123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885 |
- //===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- /// \file
- /// \brief This file implements semantic analysis for CUDA constructs.
- ///
- //===----------------------------------------------------------------------===//
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/Decl.h"
- #include "clang/AST/ExprCXX.h"
- #include "clang/Lex/Preprocessor.h"
- #include "clang/Sema/Lookup.h"
- #include "clang/Sema/Sema.h"
- #include "clang/Sema/SemaDiagnostic.h"
- #include "clang/Sema/SemaInternal.h"
- #include "clang/Sema/Template.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/SmallVector.h"
- using namespace clang;
- void Sema::PushForceCUDAHostDevice() {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
- ForceCUDAHostDeviceDepth++;
- }
- bool Sema::PopForceCUDAHostDevice() {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
- if (ForceCUDAHostDeviceDepth == 0)
- return false;
- ForceCUDAHostDeviceDepth--;
- return true;
- }
- ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
- MultiExprArg ExecConfig,
- SourceLocation GGGLoc) {
- FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
- if (!ConfigDecl)
- return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
- << "cudaConfigureCall");
- QualType ConfigQTy = ConfigDecl->getType();
- DeclRefExpr *ConfigDR = new (Context)
- DeclRefExpr(ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
- MarkFunctionReferenced(LLLLoc, ConfigDecl);
- return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
- /*IsExecConfig=*/true);
- }
- Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const AttributeList *Attr) {
- bool HasHostAttr = false;
- bool HasDeviceAttr = false;
- bool HasGlobalAttr = false;
- bool HasInvalidTargetAttr = false;
- while (Attr) {
- switch(Attr->getKind()){
- case AttributeList::AT_CUDAGlobal:
- HasGlobalAttr = true;
- break;
- case AttributeList::AT_CUDAHost:
- HasHostAttr = true;
- break;
- case AttributeList::AT_CUDADevice:
- HasDeviceAttr = true;
- break;
- case AttributeList::AT_CUDAInvalidTarget:
- HasInvalidTargetAttr = true;
- break;
- default:
- break;
- }
- Attr = Attr->getNext();
- }
- if (HasInvalidTargetAttr)
- return CFT_InvalidTarget;
- if (HasGlobalAttr)
- return CFT_Global;
- if (HasHostAttr && HasDeviceAttr)
- return CFT_HostDevice;
- if (HasDeviceAttr)
- return CFT_Device;
- return CFT_Host;
- }
- /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
- Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
- // Code that lives outside a function is run on the host.
- if (D == nullptr)
- return CFT_Host;
- if (D->hasAttr<CUDAInvalidTargetAttr>())
- return CFT_InvalidTarget;
- if (D->hasAttr<CUDAGlobalAttr>())
- return CFT_Global;
- if (D->hasAttr<CUDADeviceAttr>()) {
- if (D->hasAttr<CUDAHostAttr>())
- return CFT_HostDevice;
- return CFT_Device;
- } else if (D->hasAttr<CUDAHostAttr>()) {
- return CFT_Host;
- } else if (D->isImplicit()) {
- // Some implicit declarations (like intrinsic functions) are not marked.
- // Set the most lenient target on them for maximal flexibility.
- return CFT_HostDevice;
- }
- return CFT_Host;
- }
- // * CUDA Call preference table
- //
- // F - from,
- // T - to
- // Ph - preference in host mode
- // Pd - preference in device mode
- // H - handled in (x)
- // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
- //
- // | F | T | Ph | Pd | H |
- // |----+----+-----+-----+-----+
- // | d | d | N | N | (c) |
- // | d | g | -- | -- | (a) |
- // | d | h | -- | -- | (e) |
- // | d | hd | HD | HD | (b) |
- // | g | d | N | N | (c) |
- // | g | g | -- | -- | (a) |
- // | g | h | -- | -- | (e) |
- // | g | hd | HD | HD | (b) |
- // | h | d | -- | -- | (e) |
- // | h | g | N | N | (c) |
- // | h | h | N | N | (c) |
- // | h | hd | HD | HD | (b) |
- // | hd | d | WS | SS | (d) |
- // | hd | g | SS | -- |(d/a)|
- // | hd | h | SS | WS | (d) |
- // | hd | hd | HD | HD | (b) |
- Sema::CUDAFunctionPreference
- Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
- const FunctionDecl *Callee) {
- assert(Callee && "Callee must be valid.");
- CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
- CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
- // If one of the targets is invalid, the check always fails, no matter what
- // the other target is.
