12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641 |
- //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements extra semantic analysis beyond what is enforced
- // by the C type system.
- //
- //===----------------------------------------------------------------------===//
- #include "clang/Sema/Sema.h"
- #include "clang/Sema/SemaInternal.h"
- #include "clang/Sema/ScopeInfo.h"
- #include "clang/Analysis/Analyses/FormatString.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/CharUnits.h"
- #include "clang/AST/DeclCXX.h"
- #include "clang/AST/DeclObjC.h"
- #include "clang/AST/ExprCXX.h"
- #include "clang/AST/ExprObjC.h"
- #include "clang/AST/EvaluatedExprVisitor.h"
- #include "clang/AST/DeclObjC.h"
- #include "clang/AST/StmtCXX.h"
- #include "clang/AST/StmtObjC.h"
- #include "clang/Lex/Preprocessor.h"
- #include "llvm/ADT/BitVector.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/Support/raw_ostream.h"
- #include "clang/Basic/TargetBuiltins.h"
- #include "clang/Basic/TargetInfo.h"
- #include "clang/Basic/ConvertUTF.h"
- #include <limits>
- using namespace clang;
- using namespace sema;
- SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
- unsigned ByteNo) const {
- return SL->getLocationOfByte(ByteNo, PP.getSourceManager(),
- PP.getLangOptions(), PP.getTargetInfo());
- }
-
- /// CheckablePrintfAttr - does a function call have a "printf" attribute
- /// and arguments that merit checking?
- bool Sema::CheckablePrintfAttr(const FormatAttr *Format, CallExpr *TheCall) {
- if (Format->getType() == "printf") return true;
- if (Format->getType() == "printf0") {
- // printf0 allows null "format" string; if so don't check format/args
- unsigned format_idx = Format->getFormatIdx() - 1;
- // Does the index refer to the implicit object argument?
- if (isa<CXXMemberCallExpr>(TheCall)) {
- if (format_idx == 0)
- return false;
- --format_idx;
- }
- if (format_idx < TheCall->getNumArgs()) {
- Expr *Format = TheCall->getArg(format_idx)->IgnoreParenCasts();
- if (!Format->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull))
- return true;
- }
- }
- return false;
- }
- /// Checks that a call expression's argument count is the desired number.
- /// This is useful when doing custom type-checking. Returns true on error.
- static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
- unsigned argCount = call->getNumArgs();
- if (argCount == desiredArgCount) return false;
- if (argCount < desiredArgCount)
- return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
- << 0 /*function call*/ << desiredArgCount << argCount
- << call->getSourceRange();
- // Highlight all the excess arguments.
- SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
- call->getArg(argCount - 1)->getLocEnd());
-
- return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
- << 0 /*function call*/ << desiredArgCount << argCount
- << call->getArg(1)->getSourceRange();
- }
- ExprResult
- Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
- ExprResult TheCallResult(Owned(TheCall));
- // Find out if any arguments are required to be integer constant expressions.
- unsigned ICEArguments = 0;
- ASTContext::GetBuiltinTypeError Error;
- Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
- if (Error != ASTContext::GE_None)
- ICEArguments = 0; // Don't diagnose previously diagnosed errors.
-
- // If any arguments are required to be ICE's, check and diagnose.
- for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
- // Skip arguments not required to be ICE's.
- if ((ICEArguments & (1 << ArgNo)) == 0) continue;
-
- llvm::APSInt Result;
- if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
- return true;
- ICEArguments &= ~(1 << ArgNo);
- }
-
- switch (BuiltinID) {
- case Builtin::BI__builtin___CFStringMakeConstantString:
- assert(TheCall->getNumArgs() == 1 &&
- "Wrong # arguments to builtin CFStringMakeConstantString");
- if (CheckObjCString(TheCall->getArg(0)))
- return ExprError();
- break;
- case Builtin::BI__builtin_stdarg_start:
- case Builtin::BI__builtin_va_start:
- if (SemaBuiltinVAStart(TheCall))
- return ExprError();
- break;
- case Builtin::BI__builtin_isgreater:
- case Builtin::BI__builtin_isgreaterequal:
- case Builtin::BI__builtin_isless:
- case Builtin::BI__builtin_islessequal:
- case Builtin::BI__builtin_islessgreater:
- case Builtin::BI__builtin_isunordered:
- if (SemaBuiltinUnorderedCompare(TheCall))
- return ExprError();
- break;
- case Builtin::BI__builtin_fpclassify:
- if (SemaBuiltinFPClassification(TheCall, 6))
- return ExprError();
- break;
- case Builtin::BI__builtin_isfinite:
- case Builtin::BI__builtin_isinf:
- case Builtin::BI__builtin_isinf_sign:
- case Builtin::BI__builtin_isnan:
- case Builtin::BI__builtin_isnormal:
- if (SemaBuiltinFPClassification(TheCall, 1))
- return ExprError();
- break;
- case Builtin::BI__builtin_shufflevector:
- return SemaBuiltinShuffleVector(TheCall);
- // TheCall will be freed by the smart pointer here, but that's fine, since
- // SemaBuiltinShuffleVector guts it, but then doesn't release it.
- case Builtin::BI__builtin_prefetch:
- if (SemaBuiltinPrefetch(TheCall))
- return ExprError();
- break;
- case Builtin::BI__builtin_object_size:
- if (SemaBuiltinObjectSize(TheCall))
- return ExprError();
- break;
- case Builtin::BI__builtin_longjmp:
- if (SemaBuiltinLongjmp(TheCall))
- return ExprError();
- break;
- case Builtin::BI__builtin_classify_type:
- if (checkArgCount(*this, TheCall, 1)) return true;
- TheCall->setType(Context.IntTy);
- break;
- case Builtin::BI__builtin_constant_p:
- if (checkArgCount(*this, TheCall, 1)) return true;
- TheCall->setType(Context.IntTy);
- break;
- case Builtin::BI__sync_fetch_and_add:
- case Builtin::BI__sync_fetch_and_sub:
- case Builtin::BI__sync_fetch_and_or:
- case Builtin::BI__sync_fetch_and_and:
- case Builtin::BI__sync_fetch_and_xor:
- case Builtin::BI__sync_add_and_fetch:
- case Builtin::BI__sync_sub_and_fetch:
- case Builtin::BI__sync_and_and_fetch:
- case Builtin::BI__sync_or_and_fetch:
- case Builtin::BI__sync_xor_and_fetch:
- case Builtin::BI__sync_val_compare_and_swap:
- case Builtin::BI__sync_bool_compare_and_swap:
- case Builtin::BI__sync_lock_test_and_set:
- case Builtin::BI__sync_lock_release:
- case Builtin::BI__sync_swap:
- return SemaBuiltinAtomicOverloaded(move(TheCallResult));
- }
-
- // Since the target specific builtins for each arch overlap, only check those
- // of the arch we are compiling for.
- if (BuiltinID >= Builtin::FirstTSBuiltin) {
- switch (Context.Target.getTriple().getArch()) {
- case llvm::Triple::arm:
- case llvm::Triple::thumb:
- if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
- return ExprError();
- break;
- default:
- break;
- }
- }
- return move(TheCallResult);
- }
- // Get the valid immediate range for the specified NEON type code.
- static unsigned RFT(unsigned t, bool shift = false) {
- bool quad = t & 0x10;
-
- switch (t & 0x7) {
- case 0: // i8
- return shift ? 7 : (8 << (int)quad) - 1;
- case 1: // i16
- return shift ? 15 : (4 << (int)quad) - 1;
- case 2: // i32
- return shift ? 31 : (2 << (int)quad) - 1;
- case 3: // i64
- return shift ? 63 : (1 << (int)quad) - 1;
- case 4: // f32
- assert(!shift && "cannot shift float types!");
- return (2 << (int)quad) - 1;
- case 5: // poly8
- return shift ? 7 : (8 << (int)quad) - 1;
- case 6: // poly16
- return shift ? 15 : (4 << (int)quad) - 1;
- case 7: // float16
- assert(!shift && "cannot shift float types!");
- return (4 << (int)quad) - 1;
- }
- return 0;
- }
- bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
- llvm::APSInt Result;
- unsigned mask = 0;
- unsigned TV = 0;
- switch (BuiltinID) {
- #define GET_NEON_OVERLOAD_CHECK
- #include "clang/Basic/arm_neon.inc"
- #undef GET_NEON_OVERLOAD_CHECK
- }
-
- // For NEON intrinsics which are overloaded on vector element type, validate
- // the immediate which specifies which variant to emit.
- if (mask) {
- unsigned ArgNo = TheCall->getNumArgs()-1;
- if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
- return true;
-
- TV = Result.getLimitedValue(32);
- if ((TV > 31) || (mask & (1 << TV)) == 0)
- return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
- << TheCall->getArg(ArgNo)->getSourceRange();
- }
-
- // For NEON intrinsics which take an immediate value as part of the
- // instruction, range check them here.
- unsigned i = 0, l = 0, u = 0;
- switch (BuiltinID) {
- default: return false;
- case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
- case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
- case ARM::BI__builtin_arm_vcvtr_f:
- case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
- #define GET_NEON_IMMEDIATE_CHECK
- #include "clang/Basic/arm_neon.inc"
- #undef GET_NEON_IMMEDIATE_CHECK
- };
- // Check that the immediate argument is actually a constant.
- if (SemaBuiltinConstantArg(TheCall, i, Result))
- return true;
- // Range check against the upper/lower values for this isntruction.
- unsigned Val = Result.getZExtValue();
- if (Val < l || Val > (u + l))
- return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
- << l << u+l << TheCall->getArg(i)->getSourceRange();
- // FIXME: VFP Intrinsics should error if VFP not present.
- return false;
- }
- /// CheckFunctionCall - Check a direct function call for various correctness
- /// and safety properties not strictly enforced by the C type system.
- bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall) {
- // Get the IdentifierInfo* for the called function.
- IdentifierInfo *FnInfo = FDecl->getIdentifier();
- // None of the checks below are needed for functions that don't have
- // simple names (e.g., C++ conversion functions).
- if (!FnInfo)
- return false;
- // FIXME: This mechanism should be abstracted to be less fragile and
- // more efficient. For example, just map function ids to custom
- // handlers.
- // Printf and scanf checking.
- for (specific_attr_iterator<FormatAttr>
- i = FDecl->specific_attr_begin<FormatAttr>(),
- e = FDecl->specific_attr_end<FormatAttr>(); i != e ; ++i) {
- const FormatAttr *Format = *i;
- const bool b = Format->getType() == "scanf";
- if (b || CheckablePrintfAttr(Format, TheCall)) {
- bool HasVAListArg = Format->getFirstArg() == 0;
- CheckPrintfScanfArguments(TheCall, HasVAListArg,
- Format->getFormatIdx() - 1,
- HasVAListArg ? 0 : Format->getFirstArg() - 1,
- !b);
- }
- }
- for (specific_attr_iterator<NonNullAttr>
- i = FDecl->specific_attr_begin<NonNullAttr>(),
- e = FDecl->specific_attr_end<NonNullAttr>(); i != e; ++i) {
- CheckNonNullArguments(*i, TheCall->getArgs(),
- TheCall->getCallee()->getLocStart());
- }
- // Memset/memcpy/memmove handling
- if (FDecl->getLinkage() == ExternalLinkage &&
- (!getLangOptions().CPlusPlus || FDecl->isExternC())) {
- if (FnInfo->isStr("memset") || FnInfo->isStr("memcpy") ||
- FnInfo->isStr("memmove"))
- CheckMemsetcpymoveArguments(TheCall, FnInfo);
- }
- return false;
- }
- bool Sema::CheckBlockCall(NamedDecl *NDecl, CallExpr *TheCall) {
- // Printf checking.
- const FormatAttr *Format = NDecl->getAttr<FormatAttr>();
- if (!Format)
- return false;
- const VarDecl *V = dyn_cast<VarDecl>(NDecl);
- if (!V)
- return false;
- QualType Ty = V->getType();
- if (!Ty->isBlockPointerType())
- return false;
- const bool b = Format->getType() == "scanf";
- if (!b && !CheckablePrintfAttr(Format, TheCall))
- return false;
- bool HasVAListArg = Format->getFirstArg() == 0;
- CheckPrintfScanfArguments(TheCall, HasVAListArg, Format->getFormatIdx() - 1,
- HasVAListArg ? 0 : Format->getFirstArg() - 1, !b);
- return false;
- }
- /// SemaBuiltinAtomicOverloaded - We have a call to a function like
- /// __sync_fetch_and_add, which is an overloaded function based on the pointer
- /// type of its first argument. The main ActOnCallExpr routines have already
- /// promoted the types of arguments because all of these calls are prototyped as
- /// void(...).
- ///
- /// This function goes through and does final semantic checking for these
- /// builtins,
- ExprResult
- Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
- CallExpr *TheCall = (CallExpr *)TheCallResult.get();
- DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
- FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
- // Ensure that we have at least one argument to do type inference from.
- if (TheCall->getNumArgs() < 1) {
- Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
- << 0 << 1 << TheCall->getNumArgs()
- << TheCall->getCallee()->getSourceRange();
- return ExprError();
- }
- // Inspect the first argument of the atomic builtin. This should always be
- // a pointer type, whose element is an integral scalar or pointer type.
- // Because it is a pointer type, we don't have to worry about any implicit
- // casts here.
- // FIXME: We don't allow floating point scalars as input.
- Expr *FirstArg = TheCall->getArg(0);
- const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
- if (!pointerType) {
- Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
- << FirstArg->getType() << FirstArg->getSourceRange();
- return ExprError();
- }
- QualType ValType = pointerType->getPointeeType();
- if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
- !ValType->isBlockPointerType()) {
- Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
- << FirstArg->getType() << FirstArg->getSourceRange();
- return ExprError();
- }
- switch (ValType.getObjCLifetime()) {
- case Qualifiers::OCL_None:
- case Qualifiers::OCL_ExplicitNone:
- // okay
- break;
- case Qualifiers::OCL_Weak:
- case Qualifiers::OCL_Strong:
- case Qualifiers::OCL_Autoreleasing:
- Diag(DRE->getLocStart(), diag::err_arc_atomic_lifetime)
- << ValType << FirstArg->getSourceRange();
- return ExprError();
- }
- // The majority of builtins return a value, but a few have special return
- // types, so allow them to override appropriately below.
- QualType ResultType = ValType;
- // We need to figure out which concrete builtin this maps onto. For example,
- // __sync_fetch_and_add with a 2 byte object turns into
- // __sync_fetch_and_add_2.
