1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511 |
- =========================
- Clang Language Extensions
- =========================
- .. contents::
- :local:
- :depth: 1
- .. toctree::
- :hidden:
- ObjectiveCLiterals
- BlockLanguageSpec
- Block-ABI-Apple
- AutomaticReferenceCounting
- Introduction
- ============
- This document describes the language extensions provided by Clang. In addition
- to the language extensions listed here, Clang aims to support a broad range of
- GCC extensions. Please see the `GCC manual
- <https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html>`_ for more information on
- these extensions.
- .. _langext-feature_check:
- Feature Checking Macros
- =======================
- Language extensions can be very useful, but only if you know you can depend on
- them. In order to allow fine-grain features checks, we support three builtin
- function-like macros. This allows you to directly test for a feature in your
- code without having to resort to something like autoconf or fragile "compiler
- version checks".
- ``__has_builtin``
- -----------------
- This function-like macro takes a single identifier argument that is the name of
- a builtin function, a builtin pseudo-function (taking one or more type
- arguments), or a builtin template.
- It evaluates to 1 if the builtin is supported or 0 if not.
- It can be used like this:
- .. code-block:: c++
- #ifndef __has_builtin // Optional of course.
- #define __has_builtin(x) 0 // Compatibility with non-clang compilers.
- #endif
- ...
- #if __has_builtin(__builtin_trap)
- __builtin_trap();
- #else
- abort();
- #endif
- ...
- .. note::
- Prior to Clang 10, ``__has_builtin`` could not be used to detect most builtin
- pseudo-functions.
- ``__has_builtin`` should not be used to detect support for a builtin macro;
- use ``#ifdef`` instead.
- .. _langext-__has_feature-__has_extension:
- ``__has_feature`` and ``__has_extension``
- -----------------------------------------
- These function-like macros take a single identifier argument that is the name
- of a feature. ``__has_feature`` evaluates to 1 if the feature is both
- supported by Clang and standardized in the current language standard or 0 if
- not (but see :ref:`below <langext-has-feature-back-compat>`), while
- ``__has_extension`` evaluates to 1 if the feature is supported by Clang in the
- current language (either as a language extension or a standard language
- feature) or 0 if not. They can be used like this:
- .. code-block:: c++
- #ifndef __has_feature // Optional of course.
- #define __has_feature(x) 0 // Compatibility with non-clang compilers.
- #endif
- #ifndef __has_extension
- #define __has_extension __has_feature // Compatibility with pre-3.0 compilers.
- #endif
- ...
- #if __has_feature(cxx_rvalue_references)
- // This code will only be compiled with the -std=c++11 and -std=gnu++11
- // options, because rvalue references are only standardized in C++11.
- #endif
- #if __has_extension(cxx_rvalue_references)
- // This code will be compiled with the -std=c++11, -std=gnu++11, -std=c++98
- // and -std=gnu++98 options, because rvalue references are supported as a
- // language extension in C++98.
- #endif
- .. _langext-has-feature-back-compat:
- For backward compatibility, ``__has_feature`` can also be used to test
- for support for non-standardized features, i.e. features not prefixed ``c_``,
- ``cxx_`` or ``objc_``.
- Another use of ``__has_feature`` is to check for compiler features not related
- to the language standard, such as e.g. :doc:`AddressSanitizer
- <AddressSanitizer>`.
- If the ``-pedantic-errors`` option is given, ``__has_extension`` is equivalent
- to ``__has_feature``.
- The feature tag is described along with the language feature below.
- The feature name or extension name can also be specified with a preceding and
- following ``__`` (double underscore) to avoid interference from a macro with
- the same name. For instance, ``__cxx_rvalue_references__`` can be used instead
- of ``cxx_rvalue_references``.
- ``__has_cpp_attribute``
- -----------------------
- This function-like macro is available in C++2a by default, and is provided as an
- extension in earlier language standards. It takes a single argument that is the
- name of a double-square-bracket-style attribute. The argument can either be a
- single identifier or a scoped identifier. If the attribute is supported, a
- nonzero value is returned. If the attribute is a standards-based attribute, this
- macro returns a nonzero value based on the year and month in which the attribute
- was voted into the working draft. See `WG21 SD-6
- <https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations>`_
- for the list of values returned for standards-based attributes. If the attribute
- is not supported by the current compliation target, this macro evaluates to 0.
- It can be used like this:
- .. code-block:: c++
- #ifndef __has_cpp_attribute // For backwards compatibility
- #define __has_cpp_attribute(x) 0
- #endif
- ...
- #if __has_cpp_attribute(clang::fallthrough)
- #define FALLTHROUGH [[clang::fallthrough]]
- #else
- #define FALLTHROUGH
- #endif
- ...
- The attribute scope tokens ``clang`` and ``_Clang`` are interchangeable, as are
- the attribute scope tokens ``gnu`` and ``__gnu__``. Attribute tokens in either
- of these namespaces can be specified with a preceding and following ``__``
- (double underscore) to avoid interference from a macro with the same name. For
- instance, ``gnu::__const__`` can be used instead of ``gnu::const``.
- ``__has_c_attribute``
- ---------------------
- This function-like macro takes a single argument that is the name of an
- attribute exposed with the double square-bracket syntax in C mode. The argument
- can either be a single identifier or a scoped identifier. If the attribute is
- supported, a nonzero value is returned. If the attribute is not supported by the
- current compilation target, this macro evaluates to 0. It can be used like this:
- .. code-block:: c
- #ifndef __has_c_attribute // Optional of course.
- #define __has_c_attribute(x) 0 // Compatibility with non-clang compilers.
- #endif
- ...
- #if __has_c_attribute(fallthrough)
- #define FALLTHROUGH [[fallthrough]]
- #else
- #define FALLTHROUGH
- #endif
- ...
- The attribute scope tokens ``clang`` and ``_Clang`` are interchangeable, as are
- the attribute scope tokens ``gnu`` and ``__gnu__``. Attribute tokens in either
- of these namespaces can be specified with a preceding and following ``__``
- (double underscore) to avoid interference from a macro with the same name. For
- instance, ``gnu::__const__`` can be used instead of ``gnu::const``.
- ``__has_attribute``
- -------------------
- This function-like macro takes a single identifier argument that is the name of
- a GNU-style attribute. It evaluates to 1 if the attribute is supported by the
- current compilation target, or 0 if not. It can be used like this:
- .. code-block:: c++
- #ifndef __has_attribute // Optional of course.
- #define __has_attribute(x) 0 // Compatibility with non-clang compilers.
- #endif
- ...
- #if __has_attribute(always_inline)
- #define ALWAYS_INLINE __attribute__((always_inline))
- #else
- #define ALWAYS_INLINE
- #endif
- ...
- The attribute name can also be specified with a preceding and following ``__``
- (double underscore) to avoid interference from a macro with the same name. For
- instance, ``__always_inline__`` can be used instead of ``always_inline``.
- ``__has_declspec_attribute``
- ----------------------------
- This function-like macro takes a single identifier argument that is the name of
- an attribute implemented as a Microsoft-style ``__declspec`` attribute. It
- evaluates to 1 if the attribute is supported by the current compilation target,
- or 0 if not. It can be used like this:
- .. code-block:: c++
- #ifndef __has_declspec_attribute // Optional of course.
- #define __has_declspec_attribute(x) 0 // Compatibility with non-clang compilers.
- #endif
- ...
- #if __has_declspec_attribute(dllexport)
- #define DLLEXPORT __declspec(dllexport)
- #else
- #define DLLEXPORT
- #endif
- ...
- The attribute name can also be specified with a preceding and following ``__``
- (double underscore) to avoid interference from a macro with the same name. For
- instance, ``__dllexport__`` can be used instead of ``dllexport``.
- ``__is_identifier``
- -------------------
- This function-like macro takes a single identifier argument that might be either
- a reserved word or a regular identifier. It evaluates to 1 if the argument is just
- a regular identifier and not a reserved word, in the sense that it can then be
- used as the name of a user-defined function or variable. Otherwise it evaluates
- to 0. It can be used like this:
- .. code-block:: c++
- ...
- #ifdef __is_identifier // Compatibility with non-clang compilers.
- #if __is_identifier(__wchar_t)
- typedef wchar_t __wchar_t;
- #endif
- #endif
- __wchar_t WideCharacter;
- ...
- Include File Checking Macros
- ============================
- Not all developments systems have the same include files. The
- :ref:`langext-__has_include` and :ref:`langext-__has_include_next` macros allow
- you to check for the existence of an include file before doing a possibly
- failing ``#include`` directive. Include file checking macros must be used
- as expressions in ``#if`` or ``#elif`` preprocessing directives.
- .. _langext-__has_include:
- ``__has_include``
- -----------------
- This function-like macro takes a single file name string argument that is the
- name of an include file. It evaluates to 1 if the file can be found using the
- include paths, or 0 otherwise:
- .. code-block:: c++
- // Note the two possible file name string formats.
- #if __has_include("myinclude.h") && __has_include(<stdint.h>)
- # include "myinclude.h"
- #endif
- To test for this feature, use ``#if defined(__has_include)``:
- .. code-block:: c++
- // To avoid problem with non-clang compilers not having this macro.
- #if defined(__has_include)
- #if __has_include("myinclude.h")
- # include "myinclude.h"
- #endif
- #endif
- .. _langext-__has_include_next:
- ``__has_include_next``
- ----------------------
- This function-like macro takes a single file name string argument that is the
- name of an include file. It is like ``__has_include`` except that it looks for
- the second instance of the given file found in the include paths. It evaluates
- to 1 if the second instance of the file can be found using the include paths,
- or 0 otherwise:
- .. code-block:: c++
- // Note the two possible file name string formats.
- #if __has_include_next("myinclude.h") && __has_include_next(<stdint.h>)
- # include_next "myinclude.h"
- #endif
- // To avoid problem with non-clang compilers not having this macro.
- #if defined(__has_include_next)
- #if __has_include_next("myinclude.h")
- # include_next "myinclude.h"
- #endif
- #endif
- Note that ``__has_include_next``, like the GNU extension ``#include_next``
- directive, is intended for use in headers only, and will issue a warning if
- used in the top-level compilation file. A warning will also be issued if an
- absolute path is used in the file argument.
- ``__has_warning``
- -----------------
- This function-like macro takes a string literal that represents a command line
- option for a warning and returns true if that is a valid warning option.
- .. code-block:: c++
- #if __has_warning("-Wformat")
- ...
- #endif
- .. _languageextensions-builtin-macros:
- Builtin Macros
- ==============
- ``__BASE_FILE__``
- Defined to a string that contains the name of the main input file passed to
- Clang.
- ``__FILE_NAME__``
- Clang-specific extension that functions similar to ``__FILE__`` but only
- renders the last path component (the filename) instead of an invocation
- dependent full path to that file.
- ``__COUNTER__``
- Defined to an integer value that starts at zero and is incremented each time
- the ``__COUNTER__`` macro is expanded.
- ``__INCLUDE_LEVEL__``
- Defined to an integral value that is the include depth of the file currently
- being translated. For the main file, this value is zero.
- ``__TIMESTAMP__``
- Defined to the date and time of the last modification of the current source
- file.
- ``__clang__``
- Defined when compiling with Clang
- ``__clang_major__``
- Defined to the major marketing version number of Clang (e.g., the 2 in
- 2.0.1). Note that marketing version numbers should not be used to check for
- language features, as different vendors use different numbering schemes.
- Instead, use the :ref:`langext-feature_check`.
- ``__clang_minor__``
- Defined to the minor version number of Clang (e.g., the 0 in 2.0.1). Note
- that marketing version numbers should not be used to check for language
- features, as different vendors use different numbering schemes. Instead, use
- the :ref:`langext-feature_check`.
- ``__clang_patchlevel__``
- Defined to the marketing patch level of Clang (e.g., the 1 in 2.0.1).
- ``__clang_version__``
- Defined to a string that captures the Clang marketing version, including the
- Subversion tag or revision number, e.g., "``1.5 (trunk 102332)``".
- .. _langext-vectors:
- Vectors and Extended Vectors
- ============================
- Supports the GCC, OpenCL, AltiVec and NEON vector extensions.
- OpenCL vector types are created using the ``ext_vector_type`` attribute. It
- supports the ``V.xyzw`` syntax and other tidbits as seen in OpenCL. An example
- is:
- .. code-block:: c++
- typedef float float4 __attribute__((ext_vector_type(4)));
- typedef float float2 __attribute__((ext_vector_type(2)));
- float4 foo(float2 a, float2 b) {
- float4 c;
- c.xz = a;
- c.yw = b;
- return c;
- }
- Query for this feature with ``__has_attribute(ext_vector_type)``.
- Giving ``-maltivec`` option to clang enables support for AltiVec vector syntax
- and functions. For example:
- .. code-block:: c++
- vector float foo(vector int a) {
- vector int b;
- b = vec_add(a, a) + a;
- return (vector float)b;
- }
- NEON vector types are created using ``neon_vector_type`` and
- ``neon_polyvector_type`` attributes. For example:
- .. code-block:: c++
- typedef __attribute__((neon_vector_type(8))) int8_t int8x8_t;
- typedef __attribute__((neon_polyvector_type(16))) poly8_t poly8x16_t;
- int8x8_t foo(int8x8_t a) {
- int8x8_t v;
- v = a;
- return v;
- }
- Vector Literals
- ---------------
- Vector literals can be used to create vectors from a set of scalars, or
- vectors. Either parentheses or braces form can be used. In the parentheses
- form the number of literal values specified must be one, i.e. referring to a
- scalar value, or must match the size of the vector type being created. If a
- single scalar literal value is specified, the scalar literal value will be
- replicated to all the components of the vector type. In the brackets form any
- number of literals can be specified. For example:
- .. code-block:: c++
- typedef int v4si __attribute__((__vector_size__(16)));
- typedef float float4 __attribute__((ext_vector_type(4)));
- typedef float float2 __attribute__((ext_vector_type(2)));
- v4si vsi = (v4si){1, 2, 3, 4};
- float4 vf = (float4)(1.0f, 2.0f, 3.0f, 4.0f);
- vector int vi1 = (vector int)(1); // vi1 will be (1, 1, 1, 1).
- vector int vi2 = (vector int){1}; // vi2 will be (1, 0, 0, 0).
- vector int vi3 = (vector int)(1, 2); // error
- vector int vi4 = (vector int){1, 2}; // vi4 will be (1, 2, 0, 0).
- vector int vi5 = (vector int)(1, 2, 3, 4);
- float4 vf = (float4)((float2)(1.0f, 2.0f), (float2)(3.0f, 4.0f));
- Vector Operations
- -----------------
- The table below shows the support for each operation by vector extension. A
- dash indicates that an operation is not accepted according to a corresponding
- specification.
- ============================== ======= ======= ======= =======
- Operator OpenCL AltiVec GCC NEON
- ============================== ======= ======= ======= =======
- [] yes yes yes --
- unary operators +, -- yes yes yes --
- ++, -- -- yes yes yes --
- +,--,*,/,% yes yes yes --
- bitwise operators &,|,^,~ yes yes yes --
- >>,<< yes yes yes --
- !, &&, || yes -- -- --
- ==, !=, >, <, >=, <= yes yes -- --
- = yes yes yes yes
- :? yes -- -- --
- sizeof yes yes yes yes
- C-style cast yes yes yes no
- reinterpret_cast yes no yes no
- static_cast yes no yes no
- const_cast no no no no
- ============================== ======= ======= ======= =======
- See also :ref:`langext-__builtin_shufflevector`, :ref:`langext-__builtin_convertvector`.
