12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587 |
- //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // These classes wrap the information about a call or function
- // definition used to handle ABI compliancy.
- //
- //===----------------------------------------------------------------------===//
- #include "CGCall.h"
- #include "ABIInfo.h"
- #include "CGCXXABI.h"
- #include "CodeGenFunction.h"
- #include "CodeGenModule.h"
- #include "TargetInfo.h"
- #include "clang/AST/Decl.h"
- #include "clang/AST/DeclCXX.h"
- #include "clang/AST/DeclObjC.h"
- #include "clang/Basic/TargetBuiltins.h"
- #include "clang/Basic/TargetInfo.h"
- #include "clang/CodeGen/CGFunctionInfo.h"
- #include "clang/Frontend/CodeGenOptions.h"
- #include "llvm/ADT/StringExtras.h"
- #include "llvm/IR/Attributes.h"
- #include "llvm/IR/CallSite.h"
- #include "llvm/IR/DataLayout.h"
- #include "llvm/IR/InlineAsm.h"
- #include "llvm/IR/Intrinsics.h"
- #include "llvm/IR/IntrinsicInst.h"
- #include "llvm/Transforms/Utils/Local.h"
- using namespace clang;
- using namespace CodeGen;
- /***/
- static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
- switch (CC) {
- default: return llvm::CallingConv::C;
- case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
- case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
- case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
- case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
- case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
- case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
- case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
- case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
- // TODO: Add support for __pascal to LLVM.
- case CC_X86Pascal: return llvm::CallingConv::C;
- // TODO: Add support for __vectorcall to LLVM.
- case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
- case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
- case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
- }
- }
- /// Derives the 'this' type for codegen purposes, i.e. ignoring method
- /// qualification.
- /// FIXME: address space qualification?
- static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
- QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
- return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
- }
- /// Returns the canonical formal type of the given C++ method.
- static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
- return MD->getType()->getCanonicalTypeUnqualified()
- .getAs<FunctionProtoType>();
- }
- /// Returns the "extra-canonicalized" return type, which discards
- /// qualifiers on the return type. Codegen doesn't care about them,
- /// and it makes ABI code a little easier to be able to assume that
- /// all parameter and return types are top-level unqualified.
- static CanQualType GetReturnType(QualType RetTy) {
- return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
- }
- /// Arrange the argument and result information for a value of the given
- /// unprototyped freestanding function type.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
- // When translating an unprototyped function type, always use a
- // variadic type.
- return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
- /*instanceMethod=*/false,
- /*chainCall=*/false, None,
- FTNP->getExtInfo(), RequiredArgs(0));
- }
- /// Arrange the LLVM function layout for a value of the given function
- /// type, on top of any implicit parameters already stored.
- static const CGFunctionInfo &
- arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
- SmallVectorImpl<CanQualType> &prefix,
- CanQual<FunctionProtoType> FTP) {
- RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
- // FIXME: Kill copy.
- prefix.append(FTP->param_type_begin(), FTP->param_type_end());
- CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
- return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
- /*chainCall=*/false, prefix,
- FTP->getExtInfo(), required);
- }
- /// Arrange the argument and result information for a value of the
- /// given freestanding function type.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
- SmallVector<CanQualType, 16> argTypes;
- return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
- FTP);
- }
- static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
- // Set the appropriate calling convention for the Function.
- if (D->hasAttr<StdCallAttr>())
- return CC_X86StdCall;
- if (D->hasAttr<FastCallAttr>())
- return CC_X86FastCall;
- if (D->hasAttr<ThisCallAttr>())
- return CC_X86ThisCall;
- if (D->hasAttr<VectorCallAttr>())
- return CC_X86VectorCall;
- if (D->hasAttr<PascalAttr>())
- return CC_X86Pascal;
- if (PcsAttr *PCS = D->getAttr<PcsAttr>())
- return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
- if (D->hasAttr<IntelOclBiccAttr>())
- return CC_IntelOclBicc;
- if (D->hasAttr<MSABIAttr>())
- return IsWindows ? CC_C : CC_X86_64Win64;
- if (D->hasAttr<SysVABIAttr>())
- return IsWindows ? CC_X86_64SysV : CC_C;
- return CC_C;
- }
- /// Arrange the argument and result information for a call to an
- /// unknown C++ non-static member function of the given abstract type.
- /// (Zero value of RD means we don't have any meaningful "this" argument type,
- /// so fall back to a generic pointer type).
- /// The member function must be an ordinary function, i.e. not a
- /// constructor or destructor.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
- const FunctionProtoType *FTP) {
- SmallVector<CanQualType, 16> argTypes;
- // Add the 'this' pointer.
- if (RD)
- argTypes.push_back(GetThisType(Context, RD));
- else
- argTypes.push_back(Context.VoidPtrTy);
- return ::arrangeLLVMFunctionInfo(
- *this, true, argTypes,
- FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
- }
- /// Arrange the argument and result information for a declaration or
- /// definition of the given C++ non-static member function. The
- /// member function must be an ordinary function, i.e. not a
- /// constructor or destructor.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
- assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
- assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
- CanQual<FunctionProtoType> prototype = GetFormalType(MD);
- if (MD->isInstance()) {
- // The abstract case is perfectly fine.
- const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
- return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
- }
- return arrangeFreeFunctionType(prototype);
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
- StructorType Type) {
- SmallVector<CanQualType, 16> argTypes;
- argTypes.push_back(GetThisType(Context, MD->getParent()));
- GlobalDecl GD;
- if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
- GD = GlobalDecl(CD, toCXXCtorType(Type));
- } else {
- auto *DD = dyn_cast<CXXDestructorDecl>(MD);
- GD = GlobalDecl(DD, toCXXDtorType(Type));
- }
- CanQual<FunctionProtoType> FTP = GetFormalType(MD);
- // Add the formal parameters.
- argTypes.append(FTP->param_type_begin(), FTP->param_type_end());
- TheCXXABI.buildStructorSignature(MD, Type, argTypes);
- RequiredArgs required =
- (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
- FunctionType::ExtInfo extInfo = FTP->getExtInfo();
- CanQualType resultType = TheCXXABI.HasThisReturn(GD)
- ? argTypes.front()
- : TheCXXABI.hasMostDerivedReturn(GD)
- ? CGM.getContext().VoidPtrTy
- : Context.VoidTy;
- return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
- /*chainCall=*/false, argTypes, extInfo,
- required);
- }
- /// Arrange a call to a C++ method, passing the given arguments.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
- const CXXConstructorDecl *D,
- CXXCtorType CtorKind,
- unsigned ExtraArgs) {
- // FIXME: Kill copy.
- SmallVector<CanQualType, 16> ArgTypes;
- for (const auto &Arg : args)
- ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
- CanQual<FunctionProtoType> FPT = GetFormalType(D);
- RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
- GlobalDecl GD(D, CtorKind);
- CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
- ? ArgTypes.front()
- : TheCXXABI.hasMostDerivedReturn(GD)
- ? CGM.getContext().VoidPtrTy
- : Context.VoidTy;
- FunctionType::ExtInfo Info = FPT->getExtInfo();
- return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
- /*chainCall=*/false, ArgTypes, Info,
- Required);
- }
- /// Arrange the argument and result information for the declaration or
- /// definition of the given function.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
- if (MD->isInstance())
- return arrangeCXXMethodDeclaration(MD);
- CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
- assert(isa<FunctionType>(FTy));
- // When declaring a function without a prototype, always use a
- // non-variadic type.
- if (isa<FunctionNoProtoType>(FTy)) {
- CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
- return arrangeLLVMFunctionInfo(
- noProto->getReturnType(), /*instanceMethod=*/false,
- /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
- }
- assert(isa<FunctionProtoType>(FTy));
- return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
- }
- /// Arrange the argument and result information for the declaration or
- /// definition of an Objective-C method.
- const CGFunctionInfo &
- CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
- // It happens that this is the same as a call with no optional
- // arguments, except also using the formal 'self' type.
- return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
- }
- /// Arrange the argument and result information for the function type
- /// through which to perform a send to the given Objective-C method,
- /// using the given receiver type. The receiver type is not always
- /// the 'self' type of the method or even an Objective-C pointer type.
- /// This is *not* the right method for actually performing such a
- /// message send, due to the possibility of optional arguments.
- const CGFunctionInfo &
- CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
- QualType receiverType) {
- SmallVector<CanQualType, 16> argTys;
- argTys.push_back(Context.getCanonicalParamType(receiverType));
- argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
- // FIXME: Kill copy?
- for (const auto *I : MD->params()) {
- argTys.push_back(Context.getCanonicalParamType(I->getType()));
- }
- FunctionType::ExtInfo einfo;
- bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
- einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
- if (getContext().getLangOpts().ObjCAutoRefCount &&
- MD->hasAttr<NSReturnsRetainedAttr>())
- einfo = einfo.withProducesResult(true);
- RequiredArgs required =
- (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
- return arrangeLLVMFunctionInfo(
- GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
- /*chainCall=*/false, argTys, einfo, required);
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
- // FIXME: Do we need to handle ObjCMethodDecl?
- const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
- if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
- return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
- if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
- return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
- return arrangeFunctionDeclaration(FD);
- }
- /// Arrange a thunk that takes 'this' as the first parameter followed by
- /// varargs. Return a void pointer, regardless of the actual return type.
- /// The body of the thunk will end in a musttail call to a function of the
- /// correct type, and the caller will bitcast the function to the correct
- /// prototype.
- const CGFunctionInfo &
- CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
- assert(MD->isVirtual() && "only virtual memptrs have thunks");
- CanQual<FunctionProtoType> FTP = GetFormalType(MD);
- CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
- return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
- /*chainCall=*/false, ArgTys,
- FTP->getExtInfo(), RequiredArgs(1));
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
- CXXCtorType CT) {
- assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
- CanQual<FunctionProtoType> FTP = GetFormalType(CD);
- SmallVector<CanQualType, 2> ArgTys;
- const CXXRecordDecl *RD = CD->getParent();
- ArgTys.push_back(GetThisType(Context, RD));
- if (CT == Ctor_CopyingClosure)
- ArgTys.push_back(*FTP->param_type_begin());
- if (RD->getNumVBases() > 0)
- ArgTys.push_back(Context.IntTy);
- CallingConv CC = Context.getDefaultCallingConvention(
- /*IsVariadic=*/false, /*IsCXXMethod=*/true);
- return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
- /*chainCall=*/false, ArgTys,
- FunctionType::ExtInfo(CC), RequiredArgs::All);
- }
- /// Arrange a call as unto a free function, except possibly with an
- /// additional number of formal parameters considered required.
- static const CGFunctionInfo &
- arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
- CodeGenModule &CGM,
- const CallArgList &args,
- const FunctionType *fnType,
- unsigned numExtraRequiredArgs,
- bool chainCall) {
- assert(args.size() >= numExtraRequiredArgs);
- // In most cases, there are no optional arguments.
- RequiredArgs required = RequiredArgs::All;
- // If we have a variadic prototype, the required arguments are the
- // extra prefix plus the arguments in the prototype.
- if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
- if (proto->isVariadic())
- required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
- // If we don't have a prototype at all, but we're supposed to
- // explicitly use the variadic convention for unprototyped calls,
- // treat all of the arguments as required but preserve the nominal
- // possibility of variadics.
- } else if (CGM.getTargetCodeGenInfo()
- .isNoProtoCallVariadic(args,
- cast<FunctionNoProtoType>(fnType))) {
- required = RequiredArgs(args.size());
- }
- // FIXME: Kill copy.
- SmallVector<CanQualType, 16> argTypes;
- for (const auto &arg : args)
- argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
- return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
- /*instanceMethod=*/false, chainCall,
- argTypes, fnType->getExtInfo(), required);
- }
- /// Figure out the rules for calling a function with the given formal
- /// type using the given arguments. The arguments are necessary
- /// because the function might be unprototyped, in which case it's
- /// target-dependent in crazy ways.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
- const FunctionType *fnType,
- bool chainCall) {
- return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
- chainCall ? 1 : 0, chainCall);
- }
- /// A block function call is essentially a free-function call with an
- /// extra implicit argument.
- const CGFunctionInfo &
- CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
- const FunctionType *fnType) {
- return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
- /*chainCall=*/false);
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
- const CallArgList &args,
- FunctionType::ExtInfo info,
- RequiredArgs required) {
- // FIXME: Kill copy.
- SmallVector<CanQualType, 16> argTypes;
- for (const auto &Arg : args)
- argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
- return arrangeLLVMFunctionInfo(
- GetReturnType(resultType), /*instanceMethod=*/false,
- /*chainCall=*/false, argTypes, info, required);
- }
- /// Arrange a call to a C++ method, passing the given arguments.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
- const FunctionProtoType *FPT,
- RequiredArgs required) {
- // FIXME: Kill copy.
