CGBuiltin.cpp 594 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327
  1. //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This contains code to emit Builtin calls as LLVM code.
  10. //
  11. //===----------------------------------------------------------------------===//
  12. #include "CGCXXABI.h"
  13. #include "CGObjCRuntime.h"
  14. #include "CGOpenCLRuntime.h"
  15. #include "CGRecordLayout.h"
  16. #include "CodeGenFunction.h"
  17. #include "CodeGenModule.h"
  18. #include "ConstantEmitter.h"
  19. #include "PatternInit.h"
  20. #include "TargetInfo.h"
  21. #include "clang/AST/ASTContext.h"
  22. #include "clang/AST/Decl.h"
  23. #include "clang/AST/OSLog.h"
  24. #include "clang/Basic/TargetBuiltins.h"
  25. #include "clang/Basic/TargetInfo.h"
  26. #include "clang/CodeGen/CGFunctionInfo.h"
  27. #include "llvm/ADT/SmallPtrSet.h"
  28. #include "llvm/ADT/StringExtras.h"
  29. #include "llvm/IR/DataLayout.h"
  30. #include "llvm/IR/InlineAsm.h"
  31. #include "llvm/IR/Intrinsics.h"
  32. #include "llvm/IR/MDBuilder.h"
  33. #include "llvm/Support/ConvertUTF.h"
  34. #include "llvm/Support/ScopedPrinter.h"
  35. #include "llvm/Support/TargetParser.h"
  36. #include <sstream>
  37. using namespace clang;
  38. using namespace CodeGen;
  39. using namespace llvm;
  40. static
  41. int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
  42. return std::min(High, std::max(Low, Value));
  43. }
  44. static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, unsigned AlignmentInBytes) {
  45. ConstantInt *Byte;
  46. switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
  47. case LangOptions::TrivialAutoVarInitKind::Uninitialized:
  48. // Nothing to initialize.
  49. return;
  50. case LangOptions::TrivialAutoVarInitKind::Zero:
  51. Byte = CGF.Builder.getInt8(0x00);
  52. break;
  53. case LangOptions::TrivialAutoVarInitKind::Pattern: {
  54. llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
  55. Byte = llvm::dyn_cast<llvm::ConstantInt>(
  56. initializationPatternFor(CGF.CGM, Int8));
  57. break;
  58. }
  59. }
  60. CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
  61. }
  62. /// getBuiltinLibFunction - Given a builtin id for a function like
  63. /// "__builtin_fabsf", return a Function* for "fabsf".
  64. llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
  65. unsigned BuiltinID) {
  66. assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
  67. // Get the name, skip over the __builtin_ prefix (if necessary).
  68. StringRef Name;
  69. GlobalDecl D(FD);
  70. // If the builtin has been declared explicitly with an assembler label,
  71. // use the mangled name. This differs from the plain label on platforms
  72. // that prefix labels.
  73. if (FD->hasAttr<AsmLabelAttr>())
  74. Name = getMangledName(D);
  75. else
  76. Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
  77. llvm::FunctionType *Ty =
  78. cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
  79. return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
  80. }
  81. /// Emit the conversions required to turn the given value into an
  82. /// integer of the given size.
  83. static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
  84. QualType T, llvm::IntegerType *IntType) {
  85. V = CGF.EmitToMemory(V, T);
  86. if (V->getType()->isPointerTy())
  87. return CGF.Builder.CreatePtrToInt(V, IntType);
  88. assert(V->getType() == IntType);
  89. return V;
  90. }
  91. static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
  92. QualType T, llvm::Type *ResultType) {
  93. V = CGF.EmitFromMemory(V, T);
  94. if (ResultType->isPointerTy())
  95. return CGF.Builder.CreateIntToPtr(V, ResultType);
  96. assert(V->getType() == ResultType);
  97. return V;
  98. }
  99. /// Utility to insert an atomic instruction based on Intrinsic::ID
  100. /// and the expression node.
  101. static Value *MakeBinaryAtomicValue(
  102. CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
  103. AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
  104. QualType T = E->getType();
  105. assert(E->getArg(0)->getType()->isPointerType());
  106. assert(CGF.getContext().hasSameUnqualifiedType(T,
  107. E->getArg(0)->getType()->getPointeeType()));
  108. assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
  109. llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
  110. unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
  111. llvm::IntegerType *IntType =
  112. llvm::IntegerType::get(CGF.getLLVMContext(),
  113. CGF.getContext().getTypeSize(T));
  114. llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
  115. llvm::Value *Args[2];
  116. Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
  117. Args[1] = CGF.EmitScalarExpr(E->getArg(1));
  118. llvm::Type *ValueType = Args[1]->getType();
  119. Args[1] = EmitToInt(CGF, Args[1], T, IntType);
  120. llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
  121. Kind, Args[0], Args[1], Ordering);
  122. return EmitFromInt(CGF, Result, T, ValueType);
  123. }
  124. static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
  125. Value *Val = CGF.EmitScalarExpr(E->getArg(0));
  126. Value *Address = CGF.EmitScalarExpr(E->getArg(1));
  127. // Convert the type of the pointer to a pointer to the stored type.