- Half-Precision Floating Point
- =============================
- Clang supports two half-precision (16-bit) floating point types: ``__fp16`` and
- ``_Float16``. These types are supported in all language modes.
- ``__fp16`` is supported on every target, as it is purely a storage format; see below.
- ``_Float16`` is currently only supported on the following targets, with further
- targets pending ABI standardization:
- * 32-bit ARM
- * 64-bit ARM (AArch64)
- * SPIR
- ``_Float16`` will be supported on more targets as they define ABIs for it.
- ``__fp16`` is a storage and interchange format only. This means that values of
- ``__fp16`` are immediately promoted to (at least) ``float`` when used in arithmetic
- operations, so that e.g. the result of adding two ``__fp16`` values has type ``float``.
- The behavior of ``__fp16`` is specified by the ARM C Language Extensions (`ACLE <http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053d/IHI0053D_acle_2_1.pdf>`_).
- Clang uses the ``binary16`` format from IEEE 754-2008 for ``__fp16``, not the ARM
- alternative format.
- ``_Float16`` is an extended floating-point type. This means that, just like arithmetic on
- ``float`` or ``double``, arithmetic on ``_Float16`` operands is formally performed in the
- ``_Float16`` type, so that e.g. the result of adding two ``_Float16`` values has type
- ``_Float16``. The behavior of ``_Float16`` is specified by ISO/IEC TS 18661-3:2015
- ("Floating-point extensions for C"). As with ``__fp16``, Clang uses the ``binary16``
- format from IEEE 754-2008 for ``_Float16``.
- ``_Float16`` arithmetic will be performed using native half-precision support
- when available on the target (e.g. on ARMv8.2a); otherwise it will be performed
- at a higher precision (currently always ``float``) and then truncated down to
- ``_Float16``. Note that C and C++ allow intermediate floating-point operands
- of an expression to be computed with greater precision than is expressible in
- their type, so Clang may avoid intermediate truncations in certain cases; this may
- lead to results that are inconsistent with native arithmetic.
- It is recommended that portable code use ``_Float16`` instead of ``__fp16``,
- as it has been defined by the C standards committee and has behavior that is
- more familiar to most programmers.
- Because ``__fp16`` operands are always immediately promoted to ``float``, the
- common real type of ``__fp16`` and ``_Float16`` for the purposes of the usual
- arithmetic conversions is ``float``.
- A literal can be given ``_Float16`` type using the suffix ``f16``. For example,
- ``3.14f16``.
- Because default argument promotion only applies to the standard floating-point
- types, ``_Float16`` values are not promoted to ``double`` when passed as variadic
- or untyped arguments. As a consequence, some caution must be taken when using
- certain library facilities with ``_Float16``; for example, there is no ``printf`` format
- specifier for ``_Float16``, and (unlike ``float``) it will not be implicitly promoted to
- ``double`` when passed to ``printf``, so the programmer must explicitly cast it to
- ``double`` before using it with an ``%f`` or similar specifier.
- Messages on ``deprecated`` and ``unavailable`` Attributes
- =========================================================
- An optional string message can be added to the ``deprecated`` and
- ``unavailable`` attributes. For example:
- .. code-block:: c++
- void explode(void) __attribute__((deprecated("extremely unsafe, use 'combust' instead!!!")));
- If the deprecated or unavailable declaration is used, the message will be
- incorporated into the appropriate diagnostic:
- .. code-block:: none
- harmless.c:4:3: warning: 'explode' is deprecated: extremely unsafe, use 'combust' instead!!!
- [-Wdeprecated-declarations]
- explode();
- ^
- Query for this feature with
- ``__has_extension(attribute_deprecated_with_message)`` and
- ``__has_extension(attribute_unavailable_with_message)``.
- Attributes on Enumerators
- =========================
- Clang allows attributes to be written on individual enumerators. This allows
- enumerators to be deprecated, made unavailable, etc. The attribute must appear
- after the enumerator name and before any initializer, like so:
- .. code-block:: c++
- enum OperationMode {
- OM_Invalid,
- OM_Normal,
- OM_Terrified __attribute__((deprecated)),
- OM_AbortOnError __attribute__((deprecated)) = 4
- };
- Attributes on the ``enum`` declaration do not apply to individual enumerators.
- Query for this feature with ``__has_extension(enumerator_attributes)``.
- 'User-Specified' System Frameworks
- ==================================
- Clang provides a mechanism by which frameworks can be built in such a way that
- they will always be treated as being "system frameworks", even if they are not
- present in a system framework directory. This can be useful to system
- framework developers who want to be able to test building other applications
- with development builds of their framework, including the manner in which the
- compiler changes warning behavior for system headers.
- Framework developers can opt-in to this mechanism by creating a
- "``.system_framework``" file at the top-level of their framework. That is, the
- framework should have contents like:
- .. code-block:: none
- .../TestFramework.framework
- .../TestFramework.framework/.system_framework
- .../TestFramework.framework/Headers
- .../TestFramework.framework/Headers/TestFramework.h
- ...
- Clang will treat the presence of this file as an indicator that the framework
- should be treated as a system framework, regardless of how it was found in the
- framework search path. For consistency, we recommend that such files never be
- included in installed versions of the framework.
- Checks for Standard Language Features
- =====================================
- The ``__has_feature`` macro can be used to query if certain standard language
- features are enabled. The ``__has_extension`` macro can be used to query if
- language features are available as an extension when compiling for a standard
- which does not provide them. The features which can be tested are listed here.
- Since Clang 3.4, the C++ SD-6 feature test macros are also supported.
- These are macros with names of the form ``__cpp_<feature_name>``, and are
- intended to be a portable way to query the supported features of the compiler.
- See `the C++ status page <https://clang.llvm.org/cxx_status.html#ts>`_ for
- information on the version of SD-6 supported by each Clang release, and the
- macros provided by that revision of the recommendations.
- C++98
- -----
- The features listed below are part of the C++98 standard. These features are
- enabled by default when compiling C++ code.
- C++ exceptions
- ^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_exceptions)`` to determine if C++ exceptions have been
- enabled. For example, compiling code with ``-fno-exceptions`` disables C++
- exceptions.
- C++ RTTI
- ^^^^^^^^
- Use ``__has_feature(cxx_rtti)`` to determine if C++ RTTI has been enabled. For
- example, compiling code with ``-fno-rtti`` disables the use of RTTI.
- C++11
- -----
- The features listed below are part of the C++11 standard. As a result, all
- these features are enabled with the ``-std=c++11`` or ``-std=gnu++11`` option
- when compiling C++ code.
- C++11 SFINAE includes access control
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_access_control_sfinae)`` or
- ``__has_extension(cxx_access_control_sfinae)`` to determine whether
- access-control errors (e.g., calling a private constructor) are considered to
- be template argument deduction errors (aka SFINAE errors), per `C++ DR1170
- <http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170>`_.
- C++11 alias templates
- ^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_alias_templates)`` or
- ``__has_extension(cxx_alias_templates)`` to determine if support for C++11's
- alias declarations and alias templates is enabled.
- C++11 alignment specifiers
- ^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_alignas)`` or ``__has_extension(cxx_alignas)`` to
- determine if support for alignment specifiers using ``alignas`` is enabled.
- Use ``__has_feature(cxx_alignof)`` or ``__has_extension(cxx_alignof)`` to
- determine if support for the ``alignof`` keyword is enabled.
- C++11 attributes
- ^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_attributes)`` or ``__has_extension(cxx_attributes)`` to
- determine if support for attribute parsing with C++11's square bracket notation
- is enabled.
- C++11 generalized constant expressions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_constexpr)`` to determine if support for generalized
- constant expressions (e.g., ``constexpr``) is enabled.
- C++11 ``decltype()``
- ^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_decltype)`` or ``__has_extension(cxx_decltype)`` to
- determine if support for the ``decltype()`` specifier is enabled. C++11's
- ``decltype`` does not require type-completeness of a function call expression.
- Use ``__has_feature(cxx_decltype_incomplete_return_types)`` or
- ``__has_extension(cxx_decltype_incomplete_return_types)`` to determine if
- support for this feature is enabled.
- C++11 default template arguments in function templates
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_default_function_template_args)`` or
- ``__has_extension(cxx_default_function_template_args)`` to determine if support
- for default template arguments in function templates is enabled.
- C++11 ``default``\ ed functions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_defaulted_functions)`` or
- ``__has_extension(cxx_defaulted_functions)`` to determine if support for
- defaulted function definitions (with ``= default``) is enabled.
- C++11 delegating constructors
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_delegating_constructors)`` to determine if support for
- delegating constructors is enabled.
- C++11 ``deleted`` functions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_deleted_functions)`` or
- ``__has_extension(cxx_deleted_functions)`` to determine if support for deleted
- function definitions (with ``= delete``) is enabled.
- C++11 explicit conversion functions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_explicit_conversions)`` to determine if support for
- ``explicit`` conversion functions is enabled.
- C++11 generalized initializers
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_generalized_initializers)`` to determine if support for
- generalized initializers (using braced lists and ``std::initializer_list``) is
- enabled.
- C++11 implicit move constructors/assignment operators
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_implicit_moves)`` to determine if Clang will implicitly
- generate move constructors and move assignment operators where needed.
- C++11 inheriting constructors
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_inheriting_constructors)`` to determine if support for
- inheriting constructors is enabled.
- C++11 inline namespaces
- ^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_inline_namespaces)`` or
- ``__has_extension(cxx_inline_namespaces)`` to determine if support for inline
- namespaces is enabled.
- C++11 lambdas
- ^^^^^^^^^^^^^
- Use ``__has_feature(cxx_lambdas)`` or ``__has_extension(cxx_lambdas)`` to
- determine if support for lambdas is enabled.
- C++11 local and unnamed types as template arguments
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_local_type_template_args)`` or
- ``__has_extension(cxx_local_type_template_args)`` to determine if support for
- local and unnamed types as template arguments is enabled.
- C++11 noexcept
- ^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_noexcept)`` or ``__has_extension(cxx_noexcept)`` to
- determine if support for noexcept exception specifications is enabled.
- C++11 in-class non-static data member initialization
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_nonstatic_member_init)`` to determine whether in-class
- initialization of non-static data members is enabled.
- C++11 ``nullptr``
- ^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_nullptr)`` or ``__has_extension(cxx_nullptr)`` to
- determine if support for ``nullptr`` is enabled.
- C++11 ``override control``
- ^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_override_control)`` or
- ``__has_extension(cxx_override_control)`` to determine if support for the
- override control keywords is enabled.
- C++11 reference-qualified functions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_reference_qualified_functions)`` or
- ``__has_extension(cxx_reference_qualified_functions)`` to determine if support
- for reference-qualified functions (e.g., member functions with ``&`` or ``&&``
- applied to ``*this``) is enabled.
- C++11 range-based ``for`` loop
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_range_for)`` or ``__has_extension(cxx_range_for)`` to
- determine if support for the range-based for loop is enabled.
- C++11 raw string literals
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_raw_string_literals)`` to determine if support for raw
- string literals (e.g., ``R"x(foo\bar)x"``) is enabled.
- C++11 rvalue references
- ^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_rvalue_references)`` or
- ``__has_extension(cxx_rvalue_references)`` to determine if support for rvalue
- references is enabled.
- C++11 ``static_assert()``
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_static_assert)`` or
- ``__has_extension(cxx_static_assert)`` to determine if support for compile-time
- assertions using ``static_assert`` is enabled.
- C++11 ``thread_local``
- ^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_thread_local)`` to determine if support for
- ``thread_local`` variables is enabled.
- C++11 type inference
- ^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_auto_type)`` or ``__has_extension(cxx_auto_type)`` to
- determine C++11 type inference is supported using the ``auto`` specifier. If
- this is disabled, ``auto`` will instead be a storage class specifier, as in C
- or C++98.
- C++11 strongly typed enumerations
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_strong_enums)`` or
- ``__has_extension(cxx_strong_enums)`` to determine if support for strongly
- typed, scoped enumerations is enabled.
- C++11 trailing return type
- ^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_trailing_return)`` or
- ``__has_extension(cxx_trailing_return)`` to determine if support for the
- alternate function declaration syntax with trailing return type is enabled.
- C++11 Unicode string literals
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_unicode_literals)`` to determine if support for Unicode
- string literals is enabled.
- C++11 unrestricted unions
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_unrestricted_unions)`` to determine if support for
- unrestricted unions is enabled.
- C++11 user-defined literals
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_user_literals)`` to determine if support for
- user-defined literals is enabled.
- C++11 variadic templates
- ^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_variadic_templates)`` or
- ``__has_extension(cxx_variadic_templates)`` to determine if support for
- variadic templates is enabled.
- C++14
- -----
- The features listed below are part of the C++14 standard. As a result, all
- these features are enabled with the ``-std=C++14`` or ``-std=gnu++14`` option
- when compiling C++ code.
- C++14 binary literals
- ^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_binary_literals)`` or
- ``__has_extension(cxx_binary_literals)`` to determine whether
- binary literals (for instance, ``0b10010``) are recognized. Clang supports this
- feature as an extension in all language modes.
- C++14 contextual conversions
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_contextual_conversions)`` or
- ``__has_extension(cxx_contextual_conversions)`` to determine if the C++14 rules
- are used when performing an implicit conversion for an array bound in a
- *new-expression*, the operand of a *delete-expression*, an integral constant
- expression, or a condition in a ``switch`` statement.
- C++14 decltype(auto)
- ^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_decltype_auto)`` or
- ``__has_extension(cxx_decltype_auto)`` to determine if support
- for the ``decltype(auto)`` placeholder type is enabled.
- C++14 default initializers for aggregates
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_aggregate_nsdmi)`` or
- ``__has_extension(cxx_aggregate_nsdmi)`` to determine if support
- for default initializers in aggregate members is enabled.
- C++14 digit separators
- ^^^^^^^^^^^^^^^^^^^^^^
- Use ``__cpp_digit_separators`` to determine if support for digit separators
- using single quotes (for instance, ``10'000``) is enabled. At this time, there
- is no corresponding ``__has_feature`` name
- C++14 generalized lambda capture
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_init_captures)`` or
- ``__has_extension(cxx_init_captures)`` to determine if support for
- lambda captures with explicit initializers is enabled
- (for instance, ``[n(0)] { return ++n; }``).
- C++14 generic lambdas
- ^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_generic_lambdas)`` or
- ``__has_extension(cxx_generic_lambdas)`` to determine if support for generic
- (polymorphic) lambdas is enabled
- (for instance, ``[] (auto x) { return x + 1; }``).
- C++14 relaxed constexpr
- ^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_relaxed_constexpr)`` or
- ``__has_extension(cxx_relaxed_constexpr)`` to determine if variable
- declarations, local variable modification, and control flow constructs
- are permitted in ``constexpr`` functions.
- C++14 return type deduction
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_return_type_deduction)`` or
- ``__has_extension(cxx_return_type_deduction)`` to determine if support
- for return type deduction for functions (using ``auto`` as a return type)
- is enabled.
