AArch64.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675
  1. //===--- AArch64.cpp - Implement AArch64 target feature support -----------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file implements AArch64 TargetInfo objects.
  10. //
  11. //===----------------------------------------------------------------------===//
  12. #include "AArch64.h"
  13. #include "clang/Basic/TargetBuiltins.h"
  14. #include "clang/Basic/TargetInfo.h"
  15. #include "llvm/ADT/ArrayRef.h"
  16. #include "llvm/ADT/StringExtras.h"
  17. using namespace clang;
  18. using namespace clang::targets;
  19. const Builtin::Info AArch64TargetInfo::BuiltinInfo[] = {
  20. #define BUILTIN(ID, TYPE, ATTRS) \
  21. {#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, nullptr},
  22. #include "clang/Basic/BuiltinsNEON.def"
  23. #define BUILTIN(ID, TYPE, ATTRS) \
  24. {#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, nullptr},
  25. #define LANGBUILTIN(ID, TYPE, ATTRS, LANG) \
  26. {#ID, TYPE, ATTRS, nullptr, LANG, nullptr},
  27. #define TARGET_HEADER_BUILTIN(ID, TYPE, ATTRS, HEADER, LANGS, FEATURE) \
  28. {#ID, TYPE, ATTRS, HEADER, LANGS, FEATURE},
  29. #include "clang/Basic/BuiltinsAArch64.def"
  30. };
  31. AArch64TargetInfo::AArch64TargetInfo(const llvm::Triple &Triple,
  32. const TargetOptions &Opts)
  33. : TargetInfo(Triple), ABI("aapcs") {
  34. if (getTriple().isOSOpenBSD()) {
  35. Int64Type = SignedLongLong;
  36. IntMaxType = SignedLongLong;
  37. } else {
  38. if (!getTriple().isOSDarwin() && !getTriple().isOSNetBSD())
  39. WCharType = UnsignedInt;
  40. Int64Type = SignedLong;
  41. IntMaxType = SignedLong;
  42. }
  43. // All AArch64 implementations support ARMv8 FP, which makes half a legal type.
  44. HasLegalHalfType = true;
  45. HasFloat16 = true;
  46. LongWidth = LongAlign = PointerWidth = PointerAlign = 64;
  47. MaxVectorAlign = 128;
  48. MaxAtomicInlineWidth = 128;
  49. MaxAtomicPromoteWidth = 128;
  50. LongDoubleWidth = LongDoubleAlign = SuitableAlign = 128;
  51. LongDoubleFormat = &llvm::APFloat::IEEEquad();
  52. // Make __builtin_ms_va_list available.
  53. HasBuiltinMSVaList = true;
  54. // Make the SVE types available. Note that this deliberately doesn't
  55. // depend on SveMode, since in principle it should be possible to turn
  56. // SVE on and off within a translation unit. It should also be possible
  57. // to compile the global declaration:
  58. //
  59. // __SVInt8_t *ptr;
  60. //
  61. // even without SVE.
  62. HasAArch64SVETypes = true;
  63. // {} in inline assembly are neon specifiers, not assembly variant
  64. // specifiers.
  65. NoAsmVariants = true;
  66. // AAPCS gives rules for bitfields. 7.1.7 says: "The container type
  67. // contributes to the alignment of the containing aggregate in the same way
  68. // a plain (non bit-field) member of that type would, without exception for
  69. // zero-sized or anonymous bit-fields."
  70. assert(UseBitFieldTypeAlignment && "bitfields affect type alignment");
  71. UseZeroLengthBitfieldAlignment = true;
  72. // AArch64 targets default to using the ARM C++ ABI.
