ProgramState.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748
  1. //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // This file implements ProgramState and ProgramStateManager.
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
  14. #include "clang/Analysis/CFG.h"
  15. #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
  16. #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
  17. #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
  18. #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
  19. #include "llvm/Support/raw_ostream.h"
  20. using namespace clang;
  21. using namespace ento;
  22. namespace clang { namespace ento {
  23. /// Increments the number of times this state is referenced.
  24. void ProgramStateRetain(const ProgramState *state) {
  25. ++const_cast<ProgramState*>(state)->refCount;
  26. }
  27. /// Decrement the number of times this state is referenced.
  28. void ProgramStateRelease(const ProgramState *state) {
  29. assert(state->refCount > 0);
  30. ProgramState *s = const_cast<ProgramState*>(state);
  31. if (--s->refCount == 0) {
  32. ProgramStateManager &Mgr = s->getStateManager();
  33. Mgr.StateSet.RemoveNode(s);
  34. s->~ProgramState();
  35. Mgr.freeStates.push_back(s);
  36. }
  37. }
  38. }}
  39. ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
  40. StoreRef st, GenericDataMap gdm)
  41. : stateMgr(mgr),
  42. Env(env),
  43. store(st.getStore()),
  44. GDM(gdm),
  45. refCount(0) {
  46. stateMgr->getStoreManager().incrementReferenceCount(store);
  47. }
  48. ProgramState::ProgramState(const ProgramState &RHS)
  49. : llvm::FoldingSetNode(),
  50. stateMgr(RHS.stateMgr),
  51. Env(RHS.Env),
  52. store(RHS.store),
  53. GDM(RHS.GDM),
  54. refCount(0) {
  55. stateMgr->getStoreManager().incrementReferenceCount(store);
  56. }
  57. ProgramState::~ProgramState() {
  58. if (store)
  59. stateMgr->getStoreManager().decrementReferenceCount(store);
  60. }
  61. ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
  62. StoreManagerCreator CreateSMgr,
  63. ConstraintManagerCreator CreateCMgr,
  64. llvm::BumpPtrAllocator &alloc,
  65. SubEngine *SubEng)
  66. : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
  67. svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
  68. CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
  69. StoreMgr.reset((*CreateSMgr)(*this));
  70. ConstraintMgr.reset((*CreateCMgr)(*this, SubEng));
  71. }
  72. ProgramStateManager::~ProgramStateManager() {
  73. for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
  74. I!=E; ++I)
  75. I->second.second(I->second.first);
  76. }
  77. ProgramStateRef
  78. ProgramStateManager::removeDeadBindings(ProgramStateRef state,
  79. const StackFrameContext *LCtx,
  80. SymbolReaper& SymReaper) {
  81. // This code essentially performs a "mark-and-sweep" of the VariableBindings.
  82. // The roots are any Block-level exprs and Decls that our liveness algorithm
  83. // tells us are live. We then see what Decls they may reference, and keep
  84. // those around. This code more than likely can be made faster, and the
  85. // frequency of which this method is called should be experimented with
  86. // for optimum performance.
  87. ProgramState NewState = *state;
  88. NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
  89. // Clean up the store.
  90. StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
  91. SymReaper);
  92. NewState.setStore(newStore);
  93. SymReaper.setReapedStore(newStore);
  94. ProgramStateRef Result = getPersistentState(NewState);
  95. return ConstraintMgr->removeDeadBindings(Result, SymReaper);
  96. }
  97. ProgramStateRef ProgramState::bindCompoundLiteral(const CompoundLiteralExpr *CL,
  98. const LocationContext *LC,
  99. SVal V) const {
  100. const StoreRef &newStore =
  101. getStateManager().StoreMgr->bindCompoundLiteral(getStore(), CL, LC, V);
  102. return makeWithStore(newStore);
  103. }
  104. ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V, bool notifyChanges) const {
  105. ProgramStateManager &Mgr = getStateManager();
  106. ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
  107. LV, V));
  108. const MemRegion *MR = LV.getAsRegion();
  109. if (MR && Mgr.getOwningEngine() && notifyChanges)
  110. return Mgr.getOwningEngine()->processRegionChange(newState, MR);
  111. return newState;
  112. }
  113. ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const {
  114. ProgramStateManager &Mgr = getStateManager();
  115. const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
  116. const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
  117. ProgramStateRef new_state = makeWithStore(newStore);
  118. return Mgr.getOwningEngine() ?
