pternlog_d_256;
  9043. else if (VecWidth == 512 && EltWidth == 32)
  9044. IID = Intrinsic::x86_avx512_pternlog_d_512;
  9045. else if (VecWidth == 128 && EltWidth == 64)
  9046. IID = Intrinsic::x86_avx512_pternlog_q_128;
  9047. else if (VecWidth == 256 && EltWidth == 64)
  9048. IID = Intrinsic::x86_avx512_pternlog_q_256;
  9049. else if (VecWidth == 512 && EltWidth == 64)
  9050. IID = Intrinsic::x86_avx512_pternlog_q_512;
  9051. else
  9052. llvm_unreachable("Unexpected intrinsic");
  9053. Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
  9054. Ops.drop_back());
  9055. Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
  9056. return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
  9057. }
  9058. static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
  9059. llvm::Type *DstTy) {
  9060. unsigned NumberOfElements = DstTy->getVectorNumElements();
  9061. Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
  9062. return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
  9063. }
  9064. // Emit addition or subtraction with signed/unsigned saturation.
  9065. static Value *EmitX86AddSubSatExpr(CodeGenFunction &CGF,
  9066. ArrayRef<Value *> Ops, bool IsSigned,
  9067. bool IsAddition) {
  9068. Intrinsic::ID IID =
  9069. IsSigned ? (IsAddition ? Intrinsic::sadd_sat : Intrinsic::ssub_sat)
  9070. : (IsAddition ? Intrinsic::uadd_sat : Intrinsic::usub_sat);
  9071. llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
  9072. return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
  9073. }
  9074. Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
  9075. const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
  9076. StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
  9077. return EmitX86CpuIs(CPUStr);
  9078. }
  9079. // Convert a BF16 to a float.
  9080. static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
  9081. const CallExpr *E,
  9082. ArrayRef<Value *> Ops) {
  9083. llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
  9084. Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
  9085. Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
  9086. llvm::Type *ResultType = CGF.ConvertType(E->getType());
  9087. Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
  9088. return BitCast;
  9089. }
  9090. Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
  9091. llvm::Type *Int32Ty = Builder.getInt32Ty();
  9092. // Matching the struct layout from the compiler-rt/libgcc structure that is
  9093. // filled in:
  9094. // unsigned int __cpu_vendor;
  9095. // unsigned int __cpu_type;
  9096. // unsigned int __cpu_subtype;
  9097. // unsigned int __cpu_features[1];
  9098. llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
  9099. llvm::ArrayType::get(Int32Ty, 1));
  9100. // Grab the global __cpu_model.
  9101. llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
  9102. cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
  9103. // Calculate the index needed to access the correct field based on the
  9104. // range. Also adjust the expected value.
  9105. unsigned Index;
  9106. unsigned Value;
  9107. std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
  9108. #define X86_VENDOR(ENUM, STRING) \
  9109. .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
  9110. #define X86_CPU_TYPE_COMPAT_WITH_ALIAS(ARCHNAME, ENUM, STR, ALIAS) \
  9111. .Cases(STR, ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
  9112. #define X86_CPU_TYPE_COMPAT(ARCHNAME, ENUM, STR) \
  9113. .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
  9114. #define X86_CPU_SUBTYPE_COMPAT(ARCHNAME, ENUM, STR) \
  9115. .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
  9116. #include "llvm/Support/X86TargetParser.def"
  9117. .Default({0, 0});
  9118. assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
  9119. // Grab the appropriate field from __cpu_model.
  9120. llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
  9121. ConstantInt::get(Int32Ty, Index)};
  9122. llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
  9123. CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
  9124. // Check the value of the field against the requested value.
  9125. return Builder.CreateICmpEQ(CpuValue,
  9126. llvm::ConstantInt::get(Int32Ty, Value));
  9127. }
  9128. Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
  9129. const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
  9130. StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
  9131. return EmitX86CpuSupports(FeatureStr);
  9132. }
  9133. uint64_t
  9134. CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
  9135. // Processor features and mapping to processor feature value.
  9136. uint64_t FeaturesMask = 0;
  9137. for (const StringRef &FeatureStr : FeatureStrs) {
  9138. unsigned Feature =
  9139. StringSwitch<unsigned>(FeatureStr)
  9140. #define X86_FEATURE_COMPAT(VAL, ENUM, STR) .Case(STR, VAL)
  9141. #include "llvm/Support/X86TargetParser.def"
  9142. ;
  9143. FeaturesMask |= (1ULL << Feature);
  9144. }
  9145. return FeaturesMask;
  9146. }
  9147. Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
  9148. return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
  9149. }
  9150. llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
  9151. uint32_t Features1 = Lo_32(FeaturesMask);
  9152. uint32_t Features2 = Hi_32(FeaturesMask);
  9153. Value *Result = Builder.getTrue();
  9154. if (Features1 != 0) {
  9155. // Matching the struct layout from the compiler-rt/libgcc structure that is
  9156. // filled in:
  9157. // unsigned int __cpu_vendor;
  9158. // unsigned int __cpu_type;
  9159. // unsigned int __cpu_subtype;
  9160. // unsigned int __cpu_features[1];
  9161. llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
  9162. llvm::ArrayType::get(Int32Ty, 1));
  9163. // Grab the global __cpu_model.
  9164. llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
  9165. cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
  9166. // Grab the first (0th) element from the field __cpu_features off of the
  9167. // global in the struct STy.
  9168. Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
  9169. Builder.getInt32(0)};
  9170. Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
  9171. Value *Features =
  9172. Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
  9173. // Check the value of the bit corresponding to the feature requested.
  9174. Value *Mask = Builder.getInt32(Features1);
  9175. Value *Bitset = Builder.CreateAnd(Features, Mask);
  9176. Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
  9177. Result = Builder.CreateAnd(Result, Cmp);
  9178. }
  9179. if (Features2 != 0) {
  9180. llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
  9181. "__cpu_features2");
  9182. cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
  9183. Value *Features =
  9184. Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4));
  9185. // Check the value of the bit corresponding to the feature requested.
  9186. Value *Mask = Builder.getInt32(Features2);
  9187. Value *Bitset = Builder.CreateAnd(Features, Mask);
  9188. Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
  9189. Result = Builder.CreateAnd(Result, Cmp);
  9190. }
  9191. return Result;
  9192. }
  9193. Value *CodeGenFunction::EmitX86CpuInit() {
  9194. llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
  9195. /*Variadic*/ false);
  9196. llvm::FunctionCallee Func =
  9197. CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
  9198. cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
  9199. cast<llvm::GlobalValue>(Func.getCallee())
  9200. ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
  9201. return Builder.CreateCall(Func);
  9202. }
  9203. Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
  9204. const CallExpr *E) {
  9205. if (BuiltinID == X86::BI__builtin_cpu_is)
  9206. return EmitX86CpuIs(E);
  9207. if (BuiltinID == X86::BI__builtin_cpu_supports)
  9208. return EmitX86CpuSupports(E);
  9209. if (BuiltinID == X86::BI__builtin_cpu_init)
  9210. return EmitX86CpuInit();
  9211. SmallVector<Value*, 4> Ops;
  9212. // Find out if any arguments are required to be integer constant expressions.
  9213. unsigned ICEArguments = 0;
  9214. ASTContext::GetBuiltinTypeError Error;
  9215. getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
  9216. assert(Error == ASTContext::GE_None && "Should not codegen an error");
  9217. for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
  9218. // If this is a normal argument, just emit it as a scalar.
  9219. if ((ICEArguments & (1 << i)) == 0) {
  9220. Ops.push_back(EmitScalarExpr(E->getArg(i)));
  9221. continue;
  9222. }
  9223. // If this is required to be a constant, constant fold it so that we know
  9224. // that the generated intrinsic gets a ConstantInt.
  9225. llvm::APSInt Result;
  9226. bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
  9227. assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
  9228. Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
  9229. }
  9230. // These exist so that the builtin that takes an immediate can be bounds
  9231. // checked by clang to avoid passing bad immediates to the backend. Since
  9232. // AVX has a larger immediate than SSE we would need separate builtins to
  9233. // do the different bounds checking. Rather than create a clang specific
  9234. // SSE only builtin, this implements eight separate builtins to match gcc
  9235. // implementation.
  9236. auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
  9237. Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
  9238. llvm::Function *F = CGM.getIntrinsic(ID);
  9239. return Builder.CreateCall(F, Ops);
  9240. };
  9241. // For the vector forms of FP comparisons, translate the builtins directly to
  9242. // IR.
  9243. // TODO: The builtins could be removed if the SSE header files used vector
  9244. // extension comparisons directly (vector ordered/unordered may need
  9245. // additional support via __builtin_isnan()).
  9246. auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) {
  9247. Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
  9248. llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
  9249. llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
  9250. Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
  9251. return Builder.CreateBitCast(Sext, FPVecTy);
  9252. };
  9253. switch (BuiltinID) {
  9254. default: return nullptr;
  9255. case X86::BI_mm_prefetch: {
  9256. Value *Address = Ops[0];
  9257. ConstantInt *C = cast<ConstantInt>(Ops[1]);
  9258. Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
  9259. Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
  9260. Value *Data = ConstantInt::get(Int32Ty, 1);
  9261. Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
  9262. return Builder.CreateCall(F, {Address, RW, Locality, Data});
  9263. }
  9264. case X86::BI_mm_clflush: {
  9265. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
  9266. Ops[0]);
  9267. }
  9268. case X86::BI_mm_lfence: {
  9269. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
  9270. }
  9271. case X86::BI_mm_mfence: {
  9272. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
  9273. }
  9274. case X86::BI_mm_sfence: {
  9275. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
  9276. }
  9277. case X86::BI_mm_pause: {
  9278. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
  9279. }
  9280. case X86::BI__rdtsc: {
  9281. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
  9282. }
  9283. case X86::BI__builtin_ia32_rdtscp: {
  9284. Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
  9285. Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
  9286. Ops[0]);
  9287. return Builder.CreateExtractValue(Call, 0);
  9288. }
  9289. case X86::BI__builtin_ia32_lzcnt_u16:
  9290. case X86::BI__builtin_ia32_lzcnt_u32:
  9291. case X86::BI__builtin_ia32_lzcnt_u64: {
  9292. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
  9293. return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
  9294. }
  9295. case X86::BI__builtin_ia32_tzcnt_u16:
  9296. case X86::BI__builtin_ia32_tzcnt_u32:
  9297. case X86::BI__builtin_ia32_tzcnt_u64: {
  9298. Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
  9299. return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
  9300. }
  9301. case X86::BI__builtin_ia32_undef128:
  9302. case X86::BI__builtin_ia32_undef256:
  9303. case X86::BI__builtin_ia32_undef512:
  9304. // The x86 definition of "undef" is not the same as the LLVM definition
  9305. // (PR32176). We leave optimizing away an unnecessary zero constant to the
  9306. // IR optimizer and backend.
  9307. // TODO: If we had a "freeze" IR instruction to generate a fixed undef
  9308. // value, we should use that here instead of a zero.
  9309. return llvm::Constant::getNullValue(ConvertType(E->getType()));
  9310. case X86::BI__builtin_ia32_vec_init_v8qi:
  9311. case X86::BI__builtin_ia32_vec_init_v4hi:
  9312. case X86::BI__builtin_ia32_vec_init_v2si:
  9313. return Builder.CreateBitCast(BuildVector(Ops),
  9314. llvm::Type::getX86_MMXTy(getLLVMContext()));
  9315. case X86::BI__builtin_ia32_vec_ext_v2si:
  9316. case X86::BI__builtin_ia32_vec_ext_v16qi:
  9317. case X86::BI__builtin_ia32_vec_ext_v8hi:
  9318. case X86::BI__builtin_ia32_vec_ext_v4si:
  9319. case X86::BI__builtin_ia32_vec_ext_v4sf:
  9320. case X86::BI__builtin_ia32_vec_ext_v2di:
  9321. case X86::BI__builtin_ia32_vec_ext_v32qi:
  9322. case X86::BI__builtin_ia32_vec_ext_v16hi:
  9323. case X86::BI__builtin_ia32_vec_ext_v8si:
  9324. case X86::BI__builtin_ia32_vec_ext_v4di: {
  9325. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  9326. uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
  9327. Index &= NumElts - 1;
  9328. // These builtins exist so we can ensure the index is an ICE and in range.
  9329. // Otherwise we could just do this in the header file.
  9330. return Builder.CreateExtractElement(Ops[0], Index);
  9331. }
  9332. case X86::BI__builtin_ia32_vec_set_v16qi:
  9333. case X86::BI__builtin_ia32_vec_set_v8hi:
  9334. case X86::BI__builtin_ia32_vec_set_v4si:
  9335. case X86::BI__builtin_ia32_vec_set_v2di:
  9336. case X86::BI__builtin_ia32_vec_set_v32qi:
  9337. case X86::BI__builtin_ia32_vec_set_v16hi:
  9338. case X86::BI__builtin_ia32_vec_set_v8si:
  9339. case X86::BI__builtin_ia32_vec_set_v4di: {
  9340. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  9341. unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
  9342. Index &= NumElts - 1;
  9343. // These builtins exist so we can ensure the index is an ICE and in range.
  9344. // Otherwise we could just do this in the header file.
  9345. return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
  9346. }
  9347. case X86::BI_mm_setcsr:
  9348. case X86::BI__builtin_ia32_ldmxcsr: {
  9349. Address Tmp = CreateMemTemp(E->getArg(0)->getType());
  9350. Builder.CreateStore(Ops[0], Tmp);
  9351. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
  9352. Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
  9353. }
  9354. case X86::BI_mm_getcsr:
  9355. case X86::BI__builtin_ia32_stmxcsr: {
  9356. Address Tmp = CreateMemTemp(E->getType());
  9357. Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
  9358. Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
  9359. return Builder.CreateLoad(Tmp, "stmxcsr");
  9360. }
  9361. case X86::BI__builtin_ia32_xsave:
  9362. case X86::BI__builtin_ia32_xsave64:
  9363. case X86::BI__builtin_ia32_xrstor:
  9364. case X86::BI__builtin_ia32_xrstor64:
  9365. case X86::BI__builtin_ia32_xsaveopt:
  9366. case X86::BI__builtin_ia32_xsaveopt64:
  9367. case X86::BI__builtin_ia32_xrstors:
  9368. case X86::BI__builtin_ia32_xrstors64:
  9369. case X86::BI__builtin_ia32_xsavec:
  9370. case X86::BI__builtin_ia32_xsavec64:
  9371. case X86::BI__builtin_ia32_xsaves:
  9372. case X86::BI__builtin_ia32_xsaves64:
  9373. case X86::BI__builtin_ia32_xsetbv:
  9374. case X86::BI_xsetbv: {
  9375. Intrinsic::ID ID;
  9376. #define INTRINSIC_X86_XSAVE_ID(NAME) \
  9377. case X86::BI__builtin_ia32_##NAME: \
  9378. ID = Intrinsic::x86_##NAME; \
  9379. break
  9380. switch (BuiltinID) {
  9381. default: llvm_unreachable("Unsupported intrinsic!");
  9382. INTRINSIC_X86_XSAVE_ID(xsave);
  9383. INTRINSIC_X86_XSAVE_ID(xsave64);
  9384. INTRINSIC_X86_XSAVE_ID(xrstor);
  9385. INTRINSIC_X86_XSAVE_ID(xrstor64);
  9386. INTRINSIC_X86_XSAVE_ID(xsaveopt);
  9387. INTRINSIC_X86_XSAVE_ID(xsaveopt64);
  9388. INTRINSIC_X86_XSAVE_ID(xrstors);
  9389. INTRINSIC_X86_XSAVE_ID(xrstors64);
  9390. INTRINSIC_X86_XSAVE_ID(xsavec);
  9391. INTRINSIC_X86_XSAVE_ID(xsavec64);
  9392. INTRINSIC_X86_XSAVE_ID(xsaves);
  9393. INTRINSIC_X86_XSAVE_ID(xsaves64);
  9394. INTRINSIC_X86_XSAVE_ID(xsetbv);
  9395. case X86::BI_xsetbv:
  9396. ID = Intrinsic::x86_xsetbv;
  9397. break;
  9398. }
  9399. #undef INTRINSIC_X86_XSAVE_ID
  9400. Value *Mhi = Builder.CreateTrunc(
  9401. Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
  9402. Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
  9403. Ops[1] = Mhi;
  9404. Ops.push_back(Mlo);
  9405. return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
  9406. }
  9407. case X86::BI__builtin_ia32_xgetbv:
  9408. case X86::BI_xgetbv:
  9409. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
  9410. case X86::BI__builtin_ia32_storedqudi128_mask:
  9411. case X86::BI__builtin_ia32_storedqusi128_mask:
  9412. case X86::BI__builtin_ia32_storedquhi128_mask:
  9413. case X86::BI__builtin_ia32_storedquqi128_mask:
  9414. case X86::BI__builtin_ia32_storeupd128_mask:
  9415. case X86::BI__builtin_ia32_storeups128_mask:
  9416. case X86::BI__builtin_ia32_storedqudi256_mask:
  9417. case X86::BI__builtin_ia32_storedqusi256_mask:
  9418. case X86::BI__builtin_ia32_storedquhi256_mask:
  9419. case X86::BI__builtin_ia32_storedquqi256_mask:
  9420. case X86::BI__builtin_ia32_storeupd256_mask:
  9421. case X86::BI__builtin_ia32_storeups256_mask:
  9422. case X86::BI__builtin_ia32_storedqudi512_mask:
  9423. case X86::BI__builtin_ia32_storedqusi512_mask:
  9424. case X86::BI__builtin_ia32_storedquhi512_mask:
  9425. case X86::BI__builtin_ia32_storedquqi512_mask:
  9426. case X86::BI__builtin_ia32_storeupd512_mask:
  9427. case X86::BI__builtin_ia32_storeups512_mask:
  9428. return EmitX86MaskedStore(*this, Ops, 1);
  9429. case X86::BI__builtin_ia32_storess128_mask:
  9430. case X86::BI__builtin_ia32_storesd128_mask: {
  9431. return EmitX86MaskedStore(*this, Ops, 1);
  9432. }
  9433. case X86::BI__builtin_ia32_vpopcntb_128:
  9434. case X86::BI__builtin_ia32_vpopcntd_128:
  9435. case X86::BI__builtin_ia32_vpopcntq_128:
  9436. case X86::BI__builtin_ia32_vpopcntw_128:
  9437. case X86::BI__builtin_ia32_vpopcntb_256:
  9438. case X86::BI__builtin_ia32_vpopcntd_256:
  9439. case X86::BI__builtin_ia32_vpopcntq_256:
  9440. case X86::BI__builtin_ia32_vpopcntw_256:
  9441. case X86::BI__builtin_ia32_vpopcntb_512:
  9442. case X86::BI__builtin_ia32_vpopcntd_512:
  9443. case X86::BI__builtin_ia32_vpopcntq_512:
  9444. case X86::BI__builtin_ia32_vpopcntw_512: {
  9445. llvm::Type *ResultType = ConvertType(E->getType());
  9446. llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
  9447. return Builder.CreateCall(F, Ops);
  9448. }
  9449. case X86::BI__builtin_ia32_cvtmask2b128:
  9450. case X86::BI__builtin_ia32_cvtmask2b256:
  9451. case X86::BI__builtin_ia32_cvtmask2b512:
  9452. case X86::BI__builtin_ia32_cvtmask2w128:
  9453. case X86::BI__builtin_ia32_cvtmask2w256:
  9454. case X86::BI__builtin_ia32_cvtmask2w512:
  9455. case X86::BI__builtin_ia32_cvtmask2d128:
  9456. case X86::BI__builtin_ia32_cvtmask2d256:
  9457. case X86::BI__builtin_ia32_cvtmask2d512:
  9458. case X86::BI__builtin_ia32_cvtmask2q128:
  9459. case X86::BI__builtin_ia32_cvtmask2q256:
  9460. case X86::BI__builtin_ia32_cvtmask2q512:
  9461. return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
  9462. case X86::BI__builtin_ia32_cvtb2mask128:
  9463. case X86::BI__builtin_ia32_cvtb2mask256:
  9464. case X86::BI__builtin_ia32_cvtb2mask512:
  9465. case X86::BI__builtin_ia32_cvtw2mask128:
  9466. case X86::BI__builtin_ia32_cvtw2mask256:
  9467. case X86::BI__builtin_ia32_cvtw2mask512:
  9468. case X86::BI__builtin_ia32_cvtd2mask128:
  9469. case X86::BI__builtin_ia32_cvtd2mask256:
  9470. case X86::BI__builtin_ia32_cvtd2mask512:
  9471. case X86::BI__builtin_ia32_cvtq2mask128:
  9472. case X86::BI__builtin_ia32_cvtq2mask256:
  9473. case X86::BI__builtin_ia32_cvtq2mask512:
  9474. return EmitX86ConvertToMask(*this, Ops[0]);
  9475. case X86::BI__builtin_ia32_cvtdq2ps512_mask:
  9476. case X86::BI__builtin_ia32_cvtqq2ps512_mask:
  9477. case X86::BI__builtin_ia32_cvtqq2pd512_mask:
  9478. return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true);
  9479. case X86::BI__builtin_ia32_cvtudq2ps512_mask:
  9480. case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
  9481. case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
  9482. return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false);
  9483. case X86::BI__builtin_ia32_vfmaddss3:
  9484. case X86::BI__builtin_ia32_vfmaddsd3:
  9485. case X86::BI__builtin_ia32_vfmaddss3_mask:
  9486. case X86::BI__builtin_ia32_vfmaddsd3_mask:
  9487. return EmitScalarFMAExpr(*this, Ops, Ops[0]);
  9488. case X86::BI__builtin_ia32_vfmaddss:
  9489. case X86::BI__builtin_ia32_vfmaddsd:
  9490. return EmitScalarFMAExpr(*this, Ops,
  9491. Constant::getNullValue(Ops[0]->getType()));
  9492. case X86::BI__builtin_ia32_vfmaddss3_maskz:
  9493. case X86::BI__builtin_ia32_vfmaddsd3_maskz:
  9494. return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true);
  9495. case X86::BI__builtin_ia32_vfmaddss3_mask3:
  9496. case X86::BI__builtin_ia32_vfmaddsd3_mask3:
  9497. return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2);
  9498. case X86::BI__builtin_ia32_vfmsubss3_mask3:
  9499. case X86::BI__builtin_ia32_vfmsubsd3_mask3:
  9500. return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2,
  9501. /*NegAcc*/true);
  9502. case X86::BI__builtin_ia32_vfmaddps:
  9503. case X86::BI__builtin_ia32_vfmaddpd:
  9504. case X86::BI__builtin_ia32_vfmaddps256:
  9505. case X86::BI__builtin_ia32_vfmaddpd256:
  9506. case X86::BI__builtin_ia32_vfmaddps512_mask:
  9507. case X86::BI__builtin_ia32_vfmaddps512_maskz:
  9508. case X86::BI__builtin_ia32_vfmaddps512_mask3:
  9509. case X86::BI__builtin_ia32_vfmsubps512_mask3:
  9510. case X86::BI__builtin_ia32_vfmaddpd512_mask:
  9511. case X86::BI__builtin_ia32_vfmaddpd512_maskz:
  9512. case X86::BI__builtin_ia32_vfmaddpd512_mask3:
  9513. case X86::BI__builtin_ia32_vfmsubpd512_mask3:
  9514. return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false);
  9515. case X86::BI__builtin_ia32_vfmaddsubps:
  9516. case X86::BI__builtin_ia32_vfmaddsubpd:
  9517. case X86::BI__builtin_ia32_vfmaddsubps256:
  9518. case X86::BI__builtin_ia32_vfmaddsubpd256:
  9519. case X86::BI__builtin_ia32_vfmaddsubps512_mask:
  9520. case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
  9521. case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
  9522. case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
  9523. case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
  9524. case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
  9525. case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
  9526. case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
  9527. return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true);
  9528. case X86::BI__builtin_ia32_movdqa32store128_mask:
  9529. case X86::BI__builtin_ia32_movdqa64store128_mask:
  9530. case X86::BI__builtin_ia32_storeaps128_mask:
  9531. case X86::BI__builtin_ia32_storeapd128_mask:
  9532. case X86::BI__builtin_ia32_movdqa32store256_mask:
  9533. case X86::BI__builtin_ia32_movdqa64store256_mask:
  9534. case X86::BI__builtin_ia32_storeaps256_mask:
  9535. case X86::BI__builtin_ia32_storeapd256_mask:
  9536. case X86::BI__builtin_ia32_movdqa32store512_mask:
  9537. case X86::BI__builtin_ia32_movdqa64store512_mask:
  9538. case X86::BI__builtin_ia32_storeaps512_mask:
  9539. case X86::BI__builtin_ia32_storeapd512_mask: {
  9540. unsigned Align =
  9541. getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
  9542. return EmitX86MaskedStore(*this, Ops, Align);
  9543. }
  9544. case X86::BI__builtin_ia32_loadups128_mask:
  9545. case X86::BI__builtin_ia32_loadups256_mask:
  9546. case X86::BI__builtin_ia32_loadups512_mask:
  9547. case X86::BI__builtin_ia32_loadupd128_mask:
  9548. case X86::BI__builtin_ia32_loadupd256_mask:
  9549. case X86::BI__builtin_ia32_loadupd512_mask:
  9550. case X86::BI__builtin_ia32_loaddquqi128_mask:
  9551. case X86::BI__builtin_ia32_loaddquqi256_mask:
  9552. case X86::BI__builtin_ia32_loaddquqi512_mask:
  9553. case X86::BI__builtin_ia32_loaddquhi128_mask:
  9554. case X86::BI__builtin_ia32_loaddquhi256_mask:
  9555. case X86::BI__builtin_ia32_loaddquhi512_mask:
  9556. case X86::BI__builtin_ia32_loaddqusi128_mask:
  9557. case X86::BI__builtin_ia32_loaddqusi256_mask:
  9558. case X86::BI__builtin_ia32_loaddqusi512_mask:
  9559. case X86::BI__builtin_ia32_loaddqudi128_mask:
  9560. case X86::BI__builtin_ia32_loaddqudi256_mask:
  9561. case X86::BI__builtin_ia32_loaddqudi512_mask:
  9562. return EmitX86MaskedLoad(*this, Ops, 1);
  9563. case X86::BI__builtin_ia32_loadss128_mask:
  9564. case X86::BI__builtin_ia32_loadsd128_mask:
  9565. return EmitX86MaskedLoad(*this, Ops, 1);
  9566. case X86::BI__builtin_ia32_loadaps128_mask:
  9567. case X86::BI__builtin_ia32_loadaps256_mask:
  9568. case X86::BI__builtin_ia32_loadaps512_mask:
  9569. case X86::BI__builtin_ia32_loadapd128_mask:
  9570. case X86::BI__builtin_ia32_loadapd256_mask:
  9571. case X86::BI__builtin_ia32_loadapd512_mask:
  9572. case X86::BI__builtin_ia32_movdqa32load128_mask:
  9573. case X86::BI__builtin_ia32_movdqa32load256_mask:
  9574. case X86::BI__builtin_ia32_movdqa32load512_mask:
  9575. case X86::BI__builtin_ia32_movdqa64load128_mask:
  9576. case X86::BI__builtin_ia32_movdqa64load256_mask:
  9577. case X86::BI__builtin_ia32_movdqa64load512_mask: {
  9578. unsigned Align =
  9579. getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
  9580. return EmitX86MaskedLoad(*this, Ops, Align);
  9581. }
  9582. case X86::BI__builtin_ia32_expandloaddf128_mask:
  9583. case X86::BI__builtin_ia32_expandloaddf256_mask:
  9584. case X86::BI__builtin_ia32_expandloaddf512_mask:
  9585. case X86::BI__builtin_ia32_expandloadsf128_mask:
  9586. case X86::BI__builtin_ia32_expandloadsf256_mask:
  9587. case X86::BI__builtin_ia32_expandloadsf512_mask:
  9588. case X86::BI__builtin_ia32_expandloaddi128_mask:
  9589. case X86::BI__builtin_ia32_expandloaddi256_mask:
  9590. case X86::BI__builtin_ia32_expandloaddi512_mask:
  9591. case X86::BI__builtin_ia32_expandloadsi128_mask:
  9592. case X86::BI__builtin_ia32_expandloadsi256_mask:
  9593. case X86::BI__builtin_ia32_expandloadsi512_mask:
  9594. case X86::BI__builtin_ia32_expandloadhi128_mask:
  9595. case X86::BI__builtin_ia32_expandloadhi256_mask:
  9596. case X86::BI__builtin_ia32_expandloadhi512_mask:
  9597. case X86::BI__builtin_ia32_expandloadqi128_mask:
  9598. case X86::BI__builtin_ia32_expandloadqi256_mask:
  9599. case X86::BI__builtin_ia32_expandloadqi512_mask:
  9600. return EmitX86ExpandLoad(*this, Ops);
  9601. case X86::BI__builtin_ia32_compressstoredf128_mask:
  9602. case X86::BI__builtin_ia32_compressstoredf256_mask:
  9603. case X86::BI__builtin_ia32_compressstoredf512_mask:
  9604. case X86::BI__builtin_ia32_compressstoresf128_mask:
  9605. case X86::BI__builtin_ia32_compressstoresf256_mask:
  9606. case X86::BI__builtin_ia32_compressstoresf512_mask:
  9607. case X86::BI__builtin_ia32_compressstoredi128_mask:
  9608. case X86::BI__builtin_ia32_compressstoredi256_mask:
  9609. case X86::BI__builtin_ia32_compressstoredi512_mask:
  9610. case X86::BI__builtin_ia32_compressstoresi128_mask:
  9611. case X86::BI__builtin_ia32_compressstoresi256_mask:
  9612. case X86::BI__builtin_ia32_compressstoresi512_mask:
  9613. case X86::BI__builtin_ia32_compressstorehi128_mask:
  9614. case X86::BI__builtin_ia32_compressstorehi256_mask:
  9615. case X86::BI__builtin_ia32_compressstorehi512_mask:
  9616. case X86::BI__builtin_ia32_compressstoreqi128_mask:
  9617. case X86::BI__builtin_ia32_compressstoreqi256_mask:
  9618. case X86::BI__builtin_ia32_compressstoreqi512_mask:
  9619. return EmitX86CompressStore(*this, Ops);
  9620. case X86::BI__builtin_ia32_expanddf128_mask:
  9621. case X86::BI__builtin_ia32_expanddf256_mask:
  9622. case X86::BI__builtin_ia32_expanddf512_mask:
  9623. case X86::BI__builtin_ia32_expandsf128_mask:
  9624. case X86::BI__builtin_ia32_expandsf256_mask:
  9625. case X86::BI__builtin_ia32_expandsf512_mask:
  9626. case X86::BI__builtin_ia32_expanddi128_mask:
  9627. case X86::BI__builtin_ia32_expanddi256_mask:
  9628. case X86::BI__builtin_ia32_expanddi512_mask:
  9629. case X86::BI__builtin_ia32_expandsi128_mask:
  9630. case X86::BI__builtin_ia32_expandsi256_mask:
  9631. case X86::BI__builtin_ia32_expandsi512_mask:
  9632. case X86::BI__builtin_ia32_expandhi128_mask:
  9633. case X86::BI__builtin_ia32_expandhi256_mask:
  9634. case X86::BI__builtin_ia32_expandhi512_mask:
  9635. case X86::BI__builtin_ia32_expandqi128_mask:
  9636. case X86::BI__builtin_ia32_expandqi256_mask:
  9637. case X86::BI__builtin_ia32_expandqi512_mask:
  9638. return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
  9639. case X86::BI__builtin_ia32_compressdf128_mask:
  9640. case X86::BI__builtin_ia32_compressdf256_mask:
  9641. case X86::BI__builtin_ia32_compressdf512_mask:
  9642. case X86::BI__builtin_ia32_compresssf128_mask:
  9643. case X86::BI__builtin_ia32_compresssf256_mask:
  9644. case X86::BI__builtin_ia32_compresssf512_mask:
  9645. case X86::BI__builtin_ia32_compressdi128_mask:
  9646. case X86::BI__builtin_ia32_compressdi256_mask:
  9647. case X86::BI__builtin_ia32_compressdi512_mask:
  9648. case X86::BI__builtin_ia32_compresssi128_mask:
  9649. case X86::BI__builtin_ia32_compresssi256_mask:
  9650. case X86::BI__builtin_ia32_compresssi512_mask:
  9651. case X86::BI__builtin_ia32_compresshi128_mask:
  9652. case X86::BI__builtin_ia32_compresshi256_mask:
  9653. case X86::BI__builtin_ia32_compresshi512_mask:
  9654. case X86::BI__builtin_ia32_compressqi128_mask:
  9655. case X86::BI__builtin_ia32_compressqi256_mask:
  9656. case X86::BI__builtin_ia32_compressqi512_mask:
  9657. return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
  9658. case X86::BI__builtin_ia32_gather3div2df:
  9659. case X86::BI__builtin_ia32_gather3div2di:
  9660. case X86::BI__builtin_ia32_gather3div4df:
  9661. case X86::BI__builtin_ia32_gather3div4di:
  9662. case X86::BI__builtin_ia32_gather3div4sf:
  9663. case X86::BI__builtin_ia32_gather3div4si:
  9664. case X86::BI__builtin_ia32_gather3div8sf:
  9665. case X86::BI__builtin_ia32_gather3div8si:
  9666. case X86::BI__builtin_ia32_gather3siv2df:
  9667. case X86::BI__builtin_ia32_gather3siv2di:
  9668. case X86::BI__builtin_ia32_gather3siv4df:
  9669. case X86::BI__builtin_ia32_gather3siv4di:
  9670. case X86::BI__builtin_ia32_gather3siv4sf:
  9671. case X86::BI__builtin_ia32_gather3siv4si:
  9672. case X86::BI__builtin_ia32_gather3siv8sf:
  9673. case X86::BI__builtin_ia32_gather3siv8si:
  9674. case X86::BI__builtin_ia32_gathersiv8df:
  9675. case X86::BI__builtin_ia32_gathersiv16sf:
  9676. case X86::BI__builtin_ia32_gatherdiv8df:
  9677. case X86::BI__builtin_ia32_gatherdiv16sf:
  9678. case X86::BI__builtin_ia32_gathersiv8di:
  9679. case X86::BI__builtin_ia32_gathersiv16si:
  9680. case X86::BI__builtin_ia32_gatherdiv8di:
  9681. case X86::BI__builtin_ia32_gatherdiv16si: {
  9682. Intrinsic::ID IID;
  9683. switch (BuiltinID) {
  9684. default: llvm_unreachable("Unexpected builtin");
  9685. case X86::BI__builtin_ia32_gather3div2df:
  9686. IID = Intrinsic::x86_avx512_mask_gather3div2_df;
  9687. break;
  9688. case X86::BI__builtin_ia32_gather3div2di:
  9689. IID = Intrinsic::x86_avx512_mask_gather3div2_di;
  9690. break;
  9691. case X86::BI__builtin_ia32_gather3div4df:
  9692. IID = Intrinsic::x86_avx512_mask_gather3div4_df;
  9693. break;
  9694. case X86::BI__builtin_ia32_gather3div4di:
  9695. IID = Intrinsic::x86_avx512_mask_gather3div4_di;
  9696. break;
  9697. case X86::BI__builtin_ia32_gather3div4sf:
  9698. IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
  9699. break;
  9700. case X86::BI__builtin_ia32_gather3div4si:
  9701. IID = Intrinsic::x86_avx512_mask_gather3div4_si;
  9702. break;
  9703. case X86::BI__builtin_ia32_gather3div8sf:
  9704. IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
  9705. break;
  9706. case X86::BI__builtin_ia32_gather3div8si:
  9707. IID = Intrinsic::x86_avx512_mask_gather3div8_si;
  9708. break;
  9709. case X86::BI__builtin_ia32_gather3siv2df:
  9710. IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
  9711. break;
  9712. case X86::BI__builtin_ia32_gather3siv2di:
  9713. IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
  9714. break;
  9715. case X86::BI__builtin_ia32_gather3siv4df:
  9716. IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
  9717. break;
  9718. case X86::BI__builtin_ia32_gather3siv4di:
  9719. IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
  9720. break;
  9721. case X86::BI__builtin_ia32_gather3siv4sf:
  9722. IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
  9723. break;
  9724. case X86::BI__builtin_ia32_gather3siv4si:
  9725. IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
  9726. break;
  9727. case X86::BI__builtin_ia32_gather3siv8sf:
  9728. IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
  9729. break;
  9730. case X86::BI__builtin_ia32_gather3siv8si:
  9731. IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
  9732. break;
  9733. case X86::BI__builtin_ia32_gathersiv8df:
  9734. IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
  9735. break;
  9736. case X86::BI__builtin_ia32_gathersiv16sf:
  9737. IID = Intrinsic::x86_avx512_mask_gather_dps_512;
  9738. break;
  9739. case X86::BI__builtin_ia32_gatherdiv8df:
  9740. IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
  9741. break;
  9742. case X86::BI__builtin_ia32_gatherdiv16sf:
  9743. IID = Intrinsic::x86_avx512_mask_gather_qps_512;
  9744. break;
  9745. case X86::BI__builtin_ia32_gathersiv8di:
  9746. IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
  9747. break;
  9748. case X86::BI__builtin_ia32_gathersiv16si:
  9749. IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
  9750. break;
  9751. case X86::BI__builtin_ia32_gatherdiv8di:
  9752. IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
  9753. break;
  9754. case X86::BI__builtin_ia32_gatherdiv16si:
  9755. IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
  9756. break;
  9757. }
  9758. unsigned MinElts = std::min(Ops[0]->getType()->getVectorNumElements(),
  9759. Ops[2]->getType()->getVectorNumElements());
  9760. Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
  9761. Function *Intr = CGM.getIntrinsic(IID);
  9762. return Builder.CreateCall(Intr, Ops);
  9763. }
  9764. case X86::BI__builtin_ia32_scattersiv8df:
  9765. case X86::BI__builtin_ia32_scattersiv16sf:
  9766. case X86::BI__builtin_ia32_scatterdiv8df:
  9767. case X86::BI__builtin_ia32_scatterdiv16sf:
  9768. case X86::BI__builtin_ia32_scattersiv8di:
  9769. case X86::BI__builtin_ia32_scattersiv16si:
  9770. case X86::BI__builtin_ia32_scatterdiv8di:
  9771. case X86::BI__builtin_ia32_scatterdiv16si:
  9772. case X86::BI__builtin_ia32_scatterdiv2df:
  9773. case X86::BI__builtin_ia32_scatterdiv2di:
  9774. case X86::BI__builtin_ia32_scatterdiv4df:
  9775. case X86::BI__builtin_ia32_scatterdiv4di:
  9776. case X86::BI__builtin_ia32_scatterdiv4sf:
  9777. case X86::BI__builtin_ia32_scatterdiv4si:
  9778. case X86::BI__builtin_ia32_scatterdiv8sf:
  9779. case X86::BI__builtin_ia32_scatterdiv8si:
  9780. case X86::BI__builtin_ia32_scattersiv2df:
  9781. case X86::BI__builtin_ia32_scattersiv2di:
  9782. case X86::BI__builtin_ia32_scattersiv4df:
  9783. case X86::BI__builtin_ia32_scattersiv4di:
  9784. case X86::BI__builtin_ia32_scattersiv4sf:
  9785. case X86::BI__builtin_ia32_scattersiv4si:
  9786. case X86::BI__builtin_ia32_scattersiv8sf:
  9787. case X86::BI__builtin_ia32_scattersiv8si: {
  9788. Intrinsic::ID IID;
  9789. switch (BuiltinID) {
  9790. default: llvm_unreachable("Unexpected builtin");
  9791. case X86::BI__builtin_ia32_scattersiv8df:
  9792. IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
  9793. break;
  9794. case X86::BI__builtin_ia32_scattersiv16sf:
  9795. IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
  9796. break;
  9797. case X86::BI__builtin_ia32_scatterdiv8df:
  9798. IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
  9799. break;
  9800. case X86::BI__builtin_ia32_scatterdiv16sf:
  9801. IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
  9802. break;
  9803. case X86::BI__builtin_ia32_scattersiv8di:
  9804. IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
  9805. break;
  9806. case X86::BI__builtin_ia32_scattersiv16si:
  9807. IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
  9808. break;
  9809. case X86::BI__builtin_ia32_scatterdiv8di:
  9810. IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
  9811. break;
  9812. case X86::BI__builtin_ia32_scatterdiv16si:
  9813. IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
  9814. break;
  9815. case X86::BI__builtin_ia32_scatterdiv2df:
  9816. IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
  9817. break;
  9818. case X86::BI__builtin_ia32_scatterdiv2di:
  9819. IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
  9820. break;
  9821. case X86::BI__builtin_ia32_scatterdiv4df:
  9822. IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
  9823. break;
  9824. case X86::BI__builtin_ia32_scatterdiv4di:
  9825. IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
  9826. break;
  9827. case X86::BI__builtin_ia32_scatterdiv4sf:
  9828. IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
  9829. break;
  9830. case X86::BI__builtin_ia32_scatterdiv4si:
  9831. IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
  9832. break;
  9833. case X86::BI__builtin_ia32_scatterdiv8sf:
  9834. IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
  9835. break;
  9836. case X86::BI__builtin_ia32_scatterdiv8si:
  9837. IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
  9838. break;
  9839. case X86::BI__builtin_ia32_scattersiv2df:
  9840. IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
  9841. break;
  9842. case X86::BI__builtin_ia32_scattersiv2di:
  9843. IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
  9844. break;
  9845. case X86::BI__builtin_ia32_scattersiv4df:
  9846. IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
  9847. break;
  9848. case X86::BI__builtin_ia32_scattersiv4di:
  9849. IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
  9850. break;
  9851. case X86::BI__builtin_ia32_scattersiv4sf:
  9852. IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
  9853. break;
  9854. case X86::BI__builtin_ia32_scattersiv4si:
  9855. IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
  9856. break;
  9857. case X86::BI__builtin_ia32_scattersiv8sf:
  9858. IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
  9859. break;
  9860. case X86::BI__builtin_ia32_scattersiv8si:
  9861. IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
  9862. break;
  9863. }
  9864. unsigned MinElts = std::min(Ops[2]->getType()->getVectorNumElements(),
  9865. Ops[3]->getType()->getVectorNumElements());
  9866. Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
  9867. Function *Intr = CGM.getIntrinsic(IID);
  9868. return Builder.CreateCall(Intr, Ops);
  9869. }
  9870. case X86::BI__builtin_ia32_vextractf128_pd256:
  9871. case X86::BI__builtin_ia32_vextractf128_ps256:
  9872. case X86::BI__builtin_ia32_vextractf128_si256:
  9873. case X86::BI__builtin_ia32_extract128i256:
  9874. case X86::BI__builtin_ia32_extractf64x4_mask:
  9875. case X86::BI__builtin_ia32_extractf32x4_mask:
  9876. case X86::BI__builtin_ia32_extracti64x4_mask:
  9877. case X86::BI__builtin_ia32_extracti32x4_mask:
  9878. case X86::BI__builtin_ia32_extractf32x8_mask:
  9879. case X86::BI__builtin_ia32_extracti32x8_mask:
  9880. case X86::BI__builtin_ia32_extractf32x4_256_mask:
  9881. case X86::BI__builtin_ia32_extracti32x4_256_mask:
  9882. case X86::BI__builtin_ia32_extractf64x2_256_mask:
  9883. case X86::BI__builtin_ia32_extracti64x2_256_mask:
  9884. case X86::BI__builtin_ia32_extractf64x2_512_mask:
  9885. case X86::BI__builtin_ia32_extracti64x2_512_mask: {
  9886. llvm::Type *DstTy = ConvertType(E->getType());
  9887. unsigned NumElts = DstTy->getVectorNumElements();
  9888. unsigned SrcNumElts = Ops[0]->getType()->getVectorNumElements();
  9889. unsigned SubVectors = SrcNumElts / NumElts;
  9890. unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
  9891. assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
  9892. Index &= SubVectors - 1; // Remove any extra bits.
  9893. Index *= NumElts;
  9894. uint32_t Indices[16];
  9895. for (unsigned i = 0; i != NumElts; ++i)
  9896. Indices[i] = i + Index;
  9897. Value *Res = Builder.CreateShuffleVector(Ops[0],
  9898. UndefValue::get(Ops[0]->getType()),
  9899. makeArrayRef(Indices, NumElts),
  9900. "extract");
  9901. if (Ops.size() == 4)
  9902. Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
  9903. return Res;
  9904. }
  9905. case X86::BI__builtin_ia32_vinsertf128_pd256:
  9906. case X86::BI__builtin_ia32_vinsertf128_ps256:
  9907. case X86::BI__builtin_ia32_vinsertf128_si256:
  9908. case X86::BI__builtin_ia32_insert128i256:
  9909. case X86::BI__builtin_ia32_insertf64x4:
  9910. case X86::BI__builtin_ia32_insertf32x4:
  9911. case X86::BI__builtin_ia32_inserti64x4:
  9912. case X86::BI__builtin_ia32_inserti32x4:
  9913. case X86::BI__builtin_ia32_insertf32x8:
  9914. case X86::BI__builtin_ia32_inserti32x8:
  9915. case X86::BI__builtin_ia32_insertf32x4_256:
  9916. case X86::BI__builtin_ia32_inserti32x4_256:
  9917. case X86::BI__builtin_ia32_insertf64x2_256:
  9918. case X86::BI__builtin_ia32_inserti64x2_256:
  9919. case X86::BI__builtin_ia32_insertf64x2_512:
  9920. case X86::BI__builtin_ia32_inserti64x2_512: {
  9921. unsigned DstNumElts = Ops[0]->getType()->getVectorNumElements();
  9922. unsigned SrcNumElts = Ops[1]->getType()->getVectorNumElements();
  9923. unsigned SubVectors = DstNumElts / SrcNumElts;
  9924. unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
  9925. assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
  9926. Index &= SubVectors - 1; // Remove any extra bits.
  9927. Index *= SrcNumElts;
  9928. uint32_t Indices[16];
  9929. for (unsigned i = 0; i != DstNumElts; ++i)
  9930. Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
  9931. Value *Op1 = Builder.CreateShuffleVector(Ops[1],
  9932. UndefValue::get(Ops[1]->getType()),
  9933. makeArrayRef(Indices, DstNumElts),
  9934. "widen");
  9935. for (unsigned i = 0; i != DstNumElts; ++i) {
  9936. if (i >= Index && i < (Index + SrcNumElts))
  9937. Indices[i] = (i - Index) + DstNumElts;
  9938. else
  9939. Indices[i] = i;
  9940. }
  9941. return Builder.CreateShuffleVector(Ops[0], Op1,
  9942. makeArrayRef(Indices, DstNumElts),
  9943. "insert");
  9944. }
  9945. case X86::BI__builtin_ia32_pmovqd512_mask:
  9946. case X86::BI__builtin_ia32_pmovwb512_mask: {
  9947. Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
  9948. return EmitX86Select(*this, Ops[2], Res, Ops[1]);
  9949. }
  9950. case X86::BI__builtin_ia32_pmovdb512_mask:
  9951. case X86::BI__builtin_ia32_pmovdw512_mask:
  9952. case X86::BI__builtin_ia32_pmovqw512_mask: {
  9953. if (const auto *C = dyn_cast<Constant>(Ops[2]))
  9954. if (C->isAllOnesValue())
  9955. return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
  9956. Intrinsic::ID IID;
  9957. switch (BuiltinID) {
  9958. default: llvm_unreachable("Unsupported intrinsic!");
  9959. case X86::BI__builtin_ia32_pmovdb512_mask:
  9960. IID = Intrinsic::x86_avx512_mask_pmov_db_512;
  9961. break;
  9962. case X86::BI__builtin_ia32_pmovdw512_mask:
  9963. IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
  9964. break;
  9965. case X86::BI__builtin_ia32_pmovqw512_mask:
  9966. IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
  9967. break;
  9968. }
  9969. Function *Intr = CGM.getIntrinsic(IID);
  9970. return Builder.CreateCall(Intr, Ops);
  9971. }
  9972. case X86::BI__builtin_ia32_pblendw128:
  9973. case X86::BI__builtin_ia32_blendpd:
  9974. case X86::BI__builtin_ia32_blendps:
  9975. case X86::BI__builtin_ia32_blendpd256:
  9976. case X86::BI__builtin_ia32_blendps256:
  9977. case X86::BI__builtin_ia32_pblendw256:
  9978. case X86::BI__builtin_ia32_pblendd128:
  9979. case X86::BI__builtin_ia32_pblendd256: {
  9980. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  9981. unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
  9982. uint32_t Indices[16];
  9983. // If there are more than 8 elements, the immediate is used twice so make
  9984. // sure we handle that.
  9985. for (unsigned i = 0; i != NumElts; ++i)
  9986. Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
  9987. return Builder.CreateShuffleVector(Ops[0], Ops[1],
  9988. makeArrayRef(Indices, NumElts),
  9989. "blend");
  9990. }
  9991. case X86::BI__builtin_ia32_pshuflw:
  9992. case X86::BI__builtin_ia32_pshuflw256:
  9993. case X86::BI__builtin_ia32_pshuflw512: {
  9994. uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
  9995. llvm::Type *Ty = Ops[0]->getType();
  9996. unsigned NumElts = Ty->getVectorNumElements();
  9997. // Splat the 8-bits of immediate 4 times to help the loop wrap around.
  9998. Imm = (Imm & 0xff) * 0x01010101;
  9999. uint32_t Indices[32];
  10000. for (unsigned l = 0; l != NumElts; l += 8) {
  10001. for (unsigned i = 0; i != 4; ++i) {
  10002. Indices[l + i] = l + (Imm & 3);
  10003. Imm >>= 2;
  10004. }
  10005. for (unsigned i = 4; i != 8; ++i)
  10006. Indices[l + i] = l + i;
  10007. }
  10008. return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
  10009. makeArrayRef(Indices, NumElts),
  10010. "pshuflw");
  10011. }
  10012. case X86::BI__builtin_ia32_pshufhw:
  10013. case X86::BI__builtin_ia32_pshufhw256:
  10014. case X86::BI__builtin_ia32_pshufhw512: {
  10015. uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
  10016. llvm::Type *Ty = Ops[0]->getType();
  10017. unsigned NumElts = Ty->getVectorNumElements();
  10018. // Splat the 8-bits of immediate 4 times to help the loop wrap around.
  10019. Imm = (Imm & 0xff) * 0x01010101;
  10020. uint32_t Indices[32];
  10021. for (unsigned l = 0; l != NumElts; l += 8) {
  10022. for (unsigned i = 0; i != 4; ++i)
  10023. Indices[l + i] = l + i;
  10024. for (unsigned i = 4; i != 8; ++i) {
  10025. Indices[l + i] = l + 4 + (Imm & 3);
  10026. Imm >>= 2;
  10027. }
  10028. }
  10029. return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
  10030. makeArrayRef(Indices, NumElts),
  10031. "pshufhw");
  10032. }
  10033. case X86::BI__builtin_ia32_pshufd:
  10034. case X86::BI__builtin_ia32_pshufd256:
  10035. case X86::BI__builtin_ia32_pshufd512:
  10036. case X86::BI__builtin_ia32_vpermilpd:
  10037. case X86::BI__builtin_ia32_vpermilps:
  10038. case X86::BI__builtin_ia32_vpermilpd256:
  10039. case X86::BI__builtin_ia32_vpermilps256:
  10040. case X86::BI__builtin_ia32_vpermilpd512:
  10041. case X86::BI__builtin_ia32_vpermilps512: {
  10042. uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
  10043. llvm::Type *Ty = Ops[0]->getType();
  10044. unsigned NumElts = Ty->getVectorNumElements();
  10045. unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
  10046. unsigned NumLaneElts = NumElts / NumLanes;
  10047. // Splat the 8-bits of immediate 4 times to help the loop wrap around.
  10048. Imm = (Imm & 0xff) * 0x01010101;
  10049. uint32_t Indices[16];
  10050. for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
  10051. for (unsigned i = 0; i != NumLaneElts; ++i) {
  10052. Indices[i + l] = (Imm % NumLaneElts) + l;
  10053. Imm /= NumLaneElts;
  10054. }
  10055. }
  10056. return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
  10057. makeArrayRef(Indices, NumElts),
  10058. "permil");
  10059. }
  10060. case X86::BI__builtin_ia32_shufpd:
  10061. case X86::BI__builtin_ia32_shufpd256:
  10062. case X86::BI__builtin_ia32_shufpd512:
  10063. case X86::BI__builtin_ia32_shufps:
  10064. case X86::BI__builtin_ia32_shufps256:
  10065. case X86::BI__builtin_ia32_shufps512: {
  10066. uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
  10067. llvm::Type *Ty = Ops[0]->getType();
  10068. unsigned NumElts = Ty->getVectorNumElements();
  10069. unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
  10070. unsigned NumLaneElts = NumElts / NumLanes;
  10071. // Splat the 8-bits of immediate 4 times to help the loop wrap around.