  73. TheCXXABI.set(TargetCXXABI::GenericAArch64);
  74. if (Triple.getOS() == llvm::Triple::Linux)
  75. this->MCountName = "\01_mcount";
  76. else if (Triple.getOS() == llvm::Triple::UnknownOS)
  77. this->MCountName =
  78. Opts.EABIVersion == llvm::EABI::GNU ? "\01_mcount" : "mcount";
  79. }
  80. StringRef AArch64TargetInfo::getABI() const { return ABI; }
  81. bool AArch64TargetInfo::setABI(const std::string &Name) {
  82. if (Name != "aapcs" && Name != "darwinpcs")
  83. return false;
  84. ABI = Name;
  85. return true;
  86. }
  87. bool AArch64TargetInfo::isValidCPUName(StringRef Name) const {
  88. return Name == "generic" ||
  89. llvm::AArch64::parseCPUArch(Name) != llvm::AArch64::ArchKind::INVALID;
  90. }
  91. bool AArch64TargetInfo::setCPU(const std::string &Name) {
  92. return isValidCPUName(Name);
  93. }
  94. void AArch64TargetInfo::fillValidCPUList(
  95. SmallVectorImpl<StringRef> &Values) const {
  96. llvm::AArch64::fillValidCPUArchList(Values);
  97. }
  98. void AArch64TargetInfo::getTargetDefinesARMV81A(const LangOptions &Opts,
  99. MacroBuilder &Builder) const {
  100. Builder.defineMacro("__ARM_FEATURE_QRDMX", "1");
  101. }
  102. void AArch64TargetInfo::getTargetDefinesARMV82A(const LangOptions &Opts,
  103. MacroBuilder &Builder) const {
  104. // Also include the ARMv8.1 defines
  105. getTargetDefinesARMV81A(Opts, Builder);
  106. }
  107. void AArch64TargetInfo::getTargetDefinesARMV83A(const LangOptions &Opts,
  108. MacroBuilder &Builder) const {
  109. Builder.defineMacro("__ARM_FEATURE_JCVT", "1");
  110. // Also include the Armv8.2 defines
  111. getTargetDefinesARMV82A(Opts, Builder);
  112. }
  113. void AArch64TargetInfo::getTargetDefinesARMV84A(const LangOptions &Opts,
  114. MacroBuilder &Builder) const {
  115. // Also include the Armv8.3 defines
  116. // FIXME: Armv8.4 makes some extensions mandatory. Handle them here.
  117. getTargetDefinesARMV83A(Opts, Builder);
  118. }
  119. void AArch64TargetInfo::getTargetDefinesARMV85A(const LangOptions &Opts,
  120. MacroBuilder &Builder) const {
  121. // Also include the Armv8.4 defines
  122. // FIXME: Armv8.5 makes some extensions mandatory. Handle them here.
  123. getTargetDefinesARMV84A(Opts, Builder);
  124. }
  125. void AArch64TargetInfo::getTargetDefines(const LangOptions &Opts,
  126. MacroBuilder &Builder) const {
  127. // Target identification.
  128. Builder.defineMacro("__aarch64__");
  129. // For bare-metal.
  130. if (getTriple().getOS() == llvm::Triple::UnknownOS &&
  131. getTriple().isOSBinFormatELF())
  132. Builder.defineMacro("__ELF__");
  133. // Target properties.
  134. if (!getTriple().isOSWindows()) {
  135. Builder.defineMacro("_LP64");
  136. Builder.defineMacro("__LP64__");
  137. }
  138. // ACLE predefines. Many can only have one possible value on v8 AArch64.
  139. Builder.defineMacro("__ARM_ACLE", "200");
  140. Builder.defineMacro("__ARM_ARCH", "8");
  141. Builder.defineMacro("__ARM_ARCH_PROFILE", "'A'");
  142. Builder.defineMacro("__ARM_64BIT_STATE", "1");
  143. Builder.defineMacro("__ARM_PCS_AAPCS64", "1");
  144. Builder.defineMacro("__ARM_ARCH_ISA_A64", "1");
  145. Builder.defineMacro("__ARM_FEATURE_CLZ", "1");
  146. Builder.defineMacro("__ARM_FEATURE_FMA", "1");
  147. Builder.defineMacro("__ARM_FEATURE_LDREX", "0xF");
  148. Builder.defineMacro("__ARM_FEATURE_IDIV", "1"); // As specified in ACLE
  149. Builder.defineMacro("__ARM_FEATURE_DIV"); // For backwards compatibility
  150. Builder.defineMacro("__ARM_FEATURE_NUMERIC_MAXMIN", "1");
  151. Builder.defineMacro("__ARM_FEATURE_DIRECTED_ROUNDING", "1");
  152. Builder.defineMacro("__ARM_ALIGN_MAX_STACK_PWR", "4");
  153. // 0xe implies support for half, single and double precision operations.