- if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
- return CFP_Never;
- // (a) Can't call global from some contexts until we support CUDA's
- // dynamic parallelism.
- if (CalleeTarget == CFT_Global &&
- (CallerTarget == CFT_Global || CallerTarget == CFT_Device))
- return CFP_Never;
- // (b) Calling HostDevice is OK for everyone.
- if (CalleeTarget == CFT_HostDevice)
- return CFP_HostDevice;
- // (c) Best case scenarios
- if (CalleeTarget == CallerTarget ||
- (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
- (CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
- return CFP_Native;
- // (d) HostDevice behavior depends on compilation mode.
- if (CallerTarget == CFT_HostDevice) {
- // It's OK to call a compilation-mode matching function from an HD one.
- if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
- (!getLangOpts().CUDAIsDevice &&
- (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
- return CFP_SameSide;
- // Calls from HD to non-mode-matching functions (i.e., to host functions
- // when compiling in device mode or to device functions when compiling in
- // host mode) are allowed at the sema level, but eventually rejected if
- // they're ever codegened. TODO: Reject said calls earlier.
- return CFP_WrongSide;
- }
- // (e) Calling across device/host boundary is not something you should do.
- if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
- (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
- (CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
- return CFP_Never;
- llvm_unreachable("All cases should've been handled by now.");
- }
- void Sema::EraseUnwantedCUDAMatches(
- const FunctionDecl *Caller,
- SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
- if (Matches.size() <= 1)
- return;
- using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
- // Gets the CUDA function preference for a call from Caller to Match.
- auto GetCFP = [&](const Pair &Match) {
- return IdentifyCUDAPreference(Caller, Match.second);
- };
- // Find the best call preference among the functions in Matches.
- CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
- Matches.begin(), Matches.end(),
- [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
- // Erase all functions with lower priority.
- Matches.erase(
- llvm::remove_if(
- Matches, [&](const Pair &Match) { return GetCFP(Match) < BestCFP; }),
- Matches.end());
- }
- /// When an implicitly-declared special member has to invoke more than one
- /// base/field special member, conflicts may occur in the targets of these
- /// members. For example, if one base's member __host__ and another's is
- /// __device__, it's a conflict.
- /// This function figures out if the given targets \param Target1 and
- /// \param Target2 conflict, and if they do not it fills in
- /// \param ResolvedTarget with a target that resolves for both calls.
- /// \return true if there's a conflict, false otherwise.
- static bool
- resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
- Sema::CUDAFunctionTarget Target2,
- Sema::CUDAFunctionTarget *ResolvedTarget) {
- // Only free functions and static member functions may be global.
- assert(Target1 != Sema::CFT_Global);
- assert(Target2 != Sema::CFT_Global);
- if (Target1 == Sema::CFT_HostDevice) {
- *ResolvedTarget = Target2;
- } else if (Target2 == Sema::CFT_HostDevice) {
- *ResolvedTarget = Target1;
- } else if (Target1 != Target2) {
- return true;
- } else {
- *ResolvedTarget = Target1;
- }
- return false;
- }
- bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
- CXXSpecialMember CSM,
- CXXMethodDecl *MemberDecl,
- bool ConstRHS,
- bool Diagnose) {
- llvm::Optional<CUDAFunctionTarget> InferredTarget;
- // We're going to invoke special member lookup; mark that these special
- // members are called from this one, and not from its caller.
- ContextRAII MethodContext(*this, MemberDecl);
- // Look for special members in base classes that should be invoked from here.
- // Infer the target of this member base on the ones it should call.
- // Skip direct and indirect virtual bases for abstract classes.
- llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
- for (const auto &B : ClassDecl->bases()) {
- if (!B.isVirtual()) {
- Bases.push_back(&B);
- }
- }
- if (!ClassDecl->isAbstract()) {
- for (const auto &VB : ClassDecl->vbases()) {
- Bases.push_back(&VB);
- }
- }
- for (const auto *B : Bases) {
- const RecordType *BaseType = B->getType()->getAs<RecordType>();
- if (!BaseType) {
- continue;
- }
- CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
- Sema::SpecialMemberOverloadResult *SMOR =
- LookupSpecialMember(BaseClassDecl, CSM,
- /* ConstArg */ ConstRHS,
- /* VolatileArg */ false,
- /* RValueThis */ false,
- /* ConstThis */ false,
- /* VolatileThis */ false);
- if (!SMOR || !SMOR->getMethod()) {
- continue;
- }
- CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR->getMethod());
- if (!InferredTarget.hasValue()) {
- InferredTarget = BaseMethodTarget;
- } else {
- bool ResolutionError = resolveCalleeCUDATargetConflict(
- InferredTarget.getValue(), BaseMethodTarget,
- InferredTarget.getPointer());
- if (ResolutionError) {
- if (Diagnose) {
- Diag(ClassDecl->getLocation(),
- diag::note_implicit_member_target_infer_collision)
- << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget;
- }
- MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
- return true;
- }
- }
- }
- // Same as for bases, but now for special members of fields.
- for (const auto *F : ClassDecl->fields()) {
- if (F->isInvalidDecl()) {
- continue;
- }
- const RecordType *FieldType =
- Context.getBaseElementType(F->getType())->getAs<RecordType>();
- if (!FieldType) {
- continue;
- }
- CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
- Sema::SpecialMemberOverloadResult *SMOR =
- LookupSpecialMember(FieldRecDecl, CSM,
- /* ConstArg */ ConstRHS && !F->isMutable(),
- /* VolatileArg */ false,
- /* RValueThis */ false,
- /* ConstThis */ false,
- /* VolatileThis */ false);
- if (!SMOR || !SMOR->getMethod()) {
- continue;
- }
- CUDAFunctionTarget FieldMethodTarget =
- IdentifyCUDATarget(SMOR->getMethod());
- if (!InferredTarget.hasValue()) {
- InferredTarget = FieldMethodTarget;
- } else {
- bool ResolutionError = resolveCalleeCUDATargetConflict(
- InferredTarget.getValue(), FieldMethodTarget,
- InferredTarget.getPointer());
- if (ResolutionError) {
- if (Diagnose) {
- Diag(ClassDecl->getLocation(),
- diag::note_implicit_member_target_infer_collision)
- << (unsigned)CSM << InferredTarget.getValue()
- << FieldMethodTarget;
- }
- MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
- return true;
- }
- }
- }
- if (InferredTarget.hasValue()) {
- if (InferredTarget.getValue() == CFT_Device) {
- MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
- } else if (InferredTarget.getValue() == CFT_Host) {
- MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
- } else {
- MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
- MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
- }
- } else {
- // If no target was inferred, mark this member as __host__ __device__;
- // it's the least restrictive option that can be invoked from any target.
- MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
- MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
- }
- return false;
- }
- bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
- if (!CD->isDefined() && CD->isTemplateInstantiation())
- InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
- // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
- // empty at a point in the translation unit, if it is either a
- // trivial constructor
- if (CD->isTrivial())
- return true;
- // ... or it satisfies all of the following conditions:
- // The constructor function has been defined.
- // The constructor function has no parameters,
- // and the function body is an empty compound statement.
- if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
- return false;
- // Its class has no virtual functions and no virtual base classes.
- if (CD->getParent()->isDynamicClass())
- return false;
- // The only form of initializer allowed is an empty constructor.
- // This will recursively check all base classes and member initializers
- if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
- if (const CXXConstructExpr *CE =
- dyn_cast<CXXConstructExpr>(CI->getInit()))
- return isEmptyCudaConstructor(Loc, CE->getConstructor());
- return false;
- }))
- return false;
- return true;
- }
- bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
- // No destructor -> no problem.
- if (!DD)
- return true;
- if (!DD->isDefined() && DD->isTemplateInstantiation())
- InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
- // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
- // empty at a point in the translation unit, if it is either a
- // trivial constructor
- if (DD->isTrivial())
- return true;
- // ... or it satisfies all of the following conditions:
- // The destructor function has been defined.
- // and the function body is an empty compound statement.
- if (!DD->hasTrivialBody())
- return false;
- const CXXRecordDecl *ClassDecl = DD->getParent();
- // Its class has no virtual functions and no virtual base classes.