- C++14 runtime-sized arrays
- ^^^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_runtime_array)`` or
- ``__has_extension(cxx_runtime_array)`` to determine if support
- for arrays of runtime bound (a restricted form of variable-length arrays)
- is enabled.
- Clang's implementation of this feature is incomplete.
- C++14 variable templates
- ^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(cxx_variable_templates)`` or
- ``__has_extension(cxx_variable_templates)`` to determine if support for
- templated variable declarations is enabled.
- C11
- ---
- The features listed below are part of the C11 standard. As a result, all these
- features are enabled with the ``-std=c11`` or ``-std=gnu11`` option when
- compiling C code. Additionally, because these features are all
- backward-compatible, they are available as extensions in all language modes.
- C11 alignment specifiers
- ^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(c_alignas)`` or ``__has_extension(c_alignas)`` to determine
- if support for alignment specifiers using ``_Alignas`` is enabled.
- Use ``__has_feature(c_alignof)`` or ``__has_extension(c_alignof)`` to determine
- if support for the ``_Alignof`` keyword is enabled.
- C11 atomic operations
- ^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(c_atomic)`` or ``__has_extension(c_atomic)`` to determine
- if support for atomic types using ``_Atomic`` is enabled. Clang also provides
- :ref:`a set of builtins <langext-__c11_atomic>` which can be used to implement
- the ``<stdatomic.h>`` operations on ``_Atomic`` types. Use
- ``__has_include(<stdatomic.h>)`` to determine if C11's ``<stdatomic.h>`` header
- is available.
- Clang will use the system's ``<stdatomic.h>`` header when one is available, and
- will otherwise use its own. When using its own, implementations of the atomic
- operations are provided as macros. In the cases where C11 also requires a real
- function, this header provides only the declaration of that function (along
- with a shadowing macro implementation), and you must link to a library which
- provides a definition of the function if you use it instead of the macro.
- C11 generic selections
- ^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(c_generic_selections)`` or
- ``__has_extension(c_generic_selections)`` to determine if support for generic
- selections is enabled.
- As an extension, the C11 generic selection expression is available in all
- languages supported by Clang. The syntax is the same as that given in the C11
- standard.
- In C, type compatibility is decided according to the rules given in the
- appropriate standard, but in C++, which lacks the type compatibility rules used
- in C, types are considered compatible only if they are equivalent.
- C11 ``_Static_assert()``
- ^^^^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(c_static_assert)`` or ``__has_extension(c_static_assert)``
- to determine if support for compile-time assertions using ``_Static_assert`` is
- enabled.
- C11 ``_Thread_local``
- ^^^^^^^^^^^^^^^^^^^^^
- Use ``__has_feature(c_thread_local)`` or ``__has_extension(c_thread_local)``
- to determine if support for ``_Thread_local`` variables is enabled.
- Modules
- -------
- Use ``__has_feature(modules)`` to determine if Modules have been enabled.
- For example, compiling code with ``-fmodules`` enables the use of Modules.
- More information could be found `here <https://clang.llvm.org/docs/Modules.html>`_.
- Type Trait Primitives
- =====================
- Type trait primitives are special builtin constant expressions that can be used
- by the standard C++ library to facilitate or simplify the implementation of
- user-facing type traits in the <type_traits> header.
- They are not intended to be used directly by user code because they are
- implementation-defined and subject to change -- as such they're tied closely to
- the supported set of system headers, currently:
- * LLVM's own libc++
- * GNU libstdc++
- * The Microsoft standard C++ library
- Clang supports the `GNU C++ type traits
- <https://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html>`_ and a subset of the
- `Microsoft Visual C++ type traits
- <https://msdn.microsoft.com/en-us/library/ms177194(v=VS.100).aspx>`_,
- as well as nearly all of the
- `Embarcadero C++ type traits
- <http://docwiki.embarcadero.com/RADStudio/Rio/en/Type_Trait_Functions_(C%2B%2B11)_Index>`_.
- The following type trait primitives are supported by Clang. Those traits marked
- (C++) provide implementations for type traits specified by the C++ standard;
- ``__X(...)`` has the same semantics and constraints as the corresponding
- ``std::X_t<...>`` or ``std::X_v<...>`` type trait.
- * ``__array_rank(type)`` (Embarcadero):
- Returns the number of levels of array in the type ``type``:
- ``0`` if ``type`` is not an array type, and
- ``__array_rank(element) + 1`` if ``type`` is an array of ``element``.
- * ``__array_extent(type, dim)`` (Embarcadero):
- The ``dim``'th array bound in the type ``type``, or ``0`` if
- ``dim >= __array_rank(type)``.
- * ``__has_nothrow_assign`` (GNU, Microsoft, Embarcadero):
- Deprecated, use ``__is_nothrow_assignable`` instead.
- * ``__has_nothrow_move_assign`` (GNU, Microsoft):
- Deprecated, use ``__is_nothrow_assignable`` instead.
- * ``__has_nothrow_copy`` (GNU, Microsoft):
- Deprecated, use ``__is_nothrow_constructible`` instead.
- * ``__has_nothrow_constructor`` (GNU, Microsoft):
- Deprecated, use ``__is_nothrow_constructible`` instead.
- * ``__has_trivial_assign`` (GNU, Microsoft, Embarcadero):
- Deprecated, use ``__is_trivially_assignable`` instead.
- * ``__has_trivial_move_assign`` (GNU, Microsoft):
- Deprecated, use ``__is_trivially_assignable`` instead.
- * ``__has_trivial_copy`` (GNU, Microsoft):
- Deprecated, use ``__is_trivially_constructible`` instead.
- * ``__has_trivial_constructor`` (GNU, Microsoft):
- Deprecated, use ``__is_trivially_constructible`` instead.
- * ``__has_trivial_move_constructor`` (GNU, Microsoft):
- Deprecated, use ``__is_trivially_constructible`` instead.
- * ``__has_trivial_destructor`` (GNU, Microsoft, Embarcadero):
- Deprecated, use ``__is_trivially_destructible`` instead.
- * ``__has_unique_object_representations`` (C++, GNU)
- * ``__has_virtual_destructor`` (C++, GNU, Microsoft, Embarcadero)
- * ``__is_abstract`` (C++, GNU, Microsoft, Embarcadero)
- * ``__is_aggregate`` (C++, GNU, Microsoft)
- * ``__is_arithmetic`` (C++, Embarcadero)
- * ``__is_array`` (C++, Embarcadero)
- * ``__is_assignable`` (C++, MSVC 2015)
- * ``__is_base_of`` (C++, GNU, Microsoft, Embarcadero)
- * ``__is_class`` (C++, GNU, Microsoft, Embarcadero)
- * ``__is_complete_type(type)`` (Embarcadero):
- Return ``true`` if ``type`` is a complete type.
- Warning: this trait is dangerous because it can return different values at
- different points in the same program.
- * ``__is_compound`` (C++, Embarcadero)
- * ``__is_const`` (C++, Embarcadero)
- * ``__is_constructible`` (C++, MSVC 2013)
- * ``__is_convertible`` (C++, Embarcadero)
- * ``__is_convertible_to`` (Microsoft):
- Synonym for ``__is_convertible``.
- * ``__is_destructible`` (C++, MSVC 2013):
- Only available in ``-fms-extensions`` mode.
- * ``__is_empty`` (C++, GNU, Microsoft, Embarcadero)
- * ``__is_enum`` (C++, GNU, Microsoft, Embarcadero)
- * ``__is_final`` (C++, GNU, Microsoft)
- * ``__is_floating_point`` (C++, Embarcadero)
- * ``__is_function`` (C++, Embarcadero)
- * ``__is_fundamental`` (C++, Embarcadero)
- * ``__is_integral`` (C++, Embarcadero)
- * ``__is_interface_class`` (Microsoft):
- Returns ``false``, even for types defined with ``__interface``.
- * ``__is_literal`` (Clang):
- Synonym for ``__is_literal_type``.
- * ``__is_literal_type`` (C++, GNU, Microsoft):
- Note, the corresponding standard trait was deprecated in C++17
- and removed in C++20.
- * ``__is_lvalue_reference`` (C++, Embarcadero)
- * ``__is_member_object_pointer`` (C++, Embarcadero)
- * ``__is_member_function_pointer`` (C++, Embarcadero)
- * ``__is_member_pointer`` (C++, Embarcadero)
- * ``__is_nothrow_assignable`` (C++, MSVC 2013)
- * ``__is_nothrow_constructible`` (C++, MSVC 2013)
- * ``__is_nothrow_destructible`` (C++, MSVC 2013)
- Only available in ``-fms-extensions`` mode.
- * ``__is_object`` (C++, Embarcadero)
- * ``__is_pod`` (C++, GNU, Microsoft, Embarcadero):
- Note, the corresponding standard trait was deprecated in C++20.
- * ``__is_pointer`` (C++, Embarcadero)
- * ``__is_polymorphic`` (C++, GNU, Microsoft, Embarcadero)
- * ``__is_reference`` (C++, Embarcadero)
- * ``__is_rvalue_reference`` (C++, Embarcadero)
- * ``__is_same`` (C++, Embarcadero)
- * ``__is_scalar`` (C++, Embarcadero)
- * ``__is_sealed`` (Microsoft):
- Synonym for ``__is_final``.
- * ``__is_signed`` (C++, Embarcadero):
- Returns false for enumeration types, and returns true for floating-point types. Note, before Clang 10, returned true for enumeration types if the underlying type was signed, and returned false for floating-point types.
- * ``__is_standard_layout`` (C++, GNU, Microsoft, Embarcadero)
- * ``__is_trivial`` (C++, GNU, Microsoft, Embarcadero)
- * ``__is_trivially_assignable`` (C++, GNU, Microsoft)
- * ``__is_trivially_constructible`` (C++, GNU, Microsoft)
- * ``__is_trivially_copyable`` (C++, GNU, Microsoft)
- * ``__is_trivially_destructible`` (C++, MSVC 2013)
- * ``__is_union`` (C++, GNU, Microsoft, Embarcadero)
- * ``__is_unsigned`` (C++, Embarcadero)
- Note that this currently returns true for enumeration types if the underlying
- type is unsigned, in violation of the requirements for ``std::is_unsigned``.
- This behavior is likely to change in a future version of Clang.
- * ``__is_void`` (C++, Embarcadero)
- * ``__is_volatile`` (C++, Embarcadero)
- * ``__reference_binds_to_temporary(T, U)`` (Clang): Determines whether a
- reference of type ``T`` bound to an expression of type ``U`` would bind to a
- materialized temporary object. If ``T`` is not a reference type the result
- is false. Note this trait will also return false when the initialization of
- ``T`` from ``U`` is ill-formed.
- * ``__underlying_type`` (C++, GNU, Microsoft)
- In addition, the following expression traits are supported:
- * ``__is_lvalue_expr(e)`` (Embarcadero):
- Returns true if ``e`` is an lvalue expression.
- Deprecated, use ``__is_lvalue_reference(decltype((e)))`` instead.
- * ``__is_rvalue_expr(e)`` (Embarcadero):
- Returns true if ``e`` is a prvalue expression.
- Deprecated, use ``!__is_reference(decltype((e)))`` instead.
- There are multiple ways to detect support for a type trait ``__X`` in the
- compiler, depending on the oldest version of Clang you wish to support.
- * From Clang 10 onwards, ``__has_builtin(__X)`` can be used.
- * From Clang 6 onwards, ``!__is_identifier(__X)`` can be used.
- * From Clang 3 onwards, ``__has_feature(X)`` can be used, but only supports
- the following traits:
- * ``__has_nothrow_assign``
- * ``__has_nothrow_copy``
- * ``__has_nothrow_constructor``
- * ``__has_trivial_assign``
- * ``__has_trivial_copy``
- * ``__has_trivial_constructor``
- * ``__has_trivial_destructor``
- * ``__has_virtual_destructor``
- * ``__is_abstract``
- * ``__is_base_of``
- * ``__is_class``
- * ``__is_constructible``
- * ``__is_convertible_to``
- * ``__is_empty``
- * ``__is_enum``
- * ``__is_final``
- * ``__is_literal``
- * ``__is_standard_layout``
- * ``__is_pod``
- * ``__is_polymorphic``
- * ``__is_sealed``
- * ``__is_trivial``
- * ``__is_trivially_assignable``
- * ``__is_trivially_constructible``
- * ``__is_trivially_copyable``
- * ``__is_union``
- * ``__underlying_type``
- A simplistic usage example as might be seen in standard C++ headers follows:
- .. code-block:: c++
- #if __has_builtin(__is_convertible_to)
- template<typename From, typename To>
- struct is_convertible_to {
- static const bool value = __is_convertible_to(From, To);
- };
- #else
- // Emulate type trait for compatibility with other compilers.
- #endif
- Blocks
- ======
- The syntax and high level language feature description is in
- :doc:`BlockLanguageSpec<BlockLanguageSpec>`. Implementation and ABI details for
- the clang implementation are in :doc:`Block-ABI-Apple<Block-ABI-Apple>`.
- Query for this feature with ``__has_extension(blocks)``.
- Objective-C Features
- ====================
- Related result types
- --------------------
- According to Cocoa conventions, Objective-C methods with certain names
- ("``init``", "``alloc``", etc.) always return objects that are an instance of
- the receiving class's type. Such methods are said to have a "related result
- type", meaning that a message send to one of these methods will have the same
- static type as an instance of the receiver class. For example, given the
- following classes:
- .. code-block:: objc
- @interface NSObject
- + (id)alloc;
- - (id)init;
- @end
- @interface NSArray : NSObject
- @end
- and this common initialization pattern
- .. code-block:: objc
- NSArray *array = [[NSArray alloc] init];
- the type of the expression ``[NSArray alloc]`` is ``NSArray*`` because
- ``alloc`` implicitly has a related result type. Similarly, the type of the
- expression ``[[NSArray alloc] init]`` is ``NSArray*``, since ``init`` has a
- related result type and its receiver is known to have the type ``NSArray *``.
- If neither ``alloc`` nor ``init`` had a related result type, the expressions
- would have had type ``id``, as declared in the method signature.
- A method with a related result type can be declared by using the type
- ``instancetype`` as its result type. ``instancetype`` is a contextual keyword
- that is only permitted in the result type of an Objective-C method, e.g.
- .. code-block:: objc
- @interface A
- + (instancetype)constructAnA;
- @end
- The related result type can also be inferred for some methods. To determine
- whether a method has an inferred related result type, the first word in the
- camel-case selector (e.g., "``init``" in "``initWithObjects``") is considered,
- and the method will have a related result type if its return type is compatible
- with the type of its class and if:
- * the first word is "``alloc``" or "``new``", and the method is a class method,
- or
- * the first word is "``autorelease``", "``init``", "``retain``", or "``self``",
- and the method is an instance method.
- If a method with a related result type is overridden by a subclass method, the
- subclass method must also return a type that is compatible with the subclass
- type. For example:
- .. code-block:: objc
- @interface NSString : NSObject
- - (NSUnrelated *)init; // incorrect usage: NSUnrelated is not NSString or a superclass of NSString
- @end
- Related result types only affect the type of a message send or property access
- via the given method. In all other respects, a method with a related result
- type is treated the same way as method that returns ``id``.
- Use ``__has_feature(objc_instancetype)`` to determine whether the
- ``instancetype`` contextual keyword is available.