- SmallVector<CanQualType, 16> argTypes;
- for (const auto &Arg : args)
- argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
- FunctionType::ExtInfo info = FPT->getExtInfo();
- return arrangeLLVMFunctionInfo(
- GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
- /*chainCall=*/false, argTypes, info, required);
- }
- const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
- QualType resultType, const FunctionArgList &args,
- const FunctionType::ExtInfo &info, bool isVariadic) {
- // FIXME: Kill copy.
- SmallVector<CanQualType, 16> argTypes;
- for (auto Arg : args)
- argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
- RequiredArgs required =
- (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
- return arrangeLLVMFunctionInfo(
- GetReturnType(resultType), /*instanceMethod=*/false,
- /*chainCall=*/false, argTypes, info, required);
- }
- const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
- return arrangeLLVMFunctionInfo(
- getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
- None, FunctionType::ExtInfo(), RequiredArgs::All);
- }
- /// Arrange the argument and result information for an abstract value
- /// of a given function type. This is the method which all of the
- /// above functions ultimately defer to.
- const CGFunctionInfo &
- CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
- bool instanceMethod,
- bool chainCall,
- ArrayRef<CanQualType> argTypes,
- FunctionType::ExtInfo info,
- RequiredArgs required) {
- assert(std::all_of(argTypes.begin(), argTypes.end(),
- std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
- unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
- // Lookup or create unique function info.
- llvm::FoldingSetNodeID ID;
- CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
- resultType, argTypes);
- void *insertPos = nullptr;
- CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
- if (FI)
- return *FI;
- // Construct the function info. We co-allocate the ArgInfos.
- FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
- resultType, argTypes, required);
- FunctionInfos.InsertNode(FI, insertPos);
- bool inserted = FunctionsBeingProcessed.insert(FI).second;
- (void)inserted;
- assert(inserted && "Recursively being processed?");
-
- // Compute ABI information.
- getABIInfo().computeInfo(*FI);
- // Loop over all of the computed argument and return value info. If any of
- // them are direct or extend without a specified coerce type, specify the
- // default now.
- ABIArgInfo &retInfo = FI->getReturnInfo();
- if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
- retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
- for (auto &I : FI->arguments())
- if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
- I.info.setCoerceToType(ConvertType(I.type));
- bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
- assert(erased && "Not in set?");
-
- return *FI;
- }
- CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
- bool instanceMethod,
- bool chainCall,
- const FunctionType::ExtInfo &info,
- CanQualType resultType,
- ArrayRef<CanQualType> argTypes,
- RequiredArgs required) {
- void *buffer = operator new(sizeof(CGFunctionInfo) +
- sizeof(ArgInfo) * (argTypes.size() + 1));
- CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
- FI->CallingConvention = llvmCC;
- FI->EffectiveCallingConvention = llvmCC;
- FI->ASTCallingConvention = info.getCC();
- FI->InstanceMethod = instanceMethod;
- FI->ChainCall = chainCall;
- FI->NoReturn = info.getNoReturn();
- FI->ReturnsRetained = info.getProducesResult();
- FI->Required = required;
- FI->HasRegParm = info.getHasRegParm();
- FI->RegParm = info.getRegParm();
- FI->ArgStruct = nullptr;
- FI->ArgStructAlign = 0;
- FI->NumArgs = argTypes.size();
- FI->getArgsBuffer()[0].type = resultType;
- for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
- FI->getArgsBuffer()[i + 1].type = argTypes[i];
- return FI;
- }
- /***/
- namespace {
- // ABIArgInfo::Expand implementation.
- // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
- struct TypeExpansion {
- enum TypeExpansionKind {
- // Elements of constant arrays are expanded recursively.
- TEK_ConstantArray,
- // Record fields are expanded recursively (but if record is a union, only
- // the field with the largest size is expanded).
- TEK_Record,
- // For complex types, real and imaginary parts are expanded recursively.
- TEK_Complex,
- // All other types are not expandable.
- TEK_None
- };
- const TypeExpansionKind Kind;
- TypeExpansion(TypeExpansionKind K) : Kind(K) {}
- virtual ~TypeExpansion() {}
- };
- struct ConstantArrayExpansion : TypeExpansion {
- QualType EltTy;
- uint64_t NumElts;
- ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
- : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
- static bool classof(const TypeExpansion *TE) {
- return TE->Kind == TEK_ConstantArray;
- }
- };
- struct RecordExpansion : TypeExpansion {
- SmallVector<const CXXBaseSpecifier *, 1> Bases;
- SmallVector<const FieldDecl *, 1> Fields;
- RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
- SmallVector<const FieldDecl *, 1> &&Fields)
- : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
- static bool classof(const TypeExpansion *TE) {
- return TE->Kind == TEK_Record;
- }
- };
- struct ComplexExpansion : TypeExpansion {
- QualType EltTy;
- ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
- static bool classof(const TypeExpansion *TE) {
- return TE->Kind == TEK_Complex;
- }
- };
- struct NoExpansion : TypeExpansion {
- NoExpansion() : TypeExpansion(TEK_None) {}
- static bool classof(const TypeExpansion *TE) {
- return TE->Kind == TEK_None;
- }
- };
- } // namespace
- static std::unique_ptr<TypeExpansion>
- getTypeExpansion(QualType Ty, const ASTContext &Context) {
- if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
- return llvm::make_unique<ConstantArrayExpansion>(
- AT->getElementType(), AT->getSize().getZExtValue());
- }
- if (const RecordType *RT = Ty->getAs<RecordType>()) {
- SmallVector<const CXXBaseSpecifier *, 1> Bases;
- SmallVector<const FieldDecl *, 1> Fields;
- const RecordDecl *RD = RT->getDecl();
- assert(!RD->hasFlexibleArrayMember() &&
- "Cannot expand structure with flexible array.");
- if (RD->isUnion()) {
- // Unions can be here only in degenerative cases - all the fields are same
- // after flattening. Thus we have to use the "largest" field.
- const FieldDecl *LargestFD = nullptr;
- CharUnits UnionSize = CharUnits::Zero();
- for (const auto *FD : RD->fields()) {
- // Skip zero length bitfields.
- if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
- continue;
- assert(!FD->isBitField() &&
- "Cannot expand structure with bit-field members.");
- CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
- if (UnionSize < FieldSize) {
- UnionSize = FieldSize;
- LargestFD = FD;
- }
- }
- if (LargestFD)
- Fields.push_back(LargestFD);
- } else {
- if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- assert(!CXXRD->isDynamicClass() &&
- "cannot expand vtable pointers in dynamic classes");
- for (const CXXBaseSpecifier &BS : CXXRD->bases())
- Bases.push_back(&BS);
- }
- for (const auto *FD : RD->fields()) {
- // Skip zero length bitfields.
- if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
- continue;
- assert(!FD->isBitField() &&
- "Cannot expand structure with bit-field members.");
- Fields.push_back(FD);
- }
- }
- return llvm::make_unique<RecordExpansion>(std::move(Bases),
- std::move(Fields));
- }
- if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
- return llvm::make_unique<ComplexExpansion>(CT->getElementType());
- }
- return llvm::make_unique<NoExpansion>();
- }
- static int getExpansionSize(QualType Ty, const ASTContext &Context) {
- auto Exp = getTypeExpansion(Ty, Context);
- if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
- return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
- }
- if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
- int Res = 0;
- for (auto BS : RExp->Bases)
- Res += getExpansionSize(BS->getType(), Context);
- for (auto FD : RExp->Fields)
- Res += getExpansionSize(FD->getType(), Context);
- return Res;
- }
- if (isa<ComplexExpansion>(Exp.get()))
- return 2;
- assert(isa<NoExpansion>(Exp.get()));
- return 1;
- }
- void
- CodeGenTypes::getExpandedTypes(QualType Ty,
- SmallVectorImpl<llvm::Type *>::iterator &TI) {
- auto Exp = getTypeExpansion(Ty, Context);
- if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
- for (int i = 0, n = CAExp->NumElts; i < n; i++) {
- getExpandedTypes(CAExp->EltTy, TI);
- }
- } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
- for (auto BS : RExp->Bases)
- getExpandedTypes(BS->getType(), TI);
- for (auto FD : RExp->Fields)
- getExpandedTypes(FD->getType(), TI);
- } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
- llvm::Type *EltTy = ConvertType(CExp->EltTy);
- *TI++ = EltTy;
- *TI++ = EltTy;
- } else {
- assert(isa<NoExpansion>(Exp.get()));
- *TI++ = ConvertType(Ty);
- }
- }
- static void forConstantArrayExpansion(CodeGenFunction &CGF,
- ConstantArrayExpansion *CAE,
- Address BaseAddr,
- llvm::function_ref<void(Address)> Fn) {
- CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
- CharUnits EltAlign =
- BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
- for (int i = 0, n = CAE->NumElts; i < n; i++) {
- llvm::Value *EltAddr =
- CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
- Fn(Address(EltAddr, EltAlign));
- }
- }
- void CodeGenFunction::ExpandTypeFromArgs(
- QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
- assert(LV.isSimple() &&
- "Unexpected non-simple lvalue during struct expansion.");
- auto Exp = getTypeExpansion(Ty, getContext());
- if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
- forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
- [&](Address EltAddr) {
- LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
- ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
- });
- } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
- Address This = LV.getAddress();
- for (const CXXBaseSpecifier *BS : RExp->Bases) {
- // Perform a single step derived-to-base conversion.
- Address Base =
- GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
- /*NullCheckValue=*/false, SourceLocation());
- LValue SubLV = MakeAddrLValue(Base, BS->getType());
- // Recurse onto bases.
- ExpandTypeFromArgs(BS->getType(), SubLV, AI);
- }
- for (auto FD : RExp->Fields) {
- // FIXME: What are the right qualifiers here?
- LValue SubLV = EmitLValueForField(LV, FD);
- ExpandTypeFromArgs(FD->getType(), SubLV, AI);
- }
- } else if (isa<ComplexExpansion>(Exp.get())) {
- auto realValue = *AI++;
- auto imagValue = *AI++;
- EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
- } else {
- assert(isa<NoExpansion>(Exp.get()));
- EmitStoreThroughLValue(RValue::get(*AI++), LV);
- }
- }
- void CodeGenFunction::ExpandTypeToArgs(
- QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
- SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
- auto Exp = getTypeExpansion(Ty, getContext());
- if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
- forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
- [&](Address EltAddr) {
- RValue EltRV =
- convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
- ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
- });
- } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
- Address This = RV.getAggregateAddress();
- for (const CXXBaseSpecifier *BS : RExp->Bases) {
- // Perform a single step derived-to-base conversion.
- Address Base =
- GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
- /*NullCheckValue=*/false, SourceLocation());
- RValue BaseRV = RValue::getAggregate(Base);
- // Recurse onto bases.
- ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
- IRCallArgPos);
- }
- LValue LV = MakeAddrLValue(This, Ty);
- for (auto FD : RExp->Fields) {
- RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
- ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
- IRCallArgPos);
- }
- } else if (isa<ComplexExpansion>(Exp.get())) {
- ComplexPairTy CV = RV.getComplexVal();
- IRCallArgs[IRCallArgPos++] = CV.first;
- IRCallArgs[IRCallArgPos++] = CV.second;
- } else {
- assert(isa<NoExpansion>(Exp.get()));
- assert(RV.isScalar() &&
- "Unexpected non-scalar rvalue during struct expansion.");
- // Insert a bitcast as needed.
- llvm::Value *V = RV.getScalarVal();
- if (IRCallArgPos < IRFuncTy->getNumParams() &&
- V->getType() != IRFuncTy->getParamType(IRCallArgPos))
- V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
- IRCallArgs[IRCallArgPos++] = V;
- }
- }
- /// Create a temporary allocation for the purposes of coercion.
- static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
- CharUnits MinAlign) {
- // Don't use an alignment that's worse than what LLVM would prefer.
- auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
- CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
- return CGF.CreateTempAlloca(Ty, Align);
- }
- /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
- /// accessing some number of bytes out of it, try to gep into the struct to get
- /// at its inner goodness. Dive as deep as possible without entering an element
- /// with an in-memory size smaller than DstSize.
- static Address
- EnterStructPointerForCoercedAccess(Address SrcPtr,
- llvm::StructType *SrcSTy,
- uint64_t DstSize, CodeGenFunction &CGF) {
- // We can't dive into a zero-element struct.
- if (SrcSTy->getNumElements() == 0) return SrcPtr;
- llvm::Type *FirstElt = SrcSTy->getElementType(0);
- // If the first elt is at least as large as what we're looking for, or if the
- // first element is the same size as the whole struct, we can enter it. The
- // comparison must be made on the store size and not the alloca size. Using
- // the alloca size may overstate the size of the load.
- uint64_t FirstEltSize =
- CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
- if (FirstEltSize < DstSize &&
- FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
- return SrcPtr;
- // GEP into the first element.
- SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
- // If the first element is a struct, recurse.
- llvm::Type *SrcTy = SrcPtr.getElementType();
- if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
- return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
- return SrcPtr;
- }
- /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
- /// are either integers or pointers. This does a truncation of the value if it
- /// is too large or a zero extension if it is too small.