- if (ClassDecl->isDynamicClass())
- return false;
- // Only empty destructors are allowed. This will recursively check
- // destructors for all base classes...
- if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
- if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
- return isEmptyCudaDestructor(Loc, RD->getDestructor());
- return true;
- }))
- return false;
- // ... and member fields.
- if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
- if (CXXRecordDecl *RD = Field->getType()
- ->getBaseElementTypeUnsafe()
- ->getAsCXXRecordDecl())
- return isEmptyCudaDestructor(Loc, RD->getDestructor());
- return true;
- }))
- return false;
- return true;
- }
- // With -fcuda-host-device-constexpr, an unattributed constexpr function is
- // treated as implicitly __host__ __device__, unless:
- // * it is a variadic function (device-side variadic functions are not
- // allowed), or
- // * a __device__ function with this signature was already declared, in which
- // case in which case we output an error, unless the __device__ decl is in a
- // system header, in which case we leave the constexpr function unattributed.
- //
- // In addition, all function decls are treated as __host__ __device__ when
- // ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
- // #pragma clang force_cuda_host_device_begin/end
- // pair).
- void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD,
- const LookupResult &Previous) {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
- if (ForceCUDAHostDeviceDepth > 0) {
- if (!NewD->hasAttr<CUDAHostAttr>())
- NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
- if (!NewD->hasAttr<CUDADeviceAttr>())
- NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
- return;
- }
- if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
- NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
- NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
- return;
- // Is D a __device__ function with the same signature as NewD, ignoring CUDA
- // attributes?
- auto IsMatchingDeviceFn = [&](NamedDecl *D) {
- if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
- D = Using->getTargetDecl();
- FunctionDecl *OldD = D->getAsFunction();
- return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
- !OldD->hasAttr<CUDAHostAttr>() &&
- !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
- /* ConsiderCudaAttrs = */ false);
- };
- auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
- if (It != Previous.end()) {
- // We found a __device__ function with the same name and signature as NewD
- // (ignoring CUDA attrs). This is an error unless that function is defined
- // in a system header, in which case we simply return without making NewD
- // host+device.
- NamedDecl *Match = *It;
- if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
- Diag(NewD->getLocation(),
- diag::err_cuda_unattributed_constexpr_cannot_overload_device)
- << NewD->getName();
- Diag(Match->getLocation(),
- diag::note_cuda_conflicting_device_function_declared_here);
- }
- return;
- }
- NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
- NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
- }
- // In CUDA, there are some constructs which may appear in semantically-valid
- // code, but trigger errors if we ever generate code for the function in which
- // they appear. Essentially every construct you're not allowed to use on the
- // device falls into this category, because you are allowed to use these
- // constructs in a __host__ __device__ function, but only if that function is
- // never codegen'ed on the device.
- //
- // To handle semantic checking for these constructs, we keep track of the set of
- // functions we know will be emitted, either because we could tell a priori that
- // they would be emitted, or because they were transitively called by a
- // known-emitted function.
- //
- // We also keep a partial call graph of which not-known-emitted functions call
- // which other not-known-emitted functions.
- //
- // When we see something which is illegal if the current function is emitted
- // (usually by way of CUDADiagIfDeviceCode, CUDADiagIfHostCode, or
- // CheckCUDACall), we first check if the current function is known-emitted. If
- // so, we immediately output the diagnostic.
- //
- // Otherwise, we "defer" the diagnostic. It sits in Sema::CUDADeferredDiags
- // until we discover that the function is known-emitted, at which point we take
- // it out of this map and emit the diagnostic.
- Sema::CUDADiagBuilder::CUDADiagBuilder(Kind K, SourceLocation Loc,
- unsigned DiagID, FunctionDecl *Fn,
- Sema &S)
- : S(S), Loc(Loc), DiagID(DiagID), Fn(Fn),
- ShowCallStack(K == K_ImmediateWithCallStack || K == K_Deferred) {
- switch (K) {
- case K_Nop:
- break;
- case K_Immediate:
- case K_ImmediateWithCallStack:
- ImmediateDiag.emplace(S.Diag(Loc, DiagID));
- break;
- case K_Deferred:
- assert(Fn && "Must have a function to attach the deferred diag to.");
- PartialDiag.emplace(S.PDiag(DiagID));
- break;
- }
- }
- // Print notes showing how we can reach FD starting from an a priori
- // known-callable function.