- Automatic reference counting
- ----------------------------
- Clang provides support for :doc:`automated reference counting
- <AutomaticReferenceCounting>` in Objective-C, which eliminates the need
- for manual ``retain``/``release``/``autorelease`` message sends. There are three
- feature macros associated with automatic reference counting:
- ``__has_feature(objc_arc)`` indicates the availability of automated reference
- counting in general, while ``__has_feature(objc_arc_weak)`` indicates that
- automated reference counting also includes support for ``__weak`` pointers to
- Objective-C objects. ``__has_feature(objc_arc_fields)`` indicates that C structs
- are allowed to have fields that are pointers to Objective-C objects managed by
- automatic reference counting.
- .. _objc-weak:
- Weak references
- ---------------
- Clang supports ARC-style weak and unsafe references in Objective-C even
- outside of ARC mode. Weak references must be explicitly enabled with
- the ``-fobjc-weak`` option; use ``__has_feature((objc_arc_weak))``
- to test whether they are enabled. Unsafe references are enabled
- unconditionally. ARC-style weak and unsafe references cannot be used
- when Objective-C garbage collection is enabled.
- Except as noted below, the language rules for the ``__weak`` and
- ``__unsafe_unretained`` qualifiers (and the ``weak`` and
- ``unsafe_unretained`` property attributes) are just as laid out
- in the :doc:`ARC specification <AutomaticReferenceCounting>`.
- In particular, note that some classes do not support forming weak
- references to their instances, and note that special care must be
- taken when storing weak references in memory where initialization
- and deinitialization are outside the responsibility of the compiler
- (such as in ``malloc``-ed memory).
- Loading from a ``__weak`` variable always implicitly retains the
- loaded value. In non-ARC modes, this retain is normally balanced
- by an implicit autorelease. This autorelease can be suppressed
- by performing the load in the receiver position of a ``-retain``
- message send (e.g. ``[weakReference retain]``); note that this performs
- only a single retain (the retain done when primitively loading from
- the weak reference).
- For the most part, ``__unsafe_unretained`` in non-ARC modes is just the
- default behavior of variables and therefore is not needed. However,
- it does have an effect on the semantics of block captures: normally,
- copying a block which captures an Objective-C object or block pointer
- causes the captured pointer to be retained or copied, respectively,
- but that behavior is suppressed when the captured variable is qualified
- with ``__unsafe_unretained``.
- Note that the ``__weak`` qualifier formerly meant the GC qualifier in
- all non-ARC modes and was silently ignored outside of GC modes. It now
- means the ARC-style qualifier in all non-GC modes and is no longer
- allowed if not enabled by either ``-fobjc-arc`` or ``-fobjc-weak``.
- It is expected that ``-fobjc-weak`` will eventually be enabled by default
- in all non-GC Objective-C modes.
- .. _objc-fixed-enum:
- Enumerations with a fixed underlying type
- -----------------------------------------
- Clang provides support for C++11 enumerations with a fixed underlying type
- within Objective-C. For example, one can write an enumeration type as:
- .. code-block:: c++
- typedef enum : unsigned char { Red, Green, Blue } Color;
- This specifies that the underlying type, which is used to store the enumeration
- value, is ``unsigned char``.
- Use ``__has_feature(objc_fixed_enum)`` to determine whether support for fixed
- underlying types is available in Objective-C.
- Interoperability with C++11 lambdas
- -----------------------------------
- Clang provides interoperability between C++11 lambdas and blocks-based APIs, by
- permitting a lambda to be implicitly converted to a block pointer with the
- corresponding signature. For example, consider an API such as ``NSArray``'s
- array-sorting method:
- .. code-block:: objc
- - (NSArray *)sortedArrayUsingComparator:(NSComparator)cmptr;
- ``NSComparator`` is simply a typedef for the block pointer ``NSComparisonResult
- (^)(id, id)``, and parameters of this type are generally provided with block
- literals as arguments. However, one can also use a C++11 lambda so long as it
- provides the same signature (in this case, accepting two parameters of type
- ``id`` and returning an ``NSComparisonResult``):
- .. code-block:: objc
- NSArray *array = @[@"string 1", @"string 21", @"string 12", @"String 11",
- @"String 02"];
- const NSStringCompareOptions comparisonOptions
- = NSCaseInsensitiveSearch | NSNumericSearch |
- NSWidthInsensitiveSearch | NSForcedOrderingSearch;
- NSLocale *currentLocale = [NSLocale currentLocale];
- NSArray *sorted
- = [array sortedArrayUsingComparator:[=](id s1, id s2) -> NSComparisonResult {
- NSRange string1Range = NSMakeRange(0, [s1 length]);
- return [s1 compare:s2 options:comparisonOptions
- range:string1Range locale:currentLocale];
- }];
- NSLog(@"sorted: %@", sorted);
- This code relies on an implicit conversion from the type of the lambda
- expression (an unnamed, local class type called the *closure type*) to the
- corresponding block pointer type. The conversion itself is expressed by a
- conversion operator in that closure type that produces a block pointer with the
- same signature as the lambda itself, e.g.,
- .. code-block:: objc
- operator NSComparisonResult (^)(id, id)() const;
- This conversion function returns a new block that simply forwards the two
- parameters to the lambda object (which it captures by copy), then returns the
- result. The returned block is first copied (with ``Block_copy``) and then
- autoreleased. As an optimization, if a lambda expression is immediately
- converted to a block pointer (as in the first example, above), then the block
- is not copied and autoreleased: rather, it is given the same lifetime as a
- block literal written at that point in the program, which avoids the overhead
- of copying a block to the heap in the common case.
- The conversion from a lambda to a block pointer is only available in
- Objective-C++, and not in C++ with blocks, due to its use of Objective-C memory
- management (autorelease).
- Object Literals and Subscripting
- --------------------------------
- Clang provides support for :doc:`Object Literals and Subscripting
- <ObjectiveCLiterals>` in Objective-C, which simplifies common Objective-C
- programming patterns, makes programs more concise, and improves the safety of
- container creation. There are several feature macros associated with object
- literals and subscripting: ``__has_feature(objc_array_literals)`` tests the
- availability of array literals; ``__has_feature(objc_dictionary_literals)``
- tests the availability of dictionary literals;
- ``__has_feature(objc_subscripting)`` tests the availability of object
- subscripting.
- Objective-C Autosynthesis of Properties
- ---------------------------------------
- Clang provides support for autosynthesis of declared properties. Using this
- feature, clang provides default synthesis of those properties not declared
- @dynamic and not having user provided backing getter and setter methods.
- ``__has_feature(objc_default_synthesize_properties)`` checks for availability
- of this feature in version of clang being used.
- .. _langext-objc-retain-release:
- Objective-C retaining behavior attributes
- -----------------------------------------
- In Objective-C, functions and methods are generally assumed to follow the
- `Cocoa Memory Management
- <https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/MemoryMgmt/Articles/mmRules.html>`_
- conventions for ownership of object arguments and
- return values. However, there are exceptions, and so Clang provides attributes
- to allow these exceptions to be documented. This are used by ARC and the
- `static analyzer <https://clang-analyzer.llvm.org>`_ Some exceptions may be
- better described using the ``objc_method_family`` attribute instead.
- **Usage**: The ``ns_returns_retained``, ``ns_returns_not_retained``,
- ``ns_returns_autoreleased``, ``cf_returns_retained``, and
- ``cf_returns_not_retained`` attributes can be placed on methods and functions
- that return Objective-C or CoreFoundation objects. They are commonly placed at
- the end of a function prototype or method declaration:
- .. code-block:: objc
- id foo() __attribute__((ns_returns_retained));
- - (NSString *)bar:(int)x __attribute__((ns_returns_retained));
- The ``*_returns_retained`` attributes specify that the returned object has a +1
- retain count. The ``*_returns_not_retained`` attributes specify that the return
- object has a +0 retain count, even if the normal convention for its selector
- would be +1. ``ns_returns_autoreleased`` specifies that the returned object is
- +0, but is guaranteed to live at least as long as the next flush of an
- autorelease pool.
- **Usage**: The ``ns_consumed`` and ``cf_consumed`` attributes can be placed on
- an parameter declaration; they specify that the argument is expected to have a
- +1 retain count, which will be balanced in some way by the function or method.
- The ``ns_consumes_self`` attribute can only be placed on an Objective-C
- method; it specifies that the method expects its ``self`` parameter to have a
- +1 retain count, which it will balance in some way.
- .. code-block:: objc
- void foo(__attribute__((ns_consumed)) NSString *string);
- - (void) bar __attribute__((ns_consumes_self));
- - (void) baz:(id) __attribute__((ns_consumed)) x;
- Further examples of these attributes are available in the static analyzer's `list of annotations for analysis
- <https://clang-analyzer.llvm.org/annotations.html#cocoa_mem>`_.
- Query for these features with ``__has_attribute(ns_consumed)``,
- ``__has_attribute(ns_returns_retained)``, etc.
- Objective-C @available
- ----------------------
- It is possible to use the newest SDK but still build a program that can run on
- older versions of macOS and iOS by passing ``-mmacosx-version-min=`` /
- ``-miphoneos-version-min=``.
- Before LLVM 5.0, when calling a function that exists only in the OS that's
- newer than the target OS (as determined by the minimum deployment version),
- programmers had to carefully check if the function exists at runtime, using
- null checks for weakly-linked C functions, ``+class`` for Objective-C classes,
- and ``-respondsToSelector:`` or ``+instancesRespondToSelector:`` for
- Objective-C methods. If such a check was missed, the program would compile
- fine, run fine on newer systems, but crash on older systems.
- As of LLVM 5.0, ``-Wunguarded-availability`` uses the `availability attributes
- <https://clang.llvm.org/docs/AttributeReference.html#availability>`_ together
- with the new ``@available()`` keyword to assist with this issue.
- When a method that's introduced in the OS newer than the target OS is called, a
- -Wunguarded-availability warning is emitted if that call is not guarded:
- .. code-block:: objc
- void my_fun(NSSomeClass* var) {
- // If fancyNewMethod was added in e.g. macOS 10.12, but the code is
- // built with -mmacosx-version-min=10.11, then this unconditional call
- // will emit a -Wunguarded-availability warning:
- [var fancyNewMethod];
- }
- To fix the warning and to avoid the crash on macOS 10.11, wrap it in
- ``if(@available())``:
- .. code-block:: objc
- void my_fun(NSSomeClass* var) {
- if (@available(macOS 10.12, *)) {
- [var fancyNewMethod];
- } else {
- // Put fallback behavior for old macOS versions (and for non-mac
- // platforms) here.
- }
- }
- The ``*`` is required and means that platforms not explicitly listed will take
- the true branch, and the compiler will emit ``-Wunguarded-availability``
- warnings for unlisted platforms based on those platform's deployment target.
- More than one platform can be listed in ``@available()``:
- .. code-block:: objc
- void my_fun(NSSomeClass* var) {
- if (@available(macOS 10.12, iOS 10, *)) {
- [var fancyNewMethod];
- }
- }
- If the caller of ``my_fun()`` already checks that ``my_fun()`` is only called
- on 10.12, then add an `availability attribute
- <https://clang.llvm.org/docs/AttributeReference.html#availability>`_ to it,
- which will also suppress the warning and require that calls to my_fun() are
- checked:
- .. code-block:: objc
- API_AVAILABLE(macos(10.12)) void my_fun(NSSomeClass* var) {
- [var fancyNewMethod]; // Now ok.
- }
- ``@available()`` is only available in Objective-C code. To use the feature
- in C and C++ code, use the ``__builtin_available()`` spelling instead.
- If existing code uses null checks or ``-respondsToSelector:``, it should
- be changed to use ``@available()`` (or ``__builtin_available``) instead.
- ``-Wunguarded-availability`` is disabled by default, but
- ``-Wunguarded-availability-new``, which only emits this warning for APIs
- that have been introduced in macOS >= 10.13, iOS >= 11, watchOS >= 4 and
- tvOS >= 11, is enabled by default.
- .. _langext-overloading:
- Objective-C++ ABI: protocol-qualifier mangling of parameters
- ------------------------------------------------------------
- Starting with LLVM 3.4, Clang produces a new mangling for parameters whose
- type is a qualified-``id`` (e.g., ``id<Foo>``). This mangling allows such
- parameters to be differentiated from those with the regular unqualified ``id``
- type.
- This was a non-backward compatible mangling change to the ABI. This change
- allows proper overloading, and also prevents mangling conflicts with template
- parameters of protocol-qualified type.
- Query the presence of this new mangling with
- ``__has_feature(objc_protocol_qualifier_mangling)``.
- OpenCL Features
- ===============
- C++ for OpenCL
- --------------
- This functionality is built on top of OpenCL C v2.0 and C++17 enabling most of
- regular C++ features in OpenCL kernel code. Most functionality from OpenCL C
- is inherited. This section describes minor differences to OpenCL C and any
- limitations related to C++ support as well as interactions between OpenCL and
- C++ features that are not documented elsewhere.
- Restrictions to C++17
- ^^^^^^^^^^^^^^^^^^^^^
- The following features are not supported:
- - Virtual functions
- - Exceptions
- - ``dynamic_cast`` operator
- - Non-placement ``new``/``delete`` operators
- - Standard C++ libraries. Currently there is no solution for alternative C++
- libraries provided. Future release will feature library support.
- Interplay of OpenCL and C++ features
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Address space behavior
- """"""""""""""""""""""
- Address spaces are part of the type qualifiers; many rules are just inherited
- from the qualifier behavior documented in OpenCL C v2.0 s6.5 and Embedded C
- extension ISO/IEC JTC1 SC22 WG14 N1021 s3.1. Note that since the address space
- behavior in C++ is not documented formally, Clang extends the existing concept
- from C and OpenCL. For example conversion rules are extended from qualification
- conversion but the compatibility is determined using notation of sets and
- overlapping of address spaces from Embedded C (ISO/IEC JTC1 SC22 WG14 N1021
- s3.1.3). For OpenCL it means that implicit conversions are allowed from
- a named address space (except for ``__constant``) to ``__generic`` (OpenCL C
- v2.0 6.5.5). Reverse conversion is only allowed explicitly. The ``__constant``
- address space does not overlap with any other and therefore no valid conversion
- between ``__constant`` and other address spaces exists. Most of the rules
- follow this logic.
- **Casts**
- C-style casts follow OpenCL C v2.0 rules (s6.5.5). All cast operators
- permit conversion to ``__generic`` implicitly. However converting from
- ``__generic`` to named address spaces can only be done using ``addrspace_cast``.
- Note that conversions between ``__constant`` and any other address space
- are disallowed.
- .. _opencl_cpp_addrsp_deduction:
- **Deduction**
- Address spaces are not deduced for:
- - non-pointer/non-reference template parameters or any dependent types except
- for template specializations.
- - non-pointer/non-reference class members except for static data members that are
- deduced to ``__global`` address space.
- - non-pointer/non-reference alias declarations.
- - ``decltype`` expressions.
- .. code-block:: c++
- template <typename T>
- void foo() {
- T m; // address space of m will be known at template instantiation time.
- T * ptr; // ptr points to __generic address space object.
- T & ref = ...; // ref references an object in __generic address space.
- };
- template <int N>
- struct S {
- int i; // i has no address space
- static int ii; // ii is in global address space
- int * ptr; // ptr points to __generic address space int.