  154. Builder.defineMacro("__ARM_FP", "0xE");
  155. // PCS specifies this for SysV variants, which is all we support. Other ABIs
  156. // may choose __ARM_FP16_FORMAT_ALTERNATIVE.
  157. Builder.defineMacro("__ARM_FP16_FORMAT_IEEE", "1");
  158. Builder.defineMacro("__ARM_FP16_ARGS", "1");
  159. if (Opts.UnsafeFPMath)
  160. Builder.defineMacro("__ARM_FP_FAST", "1");
  161. Builder.defineMacro("__ARM_SIZEOF_WCHAR_T",
  162. Twine(Opts.WCharSize ? Opts.WCharSize : 4));
  163. Builder.defineMacro("__ARM_SIZEOF_MINIMAL_ENUM", Opts.ShortEnums ? "1" : "4");
  164. if (FPU & NeonMode) {
  165. Builder.defineMacro("__ARM_NEON", "1");
  166. // 64-bit NEON supports half, single and double precision operations.
  167. Builder.defineMacro("__ARM_NEON_FP", "0xE");
  168. }
  169. if (HasCRC)
  170. Builder.defineMacro("__ARM_FEATURE_CRC32", "1");
  171. if (HasCrypto)
  172. Builder.defineMacro("__ARM_FEATURE_CRYPTO", "1");
  173. if (HasUnaligned)
  174. Builder.defineMacro("__ARM_FEATURE_UNALIGNED", "1");
  175. if ((FPU & NeonMode) && HasFullFP16)
  176. Builder.defineMacro("__ARM_FEATURE_FP16_VECTOR_ARITHMETIC", "1");
  177. if (HasFullFP16)
  178. Builder.defineMacro("__ARM_FEATURE_FP16_SCALAR_ARITHMETIC", "1");
  179. if (HasDotProd)
  180. Builder.defineMacro("__ARM_FEATURE_DOTPROD", "1");
  181. if (HasMTE)
  182. Builder.defineMacro("__ARM_FEATURE_MEMORY_TAGGING", "1");
  183. if (HasTME)
  184. Builder.defineMacro("__ARM_FEATURE_TME", "1");
  185. if ((FPU & NeonMode) && HasFP16FML)
  186. Builder.defineMacro("__ARM_FEATURE_FP16FML", "1");
  187. switch (ArchKind) {
  188. default:
  189. break;
  190. case llvm::AArch64::ArchKind::ARMV8_1A:
  191. getTargetDefinesARMV81A(Opts, Builder);
  192. break;
  193. case llvm::AArch64::ArchKind::ARMV8_2A:
  194. getTargetDefinesARMV82A(Opts, Builder);
  195. break;
  196. case llvm::AArch64::ArchKind::ARMV8_3A:
  197. getTargetDefinesARMV83A(Opts, Builder);
  198. break;
  199. case llvm::AArch64::ArchKind::ARMV8_4A:
  200. getTargetDefinesARMV84A(Opts, Builder);
  201. break;
  202. case llvm::AArch64::ArchKind::ARMV8_5A:
  203. getTargetDefinesARMV85A(Opts, Builder);
  204. break;
  205. }
  206. // All of the __sync_(bool|val)_compare_and_swap_(1|2|4|8) builtins work.