  119. Mgr.getOwningEngine()->processRegionChange(new_state, R) :
  120. new_state;
  121. }
  122. ProgramStateRef
  123. ProgramState::invalidateRegions(ArrayRef<const MemRegion *> Regions,
  124. const Expr *E, unsigned Count,
  125. const LocationContext *LCtx,
  126. bool CausedByPointerEscape,
  127. InvalidatedSymbols *IS,
  128. const CallEvent *Call) const {
  129. if (!IS) {
  130. InvalidatedSymbols invalidated;
  131. return invalidateRegionsImpl(Regions, E, Count, LCtx,
  132. CausedByPointerEscape,
  133. invalidated, Call);
  134. }
  135. return invalidateRegionsImpl(Regions, E, Count, LCtx, CausedByPointerEscape,
  136. *IS, Call);
  137. }
  138. ProgramStateRef
  139. ProgramState::invalidateRegionsImpl(ArrayRef<const MemRegion *> Regions,
  140. const Expr *E, unsigned Count,
  141. const LocationContext *LCtx,
  142. bool CausedByPointerEscape,
  143. InvalidatedSymbols &IS,
  144. const CallEvent *Call) const {
  145. ProgramStateManager &Mgr = getStateManager();
  146. SubEngine* Eng = Mgr.getOwningEngine();
  147. if (Eng) {
  148. StoreManager::InvalidatedRegions Invalidated;
  149. const StoreRef &newStore
  150. = Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
  151. Call, &Invalidated);
  152. ProgramStateRef newState = makeWithStore(newStore);
  153. if (CausedByPointerEscape)
  154. newState = Eng->processPointerEscapedOnInvalidateRegions(newState,
  155. &IS, Regions, Invalidated, Call);
  156. return Eng->processRegionChanges(newState, &IS, Regions, Invalidated, Call);
  157. }
  158. const StoreRef &newStore =
  159. Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
  160. Call, NULL);
  161. return makeWithStore(newStore);
  162. }
  163. ProgramStateRef ProgramState::killBinding(Loc LV) const {
  164. assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
  165. Store OldStore = getStore();
  166. const StoreRef &newStore =
  167. getStateManager().StoreMgr->killBinding(OldStore, LV);
  168. if (newStore.getStore() == OldStore)
  169. return this;
  170. return makeWithStore(newStore);
  171. }
  172. ProgramStateRef
  173. ProgramState::enterStackFrame(const CallEvent &Call,
  174. const StackFrameContext *CalleeCtx) const {
  175. const StoreRef &NewStore =
  176. getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
  177. return makeWithStore(NewStore);
  178. }
  179. SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
  180. // We only want to do fetches from regions that we can actually bind
  181. // values. For example, SymbolicRegions of type 'id<...>' cannot
  182. // have direct bindings (but their can be bindings on their subregions).
  183. if (!R->isBoundable())
  184. return UnknownVal();
  185. if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
  186. QualType T = TR->getValueType();
  187. if (Loc::isLocType(T) || T->isIntegerType())
  188. return getSVal(R);
  189. }
  190. return UnknownVal();
  191. }
  192. SVal ProgramState::getSVal(Loc location, QualType T) const {
  193. SVal V = getRawSVal(cast<Loc>(location), T);
  194. // If 'V' is a symbolic value that is *perfectly* constrained to
  195. // be a constant value, use that value instead to lessen the burden
  196. // on later analysis stages (so we have less symbolic values to reason
  197. // about).