  128. Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
  129. Value *BC = CGF.Builder.CreateBitCast(
  130. Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
  131. LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
  132. LV.setNontemporal(true);
  133. CGF.EmitStoreOfScalar(Val, LV, false);
  134. return nullptr;
  135. }
  136. static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
  137. Value *Address = CGF.EmitScalarExpr(E->getArg(0));
  138. LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
  139. LV.setNontemporal(true);
  140. return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
  141. }
  142. static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
  143. llvm::AtomicRMWInst::BinOp Kind,
  144. const CallExpr *E) {
  145. return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
  146. }
  147. /// Utility to insert an atomic instruction based Intrinsic::ID and
  148. /// the expression node, where the return value is the result of the
  149. /// operation.
  150. static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
  151. llvm::AtomicRMWInst::BinOp Kind,
  152. const CallExpr *E,
  153. Instruction::BinaryOps Op,
  154. bool Invert = false) {
  155. QualType T = E->getType();
  156. assert(E->getArg(0)->getType()->isPointerType());
  157. assert(CGF.getContext().hasSameUnqualifiedType(T,
  158. E->getArg(0)->getType()->getPointeeType()));
  159. assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
  160. llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
  161. unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
  162. llvm::IntegerType *IntType =
  163. llvm::IntegerType::get(CGF.getLLVMContext(),
  164. CGF.getContext().getTypeSize(T));
  165. llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
  166. llvm::Value *Args[2];
  167. Args[1] = CGF.EmitScalarExpr(E->getArg(1));
  168. llvm::Type *ValueType = Args[1]->getType();
  169. Args[1] = EmitToInt(CGF, Args[1], T, IntType);
  170. Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
  171. llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
  172. Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
  173. Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
  174. if (Invert)
  175. Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
  176. llvm::ConstantInt::get(IntType, -1));
  177. Result = EmitFromInt(CGF, Result, T, ValueType);
  178. return RValue::get(Result);
  179. }
  180. /// Utility to insert an atomic cmpxchg instruction.
  181. ///
  182. /// @param CGF The current codegen function.
  183. /// @param E Builtin call expression to convert to cmpxchg.
  184. /// arg0 - address to operate on
  185. /// arg1 - value to compare with
  186. /// arg2 - new value
  187. /// @param ReturnBool Specifies whether to return success flag of
  188. /// cmpxchg result or the old value.
  189. ///
  190. /// @returns result of cmpxchg, according to ReturnBool
  191. ///
  192. /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
  193. /// invoke the function EmitAtomicCmpXchgForMSIntrin.
  194. static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
  195. bool ReturnBool) {
  196. QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
  197. llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
  198. unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
  199. llvm::IntegerType *IntType = llvm::IntegerType::get(
  200. CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
  201. llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
  202. Value *Args[3];
  203. Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
  204. Args[1] = CGF.EmitScalarExpr(E->getArg(1));
  205. llvm::Type *ValueType = Args[1]->getType();
  206. Args[1] = EmitToInt(CGF, Args[1], T, IntType);
  207. Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
  208. Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
  209. Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
  210. llvm::AtomicOrdering::SequentiallyConsistent);
  211. if (ReturnBool)
  212. // Extract boolean success flag and zext it to int.
  213. return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
  214. CGF.ConvertType(E->getType()));
  215. else
  216. // Extract old value and emit it using the same type as compare value.
  217. return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
  218. ValueType);
  219. }
  220. /// This function should be invoked to emit atomic cmpxchg for Microsoft's
  221. /// _InterlockedCompareExchange* intrinsics which have the following signature:
  222. /// T _InterlockedCompareExchange(T volatile *Destination,
  223. /// T Exchange,
  224. /// T Comparand);
  225. ///
  226. /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
  227. /// cmpxchg *Destination, Comparand, Exchange.
  228. /// So we need to swap Comparand and Exchange when invoking
  229. /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
  230. /// function MakeAtomicCmpXchgValue since it expects the arguments to be
  231. /// already swapped.
  232. static
  233. Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
  234. AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
  235. assert(E->getArg(0)->getType()->isPointerType());
  236. assert(CGF.getContext().hasSameUnqualifiedType(
  237. E->getType(), E->getArg(0)->getType()->getPointeeType()));
  238. assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
  239. E->getArg(1)->getType()));
  240. assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
  241. E->getArg(2)->getType()));
  242. auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
  243. auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
  244. auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
  245. // For Release ordering, the failure ordering should be Monotonic.