- static void EmitCallStackNotes(Sema &S, FunctionDecl *FD) {
- auto FnIt = S.CUDAKnownEmittedFns.find(FD);
- while (FnIt != S.CUDAKnownEmittedFns.end()) {
- DiagnosticBuilder Builder(
- S.Diags.Report(FnIt->second.Loc, diag::note_called_by));
- Builder << FnIt->second.FD;
- Builder.setForceEmit();
- FnIt = S.CUDAKnownEmittedFns.find(FnIt->second.FD);
- }
- }
- Sema::CUDADiagBuilder::~CUDADiagBuilder() {
- if (ImmediateDiag) {
- // Emit our diagnostic and, if it was a warning or error, output a callstack
- // if Fn isn't a priori known-emitted.
- bool IsWarningOrError = S.getDiagnostics().getDiagnosticLevel(
- DiagID, Loc) >= DiagnosticsEngine::Warning;
- ImmediateDiag.reset(); // Emit the immediate diag.
- if (IsWarningOrError && ShowCallStack)
- EmitCallStackNotes(S, Fn);
- } else if (PartialDiag) {
- assert(ShowCallStack && "Must always show call stack for deferred diags.");
- S.CUDADeferredDiags[Fn].push_back({Loc, std::move(*PartialDiag)});
- }
- }
- // Do we know that we will eventually codegen the given function?
- static bool IsKnownEmitted(Sema &S, FunctionDecl *FD) {
- // Templates are emitted when they're instantiated.
- if (FD->isDependentContext())
- return false;
- // When compiling for device, host functions are never emitted. Similarly,
- // when compiling for host, device and global functions are never emitted.
- // (Technically, we do emit a host-side stub for global functions, but this
- // doesn't count for our purposes here.)
- Sema::CUDAFunctionTarget T = S.IdentifyCUDATarget(FD);
- if (S.getLangOpts().CUDAIsDevice && T == Sema::CFT_Host)
- return false;
- if (!S.getLangOpts().CUDAIsDevice &&
- (T == Sema::CFT_Device || T == Sema::CFT_Global))
- return false;
- // Check whether this function is externally visible -- if so, it's
- // known-emitted.
- //
- // We have to check the GVA linkage of the function's *definition* -- if we
- // only have a declaration, we don't know whether or not the function will be
- // emitted, because (say) the definition could include "inline".
- FunctionDecl *Def = FD->getDefinition();
- // We may currently be parsing the body of FD, in which case
- // FD->getDefinition() will be null, but we still want to treat FD as though
- // it's a definition.
- if (!Def && FD->willHaveBody())
- Def = FD;
- if (Def &&
- !isDiscardableGVALinkage(S.getASTContext().GetGVALinkageForFunction(Def)))
- return true;
- // Otherwise, the function is known-emitted if it's in our set of
- // known-emitted functions.
- return S.CUDAKnownEmittedFns.count(FD) > 0;
- }
- Sema::CUDADiagBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
- unsigned DiagID) {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
- CUDADiagBuilder::Kind DiagKind = [&] {
- switch (CurrentCUDATarget()) {
- case CFT_Global:
- case CFT_Device:
- return CUDADiagBuilder::K_Immediate;
- case CFT_HostDevice:
- // An HD function counts as host code if we're compiling for host, and
- // device code if we're compiling for device. Defer any errors in device
- // mode until the function is known-emitted.
- if (getLangOpts().CUDAIsDevice) {
- return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext))
- ? CUDADiagBuilder::K_ImmediateWithCallStack
- : CUDADiagBuilder::K_Deferred;
- }
- return CUDADiagBuilder::K_Nop;
- default:
- return CUDADiagBuilder::K_Nop;
- }
- }();
- return CUDADiagBuilder(DiagKind, Loc, DiagID,
- dyn_cast<FunctionDecl>(CurContext), *this);
- }
- Sema::CUDADiagBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
- unsigned DiagID) {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
- CUDADiagBuilder::Kind DiagKind = [&] {
- switch (CurrentCUDATarget()) {
- case CFT_Host:
- return CUDADiagBuilder::K_Immediate;
- case CFT_HostDevice:
- // An HD function counts as host code if we're compiling for host, and
- // device code if we're compiling for device. Defer any errors in device
- // mode until the function is known-emitted.