- #define BUILTIN_ROW(x) \
- { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
- Builtin::BI##x##_8, Builtin::BI##x##_16 }
- static const unsigned BuiltinIndices[][5] = {
- BUILTIN_ROW(__sync_fetch_and_add),
- BUILTIN_ROW(__sync_fetch_and_sub),
- BUILTIN_ROW(__sync_fetch_and_or),
- BUILTIN_ROW(__sync_fetch_and_and),
- BUILTIN_ROW(__sync_fetch_and_xor),
- BUILTIN_ROW(__sync_add_and_fetch),
- BUILTIN_ROW(__sync_sub_and_fetch),
- BUILTIN_ROW(__sync_and_and_fetch),
- BUILTIN_ROW(__sync_or_and_fetch),
- BUILTIN_ROW(__sync_xor_and_fetch),
- BUILTIN_ROW(__sync_val_compare_and_swap),
- BUILTIN_ROW(__sync_bool_compare_and_swap),
- BUILTIN_ROW(__sync_lock_test_and_set),
- BUILTIN_ROW(__sync_lock_release),
- BUILTIN_ROW(__sync_swap)
- };
- #undef BUILTIN_ROW
- // Determine the index of the size.
- unsigned SizeIndex;
- switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
- case 1: SizeIndex = 0; break;
- case 2: SizeIndex = 1; break;
- case 4: SizeIndex = 2; break;
- case 8: SizeIndex = 3; break;
- case 16: SizeIndex = 4; break;
- default:
- Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
- << FirstArg->getType() << FirstArg->getSourceRange();
- return ExprError();
- }
- // Each of these builtins has one pointer argument, followed by some number of
- // values (0, 1 or 2) followed by a potentially empty varags list of stuff
- // that we ignore. Find out which row of BuiltinIndices to read from as well
- // as the number of fixed args.
- unsigned BuiltinID = FDecl->getBuiltinID();
- unsigned BuiltinIndex, NumFixed = 1;
- switch (BuiltinID) {
- default: assert(0 && "Unknown overloaded atomic builtin!");
- case Builtin::BI__sync_fetch_and_add: BuiltinIndex = 0; break;
- case Builtin::BI__sync_fetch_and_sub: BuiltinIndex = 1; break;
- case Builtin::BI__sync_fetch_and_or: BuiltinIndex = 2; break;
- case Builtin::BI__sync_fetch_and_and: BuiltinIndex = 3; break;
- case Builtin::BI__sync_fetch_and_xor: BuiltinIndex = 4; break;
- case Builtin::BI__sync_add_and_fetch: BuiltinIndex = 5; break;
- case Builtin::BI__sync_sub_and_fetch: BuiltinIndex = 6; break;
- case Builtin::BI__sync_and_and_fetch: BuiltinIndex = 7; break;
- case Builtin::BI__sync_or_and_fetch: BuiltinIndex = 8; break;
- case Builtin::BI__sync_xor_and_fetch: BuiltinIndex = 9; break;
- case Builtin::BI__sync_val_compare_and_swap:
- BuiltinIndex = 10;
- NumFixed = 2;
- break;
- case Builtin::BI__sync_bool_compare_and_swap:
- BuiltinIndex = 11;
- NumFixed = 2;
- ResultType = Context.BoolTy;
- break;
- case Builtin::BI__sync_lock_test_and_set: BuiltinIndex = 12; break;
- case Builtin::BI__sync_lock_release:
- BuiltinIndex = 13;
- NumFixed = 0;
- ResultType = Context.VoidTy;
- break;
- case Builtin::BI__sync_swap: BuiltinIndex = 14; break;
- }
- // Now that we know how many fixed arguments we expect, first check that we
- // have at least that many.
- if (TheCall->getNumArgs() < 1+NumFixed) {
- Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
- << 0 << 1+NumFixed << TheCall->getNumArgs()
- << TheCall->getCallee()->getSourceRange();
- return ExprError();
- }
- // Get the decl for the concrete builtin from this, we can tell what the
- // concrete integer type we should convert to is.
- unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
- const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
- IdentifierInfo *NewBuiltinII = PP.getIdentifierInfo(NewBuiltinName);
- FunctionDecl *NewBuiltinDecl =
- cast<FunctionDecl>(LazilyCreateBuiltin(NewBuiltinII, NewBuiltinID,
- TUScope, false, DRE->getLocStart()));
- // The first argument --- the pointer --- has a fixed type; we
- // deduce the types of the rest of the arguments accordingly. Walk
- // the remaining arguments, converting them to the deduced value type.
- for (unsigned i = 0; i != NumFixed; ++i) {
- ExprResult Arg = TheCall->getArg(i+1);
- // If the argument is an implicit cast, then there was a promotion due to
- // "...", just remove it now.
- if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg.get())) {
- Arg = ICE->getSubExpr();
- ICE->setSubExpr(0);
- TheCall->setArg(i+1, Arg.get());
- }
- // GCC does an implicit conversion to the pointer or integer ValType. This
- // can fail in some cases (1i -> int**), check for this error case now.
- CastKind Kind = CK_Invalid;
- ExprValueKind VK = VK_RValue;
- CXXCastPath BasePath;
- Arg = CheckCastTypes(Arg.get()->getLocStart(), Arg.get()->getSourceRange(),
- ValType, Arg.take(), Kind, VK, BasePath);
- if (Arg.isInvalid())
- return ExprError();
- // Okay, we have something that *can* be converted to the right type. Check
- // to see if there is a potentially weird extension going on here. This can
- // happen when you do an atomic operation on something like an char* and
- // pass in 42. The 42 gets converted to char. This is even more strange
- // for things like 45.123 -> char, etc.
- // FIXME: Do this check.
- Arg = ImpCastExprToType(Arg.take(), ValType, Kind, VK, &BasePath);
- TheCall->setArg(i+1, Arg.get());
- }
- // Switch the DeclRefExpr to refer to the new decl.
- DRE->setDecl(NewBuiltinDecl);
- DRE->setType(NewBuiltinDecl->getType());
- // Set the callee in the CallExpr.
- // FIXME: This leaks the original parens and implicit casts.
- ExprResult PromotedCall = UsualUnaryConversions(DRE);
- if (PromotedCall.isInvalid())
- return ExprError();
- TheCall->setCallee(PromotedCall.take());
- // Change the result type of the call to match the original value type. This
- // is arbitrary, but the codegen for these builtins ins design to handle it
- // gracefully.
- TheCall->setType(ResultType);
- return move(TheCallResult);
- }
- /// CheckObjCString - Checks that the argument to the builtin
- /// CFString constructor is correct
- /// Note: It might also make sense to do the UTF-16 conversion here (would
- /// simplify the backend).
- bool Sema::CheckObjCString(Expr *Arg) {
- Arg = Arg->IgnoreParenCasts();
- StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
- if (!Literal || Literal->isWide()) {
- Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
- << Arg->getSourceRange();
- return true;
- }
- if (Literal->containsNonAsciiOrNull()) {
- llvm::StringRef String = Literal->getString();
- unsigned NumBytes = String.size();
- llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
- const UTF8 *FromPtr = (UTF8 *)String.data();
- UTF16 *ToPtr = &ToBuf[0];
-
- ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
- &ToPtr, ToPtr + NumBytes,
- strictConversion);
- // Check for conversion failure.
- if (Result != conversionOK)
- Diag(Arg->getLocStart(),
- diag::warn_cfstring_truncated) << Arg->getSourceRange();
- }
- return false;
- }
- /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
- /// Emit an error and return true on failure, return false on success.
- bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
- Expr *Fn = TheCall->getCallee();
- if (TheCall->getNumArgs() > 2) {
- Diag(TheCall->getArg(2)->getLocStart(),
- diag::err_typecheck_call_too_many_args)
- << 0 /*function call*/ << 2 << TheCall->getNumArgs()
- << Fn->getSourceRange()
- << SourceRange(TheCall->getArg(2)->getLocStart(),
- (*(TheCall->arg_end()-1))->getLocEnd());
- return true;
- }
- if (TheCall->getNumArgs() < 2) {
- return Diag(TheCall->getLocEnd(),
- diag::err_typecheck_call_too_few_args_at_least)
- << 0 /*function call*/ << 2 << TheCall->getNumArgs();
- }
- // Determine whether the current function is variadic or not.
- BlockScopeInfo *CurBlock = getCurBlock();
- bool isVariadic;
- if (CurBlock)
- isVariadic = CurBlock->TheDecl->isVariadic();
- else if (FunctionDecl *FD = getCurFunctionDecl())
- isVariadic = FD->isVariadic();
- else
- isVariadic = getCurMethodDecl()->isVariadic();
- if (!isVariadic) {
- Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
- return true;
- }
- // Verify that the second argument to the builtin is the last argument of the
- // current function or method.
- bool SecondArgIsLastNamedArgument = false;
- const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
- if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
- if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
- // FIXME: This isn't correct for methods (results in bogus warning).
- // Get the last formal in the current function.
- const ParmVarDecl *LastArg;
- if (CurBlock)
- LastArg = *(CurBlock->TheDecl->param_end()-1);
- else if (FunctionDecl *FD = getCurFunctionDecl())
- LastArg = *(FD->param_end()-1);
- else
- LastArg = *(getCurMethodDecl()->param_end()-1);
- SecondArgIsLastNamedArgument = PV == LastArg;
- }
- }
- if (!SecondArgIsLastNamedArgument)
- Diag(TheCall->getArg(1)->getLocStart(),
- diag::warn_second_parameter_of_va_start_not_last_named_argument);
- return false;
- }
- /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
- /// friends. This is declared to take (...), so we have to check everything.
- bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
- if (TheCall->getNumArgs() < 2)
- return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
- << 0 << 2 << TheCall->getNumArgs()/*function call*/;
- if (TheCall->getNumArgs() > 2)
- return Diag(TheCall->getArg(2)->getLocStart(),
- diag::err_typecheck_call_too_many_args)
- << 0 /*function call*/ << 2 << TheCall->getNumArgs()
- << SourceRange(TheCall->getArg(2)->getLocStart(),
- (*(TheCall->arg_end()-1))->getLocEnd());
- ExprResult OrigArg0 = TheCall->getArg(0);
- ExprResult OrigArg1 = TheCall->getArg(1);
- // Do standard promotions between the two arguments, returning their common
- // type.
- QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
- if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
- return true;
- // Make sure any conversions are pushed back into the call; this is
- // type safe since unordered compare builtins are declared as "_Bool
- // foo(...)".
- TheCall->setArg(0, OrigArg0.get());
- TheCall->setArg(1, OrigArg1.get());
- if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
- return false;
- // If the common type isn't a real floating type, then the arguments were
- // invalid for this operation.
- if (!Res->isRealFloatingType())
- return Diag(OrigArg0.get()->getLocStart(),
- diag::err_typecheck_call_invalid_ordered_compare)
- << OrigArg0.get()->getType() << OrigArg1.get()->getType()
- << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
- return false;
- }
- /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
- /// __builtin_isnan and friends. This is declared to take (...), so we have
- /// to check everything. We expect the last argument to be a floating point
- /// value.
- bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
- if (TheCall->getNumArgs() < NumArgs)
- return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
- << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
- if (TheCall->getNumArgs() > NumArgs)
- return Diag(TheCall->getArg(NumArgs)->getLocStart(),
- diag::err_typecheck_call_too_many_args)
- << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
- << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
- (*(TheCall->arg_end()-1))->getLocEnd());
- Expr *OrigArg = TheCall->getArg(NumArgs-1);
- if (OrigArg->isTypeDependent())
- return false;
- // This operation requires a non-_Complex floating-point number.
- if (!OrigArg->getType()->isRealFloatingType())
- return Diag(OrigArg->getLocStart(),
- diag::err_typecheck_call_invalid_unary_fp)
- << OrigArg->getType() << OrigArg->getSourceRange();
- // If this is an implicit conversion from float -> double, remove it.
- if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
- Expr *CastArg = Cast->getSubExpr();
- if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
- assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
- "promotion from float to double is the only expected cast here");
- Cast->setSubExpr(0);
- TheCall->setArg(NumArgs-1, CastArg);
- OrigArg = CastArg;
- }
- }
-
- return false;
- }
- /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
- // This is declared to take (...), so we have to check everything.
- ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
- if (TheCall->getNumArgs() < 2)
- return ExprError(Diag(TheCall->getLocEnd(),
- diag::err_typecheck_call_too_few_args_at_least)
- << 0 /*function call*/ << 2 << TheCall->getNumArgs()
- << TheCall->getSourceRange());
- // Determine which of the following types of shufflevector we're checking:
- // 1) unary, vector mask: (lhs, mask)
- // 2) binary, vector mask: (lhs, rhs, mask)
- // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
- QualType resType = TheCall->getArg(0)->getType();
- unsigned numElements = 0;
-
- if (!TheCall->getArg(0)->isTypeDependent() &&
- !TheCall->getArg(1)->isTypeDependent()) {
- QualType LHSType = TheCall->getArg(0)->getType();
- QualType RHSType = TheCall->getArg(1)->getType();
-
- if (!LHSType->isVectorType() || !RHSType->isVectorType()) {
- Diag(TheCall->getLocStart(), diag::err_shufflevector_non_vector)
- << SourceRange(TheCall->getArg(0)->getLocStart(),
- TheCall->getArg(1)->getLocEnd());
- return ExprError();
- }
-
- numElements = LHSType->getAs<VectorType>()->getNumElements();
- unsigned numResElements = TheCall->getNumArgs() - 2;
- // Check to see if we have a call with 2 vector arguments, the unary shuffle
- // with mask. If so, verify that RHS is an integer vector type with the
- // same number of elts as lhs.
- if (TheCall->getNumArgs() == 2) {
- if (!RHSType->hasIntegerRepresentation() ||
- RHSType->getAs<VectorType>()->getNumElements() != numElements)
- Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
- << SourceRange(TheCall->getArg(1)->getLocStart(),
- TheCall->getArg(1)->getLocEnd());
- numResElements = numElements;
- }
- else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
- Diag(TheCall->getLocStart(), diag::err_shufflevector_incompatible_vector)
- << SourceRange(TheCall->getArg(0)->getLocStart(),
- TheCall->getArg(1)->getLocEnd());
- return ExprError();
- } else if (numElements != numResElements) {
- QualType eltType = LHSType->getAs<VectorType>()->getElementType();
- resType = Context.getVectorType(eltType, numResElements,
- VectorType::GenericVector);
- }
- }
- for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
- if (TheCall->getArg(i)->isTypeDependent() ||
- TheCall->getArg(i)->isValueDependent())
- continue;
- llvm::APSInt Result(32);
- if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
- return ExprError(Diag(TheCall->getLocStart(),
- diag::err_shufflevector_nonconstant_argument)
- << TheCall->getArg(i)->getSourceRange());
- if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
- return ExprError(Diag(TheCall->getLocStart(),
- diag::err_shufflevector_argument_too_large)
- << TheCall->getArg(i)->getSourceRange());
- }
- llvm::SmallVector<Expr*, 32> exprs;
- for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
- exprs.push_back(TheCall->getArg(i));
- TheCall->setArg(i, 0);
- }
- return Owned(new (Context) ShuffleVectorExpr(Context, exprs.begin(),
- exprs.size(), resType,
- TheCall->getCallee()->getLocStart(),
- TheCall->getRParenLoc()));
- }
- /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
- // This is declared to take (const void*, ...) and can take two
- // optional constant int args.
- bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
- unsigned NumArgs = TheCall->getNumArgs();
- if (NumArgs > 3)
- return Diag(TheCall->getLocEnd(),
- diag::err_typecheck_call_too_many_args_at_most)
- << 0 /*function call*/ << 3 << NumArgs
- << TheCall->getSourceRange();
- // Argument 0 is checked for us and the remaining arguments must be
- // constant integers.
- for (unsigned i = 1; i != NumArgs; ++i) {
- Expr *Arg = TheCall->getArg(i);
-
- llvm::APSInt Result;
- if (SemaBuiltinConstantArg(TheCall, i, Result))
- return true;
- // FIXME: gcc issues a warning and rewrites these to 0. These
- // seems especially odd for the third argument since the default
- // is 3.
- if (i == 1) {
- if (Result.getLimitedValue() > 1)
- return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
- << "0" << "1" << Arg->getSourceRange();
- } else {
- if (Result.getLimitedValue() > 3)
- return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
- << "0" << "3" << Arg->getSourceRange();
- }
- }
- return false;
- }
- /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
- /// TheCall is a constant expression.
- bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
- llvm::APSInt &Result) {
- Expr *Arg = TheCall->getArg(ArgNum);
- DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
- FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
-
- if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
-
- if (!Arg->isIntegerConstantExpr(Result, Context))
- return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
- << FDecl->getDeclName() << Arg->getSourceRange();
-
- return false;
- }
- /// SemaBuiltinObjectSize - Handle __builtin_object_size(void *ptr,
- /// int type). This simply type checks that type is one of the defined
- /// constants (0-3).
- // For compatibility check 0-3, llvm only handles 0 and 2.
- bool Sema::SemaBuiltinObjectSize(CallExpr *TheCall) {
- llvm::APSInt Result;
-
- // Check constant-ness first.
- if (SemaBuiltinConstantArg(TheCall, 1, Result))
- return true;
- Expr *Arg = TheCall->getArg(1);
- if (Result.getSExtValue() < 0 || Result.getSExtValue() > 3) {
- return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
- << "0" << "3" << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
- }
- return false;
- }
- /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
- /// This checks that val is a constant 1.
- bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
- Expr *Arg = TheCall->getArg(1);
- llvm::APSInt Result;
- // TODO: This is less than ideal. Overload this to take a value.
- if (SemaBuiltinConstantArg(TheCall, 1, Result))
- return true;
-
- if (Result != 1)
- return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
- << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
- return false;
- }
- // Handle i > 1 ? "x" : "y", recursively.
- bool Sema::SemaCheckStringLiteral(const Expr *E, const CallExpr *TheCall,
- bool HasVAListArg,
- unsigned format_idx, unsigned firstDataArg,
- bool isPrintf) {
- tryAgain:
- if (E->isTypeDependent() || E->isValueDependent())
- return false;
- E = E->IgnoreParens();
- switch (E->getStmtClass()) {
- case Stmt::BinaryConditionalOperatorClass:
- case Stmt::ConditionalOperatorClass: {
- const AbstractConditionalOperator *C = cast<AbstractConditionalOperator>(E);
- return SemaCheckStringLiteral(C->getTrueExpr(), TheCall, HasVAListArg,
- format_idx, firstDataArg, isPrintf)
- && SemaCheckStringLiteral(C->getFalseExpr(), TheCall, HasVAListArg,
- format_idx, firstDataArg, isPrintf);
- }
- case Stmt::IntegerLiteralClass:
- // Technically -Wformat-nonliteral does not warn about this case.
- // The behavior of printf and friends in this case is implementation
- // dependent. Ideally if the format string cannot be null then
- // it should have a 'nonnull' attribute in the function prototype.
- return true;
- case Stmt::ImplicitCastExprClass: {
- E = cast<ImplicitCastExpr>(E)->getSubExpr();
- goto tryAgain;
- }
- case Stmt::OpaqueValueExprClass:
- if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
- E = src;
- goto tryAgain;
- }
- return false;
- case Stmt::PredefinedExprClass:
- // While __func__, etc., are technically not string literals, they
- // cannot contain format specifiers and thus are not a security
- // liability.
- return true;
-
- case Stmt::DeclRefExprClass: {
- const DeclRefExpr *DR = cast<DeclRefExpr>(E);
- // As an exception, do not flag errors for variables binding to
- // const string literals.
- if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
- bool isConstant = false;
- QualType T = DR->getType();
- if (const ArrayType *AT = Context.getAsArrayType(T)) {
- isConstant = AT->getElementType().isConstant(Context);
- } else if (const PointerType *PT = T->getAs<PointerType>()) {
- isConstant = T.isConstant(Context) &&
- PT->getPointeeType().isConstant(Context);
- }
- if (isConstant) {
- if (const Expr *Init = VD->getAnyInitializer())
- return SemaCheckStringLiteral(Init, TheCall,
- HasVAListArg, format_idx, firstDataArg,
- isPrintf);
- }
- // For vprintf* functions (i.e., HasVAListArg==true), we add a
- // special check to see if the format string is a function parameter
- // of the function calling the printf function. If the function
- // has an attribute indicating it is a printf-like function, then we
- // should suppress warnings concerning non-literals being used in a call
- // to a vprintf function. For example:
- //
- // void
- // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
- // va_list ap;
- // va_start(ap, fmt);
- // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
- // ...
- //
- //
- // FIXME: We don't have full attribute support yet, so just check to see
- // if the argument is a DeclRefExpr that references a parameter. We'll
- // add proper support for checking the attribute later.
- if (HasVAListArg)
- if (isa<ParmVarDecl>(VD))
- return true;
- }
- return false;
- }
- case Stmt::CallExprClass: {
- const CallExpr *CE = cast<CallExpr>(E);
- if (const ImplicitCastExpr *ICE
- = dyn_cast<ImplicitCastExpr>(CE->getCallee())) {
- if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) {
- if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
- if (const FormatArgAttr *FA = FD->getAttr<FormatArgAttr>()) {
- unsigned ArgIndex = FA->getFormatIdx();
- const Expr *Arg = CE->getArg(ArgIndex - 1);
- return SemaCheckStringLiteral(Arg, TheCall, HasVAListArg,
- format_idx, firstDataArg, isPrintf);
- }
- }
- }
- }
- return false;
- }
- case Stmt::ObjCStringLiteralClass:
- case Stmt::StringLiteralClass: {
- const StringLiteral *StrE = NULL;
- if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
- StrE = ObjCFExpr->getString();
- else
- StrE = cast<StringLiteral>(E);
- if (StrE) {
- CheckFormatString(StrE, E, TheCall, HasVAListArg, format_idx,
- firstDataArg, isPrintf);
- return true;
- }
- return false;
- }
- default:
- return false;
- }
- }
- void
- Sema::CheckNonNullArguments(const NonNullAttr *NonNull,
- const Expr * const *ExprArgs,
- SourceLocation CallSiteLoc) {
- for (NonNullAttr::args_iterator i = NonNull->args_begin(),
- e = NonNull->args_end();
- i != e; ++i) {
- const Expr *ArgExpr = ExprArgs[*i];
- if (ArgExpr->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNotNull))
- Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
- }
- }
- /// CheckPrintfScanfArguments - Check calls to printf and scanf (and similar
- /// functions) for correct use of format strings.
- void
- Sema::CheckPrintfScanfArguments(const CallExpr *TheCall, bool HasVAListArg,
- unsigned format_idx, unsigned firstDataArg,
- bool isPrintf) {
- const Expr *Fn = TheCall->getCallee();
- // The way the format attribute works in GCC, the implicit this argument
- // of member functions is counted. However, it doesn't appear in our own
- // lists, so decrement format_idx in that case.
- if (isa<CXXMemberCallExpr>(TheCall)) {
- const CXXMethodDecl *method_decl =
- dyn_cast<CXXMethodDecl>(TheCall->getCalleeDecl());
- if (method_decl && method_decl->isInstance()) {
- // Catch a format attribute mistakenly referring to the object argument.
- if (format_idx == 0)
- return;
- --format_idx;
- if(firstDataArg != 0)
- --firstDataArg;
- }
- }
- // CHECK: printf/scanf-like function is called with no format string.
- if (format_idx >= TheCall->getNumArgs()) {
- Diag(TheCall->getRParenLoc(), diag::warn_missing_format_string)
- << Fn->getSourceRange();
- return;
- }
- const Expr *OrigFormatExpr = TheCall->getArg(format_idx)->IgnoreParenCasts();
- // CHECK: format string is not a string literal.
- //
- // Dynamically generated format strings are difficult to
- // automatically vet at compile time. Requiring that format strings
- // are string literals: (1) permits the checking of format strings by
- // the compiler and thereby (2) can practically remove the source of
- // many format string exploits.
- // Format string can be either ObjC string (e.g. @"%d") or
- // C string (e.g. "%d")
- // ObjC string uses the same format specifiers as C string, so we can use
- // the same format string checking logic for both ObjC and C strings.
- if (SemaCheckStringLiteral(OrigFormatExpr, TheCall, HasVAListArg, format_idx,
- firstDataArg, isPrintf))
- return; // Literal format string found, check done!
- // If there are no arguments specified, warn with -Wformat-security, otherwise
- // warn only with -Wformat-nonliteral.
- if (TheCall->getNumArgs() == format_idx+1)
- Diag(TheCall->getArg(format_idx)->getLocStart(),
- diag::warn_format_nonliteral_noargs)
- << OrigFormatExpr->getSourceRange();
- else
- Diag(TheCall->getArg(format_idx)->getLocStart(),
- diag::warn_format_nonliteral)
- << OrigFormatExpr->getSourceRange();
- }
- namespace {
- class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
- protected:
- Sema &S;
- const StringLiteral *FExpr;
- const Expr *OrigFormatExpr;
- const unsigned FirstDataArg;
- const unsigned NumDataArgs;
- const bool IsObjCLiteral;
- const char *Beg; // Start of format string.
- const bool HasVAListArg;
- const CallExpr *TheCall;
- unsigned FormatIdx;
- llvm::BitVector CoveredArgs;
- bool usesPositionalArgs;
- bool atFirstArg;
- public:
- CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
- const Expr *origFormatExpr, unsigned firstDataArg,
- unsigned numDataArgs, bool isObjCLiteral,
- const char *beg, bool hasVAListArg,
- const CallExpr *theCall, unsigned formatIdx)
- : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
- FirstDataArg(firstDataArg),
- NumDataArgs(numDataArgs),
- IsObjCLiteral(isObjCLiteral), Beg(beg),
- HasVAListArg(hasVAListArg),
- TheCall(theCall), FormatIdx(formatIdx),
- usesPositionalArgs(false), atFirstArg(true) {
- CoveredArgs.resize(numDataArgs);
- CoveredArgs.reset();
- }
- void DoneProcessing();
- void HandleIncompleteSpecifier(const char *startSpecifier,
- unsigned specifierLen);
-
- virtual void HandleInvalidPosition(const char *startSpecifier,
- unsigned specifierLen,
- analyze_format_string::PositionContext p);
- virtual void HandleZeroPosition(const char *startPos, unsigned posLen);
- void HandleNullChar(const char *nullCharacter);
- protected:
- bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
- const char *startSpec,
- unsigned specifierLen,
- const char *csStart, unsigned csLen);
-
- SourceRange getFormatStringRange();
- CharSourceRange getSpecifierRange(const char *startSpecifier,
- unsigned specifierLen);
- SourceLocation getLocationOfByte(const char *x);
- const Expr *getDataArg(unsigned i) const;
-
- bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
- const analyze_format_string::ConversionSpecifier &CS,
- const char *startSpecifier, unsigned specifierLen,
- unsigned argIndex);
- };
- }
- SourceRange CheckFormatHandler::getFormatStringRange() {
- return OrigFormatExpr->getSourceRange();
- }
- CharSourceRange CheckFormatHandler::
- getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
- SourceLocation Start = getLocationOfByte(startSpecifier);
- SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
- // Advance the end SourceLocation by one due to half-open ranges.
- End = End.getFileLocWithOffset(1);
- return CharSourceRange::getCharRange(Start, End);
- }
- SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
- return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
- }
- void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
- unsigned specifierLen){
- SourceLocation Loc = getLocationOfByte(startSpecifier);
- S.Diag(Loc, diag::warn_printf_incomplete_specifier)
- << getSpecifierRange(startSpecifier, specifierLen);
- }
- void
- CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
- analyze_format_string::PositionContext p) {
- SourceLocation Loc = getLocationOfByte(startPos);
- S.Diag(Loc, diag::warn_format_invalid_positional_specifier)
- << (unsigned) p << getSpecifierRange(startPos, posLen);
- }
- void CheckFormatHandler::HandleZeroPosition(const char *startPos,
- unsigned posLen) {
- SourceLocation Loc = getLocationOfByte(startPos);
- S.Diag(Loc, diag::warn_format_zero_positional_specifier)
- << getSpecifierRange(startPos, posLen);
- }
- void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
- if (!IsObjCLiteral) {
- // The presence of a null character is likely an error.
- S.Diag(getLocationOfByte(nullCharacter),
- diag::warn_printf_format_string_contains_null_char)
- << getFormatStringRange();
- }
- }
- const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
- return TheCall->getArg(FirstDataArg + i);
- }
- void CheckFormatHandler::DoneProcessing() {
- // Does the number of data arguments exceed the number of
- // format conversions in the format string?
- if (!HasVAListArg) {
- // Find any arguments that weren't covered.
- CoveredArgs.flip();
- signed notCoveredArg = CoveredArgs.find_first();
- if (notCoveredArg >= 0) {
- assert((unsigned)notCoveredArg < NumDataArgs);
- S.Diag(getDataArg((unsigned) notCoveredArg)->getLocStart(),
- diag::warn_printf_data_arg_not_used)
- << getFormatStringRange();
- }
- }
- }
- bool
- CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
- SourceLocation Loc,
- const char *startSpec,
- unsigned specifierLen,
- const char *csStart,
- unsigned csLen) {
-
- bool keepGoing = true;
- if (argIndex < NumDataArgs) {
- // Consider the argument coverered, even though the specifier doesn't
- // make sense.
- CoveredArgs.set(argIndex);
- }
- else {
- // If argIndex exceeds the number of data arguments we
- // don't issue a warning because that is just a cascade of warnings (and
- // they may have intended '%%' anyway). We don't want to continue processing
- // the format string after this point, however, as we will like just get
- // gibberish when trying to match arguments.