  207. Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
  208. Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
  209. Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
  210. Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
  211. }
  212. ArrayRef<Builtin::Info> AArch64TargetInfo::getTargetBuiltins() const {
  213. return llvm::makeArrayRef(BuiltinInfo, clang::AArch64::LastTSBuiltin -
  214. Builtin::FirstTSBuiltin);
  215. }
  216. bool AArch64TargetInfo::hasFeature(StringRef Feature) const {
  217. return Feature == "aarch64" || Feature == "arm64" || Feature == "arm" ||
  218. (Feature == "neon" && (FPU & NeonMode)) ||
  219. (Feature == "sve" && (FPU & SveMode));
  220. }
  221. bool AArch64TargetInfo::handleTargetFeatures(std::vector<std::string> &Features,
  222. DiagnosticsEngine &Diags) {
  223. FPU = FPUMode;
  224. HasCRC = false;
  225. HasCrypto = false;
  226. HasUnaligned = true;
  227. HasFullFP16 = false;
  228. HasDotProd = false;
  229. HasFP16FML = false;
  230. HasMTE = false;
  231. HasTME = false;
  232. ArchKind = llvm::AArch64::ArchKind::ARMV8A;
  233. for (const auto &Feature : Features) {
  234. if (Feature == "+neon")
  235. FPU |= NeonMode;
  236. if (Feature == "+sve")
  237. FPU |= SveMode;
  238. if (Feature == "+crc")
  239. HasCRC = true;
  240. if (Feature == "+crypto")
  241. HasCrypto = true;
  242. if (Feature == "+strict-align")
  243. HasUnaligned = false;
  244. if (Feature == "+v8.1a")
  245. ArchKind = llvm::AArch64::ArchKind::ARMV8_1A;
  246. if (Feature == "+v8.2a")
  247. ArchKind = llvm::AArch64::ArchKind::ARMV8_2A;
  248. if (Feature == "+v8.3a")
  249. ArchKind = llvm::AArch64::ArchKind::ARMV8_3A;
  250. if (Feature == "+v8.4a")
  251. ArchKind = llvm::AArch64::ArchKind::ARMV8_4A;
  252. if (Feature == "+v8.5a")
  253. ArchKind = llvm::AArch64::ArchKind::ARMV8_5A;
  254. if (Feature == "+fullfp16")
  255. HasFullFP16 = true;
  256. if (Feature == "+dotprod")
  257. HasDotProd = true;
  258. if (Feature == "+fp16fml")
  259. HasFP16FML = true;
  260. if (Feature == "+mte")
  261. HasMTE = true;
  262. if (Feature == "+tme")
  263. HasTME = true;
  264. }
  265. setDataLayout();
  266. return true;
  267. }
  268. TargetInfo::CallingConvCheckResult
  269. AArch64TargetInfo::checkCallingConvention(CallingConv CC) const {
  270. switch (CC) {
  271. case CC_C:
  272. case CC_Swift:
  273. case CC_PreserveMost:
  274. case CC_PreserveAll:
  275. case CC_OpenCLKernel:
  276. case CC_AArch64VectorCall:
  277. case CC_Win64:
  278. return CCCR_OK;
  279. default:
  280. return CCCR_Warning;
  281. }
  282. }
  283. bool AArch64TargetInfo::isCLZForZeroUndef() const { return false; }
  284. TargetInfo::BuiltinVaListKind AArch64TargetInfo::getBuiltinVaListKind() const {
  285. return TargetInfo::AArch64ABIBuiltinVaList;
  286. }
  287. const char *const AArch64TargetInfo::GCCRegNames[] = {
  288. // 32-bit Integer registers
  289. "w0", "w1", "w2", "w3", "w4", "w5", "w6", "w7", "w8", "w9", "w10", "w11",
  290. "w12", "w13", "w14", "w15", "w16", "w17", "w18", "w19", "w20", "w21", "w22",
  291. "w23", "w24", "w25", "w26", "w27", "w28", "w29", "w30", "wsp",
  292. // 64-bit Integer registers
  293. "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11",
  294. "x12", "x13", "x14", "x15", "x16", "x17", "x18", "x19", "x20", "x21", "x22",
  295. "x23", "x24", "x25", "x26", "x27", "x28", "fp", "lr", "sp",
  296. // 32-bit floating point regsisters
  297. "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10", "s11",
  298. "s12", "s13", "s14", "s15", "s16", "s17", "s18", "s19", "s20", "s21", "s22",
  299. "s23", "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
  300. // 64-bit floating point regsisters
  301. "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10", "d11",
  302. "d12", "d13", "d14", "d15", "d16", "d17", "d18", "d19", "d20", "d21", "d22",
  303. "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
  304. // Neon vector registers
  305. "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11",
  306. "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22",
  307. "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",
  308. // SVE vector registers
  309. "z0", "z1", "z2", "z3", "z4", "z5", "z6", "z7", "z8", "z9", "z10",
  310. "z11", "z12", "z13", "z14", "z15", "z16", "z17", "z18", "z19", "z20", "z21",
  311. "z22", "z23", "z24", "z25", "z26", "z27", "z28", "z29", "z30", "z31",
  312. // SVE predicate registers
  313. "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8", "p9", "p10",
  314. "p11", "p12", "p13", "p14", "p15"
  315. };
  316. ArrayRef<const char *> AArch64TargetInfo::getGCCRegNames() const {
  317. return llvm::makeArrayRef(GCCRegNames);
  318. }
  319. const TargetInfo::GCCRegAlias AArch64TargetInfo::GCCRegAliases[] = {
  320. {{"w31"}, "wsp"},
  321. {{"x31"}, "sp"},
  322. // GCC rN registers are aliases of xN registers.