- int & ref = ...; // ref references int in __generic address space.
- };
- template <int N>
- void bar()
- {
- S<N> s; // s is in __private address space
- }
- TODO: Add example for type alias and decltype!
- **References**
- Reference types can be qualified with an address space.
- .. code-block:: c++
- __private int & ref = ...; // references int in __private address space
- By default references will refer to ``__generic`` address space objects, except
- for dependent types that are not template specializations
- (see :ref:`Deduction <opencl_cpp_addrsp_deduction>`). Address space compatibility
- checks are performed when references are bound to values. The logic follows the
- rules from address space pointer conversion (OpenCL v2.0 s6.5.5).
- **Default address space**
- All non-static member functions take an implicit object parameter ``this`` that
- is a pointer type. By default this pointer parameter is in the ``__generic``
- address space. All concrete objects passed as an argument to ``this`` parameter
- will be converted to the ``__generic`` address space first if such conversion is
- valid. Therefore programs using objects in the ``__constant`` address space will
- not be compiled unless the address space is explicitly specified using address
- space qualifiers on member functions
- (see :ref:`Member function qualifier <opencl_cpp_addrspace_method_qual>`) as the
- conversion between ``__constant`` and ``__generic`` is disallowed. Member function
- qualifiers can also be used in case conversion to the ``__generic`` address space
- is undesirable (even if it is legal). For example, a method can be implemented to
- exploit memory access coalescing for segments with memory bank. This not only
- applies to regular member functions but to constructors and destructors too.
- .. _opencl_cpp_addrspace_method_qual:
- **Member function qualifier**
- Clang allows specifying an address space qualifier on member functions to signal
- that they are to be used with objects constructed in some specific address space.
- This works just the same as qualifying member functions with ``const`` or any
- other qualifiers. The overloading resolution will select the candidate with the
- most specific address space if multiple candidates are provided. If there is no
- conversion to an address space among candidates, compilation will fail with a
- diagnostic.
- .. code-block:: c++
- struct C {
- void foo() __local;
- void foo();
- };
- __kernel void bar() {
- __local C c1;
- C c2;
- __constant C c3;
- c1.foo(); // will resolve to the first foo
- c2.foo(); // will resolve to the second foo
- c3.foo(); // error due to mismatching address spaces - can't convert to
- // __local or __generic
- }
- **Implicit special members**
- All implicit special members (default, copy, or move constructor, copy or move
- assignment, destructor) will be generated with the ``__generic`` address space.
- .. code-block:: c++
- class C {
- // Has the following implicit definition
- // void C() __generic;
- // void C(const __generic C &) __generic;
- // void C(__generic C &&) __generic;
- // operator= '__generic C &(__generic C &&)'
- // operator= '__generic C &(const __generic C &) __generic
- }
- **Builtin operators**
- All builtin operators are available in the specific address spaces, thus no
- conversion to ``__generic`` is performed.
- **Templates**
- There is no deduction of address spaces in non-pointer/non-reference template
- parameters and dependent types (see :ref:`Deduction <opencl_cpp_addrsp_deduction>`).
- The address space of a template parameter is deduced during type deduction if
- it is not explicitly provided in the instantiation.
- .. code-block:: c++
- 1 template<typename T>
- 2 void foo(T* i){
- 3 T var;
- 4 }
- 5
- 6 __global int g;
- 7 void bar(){
- 8 foo(&g); // error: template instantiation failed as function scope variable
- 9 // appears to be declared in __global address space (see line 3)
- 10 }
- It is not legal to specify multiple different address spaces between template
- definition and instantiation. If multiple different address spaces are specified in
- template definition and instantiation, compilation of such a program will fail with
- a diagnostic.
- .. code-block:: c++
- template <typename T>
- void foo() {
- __private T var;
- }
- void bar() {
- foo<__global int>(); // error: conflicting address space qualifiers are provided
- // __global and __private
- }
- Once a template has been instantiated, regular restrictions for address spaces will
- apply.
- .. code-block:: c++
- template<typename T>
- void foo(){
- T var;
- }
- void bar(){
- foo<__global int>(); // error: function scope variable cannot be declared in
- // __global address space
- }
- **Temporary materialization**
- All temporaries are materialized in the ``__private`` address space. If a
- reference with another address space is bound to them, the conversion will be
- generated in case it is valid, otherwise compilation will fail with a diagnostic.
- .. code-block:: c++
- int bar(const unsigned int &i);
- void foo() {
- bar(1); // temporary is created in __private address space but converted
- // to __generic address space of parameter reference
- }
- __global const int& f(__global float &ref) {
- return ref; // error: address space mismatch between temporary object
- // created to hold value converted float->int and return
- // value type (can't convert from __private to __global)
- }
- **Initialization of local and constant address space objects**
- TODO
- Constructing and destroying global objects
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Global objects must be constructed before the first kernel using the global
- objects is executed and destroyed just after the last kernel using the
- program objects is executed. In OpenCL v2.0 drivers there is no specific
- API for invoking global constructors. However, an easy workaround would be
- to enqueue a constructor initialization kernel that has a name
- ``@_GLOBAL__sub_I_<compiled file name>``. This kernel is only present if there
- are any global objects to be initialized in the compiled binary. One way to
- check this is by passing ``CL_PROGRAM_KERNEL_NAMES`` to ``clGetProgramInfo``
- (OpenCL v2.0 s5.8.7).
- Note that if multiple files are compiled and linked into libraries, multiple
- kernels that initialize global objects for multiple modules would have to be
- invoked.
- Applications are currently required to run initialization of global objects
- manually before running any kernels in which the objects are used.
- .. code-block:: console
- clang -cl-std=clc++ test.cl
- If there are any global objects to be initialized, the final binary will
- contain the ``@_GLOBAL__sub_I_test.cl`` kernel to be enqueued.
- Global destructors can not be invoked in OpenCL v2.0 drivers. However, all
- memory used for program scope objects is released on ``clReleaseProgram``.
- Initializer lists for complex numbers in C
- ==========================================
- clang supports an extension which allows the following in C:
- .. code-block:: c++
- #include <math.h>
- #include <complex.h>
- complex float x = { 1.0f, INFINITY }; // Init to (1, Inf)
- This construct is useful because there is no way to separately initialize the
- real and imaginary parts of a complex variable in standard C, given that clang
- does not support ``_Imaginary``. (Clang also supports the ``__real__`` and
- ``__imag__`` extensions from gcc, which help in some cases, but are not usable
- in static initializers.)
- Note that this extension does not allow eliding the braces; the meaning of the
- following two lines is different:
- .. code-block:: c++
- complex float x[] = { { 1.0f, 1.0f } }; // [0] = (1, 1)
- complex float x[] = { 1.0f, 1.0f }; // [0] = (1, 0), [1] = (1, 0)
- This extension also works in C++ mode, as far as that goes, but does not apply
- to the C++ ``std::complex``. (In C++11, list initialization allows the same
- syntax to be used with ``std::complex`` with the same meaning.)
- Builtin Functions
- =================
- Clang supports a number of builtin library functions with the same syntax as
- GCC, including things like ``__builtin_nan``, ``__builtin_constant_p``,
- ``__builtin_choose_expr``, ``__builtin_types_compatible_p``,
- ``__builtin_assume_aligned``, ``__sync_fetch_and_add``, etc. In addition to
- the GCC builtins, Clang supports a number of builtins that GCC does not, which
- are listed here.
- Please note that Clang does not and will not support all of the GCC builtins
- for vector operations. Instead of using builtins, you should use the functions
- defined in target-specific header files like ``<xmmintrin.h>``, which define
- portable wrappers for these. Many of the Clang versions of these functions are
- implemented directly in terms of :ref:`extended vector support
- <langext-vectors>` instead of builtins, in order to reduce the number of
- builtins that we need to implement.
- ``__builtin_assume``
- ------------------------------
- ``__builtin_assume`` is used to provide the optimizer with a boolean
- invariant that is defined to be true.
- **Syntax**:
- .. code-block:: c++
- __builtin_assume(bool)
- **Example of Use**:
- .. code-block:: c++
- int foo(int x) {
- __builtin_assume(x != 0);
- // The optimizer may short-circuit this check using the invariant.
- if (x == 0)
- return do_something();
- return do_something_else();
- }
- **Description**:
- The boolean argument to this function is defined to be true. The optimizer may
- analyze the form of the expression provided as the argument and deduce from
- that information used to optimize the program. If the condition is violated
- during execution, the behavior is undefined. The argument itself is never
- evaluated, so any side effects of the expression will be discarded.
- Query for this feature with ``__has_builtin(__builtin_assume)``.
- ``__builtin_readcyclecounter``
- ------------------------------
- ``__builtin_readcyclecounter`` is used to access the cycle counter register (or
- a similar low-latency, high-accuracy clock) on those targets that support it.
- **Syntax**:
- .. code-block:: c++
- __builtin_readcyclecounter()
- **Example of Use**:
- .. code-block:: c++
- unsigned long long t0 = __builtin_readcyclecounter();
- do_something();
- unsigned long long t1 = __builtin_readcyclecounter();
- unsigned long long cycles_to_do_something = t1 - t0; // assuming no overflow
- **Description**:
- The ``__builtin_readcyclecounter()`` builtin returns the cycle counter value,
- which may be either global or process/thread-specific depending on the target.
- As the backing counters often overflow quickly (on the order of seconds) this
- should only be used for timing small intervals. When not supported by the
- target, the return value is always zero. This builtin takes no arguments and
- produces an unsigned long long result.
- Query for this feature with ``__has_builtin(__builtin_readcyclecounter)``. Note
- that even if present, its use may depend on run-time privilege or other OS
- controlled state.
- .. _langext-__builtin_shufflevector:
- ``__builtin_shufflevector``
- ---------------------------
- ``__builtin_shufflevector`` is used to express generic vector
- permutation/shuffle/swizzle operations. This builtin is also very important
- for the implementation of various target-specific header files like
- ``<xmmintrin.h>``.
- **Syntax**:
- .. code-block:: c++
- __builtin_shufflevector(vec1, vec2, index1, index2, ...)
- **Examples**:
- .. code-block:: c++
- // identity operation - return 4-element vector v1.
- __builtin_shufflevector(v1, v1, 0, 1, 2, 3)
- // "Splat" element 0 of V1 into a 4-element result.
- __builtin_shufflevector(V1, V1, 0, 0, 0, 0)
- // Reverse 4-element vector V1.
- __builtin_shufflevector(V1, V1, 3, 2, 1, 0)
- // Concatenate every other element of 4-element vectors V1 and V2.
- __builtin_shufflevector(V1, V2, 0, 2, 4, 6)
- // Concatenate every other element of 8-element vectors V1 and V2.
- __builtin_shufflevector(V1, V2, 0, 2, 4, 6, 8, 10, 12, 14)
- // Shuffle v1 with some elements being undefined
- __builtin_shufflevector(v1, v1, 3, -1, 1, -1)
- **Description**:
- The first two arguments to ``__builtin_shufflevector`` are vectors that have
- the same element type. The remaining arguments are a list of integers that
- specify the elements indices of the first two vectors that should be extracted
- and returned in a new vector. These element indices are numbered sequentially
- starting with the first vector, continuing into the second vector. Thus, if
- ``vec1`` is a 4-element vector, index 5 would refer to the second element of
- ``vec2``. An index of -1 can be used to indicate that the corresponding element
- in the returned vector is a don't care and can be optimized by the backend.
- The result of ``__builtin_shufflevector`` is a vector with the same element
- type as ``vec1``/``vec2`` but that has an element count equal to the number of
- indices specified.
- Query for this feature with ``__has_builtin(__builtin_shufflevector)``.
- .. _langext-__builtin_convertvector:
- ``__builtin_convertvector``
- ---------------------------
- ``__builtin_convertvector`` is used to express generic vector
- type-conversion operations. The input vector and the output vector
- type must have the same number of elements.
- **Syntax**:
- .. code-block:: c++
- __builtin_convertvector(src_vec, dst_vec_type)
- **Examples**:
- .. code-block:: c++
- typedef double vector4double __attribute__((__vector_size__(32)));
- typedef float vector4float __attribute__((__vector_size__(16)));
- typedef short vector4short __attribute__((__vector_size__(8)));
- vector4float vf; vector4short vs;
- // convert from a vector of 4 floats to a vector of 4 doubles.
- __builtin_convertvector(vf, vector4double)
- // equivalent to:
- (vector4double) { (double) vf[0], (double) vf[1], (double) vf[2], (double) vf[3] }
- // convert from a vector of 4 shorts to a vector of 4 floats.
- __builtin_convertvector(vs, vector4float)
- // equivalent to:
- (vector4float) { (float) vs[0], (float) vs[1], (float) vs[2], (float) vs[3] }
- **Description**:
- The first argument to ``__builtin_convertvector`` is a vector, and the second
- argument is a vector type with the same number of elements as the first
- argument.
- The result of ``__builtin_convertvector`` is a vector with the same element
- type as the second argument, with a value defined in terms of the action of a
- C-style cast applied to each element of the first argument.
- Query for this feature with ``__has_builtin(__builtin_convertvector)``.
- ``__builtin_bitreverse``
- ------------------------
- * ``__builtin_bitreverse8``
- * ``__builtin_bitreverse16``
- * ``__builtin_bitreverse32``
- * ``__builtin_bitreverse64``
- **Syntax**:
- .. code-block:: c++
- __builtin_bitreverse32(x)
- **Examples**:
- .. code-block:: c++
- uint8_t rev_x = __builtin_bitreverse8(x);
- uint16_t rev_x = __builtin_bitreverse16(x);
- uint32_t rev_y = __builtin_bitreverse32(y);
- uint64_t rev_z = __builtin_bitreverse64(z);
- **Description**:
- The '``__builtin_bitreverse``' family of builtins is used to reverse
- the bitpattern of an integer value; for example ``0b10110110`` becomes
- ``0b01101101``.
- ``__builtin_rotateleft``
- ------------------------
- * ``__builtin_rotateleft8``
- * ``__builtin_rotateleft16``
- * ``__builtin_rotateleft32``
- * ``__builtin_rotateleft64``
- **Syntax**:
- .. code-block:: c++
- __builtin_rotateleft32(x, y)
- **Examples**:
- .. code-block:: c++
- uint8_t rot_x = __builtin_rotateleft8(x, y);
- uint16_t rot_x = __builtin_rotateleft16(x, y);
- uint32_t rot_x = __builtin_rotateleft32(x, y);
- uint64_t rot_x = __builtin_rotateleft64(x, y);
- **Description**:
- The '``__builtin_rotateleft``' family of builtins is used to rotate
- the bits in the first argument by the amount in the second argument.
- For example, ``0b10000110`` rotated left by 11 becomes ``0b00110100``.
- The shift value is treated as an unsigned amount modulo the size of
- the arguments. Both arguments and the result have the bitwidth specified
- by the name of the builtin.
- ``__builtin_rotateright``
- -------------------------
- * ``__builtin_rotateright8``
- * ``__builtin_rotateright16``
- * ``__builtin_rotateright32``
- * ``__builtin_rotateright64``
- **Syntax**:
- .. code-block:: c++
- __builtin_rotateright32(x, y)
- **Examples**:
- .. code-block:: c++
- uint8_t rot_x = __builtin_rotateright8(x, y);
- uint16_t rot_x = __builtin_rotateright16(x, y);
- uint32_t rot_x = __builtin_rotateright32(x, y);
- uint64_t rot_x = __builtin_rotateright64(x, y);
- **Description**:
- The '``__builtin_rotateright``' family of builtins is used to rotate
- the bits in the first argument by the amount in the second argument.