  10072. Imm = (Imm & 0xff) * 0x01010101;
  10073. uint32_t Indices[16];
  10074. for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
  10075. for (unsigned i = 0; i != NumLaneElts; ++i) {
  10076. unsigned Index = Imm % NumLaneElts;
  10077. Imm /= NumLaneElts;
  10078. if (i >= (NumLaneElts / 2))
  10079. Index += NumElts;
  10080. Indices[l + i] = l + Index;
  10081. }
  10082. }
  10083. return Builder.CreateShuffleVector(Ops[0], Ops[1],
  10084. makeArrayRef(Indices, NumElts),
  10085. "shufp");
  10086. }
  10087. case X86::BI__builtin_ia32_permdi256:
  10088. case X86::BI__builtin_ia32_permdf256:
  10089. case X86::BI__builtin_ia32_permdi512:
  10090. case X86::BI__builtin_ia32_permdf512: {
  10091. unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
  10092. llvm::Type *Ty = Ops[0]->getType();
  10093. unsigned NumElts = Ty->getVectorNumElements();
  10094. // These intrinsics operate on 256-bit lanes of four 64-bit elements.
  10095. uint32_t Indices[8];
  10096. for (unsigned l = 0; l != NumElts; l += 4)
  10097. for (unsigned i = 0; i != 4; ++i)
  10098. Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
  10099. return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
  10100. makeArrayRef(Indices, NumElts),
  10101. "perm");
  10102. }
  10103. case X86::BI__builtin_ia32_palignr128:
  10104. case X86::BI__builtin_ia32_palignr256:
  10105. case X86::BI__builtin_ia32_palignr512: {
  10106. unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
  10107. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  10108. assert(NumElts % 16 == 0);
  10109. // If palignr is shifting the pair of vectors more than the size of two
  10110. // lanes, emit zero.
  10111. if (ShiftVal >= 32)
  10112. return llvm::Constant::getNullValue(ConvertType(E->getType()));
  10113. // If palignr is shifting the pair of input vectors more than one lane,
  10114. // but less than two lanes, convert to shifting in zeroes.
  10115. if (ShiftVal > 16) {
  10116. ShiftVal -= 16;
  10117. Ops[1] = Ops[0];
  10118. Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
  10119. }
  10120. uint32_t Indices[64];
  10121. // 256-bit palignr operates on 128-bit lanes so we need to handle that
  10122. for (unsigned l = 0; l != NumElts; l += 16) {
  10123. for (unsigned i = 0; i != 16; ++i) {
  10124. unsigned Idx = ShiftVal + i;
  10125. if (Idx >= 16)
  10126. Idx += NumElts - 16; // End of lane, switch operand.
  10127. Indices[l + i] = Idx + l;
  10128. }
  10129. }
  10130. return Builder.CreateShuffleVector(Ops[1], Ops[0],
  10131. makeArrayRef(Indices, NumElts),
  10132. "palignr");
  10133. }
  10134. case X86::BI__builtin_ia32_alignd128:
  10135. case X86::BI__builtin_ia32_alignd256:
  10136. case X86::BI__builtin_ia32_alignd512:
  10137. case X86::BI__builtin_ia32_alignq128:
  10138. case X86::BI__builtin_ia32_alignq256:
  10139. case X86::BI__builtin_ia32_alignq512: {
  10140. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  10141. unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
  10142. // Mask the shift amount to width of two vectors.
  10143. ShiftVal &= (2 * NumElts) - 1;
  10144. uint32_t Indices[16];
  10145. for (unsigned i = 0; i != NumElts; ++i)
  10146. Indices[i] = i + ShiftVal;
  10147. return Builder.CreateShuffleVector(Ops[1], Ops[0],
  10148. makeArrayRef(Indices, NumElts),
  10149. "valign");
  10150. }
  10151. case X86::BI__builtin_ia32_shuf_f32x4_256:
  10152. case X86::BI__builtin_ia32_shuf_f64x2_256:
  10153. case X86::BI__builtin_ia32_shuf_i32x4_256:
  10154. case X86::BI__builtin_ia32_shuf_i64x2_256:
  10155. case X86::BI__builtin_ia32_shuf_f32x4:
  10156. case X86::BI__builtin_ia32_shuf_f64x2:
  10157. case X86::BI__builtin_ia32_shuf_i32x4:
  10158. case X86::BI__builtin_ia32_shuf_i64x2: {
  10159. unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
  10160. llvm::Type *Ty = Ops[0]->getType();
  10161. unsigned NumElts = Ty->getVectorNumElements();
  10162. unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
  10163. unsigned NumLaneElts = NumElts / NumLanes;
  10164. uint32_t Indices[16];
  10165. for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
  10166. unsigned Index = (Imm % NumLanes) * NumLaneElts;
  10167. Imm /= NumLanes; // Discard the bits we just used.
  10168. if (l >= (NumElts / 2))
  10169. Index += NumElts; // Switch to other source.
  10170. for (unsigned i = 0; i != NumLaneElts; ++i) {
  10171. Indices[l + i] = Index + i;
  10172. }
  10173. }
  10174. return Builder.CreateShuffleVector(Ops[0], Ops[1],
  10175. makeArrayRef(Indices, NumElts),
  10176. "shuf");
  10177. }
  10178. case X86::BI__builtin_ia32_vperm2f128_pd256:
  10179. case X86::BI__builtin_ia32_vperm2f128_ps256:
  10180. case X86::BI__builtin_ia32_vperm2f128_si256:
  10181. case X86::BI__builtin_ia32_permti256: {
  10182. unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
  10183. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  10184. // This takes a very simple approach since there are two lanes and a
  10185. // shuffle can have 2 inputs. So we reserve the first input for the first
  10186. // lane and the second input for the second lane. This may result in
  10187. // duplicate sources, but this can be dealt with in the backend.
  10188. Value *OutOps[2];
  10189. uint32_t Indices[8];
  10190. for (unsigned l = 0; l != 2; ++l) {
  10191. // Determine the source for this lane.
  10192. if (Imm & (1 << ((l * 4) + 3)))
  10193. OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
  10194. else if (Imm & (1 << ((l * 4) + 1)))
  10195. OutOps[l] = Ops[1];
  10196. else
  10197. OutOps[l] = Ops[0];
  10198. for (unsigned i = 0; i != NumElts/2; ++i) {
  10199. // Start with ith element of the source for this lane.
  10200. unsigned Idx = (l * NumElts) + i;
  10201. // If bit 0 of the immediate half is set, switch to the high half of
  10202. // the source.
  10203. if (Imm & (1 << (l * 4)))
  10204. Idx += NumElts/2;
  10205. Indices[(l * (NumElts/2)) + i] = Idx;
  10206. }
  10207. }
  10208. return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
  10209. makeArrayRef(Indices, NumElts),
  10210. "vperm");
  10211. }
  10212. case X86::BI__builtin_ia32_pslldqi128_byteshift:
  10213. case X86::BI__builtin_ia32_pslldqi256_byteshift:
  10214. case X86::BI__builtin_ia32_pslldqi512_byteshift: {
  10215. unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
  10216. llvm::Type *ResultType = Ops[0]->getType();
  10217. // Builtin type is vXi64 so multiply by 8 to get bytes.
  10218. unsigned NumElts = ResultType->getVectorNumElements() * 8;
  10219. // If pslldq is shifting the vector more than 15 bytes, emit zero.
  10220. if (ShiftVal >= 16)
  10221. return llvm::Constant::getNullValue(ResultType);
  10222. uint32_t Indices[64];
  10223. // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
  10224. for (unsigned l = 0; l != NumElts; l += 16) {
  10225. for (unsigned i = 0; i != 16; ++i) {
  10226. unsigned Idx = NumElts + i - ShiftVal;
  10227. if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
  10228. Indices[l + i] = Idx + l;
  10229. }
  10230. }
  10231. llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
  10232. Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
  10233. Value *Zero = llvm::Constant::getNullValue(VecTy);
  10234. Value *SV = Builder.CreateShuffleVector(Zero, Cast,
  10235. makeArrayRef(Indices, NumElts),
  10236. "pslldq");
  10237. return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
  10238. }
  10239. case X86::BI__builtin_ia32_psrldqi128_byteshift:
  10240. case X86::BI__builtin_ia32_psrldqi256_byteshift:
  10241. case X86::BI__builtin_ia32_psrldqi512_byteshift: {
  10242. unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
  10243. llvm::Type *ResultType = Ops[0]->getType();
  10244. // Builtin type is vXi64 so multiply by 8 to get bytes.
  10245. unsigned NumElts = ResultType->getVectorNumElements() * 8;
  10246. // If psrldq is shifting the vector more than 15 bytes, emit zero.
  10247. if (ShiftVal >= 16)
  10248. return llvm::Constant::getNullValue(ResultType);
  10249. uint32_t Indices[64];
  10250. // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
  10251. for (unsigned l = 0; l != NumElts; l += 16) {
  10252. for (unsigned i = 0; i != 16; ++i) {
  10253. unsigned Idx = i + ShiftVal;
  10254. if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
  10255. Indices[l + i] = Idx + l;
  10256. }
  10257. }
  10258. llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
  10259. Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
  10260. Value *Zero = llvm::Constant::getNullValue(VecTy);
  10261. Value *SV = Builder.CreateShuffleVector(Cast, Zero,
  10262. makeArrayRef(Indices, NumElts),
  10263. "psrldq");
  10264. return Builder.CreateBitCast(SV, ResultType, "cast");
  10265. }
  10266. case X86::BI__builtin_ia32_kshiftliqi:
  10267. case X86::BI__builtin_ia32_kshiftlihi:
  10268. case X86::BI__builtin_ia32_kshiftlisi:
  10269. case X86::BI__builtin_ia32_kshiftlidi: {
  10270. unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
  10271. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  10272. if (ShiftVal >= NumElts)
  10273. return llvm::Constant::getNullValue(Ops[0]->getType());
  10274. Value *In = getMaskVecValue(*this, Ops[0], NumElts);
  10275. uint32_t Indices[64];
  10276. for (unsigned i = 0; i != NumElts; ++i)
  10277. Indices[i] = NumElts + i - ShiftVal;
  10278. Value *Zero = llvm::Constant::getNullValue(In->getType());
  10279. Value *SV = Builder.CreateShuffleVector(Zero, In,
  10280. makeArrayRef(Indices, NumElts),
  10281. "kshiftl");
  10282. return Builder.CreateBitCast(SV, Ops[0]->getType());
  10283. }
  10284. case X86::BI__builtin_ia32_kshiftriqi:
  10285. case X86::BI__builtin_ia32_kshiftrihi:
  10286. case X86::BI__builtin_ia32_kshiftrisi:
  10287. case X86::BI__builtin_ia32_kshiftridi: {
  10288. unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
  10289. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  10290. if (ShiftVal >= NumElts)
  10291. return llvm::Constant::getNullValue(Ops[0]->getType());
  10292. Value *In = getMaskVecValue(*this, Ops[0], NumElts);
  10293. uint32_t Indices[64];
  10294. for (unsigned i = 0; i != NumElts; ++i)
  10295. Indices[i] = i + ShiftVal;
  10296. Value *Zero = llvm::Constant::getNullValue(In->getType());
  10297. Value *SV = Builder.CreateShuffleVector(In, Zero,
  10298. makeArrayRef(Indices, NumElts),
  10299. "kshiftr");
  10300. return Builder.CreateBitCast(SV, Ops[0]->getType());
  10301. }
  10302. case X86::BI__builtin_ia32_movnti:
  10303. case X86::BI__builtin_ia32_movnti64:
  10304. case X86::BI__builtin_ia32_movntsd:
  10305. case X86::BI__builtin_ia32_movntss: {
  10306. llvm::MDNode *Node = llvm::MDNode::get(
  10307. getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
  10308. Value *Ptr = Ops[0];
  10309. Value *Src = Ops[1];
  10310. // Extract the 0'th element of the source vector.
  10311. if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
  10312. BuiltinID == X86::BI__builtin_ia32_movntss)
  10313. Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
  10314. // Convert the type of the pointer to a pointer to the stored type.
  10315. Value *BC = Builder.CreateBitCast(
  10316. Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
  10317. // Unaligned nontemporal store of the scalar value.
  10318. StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
  10319. SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
  10320. SI->setAlignment(llvm::Align::None());
  10321. return SI;
  10322. }
  10323. // Rotate is a special case of funnel shift - 1st 2 args are the same.
  10324. case X86::BI__builtin_ia32_vprotb:
  10325. case X86::BI__builtin_ia32_vprotw:
  10326. case X86::BI__builtin_ia32_vprotd:
  10327. case X86::BI__builtin_ia32_vprotq:
  10328. case X86::BI__builtin_ia32_vprotbi:
  10329. case X86::BI__builtin_ia32_vprotwi:
  10330. case X86::BI__builtin_ia32_vprotdi:
  10331. case X86::BI__builtin_ia32_vprotqi:
  10332. case X86::BI__builtin_ia32_prold128:
  10333. case X86::BI__builtin_ia32_prold256:
  10334. case X86::BI__builtin_ia32_prold512:
  10335. case X86::BI__builtin_ia32_prolq128:
  10336. case X86::BI__builtin_ia32_prolq256:
  10337. case X86::BI__builtin_ia32_prolq512:
  10338. case X86::BI__builtin_ia32_prolvd128:
  10339. case X86::BI__builtin_ia32_prolvd256:
  10340. case X86::BI__builtin_ia32_prolvd512:
  10341. case X86::BI__builtin_ia32_prolvq128:
  10342. case X86::BI__builtin_ia32_prolvq256:
  10343. case X86::BI__builtin_ia32_prolvq512:
  10344. return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
  10345. case X86::BI__builtin_ia32_prord128:
  10346. case X86::BI__builtin_ia32_prord256:
  10347. case X86::BI__builtin_ia32_prord512:
  10348. case X86::BI__builtin_ia32_prorq128:
  10349. case X86::BI__builtin_ia32_prorq256:
  10350. case X86::BI__builtin_ia32_prorq512:
  10351. case X86::BI__builtin_ia32_prorvd128:
  10352. case X86::BI__builtin_ia32_prorvd256:
  10353. case X86::BI__builtin_ia32_prorvd512:
  10354. case X86::BI__builtin_ia32_prorvq128:
  10355. case X86::BI__builtin_ia32_prorvq256:
  10356. case X86::BI__builtin_ia32_prorvq512:
  10357. return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
  10358. case X86::BI__builtin_ia32_selectb_128:
  10359. case X86::BI__builtin_ia32_selectb_256:
  10360. case X86::BI__builtin_ia32_selectb_512:
  10361. case X86::BI__builtin_ia32_selectw_128:
  10362. case X86::BI__builtin_ia32_selectw_256:
  10363. case X86::BI__builtin_ia32_selectw_512:
  10364. case X86::BI__builtin_ia32_selectd_128:
  10365. case X86::BI__builtin_ia32_selectd_256:
  10366. case X86::BI__builtin_ia32_selectd_512:
  10367. case X86::BI__builtin_ia32_selectq_128:
  10368. case X86::BI__builtin_ia32_selectq_256:
  10369. case X86::BI__builtin_ia32_selectq_512:
  10370. case X86::BI__builtin_ia32_selectps_128:
  10371. case X86::BI__builtin_ia32_selectps_256:
  10372. case X86::BI__builtin_ia32_selectps_512:
  10373. case X86::BI__builtin_ia32_selectpd_128:
  10374. case X86::BI__builtin_ia32_selectpd_256:
  10375. case X86::BI__builtin_ia32_selectpd_512:
  10376. return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
  10377. case X86::BI__builtin_ia32_selectss_128:
  10378. case X86::BI__builtin_ia32_selectsd_128: {
  10379. Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
  10380. Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
  10381. A = EmitX86ScalarSelect(*this, Ops[0], A, B);
  10382. return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
  10383. }
  10384. case X86::BI__builtin_ia32_cmpb128_mask:
  10385. case X86::BI__builtin_ia32_cmpb256_mask:
  10386. case X86::BI__builtin_ia32_cmpb512_mask:
  10387. case X86::BI__builtin_ia32_cmpw128_mask:
  10388. case X86::BI__builtin_ia32_cmpw256_mask:
  10389. case X86::BI__builtin_ia32_cmpw512_mask:
  10390. case X86::BI__builtin_ia32_cmpd128_mask:
  10391. case X86::BI__builtin_ia32_cmpd256_mask:
  10392. case X86::BI__builtin_ia32_cmpd512_mask:
  10393. case X86::BI__builtin_ia32_cmpq128_mask:
  10394. case X86::BI__builtin_ia32_cmpq256_mask:
  10395. case X86::BI__builtin_ia32_cmpq512_mask: {
  10396. unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
  10397. return EmitX86MaskedCompare(*this, CC, true, Ops);
  10398. }
  10399. case X86::BI__builtin_ia32_ucmpb128_mask:
  10400. case X86::BI__builtin_ia32_ucmpb256_mask:
  10401. case X86::BI__builtin_ia32_ucmpb512_mask:
  10402. case X86::BI__builtin_ia32_ucmpw128_mask:
  10403. case X86::BI__builtin_ia32_ucmpw256_mask:
  10404. case X86::BI__builtin_ia32_ucmpw512_mask:
  10405. case X86::BI__builtin_ia32_ucmpd128_mask:
  10406. case X86::BI__builtin_ia32_ucmpd256_mask:
  10407. case X86::BI__builtin_ia32_ucmpd512_mask:
  10408. case X86::BI__builtin_ia32_ucmpq128_mask:
  10409. case X86::BI__builtin_ia32_ucmpq256_mask:
  10410. case X86::BI__builtin_ia32_ucmpq512_mask: {
  10411. unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
  10412. return EmitX86MaskedCompare(*this, CC, false, Ops);
  10413. }
  10414. case X86::BI__builtin_ia32_vpcomb:
  10415. case X86::BI__builtin_ia32_vpcomw:
  10416. case X86::BI__builtin_ia32_vpcomd:
  10417. case X86::BI__builtin_ia32_vpcomq:
  10418. return EmitX86vpcom(*this, Ops, true);
  10419. case X86::BI__builtin_ia32_vpcomub:
  10420. case X86::BI__builtin_ia32_vpcomuw:
  10421. case X86::BI__builtin_ia32_vpcomud:
  10422. case X86::BI__builtin_ia32_vpcomuq:
  10423. return EmitX86vpcom(*this, Ops, false);
  10424. case X86::BI__builtin_ia32_kortestcqi:
  10425. case X86::BI__builtin_ia32_kortestchi:
  10426. case X86::BI__builtin_ia32_kortestcsi:
  10427. case X86::BI__builtin_ia32_kortestcdi: {
  10428. Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
  10429. Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
  10430. Value *Cmp = Builder.CreateICmpEQ(Or, C);
  10431. return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
  10432. }
  10433. case X86::BI__builtin_ia32_kortestzqi:
  10434. case X86::BI__builtin_ia32_kortestzhi:
  10435. case X86::BI__builtin_ia32_kortestzsi:
  10436. case X86::BI__builtin_ia32_kortestzdi: {
  10437. Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
  10438. Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
  10439. Value *Cmp = Builder.CreateICmpEQ(Or, C);
  10440. return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
  10441. }
  10442. case X86::BI__builtin_ia32_ktestcqi:
  10443. case X86::BI__builtin_ia32_ktestzqi:
  10444. case X86::BI__builtin_ia32_ktestchi:
  10445. case X86::BI__builtin_ia32_ktestzhi:
  10446. case X86::BI__builtin_ia32_ktestcsi:
  10447. case X86::BI__builtin_ia32_ktestzsi:
  10448. case X86::BI__builtin_ia32_ktestcdi:
  10449. case X86::BI__builtin_ia32_ktestzdi: {
  10450. Intrinsic::ID IID;
  10451. switch (BuiltinID) {
  10452. default: llvm_unreachable("Unsupported intrinsic!");
  10453. case X86::BI__builtin_ia32_ktestcqi:
  10454. IID = Intrinsic::x86_avx512_ktestc_b;
  10455. break;
  10456. case X86::BI__builtin_ia32_ktestzqi:
  10457. IID = Intrinsic::x86_avx512_ktestz_b;
  10458. break;
  10459. case X86::BI__builtin_ia32_ktestchi:
  10460. IID = Intrinsic::x86_avx512_ktestc_w;
  10461. break;
  10462. case X86::BI__builtin_ia32_ktestzhi:
  10463. IID = Intrinsic::x86_avx512_ktestz_w;
  10464. break;
  10465. case X86::BI__builtin_ia32_ktestcsi:
  10466. IID = Intrinsic::x86_avx512_ktestc_d;
  10467. break;
  10468. case X86::BI__builtin_ia32_ktestzsi:
  10469. IID = Intrinsic::x86_avx512_ktestz_d;
  10470. break;
  10471. case X86::BI__builtin_ia32_ktestcdi:
  10472. IID = Intrinsic::x86_avx512_ktestc_q;
  10473. break;
  10474. case X86::BI__builtin_ia32_ktestzdi:
  10475. IID = Intrinsic::x86_avx512_ktestz_q;
  10476. break;
  10477. }
  10478. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  10479. Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
  10480. Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
  10481. Function *Intr = CGM.getIntrinsic(IID);
  10482. return Builder.CreateCall(Intr, {LHS, RHS});
  10483. }
  10484. case X86::BI__builtin_ia32_kaddqi:
  10485. case X86::BI__builtin_ia32_kaddhi:
  10486. case X86::BI__builtin_ia32_kaddsi:
  10487. case X86::BI__builtin_ia32_kadddi: {
  10488. Intrinsic::ID IID;
  10489. switch (BuiltinID) {
  10490. default: llvm_unreachable("Unsupported intrinsic!");
  10491. case X86::BI__builtin_ia32_kaddqi:
  10492. IID = Intrinsic::x86_avx512_kadd_b;
  10493. break;
  10494. case X86::BI__builtin_ia32_kaddhi:
  10495. IID = Intrinsic::x86_avx512_kadd_w;
  10496. break;
  10497. case X86::BI__builtin_ia32_kaddsi:
  10498. IID = Intrinsic::x86_avx512_kadd_d;
  10499. break;
  10500. case X86::BI__builtin_ia32_kadddi:
  10501. IID = Intrinsic::x86_avx512_kadd_q;
  10502. break;
  10503. }
  10504. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  10505. Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
  10506. Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
  10507. Function *Intr = CGM.getIntrinsic(IID);
  10508. Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
  10509. return Builder.CreateBitCast(Res, Ops[0]->getType());
  10510. }
  10511. case X86::BI__builtin_ia32_kandqi:
  10512. case X86::BI__builtin_ia32_kandhi:
  10513. case X86::BI__builtin_ia32_kandsi:
  10514. case X86::BI__builtin_ia32_kanddi:
  10515. return EmitX86MaskLogic(*this, Instruction::And, Ops);
  10516. case X86::BI__builtin_ia32_kandnqi:
  10517. case X86::BI__builtin_ia32_kandnhi:
  10518. case X86::BI__builtin_ia32_kandnsi:
  10519. case X86::BI__builtin_ia32_kandndi:
  10520. return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
  10521. case X86::BI__builtin_ia32_korqi:
  10522. case X86::BI__builtin_ia32_korhi:
  10523. case X86::BI__builtin_ia32_korsi:
  10524. case X86::BI__builtin_ia32_kordi:
  10525. return EmitX86MaskLogic(*this, Instruction::Or, Ops);
  10526. case X86::BI__builtin_ia32_kxnorqi:
  10527. case X86::BI__builtin_ia32_kxnorhi:
  10528. case X86::BI__builtin_ia32_kxnorsi:
  10529. case X86::BI__builtin_ia32_kxnordi:
  10530. return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
  10531. case X86::BI__builtin_ia32_kxorqi:
  10532. case X86::BI__builtin_ia32_kxorhi:
  10533. case X86::BI__builtin_ia32_kxorsi:
  10534. case X86::BI__builtin_ia32_kxordi:
  10535. return EmitX86MaskLogic(*this, Instruction::Xor, Ops);
  10536. case X86::BI__builtin_ia32_knotqi:
  10537. case X86::BI__builtin_ia32_knothi:
  10538. case X86::BI__builtin_ia32_knotsi:
  10539. case X86::BI__builtin_ia32_knotdi: {
  10540. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  10541. Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
  10542. return Builder.CreateBitCast(Builder.CreateNot(Res),
  10543. Ops[0]->getType());
  10544. }
  10545. case X86::BI__builtin_ia32_kmovb:
  10546. case X86::BI__builtin_ia32_kmovw:
  10547. case X86::BI__builtin_ia32_kmovd:
  10548. case X86::BI__builtin_ia32_kmovq: {
  10549. // Bitcast to vXi1 type and then back to integer. This gets the mask
  10550. // register type into the IR, but might be optimized out depending on
  10551. // what's around it.
  10552. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  10553. Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
  10554. return Builder.CreateBitCast(Res, Ops[0]->getType());
  10555. }
  10556. case X86::BI__builtin_ia32_kunpckdi:
  10557. case X86::BI__builtin_ia32_kunpcksi:
  10558. case X86::BI__builtin_ia32_kunpckhi: {
  10559. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  10560. Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
  10561. Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
  10562. uint32_t Indices[64];
  10563. for (unsigned i = 0; i != NumElts; ++i)
  10564. Indices[i] = i;
  10565. // First extract half of each vector. This gives better codegen than
  10566. // doing it in a single shuffle.
  10567. LHS = Builder.CreateShuffleVector(LHS, LHS,
  10568. makeArrayRef(Indices, NumElts / 2));
  10569. RHS = Builder.CreateShuffleVector(RHS, RHS,
  10570. makeArrayRef(Indices, NumElts / 2));
  10571. // Concat the vectors.
  10572. // NOTE: Operands are swapped to match the intrinsic definition.
  10573. Value *Res = Builder.CreateShuffleVector(RHS, LHS,
  10574. makeArrayRef(Indices, NumElts));
  10575. return Builder.CreateBitCast(Res, Ops[0]->getType());
  10576. }
  10577. case X86::BI__builtin_ia32_vplzcntd_128:
  10578. case X86::BI__builtin_ia32_vplzcntd_256:
  10579. case X86::BI__builtin_ia32_vplzcntd_512:
  10580. case X86::BI__builtin_ia32_vplzcntq_128:
  10581. case X86::BI__builtin_ia32_vplzcntq_256:
  10582. case X86::BI__builtin_ia32_vplzcntq_512: {
  10583. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
  10584. return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
  10585. }
  10586. case X86::BI__builtin_ia32_sqrtss:
  10587. case X86::BI__builtin_ia32_sqrtsd: {
  10588. Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
  10589. Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
  10590. A = Builder.CreateCall(F, {A});
  10591. return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
  10592. }
  10593. case X86::BI__builtin_ia32_sqrtsd_round_mask:
  10594. case X86::BI__builtin_ia32_sqrtss_round_mask: {
  10595. unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
  10596. // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
  10597. // otherwise keep the intrinsic.