- ///
- /// This behaves as if the value were coerced through memory, so on big-endian
- /// targets the high bits are preserved in a truncation, while little-endian
- /// targets preserve the low bits.
- static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
- llvm::Type *Ty,
- CodeGenFunction &CGF) {
- if (Val->getType() == Ty)
- return Val;
- if (isa<llvm::PointerType>(Val->getType())) {
- // If this is Pointer->Pointer avoid conversion to and from int.
- if (isa<llvm::PointerType>(Ty))
- return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
- // Convert the pointer to an integer so we can play with its width.
- Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
- }
- llvm::Type *DestIntTy = Ty;
- if (isa<llvm::PointerType>(DestIntTy))
- DestIntTy = CGF.IntPtrTy;
- if (Val->getType() != DestIntTy) {
- const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
- if (DL.isBigEndian()) {
- // Preserve the high bits on big-endian targets.
- // That is what memory coercion does.
- uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
- uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
- if (SrcSize > DstSize) {
- Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
- Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
- } else {
- Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
- Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
- }
- } else {
- // Little-endian targets preserve the low bits. No shifts required.
- Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
- }
- }
- if (isa<llvm::PointerType>(Ty))
- Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
- return Val;
- }
- /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
- /// a pointer to an object of type \arg Ty, known to be aligned to
- /// \arg SrcAlign bytes.
- ///
- /// This safely handles the case when the src type is smaller than the
- /// destination type; in this situation the values of bits which not
- /// present in the src are undefined.
- static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
- CodeGenFunction &CGF) {
- llvm::Type *SrcTy = Src.getElementType();
- // If SrcTy and Ty are the same, just do a load.
- if (SrcTy == Ty)
- return CGF.Builder.CreateLoad(Src);
- uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
- if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
- Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
- SrcTy = Src.getType()->getElementType();
- }
- uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
- // If the source and destination are integer or pointer types, just do an
- // extension or truncation to the desired type.
- if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
- (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
- llvm::Value *Load = CGF.Builder.CreateLoad(Src);
- return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
- }
- // If load is legal, just bitcast the src pointer.
- if (SrcSize >= DstSize) {
- // Generally SrcSize is never greater than DstSize, since this means we are
- // losing bits. However, this can happen in cases where the structure has
- // additional padding, for example due to a user specified alignment.
- //
- // FIXME: Assert that we aren't truncating non-padding bits when have access
- // to that information.
- Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty));
- return CGF.Builder.CreateLoad(Src);
- }
- // Otherwise do coercion through memory. This is stupid, but simple.
- Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
- Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
- Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
- CGF.Builder.CreateMemCpy(Casted, SrcCasted,
- llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
- false);
- return CGF.Builder.CreateLoad(Tmp);
- }
- // Function to store a first-class aggregate into memory. We prefer to
- // store the elements rather than the aggregate to be more friendly to
- // fast-isel.
- // FIXME: Do we need to recurse here?
- static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
- Address Dest, bool DestIsVolatile) {
- // Prefer scalar stores to first-class aggregate stores.
- if (llvm::StructType *STy =
- dyn_cast<llvm::StructType>(Val->getType())) {
- const llvm::StructLayout *Layout =
- CGF.CGM.getDataLayout().getStructLayout(STy);
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
- Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
- llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
- CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
- }
- } else {
- CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
- }
- }
- /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
- /// where the source and destination may have different types. The
- /// destination is known to be aligned to \arg DstAlign bytes.
- ///
- /// This safely handles the case when the src type is larger than the
- /// destination type; the upper bits of the src will be lost.
- static void CreateCoercedStore(llvm::Value *Src,
- Address Dst,
- bool DstIsVolatile,
- CodeGenFunction &CGF) {
- llvm::Type *SrcTy = Src->getType();
- llvm::Type *DstTy = Dst.getType()->getElementType();
- if (SrcTy == DstTy) {
- CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
- return;
- }
- uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
- if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
- Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
- DstTy = Dst.getType()->getElementType();
- }
- // If the source and destination are integer or pointer types, just do an
- // extension or truncation to the desired type.
- if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
- (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
- Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
- CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
- return;
- }
- uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
- // If store is legal, just bitcast the src pointer.
- if (SrcSize <= DstSize) {
- Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy));
- BuildAggStore(CGF, Src, Dst, DstIsVolatile);
- } else {
- // Otherwise do coercion through memory. This is stupid, but
- // simple.
- // Generally SrcSize is never greater than DstSize, since this means we are
- // losing bits. However, this can happen in cases where the structure has
- // additional padding, for example due to a user specified alignment.
- //
- // FIXME: Assert that we aren't truncating non-padding bits when have access
- // to that information.
- Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
- CGF.Builder.CreateStore(Src, Tmp);
- Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
- Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
- CGF.Builder.CreateMemCpy(DstCasted, Casted,
- llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
- false);
- }
- }
- static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
- const ABIArgInfo &info) {
- if (unsigned offset = info.getDirectOffset()) {
- addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
- addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
- CharUnits::fromQuantity(offset));
- addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
- }
- return addr;
- }
- namespace {
- /// Encapsulates information about the way function arguments from
- /// CGFunctionInfo should be passed to actual LLVM IR function.
- class ClangToLLVMArgMapping {
- static const unsigned InvalidIndex = ~0U;
- unsigned InallocaArgNo;
- unsigned SRetArgNo;
- unsigned TotalIRArgs;
- /// Arguments of LLVM IR function corresponding to single Clang argument.
- struct IRArgs {
- unsigned PaddingArgIndex;
- // Argument is expanded to IR arguments at positions
- // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
- unsigned FirstArgIndex;
- unsigned NumberOfArgs;
- IRArgs()
- : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
- NumberOfArgs(0) {}
- };
- SmallVector<IRArgs, 8> ArgInfo;
- public:
- ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
- bool OnlyRequiredArgs = false)
- : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
- ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
- construct(Context, FI, OnlyRequiredArgs);
- }
- bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
- unsigned getInallocaArgNo() const {
- assert(hasInallocaArg());
- return InallocaArgNo;
- }
- bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
- unsigned getSRetArgNo() const {
- assert(hasSRetArg());
- return SRetArgNo;
- }
- unsigned totalIRArgs() const { return TotalIRArgs; }
- bool hasPaddingArg(unsigned ArgNo) const {
- assert(ArgNo < ArgInfo.size());
- return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
- }
- unsigned getPaddingArgNo(unsigned ArgNo) const {
- assert(hasPaddingArg(ArgNo));
- return ArgInfo[ArgNo].PaddingArgIndex;
- }
- /// Returns index of first IR argument corresponding to ArgNo, and their
- /// quantity.
- std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
- assert(ArgNo < ArgInfo.size());
- return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
- ArgInfo[ArgNo].NumberOfArgs);
- }
- private:
- void construct(const ASTContext &Context, const CGFunctionInfo &FI,
- bool OnlyRequiredArgs);
- };
- void ClangToLLVMArgMapping::construct(const ASTContext &Context,
- const CGFunctionInfo &FI,
- bool OnlyRequiredArgs) {
- unsigned IRArgNo = 0;
- bool SwapThisWithSRet = false;
- const ABIArgInfo &RetAI = FI.getReturnInfo();
- if (RetAI.getKind() == ABIArgInfo::Indirect) {
- SwapThisWithSRet = RetAI.isSRetAfterThis();
- SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
- }
- unsigned ArgNo = 0;
- unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
- for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
- ++I, ++ArgNo) {
- assert(I != FI.arg_end());
- QualType ArgType = I->type;
- const ABIArgInfo &AI = I->info;
- // Collect data about IR arguments corresponding to Clang argument ArgNo.
- auto &IRArgs = ArgInfo[ArgNo];
- if (AI.getPaddingType())
- IRArgs.PaddingArgIndex = IRArgNo++;
- switch (AI.getKind()) {
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- // FIXME: handle sseregparm someday...
- llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
- if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
- IRArgs.NumberOfArgs = STy->getNumElements();
- } else {
- IRArgs.NumberOfArgs = 1;
- }
- break;
- }
- case ABIArgInfo::Indirect:
- IRArgs.NumberOfArgs = 1;
- break;
- case ABIArgInfo::Ignore:
- case ABIArgInfo::InAlloca:
- // ignore and inalloca doesn't have matching LLVM parameters.
- IRArgs.NumberOfArgs = 0;
- break;
- case ABIArgInfo::Expand: {
- IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
- break;
- }
- }
- if (IRArgs.NumberOfArgs > 0) {
- IRArgs.FirstArgIndex = IRArgNo;
- IRArgNo += IRArgs.NumberOfArgs;
- }
- // Skip over the sret parameter when it comes second. We already handled it
- // above.
- if (IRArgNo == 1 && SwapThisWithSRet)
- IRArgNo++;
- }
- assert(ArgNo == ArgInfo.size());
- if (FI.usesInAlloca())
- InallocaArgNo = IRArgNo++;
- TotalIRArgs = IRArgNo;
- }
- } // namespace
- /***/
- bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
- return FI.getReturnInfo().isIndirect();
- }
- bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
- return ReturnTypeUsesSRet(FI) &&
- getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
- }
- bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
- if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
- switch (BT->getKind()) {
- default:
- return false;
- case BuiltinType::Float:
- return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
- case BuiltinType::Double:
- return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
- case BuiltinType::LongDouble:
- return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
- }
- }
- return false;
- }
- bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
- if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
- if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
- if (BT->getKind() == BuiltinType::LongDouble)
- return getTarget().useObjCFP2RetForComplexLongDouble();
- }
- }
- return false;
- }
- llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
- const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
- return GetFunctionType(FI);
- }
- llvm::FunctionType *
- CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
- bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
- (void)Inserted;
- assert(Inserted && "Recursively being processed?");
- llvm::Type *resultType = nullptr;
- const ABIArgInfo &retAI = FI.getReturnInfo();
- switch (retAI.getKind()) {
- case ABIArgInfo::Expand:
- llvm_unreachable("Invalid ABI kind for return argument");
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct:
- resultType = retAI.getCoerceToType();
- break;
- case ABIArgInfo::InAlloca:
- if (retAI.getInAllocaSRet()) {
- // sret things on win32 aren't void, they return the sret pointer.
- QualType ret = FI.getReturnType();
- llvm::Type *ty = ConvertType(ret);
- unsigned addressSpace = Context.getTargetAddressSpace(ret);
- resultType = llvm::PointerType::get(ty, addressSpace);
- } else {
- resultType = llvm::Type::getVoidTy(getLLVMContext());
- }
- break;
- case ABIArgInfo::Indirect:
- case ABIArgInfo::Ignore:
- resultType = llvm::Type::getVoidTy(getLLVMContext());
- break;
- }
- ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
- SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
- // Add type for sret argument.
- if (IRFunctionArgs.hasSRetArg()) {
- QualType Ret = FI.getReturnType();
- llvm::Type *Ty = ConvertType(Ret);
- unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
- ArgTypes[IRFunctionArgs.getSRetArgNo()] =
- llvm::PointerType::get(Ty, AddressSpace);
- }
- // Add type for inalloca argument.
- if (IRFunctionArgs.hasInallocaArg()) {
- auto ArgStruct = FI.getArgStruct();
- assert(ArgStruct);
- ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
- }
- // Add in all of the required arguments.
- unsigned ArgNo = 0;
- CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
- ie = it + FI.getNumRequiredArgs();
- for (; it != ie; ++it, ++ArgNo) {
- const ABIArgInfo &ArgInfo = it->info;
- // Insert a padding type to ensure proper alignment.
- if (IRFunctionArgs.hasPaddingArg(ArgNo))
- ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
- ArgInfo.getPaddingType();
- unsigned FirstIRArg, NumIRArgs;
- std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
- switch (ArgInfo.getKind()) {
- case ABIArgInfo::Ignore:
- case ABIArgInfo::InAlloca:
- assert(NumIRArgs == 0);
- break;
- case ABIArgInfo::Indirect: {
- assert(NumIRArgs == 1);
- // indirect arguments are always on the stack, which is addr space #0.
- llvm::Type *LTy = ConvertTypeForMem(it->type);
- ArgTypes[FirstIRArg] = LTy->getPointerTo();
- break;
- }
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- // Fast-isel and the optimizer generally like scalar values better than
- // FCAs, so we flatten them if this is safe to do for this argument.
- llvm::Type *argType = ArgInfo.getCoerceToType();
- llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
- if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
- assert(NumIRArgs == st->getNumElements());
- for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
- ArgTypes[FirstIRArg + i] = st->getElementType(i);
- } else {
- assert(NumIRArgs == 1);
- ArgTypes[FirstIRArg] = argType;
- }
- break;
- }
- case ABIArgInfo::Expand:
- auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
- getExpandedTypes(it->type, ArgTypesIter);
- assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
- break;
- }
- }
- bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
- assert(Erased && "Not in set?");
- return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
- }
- llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
- const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
- const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
- if (!isFuncTypeConvertible(FPT))
- return llvm::StructType::get(getLLVMContext());
-
- const CGFunctionInfo *Info;
- if (isa<CXXDestructorDecl>(MD))
- Info =
- &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
- else
- Info = &arrangeCXXMethodDeclaration(MD);
- return GetFunctionType(*Info);
- }
- void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
- const Decl *TargetDecl,
- AttributeListType &PAL,
- unsigned &CallingConv,
- bool AttrOnCallSite) {
- llvm::AttrBuilder FuncAttrs;
- llvm::AttrBuilder RetAttrs;
- bool HasOptnone = false;
- CallingConv = FI.getEffectiveCallingConvention();
- if (FI.isNoReturn())
- FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
- // FIXME: handle sseregparm someday...