- keepGoing = false;
- }
-
- S.Diag(Loc, diag::warn_format_invalid_conversion)
- << llvm::StringRef(csStart, csLen)
- << getSpecifierRange(startSpec, specifierLen);
-
- return keepGoing;
- }
- bool
- CheckFormatHandler::CheckNumArgs(
- const analyze_format_string::FormatSpecifier &FS,
- const analyze_format_string::ConversionSpecifier &CS,
- const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
- if (argIndex >= NumDataArgs) {
- if (FS.usesPositionalArg()) {
- S.Diag(getLocationOfByte(CS.getStart()),
- diag::warn_printf_positional_arg_exceeds_data_args)
- << (argIndex+1) << NumDataArgs
- << getSpecifierRange(startSpecifier, specifierLen);
- }
- else {
- S.Diag(getLocationOfByte(CS.getStart()),
- diag::warn_printf_insufficient_data_args)
- << getSpecifierRange(startSpecifier, specifierLen);
- }
-
- return false;
- }
- return true;
- }
- //===--- CHECK: Printf format string checking ------------------------------===//
- namespace {
- class CheckPrintfHandler : public CheckFormatHandler {
- public:
- CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
- const Expr *origFormatExpr, unsigned firstDataArg,
- unsigned numDataArgs, bool isObjCLiteral,
- const char *beg, bool hasVAListArg,
- const CallExpr *theCall, unsigned formatIdx)
- : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
- numDataArgs, isObjCLiteral, beg, hasVAListArg,
- theCall, formatIdx) {}
-
-
- bool HandleInvalidPrintfConversionSpecifier(
- const analyze_printf::PrintfSpecifier &FS,
- const char *startSpecifier,
- unsigned specifierLen);
-
- bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
- const char *startSpecifier,
- unsigned specifierLen);
-
- bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
- const char *startSpecifier, unsigned specifierLen);
- void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
- const analyze_printf::OptionalAmount &Amt,
- unsigned type,
- const char *startSpecifier, unsigned specifierLen);
- void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
- const analyze_printf::OptionalFlag &flag,
- const char *startSpecifier, unsigned specifierLen);
- void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
- const analyze_printf::OptionalFlag &ignoredFlag,
- const analyze_printf::OptionalFlag &flag,
- const char *startSpecifier, unsigned specifierLen);
- };
- }
- bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
- const analyze_printf::PrintfSpecifier &FS,
- const char *startSpecifier,
- unsigned specifierLen) {
- const analyze_printf::PrintfConversionSpecifier &CS =
- FS.getConversionSpecifier();
-
- return HandleInvalidConversionSpecifier(FS.getArgIndex(),
- getLocationOfByte(CS.getStart()),
- startSpecifier, specifierLen,
- CS.getStart(), CS.getLength());
- }
- bool CheckPrintfHandler::HandleAmount(
- const analyze_format_string::OptionalAmount &Amt,
- unsigned k, const char *startSpecifier,
- unsigned specifierLen) {
- if (Amt.hasDataArgument()) {
- if (!HasVAListArg) {
- unsigned argIndex = Amt.getArgIndex();
- if (argIndex >= NumDataArgs) {
- S.Diag(getLocationOfByte(Amt.getStart()),
- diag::warn_printf_asterisk_missing_arg)
- << k << getSpecifierRange(startSpecifier, specifierLen);
- // Don't do any more checking. We will just emit
- // spurious errors.
- return false;
- }
- // Type check the data argument. It should be an 'int'.
- // Although not in conformance with C99, we also allow the argument to be
- // an 'unsigned int' as that is a reasonably safe case. GCC also
- // doesn't emit a warning for that case.
- CoveredArgs.set(argIndex);
- const Expr *Arg = getDataArg(argIndex);
- QualType T = Arg->getType();
- const analyze_printf::ArgTypeResult &ATR = Amt.getArgType(S.Context);
- assert(ATR.isValid());
- if (!ATR.matchesType(S.Context, T)) {
- S.Diag(getLocationOfByte(Amt.getStart()),
- diag::warn_printf_asterisk_wrong_type)
- << k
- << ATR.getRepresentativeType(S.Context) << T
- << getSpecifierRange(startSpecifier, specifierLen)
- << Arg->getSourceRange();
- // Don't do any more checking. We will just emit
- // spurious errors.
- return false;
- }
- }
- }
- return true;
- }
- void CheckPrintfHandler::HandleInvalidAmount(
- const analyze_printf::PrintfSpecifier &FS,
- const analyze_printf::OptionalAmount &Amt,
- unsigned type,
- const char *startSpecifier,
- unsigned specifierLen) {
- const analyze_printf::PrintfConversionSpecifier &CS =
- FS.getConversionSpecifier();
- switch (Amt.getHowSpecified()) {
- case analyze_printf::OptionalAmount::Constant:
- S.Diag(getLocationOfByte(Amt.getStart()),
- diag::warn_printf_nonsensical_optional_amount)
- << type
- << CS.toString()
- << getSpecifierRange(startSpecifier, specifierLen)
- << FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
- Amt.getConstantLength()));
- break;
- default:
- S.Diag(getLocationOfByte(Amt.getStart()),
- diag::warn_printf_nonsensical_optional_amount)
- << type
- << CS.toString()
- << getSpecifierRange(startSpecifier, specifierLen);
- break;
- }
- }
- void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
- const analyze_printf::OptionalFlag &flag,
- const char *startSpecifier,
- unsigned specifierLen) {
- // Warn about pointless flag with a fixit removal.
- const analyze_printf::PrintfConversionSpecifier &CS =
- FS.getConversionSpecifier();
- S.Diag(getLocationOfByte(flag.getPosition()),
- diag::warn_printf_nonsensical_flag)
- << flag.toString() << CS.toString()
- << getSpecifierRange(startSpecifier, specifierLen)
- << FixItHint::CreateRemoval(getSpecifierRange(flag.getPosition(), 1));
- }
- void CheckPrintfHandler::HandleIgnoredFlag(
- const analyze_printf::PrintfSpecifier &FS,
- const analyze_printf::OptionalFlag &ignoredFlag,
- const analyze_printf::OptionalFlag &flag,
- const char *startSpecifier,
- unsigned specifierLen) {
- // Warn about ignored flag with a fixit removal.
- S.Diag(getLocationOfByte(ignoredFlag.getPosition()),
- diag::warn_printf_ignored_flag)
- << ignoredFlag.toString() << flag.toString()
- << getSpecifierRange(startSpecifier, specifierLen)
- << FixItHint::CreateRemoval(getSpecifierRange(
- ignoredFlag.getPosition(), 1));
- }
- bool
- CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
- &FS,
- const char *startSpecifier,
- unsigned specifierLen) {
- using namespace analyze_format_string;
- using namespace analyze_printf;
- const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
- if (FS.consumesDataArgument()) {
- if (atFirstArg) {
- atFirstArg = false;
- usesPositionalArgs = FS.usesPositionalArg();
- }
- else if (usesPositionalArgs != FS.usesPositionalArg()) {
- // Cannot mix-and-match positional and non-positional arguments.
- S.Diag(getLocationOfByte(CS.getStart()),
- diag::warn_format_mix_positional_nonpositional_args)
- << getSpecifierRange(startSpecifier, specifierLen);
- return false;
- }
- }
- // First check if the field width, precision, and conversion specifier
- // have matching data arguments.
- if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
- startSpecifier, specifierLen)) {
- return false;
- }
- if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
- startSpecifier, specifierLen)) {
- return false;
- }
- if (!CS.consumesDataArgument()) {
- // FIXME: Technically specifying a precision or field width here
- // makes no sense. Worth issuing a warning at some point.
- return true;
- }
- // Consume the argument.
- unsigned argIndex = FS.getArgIndex();
- if (argIndex < NumDataArgs) {
- // The check to see if the argIndex is valid will come later.
- // We set the bit here because we may exit early from this
- // function if we encounter some other error.
- CoveredArgs.set(argIndex);
- }
- // Check for using an Objective-C specific conversion specifier
- // in a non-ObjC literal.
- if (!IsObjCLiteral && CS.isObjCArg()) {
- return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
- specifierLen);
- }
- // Check for invalid use of field width
- if (!FS.hasValidFieldWidth()) {
- HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
- startSpecifier, specifierLen);
- }
- // Check for invalid use of precision
- if (!FS.hasValidPrecision()) {
- HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
- startSpecifier, specifierLen);
- }
- // Check each flag does not conflict with any other component.
- if (!FS.hasValidThousandsGroupingPrefix())
- HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
- if (!FS.hasValidLeadingZeros())
- HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
- if (!FS.hasValidPlusPrefix())
- HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
- if (!FS.hasValidSpacePrefix())
- HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
- if (!FS.hasValidAlternativeForm())
- HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
- if (!FS.hasValidLeftJustified())
- HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
- // Check that flags are not ignored by another flag
- if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
- HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
- startSpecifier, specifierLen);
- if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
- HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
- startSpecifier, specifierLen);
- // Check the length modifier is valid with the given conversion specifier.
- const LengthModifier &LM = FS.getLengthModifier();
- if (!FS.hasValidLengthModifier())
- S.Diag(getLocationOfByte(LM.getStart()),
- diag::warn_format_nonsensical_length)
- << LM.toString() << CS.toString()
- << getSpecifierRange(startSpecifier, specifierLen)
- << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
- LM.getLength()));
- // Are we using '%n'?
- if (CS.getKind() == ConversionSpecifier::nArg) {
- // Issue a warning about this being a possible security issue.
- S.Diag(getLocationOfByte(CS.getStart()), diag::warn_printf_write_back)
- << getSpecifierRange(startSpecifier, specifierLen);
- // Continue checking the other format specifiers.
- return true;
- }
- // The remaining checks depend on the data arguments.
- if (HasVAListArg)
- return true;
- if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
- return false;
- // Now type check the data expression that matches the
- // format specifier.
- const Expr *Ex = getDataArg(argIndex);
- const analyze_printf::ArgTypeResult &ATR = FS.getArgType(S.Context);
- if (ATR.isValid() && !ATR.matchesType(S.Context, Ex->getType())) {
- // Check if we didn't match because of an implicit cast from a 'char'
- // or 'short' to an 'int'. This is done because printf is a varargs
- // function.
- if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Ex))
- if (ICE->getType() == S.Context.IntTy) {
- // All further checking is done on the subexpression.
- Ex = ICE->getSubExpr();
- if (ATR.matchesType(S.Context, Ex->getType()))
- return true;
- }
- // We may be able to offer a FixItHint if it is a supported type.
- PrintfSpecifier fixedFS = FS;
- bool success = fixedFS.fixType(Ex->getType());
- if (success) {
- // Get the fix string from the fixed format specifier
- llvm::SmallString<128> buf;
- llvm::raw_svector_ostream os(buf);
- fixedFS.toString(os);
- // FIXME: getRepresentativeType() perhaps should return a string
- // instead of a QualType to better handle when the representative
- // type is 'wint_t' (which is defined in the system headers).
- S.Diag(getLocationOfByte(CS.getStart()),
- diag::warn_printf_conversion_argument_type_mismatch)
- << ATR.getRepresentativeType(S.Context) << Ex->getType()
- << getSpecifierRange(startSpecifier, specifierLen)
- << Ex->getSourceRange()
- << FixItHint::CreateReplacement(
- getSpecifierRange(startSpecifier, specifierLen),
- os.str());
- }
- else {
- S.Diag(getLocationOfByte(CS.getStart()),
- diag::warn_printf_conversion_argument_type_mismatch)
- << ATR.getRepresentativeType(S.Context) << Ex->getType()
- << getSpecifierRange(startSpecifier, specifierLen)
- << Ex->getSourceRange();
- }
- }
- return true;
- }
- //===--- CHECK: Scanf format string checking ------------------------------===//
- namespace {
- class CheckScanfHandler : public CheckFormatHandler {
- public:
- CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
- const Expr *origFormatExpr, unsigned firstDataArg,
- unsigned numDataArgs, bool isObjCLiteral,
- const char *beg, bool hasVAListArg,
- const CallExpr *theCall, unsigned formatIdx)
- : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
- numDataArgs, isObjCLiteral, beg, hasVAListArg,
- theCall, formatIdx) {}
-
- bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
- const char *startSpecifier,
- unsigned specifierLen);
-
- bool HandleInvalidScanfConversionSpecifier(
- const analyze_scanf::ScanfSpecifier &FS,
- const char *startSpecifier,
- unsigned specifierLen);
- void HandleIncompleteScanList(const char *start, const char *end);
- };
- }
- void CheckScanfHandler::HandleIncompleteScanList(const char *start,
- const char *end) {
- S.Diag(getLocationOfByte(end), diag::warn_scanf_scanlist_incomplete)
- << getSpecifierRange(start, end - start);
- }
- bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
- const analyze_scanf::ScanfSpecifier &FS,
- const char *startSpecifier,
- unsigned specifierLen) {
- const analyze_scanf::ScanfConversionSpecifier &CS =
- FS.getConversionSpecifier();
- return HandleInvalidConversionSpecifier(FS.getArgIndex(),
- getLocationOfByte(CS.getStart()),
- startSpecifier, specifierLen,
- CS.getStart(), CS.getLength());
- }
- bool CheckScanfHandler::HandleScanfSpecifier(
- const analyze_scanf::ScanfSpecifier &FS,
- const char *startSpecifier,
- unsigned specifierLen) {
-
- using namespace analyze_scanf;
- using namespace analyze_format_string;
- const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
- // Handle case where '%' and '*' don't consume an argument. These shouldn't
- // be used to decide if we are using positional arguments consistently.
- if (FS.consumesDataArgument()) {
- if (atFirstArg) {
- atFirstArg = false;
- usesPositionalArgs = FS.usesPositionalArg();
- }
- else if (usesPositionalArgs != FS.usesPositionalArg()) {
- // Cannot mix-and-match positional and non-positional arguments.
- S.Diag(getLocationOfByte(CS.getStart()),
- diag::warn_format_mix_positional_nonpositional_args)
- << getSpecifierRange(startSpecifier, specifierLen);
- return false;
- }
- }
-
- // Check if the field with is non-zero.
- const OptionalAmount &Amt = FS.getFieldWidth();
- if (Amt.getHowSpecified() == OptionalAmount::Constant) {
- if (Amt.getConstantAmount() == 0) {
- const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
- Amt.getConstantLength());
- S.Diag(getLocationOfByte(Amt.getStart()),
- diag::warn_scanf_nonzero_width)
- << R << FixItHint::CreateRemoval(R);
- }
- }
-
- if (!FS.consumesDataArgument()) {
- // FIXME: Technically specifying a precision or field width here
- // makes no sense. Worth issuing a warning at some point.
- return true;
- }
-
- // Consume the argument.