  323. {{"r0"}, "x0"},
  324. {{"r1"}, "x1"},
  325. {{"r2"}, "x2"},
  326. {{"r3"}, "x3"},
  327. {{"r4"}, "x4"},
  328. {{"r5"}, "x5"},
  329. {{"r6"}, "x6"},
  330. {{"r7"}, "x7"},
  331. {{"r8"}, "x8"},
  332. {{"r9"}, "x9"},
  333. {{"r10"}, "x10"},
  334. {{"r11"}, "x11"},
  335. {{"r12"}, "x12"},
  336. {{"r13"}, "x13"},
  337. {{"r14"}, "x14"},
  338. {{"r15"}, "x15"},
  339. {{"r16"}, "x16"},
  340. {{"r17"}, "x17"},
  341. {{"r18"}, "x18"},
  342. {{"r19"}, "x19"},
  343. {{"r20"}, "x20"},
  344. {{"r21"}, "x21"},
  345. {{"r22"}, "x22"},
  346. {{"r23"}, "x23"},
  347. {{"r24"}, "x24"},
  348. {{"r25"}, "x25"},
  349. {{"r26"}, "x26"},
  350. {{"r27"}, "x27"},
  351. {{"r28"}, "x28"},
  352. {{"r29", "x29"}, "fp"},
  353. {{"r30", "x30"}, "lr"},
  354. // The S/D/Q and W/X registers overlap, but aren't really aliases; we
  355. // don't want to substitute one of these for a different-sized one.
  356. };
  357. ArrayRef<TargetInfo::GCCRegAlias> AArch64TargetInfo::getGCCRegAliases() const {
  358. return llvm::makeArrayRef(GCCRegAliases);
  359. }
  360. bool AArch64TargetInfo::validateAsmConstraint(
  361. const char *&Name, TargetInfo::ConstraintInfo &Info) const {
  362. switch (*Name) {
  363. default:
  364. return false;
  365. case 'w': // Floating point and SIMD registers (V0-V31)
  366. Info.setAllowsRegister();
  367. return true;
  368. case 'I': // Constant that can be used with an ADD instruction
  369. case 'J': // Constant that can be used with a SUB instruction
  370. case 'K': // Constant that can be used with a 32-bit logical instruction
  371. case 'L': // Constant that can be used with a 64-bit logical instruction
  372. case 'M': // Constant that can be used as a 32-bit MOV immediate
  373. case 'N': // Constant that can be used as a 64-bit MOV immediate
  374. case 'Y': // Floating point constant zero
  375. case 'Z': // Integer constant zero
  376. return true;
  377. case 'Q': // A memory reference with base register and no offset
  378. Info.setAllowsMemory();
  379. return true;
  380. case 'S': // A symbolic address
  381. Info.setAllowsRegister();
  382. return true;
  383. case 'U':
  384. // Ump: A memory address suitable for ldp/stp in SI, DI, SF and DF modes.
  385. // Utf: A memory address suitable for ldp/stp in TF mode.
  386. // Usa: An absolute symbolic address.
  387. // Ush: The high part (bits 32:12) of a pc-relative symbolic address.
  388. llvm_unreachable("FIXME: Unimplemented support for U* constraints.");
  389. case 'z': // Zero register, wzr or xzr
  390. Info.setAllowsRegister();
  391. return true;
  392. case 'x': // Floating point and SIMD registers (V0-V15)
  393. Info.setAllowsRegister();
  394. return true;
  395. }
  396. return false;
  397. }
  398. bool AArch64TargetInfo::validateConstraintModifier(
  399. StringRef Constraint, char Modifier, unsigned Size,
  400. std::string &SuggestedModifier) const {
  401. // Strip off constraint modifiers.
  402. while (Constraint[0] == '=' || Constraint[0] == '+' || Constraint[0] == '&')
  403. Constraint = Constraint.substr(1);
  404. switch (Constraint[0]) {
  405. default:
  406. return true;
  407. case 'z':
  408. case 'r': {
  409. switch (Modifier) {
  410. case 'x':
  411. case 'w':
  412. // For now assume that the person knows what they're
  413. // doing with the modifier.