  198. if (!T.isNull()) {
  199. if (SymbolRef sym = V.getAsSymbol()) {
  200. if (const llvm::APSInt *Int = getStateManager()
  201. .getConstraintManager()
  202. .getSymVal(this, sym)) {
  203. // FIXME: Because we don't correctly model (yet) sign-extension
  204. // and truncation of symbolic values, we need to convert
  205. // the integer value to the correct signedness and bitwidth.
  206. //
  207. // This shows up in the following:
  208. //
  209. // char foo();
  210. // unsigned x = foo();
  211. // if (x == 54)
  212. // ...
  213. //
  214. // The symbolic value stored to 'x' is actually the conjured
  215. // symbol for the call to foo(); the type of that symbol is 'char',
  216. // not unsigned.
  217. const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
  218. if (V.getAs<Loc>())
  219. return loc::ConcreteInt(NewV);
  220. else
  221. return nonloc::ConcreteInt(NewV);
  222. }
  223. }
  224. }
  225. return V;
  226. }
  227. ProgramStateRef ProgramState::BindExpr(const Stmt *S,
  228. const LocationContext *LCtx,
  229. SVal V, bool Invalidate) const{
  230. Environment NewEnv =
  231. getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
  232. Invalidate);
  233. if (NewEnv == Env)
  234. return this;
  235. ProgramState NewSt = *this;
  236. NewSt.Env = NewEnv;
  237. return getStateManager().getPersistentState(NewSt);
  238. }
  239. ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
  240. DefinedOrUnknownSVal UpperBound,
  241. bool Assumption,
  242. QualType indexTy) const {
  243. if (Idx.isUnknown() || UpperBound.isUnknown())
  244. return this;
  245. // Build an expression for 0 <= Idx < UpperBound.
  246. // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
  247. // FIXME: This should probably be part of SValBuilder.
  248. ProgramStateManager &SM = getStateManager();
  249. SValBuilder &svalBuilder = SM.getSValBuilder();
  250. ASTContext &Ctx = svalBuilder.getContext();
  251. // Get the offset: the minimum value of the array index type.
  252. BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
  253. // FIXME: This should be using ValueManager::ArrayindexTy...somehow.
  254. if (indexTy.isNull())
  255. indexTy = Ctx.IntTy;
  256. nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
  257. // Adjust the index.
  258. SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
  259. Idx.castAs<NonLoc>(), Min, indexTy);
  260. if (newIdx.isUnknownOrUndef())
  261. return this;
  262. // Adjust the upper bound.
  263. SVal newBound =
  264. svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
  265. Min, indexTy);
  266. if (newBound.isUnknownOrUndef())
  267. return this;
  268. // Build the actual comparison.
  269. SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
  270. newBound.castAs<NonLoc>(), Ctx.IntTy);
  271. if (inBound.isUnknownOrUndef())
  272. return this;
  273. // Finally, let the constraint manager take care of it.
  274. ConstraintManager &CM = SM.getConstraintManager();
  275. return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
  276. }
  277. ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
  278. ProgramState State(this,
  279. EnvMgr.getInitialEnvironment(),
  280. StoreMgr->getInitialStore(InitLoc),
  281. GDMFactory.getEmptyMap());
  282. return getPersistentState(State);
  283. }
  284. ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
  285. ProgramStateRef FromState,
  286. ProgramStateRef GDMState) {
  287. ProgramState NewState(*FromState);
  288. NewState.GDM = GDMState->GDM;
  289. return getPersistentState(NewState);
  290. }
  291. ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
  292. llvm::FoldingSetNodeID ID;
  293. State.Profile(ID);
  294. void *InsertPos;
  295. if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
  296. return I;
  297. ProgramState *newState = 0;
  298. if (!freeStates.empty()) {
  299. newState = freeStates.back();
  300. freeStates.pop_back();
  301. }
  302. else {
  303. newState = (ProgramState*) Alloc.Allocate<ProgramState>();
  304. }
  305. new (newState) ProgramState(State);
  306. StateSet.InsertNode(newState, InsertPos);
  307. return newState;
  308. }
  309. ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
  310. ProgramState NewSt(*this);
  311. NewSt.setStore(store);
  312. return getStateManager().getPersistentState(NewSt);
  313. }
  314. void ProgramState::setStore(const StoreRef &newStore) {
  315. Store newStoreStore = newStore.getStore();
  316. if (newStoreStore)
  317. stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
  318. if (store)
  319. stateMgr->getStoreManager().decrementReferenceCount(store);
  320. store = newStoreStore;
  321. }
  322. //===----------------------------------------------------------------------===//
  323. // State pretty-printing.