  10598. if (CC != 4) {
  10599. Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
  10600. Intrinsic::x86_avx512_mask_sqrt_sd :
  10601. Intrinsic::x86_avx512_mask_sqrt_ss;
  10602. return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
  10603. }
  10604. Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
  10605. Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
  10606. A = Builder.CreateCall(F, A);
  10607. Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
  10608. A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
  10609. return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
  10610. }
  10611. case X86::BI__builtin_ia32_sqrtpd256:
  10612. case X86::BI__builtin_ia32_sqrtpd:
  10613. case X86::BI__builtin_ia32_sqrtps256:
  10614. case X86::BI__builtin_ia32_sqrtps:
  10615. case X86::BI__builtin_ia32_sqrtps512:
  10616. case X86::BI__builtin_ia32_sqrtpd512: {
  10617. if (Ops.size() == 2) {
  10618. unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
  10619. // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
  10620. // otherwise keep the intrinsic.
  10621. if (CC != 4) {
  10622. Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
  10623. Intrinsic::x86_avx512_sqrt_ps_512 :
  10624. Intrinsic::x86_avx512_sqrt_pd_512;
  10625. return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
  10626. }
  10627. }
  10628. Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
  10629. return Builder.CreateCall(F, Ops[0]);
  10630. }
  10631. case X86::BI__builtin_ia32_pabsb128:
  10632. case X86::BI__builtin_ia32_pabsw128:
  10633. case X86::BI__builtin_ia32_pabsd128:
  10634. case X86::BI__builtin_ia32_pabsb256:
  10635. case X86::BI__builtin_ia32_pabsw256:
  10636. case X86::BI__builtin_ia32_pabsd256:
  10637. case X86::BI__builtin_ia32_pabsq128:
  10638. case X86::BI__builtin_ia32_pabsq256:
  10639. case X86::BI__builtin_ia32_pabsb512:
  10640. case X86::BI__builtin_ia32_pabsw512:
  10641. case X86::BI__builtin_ia32_pabsd512:
  10642. case X86::BI__builtin_ia32_pabsq512:
  10643. return EmitX86Abs(*this, Ops);
  10644. case X86::BI__builtin_ia32_pmaxsb128:
  10645. case X86::BI__builtin_ia32_pmaxsw128:
  10646. case X86::BI__builtin_ia32_pmaxsd128:
  10647. case X86::BI__builtin_ia32_pmaxsq128:
  10648. case X86::BI__builtin_ia32_pmaxsb256:
  10649. case X86::BI__builtin_ia32_pmaxsw256:
  10650. case X86::BI__builtin_ia32_pmaxsd256:
  10651. case X86::BI__builtin_ia32_pmaxsq256:
  10652. case X86::BI__builtin_ia32_pmaxsb512:
  10653. case X86::BI__builtin_ia32_pmaxsw512:
  10654. case X86::BI__builtin_ia32_pmaxsd512:
  10655. case X86::BI__builtin_ia32_pmaxsq512:
  10656. return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops);
  10657. case X86::BI__builtin_ia32_pmaxub128:
  10658. case X86::BI__builtin_ia32_pmaxuw128:
  10659. case X86::BI__builtin_ia32_pmaxud128:
  10660. case X86::BI__builtin_ia32_pmaxuq128:
  10661. case X86::BI__builtin_ia32_pmaxub256:
  10662. case X86::BI__builtin_ia32_pmaxuw256:
  10663. case X86::BI__builtin_ia32_pmaxud256:
  10664. case X86::BI__builtin_ia32_pmaxuq256:
  10665. case X86::BI__builtin_ia32_pmaxub512:
  10666. case X86::BI__builtin_ia32_pmaxuw512:
  10667. case X86::BI__builtin_ia32_pmaxud512:
  10668. case X86::BI__builtin_ia32_pmaxuq512:
  10669. return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops);
  10670. case X86::BI__builtin_ia32_pminsb128:
  10671. case X86::BI__builtin_ia32_pminsw128:
  10672. case X86::BI__builtin_ia32_pminsd128:
  10673. case X86::BI__builtin_ia32_pminsq128:
  10674. case X86::BI__builtin_ia32_pminsb256:
  10675. case X86::BI__builtin_ia32_pminsw256:
  10676. case X86::BI__builtin_ia32_pminsd256:
  10677. case X86::BI__builtin_ia32_pminsq256:
  10678. case X86::BI__builtin_ia32_pminsb512:
  10679. case X86::BI__builtin_ia32_pminsw512:
  10680. case X86::BI__builtin_ia32_pminsd512:
  10681. case X86::BI__builtin_ia32_pminsq512:
  10682. return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops);
  10683. case X86::BI__builtin_ia32_pminub128:
  10684. case X86::BI__builtin_ia32_pminuw128:
  10685. case X86::BI__builtin_ia32_pminud128:
  10686. case X86::BI__builtin_ia32_pminuq128:
  10687. case X86::BI__builtin_ia32_pminub256:
  10688. case X86::BI__builtin_ia32_pminuw256:
  10689. case X86::BI__builtin_ia32_pminud256:
  10690. case X86::BI__builtin_ia32_pminuq256:
  10691. case X86::BI__builtin_ia32_pminub512:
  10692. case X86::BI__builtin_ia32_pminuw512:
  10693. case X86::BI__builtin_ia32_pminud512:
  10694. case X86::BI__builtin_ia32_pminuq512:
  10695. return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops);
  10696. case X86::BI__builtin_ia32_pmuludq128:
  10697. case X86::BI__builtin_ia32_pmuludq256:
  10698. case X86::BI__builtin_ia32_pmuludq512:
  10699. return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
  10700. case X86::BI__builtin_ia32_pmuldq128:
  10701. case X86::BI__builtin_ia32_pmuldq256:
  10702. case X86::BI__builtin_ia32_pmuldq512:
  10703. return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
  10704. case X86::BI__builtin_ia32_pternlogd512_mask:
  10705. case X86::BI__builtin_ia32_pternlogq512_mask:
  10706. case X86::BI__builtin_ia32_pternlogd128_mask:
  10707. case X86::BI__builtin_ia32_pternlogd256_mask:
  10708. case X86::BI__builtin_ia32_pternlogq128_mask:
  10709. case X86::BI__builtin_ia32_pternlogq256_mask:
  10710. return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
  10711. case X86::BI__builtin_ia32_pternlogd512_maskz:
  10712. case X86::BI__builtin_ia32_pternlogq512_maskz:
  10713. case X86::BI__builtin_ia32_pternlogd128_maskz:
  10714. case X86::BI__builtin_ia32_pternlogd256_maskz:
  10715. case X86::BI__builtin_ia32_pternlogq128_maskz:
  10716. case X86::BI__builtin_ia32_pternlogq256_maskz:
  10717. return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
  10718. case X86::BI__builtin_ia32_vpshldd128:
  10719. case X86::BI__builtin_ia32_vpshldd256:
  10720. case X86::BI__builtin_ia32_vpshldd512:
  10721. case X86::BI__builtin_ia32_vpshldq128:
  10722. case X86::BI__builtin_ia32_vpshldq256:
  10723. case X86::BI__builtin_ia32_vpshldq512:
  10724. case X86::BI__builtin_ia32_vpshldw128:
  10725. case X86::BI__builtin_ia32_vpshldw256:
  10726. case X86::BI__builtin_ia32_vpshldw512:
  10727. return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
  10728. case X86::BI__builtin_ia32_vpshrdd128:
  10729. case X86::BI__builtin_ia32_vpshrdd256:
  10730. case X86::BI__builtin_ia32_vpshrdd512:
  10731. case X86::BI__builtin_ia32_vpshrdq128:
  10732. case X86::BI__builtin_ia32_vpshrdq256:
  10733. case X86::BI__builtin_ia32_vpshrdq512:
  10734. case X86::BI__builtin_ia32_vpshrdw128:
  10735. case X86::BI__builtin_ia32_vpshrdw256:
  10736. case X86::BI__builtin_ia32_vpshrdw512:
  10737. // Ops 0 and 1 are swapped.
  10738. return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
  10739. case X86::BI__builtin_ia32_vpshldvd128:
  10740. case X86::BI__builtin_ia32_vpshldvd256:
  10741. case X86::BI__builtin_ia32_vpshldvd512:
  10742. case X86::BI__builtin_ia32_vpshldvq128:
  10743. case X86::BI__builtin_ia32_vpshldvq256:
  10744. case X86::BI__builtin_ia32_vpshldvq512:
  10745. case X86::BI__builtin_ia32_vpshldvw128:
  10746. case X86::BI__builtin_ia32_vpshldvw256:
  10747. case X86::BI__builtin_ia32_vpshldvw512:
  10748. return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
  10749. case X86::BI__builtin_ia32_vpshrdvd128:
  10750. case X86::BI__builtin_ia32_vpshrdvd256:
  10751. case X86::BI__builtin_ia32_vpshrdvd512:
  10752. case X86::BI__builtin_ia32_vpshrdvq128:
  10753. case X86::BI__builtin_ia32_vpshrdvq256:
  10754. case X86::BI__builtin_ia32_vpshrdvq512:
  10755. case X86::BI__builtin_ia32_vpshrdvw128:
  10756. case X86::BI__builtin_ia32_vpshrdvw256:
  10757. case X86::BI__builtin_ia32_vpshrdvw512:
  10758. // Ops 0 and 1 are swapped.
  10759. return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
  10760. // 3DNow!
  10761. case X86::BI__builtin_ia32_pswapdsf:
  10762. case X86::BI__builtin_ia32_pswapdsi: {
  10763. llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
  10764. Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
  10765. llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
  10766. return Builder.CreateCall(F, Ops, "pswapd");
  10767. }
  10768. case X86::BI__builtin_ia32_rdrand16_step:
  10769. case X86::BI__builtin_ia32_rdrand32_step:
  10770. case X86::BI__builtin_ia32_rdrand64_step:
  10771. case X86::BI__builtin_ia32_rdseed16_step:
  10772. case X86::BI__builtin_ia32_rdseed32_step:
  10773. case X86::BI__builtin_ia32_rdseed64_step: {
  10774. Intrinsic::ID ID;
  10775. switch (BuiltinID) {
  10776. default: llvm_unreachable("Unsupported intrinsic!");
  10777. case X86::BI__builtin_ia32_rdrand16_step:
  10778. ID = Intrinsic::x86_rdrand_16;
  10779. break;
  10780. case X86::BI__builtin_ia32_rdrand32_step:
  10781. ID = Intrinsic::x86_rdrand_32;
  10782. break;
  10783. case X86::BI__builtin_ia32_rdrand64_step:
  10784. ID = Intrinsic::x86_rdrand_64;
  10785. break;
  10786. case X86::BI__builtin_ia32_rdseed16_step:
  10787. ID = Intrinsic::x86_rdseed_16;
  10788. break;
  10789. case X86::BI__builtin_ia32_rdseed32_step:
  10790. ID = Intrinsic::x86_rdseed_32;
  10791. break;
  10792. case X86::BI__builtin_ia32_rdseed64_step:
  10793. ID = Intrinsic::x86_rdseed_64;
  10794. break;
  10795. }
  10796. Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
  10797. Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
  10798. Ops[0]);
  10799. return Builder.CreateExtractValue(Call, 1);
  10800. }
  10801. case X86::BI__builtin_ia32_addcarryx_u32:
  10802. case X86::BI__builtin_ia32_addcarryx_u64:
  10803. case X86::BI__builtin_ia32_subborrow_u32:
  10804. case X86::BI__builtin_ia32_subborrow_u64: {
  10805. Intrinsic::ID IID;
  10806. switch (BuiltinID) {
  10807. default: llvm_unreachable("Unsupported intrinsic!");
  10808. case X86::BI__builtin_ia32_addcarryx_u32:
  10809. IID = Intrinsic::x86_addcarry_32;
  10810. break;
  10811. case X86::BI__builtin_ia32_addcarryx_u64:
  10812. IID = Intrinsic::x86_addcarry_64;
  10813. break;
  10814. case X86::BI__builtin_ia32_subborrow_u32:
  10815. IID = Intrinsic::x86_subborrow_32;
  10816. break;
  10817. case X86::BI__builtin_ia32_subborrow_u64:
  10818. IID = Intrinsic::x86_subborrow_64;
  10819. break;
  10820. }
  10821. Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
  10822. { Ops[0], Ops[1], Ops[2] });
  10823. Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
  10824. Ops[3]);
  10825. return Builder.CreateExtractValue(Call, 0);
  10826. }
  10827. case X86::BI__builtin_ia32_fpclassps128_mask:
  10828. case X86::BI__builtin_ia32_fpclassps256_mask:
  10829. case X86::BI__builtin_ia32_fpclassps512_mask:
  10830. case X86::BI__builtin_ia32_fpclasspd128_mask:
  10831. case X86::BI__builtin_ia32_fpclasspd256_mask:
  10832. case X86::BI__builtin_ia32_fpclasspd512_mask: {
  10833. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  10834. Value *MaskIn = Ops[2];
  10835. Ops.erase(&Ops[2]);
  10836. Intrinsic::ID ID;
  10837. switch (BuiltinID) {
  10838. default: llvm_unreachable("Unsupported intrinsic!");
  10839. case X86::BI__builtin_ia32_fpclassps128_mask:
  10840. ID = Intrinsic::x86_avx512_fpclass_ps_128;
  10841. break;
  10842. case X86::BI__builtin_ia32_fpclassps256_mask:
  10843. ID = Intrinsic::x86_avx512_fpclass_ps_256;
  10844. break;
  10845. case X86::BI__builtin_ia32_fpclassps512_mask:
  10846. ID = Intrinsic::x86_avx512_fpclass_ps_512;
  10847. break;
  10848. case X86::BI__builtin_ia32_fpclasspd128_mask:
  10849. ID = Intrinsic::x86_avx512_fpclass_pd_128;
  10850. break;
  10851. case X86::BI__builtin_ia32_fpclasspd256_mask:
  10852. ID = Intrinsic::x86_avx512_fpclass_pd_256;
  10853. break;
  10854. case X86::BI__builtin_ia32_fpclasspd512_mask:
  10855. ID = Intrinsic::x86_avx512_fpclass_pd_512;
  10856. break;
  10857. }
  10858. Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
  10859. return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
  10860. }
  10861. case X86::BI__builtin_ia32_vp2intersect_q_512:
  10862. case X86::BI__builtin_ia32_vp2intersect_q_256:
  10863. case X86::BI__builtin_ia32_vp2intersect_q_128:
  10864. case X86::BI__builtin_ia32_vp2intersect_d_512:
  10865. case X86::BI__builtin_ia32_vp2intersect_d_256:
  10866. case X86::BI__builtin_ia32_vp2intersect_d_128: {
  10867. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  10868. Intrinsic::ID ID;
  10869. switch (BuiltinID) {
  10870. default: llvm_unreachable("Unsupported intrinsic!");
  10871. case X86::BI__builtin_ia32_vp2intersect_q_512:
  10872. ID = Intrinsic::x86_avx512_vp2intersect_q_512;
  10873. break;
  10874. case X86::BI__builtin_ia32_vp2intersect_q_256:
  10875. ID = Intrinsic::x86_avx512_vp2intersect_q_256;
  10876. break;
  10877. case X86::BI__builtin_ia32_vp2intersect_q_128:
  10878. ID = Intrinsic::x86_avx512_vp2intersect_q_128;
  10879. break;
  10880. case X86::BI__builtin_ia32_vp2intersect_d_512:
  10881. ID = Intrinsic::x86_avx512_vp2intersect_d_512;
  10882. break;
  10883. case X86::BI__builtin_ia32_vp2intersect_d_256:
  10884. ID = Intrinsic::x86_avx512_vp2intersect_d_256;
  10885. break;
  10886. case X86::BI__builtin_ia32_vp2intersect_d_128:
  10887. ID = Intrinsic::x86_avx512_vp2intersect_d_128;
  10888. break;
  10889. }
  10890. Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
  10891. Value *Result = Builder.CreateExtractValue(Call, 0);
  10892. Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
  10893. Builder.CreateDefaultAlignedStore(Result, Ops[2]);
  10894. Result = Builder.CreateExtractValue(Call, 1);
  10895. Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
  10896. return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
  10897. }
  10898. case X86::BI__builtin_ia32_vpmultishiftqb128:
  10899. case X86::BI__builtin_ia32_vpmultishiftqb256:
  10900. case X86::BI__builtin_ia32_vpmultishiftqb512: {
  10901. Intrinsic::ID ID;
  10902. switch (BuiltinID) {
  10903. default: llvm_unreachable("Unsupported intrinsic!");
  10904. case X86::BI__builtin_ia32_vpmultishiftqb128:
  10905. ID = Intrinsic::x86_avx512_pmultishift_qb_128;
  10906. break;
  10907. case X86::BI__builtin_ia32_vpmultishiftqb256:
  10908. ID = Intrinsic::x86_avx512_pmultishift_qb_256;
  10909. break;
  10910. case X86::BI__builtin_ia32_vpmultishiftqb512:
  10911. ID = Intrinsic::x86_avx512_pmultishift_qb_512;
  10912. break;
  10913. }
  10914. return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
  10915. }
  10916. case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
  10917. case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
  10918. case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
  10919. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  10920. Value *MaskIn = Ops[2];
  10921. Ops.erase(&Ops[2]);
  10922. Intrinsic::ID ID;
  10923. switch (BuiltinID) {
  10924. default: llvm_unreachable("Unsupported intrinsic!");
  10925. case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
  10926. ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
  10927. break;
  10928. case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
  10929. ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
  10930. break;
  10931. case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
  10932. ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
  10933. break;
  10934. }
  10935. Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
  10936. return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
  10937. }
  10938. // packed comparison intrinsics
  10939. case X86::BI__builtin_ia32_cmpeqps:
  10940. case X86::BI__builtin_ia32_cmpeqpd:
  10941. return getVectorFCmpIR(CmpInst::FCMP_OEQ);
  10942. case X86::BI__builtin_ia32_cmpltps:
  10943. case X86::BI__builtin_ia32_cmpltpd:
  10944. return getVectorFCmpIR(CmpInst::FCMP_OLT);
  10945. case X86::BI__builtin_ia32_cmpleps:
  10946. case X86::BI__builtin_ia32_cmplepd:
  10947. return getVectorFCmpIR(CmpInst::FCMP_OLE);
  10948. case X86::BI__builtin_ia32_cmpunordps:
  10949. case X86::BI__builtin_ia32_cmpunordpd:
  10950. return getVectorFCmpIR(CmpInst::FCMP_UNO);
  10951. case X86::BI__builtin_ia32_cmpneqps:
  10952. case X86::BI__builtin_ia32_cmpneqpd:
  10953. return getVectorFCmpIR(CmpInst::FCMP_UNE);
  10954. case X86::BI__builtin_ia32_cmpnltps:
  10955. case X86::BI__builtin_ia32_cmpnltpd:
  10956. return getVectorFCmpIR(CmpInst::FCMP_UGE);
  10957. case X86::BI__builtin_ia32_cmpnleps:
  10958. case X86::BI__builtin_ia32_cmpnlepd:
  10959. return getVectorFCmpIR(CmpInst::FCMP_UGT);
  10960. case X86::BI__builtin_ia32_cmpordps:
  10961. case X86::BI__builtin_ia32_cmpordpd:
  10962. return getVectorFCmpIR(CmpInst::FCMP_ORD);
  10963. case X86::BI__builtin_ia32_cmpps:
  10964. case X86::BI__builtin_ia32_cmpps256:
  10965. case X86::BI__builtin_ia32_cmppd:
  10966. case X86::BI__builtin_ia32_cmppd256:
  10967. case X86::BI__builtin_ia32_cmpps128_mask:
  10968. case X86::BI__builtin_ia32_cmpps256_mask:
  10969. case X86::BI__builtin_ia32_cmpps512_mask:
  10970. case X86::BI__builtin_ia32_cmppd128_mask:
  10971. case X86::BI__builtin_ia32_cmppd256_mask:
  10972. case X86::BI__builtin_ia32_cmppd512_mask: {
  10973. // Lowering vector comparisons to fcmp instructions, while
  10974. // ignoring signalling behaviour requested
  10975. // ignoring rounding mode requested
  10976. // This is is only possible as long as FENV_ACCESS is not implemented.
  10977. // See also: https://reviews.llvm.org/D45616
  10978. // The third argument is the comparison condition, and integer in the
  10979. // range [0, 31]
  10980. unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
  10981. // Lowering to IR fcmp instruction.
  10982. // Ignoring requested signaling behaviour,
  10983. // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
  10984. FCmpInst::Predicate Pred;
  10985. switch (CC) {
  10986. case 0x00: Pred = FCmpInst::FCMP_OEQ; break;
  10987. case 0x01: Pred = FCmpInst::FCMP_OLT; break;
  10988. case 0x02: Pred = FCmpInst::FCMP_OLE; break;
  10989. case 0x03: Pred = FCmpInst::FCMP_UNO; break;
  10990. case 0x04: Pred = FCmpInst::FCMP_UNE; break;
  10991. case 0x05: Pred = FCmpInst::FCMP_UGE; break;
  10992. case 0x06: Pred = FCmpInst::FCMP_UGT; break;
  10993. case 0x07: Pred = FCmpInst::FCMP_ORD; break;
  10994. case 0x08: Pred = FCmpInst::FCMP_UEQ; break;
  10995. case 0x09: Pred = FCmpInst::FCMP_ULT; break;
  10996. case 0x0a: Pred = FCmpInst::FCMP_ULE; break;
  10997. case 0x0b: Pred = FCmpInst::FCMP_FALSE; break;
  10998. case 0x0c: Pred = FCmpInst::FCMP_ONE; break;
  10999. case 0x0d: Pred = FCmpInst::FCMP_OGE; break;
  11000. case 0x0e: Pred = FCmpInst::FCMP_OGT; break;
  11001. case 0x0f: Pred = FCmpInst::FCMP_TRUE; break;
  11002. case 0x10: Pred = FCmpInst::FCMP_OEQ; break;
  11003. case 0x11: Pred = FCmpInst::FCMP_OLT; break;
  11004. case 0x12: Pred = FCmpInst::FCMP_OLE; break;
  11005. case 0x13: Pred = FCmpInst::FCMP_UNO; break;
  11006. case 0x14: Pred = FCmpInst::FCMP_UNE; break;
  11007. case 0x15: Pred = FCmpInst::FCMP_UGE; break;
  11008. case 0x16: Pred = FCmpInst::FCMP_UGT; break;
  11009. case 0x17: Pred = FCmpInst::FCMP_ORD; break;
  11010. case 0x18: Pred = FCmpInst::FCMP_UEQ; break;
  11011. case 0x19: Pred = FCmpInst::FCMP_ULT; break;
  11012. case 0x1a: Pred = FCmpInst::FCMP_ULE; break;
  11013. case 0x1b: Pred = FCmpInst::FCMP_FALSE; break;
  11014. case 0x1c: Pred = FCmpInst::FCMP_ONE; break;
  11015. case 0x1d: Pred = FCmpInst::FCMP_OGE; break;
  11016. case 0x1e: Pred = FCmpInst::FCMP_OGT; break;
  11017. case 0x1f: Pred = FCmpInst::FCMP_TRUE; break;
  11018. default: llvm_unreachable("Unhandled CC");
  11019. }
  11020. // Builtins without the _mask suffix return a vector of integers
  11021. // of the same width as the input vectors
  11022. switch (BuiltinID) {
  11023. case X86::BI__builtin_ia32_cmpps512_mask:
  11024. case X86::BI__builtin_ia32_cmppd512_mask:
  11025. case X86::BI__builtin_ia32_cmpps128_mask:
  11026. case X86::BI__builtin_ia32_cmpps256_mask:
  11027. case X86::BI__builtin_ia32_cmppd128_mask:
  11028. case X86::BI__builtin_ia32_cmppd256_mask: {
  11029. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  11030. Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
  11031. return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
  11032. }
  11033. default:
  11034. return getVectorFCmpIR(Pred);
  11035. }
  11036. }
  11037. // SSE scalar comparison intrinsics
  11038. case X86::BI__builtin_ia32_cmpeqss:
  11039. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
  11040. case X86::BI__builtin_ia32_cmpltss:
  11041. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
  11042. case X86::BI__builtin_ia32_cmpless:
  11043. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
  11044. case X86::BI__builtin_ia32_cmpunordss:
  11045. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
  11046. case X86::BI__builtin_ia32_cmpneqss:
  11047. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
  11048. case X86::BI__builtin_ia32_cmpnltss:
  11049. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
  11050. case X86::BI__builtin_ia32_cmpnless:
  11051. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
  11052. case X86::BI__builtin_ia32_cmpordss:
  11053. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
  11054. case X86::BI__builtin_ia32_cmpeqsd:
  11055. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
  11056. case X86::BI__builtin_ia32_cmpltsd:
  11057. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
  11058. case X86::BI__builtin_ia32_cmplesd:
  11059. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
  11060. case X86::BI__builtin_ia32_cmpunordsd:
  11061. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
  11062. case X86::BI__builtin_ia32_cmpneqsd:
  11063. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
  11064. case X86::BI__builtin_ia32_cmpnltsd:
  11065. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
  11066. case X86::BI__builtin_ia32_cmpnlesd:
  11067. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
  11068. case X86::BI__builtin_ia32_cmpordsd:
  11069. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
  11070. // AVX512 bf16 intrinsics
  11071. case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
  11072. Ops[2] = getMaskVecValue(*this, Ops[2],
  11073. Ops[0]->getType()->getVectorNumElements());
  11074. Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
  11075. return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
  11076. }
  11077. case X86::BI__builtin_ia32_cvtsbf162ss_32:
  11078. return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
  11079. case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
  11080. case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
  11081. Intrinsic::ID IID;
  11082. switch (BuiltinID) {
  11083. default: llvm_unreachable("Unsupported intrinsic!");
  11084. case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
  11085. IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
  11086. break;
  11087. case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
  11088. IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
  11089. break;
  11090. }
  11091. Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
  11092. return EmitX86Select(*this, Ops[2], Res, Ops[1]);
  11093. }
  11094. case X86::BI__emul:
  11095. case X86::BI__emulu: {
  11096. llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
  11097. bool isSigned = (BuiltinID == X86::BI__emul);
  11098. Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
  11099. Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
  11100. return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
  11101. }
  11102. case X86::BI__mulh:
  11103. case X86::BI__umulh:
  11104. case X86::BI_mul128:
  11105. case X86::BI_umul128: {
  11106. llvm::Type *ResType = ConvertType(E->getType());
  11107. llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
  11108. bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
  11109. Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
  11110. Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
  11111. Value *MulResult, *HigherBits;
  11112. if (IsSigned) {
  11113. MulResult = Builder.CreateNSWMul(LHS, RHS);
  11114. HigherBits = Builder.CreateAShr(MulResult, 64);
  11115. } else {
  11116. MulResult = Builder.CreateNUWMul(LHS, RHS);
  11117. HigherBits = Builder.CreateLShr(MulResult, 64);
  11118. }
  11119. HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
  11120. if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
  11121. return HigherBits;
  11122. Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
  11123. Builder.CreateStore(HigherBits, HighBitsAddress);
  11124. return Builder.CreateIntCast(MulResult, ResType, IsSigned);
  11125. }
  11126. case X86::BI__faststorefence: {
  11127. return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
  11128. llvm::SyncScope::System);
  11129. }
  11130. case X86::BI__shiftleft128:
  11131. case X86::BI__shiftright128: {
  11132. // FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this:
  11133. // llvm::Function *F = CGM.getIntrinsic(
  11134. // BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
  11135. // Int64Ty);
  11136. // Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
  11137. // return Builder.CreateCall(F, Ops);
  11138. llvm::Type *Int128Ty = Builder.getInt128Ty();
  11139. Value *HighPart128 =
  11140. Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64);
  11141. Value *LowPart128 = Builder.CreateZExt(Ops[0], Int128Ty);
  11142. Value *Val = Builder.CreateOr(HighPart128, LowPart128);
  11143. Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty),
  11144. llvm::ConstantInt::get(Int128Ty, 0x3f));
  11145. Value *Res;
  11146. if (BuiltinID == X86::BI__shiftleft128)
  11147. Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64);
  11148. else
  11149. Res = Builder.CreateLShr(Val, Amt);
  11150. return Builder.CreateTrunc(Res, Int64Ty);
  11151. }
  11152. case X86::BI_ReadWriteBarrier:
  11153. case X86::BI_ReadBarrier:
  11154. case X86::BI_WriteBarrier: {
  11155. return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
  11156. llvm::SyncScope::SingleThread);
  11157. }
  11158. case X86::BI_BitScanForward:
  11159. case X86::BI_BitScanForward64:
  11160. return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
  11161. case X86::BI_BitScanReverse:
  11162. case X86::BI_BitScanReverse64:
  11163. return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
  11164. case X86::BI_InterlockedAnd64:
  11165. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
  11166. case X86::BI_InterlockedExchange64:
  11167. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
  11168. case X86::BI_InterlockedExchangeAdd64:
  11169. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
  11170. case X86::BI_InterlockedExchangeSub64:
  11171. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
  11172. case X86::BI_InterlockedOr64:
  11173. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
  11174. case X86::BI_InterlockedXor64:
  11175. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
  11176. case X86::BI_InterlockedDecrement64:
  11177. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
  11178. case X86::BI_InterlockedIncrement64:
  11179. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
  11180. case X86::BI_InterlockedCompareExchange128: {
  11181. // InterlockedCompareExchange128 doesn't directly refer to 128bit ints,
  11182. // instead it takes pointers to 64bit ints for Destination and
  11183. // ComparandResult, and exchange is taken as two 64bit ints (high & low).