- unsigned argIndex = FS.getArgIndex();
- if (argIndex < NumDataArgs) {
- // The check to see if the argIndex is valid will come later.
- // We set the bit here because we may exit early from this
- // function if we encounter some other error.
- CoveredArgs.set(argIndex);
- }
-
- // Check the length modifier is valid with the given conversion specifier.
- const LengthModifier &LM = FS.getLengthModifier();
- if (!FS.hasValidLengthModifier()) {
- S.Diag(getLocationOfByte(LM.getStart()),
- diag::warn_format_nonsensical_length)
- << LM.toString() << CS.toString()
- << getSpecifierRange(startSpecifier, specifierLen)
- << FixItHint::CreateRemoval(getSpecifierRange(LM.getStart(),
- LM.getLength()));
- }
- // The remaining checks depend on the data arguments.
- if (HasVAListArg)
- return true;
-
- if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
- return false;
-
- // FIXME: Check that the argument type matches the format specifier.
-
- return true;
- }
- void Sema::CheckFormatString(const StringLiteral *FExpr,
- const Expr *OrigFormatExpr,
- const CallExpr *TheCall, bool HasVAListArg,
- unsigned format_idx, unsigned firstDataArg,
- bool isPrintf) {
-
- // CHECK: is the format string a wide literal?
- if (FExpr->isWide()) {
- Diag(FExpr->getLocStart(),
- diag::warn_format_string_is_wide_literal)
- << OrigFormatExpr->getSourceRange();
- return;
- }
-
- // Str - The format string. NOTE: this is NOT null-terminated!
- llvm::StringRef StrRef = FExpr->getString();
- const char *Str = StrRef.data();
- unsigned StrLen = StrRef.size();
-
- // CHECK: empty format string?
- if (StrLen == 0) {
- Diag(FExpr->getLocStart(), diag::warn_empty_format_string)
- << OrigFormatExpr->getSourceRange();
- return;
- }
-
- if (isPrintf) {
- CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
- TheCall->getNumArgs() - firstDataArg,
- isa<ObjCStringLiteral>(OrigFormatExpr), Str,
- HasVAListArg, TheCall, format_idx);
-
- if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen))
- H.DoneProcessing();
- }
- else {
- CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
- TheCall->getNumArgs() - firstDataArg,
- isa<ObjCStringLiteral>(OrigFormatExpr), Str,
- HasVAListArg, TheCall, format_idx);
-
- if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen))
- H.DoneProcessing();
- }
- }
- //===--- CHECK: Standard memory functions ---------------------------------===//
- /// \brief Determine whether the given type is a dynamic class type (e.g.,
- /// whether it has a vtable).
- static bool isDynamicClassType(QualType T) {
- if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
- if (CXXRecordDecl *Definition = Record->getDefinition())
- if (Definition->isDynamicClass())
- return true;
-
- return false;
- }
- /// \brief If E is a sizeof expression, returns the expression's type in
- /// OutType.
- static bool sizeofExprType(const Expr* E, QualType *OutType) {
- if (const UnaryExprOrTypeTraitExpr *SizeOf =
- dyn_cast<UnaryExprOrTypeTraitExpr>(E)) {
- if (SizeOf->getKind() != clang::UETT_SizeOf)
- return false;
- *OutType = SizeOf->getTypeOfArgument();
- return true;
- }
- return false;
- }
- /// \brief Check for dangerous or invalid arguments to memset().
- ///
- /// This issues warnings on known problematic, dangerous or unspecified
- /// arguments to the standard 'memset', 'memcpy', and 'memmove' function calls.
- ///
- /// \param Call The call expression to diagnose.
- void Sema::CheckMemsetcpymoveArguments(const CallExpr *Call,
- const IdentifierInfo *FnName) {
- // It is possible to have a non-standard definition of memset. Validate
- // we have the proper number of arguments, and if not, abort further
- // checking.
- if (Call->getNumArgs() != 3)
- return;
- unsigned LastArg = FnName->isStr("memset")? 1 : 2;
- const Expr *LenExpr = Call->getArg(2)->IgnoreParenImpCasts();
- for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
- const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
- SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
- QualType DestTy = Dest->getType();
- if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
- QualType PointeeTy = DestPtrTy->getPointeeType();
- if (PointeeTy->isVoidType())
- continue;
- // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p).
- QualType SizeofTy;
- if (sizeofExprType(LenExpr, &SizeofTy) &&
- Context.typesAreCompatible(SizeofTy, DestTy)) {
- // Note: This complains about sizeof(typeof(p)) as well.
- SourceLocation loc = LenExpr->getSourceRange().getBegin();
- Diag(loc, diag::warn_sizeof_pointer)
- << SizeofTy << PointeeTy << ArgIdx << FnName;
- break;
- }
- unsigned DiagID;
- // Always complain about dynamic classes.
- if (isDynamicClassType(PointeeTy))
- DiagID = diag::warn_dyn_class_memaccess;
- else if (PointeeTy.hasNonTrivialObjCLifetime() &&
- !FnName->isStr("memset"))
- DiagID = diag::warn_arc_object_memaccess;
- else
- continue;
- DiagRuntimeBehavior(
- Dest->getExprLoc(), Dest,
- PDiag(DiagID)
- << ArgIdx << FnName << PointeeTy
- << Call->getCallee()->getSourceRange());
- DiagRuntimeBehavior(
- Dest->getExprLoc(), Dest,
- PDiag(diag::note_bad_memaccess_silence)
- << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
- break;
- }
- }
- }
- //===--- CHECK: Return Address of Stack Variable --------------------------===//
- static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
- static Expr *EvalAddr(Expr* E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars);
- /// CheckReturnStackAddr - Check if a return statement returns the address
- /// of a stack variable.
- void
- Sema::CheckReturnStackAddr(Expr *RetValExp, QualType lhsType,
- SourceLocation ReturnLoc) {
- Expr *stackE = 0;
- llvm::SmallVector<DeclRefExpr *, 8> refVars;
- // Perform checking for returned stack addresses, local blocks,
- // label addresses or references to temporaries.
- if (lhsType->isPointerType() ||
- (!getLangOptions().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
- stackE = EvalAddr(RetValExp, refVars);
- } else if (lhsType->isReferenceType()) {
- stackE = EvalVal(RetValExp, refVars);
- }
- if (stackE == 0)
- return; // Nothing suspicious was found.
- SourceLocation diagLoc;
- SourceRange diagRange;
- if (refVars.empty()) {
- diagLoc = stackE->getLocStart();
- diagRange = stackE->getSourceRange();
- } else {
- // We followed through a reference variable. 'stackE' contains the
- // problematic expression but we will warn at the return statement pointing
- // at the reference variable. We will later display the "trail" of
- // reference variables using notes.
- diagLoc = refVars[0]->getLocStart();
- diagRange = refVars[0]->getSourceRange();
- }
- if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
- Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
- : diag::warn_ret_stack_addr)
- << DR->getDecl()->getDeclName() << diagRange;
- } else if (isa<BlockExpr>(stackE)) { // local block.
- Diag(diagLoc, diag::err_ret_local_block) << diagRange;
- } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
- Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
- } else { // local temporary.
- Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
- : diag::warn_ret_local_temp_addr)
- << diagRange;
- }
- // Display the "trail" of reference variables that we followed until we
- // found the problematic expression using notes.
- for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
- VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
- // If this var binds to another reference var, show the range of the next
- // var, otherwise the var binds to the problematic expression, in which case
- // show the range of the expression.
- SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
- : stackE->getSourceRange();
- Diag(VD->getLocation(), diag::note_ref_var_local_bind)
- << VD->getDeclName() << range;
- }
- }
- /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
- /// check if the expression in a return statement evaluates to an address
- /// to a location on the stack, a local block, an address of a label, or a
- /// reference to local temporary. The recursion is used to traverse the
- /// AST of the return expression, with recursion backtracking when we
- /// encounter a subexpression that (1) clearly does not lead to one of the
- /// above problematic expressions (2) is something we cannot determine leads to
- /// a problematic expression based on such local checking.
- ///
- /// Both EvalAddr and EvalVal follow through reference variables to evaluate
- /// the expression that they point to. Such variables are added to the
- /// 'refVars' vector so that we know what the reference variable "trail" was.
- ///
- /// EvalAddr processes expressions that are pointers that are used as
- /// references (and not L-values). EvalVal handles all other values.
- /// At the base case of the recursion is a check for the above problematic
- /// expressions.
- ///
- /// This implementation handles:
- ///
- /// * pointer-to-pointer casts
- /// * implicit conversions from array references to pointers
- /// * taking the address of fields
- /// * arbitrary interplay between "&" and "*" operators
- /// * pointer arithmetic from an address of a stack variable
- /// * taking the address of an array element where the array is on the stack
- static Expr *EvalAddr(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
- if (E->isTypeDependent())
- return NULL;
- // We should only be called for evaluating pointer expressions.
- assert((E->getType()->isAnyPointerType() ||
- E->getType()->isBlockPointerType() ||
- E->getType()->isObjCQualifiedIdType()) &&
- "EvalAddr only works on pointers");
- E = E->IgnoreParens();
- // Our "symbolic interpreter" is just a dispatch off the currently
- // viewed AST node. We then recursively traverse the AST by calling
- // EvalAddr and EvalVal appropriately.
- switch (E->getStmtClass()) {
- case Stmt::DeclRefExprClass: {
- DeclRefExpr *DR = cast<DeclRefExpr>(E);
- if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
- // If this is a reference variable, follow through to the expression that
- // it points to.
- if (V->hasLocalStorage() &&
- V->getType()->isReferenceType() && V->hasInit()) {
- // Add the reference variable to the "trail".
- refVars.push_back(DR);
- return EvalAddr(V->getInit(), refVars);
- }
- return NULL;
- }
- case Stmt::UnaryOperatorClass: {
- // The only unary operator that make sense to handle here
- // is AddrOf. All others don't make sense as pointers.
- UnaryOperator *U = cast<UnaryOperator>(E);
- if (U->getOpcode() == UO_AddrOf)
- return EvalVal(U->getSubExpr(), refVars);
- else
- return NULL;
- }
- case Stmt::BinaryOperatorClass: {
- // Handle pointer arithmetic. All other binary operators are not valid
- // in this context.
- BinaryOperator *B = cast<BinaryOperator>(E);
- BinaryOperatorKind op = B->getOpcode();
- if (op != BO_Add && op != BO_Sub)
- return NULL;
- Expr *Base = B->getLHS();
- // Determine which argument is the real pointer base. It could be
- // the RHS argument instead of the LHS.
- if (!Base->getType()->isPointerType()) Base = B->getRHS();
- assert (Base->getType()->isPointerType());
- return EvalAddr(Base, refVars);
- }
- // For conditional operators we need to see if either the LHS or RHS are
- // valid DeclRefExpr*s. If one of them is valid, we return it.
- case Stmt::ConditionalOperatorClass: {
- ConditionalOperator *C = cast<ConditionalOperator>(E);
- // Handle the GNU extension for missing LHS.
- if (Expr *lhsExpr = C->getLHS()) {
- // In C++, we can have a throw-expression, which has 'void' type.
- if (!lhsExpr->getType()->isVoidType())
- if (Expr* LHS = EvalAddr(lhsExpr, refVars))
- return LHS;
- }
- // In C++, we can have a throw-expression, which has 'void' type.
- if (C->getRHS()->getType()->isVoidType())
- return NULL;
- return EvalAddr(C->getRHS(), refVars);
- }
-
- case Stmt::BlockExprClass:
- if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
- return E; // local block.
- return NULL;
- case Stmt::AddrLabelExprClass:
- return E; // address of label.
- // For casts, we need to handle conversions from arrays to
- // pointer values, and pointer-to-pointer conversions.
- case Stmt::ImplicitCastExprClass:
- case Stmt::CStyleCastExprClass:
- case Stmt::CXXFunctionalCastExprClass:
- case Stmt::ObjCBridgedCastExprClass: {
- Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
- QualType T = SubExpr->getType();
- if (SubExpr->getType()->isPointerType() ||
- SubExpr->getType()->isBlockPointerType() ||
- SubExpr->getType()->isObjCQualifiedIdType())
- return EvalAddr(SubExpr, refVars);
- else if (T->isArrayType())
- return EvalVal(SubExpr, refVars);
- else
- return 0;
- }
- // C++ casts. For dynamic casts, static casts, and const casts, we
- // are always converting from a pointer-to-pointer, so we just blow
- // through the cast. In the case the dynamic cast doesn't fail (and
- // return NULL), we take the conservative route and report cases
- // where we return the address of a stack variable. For Reinterpre
- // FIXME: The comment about is wrong; we're not always converting
- // from pointer to pointer. I'm guessing that this code should also
- // handle references to objects.
- case Stmt::CXXStaticCastExprClass:
- case Stmt::CXXDynamicCastExprClass:
- case Stmt::CXXConstCastExprClass:
- case Stmt::CXXReinterpretCastExprClass: {
- Expr *S = cast<CXXNamedCastExpr>(E)->getSubExpr();
- if (S->getType()->isPointerType() || S->getType()->isBlockPointerType())
- return EvalAddr(S, refVars);
- else
- return NULL;
- }
- // Everything else: we simply don't reason about them.
- default:
- return NULL;
- }
- }
- /// EvalVal - This function is complements EvalAddr in the mutual recursion.
- /// See the comments for EvalAddr for more details.
- static Expr *EvalVal(Expr *E, llvm::SmallVectorImpl<DeclRefExpr *> &refVars) {
- do {
- // We should only be called for evaluating non-pointer expressions, or
- // expressions with a pointer type that are not used as references but instead
- // are l-values (e.g., DeclRefExpr with a pointer type).
- // Our "symbolic interpreter" is just a dispatch off the currently
- // viewed AST node. We then recursively traverse the AST by calling
- // EvalAddr and EvalVal appropriately.
- E = E->IgnoreParens();
- switch (E->getStmtClass()) {
- case Stmt::ImplicitCastExprClass: {
- ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
- if (IE->getValueKind() == VK_LValue) {
- E = IE->getSubExpr();
- continue;
- }
- return NULL;
- }
- case Stmt::DeclRefExprClass: {
- // When we hit a DeclRefExpr we are looking at code that refers to a
- // variable's name. If it's not a reference variable we check if it has
- // local storage within the function, and if so, return the expression.
- DeclRefExpr *DR = cast<DeclRefExpr>(E);
- if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
- if (V->hasLocalStorage()) {
- if (!V->getType()->isReferenceType())
- return DR;
- // Reference variable, follow through to the expression that
- // it points to.
- if (V->hasInit()) {
- // Add the reference variable to the "trail".