- if (getLangOpts().CUDAIsDevice)
- return CUDADiagBuilder::K_Nop;
- return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext))
- ? CUDADiagBuilder::K_ImmediateWithCallStack
- : CUDADiagBuilder::K_Deferred;
- default:
- return CUDADiagBuilder::K_Nop;
- }
- }();
- return CUDADiagBuilder(DiagKind, Loc, DiagID,
- dyn_cast<FunctionDecl>(CurContext), *this);
- }
- // Emit any deferred diagnostics for FD and erase them from the map in which
- // they're stored.
- static void EmitDeferredDiags(Sema &S, FunctionDecl *FD) {
- auto It = S.CUDADeferredDiags.find(FD);
- if (It == S.CUDADeferredDiags.end())
- return;
- bool HasWarningOrError = false;
- for (PartialDiagnosticAt &PDAt : It->second) {
- const SourceLocation &Loc = PDAt.first;
- const PartialDiagnostic &PD = PDAt.second;
- HasWarningOrError |= S.getDiagnostics().getDiagnosticLevel(
- PD.getDiagID(), Loc) >= DiagnosticsEngine::Warning;
- DiagnosticBuilder Builder(S.Diags.Report(Loc, PD.getDiagID()));
- Builder.setForceEmit();
- PD.Emit(Builder);
- }
- S.CUDADeferredDiags.erase(It);
- // FIXME: Should this be called after every warning/error emitted in the loop
- // above, instead of just once per function? That would be consistent with
- // how we handle immediate errors, but it also seems like a bit much.
- if (HasWarningOrError)
- EmitCallStackNotes(S, FD);
- }
- // Indicate that this function (and thus everything it transtively calls) will
- // be codegen'ed, and emit any deferred diagnostics on this function and its
- // (transitive) callees.
- static void MarkKnownEmitted(Sema &S, FunctionDecl *OrigCaller,
- FunctionDecl *OrigCallee, SourceLocation OrigLoc) {
- // Nothing to do if we already know that FD is emitted.
- if (IsKnownEmitted(S, OrigCallee)) {
- assert(!S.CUDACallGraph.count(OrigCallee));
- return;
- }
- // We've just discovered that OrigCallee is known-emitted. Walk our call
- // graph to see what else we can now discover also must be emitted.
- struct CallInfo {
- FunctionDecl *Caller;
- FunctionDecl *Callee;
- SourceLocation Loc;
- };
- llvm::SmallVector<CallInfo, 4> Worklist = {{OrigCaller, OrigCallee, OrigLoc}};
- llvm::SmallSet<CanonicalDeclPtr<FunctionDecl>, 4> Seen;
- Seen.insert(OrigCallee);
- while (!Worklist.empty()) {
- CallInfo C = Worklist.pop_back_val();
- assert(!IsKnownEmitted(S, C.Callee) &&
- "Worklist should not contain known-emitted functions.");
- S.CUDAKnownEmittedFns[C.Callee] = {C.Caller, C.Loc};
- EmitDeferredDiags(S, C.Callee);
- // If this is a template instantiation, explore its callgraph as well:
- // Non-dependent calls are part of the template's callgraph, while dependent
- // calls are part of to the instantiation's call graph.
- if (auto *Templ = C.Callee->getPrimaryTemplate()) {
- FunctionDecl *TemplFD = Templ->getAsFunction();
- if (!Seen.count(TemplFD) && !S.CUDAKnownEmittedFns.count(TemplFD)) {
- Seen.insert(TemplFD);
- Worklist.push_back(
- {/* Caller = */ C.Caller, /* Callee = */ TemplFD, C.Loc});
- }
- }
- // Add all functions called by Callee to our worklist.