  11184. // The previous value is written to ComparandResult, and success is
  11185. // returned.
  11186. llvm::Type *Int128Ty = Builder.getInt128Ty();
  11187. llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
  11188. Value *Destination =
  11189. Builder.CreateBitCast(Ops[0], Int128PtrTy);
  11190. Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty);
  11191. Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty);
  11192. Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy),
  11193. getContext().toCharUnitsFromBits(128));
  11194. Value *Exchange = Builder.CreateOr(
  11195. Builder.CreateShl(ExchangeHigh128, 64, "", false, false),
  11196. ExchangeLow128);
  11197. Value *Comparand = Builder.CreateLoad(ComparandResult);
  11198. AtomicCmpXchgInst *CXI =
  11199. Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
  11200. AtomicOrdering::SequentiallyConsistent,
  11201. AtomicOrdering::SequentiallyConsistent);
  11202. CXI->setVolatile(true);
  11203. // Write the result back to the inout pointer.
  11204. Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult);
  11205. // Get the success boolean and zero extend it to i8.
  11206. Value *Success = Builder.CreateExtractValue(CXI, 1);
  11207. return Builder.CreateZExt(Success, ConvertType(E->getType()));
  11208. }
  11209. case X86::BI_AddressOfReturnAddress: {
  11210. Function *F =
  11211. CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
  11212. return Builder.CreateCall(F);
  11213. }
  11214. case X86::BI__stosb: {
  11215. // We treat __stosb as a volatile memset - it may not generate "rep stosb"
  11216. // instruction, but it will create a memset that won't be optimized away.
  11217. return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true);
  11218. }
  11219. case X86::BI__ud2:
  11220. // llvm.trap makes a ud2a instruction on x86.
  11221. return EmitTrapCall(Intrinsic::trap);
  11222. case X86::BI__int2c: {
  11223. // This syscall signals a driver assertion failure in x86 NT kernels.
  11224. llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
  11225. llvm::InlineAsm *IA =
  11226. llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
  11227. llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
  11228. getLLVMContext(), llvm::AttributeList::FunctionIndex,
  11229. llvm::Attribute::NoReturn);
  11230. llvm::CallInst *CI = Builder.CreateCall(IA);
  11231. CI->setAttributes(NoReturnAttr);
  11232. return CI;
  11233. }
  11234. case X86::BI__readfsbyte:
  11235. case X86::BI__readfsword:
  11236. case X86::BI__readfsdword:
  11237. case X86::BI__readfsqword: {
  11238. llvm::Type *IntTy = ConvertType(E->getType());
  11239. Value *Ptr =
  11240. Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
  11241. LoadInst *Load = Builder.CreateAlignedLoad(
  11242. IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
  11243. Load->setVolatile(true);
  11244. return Load;
  11245. }
  11246. case X86::BI__readgsbyte:
  11247. case X86::BI__readgsword:
  11248. case X86::BI__readgsdword:
  11249. case X86::BI__readgsqword: {
  11250. llvm::Type *IntTy = ConvertType(E->getType());
  11251. Value *Ptr =
  11252. Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
  11253. LoadInst *Load = Builder.CreateAlignedLoad(
  11254. IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
  11255. Load->setVolatile(true);
  11256. return Load;
  11257. }
  11258. case X86::BI__builtin_ia32_paddsb512:
  11259. case X86::BI__builtin_ia32_paddsw512:
  11260. case X86::BI__builtin_ia32_paddsb256:
  11261. case X86::BI__builtin_ia32_paddsw256:
  11262. case X86::BI__builtin_ia32_paddsb128:
  11263. case X86::BI__builtin_ia32_paddsw128:
  11264. return EmitX86AddSubSatExpr(*this, Ops, true, true);
  11265. case X86::BI__builtin_ia32_paddusb512:
  11266. case X86::BI__builtin_ia32_paddusw512:
  11267. case X86::BI__builtin_ia32_paddusb256:
  11268. case X86::BI__builtin_ia32_paddusw256:
  11269. case X86::BI__builtin_ia32_paddusb128:
  11270. case X86::BI__builtin_ia32_paddusw128:
  11271. return EmitX86AddSubSatExpr(*this, Ops, false, true);
  11272. case X86::BI__builtin_ia32_psubsb512:
  11273. case X86::BI__builtin_ia32_psubsw512:
  11274. case X86::BI__builtin_ia32_psubsb256:
  11275. case X86::BI__builtin_ia32_psubsw256:
  11276. case X86::BI__builtin_ia32_psubsb128:
  11277. case X86::BI__builtin_ia32_psubsw128:
  11278. return EmitX86AddSubSatExpr(*this, Ops, true, false);
  11279. case X86::BI__builtin_ia32_psubusb512:
  11280. case X86::BI__builtin_ia32_psubusw512:
  11281. case X86::BI__builtin_ia32_psubusb256:
  11282. case X86::BI__builtin_ia32_psubusw256:
  11283. case X86::BI__builtin_ia32_psubusb128:
  11284. case X86::BI__builtin_ia32_psubusw128:
  11285. return EmitX86AddSubSatExpr(*this, Ops, false, false);
  11286. }
  11287. }
  11288. Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
  11289. const CallExpr *E) {
  11290. SmallVector<Value*, 4> Ops;
  11291. for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
  11292. Ops.push_back(EmitScalarExpr(E->getArg(i)));
  11293. Intrinsic::ID ID = Intrinsic::not_intrinsic;
  11294. switch (BuiltinID) {
  11295. default: return nullptr;
  11296. // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
  11297. // call __builtin_readcyclecounter.
  11298. case PPC::BI__builtin_ppc_get_timebase:
  11299. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
  11300. // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
  11301. case PPC::BI__builtin_altivec_lvx:
  11302. case PPC::BI__builtin_altivec_lvxl:
  11303. case PPC::BI__builtin_altivec_lvebx:
  11304. case PPC::BI__builtin_altivec_lvehx:
  11305. case PPC::BI__builtin_altivec_lvewx:
  11306. case PPC::BI__builtin_altivec_lvsl:
  11307. case PPC::BI__builtin_altivec_lvsr:
  11308. case PPC::BI__builtin_vsx_lxvd2x:
  11309. case PPC::BI__builtin_vsx_lxvw4x:
  11310. case PPC::BI__builtin_vsx_lxvd2x_be:
  11311. case PPC::BI__builtin_vsx_lxvw4x_be:
  11312. case PPC::BI__builtin_vsx_lxvl:
  11313. case PPC::BI__builtin_vsx_lxvll:
  11314. {
  11315. if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
  11316. BuiltinID == PPC::BI__builtin_vsx_lxvll){
  11317. Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
  11318. }else {
  11319. Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
  11320. Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
  11321. Ops.pop_back();
  11322. }
  11323. switch (BuiltinID) {
  11324. default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
  11325. case PPC::BI__builtin_altivec_lvx:
  11326. ID = Intrinsic::ppc_altivec_lvx;
  11327. break;
  11328. case PPC::BI__builtin_altivec_lvxl:
  11329. ID = Intrinsic::ppc_altivec_lvxl;
  11330. break;
  11331. case PPC::BI__builtin_altivec_lvebx:
  11332. ID = Intrinsic::ppc_altivec_lvebx;
  11333. break;
  11334. case PPC::BI__builtin_altivec_lvehx:
  11335. ID = Intrinsic::ppc_altivec_lvehx;
  11336. break;
  11337. case PPC::BI__builtin_altivec_lvewx:
  11338. ID = Intrinsic::ppc_altivec_lvewx;
  11339. break;
  11340. case PPC::BI__builtin_altivec_lvsl:
  11341. ID = Intrinsic::ppc_altivec_lvsl;
  11342. break;
  11343. case PPC::BI__builtin_altivec_lvsr:
  11344. ID = Intrinsic::ppc_altivec_lvsr;
  11345. break;
  11346. case PPC::BI__builtin_vsx_lxvd2x:
  11347. ID = Intrinsic::ppc_vsx_lxvd2x;
  11348. break;
  11349. case PPC::BI__builtin_vsx_lxvw4x:
  11350. ID = Intrinsic::ppc_vsx_lxvw4x;
  11351. break;
  11352. case PPC::BI__builtin_vsx_lxvd2x_be:
  11353. ID = Intrinsic::ppc_vsx_lxvd2x_be;
  11354. break;
  11355. case PPC::BI__builtin_vsx_lxvw4x_be:
  11356. ID = Intrinsic::ppc_vsx_lxvw4x_be;
  11357. break;
  11358. case PPC::BI__builtin_vsx_lxvl:
  11359. ID = Intrinsic::ppc_vsx_lxvl;
  11360. break;
  11361. case PPC::BI__builtin_vsx_lxvll:
  11362. ID = Intrinsic::ppc_vsx_lxvll;
  11363. break;
  11364. }
  11365. llvm::Function *F = CGM.getIntrinsic(ID);
  11366. return Builder.CreateCall(F, Ops, "");
  11367. }
  11368. // vec_st, vec_xst_be
  11369. case PPC::BI__builtin_altivec_stvx:
  11370. case PPC::BI__builtin_altivec_stvxl:
  11371. case PPC::BI__builtin_altivec_stvebx:
  11372. case PPC::BI__builtin_altivec_stvehx:
  11373. case PPC::BI__builtin_altivec_stvewx:
  11374. case PPC::BI__builtin_vsx_stxvd2x:
  11375. case PPC::BI__builtin_vsx_stxvw4x:
  11376. case PPC::BI__builtin_vsx_stxvd2x_be:
  11377. case PPC::BI__builtin_vsx_stxvw4x_be:
  11378. case PPC::BI__builtin_vsx_stxvl:
  11379. case PPC::BI__builtin_vsx_stxvll:
  11380. {
  11381. if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
  11382. BuiltinID == PPC::BI__builtin_vsx_stxvll ){
  11383. Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
  11384. }else {
  11385. Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
  11386. Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
  11387. Ops.pop_back();
  11388. }
  11389. switch (BuiltinID) {
  11390. default: llvm_unreachable("Unsupported st intrinsic!");
  11391. case PPC::BI__builtin_altivec_stvx:
  11392. ID = Intrinsic::ppc_altivec_stvx;
  11393. break;
  11394. case PPC::BI__builtin_altivec_stvxl:
  11395. ID = Intrinsic::ppc_altivec_stvxl;
  11396. break;
  11397. case PPC::BI__builtin_altivec_stvebx:
  11398. ID = Intrinsic::ppc_altivec_stvebx;
  11399. break;
  11400. case PPC::BI__builtin_altivec_stvehx:
  11401. ID = Intrinsic::ppc_altivec_stvehx;
  11402. break;
  11403. case PPC::BI__builtin_altivec_stvewx:
  11404. ID = Intrinsic::ppc_altivec_stvewx;
  11405. break;
  11406. case PPC::BI__builtin_vsx_stxvd2x:
  11407. ID = Intrinsic::ppc_vsx_stxvd2x;
  11408. break;
  11409. case PPC::BI__builtin_vsx_stxvw4x:
  11410. ID = Intrinsic::ppc_vsx_stxvw4x;
  11411. break;
  11412. case PPC::BI__builtin_vsx_stxvd2x_be:
  11413. ID = Intrinsic::ppc_vsx_stxvd2x_be;
  11414. break;
  11415. case PPC::BI__builtin_vsx_stxvw4x_be:
  11416. ID = Intrinsic::ppc_vsx_stxvw4x_be;
  11417. break;
  11418. case PPC::BI__builtin_vsx_stxvl:
  11419. ID = Intrinsic::ppc_vsx_stxvl;
  11420. break;
  11421. case PPC::BI__builtin_vsx_stxvll:
  11422. ID = Intrinsic::ppc_vsx_stxvll;
  11423. break;
  11424. }
  11425. llvm::Function *F = CGM.getIntrinsic(ID);
  11426. return Builder.CreateCall(F, Ops, "");
  11427. }
  11428. // Square root
  11429. case PPC::BI__builtin_vsx_xvsqrtsp:
  11430. case PPC::BI__builtin_vsx_xvsqrtdp: {
  11431. llvm::Type *ResultType = ConvertType(E->getType());
  11432. Value *X = EmitScalarExpr(E->getArg(0));
  11433. ID = Intrinsic::sqrt;
  11434. llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
  11435. return Builder.CreateCall(F, X);
  11436. }
  11437. // Count leading zeros
  11438. case PPC::BI__builtin_altivec_vclzb:
  11439. case PPC::BI__builtin_altivec_vclzh:
  11440. case PPC::BI__builtin_altivec_vclzw:
  11441. case PPC::BI__builtin_altivec_vclzd: {
  11442. llvm::Type *ResultType = ConvertType(E->getType());
  11443. Value *X = EmitScalarExpr(E->getArg(0));
  11444. Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
  11445. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
  11446. return Builder.CreateCall(F, {X, Undef});
  11447. }
  11448. case PPC::BI__builtin_altivec_vctzb:
  11449. case PPC::BI__builtin_altivec_vctzh:
  11450. case PPC::BI__builtin_altivec_vctzw:
  11451. case PPC::BI__builtin_altivec_vctzd: {
  11452. llvm::Type *ResultType = ConvertType(E->getType());
  11453. Value *X = EmitScalarExpr(E->getArg(0));
  11454. Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
  11455. Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
  11456. return Builder.CreateCall(F, {X, Undef});
  11457. }
  11458. case PPC::BI__builtin_altivec_vpopcntb:
  11459. case PPC::BI__builtin_altivec_vpopcnth:
  11460. case PPC::BI__builtin_altivec_vpopcntw:
  11461. case PPC::BI__builtin_altivec_vpopcntd: {
  11462. llvm::Type *ResultType = ConvertType(E->getType());
  11463. Value *X = EmitScalarExpr(E->getArg(0));
  11464. llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
  11465. return Builder.CreateCall(F, X);
  11466. }
  11467. // Copy sign
  11468. case PPC::BI__builtin_vsx_xvcpsgnsp:
  11469. case PPC::BI__builtin_vsx_xvcpsgndp: {
  11470. llvm::Type *ResultType = ConvertType(E->getType());
  11471. Value *X = EmitScalarExpr(E->getArg(0));
  11472. Value *Y = EmitScalarExpr(E->getArg(1));
  11473. ID = Intrinsic::copysign;
  11474. llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
  11475. return Builder.CreateCall(F, {X, Y});
  11476. }
  11477. // Rounding/truncation
  11478. case PPC::BI__builtin_vsx_xvrspip:
  11479. case PPC::BI__builtin_vsx_xvrdpip:
  11480. case PPC::BI__builtin_vsx_xvrdpim:
  11481. case PPC::BI__builtin_vsx_xvrspim:
  11482. case PPC::BI__builtin_vsx_xvrdpi:
  11483. case PPC::BI__builtin_vsx_xvrspi:
  11484. case PPC::BI__builtin_vsx_xvrdpic:
  11485. case PPC::BI__builtin_vsx_xvrspic:
  11486. case PPC::BI__builtin_vsx_xvrdpiz:
  11487. case PPC::BI__builtin_vsx_xvrspiz: {
  11488. llvm::Type *ResultType = ConvertType(E->getType());
  11489. Value *X = EmitScalarExpr(E->getArg(0));
  11490. if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
  11491. BuiltinID == PPC::BI__builtin_vsx_xvrspim)
  11492. ID = Intrinsic::floor;
  11493. else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
  11494. BuiltinID == PPC::BI__builtin_vsx_xvrspi)
  11495. ID = Intrinsic::round;
  11496. else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
  11497. BuiltinID == PPC::BI__builtin_vsx_xvrspic)
  11498. ID = Intrinsic::nearbyint;
  11499. else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
  11500. BuiltinID == PPC::BI__builtin_vsx_xvrspip)
  11501. ID = Intrinsic::ceil;
  11502. else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
  11503. BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
  11504. ID = Intrinsic::trunc;
  11505. llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
  11506. return Builder.CreateCall(F, X);
  11507. }
  11508. // Absolute value
  11509. case PPC::BI__builtin_vsx_xvabsdp:
  11510. case PPC::BI__builtin_vsx_xvabssp: {
  11511. llvm::Type *ResultType = ConvertType(E->getType());
  11512. Value *X = EmitScalarExpr(E->getArg(0));
  11513. llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
  11514. return Builder.CreateCall(F, X);
  11515. }
  11516. // FMA variations
  11517. case PPC::BI__builtin_vsx_xvmaddadp:
  11518. case PPC::BI__builtin_vsx_xvmaddasp:
  11519. case PPC::BI__builtin_vsx_xvnmaddadp:
  11520. case PPC::BI__builtin_vsx_xvnmaddasp:
  11521. case PPC::BI__builtin_vsx_xvmsubadp:
  11522. case PPC::BI__builtin_vsx_xvmsubasp:
  11523. case PPC::BI__builtin_vsx_xvnmsubadp:
  11524. case PPC::BI__builtin_vsx_xvnmsubasp: {
  11525. llvm::Type *ResultType = ConvertType(E->getType());
  11526. Value *X = EmitScalarExpr(E->getArg(0));
  11527. Value *Y = EmitScalarExpr(E->getArg(1));
  11528. Value *Z = EmitScalarExpr(E->getArg(2));
  11529. Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
  11530. llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
  11531. switch (BuiltinID) {
  11532. case PPC::BI__builtin_vsx_xvmaddadp:
  11533. case PPC::BI__builtin_vsx_xvmaddasp:
  11534. return Builder.CreateCall(F, {X, Y, Z});
  11535. case PPC::BI__builtin_vsx_xvnmaddadp:
  11536. case PPC::BI__builtin_vsx_xvnmaddasp:
  11537. return Builder.CreateFSub(Zero,
  11538. Builder.CreateCall(F, {X, Y, Z}), "sub");
  11539. case PPC::BI__builtin_vsx_xvmsubadp:
  11540. case PPC::BI__builtin_vsx_xvmsubasp:
  11541. return Builder.CreateCall(F,
  11542. {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
  11543. case PPC::BI__builtin_vsx_xvnmsubadp:
  11544. case PPC::BI__builtin_vsx_xvnmsubasp:
  11545. Value *FsubRes =
  11546. Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
  11547. return Builder.CreateFSub(Zero, FsubRes, "sub");
  11548. }
  11549. llvm_unreachable("Unknown FMA operation");
  11550. return nullptr; // Suppress no-return warning
  11551. }
  11552. case PPC::BI__builtin_vsx_insertword: {
  11553. llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
  11554. // Third argument is a compile time constant int. It must be clamped to
  11555. // to the range [0, 12].
  11556. ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
  11557. assert(ArgCI &&
  11558. "Third arg to xxinsertw intrinsic must be constant integer");
  11559. const int64_t MaxIndex = 12;
  11560. int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
  11561. // The builtin semantics don't exactly match the xxinsertw instructions
  11562. // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
  11563. // word from the first argument, and inserts it in the second argument. The
  11564. // instruction extracts the word from its second input register and inserts
  11565. // it into its first input register, so swap the first and second arguments.
  11566. std::swap(Ops[0], Ops[1]);
  11567. // Need to cast the second argument from a vector of unsigned int to a
  11568. // vector of long long.
  11569. Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
  11570. if (getTarget().isLittleEndian()) {
  11571. // Create a shuffle mask of (1, 0)
  11572. Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
  11573. ConstantInt::get(Int32Ty, 0)
  11574. };
  11575. Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
  11576. // Reverse the double words in the vector we will extract from.
  11577. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
  11578. Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask);
  11579. // Reverse the index.
  11580. Index = MaxIndex - Index;
  11581. }
  11582. // Intrinsic expects the first arg to be a vector of int.
  11583. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
  11584. Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
  11585. return Builder.CreateCall(F, Ops);
  11586. }
  11587. case PPC::BI__builtin_vsx_extractuword: {
  11588. llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
  11589. // Intrinsic expects the first argument to be a vector of doublewords.
  11590. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
  11591. // The second argument is a compile time constant int that needs to
  11592. // be clamped to the range [0, 12].
  11593. ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
  11594. assert(ArgCI &&
  11595. "Second Arg to xxextractuw intrinsic must be a constant integer!");
  11596. const int64_t MaxIndex = 12;
  11597. int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
  11598. if (getTarget().isLittleEndian()) {
  11599. // Reverse the index.
  11600. Index = MaxIndex - Index;
  11601. Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
  11602. // Emit the call, then reverse the double words of the results vector.
  11603. Value *Call = Builder.CreateCall(F, Ops);
  11604. // Create a shuffle mask of (1, 0)
  11605. Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
  11606. ConstantInt::get(Int32Ty, 0)
  11607. };
  11608. Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
  11609. Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask);
  11610. return ShuffleCall;
  11611. } else {
  11612. Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
  11613. return Builder.CreateCall(F, Ops);
  11614. }
  11615. }
  11616. case PPC::BI__builtin_vsx_xxpermdi: {
  11617. ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
  11618. assert(ArgCI && "Third arg must be constant integer!");
  11619. unsigned Index = ArgCI->getZExtValue();
  11620. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
  11621. Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
  11622. // Account for endianness by treating this as just a shuffle. So we use the
  11623. // same indices for both LE and BE in order to produce expected results in
  11624. // both cases.
  11625. unsigned ElemIdx0 = (Index & 2) >> 1;
  11626. unsigned ElemIdx1 = 2 + (Index & 1);
  11627. Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0),
  11628. ConstantInt::get(Int32Ty, ElemIdx1)};
  11629. Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
  11630. Value *ShuffleCall =
  11631. Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
  11632. QualType BIRetType = E->getType();
  11633. auto RetTy = ConvertType(BIRetType);
  11634. return Builder.CreateBitCast(ShuffleCall, RetTy);
  11635. }
  11636. case PPC::BI__builtin_vsx_xxsldwi: {
  11637. ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
  11638. assert(ArgCI && "Third argument must be a compile time constant");
  11639. unsigned Index = ArgCI->getZExtValue() & 0x3;
  11640. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
  11641. Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4));
  11642. // Create a shuffle mask
  11643. unsigned ElemIdx0;
  11644. unsigned ElemIdx1;
  11645. unsigned ElemIdx2;
  11646. unsigned ElemIdx3;
  11647. if (getTarget().isLittleEndian()) {
  11648. // Little endian element N comes from element 8+N-Index of the
  11649. // concatenated wide vector (of course, using modulo arithmetic on
  11650. // the total number of elements).
  11651. ElemIdx0 = (8 - Index) % 8;
  11652. ElemIdx1 = (9 - Index) % 8;
  11653. ElemIdx2 = (10 - Index) % 8;
  11654. ElemIdx3 = (11 - Index) % 8;
  11655. } else {
  11656. // Big endian ElemIdx<N> = Index + N
  11657. ElemIdx0 = Index;
  11658. ElemIdx1 = Index + 1;
  11659. ElemIdx2 = Index + 2;
  11660. ElemIdx3 = Index + 3;
  11661. }
  11662. Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0),
  11663. ConstantInt::get(Int32Ty, ElemIdx1),
  11664. ConstantInt::get(Int32Ty, ElemIdx2),
  11665. ConstantInt::get(Int32Ty, ElemIdx3)};
  11666. Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
  11667. Value *ShuffleCall =
  11668. Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
  11669. QualType BIRetType = E->getType();
  11670. auto RetTy = ConvertType(BIRetType);
  11671. return Builder.CreateBitCast(ShuffleCall, RetTy);
  11672. }
  11673. case PPC::BI__builtin_pack_vector_int128: {
  11674. bool isLittleEndian = getTarget().isLittleEndian();
  11675. Value *UndefValue =
  11676. llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), 2));
  11677. Value *Res = Builder.CreateInsertElement(
  11678. UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
  11679. Res = Builder.CreateInsertElement(Res, Ops[1],
  11680. (uint64_t)(isLittleEndian ? 0 : 1));
  11681. return Builder.CreateBitCast(Res, ConvertType(E->getType()));
  11682. }
  11683. case PPC::BI__builtin_unpack_vector_int128: {
  11684. ConstantInt *Index = cast<ConstantInt>(Ops[1]);
  11685. Value *Unpacked = Builder.CreateBitCast(
  11686. Ops[0], llvm::VectorType::get(ConvertType(E->getType()), 2));
  11687. if (getTarget().isLittleEndian())
  11688. Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
  11689. return Builder.CreateExtractElement(Unpacked, Index);
  11690. }
  11691. }
  11692. }
  11693. Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
  11694. const CallExpr *E) {
  11695. switch (BuiltinID) {
  11696. case AMDGPU::BI__builtin_amdgcn_div_scale:
  11697. case AMDGPU::BI__builtin_amdgcn_div_scalef: {
  11698. // Translate from the intrinsics's struct return to the builtin's out
  11699. // argument.