- For example, ``0b10000110`` rotated right by 3 becomes ``0b11010000``.
- The shift value is treated as an unsigned amount modulo the size of
- the arguments. Both arguments and the result have the bitwidth specified
- by the name of the builtin.
- ``__builtin_unreachable``
- -------------------------
- ``__builtin_unreachable`` is used to indicate that a specific point in the
- program cannot be reached, even if the compiler might otherwise think it can.
- This is useful to improve optimization and eliminates certain warnings. For
- example, without the ``__builtin_unreachable`` in the example below, the
- compiler assumes that the inline asm can fall through and prints a "function
- declared '``noreturn``' should not return" warning.
- **Syntax**:
- .. code-block:: c++
- __builtin_unreachable()
- **Example of use**:
- .. code-block:: c++
- void myabort(void) __attribute__((noreturn));
- void myabort(void) {
- asm("int3");
- __builtin_unreachable();
- }
- **Description**:
- The ``__builtin_unreachable()`` builtin has completely undefined behavior.
- Since it has undefined behavior, it is a statement that it is never reached and
- the optimizer can take advantage of this to produce better code. This builtin
- takes no arguments and produces a void result.
- Query for this feature with ``__has_builtin(__builtin_unreachable)``.
- ``__builtin_unpredictable``
- ---------------------------
- ``__builtin_unpredictable`` is used to indicate that a branch condition is
- unpredictable by hardware mechanisms such as branch prediction logic.
- **Syntax**:
- .. code-block:: c++
- __builtin_unpredictable(long long)
- **Example of use**:
- .. code-block:: c++
- if (__builtin_unpredictable(x > 0)) {
- foo();
- }
- **Description**:
- The ``__builtin_unpredictable()`` builtin is expected to be used with control
- flow conditions such as in ``if`` and ``switch`` statements.
- Query for this feature with ``__has_builtin(__builtin_unpredictable)``.
- ``__sync_swap``
- ---------------
- ``__sync_swap`` is used to atomically swap integers or pointers in memory.
- **Syntax**:
- .. code-block:: c++
- type __sync_swap(type *ptr, type value, ...)
- **Example of Use**:
- .. code-block:: c++
- int old_value = __sync_swap(&value, new_value);
- **Description**:
- The ``__sync_swap()`` builtin extends the existing ``__sync_*()`` family of
- atomic intrinsics to allow code to atomically swap the current value with the
- new value. More importantly, it helps developers write more efficient and
- correct code by avoiding expensive loops around
- ``__sync_bool_compare_and_swap()`` or relying on the platform specific
- implementation details of ``__sync_lock_test_and_set()``. The
- ``__sync_swap()`` builtin is a full barrier.
- ``__builtin_addressof``
- -----------------------
- ``__builtin_addressof`` performs the functionality of the built-in ``&``
- operator, ignoring any ``operator&`` overload. This is useful in constant
- expressions in C++11, where there is no other way to take the address of an
- object that overloads ``operator&``.
- **Example of use**:
- .. code-block:: c++
- template<typename T> constexpr T *addressof(T &value) {
- return __builtin_addressof(value);
- }
- ``__builtin_operator_new`` and ``__builtin_operator_delete``
- ------------------------------------------------------------
- ``__builtin_operator_new`` allocates memory just like a non-placement non-class
- *new-expression*. This is exactly like directly calling the normal
- non-placement ``::operator new``, except that it allows certain optimizations
- that the C++ standard does not permit for a direct function call to
- ``::operator new`` (in particular, removing ``new`` / ``delete`` pairs and
- merging allocations).
- Likewise, ``__builtin_operator_delete`` deallocates memory just like a
- non-class *delete-expression*, and is exactly like directly calling the normal
- ``::operator delete``, except that it permits optimizations. Only the unsized
- form of ``__builtin_operator_delete`` is currently available.
- These builtins are intended for use in the implementation of ``std::allocator``
- and other similar allocation libraries, and are only available in C++.
- ``__builtin_preserve_access_index``
- -----------------------------------
- ``__builtin_preserve_access_index`` specifies a code section where
- array subscript access and structure/union member access are relocatable
- under bpf compile-once run-everywhere framework. Debuginfo (typically
- with ``-g``) is needed, otherwise, the compiler will exit with an error.
- The return type for the intrinsic is the same as the type of the
- argument.
- **Syntax**:
- .. code-block:: c
- type __builtin_preserve_access_index(type arg)
- **Example of Use**:
- .. code-block:: c
- struct t {
- int i;
- int j;
- union {
- int a;
- int b;
- } c[4];
- };
- struct t *v = ...;
- int *pb =__builtin_preserve_access_index(&v->c[3].b);
- __builtin_preserve_access_index(v->j);
- Multiprecision Arithmetic Builtins
- ----------------------------------
- Clang provides a set of builtins which expose multiprecision arithmetic in a
- manner amenable to C. They all have the following form:
- .. code-block:: c
- unsigned x = ..., y = ..., carryin = ..., carryout;
- unsigned sum = __builtin_addc(x, y, carryin, &carryout);
- Thus one can form a multiprecision addition chain in the following manner:
- .. code-block:: c
- unsigned *x, *y, *z, carryin=0, carryout;
- z[0] = __builtin_addc(x[0], y[0], carryin, &carryout);
- carryin = carryout;
- z[1] = __builtin_addc(x[1], y[1], carryin, &carryout);
- carryin = carryout;
- z[2] = __builtin_addc(x[2], y[2], carryin, &carryout);
- carryin = carryout;
- z[3] = __builtin_addc(x[3], y[3], carryin, &carryout);
- The complete list of builtins are:
- .. code-block:: c
- unsigned char __builtin_addcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
- unsigned short __builtin_addcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
- unsigned __builtin_addc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
- unsigned long __builtin_addcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
- unsigned long long __builtin_addcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
- unsigned char __builtin_subcb (unsigned char x, unsigned char y, unsigned char carryin, unsigned char *carryout);
- unsigned short __builtin_subcs (unsigned short x, unsigned short y, unsigned short carryin, unsigned short *carryout);
- unsigned __builtin_subc (unsigned x, unsigned y, unsigned carryin, unsigned *carryout);
- unsigned long __builtin_subcl (unsigned long x, unsigned long y, unsigned long carryin, unsigned long *carryout);
- unsigned long long __builtin_subcll(unsigned long long x, unsigned long long y, unsigned long long carryin, unsigned long long *carryout);
- Checked Arithmetic Builtins
- ---------------------------
- Clang provides a set of builtins that implement checked arithmetic for security
- critical applications in a manner that is fast and easily expressable in C. As
- an example of their usage:
- .. code-block:: c
- errorcode_t security_critical_application(...) {
- unsigned x, y, result;
- ...
- if (__builtin_mul_overflow(x, y, &result))
- return kErrorCodeHackers;
- ...
- use_multiply(result);
- ...
- }
- Clang provides the following checked arithmetic builtins:
- .. code-block:: c
- bool __builtin_add_overflow (type1 x, type2 y, type3 *sum);
- bool __builtin_sub_overflow (type1 x, type2 y, type3 *diff);
- bool __builtin_mul_overflow (type1 x, type2 y, type3 *prod);
- bool __builtin_uadd_overflow (unsigned x, unsigned y, unsigned *sum);
- bool __builtin_uaddl_overflow (unsigned long x, unsigned long y, unsigned long *sum);
- bool __builtin_uaddll_overflow(unsigned long long x, unsigned long long y, unsigned long long *sum);
- bool __builtin_usub_overflow (unsigned x, unsigned y, unsigned *diff);
- bool __builtin_usubl_overflow (unsigned long x, unsigned long y, unsigned long *diff);
- bool __builtin_usubll_overflow(unsigned long long x, unsigned long long y, unsigned long long *diff);
- bool __builtin_umul_overflow (unsigned x, unsigned y, unsigned *prod);
- bool __builtin_umull_overflow (unsigned long x, unsigned long y, unsigned long *prod);
- bool __builtin_umulll_overflow(unsigned long long x, unsigned long long y, unsigned long long *prod);
- bool __builtin_sadd_overflow (int x, int y, int *sum);
- bool __builtin_saddl_overflow (long x, long y, long *sum);
- bool __builtin_saddll_overflow(long long x, long long y, long long *sum);
- bool __builtin_ssub_overflow (int x, int y, int *diff);
- bool __builtin_ssubl_overflow (long x, long y, long *diff);
- bool __builtin_ssubll_overflow(long long x, long long y, long long *diff);
- bool __builtin_smul_overflow (int x, int y, int *prod);
- bool __builtin_smull_overflow (long x, long y, long *prod);
- bool __builtin_smulll_overflow(long long x, long long y, long long *prod);
- Each builtin performs the specified mathematical operation on the
- first two arguments and stores the result in the third argument. If
- possible, the result will be equal to mathematically-correct result
- and the builtin will return 0. Otherwise, the builtin will return
- 1 and the result will be equal to the unique value that is equivalent
- to the mathematically-correct result modulo two raised to the *k*
- power, where *k* is the number of bits in the result type. The
- behavior of these builtins is well-defined for all argument values.
- The first three builtins work generically for operands of any integer type,
- including boolean types. The operands need not have the same type as each
- other, or as the result. The other builtins may implicitly promote or
- convert their operands before performing the operation.
- Query for this feature with ``__has_builtin(__builtin_add_overflow)``, etc.
- Floating point builtins
- ---------------------------------------
- ``__builtin_canonicalize``
- --------------------------
- .. code-block:: c
- double __builtin_canonicalize(double);
- float __builtin_canonicalizef(float);
- long double__builtin_canonicalizel(long double);
- Returns the platform specific canonical encoding of a floating point
- number. This canonicalization is useful for implementing certain
- numeric primitives such as frexp. See `LLVM canonicalize intrinsic
- <https://llvm.org/docs/LangRef.html#llvm-canonicalize-intrinsic>`_ for
- more information on the semantics.
- String builtins
- ---------------
- Clang provides constant expression evaluation support for builtins forms of
- the following functions from the C standard library ``<string.h>`` header:
- * ``memchr``
- * ``memcmp``
- * ``strchr``
- * ``strcmp``
- * ``strlen``
- * ``strncmp``
- * ``wcschr``
- * ``wcscmp``
- * ``wcslen``
- * ``wcsncmp``
- * ``wmemchr``
- * ``wmemcmp``
- In each case, the builtin form has the name of the C library function prefixed
- by ``__builtin_``. Example:
- .. code-block:: c
- void *p = __builtin_memchr("foobar", 'b', 5);
- In addition to the above, one further builtin is provided:
- .. code-block:: c
- char *__builtin_char_memchr(const char *haystack, int needle, size_t size);
- ``__builtin_char_memchr(a, b, c)`` is identical to
- ``(char*)__builtin_memchr(a, b, c)`` except that its use is permitted within
- constant expressions in C++11 onwards (where a cast from ``void*`` to ``char*``
- is disallowed in general).
- Support for constant expression evaluation for the above builtins be detected
- with ``__has_feature(cxx_constexpr_string_builtins)``.
- Atomic Min/Max builtins with memory ordering
- --------------------------------------------
- There are two atomic builtins with min/max in-memory comparison and swap.
- The syntax and semantics are similar to GCC-compatible __atomic_* builtins.
- * ``__atomic_fetch_min``
- * ``__atomic_fetch_max``
- The builtins work with signed and unsigned integers and require to specify memory ordering.
- The return value is the original value that was stored in memory before comparison.
- Example:
- .. code-block:: c
- unsigned int val = __atomic_fetch_min(unsigned int *pi, unsigned int ui, __ATOMIC_RELAXED);
- The third argument is one of the memory ordering specifiers ``__ATOMIC_RELAXED``,
- ``__ATOMIC_CONSUME``, ``__ATOMIC_ACQUIRE``, ``__ATOMIC_RELEASE``,
- ``__ATOMIC_ACQ_REL``, or ``__ATOMIC_SEQ_CST`` following C++11 memory model semantics.
- In terms or aquire-release ordering barriers these two operations are always
- considered as operations with *load-store* semantics, even when the original value
- is not actually modified after comparison.
- .. _langext-__c11_atomic:
- __c11_atomic builtins
- ---------------------
- Clang provides a set of builtins which are intended to be used to implement
- C11's ``<stdatomic.h>`` header. These builtins provide the semantics of the
- ``_explicit`` form of the corresponding C11 operation, and are named with a
- ``__c11_`` prefix. The supported operations, and the differences from
- the corresponding C11 operations, are:
- * ``__c11_atomic_init``
- * ``__c11_atomic_thread_fence``
- * ``__c11_atomic_signal_fence``
- * ``__c11_atomic_is_lock_free`` (The argument is the size of the
- ``_Atomic(...)`` object, instead of its address)
- * ``__c11_atomic_store``
- * ``__c11_atomic_load``
- * ``__c11_atomic_exchange``
- * ``__c11_atomic_compare_exchange_strong``
- * ``__c11_atomic_compare_exchange_weak``
- * ``__c11_atomic_fetch_add``
- * ``__c11_atomic_fetch_sub``
- * ``__c11_atomic_fetch_and``
- * ``__c11_atomic_fetch_or``
- * ``__c11_atomic_fetch_xor``
- The macros ``__ATOMIC_RELAXED``, ``__ATOMIC_CONSUME``, ``__ATOMIC_ACQUIRE``,
- ``__ATOMIC_RELEASE``, ``__ATOMIC_ACQ_REL``, and ``__ATOMIC_SEQ_CST`` are
- provided, with values corresponding to the enumerators of C11's
- ``memory_order`` enumeration.
- (Note that Clang additionally provides GCC-compatible ``__atomic_*``
- builtins and OpenCL 2.0 ``__opencl_atomic_*`` builtins. The OpenCL 2.0
- atomic builtins are an explicit form of the corresponding OpenCL 2.0
- builtin function, and are named with a ``__opencl_`` prefix. The macros
- ``__OPENCL_MEMORY_SCOPE_WORK_ITEM``, ``__OPENCL_MEMORY_SCOPE_WORK_GROUP``,
- ``__OPENCL_MEMORY_SCOPE_DEVICE``, ``__OPENCL_MEMORY_SCOPE_ALL_SVM_DEVICES``,
- and ``__OPENCL_MEMORY_SCOPE_SUB_GROUP`` are provided, with values
- corresponding to the enumerators of OpenCL's ``memory_scope`` enumeration.)
- Low-level ARM exclusive memory builtins
- ---------------------------------------
- Clang provides overloaded builtins giving direct access to the three key ARM
- instructions for implementing atomic operations.
- .. code-block:: c
- T __builtin_arm_ldrex(const volatile T *addr);
- T __builtin_arm_ldaex(const volatile T *addr);
- int __builtin_arm_strex(T val, volatile T *addr);
- int __builtin_arm_stlex(T val, volatile T *addr);
- void __builtin_arm_clrex(void);
- The types ``T`` currently supported are:
- * Integer types with width at most 64 bits (or 128 bits on AArch64).
- * Floating-point types
- * Pointer types.