- auto CGIt = S.CUDACallGraph.find(C.Callee);
- if (CGIt == S.CUDACallGraph.end())
- continue;
- for (std::pair<CanonicalDeclPtr<FunctionDecl>, SourceLocation> FDLoc :
- CGIt->second) {
- FunctionDecl *NewCallee = FDLoc.first;
- SourceLocation CallLoc = FDLoc.second;
- if (Seen.count(NewCallee) || IsKnownEmitted(S, NewCallee))
- continue;
- Seen.insert(NewCallee);
- Worklist.push_back(
- {/* Caller = */ C.Callee, /* Callee = */ NewCallee, CallLoc});
- }
- // C.Callee is now known-emitted, so we no longer need to maintain its list
- // of callees in CUDACallGraph.
- S.CUDACallGraph.erase(CGIt);
- }
- }
- bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
- assert(Callee && "Callee may not be null.");
- // FIXME: Is bailing out early correct here? Should we instead assume that
- // the caller is a global initializer?
- FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
- if (!Caller)
- return true;
- // If the caller is known-emitted, mark the callee as known-emitted.
- // Otherwise, mark the call in our call graph so we can traverse it later.
- bool CallerKnownEmitted = IsKnownEmitted(*this, Caller);
- if (CallerKnownEmitted)
- MarkKnownEmitted(*this, Caller, Callee, Loc);
- else {
- // If we have
- // host fn calls kernel fn calls host+device,
- // the HD function does not get instantiated on the host. We model this by
- // omitting at the call to the kernel from the callgraph. This ensures
- // that, when compiling for host, only HD functions actually called from the
- // host get marked as known-emitted.
- if (getLangOpts().CUDAIsDevice || IdentifyCUDATarget(Callee) != CFT_Global)
- CUDACallGraph[Caller].insert({Callee, Loc});
- }
- CUDADiagBuilder::Kind DiagKind = [&] {
- switch (IdentifyCUDAPreference(Caller, Callee)) {
- case CFP_Never:
- return CUDADiagBuilder::K_Immediate;
- case CFP_WrongSide:
- assert(Caller && "WrongSide calls require a non-null caller");
- // If we know the caller will be emitted, we know this wrong-side call
- // will be emitted, so it's an immediate error. Otherwise, defer the
- // error until we know the caller is emitted.
- return CallerKnownEmitted ? CUDADiagBuilder::K_ImmediateWithCallStack
- : CUDADiagBuilder::K_Deferred;
- default:
- return CUDADiagBuilder::K_Nop;
- }
- }();
- if (DiagKind == CUDADiagBuilder::K_Nop)
- return true;
- // Avoid emitting this error twice for the same location. Using a hashtable
- // like this is unfortunate, but because we must continue parsing as normal
- // after encountering a deferred error, it's otherwise very tricky for us to
- // ensure that we only emit this deferred error once.
- if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
- return true;
- CUDADiagBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
- << IdentifyCUDATarget(Callee) << Callee << IdentifyCUDATarget(Caller);
- CUDADiagBuilder(DiagKind, Callee->getLocation(), diag::note_previous_decl,
- Caller, *this)
- << Callee;
- return DiagKind != CUDADiagBuilder::K_Immediate &&
- DiagKind != CUDADiagBuilder::K_ImmediateWithCallStack;
- }
- void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
- if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
- return;
- FunctionDecl *CurFn = dyn_cast<FunctionDecl>(CurContext);
- if (!CurFn)
- return;
- CUDAFunctionTarget Target = IdentifyCUDATarget(CurFn);
- if (Target == CFT_Global || Target == CFT_Device) {
- Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
- } else if (Target == CFT_HostDevice) {
- Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
- Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
- }
- }
- void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
- LookupResult &Previous) {
- assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
- CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
- for (NamedDecl *OldND : Previous) {
- FunctionDecl *OldFD = OldND->getAsFunction();
- if (!OldFD)
- continue;
- CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
- // Don't allow HD and global functions to overload other functions with the
- // same signature. We allow overloading based on CUDA attributes so that
- // functions can have different implementations on the host and device, but
- // HD/global functions "exist" in some sense on both the host and device, so
- // should have the same implementation on both sides.
- if (NewTarget != OldTarget &&
- ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
- (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) &&
- !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
- /* ConsiderCudaAttrs = */ false)) {
- Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
- << NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
- Diag(OldFD->getLocation(), diag::note_previous_declaration);
- NewFD->setInvalidDecl();
- break;
- }
- }
- }
|