  324. //===----------------------------------------------------------------------===//
  325. void ProgramState::print(raw_ostream &Out,
  326. const char *NL, const char *Sep) const {
  327. // Print the store.
  328. ProgramStateManager &Mgr = getStateManager();
  329. Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
  330. // Print out the environment.
  331. Env.print(Out, NL, Sep);
  332. // Print out the constraints.
  333. Mgr.getConstraintManager().print(this, Out, NL, Sep);
  334. // Print checker-specific data.
  335. Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
  336. }
  337. void ProgramState::printDOT(raw_ostream &Out) const {
  338. print(Out, "\\l", "\\|");
  339. }
  340. void ProgramState::dump() const {
  341. print(llvm::errs());
  342. }
  343. void ProgramState::printTaint(raw_ostream &Out,
  344. const char *NL, const char *Sep) const {
  345. TaintMapImpl TM = get<TaintMap>();
  346. if (!TM.isEmpty())
  347. Out <<"Tainted Symbols:" << NL;
  348. for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
  349. Out << I->first << " : " << I->second << NL;
  350. }
  351. }
  352. void ProgramState::dumpTaint() const {
  353. printTaint(llvm::errs());
  354. }
  355. //===----------------------------------------------------------------------===//
  356. // Generic Data Map.
  357. //===----------------------------------------------------------------------===//
  358. void *const* ProgramState::FindGDM(void *K) const {
  359. return GDM.lookup(K);
  360. }
  361. void*
  362. ProgramStateManager::FindGDMContext(void *K,
  363. void *(*CreateContext)(llvm::BumpPtrAllocator&),
  364. void (*DeleteContext)(void*)) {
  365. std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
  366. if (!p.first) {
  367. p.first = CreateContext(Alloc);
  368. p.second = DeleteContext;
  369. }
  370. return p.first;
  371. }
  372. ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
  373. ProgramState::GenericDataMap M1 = St->getGDM();
  374. ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
  375. if (M1 == M2)
  376. return St;
  377. ProgramState NewSt = *St;
  378. NewSt.GDM = M2;
  379. return getPersistentState(NewSt);
  380. }
  381. ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
  382. ProgramState::GenericDataMap OldM = state->getGDM();
  383. ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
  384. if (NewM == OldM)
  385. return state;
  386. ProgramState NewState = *state;
  387. NewState.GDM = NewM;
  388. return getPersistentState(NewState);
  389. }
  390. bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
  391. for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
  392. if (!scan(*I))
  393. return false;
  394. return true;
  395. }
  396. bool ScanReachableSymbols::scan(const SymExpr *sym) {
  397. unsigned &isVisited = visited[sym];
  398. if (isVisited)
  399. return true;
  400. isVisited = 1;
  401. if (!visitor.VisitSymbol(sym))
  402. return false;
  403. // TODO: should be rewritten using SymExpr::symbol_iterator.