- refVars.push_back(DR);
- return EvalVal(V->getInit(), refVars);
- }
- }
- return NULL;
- }
- case Stmt::UnaryOperatorClass: {
- // The only unary operator that make sense to handle here
- // is Deref. All others don't resolve to a "name." This includes
- // handling all sorts of rvalues passed to a unary operator.
- UnaryOperator *U = cast<UnaryOperator>(E);
- if (U->getOpcode() == UO_Deref)
- return EvalAddr(U->getSubExpr(), refVars);
- return NULL;
- }
- case Stmt::ArraySubscriptExprClass: {
- // Array subscripts are potential references to data on the stack. We
- // retrieve the DeclRefExpr* for the array variable if it indeed
- // has local storage.
- return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars);
- }
- case Stmt::ConditionalOperatorClass: {
- // For conditional operators we need to see if either the LHS or RHS are
- // non-NULL Expr's. If one is non-NULL, we return it.
- ConditionalOperator *C = cast<ConditionalOperator>(E);
- // Handle the GNU extension for missing LHS.
- if (Expr *lhsExpr = C->getLHS())
- if (Expr *LHS = EvalVal(lhsExpr, refVars))
- return LHS;
- return EvalVal(C->getRHS(), refVars);
- }
- // Accesses to members are potential references to data on the stack.
- case Stmt::MemberExprClass: {
- MemberExpr *M = cast<MemberExpr>(E);
- // Check for indirect access. We only want direct field accesses.
- if (M->isArrow())
- return NULL;
- // Check whether the member type is itself a reference, in which case
- // we're not going to refer to the member, but to what the member refers to.
- if (M->getMemberDecl()->getType()->isReferenceType())
- return NULL;
- return EvalVal(M->getBase(), refVars);
- }
- default:
- // Check that we don't return or take the address of a reference to a
- // temporary. This is only useful in C++.
- if (!E->isTypeDependent() && E->isRValue())
- return E;
- // Everything else: we simply don't reason about them.
- return NULL;
- }
- } while (true);
- }
- //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
- /// Check for comparisons of floating point operands using != and ==.
- /// Issue a warning if these are no self-comparisons, as they are not likely
- /// to do what the programmer intended.
- void Sema::CheckFloatComparison(SourceLocation loc, Expr* lex, Expr *rex) {
- bool EmitWarning = true;
- Expr* LeftExprSansParen = lex->IgnoreParenImpCasts();
- Expr* RightExprSansParen = rex->IgnoreParenImpCasts();
- // Special case: check for x == x (which is OK).
- // Do not emit warnings for such cases.
- if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
- if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
- if (DRL->getDecl() == DRR->getDecl())
- EmitWarning = false;
- // Special case: check for comparisons against literals that can be exactly
- // represented by APFloat. In such cases, do not emit a warning. This
- // is a heuristic: often comparison against such literals are used to
- // detect if a value in a variable has not changed. This clearly can
- // lead to false negatives.
- if (EmitWarning) {
- if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
- if (FLL->isExact())
- EmitWarning = false;
- } else
- if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)){
- if (FLR->isExact())
- EmitWarning = false;
- }
- }
- // Check for comparisons with builtin types.
- if (EmitWarning)
- if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
- if (CL->isBuiltinCall(Context))
- EmitWarning = false;
- if (EmitWarning)
- if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
- if (CR->isBuiltinCall(Context))
- EmitWarning = false;
- // Emit the diagnostic.
- if (EmitWarning)
- Diag(loc, diag::warn_floatingpoint_eq)
- << lex->getSourceRange() << rex->getSourceRange();
- }
- //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
- //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
- namespace {
- /// Structure recording the 'active' range of an integer-valued
- /// expression.
- struct IntRange {
- /// The number of bits active in the int.
- unsigned Width;
- /// True if the int is known not to have negative values.
- bool NonNegative;
- IntRange(unsigned Width, bool NonNegative)
- : Width(Width), NonNegative(NonNegative)
- {}
- /// Returns the range of the bool type.
- static IntRange forBoolType() {
- return IntRange(1, true);
- }
- /// Returns the range of an opaque value of the given integral type.
- static IntRange forValueOfType(ASTContext &C, QualType T) {
- return forValueOfCanonicalType(C,
- T->getCanonicalTypeInternal().getTypePtr());
- }
- /// Returns the range of an opaque value of a canonical integral type.
- static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
- assert(T->isCanonicalUnqualified());
- if (const VectorType *VT = dyn_cast<VectorType>(T))
- T = VT->getElementType().getTypePtr();
- if (const ComplexType *CT = dyn_cast<ComplexType>(T))
- T = CT->getElementType().getTypePtr();
- // For enum types, use the known bit width of the enumerators.
- if (const EnumType *ET = dyn_cast<EnumType>(T)) {
- EnumDecl *Enum = ET->getDecl();
- if (!Enum->isDefinition())
- return IntRange(C.getIntWidth(QualType(T, 0)), false);
- unsigned NumPositive = Enum->getNumPositiveBits();
- unsigned NumNegative = Enum->getNumNegativeBits();
- return IntRange(std::max(NumPositive, NumNegative), NumNegative == 0);
- }
- const BuiltinType *BT = cast<BuiltinType>(T);
- assert(BT->isInteger());
- return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
- }
- /// Returns the "target" range of a canonical integral type, i.e.
- /// the range of values expressible in the type.
- ///
- /// This matches forValueOfCanonicalType except that enums have the
- /// full range of their type, not the range of their enumerators.
- static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
- assert(T->isCanonicalUnqualified());
- if (const VectorType *VT = dyn_cast<VectorType>(T))
- T = VT->getElementType().getTypePtr();
- if (const ComplexType *CT = dyn_cast<ComplexType>(T))
- T = CT->getElementType().getTypePtr();
- if (const EnumType *ET = dyn_cast<EnumType>(T))
- T = ET->getDecl()->getIntegerType().getTypePtr();
- const BuiltinType *BT = cast<BuiltinType>(T);
- assert(BT->isInteger());
- return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
- }
- /// Returns the supremum of two ranges: i.e. their conservative merge.
- static IntRange join(IntRange L, IntRange R) {
- return IntRange(std::max(L.Width, R.Width),
- L.NonNegative && R.NonNegative);
- }
- /// Returns the infinum of two ranges: i.e. their aggressive merge.
- static IntRange meet(IntRange L, IntRange R) {
- return IntRange(std::min(L.Width, R.Width),
- L.NonNegative || R.NonNegative);
- }
- };
- IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, unsigned MaxWidth) {
- if (value.isSigned() && value.isNegative())
- return IntRange(value.getMinSignedBits(), false);
- if (value.getBitWidth() > MaxWidth)
- value = value.trunc(MaxWidth);
- // isNonNegative() just checks the sign bit without considering
- // signedness.
- return IntRange(value.getActiveBits(), true);
- }
- IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
- unsigned MaxWidth) {
- if (result.isInt())
- return GetValueRange(C, result.getInt(), MaxWidth);
- if (result.isVector()) {
- IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
- for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
- IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
- R = IntRange::join(R, El);
- }
- return R;
- }
- if (result.isComplexInt()) {
- IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
- IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
- return IntRange::join(R, I);
- }
- // This can happen with lossless casts to intptr_t of "based" lvalues.
- // Assume it might use arbitrary bits.
- // FIXME: The only reason we need to pass the type in here is to get
- // the sign right on this one case. It would be nice if APValue
- // preserved this.
- assert(result.isLValue());
- return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
- }
- /// Pseudo-evaluate the given integer expression, estimating the
- /// range of values it might take.
- ///
- /// \param MaxWidth - the width to which the value will be truncated
- IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
- E = E->IgnoreParens();
- // Try a full evaluation first.
- Expr::EvalResult result;
- if (E->Evaluate(result, C))
- return GetValueRange(C, result.Val, E->getType(), MaxWidth);
- // I think we only want to look through implicit casts here; if the
- // user has an explicit widening cast, we should treat the value as
- // being of the new, wider type.
- if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
- if (CE->getCastKind() == CK_NoOp)
- return GetExprRange(C, CE->getSubExpr(), MaxWidth);
- IntRange OutputTypeRange = IntRange::forValueOfType(C, CE->getType());
- bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
- // Assume that non-integer casts can span the full range of the type.
- if (!isIntegerCast)
- return OutputTypeRange;
- IntRange SubRange
- = GetExprRange(C, CE->getSubExpr(),
- std::min(MaxWidth, OutputTypeRange.Width));
- // Bail out if the subexpr's range is as wide as the cast type.
- if (SubRange.Width >= OutputTypeRange.Width)
- return OutputTypeRange;
- // Otherwise, we take the smaller width, and we're non-negative if
- // either the output type or the subexpr is.
- return IntRange(SubRange.Width,
- SubRange.NonNegative || OutputTypeRange.NonNegative);
- }
- if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
- // If we can fold the condition, just take that operand.
- bool CondResult;
- if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
- return GetExprRange(C, CondResult ? CO->getTrueExpr()
- : CO->getFalseExpr(),
- MaxWidth);
- // Otherwise, conservatively merge.
- IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
- IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
- return IntRange::join(L, R);
- }
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
- switch (BO->getOpcode()) {
- // Boolean-valued operations are single-bit and positive.
- case BO_LAnd:
- case BO_LOr:
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- case BO_EQ:
- case BO_NE:
- return IntRange::forBoolType();
- // The type of these compound assignments is the type of the LHS,
- // so the RHS is not necessarily an integer.
- case BO_MulAssign:
- case BO_DivAssign:
- case BO_RemAssign:
- case BO_AddAssign:
- case BO_SubAssign:
- return IntRange::forValueOfType(C, E->getType());
- // Operations with opaque sources are black-listed.
- case BO_PtrMemD:
- case BO_PtrMemI:
- return IntRange::forValueOfType(C, E->getType());
- // Bitwise-and uses the *infinum* of the two source ranges.
- case BO_And:
- case BO_AndAssign:
- return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
- GetExprRange(C, BO->getRHS(), MaxWidth));
- // Left shift gets black-listed based on a judgement call.
- case BO_Shl:
- // ...except that we want to treat '1 << (blah)' as logically
- // positive. It's an important idiom.
- if (IntegerLiteral *I
- = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
- if (I->getValue() == 1) {
- IntRange R = IntRange::forValueOfType(C, E->getType());
- return IntRange(R.Width, /*NonNegative*/ true);
- }
- }
- // fallthrough
- case BO_ShlAssign:
- return IntRange::forValueOfType(C, E->getType());
- // Right shift by a constant can narrow its left argument.
- case BO_Shr:
- case BO_ShrAssign: {
- IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
- // If the shift amount is a positive constant, drop the width by
- // that much.
- llvm::APSInt shift;
- if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
- shift.isNonNegative()) {
- unsigned zext = shift.getZExtValue();
- if (zext >= L.Width)
- L.Width = (L.NonNegative ? 0 : 1);
- else
- L.Width -= zext;
- }
- return L;
- }
- // Comma acts as its right operand.
- case BO_Comma:
- return GetExprRange(C, BO->getRHS(), MaxWidth);
- // Black-list pointer subtractions.
- case BO_Sub:
- if (BO->getLHS()->getType()->isPointerType())
- return IntRange::forValueOfType(C, E->getType());
- // fallthrough
- default:
- break;
- }
- // Treat every other operator as if it were closed on the
- // narrowest type that encompasses both operands.
- IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
- IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
- return IntRange::join(L, R);
- }
- if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
- switch (UO->getOpcode()) {
- // Boolean-valued operations are white-listed.
- case UO_LNot:
- return IntRange::forBoolType();
- // Operations with opaque sources are black-listed.
- case UO_Deref:
- case UO_AddrOf: // should be impossible
- return IntRange::forValueOfType(C, E->getType());
- default:
- return GetExprRange(C, UO->getSubExpr(), MaxWidth);
- }
- }
-
- if (dyn_cast<OffsetOfExpr>(E)) {
- IntRange::forValueOfType(C, E->getType());
- }
- FieldDecl *BitField = E->getBitField();
- if (BitField) {
- llvm::APSInt BitWidthAP = BitField->getBitWidth()->EvaluateAsInt(C);
- unsigned BitWidth = BitWidthAP.getZExtValue();
- return IntRange(BitWidth,
- BitField->getType()->isUnsignedIntegerOrEnumerationType());
- }
- return IntRange::forValueOfType(C, E->getType());
- }
- IntRange GetExprRange(ASTContext &C, Expr *E) {
- return GetExprRange(C, E, C.getIntWidth(E->getType()));
- }
- /// Checks whether the given value, which currently has the given
- /// source semantics, has the same value when coerced through the
- /// target semantics.
- bool IsSameFloatAfterCast(const llvm::APFloat &value,
- const llvm::fltSemantics &Src,
- const llvm::fltSemantics &Tgt) {
- llvm::APFloat truncated = value;
- bool ignored;
- truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
- truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
- return truncated.bitwiseIsEqual(value);
- }
- /// Checks whether the given value, which currently has the given
- /// source semantics, has the same value when coerced through the
- /// target semantics.
- ///
- /// The value might be a vector of floats (or a complex number).
- bool IsSameFloatAfterCast(const APValue &value,
- const llvm::fltSemantics &Src,
- const llvm::fltSemantics &Tgt) {
- if (value.isFloat())
- return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
- if (value.isVector()) {
- for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
- if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
- return false;
- return true;
- }
- assert(value.isComplexFloat());
- return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
- IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
- }
- void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
- static bool IsZero(Sema &S, Expr *E) {
- // Suppress cases where we are comparing against an enum constant.
- if (const DeclRefExpr *DR =
- dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
- if (isa<EnumConstantDecl>(DR->getDecl()))
- return false;
- // Suppress cases where the '0' value is expanded from a macro.
- if (E->getLocStart().isMacroID())
- return false;
- llvm::APSInt Value;
- return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
- }
- static bool HasEnumType(Expr *E) {
- // Strip off implicit integral promotions.
- while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
- if (ICE->getCastKind() != CK_IntegralCast &&
- ICE->getCastKind() != CK_NoOp)
- break;
- E = ICE->getSubExpr();
- }
- return E->getType()->isEnumeralType();
- }
- void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
- BinaryOperatorKind op = E->getOpcode();
- if (E->isValueDependent())
- return;
- if (op == BO_LT && IsZero(S, E->getRHS())) {
- S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
- << "< 0" << "false" << HasEnumType(E->getLHS())
- << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
- } else if (op == BO_GE && IsZero(S, E->getRHS())) {
- S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
- << ">= 0" << "true" << HasEnumType(E->getLHS())
- << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
- } else if (op == BO_GT && IsZero(S, E->getLHS())) {
- S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
- << "0 >" << "false" << HasEnumType(E->getRHS())
- << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
- } else if (op == BO_LE && IsZero(S, E->getLHS())) {
- S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
- << "0 <=" << "true" << HasEnumType(E->getRHS())
- << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
- }
- }
- /// Analyze the operands of the given comparison. Implements the
- /// fallback case from AnalyzeComparison.
