123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 |
- //== SimpleConstraintManager.cpp --------------------------------*- C++ -*--==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines SimpleConstraintManager, a class that holds code shared
- // between BasicConstraintManager and RangeConstraintManager.
- //
- //===----------------------------------------------------------------------===//
- #include "SimpleConstraintManager.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
- namespace clang {
- namespace ento {
- SimpleConstraintManager::~SimpleConstraintManager() {}
- bool SimpleConstraintManager::canReasonAbout(SVal X) const {
- Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
- if (SymVal && SymVal->isExpression()) {
- const SymExpr *SE = SymVal->getSymbol();
- if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
- switch (SIE->getOpcode()) {
- // We don't reason yet about bitwise-constraints on symbolic values.
- case BO_And:
- case BO_Or:
- case BO_Xor:
- return false;
- // We don't reason yet about these arithmetic constraints on
- // symbolic values.
- case BO_Mul:
- case BO_Div:
- case BO_Rem:
- case BO_Shl:
- case BO_Shr:
- return false;
- // All other cases.
- default:
- return true;
- }
- }
- return false;
- }
- return true;
- }
- ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
- DefinedSVal Cond,
- bool Assumption) {
- if (Optional<NonLoc> NV = Cond.getAs<NonLoc>())
- return assume(state, *NV, Assumption);
- return assume(state, Cond.castAs<Loc>(), Assumption);
- }
- ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state, Loc cond,
- bool assumption) {
- state = assumeAux(state, cond, assumption);
- if (NotifyAssumeClients && SU)
- return SU->processAssume(state, cond, assumption);
- return state;
- }
- ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state,
- Loc Cond, bool Assumption) {
- switch (Cond.getSubKind()) {
- default:
- assert (false && "'Assume' not implemented for this Loc.");
- return state;
- case loc::MemRegionKind: {
- // FIXME: Should this go into the storemanager?
- const MemRegion *R = Cond.castAs<loc::MemRegionVal>().getRegion();
- const SubRegion *SubR = dyn_cast<SubRegion>(R);
- while (SubR) {
- // FIXME: now we only find the first symbolic region.
- if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(SubR)) {
- const llvm::APSInt &zero = getBasicVals().getZeroWithPtrWidth();
- if (Assumption)
- return assumeSymNE(state, SymR->getSymbol(), zero, zero);
- else
- return assumeSymEQ(state, SymR->getSymbol(), zero, zero);
- }
- SubR = dyn_cast<SubRegion>(SubR->getSuperRegion());
- }
- // FALL-THROUGH.
- }
- case loc::GotoLabelKind:
- return Assumption ? state : NULL;
- case loc::ConcreteIntKind: {
- bool b = Cond.castAs<loc::ConcreteInt>().getValue() != 0;
- bool isFeasible = b ? Assumption : !Assumption;
- return isFeasible ? state : NULL;
- }
- } // end switch
- }
- ProgramStateRef SimpleConstraintManager::assume(ProgramStateRef state,
- NonLoc cond,
- bool assumption) {
- state = assumeAux(state, cond, assumption);
- if (NotifyAssumeClients && SU)
- return SU->processAssume(state, cond, assumption);
- return state;
- }
- static BinaryOperator::Opcode NegateComparison(BinaryOperator::Opcode op) {
- // FIXME: This should probably be part of BinaryOperator, since this isn't
- // the only place it's used. (This code was copied from SimpleSValBuilder.cpp.)
- switch (op) {
- default:
- llvm_unreachable("Invalid opcode.");
- case BO_LT: return BO_GE;
- case BO_GT: return BO_LE;
- case BO_LE: return BO_GT;
- case BO_GE: return BO_LT;
- case BO_EQ: return BO_NE;
- case BO_NE: return BO_EQ;
- }
- }
- ProgramStateRef
- SimpleConstraintManager::assumeAuxForSymbol(ProgramStateRef State,
- SymbolRef Sym, bool Assumption) {
- BasicValueFactory &BVF = getBasicVals();
- QualType T = Sym->getType();
- // None of the constraint solvers currently support non-integer types.
- if (!T->isIntegerType())
- return State;
- const llvm::APSInt &zero = BVF.getValue(0, T);
- if (Assumption)
- return assumeSymNE(State, Sym, zero, zero);
- else
- return assumeSymEQ(State, Sym, zero, zero);
- }
- ProgramStateRef SimpleConstraintManager::assumeAux(ProgramStateRef state,
- NonLoc Cond,
- bool Assumption) {
- // We cannot reason about SymSymExprs, and can only reason about some
- // SymIntExprs.