  404. switch (sym->getKind()) {
  405. case SymExpr::RegionValueKind:
  406. case SymExpr::ConjuredKind:
  407. case SymExpr::DerivedKind:
  408. case SymExpr::ExtentKind:
  409. case SymExpr::MetadataKind:
  410. break;
  411. case SymExpr::CastSymbolKind:
  412. return scan(cast<SymbolCast>(sym)->getOperand());
  413. case SymExpr::SymIntKind:
  414. return scan(cast<SymIntExpr>(sym)->getLHS());
  415. case SymExpr::IntSymKind:
  416. return scan(cast<IntSymExpr>(sym)->getRHS());
  417. case SymExpr::SymSymKind: {
  418. const SymSymExpr *x = cast<SymSymExpr>(sym);
  419. return scan(x->getLHS()) && scan(x->getRHS());
  420. }
  421. }
  422. return true;
  423. }
  424. bool ScanReachableSymbols::scan(SVal val) {
  425. if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
  426. return scan(X->getRegion());
  427. if (Optional<nonloc::LazyCompoundVal> X =
  428. val.getAs<nonloc::LazyCompoundVal>()) {
  429. StoreManager &StoreMgr = state->getStateManager().getStoreManager();
  430. // FIXME: We don't really want to use getBaseRegion() here because pointer
  431. // arithmetic doesn't apply, but scanReachableSymbols only accepts base
  432. // regions right now.
  433. if (!StoreMgr.scanReachableSymbols(X->getStore(),
  434. X->getRegion()->getBaseRegion(),
  435. *this))
  436. return false;
  437. }
  438. if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
  439. return scan(X->getLoc());
  440. if (SymbolRef Sym = val.getAsSymbol())
  441. return scan(Sym);
  442. if (const SymExpr *Sym = val.getAsSymbolicExpression())
  443. return scan(Sym);
  444. if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
  445. return scan(*X);
  446. return true;
  447. }
  448. bool ScanReachableSymbols::scan(const MemRegion *R) {
  449. if (isa<MemSpaceRegion>(R))
  450. return true;
  451. unsigned &isVisited = visited[R];
  452. if (isVisited)
  453. return true;
  454. isVisited = 1;
  455. if (!visitor.VisitMemRegion(R))
  456. return false;
  457. // If this is a symbolic region, visit the symbol for the region.
  458. if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
  459. if (!visitor.VisitSymbol(SR->getSymbol()))
  460. return false;
  461. // If this is a subregion, also visit the parent regions.
  462. if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
  463. const MemRegion *Super = SR->getSuperRegion();
  464. if (!scan(Super))
  465. return false;
  466. // When we reach the topmost region, scan all symbols in it.
  467. if (isa<MemSpaceRegion>(Super)) {
  468. StoreManager &StoreMgr = state->getStateManager().getStoreManager();
  469. if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
  470. return false;
  471. }
  472. }
  473. // Regions captured by a block are also implicitly reachable.
  474. if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
  475. BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
  476. E = BDR->referenced_vars_end();
  477. for ( ; I != E; ++I) {
  478. if (!scan(I.getCapturedRegion()))
  479. return false;
  480. }
  481. }
  482. return true;
  483. }
  484. bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
  485. ScanReachableSymbols S(this, visitor);
  486. return S.scan(val);
  487. }
  488. bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
  489. SymbolVisitor &visitor) const {
  490. ScanReachableSymbols S(this, visitor);
  491. for ( ; I != E; ++I) {
  492. if (!S.scan(*I))
  493. return false;
  494. }
  495. return true;
  496. }
  497. bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
  498. const MemRegion * const *E,
  499. SymbolVisitor &visitor) const {
  500. ScanReachableSymbols S(this, visitor);
  501. for ( ; I != E; ++I) {
  502. if (!S.scan(*I))
  503. return false;
  504. }
  505. return true;
  506. }
  507. ProgramStateRef ProgramState::addTaint(const Stmt *S,
  508. const LocationContext *LCtx,
  509. TaintTagType Kind) const {
  510. if (const Expr *E = dyn_cast_or_null<Expr>(S))
  511. S = E->IgnoreParens();
  512. SymbolRef Sym = getSVal(S, LCtx).getAsSymbol();
  513. if (Sym)
  514. return addTaint(Sym, Kind);
  515. const MemRegion *R = getSVal(S, LCtx).getAsRegion();
  516. addTaint(R, Kind);
  517. // Cannot add taint, so just return the state.