- if (TargetDecl) {
- if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
- if (TargetDecl->hasAttr<NoThrowAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
- if (TargetDecl->hasAttr<NoReturnAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
- if (TargetDecl->hasAttr<NoDuplicateAttr>())
- FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
- if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
- const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
- if (FPT && !isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
- FPT->isNothrow(getContext()))
- FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
- // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
- // These attributes are not inherited by overloads.
- const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
- if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
- FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
- }
- // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
- if (TargetDecl->hasAttr<ConstAttr>()) {
- FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
- FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
- } else if (TargetDecl->hasAttr<PureAttr>()) {
- FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
- FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
- } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
- FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
- FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
- }
- if (TargetDecl->hasAttr<RestrictAttr>())
- RetAttrs.addAttribute(llvm::Attribute::NoAlias);
- if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
- RetAttrs.addAttribute(llvm::Attribute::NonNull);
- HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
- }
- // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
- if (!HasOptnone) {
- if (CodeGenOpts.OptimizeSize)
- FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
- if (CodeGenOpts.OptimizeSize == 2)
- FuncAttrs.addAttribute(llvm::Attribute::MinSize);
- }
- if (CodeGenOpts.DisableRedZone)
- FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
- if (CodeGenOpts.NoImplicitFloat)
- FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
- if (CodeGenOpts.EnableSegmentedStacks &&
- !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
- FuncAttrs.addAttribute("split-stack");
- if (AttrOnCallSite) {
- // Attributes that should go on the call site only.
- if (!CodeGenOpts.SimplifyLibCalls)
- FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
- if (!CodeGenOpts.TrapFuncName.empty())
- FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
- } else {
- // Attributes that should go on the function, but not the call site.
- if (!CodeGenOpts.DisableFPElim) {
- FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
- } else if (CodeGenOpts.OmitLeafFramePointer) {
- FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
- FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
- } else {
- FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
- FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
- }
- FuncAttrs.addAttribute("disable-tail-calls",
- llvm::toStringRef(CodeGenOpts.DisableTailCalls));
- FuncAttrs.addAttribute("less-precise-fpmad",
- llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
- FuncAttrs.addAttribute("no-infs-fp-math",
- llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
- FuncAttrs.addAttribute("no-nans-fp-math",
- llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
- FuncAttrs.addAttribute("unsafe-fp-math",
- llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
- FuncAttrs.addAttribute("use-soft-float",
- llvm::toStringRef(CodeGenOpts.SoftFloat));
- FuncAttrs.addAttribute("stack-protector-buffer-size",
- llvm::utostr(CodeGenOpts.SSPBufferSize));
- if (CodeGenOpts.StackRealignment)
- FuncAttrs.addAttribute("stackrealign");
- // Add target-cpu and target-features attributes to functions. If
- // we have a decl for the function and it has a target attribute then
- // parse that and add it to the feature set.
- StringRef TargetCPU = getTarget().getTargetOpts().CPU;
- const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
- if (FD && FD->hasAttr<TargetAttr>()) {
- llvm::StringMap<bool> FeatureMap;
- const auto *TD = FD->getAttr<TargetAttr>();
- TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
- // Make a copy of the features as passed on the command line into the
- // beginning of the additional features from the function to override.
- ParsedAttr.first.insert(
- ParsedAttr.first.begin(),
- getTarget().getTargetOpts().FeaturesAsWritten.begin(),
- getTarget().getTargetOpts().FeaturesAsWritten.end());
- if (ParsedAttr.second != "")
- TargetCPU = ParsedAttr.second;
- // Now populate the feature map, first with the TargetCPU which is either
- // the default or a new one from the target attribute string. Then we'll
- // use the passed in features (FeaturesAsWritten) along with the new ones
- // from the attribute.
- getTarget().initFeatureMap(FeatureMap, Diags, TargetCPU, ParsedAttr.first);
- // Produce the canonical string for this set of features.
- std::vector<std::string> Features;
- for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
- ie = FeatureMap.end();
- it != ie; ++it)
- Features.push_back((it->second ? "+" : "-") + it->first().str());
- // Now add the target-cpu and target-features to the function.
- if (TargetCPU != "")
- FuncAttrs.addAttribute("target-cpu", TargetCPU);
- if (!Features.empty()) {
- std::sort(Features.begin(), Features.end());
- FuncAttrs.addAttribute(
- "target-features",
- llvm::join(Features.begin(), Features.end(), ","));
- }
- } else {
- // Otherwise just add the existing target cpu and target features to the
- // function.
- std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
- if (TargetCPU != "")
- FuncAttrs.addAttribute("target-cpu", TargetCPU);
- if (!Features.empty()) {
- std::sort(Features.begin(), Features.end());
- FuncAttrs.addAttribute(
- "target-features",
- llvm::join(Features.begin(), Features.end(), ","));
- }
- }
- }
- ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
- QualType RetTy = FI.getReturnType();
- const ABIArgInfo &RetAI = FI.getReturnInfo();
- switch (RetAI.getKind()) {
- case ABIArgInfo::Extend:
- if (RetTy->hasSignedIntegerRepresentation())
- RetAttrs.addAttribute(llvm::Attribute::SExt);
- else if (RetTy->hasUnsignedIntegerRepresentation())
- RetAttrs.addAttribute(llvm::Attribute::ZExt);
- // FALL THROUGH
- case ABIArgInfo::Direct:
- if (RetAI.getInReg())
- RetAttrs.addAttribute(llvm::Attribute::InReg);
- break;
- case ABIArgInfo::Ignore:
- break;
- case ABIArgInfo::InAlloca:
- case ABIArgInfo::Indirect: {
- // inalloca and sret disable readnone and readonly
- FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
- .removeAttribute(llvm::Attribute::ReadNone);
- break;
- }
- case ABIArgInfo::Expand:
- llvm_unreachable("Invalid ABI kind for return argument");
- }
- if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
- QualType PTy = RefTy->getPointeeType();
- if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
- RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
- .getQuantity());
- else if (getContext().getTargetAddressSpace(PTy) == 0)
- RetAttrs.addAttribute(llvm::Attribute::NonNull);
- }
- // Attach return attributes.
- if (RetAttrs.hasAttributes()) {
- PAL.push_back(llvm::AttributeSet::get(
- getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
- }
- // Attach attributes to sret.
- if (IRFunctionArgs.hasSRetArg()) {
- llvm::AttrBuilder SRETAttrs;
- SRETAttrs.addAttribute(llvm::Attribute::StructRet);
- if (RetAI.getInReg())
- SRETAttrs.addAttribute(llvm::Attribute::InReg);
- PAL.push_back(llvm::AttributeSet::get(
- getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
- }
- // Attach attributes to inalloca argument.
- if (IRFunctionArgs.hasInallocaArg()) {
- llvm::AttrBuilder Attrs;
- Attrs.addAttribute(llvm::Attribute::InAlloca);
- PAL.push_back(llvm::AttributeSet::get(
- getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
- }
- unsigned ArgNo = 0;
- for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
- E = FI.arg_end();
- I != E; ++I, ++ArgNo) {
- QualType ParamType = I->type;
- const ABIArgInfo &AI = I->info;
- llvm::AttrBuilder Attrs;
- // Add attribute for padding argument, if necessary.
- if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
- if (AI.getPaddingInReg())
- PAL.push_back(llvm::AttributeSet::get(
- getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
- llvm::Attribute::InReg));
- }
- // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
- // have the corresponding parameter variable. It doesn't make
- // sense to do it here because parameters are so messed up.
- switch (AI.getKind()) {
- case ABIArgInfo::Extend:
- if (ParamType->isSignedIntegerOrEnumerationType())
- Attrs.addAttribute(llvm::Attribute::SExt);
- else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
- if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
- Attrs.addAttribute(llvm::Attribute::SExt);
- else
- Attrs.addAttribute(llvm::Attribute::ZExt);
- }
- // FALL THROUGH
- case ABIArgInfo::Direct:
- if (ArgNo == 0 && FI.isChainCall())
- Attrs.addAttribute(llvm::Attribute::Nest);
- else if (AI.getInReg())
- Attrs.addAttribute(llvm::Attribute::InReg);
- break;
- case ABIArgInfo::Indirect: {
- if (AI.getInReg())
- Attrs.addAttribute(llvm::Attribute::InReg);
- if (AI.getIndirectByVal())
- Attrs.addAttribute(llvm::Attribute::ByVal);
- CharUnits Align = AI.getIndirectAlign();
- // In a byval argument, it is important that the required
- // alignment of the type is honored, as LLVM might be creating a
- // *new* stack object, and needs to know what alignment to give
- // it. (Sometimes it can deduce a sensible alignment on its own,
- // but not if clang decides it must emit a packed struct, or the
- // user specifies increased alignment requirements.)
- //
- // This is different from indirect *not* byval, where the object
- // exists already, and the align attribute is purely
- // informative.
- assert(!Align.isZero());
- // For now, only add this when we have a byval argument.
- // TODO: be less lazy about updating test cases.
- if (AI.getIndirectByVal())
- Attrs.addAlignmentAttr(Align.getQuantity());
- // byval disables readnone and readonly.
- FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
- .removeAttribute(llvm::Attribute::ReadNone);
- break;
- }
- case ABIArgInfo::Ignore:
- case ABIArgInfo::Expand:
- continue;
- case ABIArgInfo::InAlloca:
- // inalloca disables readnone and readonly.
- FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
- .removeAttribute(llvm::Attribute::ReadNone);
- continue;
- }
- if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
- QualType PTy = RefTy->getPointeeType();
- if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
- Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
- .getQuantity());
- else if (getContext().getTargetAddressSpace(PTy) == 0)
- Attrs.addAttribute(llvm::Attribute::NonNull);
- }
- if (Attrs.hasAttributes()) {
- unsigned FirstIRArg, NumIRArgs;
- std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
- for (unsigned i = 0; i < NumIRArgs; i++)
- PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
- FirstIRArg + i + 1, Attrs));
- }
- }
- assert(ArgNo == FI.arg_size());
- if (FuncAttrs.hasAttributes())
- PAL.push_back(llvm::
- AttributeSet::get(getLLVMContext(),
- llvm::AttributeSet::FunctionIndex,
- FuncAttrs));
- }
- /// An argument came in as a promoted argument; demote it back to its
- /// declared type.
- static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
- const VarDecl *var,
- llvm::Value *value) {
- llvm::Type *varType = CGF.ConvertType(var->getType());
- // This can happen with promotions that actually don't change the
- // underlying type, like the enum promotions.
- if (value->getType() == varType) return value;
- assert((varType->isIntegerTy() || varType->isFloatingPointTy())
- && "unexpected promotion type");
- if (isa<llvm::IntegerType>(varType))
- return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
- return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
- }
- /// Returns the attribute (either parameter attribute, or function
- /// attribute), which declares argument ArgNo to be non-null.
- static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
- QualType ArgType, unsigned ArgNo) {
- // FIXME: __attribute__((nonnull)) can also be applied to:
- // - references to pointers, where the pointee is known to be
- // nonnull (apparently a Clang extension)
- // - transparent unions containing pointers
- // In the former case, LLVM IR cannot represent the constraint. In
- // the latter case, we have no guarantee that the transparent union
- // is in fact passed as a pointer.
- if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
- return nullptr;
- // First, check attribute on parameter itself.
- if (PVD) {
- if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
- return ParmNNAttr;
- }
- // Check function attributes.
- if (!FD)
- return nullptr;
- for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
- if (NNAttr->isNonNull(ArgNo))
- return NNAttr;
- }
- return nullptr;
- }
- void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
- llvm::Function *Fn,
- const FunctionArgList &Args) {
- if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
- // Naked functions don't have prologues.
- return;
- // If this is an implicit-return-zero function, go ahead and
- // initialize the return value. TODO: it might be nice to have
- // a more general mechanism for this that didn't require synthesized
- // return statements.
- if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
- if (FD->hasImplicitReturnZero()) {
- QualType RetTy = FD->getReturnType().getUnqualifiedType();
- llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
- llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
- Builder.CreateStore(Zero, ReturnValue);
- }
- }
- // FIXME: We no longer need the types from FunctionArgList; lift up and
- // simplify.
- ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
- // Flattened function arguments.