  414. return true;
  415. default:
  416. // By default an 'r' constraint will be in the 'x'
  417. // registers.
  418. if (Size == 64)
  419. return true;
  420. SuggestedModifier = "w";
  421. return false;
  422. }
  423. }
  424. }
  425. }
  426. const char *AArch64TargetInfo::getClobbers() const { return ""; }
  427. int AArch64TargetInfo::getEHDataRegisterNumber(unsigned RegNo) const {
  428. if (RegNo == 0)
  429. return 0;
  430. if (RegNo == 1)
  431. return 1;
  432. return -1;
  433. }
  434. AArch64leTargetInfo::AArch64leTargetInfo(const llvm::Triple &Triple,
  435. const TargetOptions &Opts)
  436. : AArch64TargetInfo(Triple, Opts) {}
  437. void AArch64leTargetInfo::setDataLayout() {
  438. if (getTriple().isOSBinFormatMachO())
  439. resetDataLayout("e-m:o-i64:64-i128:128-n32:64-S128");
  440. else
  441. resetDataLayout("e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128");
  442. }
  443. void AArch64leTargetInfo::getTargetDefines(const LangOptions &Opts,
  444. MacroBuilder &Builder) const {
  445. Builder.defineMacro("__AARCH64EL__");
  446. AArch64TargetInfo::getTargetDefines(Opts, Builder);
  447. }
  448. AArch64beTargetInfo::AArch64beTargetInfo(const llvm::Triple &Triple,
  449. const TargetOptions &Opts)
  450. : AArch64TargetInfo(Triple, Opts) {}
  451. void AArch64beTargetInfo::getTargetDefines(const LangOptions &Opts,
  452. MacroBuilder &Builder) const {
  453. Builder.defineMacro("__AARCH64EB__");
  454. Builder.defineMacro("__AARCH_BIG_ENDIAN");
  455. Builder.defineMacro("__ARM_BIG_ENDIAN");
  456. AArch64TargetInfo::getTargetDefines(Opts, Builder);
  457. }
  458. void AArch64beTargetInfo::setDataLayout() {
  459. assert(!getTriple().isOSBinFormatMachO());
  460. resetDataLayout("E-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128");
  461. }
  462. WindowsARM64TargetInfo::WindowsARM64TargetInfo(const llvm::Triple &Triple,
  463. const TargetOptions &Opts)
  464. : WindowsTargetInfo<AArch64leTargetInfo>(Triple, Opts), Triple(Triple) {
  465. // This is an LLP64 platform.
  466. // int:4, long:4, long long:8, long double:8.
  467. IntWidth = IntAlign = 32;
  468. LongWidth = LongAlign = 32;
  469. DoubleAlign = LongLongAlign = 64;
  470. LongDoubleWidth = LongDoubleAlign = 64;
  471. LongDoubleFormat = &llvm::APFloat::IEEEdouble();
  472. IntMaxType = SignedLongLong;
  473. Int64Type = SignedLongLong;
  474. SizeType = UnsignedLongLong;
  475. PtrDiffType = SignedLongLong;
  476. IntPtrType = SignedLongLong;
  477. }
  478. void WindowsARM64TargetInfo::setDataLayout() {
  479. resetDataLayout("e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128");
  480. }
  481. TargetInfo::BuiltinVaListKind
  482. WindowsARM64TargetInfo::getBuiltinVaListKind() const {
  483. return TargetInfo::CharPtrBuiltinVaList;
  484. }
  485. TargetInfo::CallingConvCheckResult
  486. WindowsARM64TargetInfo::checkCallingConvention(CallingConv CC) const {
  487. switch (CC) {
  488. case CC_X86StdCall:
  489. case CC_X86ThisCall:
  490. case CC_X86FastCall:
  491. case CC_X86VectorCall:
  492. return CCCR_Ignore;
  493. case CC_C:
  494. case CC_OpenCLKernel:
  495. case CC_PreserveMost:
  496. case CC_PreserveAll:
  497. case CC_Swift:
  498. case CC_Win64:
  499. return CCCR_OK;
  500. default:
  501. return CCCR_Warning;
  502. }
  503. }
  504. MicrosoftARM64TargetInfo::MicrosoftARM64TargetInfo(const llvm::Triple &Triple,
  505. const TargetOptions &Opts)
  506. : WindowsARM64TargetInfo(Triple, Opts) {
  507. TheCXXABI.set(TargetCXXABI::Microsoft);
  508. }
  509. void MicrosoftARM64TargetInfo::getTargetDefines(const LangOptions &Opts,
  510. MacroBuilder &Builder) const {
  511. WindowsARM64TargetInfo::getTargetDefines(Opts, Builder);
  512. Builder.defineMacro("_M_ARM64", "1");
  513. }
  514. TargetInfo::CallingConvKind
  515. MicrosoftARM64TargetInfo::getCallingConvKind(bool ClangABICompat4) const {
  516. return CCK_MicrosoftWin64;
  517. }
  518. unsigned MicrosoftARM64TargetInfo::getMinGlobalAlign(uint64_t TypeSize) const {
  519. unsigned Align = WindowsARM64TargetInfo::getMinGlobalAlign(TypeSize);
  520. // MSVC does size based alignment for arm64 based on alignment section in
  521. // below document, replicate that to keep alignment consistent with object
  522. // files compiled by MSVC.