- if (!canReasonAbout(Cond)) {
- // Just add the constraint to the expression without trying to simplify.
- SymbolRef sym = Cond.getAsSymExpr();
- return assumeAuxForSymbol(state, sym, Assumption);
- }
- BasicValueFactory &BasicVals = getBasicVals();
- switch (Cond.getSubKind()) {
- default:
- llvm_unreachable("'Assume' not implemented for this NonLoc");
- case nonloc::SymbolValKind: {
- nonloc::SymbolVal SV = Cond.castAs<nonloc::SymbolVal>();
- SymbolRef sym = SV.getSymbol();
- assert(sym);
- // Handle SymbolData.
- if (!SV.isExpression()) {
- return assumeAuxForSymbol(state, sym, Assumption);
- // Handle symbolic expression.
- } else {
- // We can only simplify expressions whose RHS is an integer.
- const SymIntExpr *SE = dyn_cast<SymIntExpr>(sym);
- if (!SE)
- return assumeAuxForSymbol(state, sym, Assumption);
- BinaryOperator::Opcode op = SE->getOpcode();
- // Implicitly compare non-comparison expressions to 0.
- if (!BinaryOperator::isComparisonOp(op)) {
- QualType T = SE->getType();
- const llvm::APSInt &zero = BasicVals.getValue(0, T);
- op = (Assumption ? BO_NE : BO_EQ);
- return assumeSymRel(state, SE, op, zero);
- }
- // From here on out, op is the real comparison we'll be testing.
- if (!Assumption)
- op = NegateComparison(op);
- return assumeSymRel(state, SE->getLHS(), op, SE->getRHS());
- }
- }
- case nonloc::ConcreteIntKind: {
- bool b = Cond.castAs<nonloc::ConcreteInt>().getValue() != 0;
- bool isFeasible = b ? Assumption : !Assumption;
- return isFeasible ? state : NULL;
- }
- case nonloc::LocAsIntegerKind:
- return assumeAux(state, Cond.castAs<nonloc::LocAsInteger>().getLoc(),
- Assumption);
- } // end switch
- }
- static void computeAdjustment(SymbolRef &Sym, llvm::APSInt &Adjustment) {
- // Is it a "($sym+constant1)" expression?
- if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
- BinaryOperator::Opcode Op = SE->getOpcode();
- if (Op == BO_Add || Op == BO_Sub) {
- Sym = SE->getLHS();
- Adjustment = APSIntType(Adjustment).convert(SE->getRHS());
- // Don't forget to negate the adjustment if it's being subtracted.
- // This should happen /after/ promotion, in case the value being
- // subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
- if (Op == BO_Sub)
- Adjustment = -Adjustment;
- }
- }
- }
- ProgramStateRef SimpleConstraintManager::assumeSymRel(ProgramStateRef state,
- const SymExpr *LHS,
- BinaryOperator::Opcode op,
- const llvm::APSInt& Int) {
- assert(BinaryOperator::isComparisonOp(op) &&
- "Non-comparison ops should be rewritten as comparisons to zero.");
- // Get the type used for calculating wraparound.
- BasicValueFactory &BVF = getBasicVals();
- APSIntType WraparoundType = BVF.getAPSIntType(LHS->getType());
- // We only handle simple comparisons of the form "$sym == constant"
- // or "($sym+constant1) == constant2".
- // The adjustment is "constant1" in the above expression. It's used to
- // "slide" the solution range around for modular arithmetic. For example,
- // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
- // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
- // the subclasses of SimpleConstraintManager to handle the adjustment.
- SymbolRef Sym = LHS;
- llvm::APSInt Adjustment = WraparoundType.getZeroValue();
- computeAdjustment(Sym, Adjustment);
- // Convert the right-hand side integer as necessary.
- APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
- llvm::APSInt ConvertedInt = ComparisonType.convert(Int);
- switch (op) {
- default:
- // No logic yet for other operators. assume the constraint is feasible.
- return state;
- case BO_EQ:
- return assumeSymEQ(state, Sym, ConvertedInt, Adjustment);
- case BO_NE:
- return assumeSymNE(state, Sym, ConvertedInt, Adjustment);
- case BO_GT:
- return assumeSymGT(state, Sym, ConvertedInt, Adjustment);
- case BO_GE:
- return assumeSymGE(state, Sym, ConvertedInt, Adjustment);
- case BO_LT:
- return assumeSymLT(state, Sym, ConvertedInt, Adjustment);
- case BO_LE:
- return assumeSymLE(state, Sym, ConvertedInt, Adjustment);
- } // end switch
- }
- } // end of namespace ento
- } // end of namespace clang
|