- Note that the compiler does not guarantee it will not insert stores which clear
- the exclusive monitor in between an ``ldrex`` type operation and its paired
- ``strex``. In practice this is only usually a risk when the extra store is on
- the same cache line as the variable being modified and Clang will only insert
- stack stores on its own, so it is best not to use these operations on variables
- with automatic storage duration.
- Also, loads and stores may be implicit in code written between the ``ldrex`` and
- ``strex``. Clang will not necessarily mitigate the effects of these either, so
- care should be exercised.
- For these reasons the higher level atomic primitives should be preferred where
- possible.
- Non-temporal load/store builtins
- --------------------------------
- Clang provides overloaded builtins allowing generation of non-temporal memory
- accesses.
- .. code-block:: c
- T __builtin_nontemporal_load(T *addr);
- void __builtin_nontemporal_store(T value, T *addr);
- The types ``T`` currently supported are:
- * Integer types.
- * Floating-point types.
- * Vector types.
- Note that the compiler does not guarantee that non-temporal loads or stores
- will be used.
- C++ Coroutines support builtins
- --------------------------------
- .. warning::
- This is a work in progress. Compatibility across Clang/LLVM releases is not
- guaranteed.
- Clang provides experimental builtins to support C++ Coroutines as defined by
- https://wg21.link/P0057. The following four are intended to be used by the
- standard library to implement `std::experimental::coroutine_handle` type.
- **Syntax**:
- .. code-block:: c
- void __builtin_coro_resume(void *addr);
- void __builtin_coro_destroy(void *addr);
- bool __builtin_coro_done(void *addr);
- void *__builtin_coro_promise(void *addr, int alignment, bool from_promise)
- **Example of use**:
- .. code-block:: c++
- template <> struct coroutine_handle<void> {
- void resume() const { __builtin_coro_resume(ptr); }
- void destroy() const { __builtin_coro_destroy(ptr); }
- bool done() const { return __builtin_coro_done(ptr); }
- // ...
- protected:
- void *ptr;
- };
- template <typename Promise> struct coroutine_handle : coroutine_handle<> {
- // ...
- Promise &promise() const {
- return *reinterpret_cast<Promise *>(
- __builtin_coro_promise(ptr, alignof(Promise), /*from-promise=*/false));
- }
- static coroutine_handle from_promise(Promise &promise) {
- coroutine_handle p;
- p.ptr = __builtin_coro_promise(&promise, alignof(Promise),
- /*from-promise=*/true);
- return p;
- }
- };
- Other coroutine builtins are either for internal clang use or for use during
- development of the coroutine feature. See `Coroutines in LLVM
- <https://llvm.org/docs/Coroutines.html#intrinsics>`_ for
- more information on their semantics. Note that builtins matching the intrinsics
- that take token as the first parameter (llvm.coro.begin, llvm.coro.alloc,
- llvm.coro.free and llvm.coro.suspend) omit the token parameter and fill it to
- an appropriate value during the emission.
- **Syntax**:
- .. code-block:: c
- size_t __builtin_coro_size()
- void *__builtin_coro_frame()
- void *__builtin_coro_free(void *coro_frame)
- void *__builtin_coro_id(int align, void *promise, void *fnaddr, void *parts)
- bool __builtin_coro_alloc()
- void *__builtin_coro_begin(void *memory)
- void __builtin_coro_end(void *coro_frame, bool unwind)
- char __builtin_coro_suspend(bool final)
- bool __builtin_coro_param(void *original, void *copy)
- Note that there is no builtin matching the `llvm.coro.save` intrinsic. LLVM
- automatically will insert one if the first argument to `llvm.coro.suspend` is
- token `none`. If a user calls `__builin_suspend`, clang will insert `token none`
- as the first argument to the intrinsic.
- Source location builtins
- ------------------------
- Clang provides experimental builtins to support C++ standard library implementation
- of ``std::experimental::source_location`` as specified in http://wg21.link/N4600.
- With the exception of ``__builtin_COLUMN``, these builtins are also implemented by
- GCC.
- **Syntax**:
- .. code-block:: c
- const char *__builtin_FILE();
- const char *__builtin_FUNCTION();
- unsigned __builtin_LINE();
- unsigned __builtin_COLUMN(); // Clang only
- **Example of use**:
- .. code-block:: c++
- void my_assert(bool pred, int line = __builtin_LINE(), // Captures line of caller
- const char* file = __builtin_FILE(),
- const char* function = __builtin_FUNCTION()) {
- if (pred) return;
- printf("%s:%d assertion failed in function %s\n", file, line, function);
- std::abort();
- }
- struct MyAggregateType {
- int x;
- int line = __builtin_LINE(); // captures line where aggregate initialization occurs
- };
- static_assert(MyAggregateType{42}.line == __LINE__);
- struct MyClassType {
- int line = __builtin_LINE(); // captures line of the constructor used during initialization
- constexpr MyClassType(int) { assert(line == __LINE__); }
- };
- **Description**:
- The builtins ``__builtin_LINE``, ``__builtin_FUNCTION``, and ``__builtin_FILE`` return
- the values, at the "invocation point", for ``__LINE__``, ``__FUNCTION__``, and
- ``__FILE__`` respectively. These builtins are constant expressions.
- When the builtins appear as part of a default function argument the invocation
- point is the location of the caller. When the builtins appear as part of a
- default member initializer, the invocation point is the location of the
- constructor or aggregate initialization used to create the object. Otherwise
- the invocation point is the same as the location of the builtin.
- When the invocation point of ``__builtin_FUNCTION`` is not a function scope the
- empty string is returned.
- Non-standard C++11 Attributes
- =============================
- Clang's non-standard C++11 attributes live in the ``clang`` attribute
- namespace.
- Clang supports GCC's ``gnu`` attribute namespace. All GCC attributes which
- are accepted with the ``__attribute__((foo))`` syntax are also accepted as
- ``[[gnu::foo]]``. This only extends to attributes which are specified by GCC
- (see the list of `GCC function attributes
- <https://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html>`_, `GCC variable
- attributes <https://gcc.gnu.org/onlinedocs/gcc/Variable-Attributes.html>`_, and
- `GCC type attributes
- <https://gcc.gnu.org/onlinedocs/gcc/Type-Attributes.html>`_). As with the GCC
- implementation, these attributes must appertain to the *declarator-id* in a
- declaration, which means they must go either at the start of the declaration or
- immediately after the name being declared.
- For example, this applies the GNU ``unused`` attribute to ``a`` and ``f``, and
- also applies the GNU ``noreturn`` attribute to ``f``.
- .. code-block:: c++
- [[gnu::unused]] int a, f [[gnu::noreturn]] ();
- Target-Specific Extensions
- ==========================
- Clang supports some language features conditionally on some targets.
- ARM/AArch64 Language Extensions
- -------------------------------
- Memory Barrier Intrinsics
- ^^^^^^^^^^^^^^^^^^^^^^^^^
- Clang implements the ``__dmb``, ``__dsb`` and ``__isb`` intrinsics as defined
- in the `ARM C Language Extensions Release 2.0
- <http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf>`_.
- Note that these intrinsics are implemented as motion barriers that block
- reordering of memory accesses and side effect instructions. Other instructions
- like simple arithmetic may be reordered around the intrinsic. If you expect to
- have no reordering at all, use inline assembly instead.
- X86/X86-64 Language Extensions
- ------------------------------
- The X86 backend has these language extensions:
- Memory references to specified segments
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- Annotating a pointer with address space #256 causes it to be code generated
- relative to the X86 GS segment register, address space #257 causes it to be
- relative to the X86 FS segment, and address space #258 causes it to be
- relative to the X86 SS segment. Note that this is a very very low-level
- feature that should only be used if you know what you're doing (for example in
- an OS kernel).
- Here is an example:
- .. code-block:: c++
- #define GS_RELATIVE __attribute__((address_space(256)))
- int foo(int GS_RELATIVE *P) {
- return *P;
- }
- Which compiles to (on X86-32):
- .. code-block:: gas
- _foo:
- movl 4(%esp), %eax
- movl %gs:(%eax), %eax
- ret
- You can also use the GCC compatibility macros ``__seg_fs`` and ``__seg_gs`` for
- the same purpose. The preprocessor symbols ``__SEG_FS`` and ``__SEG_GS``
- indicate their support.
- PowerPC Language Extensions
- ------------------------------
- Set the Floating Point Rounding Mode
- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- PowerPC64/PowerPC64le supports the builtin function ``__builtin_setrnd`` to set
- the floating point rounding mode. This function will use the least significant
- two bits of integer argument to set the floating point rounding mode.
- .. code-block:: c++
- double __builtin_setrnd(int mode);
- The effective values for mode are:
- - 0 - round to nearest
- - 1 - round to zero
- - 2 - round to +infinity
- - 3 - round to -infinity
- Note that the mode argument will modulo 4, so if the integer argument is greater
- than 3, it will only use the least significant two bits of the mode.
- Namely, ``__builtin_setrnd(102))`` is equal to ``__builtin_setrnd(2)``.
- PowerPC cache builtins
- ^^^^^^^^^^^^^^^^^^^^^^
- The PowerPC architecture specifies instructions implementing cache operations.
- Clang provides builtins that give direct programmer access to these cache
- instructions.
- Currently the following builtins are implemented in clang:
- ``__builtin_dcbf`` copies the contents of a modified block from the data cache
- to main memory and flushes the copy from the data cache.
- **Syntax**:
- .. code-block:: c
- void __dcbf(const void* addr); /* Data Cache Block Flush */
- **Example of Use**:
- .. code-block:: c
- int a = 1;
- __builtin_dcbf (&a);
- Extensions for Static Analysis
- ==============================
- Clang supports additional attributes that are useful for documenting program
- invariants and rules for static analysis tools, such as the `Clang Static
- Analyzer <https://clang-analyzer.llvm.org/>`_. These attributes are documented
- in the analyzer's `list of source-level annotations
- <https://clang-analyzer.llvm.org/annotations.html>`_.
- Extensions for Dynamic Analysis
- ===============================
- Use ``__has_feature(address_sanitizer)`` to check if the code is being built
- with :doc:`AddressSanitizer`.
- Use ``__has_feature(thread_sanitizer)`` to check if the code is being built
- with :doc:`ThreadSanitizer`.
- Use ``__has_feature(memory_sanitizer)`` to check if the code is being built
- with :doc:`MemorySanitizer`.
- Use ``__has_feature(safe_stack)`` to check if the code is being built
- with :doc:`SafeStack`.
- Extensions for selectively disabling optimization
- =================================================
- Clang provides a mechanism for selectively disabling optimizations in functions
- and methods.
- To disable optimizations in a single function definition, the GNU-style or C++11
- non-standard attribute ``optnone`` can be used.
- .. code-block:: c++
- // The following functions will not be optimized.
- // GNU-style attribute
- __attribute__((optnone)) int foo() {
- // ... code
- }
- // C++11 attribute
- [[clang::optnone]] int bar() {
- // ... code
- }
- To facilitate disabling optimization for a range of function definitions, a
- range-based pragma is provided. Its syntax is ``#pragma clang optimize``
- followed by ``off`` or ``on``.
- All function definitions in the region between an ``off`` and the following
- ``on`` will be decorated with the ``optnone`` attribute unless doing so would
- conflict with explicit attributes already present on the function (e.g. the
- ones that control inlining).
- .. code-block:: c++
- #pragma clang optimize off
- // This function will be decorated with optnone.
- int foo() {
- // ... code
- }
- // optnone conflicts with always_inline, so bar() will not be decorated.
- __attribute__((always_inline)) int bar() {
- // ... code
- }
- #pragma clang optimize on
- If no ``on`` is found to close an ``off`` region, the end of the region is the
- end of the compilation unit.
- Note that a stray ``#pragma clang optimize on`` does not selectively enable
- additional optimizations when compiling at low optimization levels. This feature
- can only be used to selectively disable optimizations.
- The pragma has an effect on functions only at the point of their definition; for
- function templates, this means that the state of the pragma at the point of an
- instantiation is not necessarily relevant. Consider the following example:
- .. code-block:: c++
- template<typename T> T twice(T t) {
- return 2 * t;
- }
- #pragma clang optimize off
- template<typename T> T thrice(T t) {
- return 3 * t;
- }
- int container(int a, int b) {
- return twice(a) + thrice(b);
- }
- #pragma clang optimize on
- In this example, the definition of the template function ``twice`` is outside
- the pragma region, whereas the definition of ``thrice`` is inside the region.
- The ``container`` function is also in the region and will not be optimized, but
- it causes the instantiation of ``twice`` and ``thrice`` with an ``int`` type; of
- these two instantiations, ``twice`` will be optimized (because its definition
- was outside the region) and ``thrice`` will not be optimized.
- Extensions for loop hint optimizations
- ======================================
- The ``#pragma clang loop`` directive is used to specify hints for optimizing the
- subsequent for, while, do-while, or c++11 range-based for loop. The directive
- provides options for vectorization, interleaving, predication, unrolling and
- distribution. Loop hints can be specified before any loop and will be ignored if
- the optimization is not safe to apply.
- There are loop hints that control transformations (e.g. vectorization, loop
- unrolling) and there are loop hints that set transformation options (e.g.
- ``vectorize_width``, ``unroll_count``). Pragmas setting transformation options
- imply the transformation is enabled, as if it was enabled via the corresponding
- transformation pragma (e.g. ``vectorize(enable)``). If the transformation is
- disabled (e.g. ``vectorize(disable)``), that takes precedence over
- transformations option pragmas implying that transformation.
- Vectorization, Interleaving, and Predication
- --------------------------------------------
- A vectorized loop performs multiple iterations of the original loop
- in parallel using vector instructions. The instruction set of the target
- processor determines which vector instructions are available and their vector
- widths. This restricts the types of loops that can be vectorized. The vectorizer
- automatically determines if the loop is safe and profitable to vectorize. A
- vector instruction cost model is used to select the vector width.
- Interleaving multiple loop iterations allows modern processors to further
- improve instruction-level parallelism (ILP) using advanced hardware features,
- such as multiple execution units and out-of-order execution. The vectorizer uses
- a cost model that depends on the register pressure and generated code size to
- select the interleaving count.
- Vectorization is enabled by ``vectorize(enable)`` and interleaving is enabled
- by ``interleave(enable)``. This is useful when compiling with ``-Os`` to
- manually enable vectorization or interleaving.
- .. code-block:: c++
- #pragma clang loop vectorize(enable)
- #pragma clang loop interleave(enable)
- for(...) {
- ...
- }
- The vector width is specified by ``vectorize_width(_value_)`` and the interleave
- count is specified by ``interleave_count(_value_)``, where
- _value_ is a positive integer. This is useful for specifying the optimal
- width/count of the set of target architectures supported by your application.
- .. code-block:: c++
- #pragma clang loop vectorize_width(2)
- #pragma clang loop interleave_count(2)
- for(...) {
- ...
- }
- Specifying a width/count of 1 disables the optimization, and is equivalent to
- ``vectorize(disable)`` or ``interleave(disable)``.
- Vector predication is enabled by ``vectorize_predicate(enable)``, for example:
- .. code-block:: c++
- #pragma clang loop vectorize(enable)
- #pragma clang loop vectorize_predicate(enable)
- for(...) {
- ...