  523. // https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions
  524. if (TypeSize >= 512) { // TypeSize >= 64 bytes
  525. Align = std::max(Align, 128u); // align type at least 16 bytes
  526. } else if (TypeSize >= 64) { // TypeSize >= 8 bytes
  527. Align = std::max(Align, 64u); // align type at least 8 butes
  528. } else if (TypeSize >= 16) { // TypeSize >= 2 bytes
  529. Align = std::max(Align, 32u); // align type at least 4 bytes
  530. }
  531. return Align;
  532. }
  533. MinGWARM64TargetInfo::MinGWARM64TargetInfo(const llvm::Triple &Triple,
  534. const TargetOptions &Opts)
  535. : WindowsARM64TargetInfo(Triple, Opts) {
  536. TheCXXABI.set(TargetCXXABI::GenericAArch64);
  537. }
  538. DarwinAArch64TargetInfo::DarwinAArch64TargetInfo(const llvm::Triple &Triple,
  539. const TargetOptions &Opts)
  540. : DarwinTargetInfo<AArch64leTargetInfo>(Triple, Opts) {
  541. Int64Type = SignedLongLong;
  542. UseSignedCharForObjCBool = false;
  543. LongDoubleWidth = LongDoubleAlign = SuitableAlign = 64;
  544. LongDoubleFormat = &llvm::APFloat::IEEEdouble();
  545. TheCXXABI.set(TargetCXXABI::iOS64);
  546. }
  547. void DarwinAArch64TargetInfo::getOSDefines(const LangOptions &Opts,
  548. const llvm::Triple &Triple,
  549. MacroBuilder &Builder) const {
  550. Builder.defineMacro("__AARCH64_SIMD__");
  551. Builder.defineMacro("__ARM64_ARCH_8__");
  552. Builder.defineMacro("__ARM_NEON__");
  553. Builder.defineMacro("__LITTLE_ENDIAN__");
  554. Builder.defineMacro("__REGISTER_PREFIX__", "");
  555. Builder.defineMacro("__arm64", "1");
  556. Builder.defineMacro("__arm64__", "1");
  557. getDarwinDefines(Builder, Opts, Triple, PlatformName, PlatformMinVersion);
  558. }
  559. TargetInfo::BuiltinVaListKind
  560. DarwinAArch64TargetInfo::getBuiltinVaListKind() const {
  561. return TargetInfo::CharPtrBuiltinVaList;
  562. }
  563. // 64-bit RenderScript is aarch64
  564. RenderScript64TargetInfo::RenderScript64TargetInfo(const llvm::Triple &Triple,
  565. const TargetOptions &Opts)
  566. : AArch64leTargetInfo(llvm::Triple("aarch64", Triple.getVendorName(),
  567. Triple.getOSName(),
  568. Triple.getEnvironmentName()),
  569. Opts) {
  570. IsRenderScriptTarget = true;
  571. }
  572. void RenderScript64TargetInfo::getTargetDefines(const LangOptions &Opts,
  573. MacroBuilder &Builder) const {
  574. Builder.defineMacro("__RENDERSCRIPT__");
  575. AArch64leTargetInfo::getTargetDefines(Opts, Builder);
  576. }