  11700. Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
  11701. llvm::Value *X = EmitScalarExpr(E->getArg(0));
  11702. llvm::Value *Y = EmitScalarExpr(E->getArg(1));
  11703. llvm::Value *Z = EmitScalarExpr(E->getArg(2));
  11704. llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
  11705. X->getType());
  11706. llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
  11707. llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
  11708. llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
  11709. llvm::Type *RealFlagType
  11710. = FlagOutPtr.getPointer()->getType()->getPointerElementType();
  11711. llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
  11712. Builder.CreateStore(FlagExt, FlagOutPtr);
  11713. return Result;
  11714. }
  11715. case AMDGPU::BI__builtin_amdgcn_div_fmas:
  11716. case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
  11717. llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
  11718. llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
  11719. llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
  11720. llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
  11721. llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
  11722. Src0->getType());
  11723. llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
  11724. return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
  11725. }
  11726. case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
  11727. return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
  11728. case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
  11729. return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
  11730. case AMDGPU::BI__builtin_amdgcn_mov_dpp:
  11731. case AMDGPU::BI__builtin_amdgcn_update_dpp: {
  11732. llvm::SmallVector<llvm::Value *, 6> Args;
  11733. for (unsigned I = 0; I != E->getNumArgs(); ++I)
  11734. Args.push_back(EmitScalarExpr(E->getArg(I)));
  11735. assert(Args.size() == 5 || Args.size() == 6);
  11736. if (Args.size() == 5)
  11737. Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
  11738. Function *F =
  11739. CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
  11740. return Builder.CreateCall(F, Args);
  11741. }
  11742. case AMDGPU::BI__builtin_amdgcn_div_fixup:
  11743. case AMDGPU::BI__builtin_amdgcn_div_fixupf:
  11744. case AMDGPU::BI__builtin_amdgcn_div_fixuph:
  11745. return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
  11746. case AMDGPU::BI__builtin_amdgcn_trig_preop:
  11747. case AMDGPU::BI__builtin_amdgcn_trig_preopf:
  11748. return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
  11749. case AMDGPU::BI__builtin_amdgcn_rcp:
  11750. case AMDGPU::BI__builtin_amdgcn_rcpf:
  11751. case AMDGPU::BI__builtin_amdgcn_rcph:
  11752. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
  11753. case AMDGPU::BI__builtin_amdgcn_rsq:
  11754. case AMDGPU::BI__builtin_amdgcn_rsqf:
  11755. case AMDGPU::BI__builtin_amdgcn_rsqh:
  11756. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
  11757. case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
  11758. case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
  11759. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
  11760. case AMDGPU::BI__builtin_amdgcn_sinf:
  11761. case AMDGPU::BI__builtin_amdgcn_sinh:
  11762. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
  11763. case AMDGPU::BI__builtin_amdgcn_cosf:
  11764. case AMDGPU::BI__builtin_amdgcn_cosh:
  11765. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
  11766. case AMDGPU::BI__builtin_amdgcn_log_clampf:
  11767. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
  11768. case AMDGPU::BI__builtin_amdgcn_ldexp:
  11769. case AMDGPU::BI__builtin_amdgcn_ldexpf:
  11770. case AMDGPU::BI__builtin_amdgcn_ldexph:
  11771. return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
  11772. case AMDGPU::BI__builtin_amdgcn_frexp_mant:
  11773. case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
  11774. case AMDGPU::BI__builtin_amdgcn_frexp_manth:
  11775. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
  11776. case AMDGPU::BI__builtin_amdgcn_frexp_exp:
  11777. case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
  11778. Value *Src0 = EmitScalarExpr(E->getArg(0));
  11779. Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
  11780. { Builder.getInt32Ty(), Src0->getType() });
  11781. return Builder.CreateCall(F, Src0);
  11782. }
  11783. case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
  11784. Value *Src0 = EmitScalarExpr(E->getArg(0));
  11785. Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
  11786. { Builder.getInt16Ty(), Src0->getType() });
  11787. return Builder.CreateCall(F, Src0);
  11788. }
  11789. case AMDGPU::BI__builtin_amdgcn_fract:
  11790. case AMDGPU::BI__builtin_amdgcn_fractf:
  11791. case AMDGPU::BI__builtin_amdgcn_fracth:
  11792. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
  11793. case AMDGPU::BI__builtin_amdgcn_lerp:
  11794. return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
  11795. case AMDGPU::BI__builtin_amdgcn_ubfe:
  11796. return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
  11797. case AMDGPU::BI__builtin_amdgcn_sbfe:
  11798. return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
  11799. case AMDGPU::BI__builtin_amdgcn_uicmp:
  11800. case AMDGPU::BI__builtin_amdgcn_uicmpl:
  11801. case AMDGPU::BI__builtin_amdgcn_sicmp:
  11802. case AMDGPU::BI__builtin_amdgcn_sicmpl: {
  11803. llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
  11804. llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
  11805. llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
  11806. // FIXME-GFX10: How should 32 bit mask be handled?
  11807. Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
  11808. { Builder.getInt64Ty(), Src0->getType() });
  11809. return Builder.CreateCall(F, { Src0, Src1, Src2 });
  11810. }
  11811. case AMDGPU::BI__builtin_amdgcn_fcmp:
  11812. case AMDGPU::BI__builtin_amdgcn_fcmpf: {
  11813. llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
  11814. llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
  11815. llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
  11816. // FIXME-GFX10: How should 32 bit mask be handled?
  11817. Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
  11818. { Builder.getInt64Ty(), Src0->getType() });
  11819. return Builder.CreateCall(F, { Src0, Src1, Src2 });
  11820. }
  11821. case AMDGPU::BI__builtin_amdgcn_class:
  11822. case AMDGPU::BI__builtin_amdgcn_classf:
  11823. case AMDGPU::BI__builtin_amdgcn_classh:
  11824. return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
  11825. case AMDGPU::BI__builtin_amdgcn_fmed3f:
  11826. case AMDGPU::BI__builtin_amdgcn_fmed3h:
  11827. return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
  11828. case AMDGPU::BI__builtin_amdgcn_ds_append:
  11829. case AMDGPU::BI__builtin_amdgcn_ds_consume: {
  11830. Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
  11831. Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
  11832. Value *Src0 = EmitScalarExpr(E->getArg(0));
  11833. Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
  11834. return Builder.CreateCall(F, { Src0, Builder.getFalse() });
  11835. }
  11836. case AMDGPU::BI__builtin_amdgcn_read_exec: {
  11837. CallInst *CI = cast<CallInst>(
  11838. EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec"));
  11839. CI->setConvergent();
  11840. return CI;
  11841. }
  11842. case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
  11843. case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
  11844. StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
  11845. "exec_lo" : "exec_hi";
  11846. CallInst *CI = cast<CallInst>(
  11847. EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName));
  11848. CI->setConvergent();
  11849. return CI;
  11850. }
  11851. // amdgcn workitem
  11852. case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
  11853. return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
  11854. case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
  11855. return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
  11856. case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
  11857. return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
  11858. // r600 intrinsics
  11859. case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
  11860. case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
  11861. return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
  11862. case AMDGPU::BI__builtin_r600_read_tidig_x:
  11863. return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
  11864. case AMDGPU::BI__builtin_r600_read_tidig_y:
  11865. return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
  11866. case AMDGPU::BI__builtin_r600_read_tidig_z:
  11867. return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
  11868. default:
  11869. return nullptr;
  11870. }
  11871. }
  11872. /// Handle a SystemZ function in which the final argument is a pointer
  11873. /// to an int that receives the post-instruction CC value. At the LLVM level
  11874. /// this is represented as a function that returns a {result, cc} pair.
  11875. static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
  11876. unsigned IntrinsicID,
  11877. const CallExpr *E) {
  11878. unsigned NumArgs = E->getNumArgs() - 1;
  11879. SmallVector<Value *, 8> Args(NumArgs);
  11880. for (unsigned I = 0; I < NumArgs; ++I)
  11881. Args[I] = CGF.EmitScalarExpr(E->getArg(I));
  11882. Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
  11883. Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
  11884. Value *Call = CGF.Builder.CreateCall(F, Args);
  11885. Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
  11886. CGF.Builder.CreateStore(CC, CCPtr);
  11887. return CGF.Builder.CreateExtractValue(Call, 0);
  11888. }
  11889. Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
  11890. const CallExpr *E) {
  11891. switch (BuiltinID) {
  11892. case SystemZ::BI__builtin_tbegin: {
  11893. Value *TDB = EmitScalarExpr(E->getArg(0));
  11894. Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
  11895. Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
  11896. return Builder.CreateCall(F, {TDB, Control});
  11897. }
  11898. case SystemZ::BI__builtin_tbegin_nofloat: {
  11899. Value *TDB = EmitScalarExpr(E->getArg(0));
  11900. Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
  11901. Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
  11902. return Builder.CreateCall(F, {TDB, Control});
  11903. }
  11904. case SystemZ::BI__builtin_tbeginc: {
  11905. Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
  11906. Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
  11907. Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
  11908. return Builder.CreateCall(F, {TDB, Control});
  11909. }
  11910. case SystemZ::BI__builtin_tabort: {
  11911. Value *Data = EmitScalarExpr(E->getArg(0));
  11912. Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
  11913. return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
  11914. }
  11915. case SystemZ::BI__builtin_non_tx_store: {
  11916. Value *Address = EmitScalarExpr(E->getArg(0));
  11917. Value *Data = EmitScalarExpr(E->getArg(1));
  11918. Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
  11919. return Builder.CreateCall(F, {Data, Address});
  11920. }
  11921. // Vector builtins. Note that most vector builtins are mapped automatically
  11922. // to target-specific LLVM intrinsics. The ones handled specially here can
  11923. // be represented via standard LLVM IR, which is preferable to enable common
  11924. // LLVM optimizations.
  11925. case SystemZ::BI__builtin_s390_vpopctb:
  11926. case SystemZ::BI__builtin_s390_vpopcth:
  11927. case SystemZ::BI__builtin_s390_vpopctf:
  11928. case SystemZ::BI__builtin_s390_vpopctg: {
  11929. llvm::Type *ResultType = ConvertType(E->getType());
  11930. Value *X = EmitScalarExpr(E->getArg(0));
  11931. Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
  11932. return Builder.CreateCall(F, X);
  11933. }
  11934. case SystemZ::BI__builtin_s390_vclzb:
  11935. case SystemZ::BI__builtin_s390_vclzh:
  11936. case SystemZ::BI__builtin_s390_vclzf:
  11937. case SystemZ::BI__builtin_s390_vclzg: {
  11938. llvm::Type *ResultType = ConvertType(E->getType());
  11939. Value *X = EmitScalarExpr(E->getArg(0));
  11940. Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
  11941. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
  11942. return Builder.CreateCall(F, {X, Undef});
  11943. }
  11944. case SystemZ::BI__builtin_s390_vctzb:
  11945. case SystemZ::BI__builtin_s390_vctzh:
  11946. case SystemZ::BI__builtin_s390_vctzf:
  11947. case SystemZ::BI__builtin_s390_vctzg: {
  11948. llvm::Type *ResultType = ConvertType(E->getType());
  11949. Value *X = EmitScalarExpr(E->getArg(0));
  11950. Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
  11951. Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
  11952. return Builder.CreateCall(F, {X, Undef});
  11953. }
  11954. case SystemZ::BI__builtin_s390_vfsqsb:
  11955. case SystemZ::BI__builtin_s390_vfsqdb: {
  11956. llvm::Type *ResultType = ConvertType(E->getType());
  11957. Value *X = EmitScalarExpr(E->getArg(0));
  11958. Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
  11959. return Builder.CreateCall(F, X);
  11960. }
  11961. case SystemZ::BI__builtin_s390_vfmasb:
  11962. case SystemZ::BI__builtin_s390_vfmadb: {
  11963. llvm::Type *ResultType = ConvertType(E->getType());
  11964. Value *X = EmitScalarExpr(E->getArg(0));
  11965. Value *Y = EmitScalarExpr(E->getArg(1));
  11966. Value *Z = EmitScalarExpr(E->getArg(2));
  11967. Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
  11968. return Builder.CreateCall(F, {X, Y, Z});
  11969. }
  11970. case SystemZ::BI__builtin_s390_vfmssb:
  11971. case SystemZ::BI__builtin_s390_vfmsdb: {
  11972. llvm::Type *ResultType = ConvertType(E->getType());
  11973. Value *X = EmitScalarExpr(E->getArg(0));
  11974. Value *Y = EmitScalarExpr(E->getArg(1));
  11975. Value *Z = EmitScalarExpr(E->getArg(2));
  11976. Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
  11977. Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
  11978. return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
  11979. }
  11980. case SystemZ::BI__builtin_s390_vfnmasb:
  11981. case SystemZ::BI__builtin_s390_vfnmadb: {
  11982. llvm::Type *ResultType = ConvertType(E->getType());
  11983. Value *X = EmitScalarExpr(E->getArg(0));
  11984. Value *Y = EmitScalarExpr(E->getArg(1));
  11985. Value *Z = EmitScalarExpr(E->getArg(2));
  11986. Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
  11987. Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
  11988. return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub");
  11989. }
  11990. case SystemZ::BI__builtin_s390_vfnmssb:
  11991. case SystemZ::BI__builtin_s390_vfnmsdb: {
  11992. llvm::Type *ResultType = ConvertType(E->getType());
  11993. Value *X = EmitScalarExpr(E->getArg(0));
  11994. Value *Y = EmitScalarExpr(E->getArg(1));
  11995. Value *Z = EmitScalarExpr(E->getArg(2));
  11996. Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
  11997. Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
  11998. Value *NegZ = Builder.CreateFSub(Zero, Z, "sub");
  11999. return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, NegZ}));
  12000. }
  12001. case SystemZ::BI__builtin_s390_vflpsb:
  12002. case SystemZ::BI__builtin_s390_vflpdb: {
  12003. llvm::Type *ResultType = ConvertType(E->getType());
  12004. Value *X = EmitScalarExpr(E->getArg(0));
  12005. Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
  12006. return Builder.CreateCall(F, X);
  12007. }
  12008. case SystemZ::BI__builtin_s390_vflnsb:
  12009. case SystemZ::BI__builtin_s390_vflndb: {
  12010. llvm::Type *ResultType = ConvertType(E->getType());
  12011. Value *X = EmitScalarExpr(E->getArg(0));
  12012. Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
  12013. Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
  12014. return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
  12015. }
  12016. case SystemZ::BI__builtin_s390_vfisb:
  12017. case SystemZ::BI__builtin_s390_vfidb: {
  12018. llvm::Type *ResultType = ConvertType(E->getType());
  12019. Value *X = EmitScalarExpr(E->getArg(0));
  12020. // Constant-fold the M4 and M5 mask arguments.
  12021. llvm::APSInt M4, M5;
  12022. bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
  12023. bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
  12024. assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?");
  12025. (void)IsConstM4; (void)IsConstM5;
  12026. // Check whether this instance can be represented via a LLVM standard
  12027. // intrinsic. We only support some combinations of M4 and M5.
  12028. Intrinsic::ID ID = Intrinsic::not_intrinsic;
  12029. switch (M4.getZExtValue()) {
  12030. default: break;
  12031. case 0: // IEEE-inexact exception allowed
  12032. switch (M5.getZExtValue()) {
  12033. default: break;
  12034. case 0: ID = Intrinsic::rint; break;
  12035. }
  12036. break;
  12037. case 4: // IEEE-inexact exception suppressed
  12038. switch (M5.getZExtValue()) {
  12039. default: break;
  12040. case 0: ID = Intrinsic::nearbyint; break;
  12041. case 1: ID = Intrinsic::round; break;
  12042. case 5: ID = Intrinsic::trunc; break;
  12043. case 6: ID = Intrinsic::ceil; break;
  12044. case 7: ID = Intrinsic::floor; break;
  12045. }
  12046. break;
  12047. }
  12048. if (ID != Intrinsic::not_intrinsic) {
  12049. Function *F = CGM.getIntrinsic(ID, ResultType);
  12050. return Builder.CreateCall(F, X);
  12051. }
  12052. switch (BuiltinID) {
  12053. case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
  12054. case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
  12055. default: llvm_unreachable("Unknown BuiltinID");
  12056. }
  12057. Function *F = CGM.getIntrinsic(ID);
  12058. Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
  12059. Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
  12060. return Builder.CreateCall(F, {X, M4Value, M5Value});
  12061. }
  12062. case SystemZ::BI__builtin_s390_vfmaxsb:
  12063. case SystemZ::BI__builtin_s390_vfmaxdb: {
  12064. llvm::Type *ResultType = ConvertType(E->getType());
  12065. Value *X = EmitScalarExpr(E->getArg(0));
  12066. Value *Y = EmitScalarExpr(E->getArg(1));
  12067. // Constant-fold the M4 mask argument.
  12068. llvm::APSInt M4;
  12069. bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
  12070. assert(IsConstM4 && "Constant arg isn't actually constant?");
  12071. (void)IsConstM4;
  12072. // Check whether this instance can be represented via a LLVM standard
  12073. // intrinsic. We only support some values of M4.
  12074. Intrinsic::ID ID = Intrinsic::not_intrinsic;
  12075. switch (M4.getZExtValue()) {
  12076. default: break;
  12077. case 4: ID = Intrinsic::maxnum; break;
  12078. }
  12079. if (ID != Intrinsic::not_intrinsic) {
  12080. Function *F = CGM.getIntrinsic(ID, ResultType);
  12081. return Builder.CreateCall(F, {X, Y});
  12082. }
  12083. switch (BuiltinID) {
  12084. case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
  12085. case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
  12086. default: llvm_unreachable("Unknown BuiltinID");
  12087. }
  12088. Function *F = CGM.getIntrinsic(ID);
  12089. Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
  12090. return Builder.CreateCall(F, {X, Y, M4Value});
  12091. }
  12092. case SystemZ::BI__builtin_s390_vfminsb:
  12093. case SystemZ::BI__builtin_s390_vfmindb: {
  12094. llvm::Type *ResultType = ConvertType(E->getType());
  12095. Value *X = EmitScalarExpr(E->getArg(0));
  12096. Value *Y = EmitScalarExpr(E->getArg(1));
  12097. // Constant-fold the M4 mask argument.
  12098. llvm::APSInt M4;
  12099. bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
  12100. assert(IsConstM4 && "Constant arg isn't actually constant?");
  12101. (void)IsConstM4;
  12102. // Check whether this instance can be represented via a LLVM standard
  12103. // intrinsic. We only support some values of M4.
  12104. Intrinsic::ID ID = Intrinsic::not_intrinsic;
  12105. switch (M4.getZExtValue()) {
  12106. default: break;
  12107. case 4: ID = Intrinsic::minnum; break;
  12108. }
  12109. if (ID != Intrinsic::not_intrinsic) {
  12110. Function *F = CGM.getIntrinsic(ID, ResultType);
  12111. return Builder.CreateCall(F, {X, Y});
  12112. }
  12113. switch (BuiltinID) {
  12114. case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
  12115. case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
  12116. default: llvm_unreachable("Unknown BuiltinID");
  12117. }
  12118. Function *F = CGM.getIntrinsic(ID);
  12119. Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
  12120. return Builder.CreateCall(F, {X, Y, M4Value});
  12121. }
  12122. case SystemZ::BI__builtin_s390_vlbrh:
  12123. case SystemZ::BI__builtin_s390_vlbrf:
  12124. case SystemZ::BI__builtin_s390_vlbrg: {
  12125. llvm::Type *ResultType = ConvertType(E->getType());
  12126. Value *X = EmitScalarExpr(E->getArg(0));
  12127. Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
  12128. return Builder.CreateCall(F, X);
  12129. }
  12130. // Vector intrinsics that output the post-instruction CC value.
  12131. #define INTRINSIC_WITH_CC(NAME) \
  12132. case SystemZ::BI__builtin_##NAME: \
  12133. return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
  12134. INTRINSIC_WITH_CC(s390_vpkshs);
  12135. INTRINSIC_WITH_CC(s390_vpksfs);
  12136. INTRINSIC_WITH_CC(s390_vpksgs);
  12137. INTRINSIC_WITH_CC(s390_vpklshs);
  12138. INTRINSIC_WITH_CC(s390_vpklsfs);
  12139. INTRINSIC_WITH_CC(s390_vpklsgs);
  12140. INTRINSIC_WITH_CC(s390_vceqbs);
  12141. INTRINSIC_WITH_CC(s390_vceqhs);
  12142. INTRINSIC_WITH_CC(s390_vceqfs);
  12143. INTRINSIC_WITH_CC(s390_vceqgs);
  12144. INTRINSIC_WITH_CC(s390_vchbs);
  12145. INTRINSIC_WITH_CC(s390_vchhs);
  12146. INTRINSIC_WITH_CC(s390_vchfs);
  12147. INTRINSIC_WITH_CC(s390_vchgs);
  12148. INTRINSIC_WITH_CC(s390_vchlbs);
  12149. INTRINSIC_WITH_CC(s390_vchlhs);
  12150. INTRINSIC_WITH_CC(s390_vchlfs);
  12151. INTRINSIC_WITH_CC(s390_vchlgs);
  12152. INTRINSIC_WITH_CC(s390_vfaebs);
  12153. INTRINSIC_WITH_CC(s390_vfaehs);
  12154. INTRINSIC_WITH_CC(s390_vfaefs);
  12155. INTRINSIC_WITH_CC(s390_vfaezbs);
  12156. INTRINSIC_WITH_CC(s390_vfaezhs);
  12157. INTRINSIC_WITH_CC(s390_vfaezfs);
  12158. INTRINSIC_WITH_CC(s390_vfeebs);
  12159. INTRINSIC_WITH_CC(s390_vfeehs);
  12160. INTRINSIC_WITH_CC(s390_vfeefs);
  12161. INTRINSIC_WITH_CC(s390_vfeezbs);
  12162. INTRINSIC_WITH_CC(s390_vfeezhs);
  12163. INTRINSIC_WITH_CC(s390_vfeezfs);
  12164. INTRINSIC_WITH_CC(s390_vfenebs);
  12165. INTRINSIC_WITH_CC(s390_vfenehs);
  12166. INTRINSIC_WITH_CC(s390_vfenefs);
  12167. INTRINSIC_WITH_CC(s390_vfenezbs);
  12168. INTRINSIC_WITH_CC(s390_vfenezhs);
  12169. INTRINSIC_WITH_CC(s390_vfenezfs);
  12170. INTRINSIC_WITH_CC(s390_vistrbs);
  12171. INTRINSIC_WITH_CC(s390_vistrhs);
  12172. INTRINSIC_WITH_CC(s390_vistrfs);
  12173. INTRINSIC_WITH_CC(s390_vstrcbs);
  12174. INTRINSIC_WITH_CC(s390_vstrchs);
  12175. INTRINSIC_WITH_CC(s390_vstrcfs);
  12176. INTRINSIC_WITH_CC(s390_vstrczbs);
  12177. INTRINSIC_WITH_CC(s390_vstrczhs);
  12178. INTRINSIC_WITH_CC(s390_vstrczfs);
  12179. INTRINSIC_WITH_CC(s390_vfcesbs);
  12180. INTRINSIC_WITH_CC(s390_vfcedbs);
  12181. INTRINSIC_WITH_CC(s390_vfchsbs);
  12182. INTRINSIC_WITH_CC(s390_vfchdbs);
  12183. INTRINSIC_WITH_CC(s390_vfchesbs);
  12184. INTRINSIC_WITH_CC(s390_vfchedbs);
  12185. INTRINSIC_WITH_CC(s390_vftcisb);
  12186. INTRINSIC_WITH_CC(s390_vftcidb);
  12187. INTRINSIC_WITH_CC(s390_vstrsb);
  12188. INTRINSIC_WITH_CC(s390_vstrsh);
  12189. INTRINSIC_WITH_CC(s390_vstrsf);
  12190. INTRINSIC_WITH_CC(s390_vstrszb);
  12191. INTRINSIC_WITH_CC(s390_vstrszh);
  12192. INTRINSIC_WITH_CC(s390_vstrszf);
  12193. #undef INTRINSIC_WITH_CC
  12194. default:
  12195. return nullptr;
  12196. }
  12197. }
  12198. namespace {
  12199. // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
  12200. struct NVPTXMmaLdstInfo {
  12201. unsigned NumResults; // Number of elements to load/store
  12202. // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
  12203. unsigned IID_col;
  12204. unsigned IID_row;
  12205. };
  12206. #define MMA_INTR(geom_op_type, layout) \
  12207. Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
  12208. #define MMA_LDST(n, geom_op_type) \
  12209. { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
  12210. static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
  12211. switch (BuiltinID) {
  12212. // FP MMA loads
  12213. case NVPTX::BI__hmma_m16n16k16_ld_a:
  12214. return MMA_LDST(8, m16n16k16_load_a_f16);
  12215. case NVPTX::BI__hmma_m16n16k16_ld_b:
  12216. return MMA_LDST(8, m16n16k16_load_b_f16);
  12217. case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
  12218. return MMA_LDST(4, m16n16k16_load_c_f16);
  12219. case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
  12220. return MMA_LDST(8, m16n16k16_load_c_f32);
  12221. case NVPTX::BI__hmma_m32n8k16_ld_a:
  12222. return MMA_LDST(8, m32n8k16_load_a_f16);
  12223. case NVPTX::BI__hmma_m32n8k16_ld_b:
  12224. return MMA_LDST(8, m32n8k16_load_b_f16);
  12225. case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
  12226. return MMA_LDST(4, m32n8k16_load_c_f16);
  12227. case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
  12228. return MMA_LDST(8, m32n8k16_load_c_f32);
  12229. case NVPTX::BI__hmma_m8n32k16_ld_a:
  12230. return MMA_LDST(8, m8n32k16_load_a_f16);
  12231. case NVPTX::BI__hmma_m8n32k16_ld_b:
  12232. return MMA_LDST(8, m8n32k16_load_b_f16);
  12233. case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
  12234. return MMA_LDST(4, m8n32k16_load_c_f16);
  12235. case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
  12236. return MMA_LDST(8, m8n32k16_load_c_f32);
  12237. // Integer MMA loads
  12238. case NVPTX::BI__imma_m16n16k16_ld_a_s8:
  12239. return MMA_LDST(2, m16n16k16_load_a_s8);
  12240. case NVPTX::BI__imma_m16n16k16_ld_a_u8:
  12241. return MMA_LDST(2, m16n16k16_load_a_u8);
  12242. case NVPTX::BI__imma_m16n16k16_ld_b_s8:
  12243. return MMA_LDST(2, m16n16k16_load_b_s8);
  12244. case NVPTX::BI__imma_m16n16k16_ld_b_u8:
  12245. return MMA_LDST(2, m16n16k16_load_b_u8);
  12246. case NVPTX::BI__imma_m16n16k16_ld_c:
  12247. return MMA_LDST(8, m16n16k16_load_c_s32);
  12248. case NVPTX::BI__imma_m32n8k16_ld_a_s8:
  12249. return MMA_LDST(4, m32n8k16_load_a_s8);
  12250. case NVPTX::BI__imma_m32n8k16_ld_a_u8:
  12251. return MMA_LDST(4, m32n8k16_load_a_u8);
  12252. case NVPTX::BI__imma_m32n8k16_ld_b_s8:
  12253. return MMA_LDST(1, m32n8k16_load_b_s8);
  12254. case NVPTX::BI__imma_m32n8k16_ld_b_u8:
  12255. return MMA_LDST(1, m32n8k16_load_b_u8);
  12256. case NVPTX::BI__imma_m32n8k16_ld_c:
  12257. return MMA_LDST(8, m32n8k16_load_c_s32);
  12258. case NVPTX::BI__imma_m8n32k16_ld_a_s8:
  12259. return MMA_LDST(1, m8n32k16_load_a_s8);
  12260. case NVPTX::BI__imma_m8n32k16_ld_a_u8:
  12261. return MMA_LDST(1, m8n32k16_load_a_u8);
  12262. case NVPTX::BI__imma_m8n32k16_ld_b_s8:
  12263. return MMA_LDST(4, m8n32k16_load_b_s8);
  12264. case NVPTX::BI__imma_m8n32k16_ld_b_u8:
  12265. return MMA_LDST(4, m8n32k16_load_b_u8);
  12266. case NVPTX::BI__imma_m8n32k16_ld_c:
  12267. return MMA_LDST(8, m8n32k16_load_c_s32);
  12268. // Sub-integer MMA loads.