- void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
- AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
- AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
- }
- /// \brief Implements -Wsign-compare.
- ///
- /// \param lex the left-hand expression
- /// \param rex the right-hand expression
- /// \param OpLoc the location of the joining operator
- /// \param BinOpc binary opcode or 0
- void AnalyzeComparison(Sema &S, BinaryOperator *E) {
- // The type the comparison is being performed in.
- QualType T = E->getLHS()->getType();
- assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
- && "comparison with mismatched types");
- // We don't do anything special if this isn't an unsigned integral
- // comparison: we're only interested in integral comparisons, and
- // signed comparisons only happen in cases we don't care to warn about.
- //
- // We also don't care about value-dependent expressions or expressions
- // whose result is a constant.
- if (!T->hasUnsignedIntegerRepresentation()
- || E->isValueDependent() || E->isIntegerConstantExpr(S.Context))
- return AnalyzeImpConvsInComparison(S, E);
- Expr *lex = E->getLHS()->IgnoreParenImpCasts();
- Expr *rex = E->getRHS()->IgnoreParenImpCasts();
- // Check to see if one of the (unmodified) operands is of different
- // signedness.
- Expr *signedOperand, *unsignedOperand;
- if (lex->getType()->hasSignedIntegerRepresentation()) {
- assert(!rex->getType()->hasSignedIntegerRepresentation() &&
- "unsigned comparison between two signed integer expressions?");
- signedOperand = lex;
- unsignedOperand = rex;
- } else if (rex->getType()->hasSignedIntegerRepresentation()) {
- signedOperand = rex;
- unsignedOperand = lex;
- } else {
- CheckTrivialUnsignedComparison(S, E);
- return AnalyzeImpConvsInComparison(S, E);
- }
- // Otherwise, calculate the effective range of the signed operand.
- IntRange signedRange = GetExprRange(S.Context, signedOperand);
- // Go ahead and analyze implicit conversions in the operands. Note
- // that we skip the implicit conversions on both sides.
- AnalyzeImplicitConversions(S, lex, E->getOperatorLoc());
- AnalyzeImplicitConversions(S, rex, E->getOperatorLoc());
- // If the signed range is non-negative, -Wsign-compare won't fire,
- // but we should still check for comparisons which are always true
- // or false.
- if (signedRange.NonNegative)
- return CheckTrivialUnsignedComparison(S, E);
- // For (in)equality comparisons, if the unsigned operand is a
- // constant which cannot collide with a overflowed signed operand,
- // then reinterpreting the signed operand as unsigned will not
- // change the result of the comparison.
- if (E->isEqualityOp()) {
- unsigned comparisonWidth = S.Context.getIntWidth(T);
- IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
- // We should never be unable to prove that the unsigned operand is
- // non-negative.
- assert(unsignedRange.NonNegative && "unsigned range includes negative?");
- if (unsignedRange.Width < comparisonWidth)
- return;
- }
- S.Diag(E->getOperatorLoc(), diag::warn_mixed_sign_comparison)
- << lex->getType() << rex->getType()
- << lex->getSourceRange() << rex->getSourceRange();
- }
- /// Analyzes an attempt to assign the given value to a bitfield.
- ///
- /// Returns true if there was something fishy about the attempt.
- bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
- SourceLocation InitLoc) {
- assert(Bitfield->isBitField());
- if (Bitfield->isInvalidDecl())
- return false;
- // White-list bool bitfields.
- if (Bitfield->getType()->isBooleanType())
- return false;
- // Ignore value- or type-dependent expressions.
- if (Bitfield->getBitWidth()->isValueDependent() ||
- Bitfield->getBitWidth()->isTypeDependent() ||
- Init->isValueDependent() ||
- Init->isTypeDependent())
- return false;
- Expr *OriginalInit = Init->IgnoreParenImpCasts();
- llvm::APSInt Width(32);
- Expr::EvalResult InitValue;
- if (!Bitfield->getBitWidth()->isIntegerConstantExpr(Width, S.Context) ||
- !OriginalInit->Evaluate(InitValue, S.Context) ||
- !InitValue.Val.isInt())
- return false;
- const llvm::APSInt &Value = InitValue.Val.getInt();
- unsigned OriginalWidth = Value.getBitWidth();
- unsigned FieldWidth = Width.getZExtValue();
- if (OriginalWidth <= FieldWidth)
- return false;
- llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
- // It's fairly common to write values into signed bitfields
- // that, if sign-extended, would end up becoming a different
- // value. We don't want to warn about that.
- if (Value.isSigned() && Value.isNegative())
- TruncatedValue = TruncatedValue.sext(OriginalWidth);
- else
- TruncatedValue = TruncatedValue.zext(OriginalWidth);
- if (Value == TruncatedValue)
- return false;
- std::string PrettyValue = Value.toString(10);
- std::string PrettyTrunc = TruncatedValue.toString(10);
- S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
- << PrettyValue << PrettyTrunc << OriginalInit->getType()
- << Init->getSourceRange();
- return true;
- }
- /// Analyze the given simple or compound assignment for warning-worthy
- /// operations.
- void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
- // Just recurse on the LHS.
- AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
- // We want to recurse on the RHS as normal unless we're assigning to
- // a bitfield.
- if (FieldDecl *Bitfield = E->getLHS()->getBitField()) {
- if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
- E->getOperatorLoc())) {
- // Recurse, ignoring any implicit conversions on the RHS.
- return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
- E->getOperatorLoc());
- }
- }
- AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
- }
- /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
- void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
- SourceLocation CContext, unsigned diag) {
- S.Diag(E->getExprLoc(), diag)
- << SourceType << T << E->getSourceRange() << SourceRange(CContext);
- }
- /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
- void DiagnoseImpCast(Sema &S, Expr *E, QualType T, SourceLocation CContext,
- unsigned diag) {
- DiagnoseImpCast(S, E, E->getType(), T, CContext, diag);
- }
- /// Diagnose an implicit cast from a literal expression. Also attemps to supply
- /// fixit hints when the cast wouldn't lose information to simply write the
- /// expression with the expected type.
- void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
- SourceLocation CContext) {
- // Emit the primary warning first, then try to emit a fixit hint note if
- // reasonable.
- S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
- << FL->getType() << T << FL->getSourceRange() << SourceRange(CContext);
- const llvm::APFloat &Value = FL->getValue();
- // Don't attempt to fix PPC double double literals.
- if (&Value.getSemantics() == &llvm::APFloat::PPCDoubleDouble)
- return;
- // Try to convert this exactly to an 64-bit integer. FIXME: It would be
- // nice to support arbitrarily large integers here.
- bool isExact = false;
- uint64_t IntegerPart;
- if (Value.convertToInteger(&IntegerPart, 64, /*isSigned=*/true,
- llvm::APFloat::rmTowardZero, &isExact)
- != llvm::APFloat::opOK || !isExact)
- return;
- llvm::APInt IntegerValue(64, IntegerPart, /*isSigned=*/true);
- std::string LiteralValue = IntegerValue.toString(10, /*isSigned=*/true);
- S.Diag(FL->getExprLoc(), diag::note_fix_integral_float_as_integer)
- << FixItHint::CreateReplacement(FL->getSourceRange(), LiteralValue);
- }
- std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
- if (!Range.Width) return "0";
- llvm::APSInt ValueInRange = Value;
- ValueInRange.setIsSigned(!Range.NonNegative);
- ValueInRange = ValueInRange.trunc(Range.Width);
- return ValueInRange.toString(10);
- }
- static bool isFromSystemMacro(Sema &S, SourceLocation loc) {
- SourceManager &smgr = S.Context.getSourceManager();
- return loc.isMacroID() && smgr.isInSystemHeader(smgr.getSpellingLoc(loc));
- }
- void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
- SourceLocation CC, bool *ICContext = 0) {
- if (E->isTypeDependent() || E->isValueDependent()) return;
- const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
- const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
- if (Source == Target) return;
- if (Target->isDependentType()) return;
- // If the conversion context location is invalid don't complain.
- // We also don't want to emit a warning if the issue occurs from the
- // instantiation of a system macro. The problem is that 'getSpellingLoc()'
- // is slow, so we delay this check as long as possible. Once we detect
- // we are in that scenario, we just return.
- if (CC.isInvalid())
- return;
- // Never diagnose implicit casts to bool.
- if (Target->isSpecificBuiltinType(BuiltinType::Bool))
- return;
- // Strip vector types.
- if (isa<VectorType>(Source)) {
- if (!isa<VectorType>(Target)) {
- if (isFromSystemMacro(S, CC))
- return;
- return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
- }
-
- // If the vector cast is cast between two vectors of the same size, it is
- // a bitcast, not a conversion.
- if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
- return;
- Source = cast<VectorType>(Source)->getElementType().getTypePtr();
- Target = cast<VectorType>(Target)->getElementType().getTypePtr();
- }
- // Strip complex types.
- if (isa<ComplexType>(Source)) {
- if (!isa<ComplexType>(Target)) {
- if (isFromSystemMacro(S, CC))
- return;
- return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
- }
- Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
- Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
- }
- const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
- const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
- // If the source is floating point...
- if (SourceBT && SourceBT->isFloatingPoint()) {
- // ...and the target is floating point...
- if (TargetBT && TargetBT->isFloatingPoint()) {
- // ...then warn if we're dropping FP rank.
- // Builtin FP kinds are ordered by increasing FP rank.
- if (SourceBT->getKind() > TargetBT->getKind()) {
- // Don't warn about float constants that are precisely
- // representable in the target type.
- Expr::EvalResult result;
- if (E->Evaluate(result, S.Context)) {
- // Value might be a float, a float vector, or a float complex.
- if (IsSameFloatAfterCast(result.Val,
- S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
- S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
- return;
- }
- if (isFromSystemMacro(S, CC))
- return;
- DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
- }
- return;
- }
- // If the target is integral, always warn.
- if ((TargetBT && TargetBT->isInteger())) {
- if (isFromSystemMacro(S, CC))
- return;
-
- Expr *InnerE = E->IgnoreParenImpCasts();
- if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
- DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
- } else {
- DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
- }
- }
- return;
- }
- if (!Source->isIntegerType() || !Target->isIntegerType())
- return;
- if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
- == Expr::NPCK_GNUNull) && Target->isIntegerType()) {
- S.Diag(E->getExprLoc(), diag::warn_impcast_null_pointer_to_integer)
- << E->getSourceRange() << clang::SourceRange(CC);
- return;
- }
- IntRange SourceRange = GetExprRange(S.Context, E);
- IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
- if (SourceRange.Width > TargetRange.Width) {
- // If the source is a constant, use a default-on diagnostic.
- // TODO: this should happen for bitfield stores, too.
- llvm::APSInt Value(32);
- if (E->isIntegerConstantExpr(Value, S.Context)) {
- if (isFromSystemMacro(S, CC))
- return;
- std::string PrettySourceValue = Value.toString(10);
- std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
- S.Diag(E->getExprLoc(), diag::warn_impcast_integer_precision_constant)
- << PrettySourceValue << PrettyTargetValue
- << E->getType() << T << E->getSourceRange() << clang::SourceRange(CC);
- return;
- }
- // People want to build with -Wshorten-64-to-32 and not -Wconversion.
- if (isFromSystemMacro(S, CC))
- return;
-
- if (SourceRange.Width == 64 && TargetRange.Width == 32)
- return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32);
- return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
- }
- if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
- (!TargetRange.NonNegative && SourceRange.NonNegative &&
- SourceRange.Width == TargetRange.Width)) {
-
- if (isFromSystemMacro(S, CC))
- return;
- unsigned DiagID = diag::warn_impcast_integer_sign;
- // Traditionally, gcc has warned about this under -Wsign-compare.
- // We also want to warn about it in -Wconversion.
- // So if -Wconversion is off, use a completely identical diagnostic
- // in the sign-compare group.
- // The conditional-checking code will
- if (ICContext) {
- DiagID = diag::warn_impcast_integer_sign_conditional;
- *ICContext = true;
- }
- return DiagnoseImpCast(S, E, T, CC, DiagID);
- }
- // Diagnose conversions between different enumeration types.
- // In C, we pretend that the type of an EnumConstantDecl is its enumeration
- // type, to give us better diagnostics.
- QualType SourceType = E->getType();
- if (!S.getLangOptions().CPlusPlus) {
- if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
- if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
- EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
- SourceType = S.Context.getTypeDeclType(Enum);
- Source = S.Context.getCanonicalType(SourceType).getTypePtr();
- }
- }
-
- if (const EnumType *SourceEnum = Source->getAs<EnumType>())
- if (const EnumType *TargetEnum = Target->getAs<EnumType>())
- if ((SourceEnum->getDecl()->getIdentifier() ||
- SourceEnum->getDecl()->getTypedefNameForAnonDecl()) &&
- (TargetEnum->getDecl()->getIdentifier() ||
- TargetEnum->getDecl()->getTypedefNameForAnonDecl()) &&
- SourceEnum != TargetEnum) {
- if (isFromSystemMacro(S, CC))
- return;
- return DiagnoseImpCast(S, E, SourceType, T, CC,
- diag::warn_impcast_different_enum_types);
- }
-
- return;
- }
- void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T);
- void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
- SourceLocation CC, bool &ICContext) {
- E = E->IgnoreParenImpCasts();
- if (isa<ConditionalOperator>(E))
- return CheckConditionalOperator(S, cast<ConditionalOperator>(E), T);
- AnalyzeImplicitConversions(S, E, CC);
- if (E->getType() != T)
- return CheckImplicitConversion(S, E, T, CC, &ICContext);
- return;
- }
- void CheckConditionalOperator(Sema &S, ConditionalOperator *E, QualType T) {
- SourceLocation CC = E->getQuestionLoc();
- AnalyzeImplicitConversions(S, E->getCond(), CC);
- bool Suspicious = false;
- CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
- CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
- // If -Wconversion would have warned about either of the candidates
- // for a signedness conversion to the context type...
- if (!Suspicious) return;
- // ...but it's currently ignored...
- if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
- CC))
- return;
- // ...and -Wsign-compare isn't...
- if (!S.Diags.getDiagnosticLevel(diag::warn_mixed_sign_conditional, CC))
- return;
- // ...then check whether it would have warned about either of the
- // candidates for a signedness conversion to the condition type.
- if (E->getType() != T) {
- Suspicious = false;
- CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
- E->getType(), CC, &Suspicious);
- if (!Suspicious)
- CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
- E->getType(), CC, &Suspicious);
- if (!Suspicious)
- return;
- }
- // If so, emit a diagnostic under -Wsign-compare.