- }
- This predicates (masks) all instructions in the loop, which allows the scalar
- remainder loop (the tail) to be folded into the main vectorized loop. This
- might be more efficient when vector predication is efficiently supported by the
- target platform.
- Loop Unrolling
- --------------
- Unrolling a loop reduces the loop control overhead and exposes more
- opportunities for ILP. Loops can be fully or partially unrolled. Full unrolling
- eliminates the loop and replaces it with an enumerated sequence of loop
- iterations. Full unrolling is only possible if the loop trip count is known at
- compile time. Partial unrolling replicates the loop body within the loop and
- reduces the trip count.
- If ``unroll(enable)`` is specified the unroller will attempt to fully unroll the
- loop if the trip count is known at compile time. If the fully unrolled code size
- is greater than an internal limit the loop will be partially unrolled up to this
- limit. If the trip count is not known at compile time the loop will be partially
- unrolled with a heuristically chosen unroll factor.
- .. code-block:: c++
- #pragma clang loop unroll(enable)
- for(...) {
- ...
- }
- If ``unroll(full)`` is specified the unroller will attempt to fully unroll the
- loop if the trip count is known at compile time identically to
- ``unroll(enable)``. However, with ``unroll(full)`` the loop will not be unrolled
- if the loop count is not known at compile time.
- .. code-block:: c++
- #pragma clang loop unroll(full)
- for(...) {
- ...
- }
- The unroll count can be specified explicitly with ``unroll_count(_value_)`` where
- _value_ is a positive integer. If this value is greater than the trip count the
- loop will be fully unrolled. Otherwise the loop is partially unrolled subject
- to the same code size limit as with ``unroll(enable)``.
- .. code-block:: c++
- #pragma clang loop unroll_count(8)
- for(...) {
- ...
- }
- Unrolling of a loop can be prevented by specifying ``unroll(disable)``.
- Loop Distribution
- -----------------
- Loop Distribution allows splitting a loop into multiple loops. This is
- beneficial for example when the entire loop cannot be vectorized but some of the
- resulting loops can.
- If ``distribute(enable))`` is specified and the loop has memory dependencies
- that inhibit vectorization, the compiler will attempt to isolate the offending
- operations into a new loop. This optimization is not enabled by default, only
- loops marked with the pragma are considered.
- .. code-block:: c++
- #pragma clang loop distribute(enable)
- for (i = 0; i < N; ++i) {
- S1: A[i + 1] = A[i] + B[i];
- S2: C[i] = D[i] * E[i];
- }
- This loop will be split into two loops between statements S1 and S2. The
- second loop containing S2 will be vectorized.
- Loop Distribution is currently not enabled by default in the optimizer because
- it can hurt performance in some cases. For example, instruction-level
- parallelism could be reduced by sequentializing the execution of the
- statements S1 and S2 above.
- If Loop Distribution is turned on globally with
- ``-mllvm -enable-loop-distribution``, specifying ``distribute(disable)`` can
- be used the disable it on a per-loop basis.
- Additional Information
- ----------------------
- For convenience multiple loop hints can be specified on a single line.
- .. code-block:: c++
- #pragma clang loop vectorize_width(4) interleave_count(8)
- for(...) {
- ...
- }
- If an optimization cannot be applied any hints that apply to it will be ignored.
- For example, the hint ``vectorize_width(4)`` is ignored if the loop is not
- proven safe to vectorize. To identify and diagnose optimization issues use
- `-Rpass`, `-Rpass-missed`, and `-Rpass-analysis` command line options. See the
- user guide for details.
- Extensions to specify floating-point flags
- ====================================================
- The ``#pragma clang fp`` pragma allows floating-point options to be specified
- for a section of the source code. This pragma can only appear at file scope or
- at the start of a compound statement (excluding comments). When using within a
- compound statement, the pragma is active within the scope of the compound
- statement.
- Currently, only FP contraction can be controlled with the pragma. ``#pragma
- clang fp contract`` specifies whether the compiler should contract a multiply
- and an addition (or subtraction) into a fused FMA operation when supported by
- the target.
- The pragma can take three values: ``on``, ``fast`` and ``off``. The ``on``
- option is identical to using ``#pragma STDC FP_CONTRACT(ON)`` and it allows
- fusion as specified the language standard. The ``fast`` option allows fusiong
- in cases when the language standard does not make this possible (e.g. across
- statements in C)
- .. code-block:: c++
- for(...) {
- #pragma clang fp contract(fast)
- a = b[i] * c[i];
- d[i] += a;
- }
- The pragma can also be used with ``off`` which turns FP contraction off for a
- section of the code. This can be useful when fast contraction is otherwise
- enabled for the translation unit with the ``-ffp-contract=fast`` flag.
- Specifying an attribute for multiple declarations (#pragma clang attribute)
- ===========================================================================
- The ``#pragma clang attribute`` directive can be used to apply an attribute to
- multiple declarations. The ``#pragma clang attribute push`` variation of the
- directive pushes a new "scope" of ``#pragma clang attribute`` that attributes
- can be added to. The ``#pragma clang attribute (...)`` variation adds an
- attribute to that scope, and the ``#pragma clang attribute pop`` variation pops
- the scope. You can also use ``#pragma clang attribute push (...)``, which is a
- shorthand for when you want to add one attribute to a new scope. Multiple push
- directives can be nested inside each other.
- The attributes that are used in the ``#pragma clang attribute`` directives
- can be written using the GNU-style syntax:
- .. code-block:: c++
- #pragma clang attribute push (__attribute__((annotate("custom"))), apply_to = function)
- void function(); // The function now has the annotate("custom") attribute
- #pragma clang attribute pop
- The attributes can also be written using the C++11 style syntax:
- .. code-block:: c++
- #pragma clang attribute push ([[noreturn]], apply_to = function)
- void function(); // The function now has the [[noreturn]] attribute
- #pragma clang attribute pop
- The ``__declspec`` style syntax is also supported:
- .. code-block:: c++
- #pragma clang attribute push (__declspec(dllexport), apply_to = function)
- void function(); // The function now has the __declspec(dllexport) attribute
- #pragma clang attribute pop
- A single push directive accepts only one attribute regardless of the syntax
- used.
- Because multiple push directives can be nested, if you're writing a macro that
- expands to ``_Pragma("clang attribute")`` it's good hygiene (though not
- required) to add a namespace to your push/pop directives. A pop directive with a
- namespace will pop the innermost push that has that same namespace. This will
- ensure that another macro's ``pop`` won't inadvertently pop your attribute. Note
- that an ``pop`` without a namespace will pop the innermost ``push`` without a
- namespace. ``push``es with a namespace can only be popped by ``pop`` with the
- same namespace. For instance:
- .. code-block:: c++
- #define ASSUME_NORETURN_BEGIN _Pragma("clang attribute AssumeNoreturn.push ([[noreturn]], apply_to = function)")
- #define ASSUME_NORETURN_END _Pragma("clang attribute AssumeNoreturn.pop")
- #define ASSUME_UNAVAILABLE_BEGIN _Pragma("clang attribute Unavailable.push (__attribute__((unavailable)), apply_to=function)")
- #define ASSUME_UNAVAILABLE_END _Pragma("clang attribute Unavailable.pop")
- ASSUME_NORETURN_BEGIN
- ASSUME_UNAVAILABLE_BEGIN
- void function(); // function has [[noreturn]] and __attribute__((unavailable))
- ASSUME_NORETURN_END
- void other_function(); // function has __attribute__((unavailable))
- ASSUME_UNAVAILABLE_END
- Without the namespaces on the macros, ``other_function`` will be annotated with
- ``[[noreturn]]`` instead of ``__attribute__((unavailable))``. This may seem like
- a contrived example, but its very possible for this kind of situation to appear
- in real code if the pragmas are spread out across a large file. You can test if
- your version of clang supports namespaces on ``#pragma clang attribute`` with
- ``__has_extension(pragma_clang_attribute_namespaces)``.
- Subject Match Rules
- -------------------
- The set of declarations that receive a single attribute from the attribute stack
- depends on the subject match rules that were specified in the pragma. Subject
- match rules are specified after the attribute. The compiler expects an
- identifier that corresponds to the subject set specifier. The ``apply_to``
- specifier is currently the only supported subject set specifier. It allows you
- to specify match rules that form a subset of the attribute's allowed subject
- set, i.e. the compiler doesn't require all of the attribute's subjects. For
- example, an attribute like ``[[nodiscard]]`` whose subject set includes
- ``enum``, ``record`` and ``hasType(functionType)``, requires the presence of at
- least one of these rules after ``apply_to``:
- .. code-block:: c++
- #pragma clang attribute push([[nodiscard]], apply_to = enum)
- enum Enum1 { A1, B1 }; // The enum will receive [[nodiscard]]
- struct Record1 { }; // The struct will *not* receive [[nodiscard]]
- #pragma clang attribute pop
- #pragma clang attribute push([[nodiscard]], apply_to = any(record, enum))
- enum Enum2 { A2, B2 }; // The enum will receive [[nodiscard]]
- struct Record2 { }; // The struct *will* receive [[nodiscard]]
- #pragma clang attribute pop
- // This is an error, since [[nodiscard]] can't be applied to namespaces:
- #pragma clang attribute push([[nodiscard]], apply_to = any(record, namespace))
- #pragma clang attribute pop
- Multiple match rules can be specified using the ``any`` match rule, as shown
- in the example above. The ``any`` rule applies attributes to all declarations
- that are matched by at least one of the rules in the ``any``. It doesn't nest
- and can't be used inside the other match rules. Redundant match rules or rules
- that conflict with one another should not be used inside of ``any``.
- Clang supports the following match rules:
- - ``function``: Can be used to apply attributes to functions. This includes C++
- member functions, static functions, operators, and constructors/destructors.
- - ``function(is_member)``: Can be used to apply attributes to C++ member
- functions. This includes members like static functions, operators, and
- constructors/destructors.
- - ``hasType(functionType)``: Can be used to apply attributes to functions, C++
- member functions, and variables/fields whose type is a function pointer. It
- does not apply attributes to Objective-C methods or blocks.
- - ``type_alias``: Can be used to apply attributes to ``typedef`` declarations
- and C++11 type aliases.
- - ``record``: Can be used to apply attributes to ``struct``, ``class``, and
- ``union`` declarations.
- - ``record(unless(is_union))``: Can be used to apply attributes only to
- ``struct`` and ``class`` declarations.
- - ``enum``: Can be be used to apply attributes to enumeration declarations.
- - ``enum_constant``: Can be used to apply attributes to enumerators.
- - ``variable``: Can be used to apply attributes to variables, including
- local variables, parameters, global variables, and static member variables.
- It does not apply attributes to instance member variables or Objective-C
- ivars.
- - ``variable(is_thread_local)``: Can be used to apply attributes to thread-local
- variables only.
- - ``variable(is_global)``: Can be used to apply attributes to global variables
- only.
- - ``variable(is_parameter)``: Can be used to apply attributes to parameters
- only.
- - ``variable(unless(is_parameter))``: Can be used to apply attributes to all
- the variables that are not parameters.
- - ``field``: Can be used to apply attributes to non-static member variables
- in a record. This includes Objective-C ivars.
- - ``namespace``: Can be used to apply attributes to ``namespace`` declarations.
- - ``objc_interface``: Can be used to apply attributes to ``@interface``
- declarations.
- - ``objc_protocol``: Can be used to apply attributes to ``@protocol``
- declarations.
- - ``objc_category``: Can be used to apply attributes to category declarations,
- including class extensions.
- - ``objc_method``: Can be used to apply attributes to Objective-C methods,
- including instance and class methods. Implicit methods like implicit property
- getters and setters do not receive the attribute.
- - ``objc_method(is_instance)``: Can be used to apply attributes to Objective-C
- instance methods.
- - ``objc_property``: Can be used to apply attributes to ``@property``
- declarations.
- - ``block``: Can be used to apply attributes to block declarations. This does
- not include variables/fields of block pointer type.
- The use of ``unless`` in match rules is currently restricted to a strict set of
- sub-rules that are used by the supported attributes. That means that even though
- ``variable(unless(is_parameter))`` is a valid match rule,
- ``variable(unless(is_thread_local))`` is not.
- Supported Attributes
- --------------------
- Not all attributes can be used with the ``#pragma clang attribute`` directive.
- Notably, statement attributes like ``[[fallthrough]]`` or type attributes
- like ``address_space`` aren't supported by this directive. You can determine
- whether or not an attribute is supported by the pragma by referring to the
- :doc:`individual documentation for that attribute <AttributeReference>`.
- The attributes are applied to all matching declarations individually, even when
- the attribute is semantically incorrect. The attributes that aren't applied to
- any declaration are not verified semantically.
- Specifying section names for global objects (#pragma clang section)
- ===================================================================
- The ``#pragma clang section`` directive provides a means to assign section-names
- to global variables, functions and static variables.
- The section names can be specified as:
- .. code-block:: c++
- #pragma clang section bss="myBSS" data="myData" rodata="myRodata" relro="myRelro" text="myText"
- The section names can be reverted back to default name by supplying an empty
- string to the section kind, for example:
- .. code-block:: c++
- #pragma clang section bss="" data="" text="" rodata="" relro=""
- The ``#pragma clang section`` directive obeys the following rules:
- * The pragma applies to all global variable, statics and function declarations
- from the pragma to the end of the translation unit.
- * The pragma clang section is enabled automatically, without need of any flags.
- * This feature is only defined to work sensibly for ELF targets.
- * If section name is specified through _attribute_((section("myname"))), then
- the attribute name gains precedence.
- * Global variables that are initialized to zero will be placed in the named
- bss section, if one is present.
- * The ``#pragma clang section`` directive does not does try to infer section-kind
- from the name. For example, naming a section "``.bss.mySec``" does NOT mean
- it will be a bss section name.
- * The decision about which section-kind applies to each global is taken in the back-end.
- Once the section-kind is known, appropriate section name, as specified by the user using
- ``#pragma clang section`` directive, is applied to that global.
- Specifying Linker Options on ELF Targets
- ========================================
- The ``#pragma comment(lib, ...)`` directive is supported on all ELF targets.
- The second parameter is the library name (without the traditional Unix prefix of
- ``lib``). This allows you to provide an implicit link of dependent libraries.
- Evaluating Object Size Dynamically
- ==================================
- Clang supports the builtin ``__builtin_dynamic_object_size``, the semantics are
- the same as GCC's ``__builtin_object_size`` (which Clang also supports), but
- ``__builtin_dynamic_object_size`` can evaluate the object's size at runtime.
- ``__builtin_dynamic_object_size`` is meant to be used as a drop-in replacement
- for ``__builtin_object_size`` in libraries that support it.
- For instance, here is a program that ``__builtin_dynamic_object_size`` will make
- safer:
- .. code-block:: c
- void copy_into_buffer(size_t size) {
- char* buffer = malloc(size);
- strlcpy(buffer, "some string", strlen("some string"));
- // Previous line preprocesses to:
- // __builtin___strlcpy_chk(buffer, "some string", strlen("some string"), __builtin_object_size(buffer, 0))
- }
- Since the size of ``buffer`` can't be known at compile time, Clang will fold
- ``__builtin_object_size(buffer, 0)`` into ``-1``. However, if this was written
- as ``__builtin_dynamic_object_size(buffer, 0)``, Clang will fold it into
- ``size``, providing some extra runtime safety.
|