- SmallVector<llvm::Argument *, 16> FnArgs;
- FnArgs.reserve(IRFunctionArgs.totalIRArgs());
- for (auto &Arg : Fn->args()) {
- FnArgs.push_back(&Arg);
- }
- assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
- // If we're using inalloca, all the memory arguments are GEPs off of the last
- // parameter, which is a pointer to the complete memory area.
- Address ArgStruct = Address::invalid();
- const llvm::StructLayout *ArgStructLayout = nullptr;
- if (IRFunctionArgs.hasInallocaArg()) {
- ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
- ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
- FI.getArgStructAlignment());
- assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
- }
- // Name the struct return parameter.
- if (IRFunctionArgs.hasSRetArg()) {
- auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
- AI->setName("agg.result");
- AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
- llvm::Attribute::NoAlias));
- }
- // Track if we received the parameter as a pointer (indirect, byval, or
- // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it
- // into a local alloca for us.
- SmallVector<ParamValue, 16> ArgVals;
- ArgVals.reserve(Args.size());
- // Create a pointer value for every parameter declaration. This usually
- // entails copying one or more LLVM IR arguments into an alloca. Don't push
- // any cleanups or do anything that might unwind. We do that separately, so
- // we can push the cleanups in the correct order for the ABI.
- assert(FI.arg_size() == Args.size() &&
- "Mismatch between function signature & arguments.");
- unsigned ArgNo = 0;
- CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
- for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
- i != e; ++i, ++info_it, ++ArgNo) {
- const VarDecl *Arg = *i;
- QualType Ty = info_it->type;
- const ABIArgInfo &ArgI = info_it->info;
- bool isPromoted =
- isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
- unsigned FirstIRArg, NumIRArgs;
- std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
- switch (ArgI.getKind()) {
- case ABIArgInfo::InAlloca: {
- assert(NumIRArgs == 0);
- auto FieldIndex = ArgI.getInAllocaFieldIndex();
- CharUnits FieldOffset =
- CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
- Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
- Arg->getName());
- ArgVals.push_back(ParamValue::forIndirect(V));
- break;
- }
- case ABIArgInfo::Indirect: {
- assert(NumIRArgs == 1);
- Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
- if (!hasScalarEvaluationKind(Ty)) {
- // Aggregates and complex variables are accessed by reference. All we
- // need to do is realign the value, if requested.
- Address V = ParamAddr;
- if (ArgI.getIndirectRealign()) {
- Address AlignedTemp = CreateMemTemp(Ty, "coerce");
- // Copy from the incoming argument pointer to the temporary with the
- // appropriate alignment.
- //
- // FIXME: We should have a common utility for generating an aggregate
- // copy.
- CharUnits Size = getContext().getTypeSizeInChars(Ty);
- auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
- Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
- Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
- Builder.CreateMemCpy(Dst, Src, SizeVal, false);
- V = AlignedTemp;
- }
- ArgVals.push_back(ParamValue::forIndirect(V));
- } else {
- // Load scalar value from indirect argument.
- llvm::Value *V =
- EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
- if (isPromoted)
- V = emitArgumentDemotion(*this, Arg, V);
- ArgVals.push_back(ParamValue::forDirect(V));
- }
- break;
- }
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- // If we have the trivial case, handle it with no muss and fuss.
- if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
- ArgI.getCoerceToType() == ConvertType(Ty) &&
- ArgI.getDirectOffset() == 0) {
- assert(NumIRArgs == 1);
- auto AI = FnArgs[FirstIRArg];
- llvm::Value *V = AI;
- if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
- if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
- PVD->getFunctionScopeIndex()))
- AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
- AI->getArgNo() + 1,
- llvm::Attribute::NonNull));
- QualType OTy = PVD->getOriginalType();
- if (const auto *ArrTy =
- getContext().getAsConstantArrayType(OTy)) {
- // A C99 array parameter declaration with the static keyword also
- // indicates dereferenceability, and if the size is constant we can
- // use the dereferenceable attribute (which requires the size in
- // bytes).
- if (ArrTy->getSizeModifier() == ArrayType::Static) {
- QualType ETy = ArrTy->getElementType();
- uint64_t ArrSize = ArrTy->getSize().getZExtValue();
- if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
- ArrSize) {
- llvm::AttrBuilder Attrs;
- Attrs.addDereferenceableAttr(
- getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
- AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
- AI->getArgNo() + 1, Attrs));
- } else if (getContext().getTargetAddressSpace(ETy) == 0) {
- AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
- AI->getArgNo() + 1,
- llvm::Attribute::NonNull));
- }
- }
- } else if (const auto *ArrTy =
- getContext().getAsVariableArrayType(OTy)) {
- // For C99 VLAs with the static keyword, we don't know the size so
- // we can't use the dereferenceable attribute, but in addrspace(0)
- // we know that it must be nonnull.
- if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
- !getContext().getTargetAddressSpace(ArrTy->getElementType()))
- AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
- AI->getArgNo() + 1,
- llvm::Attribute::NonNull));
- }
- const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
- if (!AVAttr)
- if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
- AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
- if (AVAttr) {
- llvm::Value *AlignmentValue =
- EmitScalarExpr(AVAttr->getAlignment());
- llvm::ConstantInt *AlignmentCI =
- cast<llvm::ConstantInt>(AlignmentValue);
- unsigned Alignment =
- std::min((unsigned) AlignmentCI->getZExtValue(),
- +llvm::Value::MaximumAlignment);
- llvm::AttrBuilder Attrs;
- Attrs.addAlignmentAttr(Alignment);
- AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
- AI->getArgNo() + 1, Attrs));
- }
- }
- if (Arg->getType().isRestrictQualified())
- AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
- AI->getArgNo() + 1,
- llvm::Attribute::NoAlias));
- // Ensure the argument is the correct type.
- if (V->getType() != ArgI.getCoerceToType())
- V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
- if (isPromoted)
- V = emitArgumentDemotion(*this, Arg, V);
- if (const CXXMethodDecl *MD =
- dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
- if (MD->isVirtual() && Arg == CXXABIThisDecl)
- V = CGM.getCXXABI().
- adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
- }
- // Because of merging of function types from multiple decls it is
- // possible for the type of an argument to not match the corresponding
- // type in the function type. Since we are codegening the callee
- // in here, add a cast to the argument type.
- llvm::Type *LTy = ConvertType(Arg->getType());
- if (V->getType() != LTy)
- V = Builder.CreateBitCast(V, LTy);
- ArgVals.push_back(ParamValue::forDirect(V));
- break;
- }
- Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
- Arg->getName());
- // Pointer to store into.
- Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
- // Fast-isel and the optimizer generally like scalar values better than
- // FCAs, so we flatten them if this is safe to do for this argument.
- llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
- if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
- STy->getNumElements() > 1) {
- auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
- uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
- llvm::Type *DstTy = Ptr.getElementType();
- uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
- Address AddrToStoreInto = Address::invalid();
- if (SrcSize <= DstSize) {
- AddrToStoreInto =
- Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
- } else {
- AddrToStoreInto =
- CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
- }
- assert(STy->getNumElements() == NumIRArgs);
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- auto AI = FnArgs[FirstIRArg + i];
- AI->setName(Arg->getName() + ".coerce" + Twine(i));
- auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
- Address EltPtr =
- Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
- Builder.CreateStore(AI, EltPtr);
- }
- if (SrcSize > DstSize) {
- Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
- }
- } else {
- // Simple case, just do a coerced store of the argument into the alloca.
- assert(NumIRArgs == 1);
- auto AI = FnArgs[FirstIRArg];
- AI->setName(Arg->getName() + ".coerce");
- CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
- }
- // Match to what EmitParmDecl is expecting for this type.
- if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
- llvm::Value *V =
- EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
- if (isPromoted)
- V = emitArgumentDemotion(*this, Arg, V);
- ArgVals.push_back(ParamValue::forDirect(V));
- } else {
- ArgVals.push_back(ParamValue::forIndirect(Alloca));
- }
- break;
- }
- case ABIArgInfo::Expand: {
- // If this structure was expanded into multiple arguments then
- // we need to create a temporary and reconstruct it from the
- // arguments.
- Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
- LValue LV = MakeAddrLValue(Alloca, Ty);
- ArgVals.push_back(ParamValue::forIndirect(Alloca));
- auto FnArgIter = FnArgs.begin() + FirstIRArg;
- ExpandTypeFromArgs(Ty, LV, FnArgIter);
- assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
- for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
- auto AI = FnArgs[FirstIRArg + i];
- AI->setName(Arg->getName() + "." + Twine(i));
- }
- break;
- }
- case ABIArgInfo::Ignore:
- assert(NumIRArgs == 0);
- // Initialize the local variable appropriately.
- if (!hasScalarEvaluationKind(Ty)) {
- ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
- } else {
- llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
- ArgVals.push_back(ParamValue::forDirect(U));
- }
- break;
- }
- }
- if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
- for (int I = Args.size() - 1; I >= 0; --I)
- EmitParmDecl(*Args[I], ArgVals[I], I + 1);
- } else {
- for (unsigned I = 0, E = Args.size(); I != E; ++I)
- EmitParmDecl(*Args[I], ArgVals[I], I + 1);
- }
- }
- static void eraseUnusedBitCasts(llvm::Instruction *insn) {
- while (insn->use_empty()) {
- llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
- if (!bitcast) return;
- // This is "safe" because we would have used a ConstantExpr otherwise.
- insn = cast<llvm::Instruction>(bitcast->getOperand(0));
- bitcast->eraseFromParent();
- }
- }
- /// Try to emit a fused autorelease of a return result.
- static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
- llvm::Value *result) {
- // We must be immediately followed the cast.
- llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
- if (BB->empty()) return nullptr;
- if (&BB->back() != result) return nullptr;
- llvm::Type *resultType = result->getType();
- // result is in a BasicBlock and is therefore an Instruction.
- llvm::Instruction *generator = cast<llvm::Instruction>(result);
- SmallVector<llvm::Instruction*,4> insnsToKill;
- // Look for:
- // %generator = bitcast %type1* %generator2 to %type2*
- while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
- // We would have emitted this as a constant if the operand weren't
- // an Instruction.
- generator = cast<llvm::Instruction>(bitcast->getOperand(0));
- // Require the generator to be immediately followed by the cast.
- if (generator->getNextNode() != bitcast)
- return nullptr;
- insnsToKill.push_back(bitcast);
- }
- // Look for:
- // %generator = call i8* @objc_retain(i8* %originalResult)
- // or
- // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
- llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
- if (!call) return nullptr;
- bool doRetainAutorelease;
- if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
- doRetainAutorelease = true;
- } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
- .objc_retainAutoreleasedReturnValue) {
- doRetainAutorelease = false;
- // If we emitted an assembly marker for this call (and the
- // ARCEntrypoints field should have been set if so), go looking
- // for that call. If we can't find it, we can't do this
- // optimization. But it should always be the immediately previous
- // instruction, unless we needed bitcasts around the call.
- if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
- llvm::Instruction *prev = call->getPrevNode();
- assert(prev);
- if (isa<llvm::BitCastInst>(prev)) {
- prev = prev->getPrevNode();
- assert(prev);
- }
- assert(isa<llvm::CallInst>(prev));
- assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
- CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
- insnsToKill.push_back(prev);
- }
- } else {
- return nullptr;
- }
- result = call->getArgOperand(0);
- insnsToKill.push_back(call);
- // Keep killing bitcasts, for sanity. Note that we no longer care
- // about precise ordering as long as there's exactly one use.
- while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
- if (!bitcast->hasOneUse()) break;
- insnsToKill.push_back(bitcast);
- result = bitcast->getOperand(0);
- }
- // Delete all the unnecessary instructions, from latest to earliest.
- for (SmallVectorImpl<llvm::Instruction*>::iterator
- i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
- (*i)->eraseFromParent();
- // Do the fused retain/autorelease if we were asked to.
- if (doRetainAutorelease)
- result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
- // Cast back to the result type.
- return CGF.Builder.CreateBitCast(result, resultType);
- }
- /// If this is a +1 of the value of an immutable 'self', remove it.
- static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
- llvm::Value *result) {
- // This is only applicable to a method with an immutable 'self'.
- const ObjCMethodDecl *method =
- dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
- if (!method) return nullptr;
- const VarDecl *self = method->getSelfDecl();
- if (!self->getType().isConstQualified()) return nullptr;
- // Look for a retain call.
- llvm::CallInst *retainCall =
- dyn_cast<llvm::CallInst>(result->stripPointerCasts());
- if (!retainCall ||
- retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
- return nullptr;
- // Look for an ordinary load of 'self'.
- llvm::Value *retainedValue = retainCall->getArgOperand(0);
- llvm::LoadInst *load =
- dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
- if (!load || load->isAtomic() || load->isVolatile() ||
- load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
- return nullptr;
- // Okay! Burn it all down. This relies for correctness on the
- // assumption that the retain is emitted as part of the return and
- // that thereafter everything is used "linearly".
- llvm::Type *resultType = result->getType();
- eraseUnusedBitCasts(cast<llvm::Instruction>(result));
- assert(retainCall->use_empty());
- retainCall->eraseFromParent();
- eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
- return CGF.Builder.CreateBitCast(load, resultType);
- }
- /// Emit an ARC autorelease of the result of a function.