  12269. // Only row/col layout is supported by A/B fragments.
  12270. case NVPTX::BI__imma_m8n8k32_ld_a_s4:
  12271. return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
  12272. case NVPTX::BI__imma_m8n8k32_ld_a_u4:
  12273. return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
  12274. case NVPTX::BI__imma_m8n8k32_ld_b_s4:
  12275. return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
  12276. case NVPTX::BI__imma_m8n8k32_ld_b_u4:
  12277. return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
  12278. case NVPTX::BI__imma_m8n8k32_ld_c:
  12279. return MMA_LDST(2, m8n8k32_load_c_s32);
  12280. case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
  12281. return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
  12282. case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
  12283. return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
  12284. case NVPTX::BI__bmma_m8n8k128_ld_c:
  12285. return MMA_LDST(2, m8n8k128_load_c_s32);
  12286. // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
  12287. // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
  12288. // use fragment C for both loads and stores.
  12289. // FP MMA stores.
  12290. case NVPTX::BI__hmma_m16n16k16_st_c_f16:
  12291. return MMA_LDST(4, m16n16k16_store_d_f16);
  12292. case NVPTX::BI__hmma_m16n16k16_st_c_f32:
  12293. return MMA_LDST(8, m16n16k16_store_d_f32);
  12294. case NVPTX::BI__hmma_m32n8k16_st_c_f16:
  12295. return MMA_LDST(4, m32n8k16_store_d_f16);
  12296. case NVPTX::BI__hmma_m32n8k16_st_c_f32:
  12297. return MMA_LDST(8, m32n8k16_store_d_f32);
  12298. case NVPTX::BI__hmma_m8n32k16_st_c_f16:
  12299. return MMA_LDST(4, m8n32k16_store_d_f16);
  12300. case NVPTX::BI__hmma_m8n32k16_st_c_f32:
  12301. return MMA_LDST(8, m8n32k16_store_d_f32);
  12302. // Integer and sub-integer MMA stores.
  12303. // Another naming quirk. Unlike other MMA builtins that use PTX types in the
  12304. // name, integer loads/stores use LLVM's i32.
  12305. case NVPTX::BI__imma_m16n16k16_st_c_i32:
  12306. return MMA_LDST(8, m16n16k16_store_d_s32);
  12307. case NVPTX::BI__imma_m32n8k16_st_c_i32:
  12308. return MMA_LDST(8, m32n8k16_store_d_s32);
  12309. case NVPTX::BI__imma_m8n32k16_st_c_i32:
  12310. return MMA_LDST(8, m8n32k16_store_d_s32);
  12311. case NVPTX::BI__imma_m8n8k32_st_c_i32:
  12312. return MMA_LDST(2, m8n8k32_store_d_s32);
  12313. case NVPTX::BI__bmma_m8n8k128_st_c_i32:
  12314. return MMA_LDST(2, m8n8k128_store_d_s32);
  12315. default:
  12316. llvm_unreachable("Unknown MMA builtin");
  12317. }
  12318. }
  12319. #undef MMA_LDST
  12320. #undef MMA_INTR
  12321. struct NVPTXMmaInfo {
  12322. unsigned NumEltsA;
  12323. unsigned NumEltsB;
  12324. unsigned NumEltsC;
  12325. unsigned NumEltsD;
  12326. std::array<unsigned, 8> Variants;
  12327. unsigned getMMAIntrinsic(int Layout, bool Satf) {
  12328. unsigned Index = Layout * 2 + Satf;
  12329. if (Index >= Variants.size())
  12330. return 0;
  12331. return Variants[Index];
  12332. }
  12333. };
  12334. // Returns an intrinsic that matches Layout and Satf for valid combinations of
  12335. // Layout and Satf, 0 otherwise.
  12336. static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
  12337. // clang-format off
  12338. #define MMA_VARIANTS(geom, type) {{ \
  12339. Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
  12340. Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
  12341. Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
  12342. Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
  12343. Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
  12344. Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
  12345. Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type, \
  12346. Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite \
  12347. }}
  12348. // Sub-integer MMA only supports row.col layout.
  12349. #define MMA_VARIANTS_I4(geom, type) {{ \
  12350. 0, \
  12351. 0, \
  12352. Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
  12353. Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
  12354. 0, \
  12355. 0, \
  12356. 0, \
  12357. 0 \
  12358. }}
  12359. // b1 MMA does not support .satfinite.
  12360. #define MMA_VARIANTS_B1(geom, type) {{ \
  12361. 0, \
  12362. 0, \
  12363. Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
  12364. 0, \
  12365. 0, \
  12366. 0, \
  12367. 0, \
  12368. 0 \
  12369. }}
  12370. // clang-format on
  12371. switch (BuiltinID) {
  12372. // FP MMA
  12373. // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
  12374. // NumEltsN of return value are ordered as A,B,C,D.
  12375. case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
  12376. return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
  12377. case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
  12378. return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
  12379. case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
  12380. return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
  12381. case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
  12382. return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
  12383. case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
  12384. return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
  12385. case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
  12386. return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
  12387. case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
  12388. return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
  12389. case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
  12390. return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
  12391. case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
  12392. return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
  12393. case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
  12394. return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
  12395. case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
  12396. return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
  12397. case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
  12398. return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
  12399. // Integer MMA
  12400. case NVPTX::BI__imma_m16n16k16_mma_s8:
  12401. return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
  12402. case NVPTX::BI__imma_m16n16k16_mma_u8:
  12403. return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
  12404. case NVPTX::BI__imma_m32n8k16_mma_s8:
  12405. return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
  12406. case NVPTX::BI__imma_m32n8k16_mma_u8:
  12407. return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
  12408. case NVPTX::BI__imma_m8n32k16_mma_s8:
  12409. return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
  12410. case NVPTX::BI__imma_m8n32k16_mma_u8:
  12411. return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
  12412. // Sub-integer MMA
  12413. case NVPTX::BI__imma_m8n8k32_mma_s4:
  12414. return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
  12415. case NVPTX::BI__imma_m8n8k32_mma_u4:
  12416. return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
  12417. case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
  12418. return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
  12419. default:
  12420. llvm_unreachable("Unexpected builtin ID.");
  12421. }
  12422. #undef MMA_VARIANTS
  12423. #undef MMA_VARIANTS_I4
  12424. #undef MMA_VARIANTS_B1
  12425. }
  12426. } // namespace
  12427. Value *
  12428. CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
  12429. auto MakeLdg = [&](unsigned IntrinsicID) {
  12430. Value *Ptr = EmitScalarExpr(E->getArg(0));
  12431. clang::CharUnits Align =
  12432. getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
  12433. return Builder.CreateCall(
  12434. CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
  12435. Ptr->getType()}),
  12436. {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
  12437. };
  12438. auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
  12439. Value *Ptr = EmitScalarExpr(E->getArg(0));
  12440. return Builder.CreateCall(
  12441. CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
  12442. Ptr->getType()}),
  12443. {Ptr, EmitScalarExpr(E->getArg(1))});
  12444. };
  12445. switch (BuiltinID) {
  12446. case NVPTX::BI__nvvm_atom_add_gen_i:
  12447. case NVPTX::BI__nvvm_atom_add_gen_l:
  12448. case NVPTX::BI__nvvm_atom_add_gen_ll:
  12449. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
  12450. case NVPTX::BI__nvvm_atom_sub_gen_i:
  12451. case NVPTX::BI__nvvm_atom_sub_gen_l:
  12452. case NVPTX::BI__nvvm_atom_sub_gen_ll:
  12453. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
  12454. case NVPTX::BI__nvvm_atom_and_gen_i:
  12455. case NVPTX::BI__nvvm_atom_and_gen_l:
  12456. case NVPTX::BI__nvvm_atom_and_gen_ll:
  12457. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
  12458. case NVPTX::BI__nvvm_atom_or_gen_i:
  12459. case NVPTX::BI__nvvm_atom_or_gen_l:
  12460. case NVPTX::BI__nvvm_atom_or_gen_ll:
  12461. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
  12462. case NVPTX::BI__nvvm_atom_xor_gen_i:
  12463. case NVPTX::BI__nvvm_atom_xor_gen_l:
  12464. case NVPTX::BI__nvvm_atom_xor_gen_ll:
  12465. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
  12466. case NVPTX::BI__nvvm_atom_xchg_gen_i:
  12467. case NVPTX::BI__nvvm_atom_xchg_gen_l:
  12468. case NVPTX::BI__nvvm_atom_xchg_gen_ll:
  12469. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
  12470. case NVPTX::BI__nvvm_atom_max_gen_i:
  12471. case NVPTX::BI__nvvm_atom_max_gen_l:
  12472. case NVPTX::BI__nvvm_atom_max_gen_ll:
  12473. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
  12474. case NVPTX::BI__nvvm_atom_max_gen_ui:
  12475. case NVPTX::BI__nvvm_atom_max_gen_ul:
  12476. case NVPTX::BI__nvvm_atom_max_gen_ull:
  12477. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
  12478. case NVPTX::BI__nvvm_atom_min_gen_i:
  12479. case NVPTX::BI__nvvm_atom_min_gen_l:
  12480. case NVPTX::BI__nvvm_atom_min_gen_ll:
  12481. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
  12482. case NVPTX::BI__nvvm_atom_min_gen_ui:
  12483. case NVPTX::BI__nvvm_atom_min_gen_ul:
  12484. case NVPTX::BI__nvvm_atom_min_gen_ull:
  12485. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
  12486. case NVPTX::BI__nvvm_atom_cas_gen_i:
  12487. case NVPTX::BI__nvvm_atom_cas_gen_l:
  12488. case NVPTX::BI__nvvm_atom_cas_gen_ll:
  12489. // __nvvm_atom_cas_gen_* should return the old value rather than the
  12490. // success flag.
  12491. return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
  12492. case NVPTX::BI__nvvm_atom_add_gen_f:
  12493. case NVPTX::BI__nvvm_atom_add_gen_d: {
  12494. Value *Ptr = EmitScalarExpr(E->getArg(0));
  12495. Value *Val = EmitScalarExpr(E->getArg(1));
  12496. return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
  12497. AtomicOrdering::SequentiallyConsistent);
  12498. }
  12499. case NVPTX::BI__nvvm_atom_inc_gen_ui: {
  12500. Value *Ptr = EmitScalarExpr(E->getArg(0));
  12501. Value *Val = EmitScalarExpr(E->getArg(1));
  12502. Function *FnALI32 =
  12503. CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
  12504. return Builder.CreateCall(FnALI32, {Ptr, Val});
  12505. }
  12506. case NVPTX::BI__nvvm_atom_dec_gen_ui: {
  12507. Value *Ptr = EmitScalarExpr(E->getArg(0));
  12508. Value *Val = EmitScalarExpr(E->getArg(1));
  12509. Function *FnALD32 =
  12510. CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
  12511. return Builder.CreateCall(FnALD32, {Ptr, Val});
  12512. }
  12513. case NVPTX::BI__nvvm_ldg_c:
  12514. case NVPTX::BI__nvvm_ldg_c2:
  12515. case NVPTX::BI__nvvm_ldg_c4:
  12516. case NVPTX::BI__nvvm_ldg_s:
  12517. case NVPTX::BI__nvvm_ldg_s2:
  12518. case NVPTX::BI__nvvm_ldg_s4:
  12519. case NVPTX::BI__nvvm_ldg_i:
  12520. case NVPTX::BI__nvvm_ldg_i2:
  12521. case NVPTX::BI__nvvm_ldg_i4:
  12522. case NVPTX::BI__nvvm_ldg_l:
  12523. case NVPTX::BI__nvvm_ldg_ll:
  12524. case NVPTX::BI__nvvm_ldg_ll2:
  12525. case NVPTX::BI__nvvm_ldg_uc:
  12526. case NVPTX::BI__nvvm_ldg_uc2:
  12527. case NVPTX::BI__nvvm_ldg_uc4:
  12528. case NVPTX::BI__nvvm_ldg_us:
  12529. case NVPTX::BI__nvvm_ldg_us2:
  12530. case NVPTX::BI__nvvm_ldg_us4:
  12531. case NVPTX::BI__nvvm_ldg_ui:
  12532. case NVPTX::BI__nvvm_ldg_ui2:
  12533. case NVPTX::BI__nvvm_ldg_ui4:
  12534. case NVPTX::BI__nvvm_ldg_ul:
  12535. case NVPTX::BI__nvvm_ldg_ull:
  12536. case NVPTX::BI__nvvm_ldg_ull2:
  12537. // PTX Interoperability section 2.2: "For a vector with an even number of
  12538. // elements, its alignment is set to number of elements times the alignment
  12539. // of its member: n*alignof(t)."
  12540. return MakeLdg(Intrinsic::nvvm_ldg_global_i);
  12541. case NVPTX::BI__nvvm_ldg_f:
  12542. case NVPTX::BI__nvvm_ldg_f2:
  12543. case NVPTX::BI__nvvm_ldg_f4:
  12544. case NVPTX::BI__nvvm_ldg_d:
  12545. case NVPTX::BI__nvvm_ldg_d2:
  12546. return MakeLdg(Intrinsic::nvvm_ldg_global_f);
  12547. case NVPTX::BI__nvvm_atom_cta_add_gen_i:
  12548. case NVPTX::BI__nvvm_atom_cta_add_gen_l:
  12549. case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
  12550. return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
  12551. case NVPTX::BI__nvvm_atom_sys_add_gen_i:
  12552. case NVPTX::BI__nvvm_atom_sys_add_gen_l:
  12553. case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
  12554. return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
  12555. case NVPTX::BI__nvvm_atom_cta_add_gen_f:
  12556. case NVPTX::BI__nvvm_atom_cta_add_gen_d:
  12557. return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
  12558. case NVPTX::BI__nvvm_atom_sys_add_gen_f:
  12559. case NVPTX::BI__nvvm_atom_sys_add_gen_d:
  12560. return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
  12561. case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
  12562. case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
  12563. case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
  12564. return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
  12565. case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
  12566. case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
  12567. case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
  12568. return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
  12569. case NVPTX::BI__nvvm_atom_cta_max_gen_i:
  12570. case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
  12571. case NVPTX::BI__nvvm_atom_cta_max_gen_l:
  12572. case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
  12573. case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
  12574. case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
  12575. return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
  12576. case NVPTX::BI__nvvm_atom_sys_max_gen_i:
  12577. case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
  12578. case NVPTX::BI__nvvm_atom_sys_max_gen_l:
  12579. case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
  12580. case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
  12581. case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
  12582. return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
  12583. case NVPTX::BI__nvvm_atom_cta_min_gen_i:
  12584. case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
  12585. case NVPTX::BI__nvvm_atom_cta_min_gen_l:
  12586. case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
  12587. case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
  12588. case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
  12589. return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
  12590. case NVPTX::BI__nvvm_atom_sys_min_gen_i:
  12591. case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
  12592. case NVPTX::BI__nvvm_atom_sys_min_gen_l:
  12593. case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
  12594. case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
  12595. case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
  12596. return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
  12597. case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
  12598. return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
  12599. case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
  12600. return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
  12601. case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
  12602. return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
  12603. case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
  12604. return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
  12605. case NVPTX::BI__nvvm_atom_cta_and_gen_i:
  12606. case NVPTX::BI__nvvm_atom_cta_and_gen_l:
  12607. case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
  12608. return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
  12609. case NVPTX::BI__nvvm_atom_sys_and_gen_i:
  12610. case NVPTX::BI__nvvm_atom_sys_and_gen_l:
  12611. case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
  12612. return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
  12613. case NVPTX::BI__nvvm_atom_cta_or_gen_i:
  12614. case NVPTX::BI__nvvm_atom_cta_or_gen_l:
  12615. case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
  12616. return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
  12617. case NVPTX::BI__nvvm_atom_sys_or_gen_i:
  12618. case NVPTX::BI__nvvm_atom_sys_or_gen_l:
  12619. case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
  12620. return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
  12621. case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
  12622. case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
  12623. case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
  12624. return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
  12625. case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
  12626. case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
  12627. case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
  12628. return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
  12629. case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
  12630. case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
  12631. case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
  12632. Value *Ptr = EmitScalarExpr(E->getArg(0));
  12633. return Builder.CreateCall(
  12634. CGM.getIntrinsic(
  12635. Intrinsic::nvvm_atomic_cas_gen_i_cta,
  12636. {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
  12637. {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
  12638. }
  12639. case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
  12640. case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
  12641. case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
  12642. Value *Ptr = EmitScalarExpr(E->getArg(0));
  12643. return Builder.CreateCall(
  12644. CGM.getIntrinsic(
  12645. Intrinsic::nvvm_atomic_cas_gen_i_sys,
  12646. {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
  12647. {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
  12648. }
  12649. case NVPTX::BI__nvvm_match_all_sync_i32p:
  12650. case NVPTX::BI__nvvm_match_all_sync_i64p: {
  12651. Value *Mask = EmitScalarExpr(E->getArg(0));
  12652. Value *Val = EmitScalarExpr(E->getArg(1));
  12653. Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
  12654. Value *ResultPair = Builder.CreateCall(
  12655. CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
  12656. ? Intrinsic::nvvm_match_all_sync_i32p
  12657. : Intrinsic::nvvm_match_all_sync_i64p),
  12658. {Mask, Val});
  12659. Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
  12660. PredOutPtr.getElementType());
  12661. Builder.CreateStore(Pred, PredOutPtr);
  12662. return Builder.CreateExtractValue(ResultPair, 0);
  12663. }
  12664. // FP MMA loads
  12665. case NVPTX::BI__hmma_m16n16k16_ld_a:
  12666. case NVPTX::BI__hmma_m16n16k16_ld_b:
  12667. case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
  12668. case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
  12669. case NVPTX::BI__hmma_m32n8k16_ld_a:
  12670. case NVPTX::BI__hmma_m32n8k16_ld_b:
  12671. case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
  12672. case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
  12673. case NVPTX::BI__hmma_m8n32k16_ld_a:
  12674. case NVPTX::BI__hmma_m8n32k16_ld_b:
  12675. case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
  12676. case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
  12677. // Integer MMA loads.
  12678. case NVPTX::BI__imma_m16n16k16_ld_a_s8:
  12679. case NVPTX::BI__imma_m16n16k16_ld_a_u8:
  12680. case NVPTX::BI__imma_m16n16k16_ld_b_s8:
  12681. case NVPTX::BI__imma_m16n16k16_ld_b_u8:
  12682. case NVPTX::BI__imma_m16n16k16_ld_c:
  12683. case NVPTX::BI__imma_m32n8k16_ld_a_s8:
  12684. case NVPTX::BI__imma_m32n8k16_ld_a_u8:
  12685. case NVPTX::BI__imma_m32n8k16_ld_b_s8:
  12686. case NVPTX::BI__imma_m32n8k16_ld_b_u8:
  12687. case NVPTX::BI__imma_m32n8k16_ld_c:
  12688. case NVPTX::BI__imma_m8n32k16_ld_a_s8:
  12689. case NVPTX::BI__imma_m8n32k16_ld_a_u8:
  12690. case NVPTX::BI__imma_m8n32k16_ld_b_s8:
  12691. case NVPTX::BI__imma_m8n32k16_ld_b_u8:
  12692. case NVPTX::BI__imma_m8n32k16_ld_c:
  12693. // Sub-integer MMA loads.
  12694. case NVPTX::BI__imma_m8n8k32_ld_a_s4:
  12695. case NVPTX::BI__imma_m8n8k32_ld_a_u4:
  12696. case NVPTX::BI__imma_m8n8k32_ld_b_s4:
  12697. case NVPTX::BI__imma_m8n8k32_ld_b_u4:
  12698. case NVPTX::BI__imma_m8n8k32_ld_c:
  12699. case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
  12700. case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
  12701. case NVPTX::BI__bmma_m8n8k128_ld_c:
  12702. {
  12703. Address Dst = EmitPointerWithAlignment(E->getArg(0));
  12704. Value *Src = EmitScalarExpr(E->getArg(1));
  12705. Value *Ldm = EmitScalarExpr(E->getArg(2));
  12706. llvm::APSInt isColMajorArg;
  12707. if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
  12708. return nullptr;
  12709. bool isColMajor = isColMajorArg.getSExtValue();
  12710. NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
  12711. unsigned IID = isColMajor ? II.IID_col : II.IID_row;
  12712. if (IID == 0)
  12713. return nullptr;
  12714. Value *Result =
  12715. Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
  12716. // Save returned values.
  12717. assert(II.NumResults);
  12718. if (II.NumResults == 1) {
  12719. Builder.CreateAlignedStore(Result, Dst.getPointer(),
  12720. CharUnits::fromQuantity(4));
  12721. } else {
  12722. for (unsigned i = 0; i < II.NumResults; ++i) {
  12723. Builder.CreateAlignedStore(
  12724. Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
  12725. Dst.getElementType()),
  12726. Builder.CreateGEP(Dst.getPointer(),
  12727. llvm::ConstantInt::get(IntTy, i)),
  12728. CharUnits::fromQuantity(4));
  12729. }
  12730. }
  12731. return Result;
  12732. }
  12733. case NVPTX::BI__hmma_m16n16k16_st_c_f16:
  12734. case NVPTX::BI__hmma_m16n16k16_st_c_f32:
  12735. case NVPTX::BI__hmma_m32n8k16_st_c_f16:
  12736. case NVPTX::BI__hmma_m32n8k16_st_c_f32:
  12737. case NVPTX::BI__hmma_m8n32k16_st_c_f16:
  12738. case NVPTX::BI__hmma_m8n32k16_st_c_f32:
  12739. case NVPTX::BI__imma_m16n16k16_st_c_i32:
  12740. case NVPTX::BI__imma_m32n8k16_st_c_i32:
  12741. case NVPTX::BI__imma_m8n32k16_st_c_i32:
  12742. case NVPTX::BI__imma_m8n8k32_st_c_i32:
  12743. case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
  12744. Value *Dst = EmitScalarExpr(E->getArg(0));
  12745. Address Src = EmitPointerWithAlignment(E->getArg(1));
  12746. Value *Ldm = EmitScalarExpr(E->getArg(2));
  12747. llvm::APSInt isColMajorArg;
  12748. if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
  12749. return nullptr;
  12750. bool isColMajor = isColMajorArg.getSExtValue();
  12751. NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
  12752. unsigned IID = isColMajor ? II.IID_col : II.IID_row;
  12753. if (IID == 0)
  12754. return nullptr;
  12755. Function *Intrinsic =
  12756. CGM.getIntrinsic(IID, Dst->getType());
  12757. llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
  12758. SmallVector<Value *, 10> Values = {Dst};
  12759. for (unsigned i = 0; i < II.NumResults; ++i) {
  12760. Value *V = Builder.CreateAlignedLoad(
  12761. Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
  12762. CharUnits::fromQuantity(4));
  12763. Values.push_back(Builder.CreateBitCast(V, ParamType));
  12764. }
  12765. Values.push_back(Ldm);
  12766. Value *Result = Builder.CreateCall(Intrinsic, Values);
  12767. return Result;
  12768. }
  12769. // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
  12770. // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
  12771. case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
  12772. case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
  12773. case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
  12774. case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
  12775. case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
  12776. case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
  12777. case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
  12778. case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
  12779. case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
  12780. case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
  12781. case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
  12782. case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
  12783. case NVPTX::BI__imma_m16n16k16_mma_s8:
  12784. case NVPTX::BI__imma_m16n16k16_mma_u8:
  12785. case NVPTX::BI__imma_m32n8k16_mma_s8:
  12786. case NVPTX::BI__imma_m32n8k16_mma_u8:
  12787. case NVPTX::BI__imma_m8n32k16_mma_s8:
  12788. case NVPTX::BI__imma_m8n32k16_mma_u8:
  12789. case NVPTX::BI__imma_m8n8k32_mma_s4:
  12790. case NVPTX::BI__imma_m8n8k32_mma_u4:
  12791. case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
  12792. Address Dst = EmitPointerWithAlignment(E->getArg(0));
  12793. Address SrcA = EmitPointerWithAlignment(E->getArg(1));
  12794. Address SrcB = EmitPointerWithAlignment(E->getArg(2));
  12795. Address SrcC = EmitPointerWithAlignment(E->getArg(3));
  12796. llvm::APSInt LayoutArg;
  12797. if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext()))
  12798. return nullptr;
  12799. int Layout = LayoutArg.getSExtValue();
  12800. if (Layout < 0 || Layout > 3)
  12801. return nullptr;
  12802. llvm::APSInt SatfArg;
  12803. if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
  12804. SatfArg = 0; // .b1 does not have satf argument.
  12805. else if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext()))
  12806. return nullptr;
  12807. bool Satf = SatfArg.getSExtValue();
  12808. NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
  12809. unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
  12810. if (IID == 0) // Unsupported combination of Layout/Satf.