  518. return this;
  519. }
  520. ProgramStateRef ProgramState::addTaint(const MemRegion *R,
  521. TaintTagType Kind) const {
  522. if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
  523. return addTaint(SR->getSymbol(), Kind);
  524. return this;
  525. }
  526. ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
  527. TaintTagType Kind) const {
  528. // If this is a symbol cast, remove the cast before adding the taint. Taint
  529. // is cast agnostic.
  530. while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
  531. Sym = SC->getOperand();
  532. ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
  533. assert(NewState);
  534. return NewState;
  535. }
  536. bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
  537. TaintTagType Kind) const {
  538. if (const Expr *E = dyn_cast_or_null<Expr>(S))
  539. S = E->IgnoreParens();
  540. SVal val = getSVal(S, LCtx);
  541. return isTainted(val, Kind);
  542. }
  543. bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
  544. if (const SymExpr *Sym = V.getAsSymExpr())
  545. return isTainted(Sym, Kind);
  546. if (const MemRegion *Reg = V.getAsRegion())
  547. return isTainted(Reg, Kind);
  548. return false;
  549. }
  550. bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
  551. if (!Reg)
  552. return false;
  553. // Element region (array element) is tainted if either the base or the offset
  554. // are tainted.
  555. if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
  556. return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
  557. if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
  558. return isTainted(SR->getSymbol(), K);
  559. if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
  560. return isTainted(ER->getSuperRegion(), K);
  561. return false;
  562. }
  563. bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
  564. if (!Sym)
  565. return false;
  566. // Traverse all the symbols this symbol depends on to see if any are tainted.
  567. bool Tainted = false;
  568. for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
  569. SI != SE; ++SI) {
  570. if (!isa<SymbolData>(*SI))
  571. continue;
  572. const TaintTagType *Tag = get<TaintMap>(*SI);
  573. Tainted = (Tag && *Tag == Kind);
  574. // If this is a SymbolDerived with a tainted parent, it's also tainted.
  575. if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI))
  576. Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind);
  577. // If memory region is tainted, data is also tainted.
  578. if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI))
  579. Tainted = Tainted || isTainted(SRV->getRegion(), Kind);
  580. // If If this is a SymbolCast from a tainted value, it's also tainted.
  581. if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI))
  582. Tainted = Tainted || isTainted(SC->getOperand(), Kind);
  583. if (Tainted)
  584. return true;
  585. }
  586. return Tainted;
  587. }
  588. /// The GDM component containing the dynamic type info. This is a map from a
  589. /// symbol to its most likely type.
  590. REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicTypeMap,
  591. CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
  592. DynamicTypeInfo))
  593. DynamicTypeInfo ProgramState::getDynamicTypeInfo(const MemRegion *Reg) const {
  594. Reg = Reg->StripCasts();
  595. // Look up the dynamic type in the GDM.
  596. const DynamicTypeInfo *GDMType = get<DynamicTypeMap>(Reg);
  597. if (GDMType)
  598. return *GDMType;
  599. // Otherwise, fall back to what we know about the region.
  600. if (const TypedRegion *TR = dyn_cast<TypedRegion>(Reg))
  601. return DynamicTypeInfo(TR->getLocationType(), /*CanBeSubclass=*/false);
  602. if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) {
  603. SymbolRef Sym = SR->getSymbol();
  604. return DynamicTypeInfo(Sym->getType());
  605. }
  606. return DynamicTypeInfo();
  607. }
  608. ProgramStateRef ProgramState::setDynamicTypeInfo(const MemRegion *Reg,
  609. DynamicTypeInfo NewTy) const {
  610. Reg = Reg->StripCasts();
  611. ProgramStateRef NewState = set<DynamicTypeMap>(Reg, NewTy);
  612. assert(NewState);
  613. return NewState;
  614. }