- ///
- /// \return the value to actually return from the function
- static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
- llvm::Value *result) {
- // If we're returning 'self', kill the initial retain. This is a
- // heuristic attempt to "encourage correctness" in the really unfortunate
- // case where we have a return of self during a dealloc and we desperately
- // need to avoid the possible autorelease.
- if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
- return self;
- // At -O0, try to emit a fused retain/autorelease.
- if (CGF.shouldUseFusedARCCalls())
- if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
- return fused;
- return CGF.EmitARCAutoreleaseReturnValue(result);
- }
- /// Heuristically search for a dominating store to the return-value slot.
- static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
- // Check if a User is a store which pointerOperand is the ReturnValue.
- // We are looking for stores to the ReturnValue, not for stores of the
- // ReturnValue to some other location.
- auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
- auto *SI = dyn_cast<llvm::StoreInst>(U);
- if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
- return nullptr;
- // These aren't actually possible for non-coerced returns, and we
- // only care about non-coerced returns on this code path.
- assert(!SI->isAtomic() && !SI->isVolatile());
- return SI;
- };
- // If there are multiple uses of the return-value slot, just check
- // for something immediately preceding the IP. Sometimes this can
- // happen with how we generate implicit-returns; it can also happen
- // with noreturn cleanups.
- if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
- llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
- if (IP->empty()) return nullptr;
- llvm::Instruction *I = &IP->back();
- // Skip lifetime markers
- for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
- IE = IP->rend();
- II != IE; ++II) {
- if (llvm::IntrinsicInst *Intrinsic =
- dyn_cast<llvm::IntrinsicInst>(&*II)) {
- if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
- const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
- ++II;
- if (II == IE)
- break;
- if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
- continue;
- }
- }
- I = &*II;
- break;
- }
- return GetStoreIfValid(I);
- }
- llvm::StoreInst *store =
- GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
- if (!store) return nullptr;
- // Now do a first-and-dirty dominance check: just walk up the
- // single-predecessors chain from the current insertion point.
- llvm::BasicBlock *StoreBB = store->getParent();
- llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
- while (IP != StoreBB) {
- if (!(IP = IP->getSinglePredecessor()))
- return nullptr;
- }
- // Okay, the store's basic block dominates the insertion point; we
- // can do our thing.
- return store;
- }
- void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
- bool EmitRetDbgLoc,
- SourceLocation EndLoc) {
- if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
- // Naked functions don't have epilogues.
- Builder.CreateUnreachable();
- return;
- }
- // Functions with no result always return void.
- if (!ReturnValue.isValid()) {
- Builder.CreateRetVoid();
- return;
- }
- llvm::DebugLoc RetDbgLoc;
- llvm::Value *RV = nullptr;
- QualType RetTy = FI.getReturnType();
- const ABIArgInfo &RetAI = FI.getReturnInfo();
- switch (RetAI.getKind()) {
- case ABIArgInfo::InAlloca:
- // Aggregrates get evaluated directly into the destination. Sometimes we
- // need to return the sret value in a register, though.
- assert(hasAggregateEvaluationKind(RetTy));
- if (RetAI.getInAllocaSRet()) {
- llvm::Function::arg_iterator EI = CurFn->arg_end();
- --EI;
- llvm::Value *ArgStruct = EI;
- llvm::Value *SRet = Builder.CreateStructGEP(
- nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
- RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
- }
- break;
- case ABIArgInfo::Indirect: {
- auto AI = CurFn->arg_begin();
- if (RetAI.isSRetAfterThis())
- ++AI;
- switch (getEvaluationKind(RetTy)) {
- case TEK_Complex: {
- ComplexPairTy RT =
- EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
- EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy),
- /*isInit*/ true);
- break;
- }
- case TEK_Aggregate:
- // Do nothing; aggregrates get evaluated directly into the destination.
- break;
- case TEK_Scalar:
- EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
- MakeNaturalAlignAddrLValue(AI, RetTy),
- /*isInit*/ true);
- break;
- }
- break;
- }
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct:
- if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
- RetAI.getDirectOffset() == 0) {
- // The internal return value temp always will have pointer-to-return-type
- // type, just do a load.
- // If there is a dominating store to ReturnValue, we can elide
- // the load, zap the store, and usually zap the alloca.
- if (llvm::StoreInst *SI =
- findDominatingStoreToReturnValue(*this)) {
- // Reuse the debug location from the store unless there is
- // cleanup code to be emitted between the store and return
- // instruction.
- if (EmitRetDbgLoc && !AutoreleaseResult)
- RetDbgLoc = SI->getDebugLoc();
- // Get the stored value and nuke the now-dead store.
- RV = SI->getValueOperand();
- SI->eraseFromParent();
- // If that was the only use of the return value, nuke it as well now.
- auto returnValueInst = ReturnValue.getPointer();
- if (returnValueInst->use_empty()) {
- if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
- alloca->eraseFromParent();
- ReturnValue = Address::invalid();
- }
- }
- // Otherwise, we have to do a simple load.
- } else {
- RV = Builder.CreateLoad(ReturnValue);
- }
- } else {
- // If the value is offset in memory, apply the offset now.
- Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
- RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
- }
- // In ARC, end functions that return a retainable type with a call
- // to objc_autoreleaseReturnValue.
- if (AutoreleaseResult) {
- assert(getLangOpts().ObjCAutoRefCount &&
- !FI.isReturnsRetained() &&
- RetTy->isObjCRetainableType());
- RV = emitAutoreleaseOfResult(*this, RV);
- }
- break;
- case ABIArgInfo::Ignore:
- break;
- case ABIArgInfo::Expand:
- llvm_unreachable("Invalid ABI kind for return argument");
- }
- llvm::Instruction *Ret;
- if (RV) {
- if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
- if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) {
- SanitizerScope SanScope(this);
- llvm::Value *Cond = Builder.CreateICmpNE(
- RV, llvm::Constant::getNullValue(RV->getType()));
- llvm::Constant *StaticData[] = {
- EmitCheckSourceLocation(EndLoc),
- EmitCheckSourceLocation(RetNNAttr->getLocation()),
- };
- EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
- "nonnull_return", StaticData, None);
- }
- }
- Ret = Builder.CreateRet(RV);
- } else {
- Ret = Builder.CreateRetVoid();
- }
- if (RetDbgLoc)
- Ret->setDebugLoc(std::move(RetDbgLoc));
- }
- static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
- const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
- return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
- }
- static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
- QualType Ty) {
- // FIXME: Generate IR in one pass, rather than going back and fixing up these
- // placeholders.
- llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
- llvm::Value *Placeholder =
- llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
- Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder);
- // FIXME: When we generate this IR in one pass, we shouldn't need
- // this win32-specific alignment hack.
- CharUnits Align = CharUnits::fromQuantity(4);
- return AggValueSlot::forAddr(Address(Placeholder, Align),
- Ty.getQualifiers(),
- AggValueSlot::IsNotDestructed,
- AggValueSlot::DoesNotNeedGCBarriers,
- AggValueSlot::IsNotAliased);
- }
- void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
- const VarDecl *param,
- SourceLocation loc) {
- // StartFunction converted the ABI-lowered parameter(s) into a
- // local alloca. We need to turn that into an r-value suitable
- // for EmitCall.
- Address local = GetAddrOfLocalVar(param);
- QualType type = param->getType();
- // For the most part, we just need to load the alloca, except:
- // 1) aggregate r-values are actually pointers to temporaries, and
- // 2) references to non-scalars are pointers directly to the aggregate.
- // I don't know why references to scalars are different here.
- if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
- if (!hasScalarEvaluationKind(ref->getPointeeType()))
- return args.add(RValue::getAggregate(local), type);
- // Locals which are references to scalars are represented
- // with allocas holding the pointer.
- return args.add(RValue::get(Builder.CreateLoad(local)), type);
- }
- assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
- "cannot emit delegate call arguments for inalloca arguments!");
- args.add(convertTempToRValue(local, type, loc), type);
- }
- static bool isProvablyNull(llvm::Value *addr) {
- return isa<llvm::ConstantPointerNull>(addr);
- }
- static bool isProvablyNonNull(llvm::Value *addr) {
- return isa<llvm::AllocaInst>(addr);
- }
- /// Emit the actual writing-back of a writeback.
- static void emitWriteback(CodeGenFunction &CGF,
- const CallArgList::Writeback &writeback) {
- const LValue &srcLV = writeback.Source;
- Address srcAddr = srcLV.getAddress();
- assert(!isProvablyNull(srcAddr.getPointer()) &&
- "shouldn't have writeback for provably null argument");
- llvm::BasicBlock *contBB = nullptr;
- // If the argument wasn't provably non-null, we need to null check
- // before doing the store.
- bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
- if (!provablyNonNull) {
- llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
- contBB = CGF.createBasicBlock("icr.done");
- llvm::Value *isNull =
- CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
- CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
- CGF.EmitBlock(writebackBB);
- }
- // Load the value to writeback.
- llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
- // Cast it back, in case we're writing an id to a Foo* or something.
- value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
- "icr.writeback-cast");
-
- // Perform the writeback.
- // If we have a "to use" value, it's something we need to emit a use
- // of. This has to be carefully threaded in: if it's done after the
- // release it's potentially undefined behavior (and the optimizer
- // will ignore it), and if it happens before the retain then the
- // optimizer could move the release there.
- if (writeback.ToUse) {
- assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
- // Retain the new value. No need to block-copy here: the block's
- // being passed up the stack.
- value = CGF.EmitARCRetainNonBlock(value);
- // Emit the intrinsic use here.
- CGF.EmitARCIntrinsicUse(writeback.ToUse);
- // Load the old value (primitively).
- llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
- // Put the new value in place (primitively).
- CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
- // Release the old value.
- CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
- // Otherwise, we can just do a normal lvalue store.
- } else {
- CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
- }
- // Jump to the continuation block.
- if (!provablyNonNull)
- CGF.EmitBlock(contBB);
- }
- static void emitWritebacks(CodeGenFunction &CGF,
- const CallArgList &args) {
- for (const auto &I : args.writebacks())
- emitWriteback(CGF, I);
- }
- static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
- const CallArgList &CallArgs) {
- assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
- ArrayRef<CallArgList::CallArgCleanup> Cleanups =
- CallArgs.getCleanupsToDeactivate();
- // Iterate in reverse to increase the likelihood of popping the cleanup.
- for (const auto &I : llvm::reverse(Cleanups)) {
- CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
- I.IsActiveIP->eraseFromParent();
- }
- }
- static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
- if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
- if (uop->getOpcode() == UO_AddrOf)
- return uop->getSubExpr();
- return nullptr;
- }
- /// Emit an argument that's being passed call-by-writeback. That is,
- /// we are passing the address of an __autoreleased temporary; it
- /// might be copy-initialized with the current value of the given
- /// address, but it will definitely be copied out of after the call.
- static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
- const ObjCIndirectCopyRestoreExpr *CRE) {
- LValue srcLV;
- // Make an optimistic effort to emit the address as an l-value.
- // This can fail if the argument expression is more complicated.
- if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
- srcLV = CGF.EmitLValue(lvExpr);
- // Otherwise, just emit it as a scalar.
- } else {
- Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
- QualType srcAddrType =
- CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
- srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
- }
- Address srcAddr = srcLV.getAddress();
- // The dest and src types don't necessarily match in LLVM terms
- // because of the crazy ObjC compatibility rules.
- llvm::PointerType *destType =
- cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
- // If the address is a constant null, just pass the appropriate null.
- if (isProvablyNull(srcAddr.getPointer())) {
- args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
- CRE->getType());
- return;
- }
- // Create the temporary.
- Address temp = CGF.CreateTempAlloca(destType->getElementType(),
- CGF.getPointerAlign(),
- "icr.temp");
- // Loading an l-value can introduce a cleanup if the l-value is __weak,
- // and that cleanup will be conditional if we can't prove that the l-value
- // isn't null, so we need to register a dominating point so that the cleanups
- // system will make valid IR.
- CodeGenFunction::ConditionalEvaluation condEval(CGF);
-
- // Zero-initialize it if we're not doing a copy-initialization.
- bool shouldCopy = CRE->shouldCopy();
- if (!shouldCopy) {
- llvm::Value *null =
- llvm::ConstantPointerNull::get(
- cast<llvm::PointerType>(destType->getElementType()));
- CGF.Builder.CreateStore(null, temp);
- }
- llvm::BasicBlock *contBB = nullptr;
- llvm::BasicBlock *originBB = nullptr;
- // If the address is *not* known to be non-null, we need to switch.
- llvm::Value *finalArgument;
- bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
- if (provablyNonNull) {
- finalArgument = temp.getPointer();
- } else {
- llvm::Value *isNull =
- CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
- finalArgument = CGF.Builder.CreateSelect(isNull,
- llvm::ConstantPointerNull::get(destType),
- temp.getPointer(), "icr.argument");
- // If we need to copy, then the load has to be conditional, which
- // means we need control flow.