  12811. return nullptr;
  12812. SmallVector<Value *, 24> Values;
  12813. Function *Intrinsic = CGM.getIntrinsic(IID);
  12814. llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
  12815. // Load A
  12816. for (unsigned i = 0; i < MI.NumEltsA; ++i) {
  12817. Value *V = Builder.CreateAlignedLoad(
  12818. Builder.CreateGEP(SrcA.getPointer(),
  12819. llvm::ConstantInt::get(IntTy, i)),
  12820. CharUnits::fromQuantity(4));
  12821. Values.push_back(Builder.CreateBitCast(V, AType));
  12822. }
  12823. // Load B
  12824. llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
  12825. for (unsigned i = 0; i < MI.NumEltsB; ++i) {
  12826. Value *V = Builder.CreateAlignedLoad(
  12827. Builder.CreateGEP(SrcB.getPointer(),
  12828. llvm::ConstantInt::get(IntTy, i)),
  12829. CharUnits::fromQuantity(4));
  12830. Values.push_back(Builder.CreateBitCast(V, BType));
  12831. }
  12832. // Load C
  12833. llvm::Type *CType =
  12834. Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
  12835. for (unsigned i = 0; i < MI.NumEltsC; ++i) {
  12836. Value *V = Builder.CreateAlignedLoad(
  12837. Builder.CreateGEP(SrcC.getPointer(),
  12838. llvm::ConstantInt::get(IntTy, i)),
  12839. CharUnits::fromQuantity(4));
  12840. Values.push_back(Builder.CreateBitCast(V, CType));
  12841. }
  12842. Value *Result = Builder.CreateCall(Intrinsic, Values);
  12843. llvm::Type *DType = Dst.getElementType();
  12844. for (unsigned i = 0; i < MI.NumEltsD; ++i)
  12845. Builder.CreateAlignedStore(
  12846. Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
  12847. Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
  12848. CharUnits::fromQuantity(4));
  12849. return Result;
  12850. }
  12851. default:
  12852. return nullptr;
  12853. }
  12854. }
  12855. Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
  12856. const CallExpr *E) {
  12857. switch (BuiltinID) {
  12858. case WebAssembly::BI__builtin_wasm_memory_size: {
  12859. llvm::Type *ResultType = ConvertType(E->getType());
  12860. Value *I = EmitScalarExpr(E->getArg(0));
  12861. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
  12862. return Builder.CreateCall(Callee, I);
  12863. }
  12864. case WebAssembly::BI__builtin_wasm_memory_grow: {
  12865. llvm::Type *ResultType = ConvertType(E->getType());
  12866. Value *Args[] = {
  12867. EmitScalarExpr(E->getArg(0)),
  12868. EmitScalarExpr(E->getArg(1))
  12869. };
  12870. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
  12871. return Builder.CreateCall(Callee, Args);
  12872. }
  12873. case WebAssembly::BI__builtin_wasm_memory_init: {
  12874. llvm::APSInt SegConst;
  12875. if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
  12876. llvm_unreachable("Constant arg isn't actually constant?");
  12877. llvm::APSInt MemConst;
  12878. if (!E->getArg(1)->isIntegerConstantExpr(MemConst, getContext()))
  12879. llvm_unreachable("Constant arg isn't actually constant?");
  12880. if (!MemConst.isNullValue())
  12881. ErrorUnsupported(E, "non-zero memory index");
  12882. Value *Args[] = {llvm::ConstantInt::get(getLLVMContext(), SegConst),
  12883. llvm::ConstantInt::get(getLLVMContext(), MemConst),
  12884. EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)),
  12885. EmitScalarExpr(E->getArg(4))};
  12886. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_init);
  12887. return Builder.CreateCall(Callee, Args);
  12888. }
  12889. case WebAssembly::BI__builtin_wasm_data_drop: {
  12890. llvm::APSInt SegConst;
  12891. if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
  12892. llvm_unreachable("Constant arg isn't actually constant?");
  12893. Value *Arg = llvm::ConstantInt::get(getLLVMContext(), SegConst);
  12894. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_data_drop);
  12895. return Builder.CreateCall(Callee, {Arg});
  12896. }
  12897. case WebAssembly::BI__builtin_wasm_tls_size: {
  12898. llvm::Type *ResultType = ConvertType(E->getType());
  12899. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
  12900. return Builder.CreateCall(Callee);
  12901. }
  12902. case WebAssembly::BI__builtin_wasm_tls_align: {
  12903. llvm::Type *ResultType = ConvertType(E->getType());
  12904. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
  12905. return Builder.CreateCall(Callee);
  12906. }
  12907. case WebAssembly::BI__builtin_wasm_tls_base: {
  12908. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
  12909. return Builder.CreateCall(Callee);
  12910. }
  12911. case WebAssembly::BI__builtin_wasm_throw: {
  12912. Value *Tag = EmitScalarExpr(E->getArg(0));
  12913. Value *Obj = EmitScalarExpr(E->getArg(1));
  12914. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
  12915. return Builder.CreateCall(Callee, {Tag, Obj});
  12916. }
  12917. case WebAssembly::BI__builtin_wasm_rethrow_in_catch: {
  12918. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch);
  12919. return Builder.CreateCall(Callee);
  12920. }
  12921. case WebAssembly::BI__builtin_wasm_atomic_wait_i32: {
  12922. Value *Addr = EmitScalarExpr(E->getArg(0));
  12923. Value *Expected = EmitScalarExpr(E->getArg(1));
  12924. Value *Timeout = EmitScalarExpr(E->getArg(2));
  12925. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32);
  12926. return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
  12927. }
  12928. case WebAssembly::BI__builtin_wasm_atomic_wait_i64: {
  12929. Value *Addr = EmitScalarExpr(E->getArg(0));
  12930. Value *Expected = EmitScalarExpr(E->getArg(1));
  12931. Value *Timeout = EmitScalarExpr(E->getArg(2));
  12932. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64);
  12933. return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
  12934. }
  12935. case WebAssembly::BI__builtin_wasm_atomic_notify: {
  12936. Value *Addr = EmitScalarExpr(E->getArg(0));
  12937. Value *Count = EmitScalarExpr(E->getArg(1));
  12938. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify);
  12939. return Builder.CreateCall(Callee, {Addr, Count});
  12940. }
  12941. case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
  12942. case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
  12943. case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
  12944. case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
  12945. Value *Src = EmitScalarExpr(E->getArg(0));
  12946. llvm::Type *ResT = ConvertType(E->getType());
  12947. Function *Callee =
  12948. CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
  12949. return Builder.CreateCall(Callee, {Src});
  12950. }
  12951. case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
  12952. case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
  12953. case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
  12954. case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
  12955. Value *Src = EmitScalarExpr(E->getArg(0));
  12956. llvm::Type *ResT = ConvertType(E->getType());
  12957. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
  12958. {ResT, Src->getType()});
  12959. return Builder.CreateCall(Callee, {Src});
  12960. }
  12961. case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
  12962. case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
  12963. case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
  12964. case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
  12965. case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4:
  12966. case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64x2_f64x2: {
  12967. Value *Src = EmitScalarExpr(E->getArg(0));
  12968. llvm::Type *ResT = ConvertType(E->getType());
  12969. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed,
  12970. {ResT, Src->getType()});
  12971. return Builder.CreateCall(Callee, {Src});
  12972. }
  12973. case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
  12974. case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
  12975. case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
  12976. case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
  12977. case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4:
  12978. case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64x2_f64x2: {
  12979. Value *Src = EmitScalarExpr(E->getArg(0));
  12980. llvm::Type *ResT = ConvertType(E->getType());
  12981. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned,
  12982. {ResT, Src->getType()});
  12983. return Builder.CreateCall(Callee, {Src});
  12984. }
  12985. case WebAssembly::BI__builtin_wasm_min_f32:
  12986. case WebAssembly::BI__builtin_wasm_min_f64:
  12987. case WebAssembly::BI__builtin_wasm_min_f32x4:
  12988. case WebAssembly::BI__builtin_wasm_min_f64x2: {
  12989. Value *LHS = EmitScalarExpr(E->getArg(0));
  12990. Value *RHS = EmitScalarExpr(E->getArg(1));
  12991. Function *Callee = CGM.getIntrinsic(Intrinsic::minimum,
  12992. ConvertType(E->getType()));
  12993. return Builder.CreateCall(Callee, {LHS, RHS});
  12994. }
  12995. case WebAssembly::BI__builtin_wasm_max_f32:
  12996. case WebAssembly::BI__builtin_wasm_max_f64:
  12997. case WebAssembly::BI__builtin_wasm_max_f32x4:
  12998. case WebAssembly::BI__builtin_wasm_max_f64x2: {
  12999. Value *LHS = EmitScalarExpr(E->getArg(0));
  13000. Value *RHS = EmitScalarExpr(E->getArg(1));
  13001. Function *Callee = CGM.getIntrinsic(Intrinsic::maximum,
  13002. ConvertType(E->getType()));
  13003. return Builder.CreateCall(Callee, {LHS, RHS});
  13004. }
  13005. case WebAssembly::BI__builtin_wasm_swizzle_v8x16: {
  13006. Value *Src = EmitScalarExpr(E->getArg(0));
  13007. Value *Indices = EmitScalarExpr(E->getArg(1));
  13008. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
  13009. return Builder.CreateCall(Callee, {Src, Indices});
  13010. }
  13011. case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
  13012. case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
  13013. case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
  13014. case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
  13015. case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
  13016. case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
  13017. case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
  13018. case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
  13019. llvm::APSInt LaneConst;
  13020. if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
  13021. llvm_unreachable("Constant arg isn't actually constant?");
  13022. Value *Vec = EmitScalarExpr(E->getArg(0));
  13023. Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
  13024. Value *Extract = Builder.CreateExtractElement(Vec, Lane);
  13025. switch (BuiltinID) {
  13026. case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
  13027. case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
  13028. return Builder.CreateSExt(Extract, ConvertType(E->getType()));
  13029. case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
  13030. case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
  13031. return Builder.CreateZExt(Extract, ConvertType(E->getType()));
  13032. case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
  13033. case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
  13034. case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
  13035. case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
  13036. return Extract;
  13037. default:
  13038. llvm_unreachable("unexpected builtin ID");
  13039. }
  13040. }
  13041. case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
  13042. case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
  13043. case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
  13044. case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
  13045. case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
  13046. case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
  13047. llvm::APSInt LaneConst;
  13048. if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
  13049. llvm_unreachable("Constant arg isn't actually constant?");
  13050. Value *Vec = EmitScalarExpr(E->getArg(0));
  13051. Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
  13052. Value *Val = EmitScalarExpr(E->getArg(2));
  13053. switch (BuiltinID) {
  13054. case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
  13055. case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
  13056. llvm::Type *ElemType = ConvertType(E->getType())->getVectorElementType();
  13057. Value *Trunc = Builder.CreateTrunc(Val, ElemType);
  13058. return Builder.CreateInsertElement(Vec, Trunc, Lane);
  13059. }
  13060. case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
  13061. case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
  13062. case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
  13063. case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
  13064. return Builder.CreateInsertElement(Vec, Val, Lane);
  13065. default:
  13066. llvm_unreachable("unexpected builtin ID");
  13067. }
  13068. }
  13069. case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
  13070. case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
  13071. case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
  13072. case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
  13073. case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
  13074. case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
  13075. case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
  13076. case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: {
  13077. unsigned IntNo;
  13078. switch (BuiltinID) {
  13079. case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
  13080. case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
  13081. IntNo = Intrinsic::sadd_sat;
  13082. break;
  13083. case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
  13084. case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
  13085. IntNo = Intrinsic::uadd_sat;
  13086. break;
  13087. case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
  13088. case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
  13089. IntNo = Intrinsic::wasm_sub_saturate_signed;
  13090. break;
  13091. case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
  13092. case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8:
  13093. IntNo = Intrinsic::wasm_sub_saturate_unsigned;
  13094. break;
  13095. default:
  13096. llvm_unreachable("unexpected builtin ID");
  13097. }
  13098. Value *LHS = EmitScalarExpr(E->getArg(0));
  13099. Value *RHS = EmitScalarExpr(E->getArg(1));
  13100. Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
  13101. return Builder.CreateCall(Callee, {LHS, RHS});
  13102. }
  13103. case WebAssembly::BI__builtin_wasm_bitselect: {
  13104. Value *V1 = EmitScalarExpr(E->getArg(0));
  13105. Value *V2 = EmitScalarExpr(E->getArg(1));
  13106. Value *C = EmitScalarExpr(E->getArg(2));
  13107. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitselect,
  13108. ConvertType(E->getType()));
  13109. return Builder.CreateCall(Callee, {V1, V2, C});
  13110. }
  13111. case WebAssembly::BI__builtin_wasm_any_true_i8x16:
  13112. case WebAssembly::BI__builtin_wasm_any_true_i16x8:
  13113. case WebAssembly::BI__builtin_wasm_any_true_i32x4:
  13114. case WebAssembly::BI__builtin_wasm_any_true_i64x2:
  13115. case WebAssembly::BI__builtin_wasm_all_true_i8x16:
  13116. case WebAssembly::BI__builtin_wasm_all_true_i16x8:
  13117. case WebAssembly::BI__builtin_wasm_all_true_i32x4:
  13118. case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
  13119. unsigned IntNo;
  13120. switch (BuiltinID) {
  13121. case WebAssembly::BI__builtin_wasm_any_true_i8x16:
  13122. case WebAssembly::BI__builtin_wasm_any_true_i16x8:
  13123. case WebAssembly::BI__builtin_wasm_any_true_i32x4:
  13124. case WebAssembly::BI__builtin_wasm_any_true_i64x2:
  13125. IntNo = Intrinsic::wasm_anytrue;
  13126. break;
  13127. case WebAssembly::BI__builtin_wasm_all_true_i8x16:
  13128. case WebAssembly::BI__builtin_wasm_all_true_i16x8:
  13129. case WebAssembly::BI__builtin_wasm_all_true_i32x4:
  13130. case WebAssembly::BI__builtin_wasm_all_true_i64x2:
  13131. IntNo = Intrinsic::wasm_alltrue;
  13132. break;
  13133. default:
  13134. llvm_unreachable("unexpected builtin ID");
  13135. }
  13136. Value *Vec = EmitScalarExpr(E->getArg(0));
  13137. Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
  13138. return Builder.CreateCall(Callee, {Vec});
  13139. }
  13140. case WebAssembly::BI__builtin_wasm_abs_f32x4:
  13141. case WebAssembly::BI__builtin_wasm_abs_f64x2: {
  13142. Value *Vec = EmitScalarExpr(E->getArg(0));
  13143. Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
  13144. return Builder.CreateCall(Callee, {Vec});
  13145. }
  13146. case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
  13147. case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
  13148. Value *Vec = EmitScalarExpr(E->getArg(0));
  13149. Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
  13150. return Builder.CreateCall(Callee, {Vec});
  13151. }
  13152. case WebAssembly::BI__builtin_wasm_qfma_f32x4:
  13153. case WebAssembly::BI__builtin_wasm_qfms_f32x4:
  13154. case WebAssembly::BI__builtin_wasm_qfma_f64x2:
  13155. case WebAssembly::BI__builtin_wasm_qfms_f64x2: {
  13156. Value *A = EmitScalarExpr(E->getArg(0));
  13157. Value *B = EmitScalarExpr(E->getArg(1));
  13158. Value *C = EmitScalarExpr(E->getArg(2));
  13159. unsigned IntNo;
  13160. switch (BuiltinID) {
  13161. case WebAssembly::BI__builtin_wasm_qfma_f32x4:
  13162. case WebAssembly::BI__builtin_wasm_qfma_f64x2:
  13163. IntNo = Intrinsic::wasm_qfma;
  13164. break;
  13165. case WebAssembly::BI__builtin_wasm_qfms_f32x4:
  13166. case WebAssembly::BI__builtin_wasm_qfms_f64x2:
  13167. IntNo = Intrinsic::wasm_qfms;
  13168. break;
  13169. default:
  13170. llvm_unreachable("unexpected builtin ID");
  13171. }
  13172. Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
  13173. return Builder.CreateCall(Callee, {A, B, C});
  13174. }
  13175. case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
  13176. case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
  13177. case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
  13178. case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
  13179. Value *Low = EmitScalarExpr(E->getArg(0));
  13180. Value *High = EmitScalarExpr(E->getArg(1));
  13181. unsigned IntNo;
  13182. switch (BuiltinID) {
  13183. case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
  13184. case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
  13185. IntNo = Intrinsic::wasm_narrow_signed;
  13186. break;
  13187. case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
  13188. case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
  13189. IntNo = Intrinsic::wasm_narrow_unsigned;
  13190. break;
  13191. default:
  13192. llvm_unreachable("unexpected builtin ID");
  13193. }
  13194. Function *Callee =
  13195. CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
  13196. return Builder.CreateCall(Callee, {Low, High});
  13197. }
  13198. case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16:
  13199. case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16:
  13200. case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16:
  13201. case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16:
  13202. case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8:
  13203. case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8:
  13204. case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8:
  13205. case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8: {
  13206. Value *Vec = EmitScalarExpr(E->getArg(0));
  13207. unsigned IntNo;
  13208. switch (BuiltinID) {
  13209. case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16:
  13210. case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8:
  13211. IntNo = Intrinsic::wasm_widen_low_signed;
  13212. break;
  13213. case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16:
  13214. case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8:
  13215. IntNo = Intrinsic::wasm_widen_high_signed;
  13216. break;
  13217. case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16:
  13218. case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8:
  13219. IntNo = Intrinsic::wasm_widen_low_unsigned;
  13220. break;
  13221. case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16:
  13222. case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8:
  13223. IntNo = Intrinsic::wasm_widen_high_unsigned;
  13224. break;
  13225. default:
  13226. llvm_unreachable("unexpected builtin ID");
  13227. }
  13228. Function *Callee =
  13229. CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Vec->getType()});
  13230. return Builder.CreateCall(Callee, Vec);
  13231. }
  13232. default:
  13233. return nullptr;
  13234. }
  13235. }
  13236. Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
  13237. const CallExpr *E) {
  13238. SmallVector<llvm::Value *, 4> Ops;
  13239. Intrinsic::ID ID = Intrinsic::not_intrinsic;
  13240. auto MakeCircLd = [&](unsigned IntID, bool HasImm) {
  13241. // The base pointer is passed by address, so it needs to be loaded.
  13242. Address BP = EmitPointerWithAlignment(E->getArg(0));
  13243. BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
  13244. BP.getAlignment());
  13245. llvm::Value *Base = Builder.CreateLoad(BP);
  13246. // Operands are Base, Increment, Modifier, Start.
  13247. if (HasImm)
  13248. Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
  13249. EmitScalarExpr(E->getArg(3)) };
  13250. else
  13251. Ops = { Base, EmitScalarExpr(E->getArg(1)),
  13252. EmitScalarExpr(E->getArg(2)) };
  13253. llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
  13254. llvm::Value *NewBase = Builder.CreateExtractValue(Result, 1);
  13255. llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
  13256. NewBase->getType()->getPointerTo());
  13257. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  13258. // The intrinsic generates two results. The new value for the base pointer
  13259. // needs to be stored.
  13260. Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
  13261. return Builder.CreateExtractValue(Result, 0);
  13262. };
  13263. auto MakeCircSt = [&](unsigned IntID, bool HasImm) {
  13264. // The base pointer is passed by address, so it needs to be loaded.
  13265. Address BP = EmitPointerWithAlignment(E->getArg(0));
  13266. BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
  13267. BP.getAlignment());
  13268. llvm::Value *Base = Builder.CreateLoad(BP);
  13269. // Operands are Base, Increment, Modifier, Value, Start.
  13270. if (HasImm)
  13271. Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
  13272. EmitScalarExpr(E->getArg(3)), EmitScalarExpr(E->getArg(4)) };
  13273. else
  13274. Ops = { Base, EmitScalarExpr(E->getArg(1)),
  13275. EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)) };
  13276. llvm::Value *NewBase = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
  13277. llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
  13278. NewBase->getType()->getPointerTo());
  13279. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  13280. // The intrinsic generates one result, which is the new value for the base
  13281. // pointer. It needs to be stored.
  13282. return Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
  13283. };
  13284. // Handle the conversion of bit-reverse load intrinsics to bit code.
  13285. // The intrinsic call after this function only reads from memory and the
  13286. // write to memory is dealt by the store instruction.
  13287. auto MakeBrevLd = [&](unsigned IntID, llvm::Type *DestTy) {
  13288. // The intrinsic generates one result, which is the new value for the base
  13289. // pointer. It needs to be returned. The result of the load instruction is
  13290. // passed to intrinsic by address, so the value needs to be stored.
  13291. llvm::Value *BaseAddress =
  13292. Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
  13293. // Expressions like &(*pt++) will be incremented per evaluation.
  13294. // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
  13295. // per call.
  13296. Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
  13297. DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
  13298. DestAddr.getAlignment());
  13299. llvm::Value *DestAddress = DestAddr.getPointer();
  13300. // Operands are Base, Dest, Modifier.
  13301. // The intrinsic format in LLVM IR is defined as
  13302. // { ValueType, i8* } (i8*, i32).
  13303. Ops = {BaseAddress, EmitScalarExpr(E->getArg(2))};
  13304. llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
  13305. // The value needs to be stored as the variable is passed by reference.
  13306. llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
  13307. // The store needs to be truncated to fit the destination type.
  13308. // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
  13309. // to be handled with stores of respective destination type.
  13310. DestVal = Builder.CreateTrunc(DestVal, DestTy);
  13311. llvm::Value *DestForStore =
  13312. Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
  13313. Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
  13314. // The updated value of the base pointer is returned.
  13315. return Builder.CreateExtractValue(Result, 1);
  13316. };
  13317. switch (BuiltinID) {
  13318. case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
  13319. case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: {
  13320. Address Dest = EmitPointerWithAlignment(E->getArg(2));
  13321. unsigned Size;
  13322. if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vaddcarry) {
  13323. Size = 512;
  13324. ID = Intrinsic::hexagon_V6_vaddcarry;
  13325. } else {
  13326. Size = 1024;
  13327. ID = Intrinsic::hexagon_V6_vaddcarry_128B;
  13328. }
  13329. Dest = Builder.CreateBitCast(Dest,
  13330. llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
  13331. LoadInst *QLd = Builder.CreateLoad(Dest);
  13332. Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
  13333. llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
  13334. llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
  13335. llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
  13336. Vprd->getType()->getPointerTo(0));
  13337. Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
  13338. return Builder.CreateExtractValue(Result, 0);
  13339. }
  13340. case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
  13341. case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
  13342. Address Dest = EmitPointerWithAlignment(E->getArg(2));
  13343. unsigned Size;
  13344. if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vsubcarry) {
  13345. Size = 512;
  13346. ID = Intrinsic::hexagon_V6_vsubcarry;
  13347. } else {
  13348. Size = 1024;
  13349. ID = Intrinsic::hexagon_V6_vsubcarry_128B;
  13350. }
  13351. Dest = Builder.CreateBitCast(Dest,
  13352. llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
  13353. LoadInst *QLd = Builder.CreateLoad(Dest);
  13354. Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
  13355. llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
  13356. llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
  13357. llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
  13358. Vprd->getType()->getPointerTo(0));
  13359. Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
  13360. return Builder.CreateExtractValue(Result, 0);
  13361. }
  13362. case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
  13363. return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pci, /*HasImm*/true);
  13364. case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
  13365. return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pci, /*HasImm*/true);
  13366. case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
  13367. return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pci, /*HasImm*/true);
  13368. case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
  13369. return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pci, /*HasImm*/true);
  13370. case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
  13371. return MakeCircLd(Intrinsic::hexagon_L2_loadri_pci, /*HasImm*/true);
  13372. case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
  13373. return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pci, /*HasImm*/true);
  13374. case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
  13375. return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pcr, /*HasImm*/false);
  13376. case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
  13377. return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pcr, /*HasImm*/false);
  13378. case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
  13379. return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pcr, /*HasImm*/false);
  13380. case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
  13381. return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pcr, /*HasImm*/false);
  13382. case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
  13383. return MakeCircLd(Intrinsic::hexagon_L2_loadri_pcr, /*HasImm*/false);
  13384. case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
  13385. return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pcr, /*HasImm*/false);
  13386. case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
  13387. return MakeCircSt(Intrinsic::hexagon_S2_storerb_pci, /*HasImm*/true);
  13388. case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
  13389. return MakeCircSt(Intrinsic::hexagon_S2_storerh_pci, /*HasImm*/true);
  13390. case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
  13391. return MakeCircSt(Intrinsic::hexagon_S2_storerf_pci, /*HasImm*/true);
  13392. case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
  13393. return MakeCircSt(Intrinsic::hexagon_S2_storeri_pci, /*HasImm*/true);
  13394. case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
  13395. return MakeCircSt(Intrinsic::hexagon_S2_storerd_pci, /*HasImm*/true);
  13396. case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
  13397. return MakeCircSt(Intrinsic::hexagon_S2_storerb_pcr, /*HasImm*/false);
  13398. case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
  13399. return MakeCircSt(Intrinsic::hexagon_S2_storerh_pcr, /*HasImm*/false);
  13400. case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
  13401. return MakeCircSt(Intrinsic::hexagon_S2_storerf_pcr, /*HasImm*/false);
  13402. case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
  13403. return MakeCircSt(Intrinsic::hexagon_S2_storeri_pcr, /*HasImm*/false);
  13404. case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
  13405. return MakeCircSt(Intrinsic::hexagon_S2_storerd_pcr, /*HasImm*/false);
  13406. case Hexagon::BI__builtin_brev_ldub:
  13407. return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
  13408. case Hexagon::BI__builtin_brev_ldb:
  13409. return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
  13410. case Hexagon::BI__builtin_brev_lduh:
  13411. return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
  13412. case Hexagon::BI__builtin_brev_ldh:
  13413. return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
  13414. case Hexagon::BI__builtin_brev_ldw:
  13415. return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
  13416. case Hexagon::BI__builtin_brev_ldd:
  13417. return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
  13418. default:
  13419. break;
  13420. } // switch
  13421. return nullptr;
  13422. }