- Expr *lex = E->getTrueExpr()->IgnoreParenImpCasts();
- Expr *rex = E->getFalseExpr()->IgnoreParenImpCasts();
- S.Diag(E->getQuestionLoc(), diag::warn_mixed_sign_conditional)
- << lex->getType() << rex->getType()
- << lex->getSourceRange() << rex->getSourceRange();
- }
- /// AnalyzeImplicitConversions - Find and report any interesting
- /// implicit conversions in the given expression. There are a couple
- /// of competing diagnostics here, -Wconversion and -Wsign-compare.
- void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
- QualType T = OrigE->getType();
- Expr *E = OrigE->IgnoreParenImpCasts();
- // For conditional operators, we analyze the arguments as if they
- // were being fed directly into the output.
- if (isa<ConditionalOperator>(E)) {
- ConditionalOperator *CO = cast<ConditionalOperator>(E);
- CheckConditionalOperator(S, CO, T);
- return;
- }
- // Go ahead and check any implicit conversions we might have skipped.
- // The non-canonical typecheck is just an optimization;
- // CheckImplicitConversion will filter out dead implicit conversions.
- if (E->getType() != T)
- CheckImplicitConversion(S, E, T, CC);
- // Now continue drilling into this expression.
- // Skip past explicit casts.
- if (isa<ExplicitCastExpr>(E)) {
- E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
- return AnalyzeImplicitConversions(S, E, CC);
- }
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
- // Do a somewhat different check with comparison operators.
- if (BO->isComparisonOp())
- return AnalyzeComparison(S, BO);
- // And with assignments and compound assignments.
- if (BO->isAssignmentOp())
- return AnalyzeAssignment(S, BO);
- }
- // These break the otherwise-useful invariant below. Fortunately,
- // we don't really need to recurse into them, because any internal
- // expressions should have been analyzed already when they were
- // built into statements.
- if (isa<StmtExpr>(E)) return;
- // Don't descend into unevaluated contexts.
- if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
- // Now just recurse over the expression's children.
- CC = E->getExprLoc();
- for (Stmt::child_range I = E->children(); I; ++I)
- AnalyzeImplicitConversions(S, cast<Expr>(*I), CC);
- }
- } // end anonymous namespace
- /// Diagnoses "dangerous" implicit conversions within the given
- /// expression (which is a full expression). Implements -Wconversion
- /// and -Wsign-compare.
- ///
- /// \param CC the "context" location of the implicit conversion, i.e.
- /// the most location of the syntactic entity requiring the implicit
- /// conversion
- void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
- // Don't diagnose in unevaluated contexts.
- if (ExprEvalContexts.back().Context == Sema::Unevaluated)
- return;
- // Don't diagnose for value- or type-dependent expressions.
- if (E->isTypeDependent() || E->isValueDependent())
- return;
- // This is not the right CC for (e.g.) a variable initialization.
- AnalyzeImplicitConversions(*this, E, CC);
- }
- void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
- FieldDecl *BitField,
- Expr *Init) {
- (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
- }
- /// CheckParmsForFunctionDef - Check that the parameters of the given
- /// function are appropriate for the definition of a function. This
- /// takes care of any checks that cannot be performed on the
- /// declaration itself, e.g., that the types of each of the function
- /// parameters are complete.
- bool Sema::CheckParmsForFunctionDef(ParmVarDecl **P, ParmVarDecl **PEnd,
- bool CheckParameterNames) {
- bool HasInvalidParm = false;
- for (; P != PEnd; ++P) {
- ParmVarDecl *Param = *P;
-
- // C99 6.7.5.3p4: the parameters in a parameter type list in a
- // function declarator that is part of a function definition of
- // that function shall not have incomplete type.
- //
- // This is also C++ [dcl.fct]p6.
- if (!Param->isInvalidDecl() &&
- RequireCompleteType(Param->getLocation(), Param->getType(),
- diag::err_typecheck_decl_incomplete_type)) {
- Param->setInvalidDecl();
- HasInvalidParm = true;
- }
- // C99 6.9.1p5: If the declarator includes a parameter type list, the
- // declaration of each parameter shall include an identifier.
- if (CheckParameterNames &&
- Param->getIdentifier() == 0 &&
- !Param->isImplicit() &&
- !getLangOptions().CPlusPlus)
- Diag(Param->getLocation(), diag::err_parameter_name_omitted);
- // C99 6.7.5.3p12:
- // If the function declarator is not part of a definition of that
- // function, parameters may have incomplete type and may use the [*]
- // notation in their sequences of declarator specifiers to specify
- // variable length array types.
- QualType PType = Param->getOriginalType();
- if (const ArrayType *AT = Context.getAsArrayType(PType)) {
- if (AT->getSizeModifier() == ArrayType::Star) {
- // FIXME: This diagnosic should point the the '[*]' if source-location
- // information is added for it.
- Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
- }
- }
- }
- return HasInvalidParm;
- }
- /// CheckCastAlign - Implements -Wcast-align, which warns when a
- /// pointer cast increases the alignment requirements.
- void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
- // This is actually a lot of work to potentially be doing on every
- // cast; don't do it if we're ignoring -Wcast_align (as is the default).
- if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
- TRange.getBegin())
- == Diagnostic::Ignored)
- return;
- // Ignore dependent types.
- if (T->isDependentType() || Op->getType()->isDependentType())
- return;
- // Require that the destination be a pointer type.
- const PointerType *DestPtr = T->getAs<PointerType>();
- if (!DestPtr) return;
- // If the destination has alignment 1, we're done.
- QualType DestPointee = DestPtr->getPointeeType();
- if (DestPointee->isIncompleteType()) return;
- CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
- if (DestAlign.isOne()) return;
- // Require that the source be a pointer type.
- const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
- if (!SrcPtr) return;
- QualType SrcPointee = SrcPtr->getPointeeType();
- // Whitelist casts from cv void*. We already implicitly
- // whitelisted casts to cv void*, since they have alignment 1.
- // Also whitelist casts involving incomplete types, which implicitly
- // includes 'void'.
- if (SrcPointee->isIncompleteType()) return;
- CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
- if (SrcAlign >= DestAlign) return;
- Diag(TRange.getBegin(), diag::warn_cast_align)
- << Op->getType() << T
- << static_cast<unsigned>(SrcAlign.getQuantity())
- << static_cast<unsigned>(DestAlign.getQuantity())
- << TRange << Op->getSourceRange();
- }
- static void CheckArrayAccess_Check(Sema &S,
- const clang::ArraySubscriptExpr *E) {
- const Expr *BaseExpr = E->getBase()->IgnoreParenImpCasts();
- const ConstantArrayType *ArrayTy =
- S.Context.getAsConstantArrayType(BaseExpr->getType());
- if (!ArrayTy)
- return;
- const Expr *IndexExpr = E->getIdx();
- if (IndexExpr->isValueDependent())
- return;
- llvm::APSInt index;
- if (!IndexExpr->isIntegerConstantExpr(index, S.Context))
- return;
- if (index.isUnsigned() || !index.isNegative()) {
- llvm::APInt size = ArrayTy->getSize();
- if (!size.isStrictlyPositive())
- return;
- if (size.getBitWidth() > index.getBitWidth())
- index = index.sext(size.getBitWidth());
- else if (size.getBitWidth() < index.getBitWidth())
- size = size.sext(index.getBitWidth());
- if (index.slt(size))
- return;
- S.DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr,
- S.PDiag(diag::warn_array_index_exceeds_bounds)
- << index.toString(10, true)
- << size.toString(10, true)
- << IndexExpr->getSourceRange());
- } else {
- S.DiagRuntimeBehavior(E->getBase()->getLocStart(), BaseExpr,
- S.PDiag(diag::warn_array_index_precedes_bounds)
- << index.toString(10, true)
- << IndexExpr->getSourceRange());
- }
- const NamedDecl *ND = NULL;
- if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
- ND = dyn_cast<NamedDecl>(DRE->getDecl());
- if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
- ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
- if (ND)
- S.DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
- S.PDiag(diag::note_array_index_out_of_bounds)
- << ND->getDeclName());
- }
- void Sema::CheckArrayAccess(const Expr *expr) {
- while (true) {
- expr = expr->IgnoreParens();
- switch (expr->getStmtClass()) {
- case Stmt::ArraySubscriptExprClass:
- CheckArrayAccess_Check(*this, cast<ArraySubscriptExpr>(expr));
- return;
- case Stmt::ConditionalOperatorClass: {
- const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
- if (const Expr *lhs = cond->getLHS())
- CheckArrayAccess(lhs);
- if (const Expr *rhs = cond->getRHS())
- CheckArrayAccess(rhs);
- return;
- }
- default:
- return;
- }
- }
- }
- //===--- CHECK: Objective-C retain cycles ----------------------------------//
- namespace {
- struct RetainCycleOwner {
- RetainCycleOwner() : Variable(0), Indirect(false) {}
- VarDecl *Variable;
- SourceRange Range;
- SourceLocation Loc;
- bool Indirect;
- void setLocsFrom(Expr *e) {
- Loc = e->getExprLoc();
- Range = e->getSourceRange();
- }
- };
- }
- /// Consider whether capturing the given variable can possibly lead to
- /// a retain cycle.
- static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
- // In ARC, it's captured strongly iff the variable has __strong
- // lifetime. In MRR, it's captured strongly if the variable is
- // __block and has an appropriate type.
- if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
- return false;
- owner.Variable = var;
- owner.setLocsFrom(ref);
- return true;
- }
- static bool findRetainCycleOwner(Expr *e, RetainCycleOwner &owner) {
- while (true) {
- e = e->IgnoreParens();
- if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
- switch (cast->getCastKind()) {
- case CK_BitCast:
- case CK_LValueBitCast:
- case CK_LValueToRValue:
- e = cast->getSubExpr();
- continue;
- case CK_GetObjCProperty: {
- // Bail out if this isn't a strong explicit property.
- const ObjCPropertyRefExpr *pre = cast->getSubExpr()->getObjCProperty();
- if (pre->isImplicitProperty()) return false;
- ObjCPropertyDecl *property = pre->getExplicitProperty();
- if (!(property->getPropertyAttributes() &
- (ObjCPropertyDecl::OBJC_PR_retain |
- ObjCPropertyDecl::OBJC_PR_copy |
- ObjCPropertyDecl::OBJC_PR_strong)) &&
- !(property->getPropertyIvarDecl() &&
- property->getPropertyIvarDecl()->getType()
- .getObjCLifetime() == Qualifiers::OCL_Strong))
- return false;
- owner.Indirect = true;
- e = const_cast<Expr*>(pre->getBase());
- continue;
- }
-
- default:
- return false;
- }
- }
- if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
- ObjCIvarDecl *ivar = ref->getDecl();
- if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
- return false;
- // Try to find a retain cycle in the base.
- if (!findRetainCycleOwner(ref->getBase(), owner))
- return false;
- if (ref->isFreeIvar()) owner.setLocsFrom(ref);
- owner.Indirect = true;
- return true;
- }
- if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
- VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
- if (!var) return false;
- return considerVariable(var, ref, owner);
- }
- if (BlockDeclRefExpr *ref = dyn_cast<BlockDeclRefExpr>(e)) {
- owner.Variable = ref->getDecl();
- owner.setLocsFrom(ref);
- return true;
- }
- if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
- if (member->isArrow()) return false;
- // Don't count this as an indirect ownership.
- e = member->getBase();
- continue;
- }
- // Array ivars?
- return false;
- }
- }
- namespace {
- struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
- FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
- : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
- Variable(variable), Capturer(0) {}
- VarDecl *Variable;
- Expr *Capturer;
- void VisitDeclRefExpr(DeclRefExpr *ref) {
- if (ref->getDecl() == Variable && !Capturer)
- Capturer = ref;
- }
- void VisitBlockDeclRefExpr(BlockDeclRefExpr *ref) {
- if (ref->getDecl() == Variable && !Capturer)
- Capturer = ref;
- }
- void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
- if (Capturer) return;
- Visit(ref->getBase());
- if (Capturer && ref->isFreeIvar())
- Capturer = ref;
- }
- void VisitBlockExpr(BlockExpr *block) {
- // Look inside nested blocks
- if (block->getBlockDecl()->capturesVariable(Variable))
- Visit(block->getBlockDecl()->getBody());
- }
- };
- }
- /// Check whether the given argument is a block which captures a
- /// variable.
- static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
- assert(owner.Variable && owner.Loc.isValid());
- e = e->IgnoreParenCasts();
- BlockExpr *block = dyn_cast<BlockExpr>(e);
- if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
- return 0;
- FindCaptureVisitor visitor(S.Context, owner.Variable);
- visitor.Visit(block->getBlockDecl()->getBody());
- return visitor.Capturer;
- }
- static void diagnoseRetainCycle(Sema &S, Expr *capturer,
- RetainCycleOwner &owner) {
- assert(capturer);
- assert(owner.Variable && owner.Loc.isValid());
- S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
- << owner.Variable << capturer->getSourceRange();
- S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
- << owner.Indirect << owner.Range;
- }
- /// Check for a keyword selector that starts with the word 'add' or
- /// 'set'.
- static bool isSetterLikeSelector(Selector sel) {
- if (sel.isUnarySelector()) return false;
- llvm::StringRef str = sel.getNameForSlot(0);
- while (!str.empty() && str.front() == '_') str = str.substr(1);
- if (str.startswith("set") || str.startswith("add"))
- str = str.substr(3);
- else
- return false;
- if (str.empty()) return true;
- return !islower(str.front());
- }
- /// Check a message send to see if it's likely to cause a retain cycle.
- void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
- // Only check instance methods whose selector looks like a setter.
- if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
- return;
- // Try to find a variable that the receiver is strongly owned by.
- RetainCycleOwner owner;
- if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
- if (!findRetainCycleOwner(msg->getInstanceReceiver(), owner))
- return;
- } else {
- assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
- owner.Variable = getCurMethodDecl()->getSelfDecl();
- owner.Loc = msg->getSuperLoc();
- owner.Range = msg->getSuperLoc();
- }
- // Check whether the receiver is captured by any of the arguments.
- for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
- if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
- return diagnoseRetainCycle(*this, capturer, owner);
- }
- /// Check a property assign to see if it's likely to cause a retain cycle.
- void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
- RetainCycleOwner owner;
- if (!findRetainCycleOwner(receiver, owner))
- return;
- if (Expr *capturer = findCapturingExpr(*this, argument, owner))
- diagnoseRetainCycle(*this, capturer, owner);
- }
- void Sema::checkUnsafeAssigns(SourceLocation Loc,
- QualType LHS, Expr *RHS) {
- Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
- if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
- return;
- if (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS))
- if (cast->getCastKind() == CK_ObjCConsumeObject)
- Diag(Loc, diag::warn_arc_retained_assign)
- << (LT == Qualifiers::OCL_ExplicitNone)
- << RHS->getSourceRange();
- }
|