- if (shouldCopy) {
- originBB = CGF.Builder.GetInsertBlock();
- contBB = CGF.createBasicBlock("icr.cont");
- llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
- CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
- CGF.EmitBlock(copyBB);
- condEval.begin(CGF);
- }
- }
- llvm::Value *valueToUse = nullptr;
- // Perform a copy if necessary.
- if (shouldCopy) {
- RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
- assert(srcRV.isScalar());
- llvm::Value *src = srcRV.getScalarVal();
- src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
- "icr.cast");
- // Use an ordinary store, not a store-to-lvalue.
- CGF.Builder.CreateStore(src, temp);
- // If optimization is enabled, and the value was held in a
- // __strong variable, we need to tell the optimizer that this
- // value has to stay alive until we're doing the store back.
- // This is because the temporary is effectively unretained,
- // and so otherwise we can violate the high-level semantics.
- if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
- srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
- valueToUse = src;
- }
- }
-
- // Finish the control flow if we needed it.
- if (shouldCopy && !provablyNonNull) {
- llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
- CGF.EmitBlock(contBB);
- // Make a phi for the value to intrinsically use.
- if (valueToUse) {
- llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
- "icr.to-use");
- phiToUse->addIncoming(valueToUse, copyBB);
- phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
- originBB);
- valueToUse = phiToUse;
- }
- condEval.end(CGF);
- }
- args.addWriteback(srcLV, temp, valueToUse);
- args.add(RValue::get(finalArgument), CRE->getType());
- }
- void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
- assert(!StackBase && !StackCleanup.isValid());
- // Save the stack.
- llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
- StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
- }
- void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
- if (StackBase) {
- // Restore the stack after the call.
- llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
- CGF.Builder.CreateCall(F, StackBase);
- }
- }
- void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
- SourceLocation ArgLoc,
- const FunctionDecl *FD,
- unsigned ParmNum) {
- if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
- return;
- auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
- unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
- auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
- if (!NNAttr)
- return;
- SanitizerScope SanScope(this);
- assert(RV.isScalar());
- llvm::Value *V = RV.getScalarVal();
- llvm::Value *Cond =
- Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
- llvm::Constant *StaticData[] = {
- EmitCheckSourceLocation(ArgLoc),
- EmitCheckSourceLocation(NNAttr->getLocation()),
- llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
- };
- EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
- "nonnull_arg", StaticData, None);
- }
- void CodeGenFunction::EmitCallArgs(
- CallArgList &Args, ArrayRef<QualType> ArgTypes,
- llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
- const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) {
- assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
- // We *have* to evaluate arguments from right to left in the MS C++ ABI,
- // because arguments are destroyed left to right in the callee.
- if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
- // Insert a stack save if we're going to need any inalloca args.
- bool HasInAllocaArgs = false;
- for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
- I != E && !HasInAllocaArgs; ++I)
- HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
- if (HasInAllocaArgs) {
- assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
- Args.allocateArgumentMemory(*this);
- }
- // Evaluate each argument.
- size_t CallArgsStart = Args.size();
- for (int I = ArgTypes.size() - 1; I >= 0; --I) {
- CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
- EmitCallArg(Args, *Arg, ArgTypes[I]);
- EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
- CalleeDecl, ParamsToSkip + I);
- }
- // Un-reverse the arguments we just evaluated so they match up with the LLVM
- // IR function.
- std::reverse(Args.begin() + CallArgsStart, Args.end());
- return;
- }
- for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
- CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
- assert(Arg != ArgRange.end());
- EmitCallArg(Args, *Arg, ArgTypes[I]);
- EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
- CalleeDecl, ParamsToSkip + I);
- }
- }
- namespace {
- struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
- DestroyUnpassedArg(Address Addr, QualType Ty)
- : Addr(Addr), Ty(Ty) {}
- Address Addr;
- QualType Ty;
- void Emit(CodeGenFunction &CGF, Flags flags) override {
- const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
- assert(!Dtor->isTrivial());
- CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
- /*Delegating=*/false, Addr);
- }
- };
- }
- struct DisableDebugLocationUpdates {
- CodeGenFunction &CGF;
- bool disabledDebugInfo;
- DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
- if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
- CGF.disableDebugInfo();
- }
- ~DisableDebugLocationUpdates() {
- if (disabledDebugInfo)
- CGF.enableDebugInfo();
- }
- };
- void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
- QualType type) {
- DisableDebugLocationUpdates Dis(*this, E);
- if (const ObjCIndirectCopyRestoreExpr *CRE
- = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
- assert(getLangOpts().ObjCAutoRefCount);
- assert(getContext().hasSameType(E->getType(), type));
- return emitWritebackArg(*this, args, CRE);
- }
- assert(type->isReferenceType() == E->isGLValue() &&
- "reference binding to unmaterialized r-value!");
- if (E->isGLValue()) {
- assert(E->getObjectKind() == OK_Ordinary);
- return args.add(EmitReferenceBindingToExpr(E), type);
- }
- bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
- // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
- // However, we still have to push an EH-only cleanup in case we unwind before
- // we make it to the call.
- if (HasAggregateEvalKind &&
- CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
- // If we're using inalloca, use the argument memory. Otherwise, use a
- // temporary.
- AggValueSlot Slot;
- if (args.isUsingInAlloca())
- Slot = createPlaceholderSlot(*this, type);
- else
- Slot = CreateAggTemp(type, "agg.tmp");
- const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
- bool DestroyedInCallee =
- RD && RD->hasNonTrivialDestructor() &&
- CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
- if (DestroyedInCallee)
- Slot.setExternallyDestructed();
- EmitAggExpr(E, Slot);
- RValue RV = Slot.asRValue();
- args.add(RV, type);
- if (DestroyedInCallee) {
- // Create a no-op GEP between the placeholder and the cleanup so we can
- // RAUW it successfully. It also serves as a marker of the first
- // instruction where the cleanup is active.
- pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
- type);
- // This unreachable is a temporary marker which will be removed later.
- llvm::Instruction *IsActive = Builder.CreateUnreachable();
- args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
- }
- return;
- }
- if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
- cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
- LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
- assert(L.isSimple());
- if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
- args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
- } else {
- // We can't represent a misaligned lvalue in the CallArgList, so copy
- // to an aligned temporary now.
- Address tmp = CreateMemTemp(type);
- EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
- args.add(RValue::getAggregate(tmp), type);
- }
- return;
- }
- args.add(EmitAnyExprToTemp(E), type);
- }
- QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
- // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
- // implicitly widens null pointer constants that are arguments to varargs
- // functions to pointer-sized ints.
- if (!getTarget().getTriple().isOSWindows())
- return Arg->getType();
- if (Arg->getType()->isIntegerType() &&
- getContext().getTypeSize(Arg->getType()) <
- getContext().getTargetInfo().getPointerWidth(0) &&
- Arg->isNullPointerConstant(getContext(),
- Expr::NPC_ValueDependentIsNotNull)) {
- return getContext().getIntPtrType();
- }
- return Arg->getType();
- }
- // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
- // optimizer it can aggressively ignore unwind edges.
- void
- CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
- if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
- !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
- Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
- CGM.getNoObjCARCExceptionsMetadata());
- }
- /// Emits a call to the given no-arguments nounwind runtime function.
- llvm::CallInst *
- CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
- const llvm::Twine &name) {
- return EmitNounwindRuntimeCall(callee, None, name);
- }
- /// Emits a call to the given nounwind runtime function.
- llvm::CallInst *
- CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
- ArrayRef<llvm::Value*> args,
- const llvm::Twine &name) {
- llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
- call->setDoesNotThrow();
- return call;
- }
- /// Emits a simple call (never an invoke) to the given no-arguments
- /// runtime function.
- llvm::CallInst *
- CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
- const llvm::Twine &name) {
- return EmitRuntimeCall(callee, None, name);
- }
- /// Emits a simple call (never an invoke) to the given runtime
- /// function.
- llvm::CallInst *
- CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
- ArrayRef<llvm::Value*> args,
- const llvm::Twine &name) {
- llvm::CallInst *call = Builder.CreateCall(callee, args, name);
- call->setCallingConv(getRuntimeCC());
- return call;
- }
- /// Emits a call or invoke to the given noreturn runtime function.
- void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
- ArrayRef<llvm::Value*> args) {
- if (getInvokeDest()) {
- llvm::InvokeInst *invoke =
- Builder.CreateInvoke(callee,
- getUnreachableBlock(),
- getInvokeDest(),
- args);
- invoke->setDoesNotReturn();
- invoke->setCallingConv(getRuntimeCC());
- } else {
- llvm::CallInst *call = Builder.CreateCall(callee, args);
- call->setDoesNotReturn();
- call->setCallingConv(getRuntimeCC());
- Builder.CreateUnreachable();
- }
- }
- /// Emits a call or invoke instruction to the given nullary runtime
- /// function.
- llvm::CallSite
- CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
- const Twine &name) {
- return EmitRuntimeCallOrInvoke(callee, None, name);
- }
- /// Emits a call or invoke instruction to the given runtime function.
- llvm::CallSite
- CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
- ArrayRef<llvm::Value*> args,
- const Twine &name) {
- llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
- callSite.setCallingConv(getRuntimeCC());
- return callSite;
- }
- /// Emits a call or invoke instruction to the given function, depending
- /// on the current state of the EH stack.
- llvm::CallSite
- CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
- ArrayRef<llvm::Value *> Args,
- const Twine &Name) {
- llvm::BasicBlock *InvokeDest = getInvokeDest();
- llvm::Instruction *Inst;
- if (!InvokeDest)
- Inst = Builder.CreateCall(Callee, Args, Name);
- else {
- llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
- Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
- EmitBlock(ContBB);
- }
- // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
- // optimizer it can aggressively ignore unwind edges.
- if (CGM.getLangOpts().ObjCAutoRefCount)
- AddObjCARCExceptionMetadata(Inst);
- return llvm::CallSite(Inst);
- }
- /// \brief Store a non-aggregate value to an address to initialize it. For
- /// initialization, a non-atomic store will be used.
- static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
- LValue Dst) {
- if (Src.isScalar())
- CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
- else
- CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
- }
- void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
- llvm::Value *New) {
- DeferredReplacements.push_back(std::make_pair(Old, New));
- }
- RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
- llvm::Value *Callee,
- ReturnValueSlot ReturnValue,
- const CallArgList &CallArgs,
- const Decl *TargetDecl,
- llvm::Instruction **callOrInvoke) {
- // FIXME: We no longer need the types from CallArgs; lift up and simplify.
- // Handle struct-return functions by passing a pointer to the
- // location that we would like to return into.
- QualType RetTy = CallInfo.getReturnType();
- const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
- llvm::FunctionType *IRFuncTy =
- cast<llvm::FunctionType>(
- cast<llvm::PointerType>(Callee->getType())->getElementType());
- // If we're using inalloca, insert the allocation after the stack save.
- // FIXME: Do this earlier rather than hacking it in here!
- Address ArgMemory = Address::invalid();
- const llvm::StructLayout *ArgMemoryLayout = nullptr;
- if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
- ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct);
- llvm::Instruction *IP = CallArgs.getStackBase();
- llvm::AllocaInst *AI;
- if (IP) {
- IP = IP->getNextNode();
- AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
- } else {
- AI = CreateTempAlloca(ArgStruct, "argmem");
- }
- auto Align = CallInfo.getArgStructAlignment();
- AI->setAlignment(Align.getQuantity());
- AI->setUsedWithInAlloca(true);
- assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
- ArgMemory = Address(AI, Align);
- }
- // Helper function to drill into the inalloca allocation.
- auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
- auto FieldOffset =
- CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
- return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
- };
- ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
- SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
- // If the call returns a temporary with struct return, create a temporary
- // alloca to hold the result, unless one is given to us.
- Address SRetPtr = Address::invalid();
- size_t UnusedReturnSize = 0;
- if (RetAI.isIndirect() || RetAI.isInAlloca()) {
- if (!ReturnValue.isNull()) {
- SRetPtr = ReturnValue.getValue();
- } else {
- SRetPtr = CreateMemTemp(RetTy);
- if (HaveInsertPoint() && ReturnValue.isUnused()) {
- uint64_t size =
- CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
- if (EmitLifetimeStart(size, SRetPtr.getPointer()))
- UnusedReturnSize = size;
- }
- }
- if (IRFunctionArgs.hasSRetArg()) {
- IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
- } else {
- Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
- Builder.CreateStore(SRetPtr.getPointer(), Addr);
- }
- }
- assert(CallInfo.arg_size() == CallArgs.size() &&
- "Mismatch between function signature & arguments.");
- unsigned ArgNo = 0;
- CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
- for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
- I != E; ++I, ++info_it, ++ArgNo) {
- const ABIArgInfo &ArgInfo = info_it->info;
- RValue RV = I->RV;
- // Insert a padding argument to ensure proper alignment.
- if (IRFunctionArgs.hasPaddingArg(ArgNo))
- IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
- llvm::UndefValue::get(ArgInfo.getPaddingType());
- unsigned FirstIRArg, NumIRArgs;
- std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
- switch (ArgInfo.getKind()) {
- case ABIArgInfo::InAlloca: {
- assert(NumIRArgs == 0);
- assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
- if (RV.isAggregate()) {
- // Replace the placeholder with the appropriate argument slot GEP.
- llvm::Instruction *Placeholder =
- cast<llvm::Instruction>(RV.getAggregatePointer());
- CGBuilderTy::InsertPoint IP = Builder.saveIP();
- Builder.SetInsertPoint(Placeholder);
- Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
- Builder.restoreIP(IP);
- deferPlaceholderReplacement(Placeholder, Addr.getPointer());
- } else {
- // Store the RValue into the argument struct.
- Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
- unsigned AS = Addr.getType()->getPointerAddressSpace();
- llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
- // There are some cases where a trivial bitcast is not avoidable. The
- // definition of a type later in a translation unit may change it's type
- // from {}* to (%struct.foo*)*.
- if (Addr.getType() != MemType)
- Addr = Builder.CreateBitCast(Addr, MemType);
- LValue argLV = MakeAddrLValue(Addr, I->Ty);
- EmitInitStoreOfNonAggregate(*this, RV, argLV);
- }
- break;
- }
- case ABIArgInfo::Indirect: {
- assert(NumIRArgs == 1);
- if (RV.isScalar() || RV.isComplex()) {
- // Make a temporary alloca to pass the argument.
- Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
- IRCallArgs[FirstIRArg] = Addr.getPointer();
- LValue argLV = MakeAddrLValue(Addr, I->Ty);
- EmitInitStoreOfNonAggregate(*this, RV, argLV);
- } else {
- // We want to avoid creating an unnecessary temporary+copy here;
- // however, we need one in three cases:
- // 1. If the argument is not byval, and we are required to copy the
- // source. (This case doesn't occur on any common architecture.)
- // 2. If the argument is byval, RV is not sufficiently aligned, and
- // we cannot force it to be sufficiently aligned.
- // 3. If the argument is byval, but RV is located in an address space
- // different than that of the argument (0).
- Address Addr = RV.getAggregateAddress();
- CharUnits Align = ArgInfo.getIndirectAlign();
- const llvm::DataLayout *TD = &CGM.getDataLayout();
- const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
- const unsigned ArgAddrSpace =
- (FirstIRArg < IRFuncTy->getNumParams()
- ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
- : 0);
- if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
- (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
- llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
- Align.getQuantity(), *TD)
- < Align.getQuantity()) ||
- (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
- // Create an aligned temporary, and copy to it.
- Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
- IRCallArgs[FirstIRArg] = AI.getPointer();
- EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
- } else {
- // Skip the extra memcpy call.
- IRCallArgs[FirstIRArg] = Addr.getPointer();
- }
- }
- break;
- }
- case ABIArgInfo::Ignore:
- assert(NumIRArgs == 0);
- break;
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
- ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
- ArgInfo.getDirectOffset() == 0) {
- assert(NumIRArgs == 1);
- llvm::Value *V;
- if (RV.isScalar())
- V = RV.getScalarVal();
- else
- V = Builder.CreateLoad(RV.getAggregateAddress());
- // We might have to widen integers, but we should never truncate.
- if (ArgInfo.getCoerceToType() != V->getType() &&
- V->getType()->isIntegerTy())
- V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
- // If the argument doesn't match, perform a bitcast to coerce it. This
- // can happen due to trivial type mismatches.
- if (FirstIRArg < IRFuncTy->getNumParams() &&
- V->getType() != IRFuncTy->getParamType(FirstIRArg))
- V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
- IRCallArgs[FirstIRArg] = V;
- break;
- }
- // FIXME: Avoid the conversion through memory if possible.
- Address Src = Address::invalid();
- if (RV.isScalar() || RV.isComplex()) {
- Src = CreateMemTemp(I->Ty, "coerce");
- LValue SrcLV = MakeAddrLValue(Src, I->Ty);
- EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
- } else {
- Src = RV.getAggregateAddress();
- }
- // If the value is offset in memory, apply the offset now.
- Src = emitAddressAtOffset(*this, Src, ArgInfo);
- // Fast-isel and the optimizer generally like scalar values better than
- // FCAs, so we flatten them if this is safe to do for this argument.
- llvm::StructType *STy =
- dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
- if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
- llvm::Type *SrcTy = Src.getType()->getElementType();
- uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
- uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
- // If the source type is smaller than the destination type of the
- // coerce-to logic, copy the source value into a temp alloca the size
- // of the destination type to allow loading all of it. The bits past
- // the source value are left undef.
- if (SrcSize < DstSize) {
- Address TempAlloca
- = CreateTempAlloca(STy, Src.getAlignment(),
- Src.getName() + ".coerce");
- Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
- Src = TempAlloca;
- } else {
- Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy));
- }
- auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
- assert(NumIRArgs == STy->getNumElements());
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
- Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
- llvm::Value *LI = Builder.CreateLoad(EltPtr);
- IRCallArgs[FirstIRArg + i] = LI;
- }
- } else {
- // In the simple case, just pass the coerced loaded value.
- assert(NumIRArgs == 1);
- IRCallArgs[FirstIRArg] =
- CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
- }
- break;
- }
- case ABIArgInfo::Expand:
- unsigned IRArgPos = FirstIRArg;
- ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
- assert(IRArgPos == FirstIRArg + NumIRArgs);
- break;
- }
- }
- if (ArgMemory.isValid()) {
- llvm::Value *Arg = ArgMemory.getPointer();
- if (CallInfo.isVariadic()) {
- // When passing non-POD arguments by value to variadic functions, we will
- // end up with a variadic prototype and an inalloca call site. In such
- // cases, we can't do any parameter mismatch checks. Give up and bitcast
- // the callee.
- unsigned CalleeAS =
- cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
- Callee = Builder.CreateBitCast(
- Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
- } else {
- llvm::Type *LastParamTy =
- IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
- if (Arg->getType() != LastParamTy) {
- #ifndef NDEBUG
- // Assert that these structs have equivalent element types.
- llvm::StructType *FullTy = CallInfo.getArgStruct();
- llvm::StructType *DeclaredTy = cast<llvm::StructType>(
- cast<llvm::PointerType>(LastParamTy)->getElementType());
- assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
- for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
- DE = DeclaredTy->element_end(),
- FI = FullTy->element_begin();
- DI != DE; ++DI, ++FI)
- assert(*DI == *FI);
- #endif
- Arg = Builder.CreateBitCast(Arg, LastParamTy);
- }
- }
- assert(IRFunctionArgs.hasInallocaArg());
- IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
- }
- if (!CallArgs.getCleanupsToDeactivate().empty())
- deactivateArgCleanupsBeforeCall(*this, CallArgs);
- // If the callee is a bitcast of a function to a varargs pointer to function
- // type, check to see if we can remove the bitcast. This handles some cases
- // with unprototyped functions.
- if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
- if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
- llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
- llvm::FunctionType *CurFT =
- cast<llvm::FunctionType>(CurPT->getElementType());
- llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
- if (CE->getOpcode() == llvm::Instruction::BitCast &&
- ActualFT->getReturnType() == CurFT->getReturnType() &&
- ActualFT->getNumParams() == CurFT->getNumParams() &&
- ActualFT->getNumParams() == IRCallArgs.size() &&
- (CurFT->isVarArg() || !ActualFT->isVarArg())) {
- bool ArgsMatch = true;
- for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
- if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
- ArgsMatch = false;
- break;
- }
- // Strip the cast if we can get away with it. This is a nice cleanup,
- // but also allows us to inline the function at -O0 if it is marked
- // always_inline.
- if (ArgsMatch)
- Callee = CalleeF;
- }
- }
- assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
- for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
- // Inalloca argument can have different type.
- if (IRFunctionArgs.hasInallocaArg() &&
- i == IRFunctionArgs.getInallocaArgNo())
- continue;
- if (i < IRFuncTy->getNumParams())
- assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
- }
- unsigned CallingConv;
- CodeGen::AttributeListType AttributeList;
- CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
- CallingConv, true);
- llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
- AttributeList);
- llvm::BasicBlock *InvokeDest = nullptr;
- if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
- llvm::Attribute::NoUnwind) ||
- currentFunctionUsesSEHTry())
- InvokeDest = getInvokeDest();
- llvm::CallSite CS;
- if (!InvokeDest) {
- CS = Builder.CreateCall(Callee, IRCallArgs);
- } else {
- llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
- CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs);
- EmitBlock(Cont);
- }
- if (callOrInvoke)
- *callOrInvoke = CS.getInstruction();
- if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
- !CS.hasFnAttr(llvm::Attribute::NoInline))
- Attrs =
- Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
- llvm::Attribute::AlwaysInline);
- // Disable inlining inside SEH __try blocks.
- if (isSEHTryScope())
- Attrs =
- Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
- llvm::Attribute::NoInline);
- CS.setAttributes(Attrs);
- CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
- // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
- // optimizer it can aggressively ignore unwind edges.
- if (CGM.getLangOpts().ObjCAutoRefCount)
- AddObjCARCExceptionMetadata(CS.getInstruction());
- // If the call doesn't return, finish the basic block and clear the
- // insertion point; this allows the rest of IRgen to discard
- // unreachable code.
- if (CS.doesNotReturn()) {
- if (UnusedReturnSize)
- EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
- SRetPtr.getPointer());
- Builder.CreateUnreachable();
- Builder.ClearInsertionPoint();
- // FIXME: For now, emit a dummy basic block because expr emitters in
- // generally are not ready to handle emitting expressions at unreachable
- // points.
- EnsureInsertPoint();
- // Return a reasonable RValue.
- return GetUndefRValue(RetTy);
- }
- llvm::Instruction *CI = CS.getInstruction();
- if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
- CI->setName("call");
- // Emit any writebacks immediately. Arguably this should happen
- // after any return-value munging.
- if (CallArgs.hasWritebacks())
- emitWritebacks(*this, CallArgs);
- // The stack cleanup for inalloca arguments has to run out of the normal
- // lexical order, so deactivate it and run it manually here.
- CallArgs.freeArgumentMemory(*this);
- RValue Ret = [&] {
- switch (RetAI.getKind()) {
- case ABIArgInfo::InAlloca:
- case ABIArgInfo::Indirect: {
- RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
- if (UnusedReturnSize)
- EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
- SRetPtr.getPointer());
- return ret;
- }
- case ABIArgInfo::Ignore:
- // If we are ignoring an argument that had a result, make sure to
- // construct the appropriate return value for our caller.
- return GetUndefRValue(RetTy);
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- llvm::Type *RetIRTy = ConvertType(RetTy);
- if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
- switch (getEvaluationKind(RetTy)) {
- case TEK_Complex: {
- llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
- llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
- return RValue::getComplex(std::make_pair(Real, Imag));
- }
- case TEK_Aggregate: {
- Address DestPtr = ReturnValue.getValue();
- bool DestIsVolatile = ReturnValue.isVolatile();
- if (!DestPtr.isValid()) {
- DestPtr = CreateMemTemp(RetTy, "agg.tmp");
- DestIsVolatile = false;
- }
- BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
- return RValue::getAggregate(DestPtr);
- }
- case TEK_Scalar: {
- // If the argument doesn't match, perform a bitcast to coerce it. This
- // can happen due to trivial type mismatches.
- llvm::Value *V = CI;
- if (V->getType() != RetIRTy)
- V = Builder.CreateBitCast(V, RetIRTy);
- return RValue::get(V);
- }
- }
- llvm_unreachable("bad evaluation kind");
- }
- Address DestPtr = ReturnValue.getValue();
- bool DestIsVolatile = ReturnValue.isVolatile();
- if (!DestPtr.isValid()) {
- DestPtr = CreateMemTemp(RetTy, "coerce");
- DestIsVolatile = false;
- }
- // If the value is offset in memory, apply the offset now.
- Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
- CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
- return convertTempToRValue(DestPtr, RetTy, SourceLocation());
- }
- case ABIArgInfo::Expand:
- llvm_unreachable("Invalid ABI kind for return argument");
- }
- llvm_unreachable("Unhandled ABIArgInfo::Kind");
- } ();
- if (Ret.isScalar() && TargetDecl) {
- if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
- llvm::Value *OffsetValue = nullptr;
- if (const auto *Offset = AA->getOffset())
- OffsetValue = EmitScalarExpr(Offset);
- llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
- llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
- EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
- OffsetValue);
- }
- }
- return Ret;
- }
- /* VarArg handling */
- Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
- VAListAddr = VE->isMicrosoftABI()
- ? EmitMSVAListRef(VE->getSubExpr())
- : EmitVAListRef(VE->getSubExpr());
- QualType Ty = VE->getType();
- if (VE->isMicrosoftABI())
- return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
- return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
- }
|