  246. auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
  247. AtomicOrdering::Monotonic :
  248. SuccessOrdering;
  249. auto *Result = CGF.Builder.CreateAtomicCmpXchg(
  250. Destination, Comparand, Exchange,
  251. SuccessOrdering, FailureOrdering);
  252. Result->setVolatile(true);
  253. return CGF.Builder.CreateExtractValue(Result, 0);
  254. }
  255. static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
  256. AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
  257. assert(E->getArg(0)->getType()->isPointerType());
  258. auto *IntTy = CGF.ConvertType(E->getType());
  259. auto *Result = CGF.Builder.CreateAtomicRMW(
  260. AtomicRMWInst::Add,
  261. CGF.EmitScalarExpr(E->getArg(0)),
  262. ConstantInt::get(IntTy, 1),
  263. Ordering);
  264. return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
  265. }
  266. static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
  267. AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
  268. assert(E->getArg(0)->getType()->isPointerType());
  269. auto *IntTy = CGF.ConvertType(E->getType());
  270. auto *Result = CGF.Builder.CreateAtomicRMW(
  271. AtomicRMWInst::Sub,
  272. CGF.EmitScalarExpr(E->getArg(0)),
  273. ConstantInt::get(IntTy, 1),
  274. Ordering);
  275. return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
  276. }
  277. // Build a plain volatile load.
  278. static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
  279. Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
  280. QualType ElTy = E->getArg(0)->getType()->getPointeeType();
  281. CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
  282. llvm::Type *ITy =
  283. llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
  284. Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
  285. llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize);
  286. Load->setVolatile(true);
  287. return Load;
  288. }
  289. // Build a plain volatile store.
  290. static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
  291. Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
  292. Value *Value = CGF.EmitScalarExpr(E->getArg(1));
  293. QualType ElTy = E->getArg(0)->getType()->getPointeeType();
  294. CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
  295. llvm::Type *ITy =
  296. llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
  297. Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
  298. llvm::StoreInst *Store =
  299. CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
  300. Store->setVolatile(true);
  301. return Store;
  302. }
  303. // Emit a simple mangled intrinsic that has 1 argument and a return type
  304. // matching the argument type.
  305. static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
  306. const CallExpr *E,
  307. unsigned IntrinsicID) {
  308. llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
  309. Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
  310. return CGF.Builder.CreateCall(F, Src0);
  311. }
  312. // Emit an intrinsic that has 2 operands of the same type as its result.
  313. static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
  314. const CallExpr *E,
  315. unsigned IntrinsicID) {
  316. llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
  317. llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
  318. Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
  319. return CGF.Builder.CreateCall(F, { Src0, Src1 });
  320. }
  321. // Emit an intrinsic that has 3 operands of the same type as its result.
  322. static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
  323. const CallExpr *E,
  324. unsigned IntrinsicID) {
  325. llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
  326. llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
  327. llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
  328. Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
  329. return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
  330. }
  331. // Emit an intrinsic that has 1 float or double operand, and 1 integer.
  332. static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
  333. const CallExpr *E,
  334. unsigned IntrinsicID) {
  335. llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
  336. llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
  337. Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
  338. return CGF.Builder.CreateCall(F, {Src0, Src1});
  339. }
  340. // Emit an intrinsic that has overloaded integer result and fp operand.
  341. static Value *emitFPToIntRoundBuiltin(CodeGenFunction &CGF,
  342. const CallExpr *E,
  343. unsigned IntrinsicID) {
  344. llvm::Type *ResultType = CGF.ConvertType(E->getType());
  345. llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
  346. Function *F = CGF.CGM.getIntrinsic(IntrinsicID,
  347. {ResultType, Src0->getType()});
  348. return CGF.Builder.CreateCall(F, Src0);
  349. }
  350. /// EmitFAbs - Emit a call to @llvm.fabs().
  351. static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
  352. Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
  353. llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
  354. Call->setDoesNotAccessMemory();
  355. return Call;
  356. }
  357. /// Emit the computation of the sign bit for a floating point value. Returns
  358. /// the i1 sign bit value.
  359. static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
  360. LLVMContext &C = CGF.CGM.getLLVMContext();
  361. llvm::Type *Ty = V->getType();
  362. int Width = Ty->getPrimitiveSizeInBits();
  363. llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
  364. V = CGF.Builder.CreateBitCast(V, IntTy);
  365. if (Ty->isPPC_FP128Ty()) {
  366. // We want the sign bit of the higher-order double. The bitcast we just
  367. // did works as if the double-double was stored to memory and then
  368. // read as an i128. The "store" will put the higher-order double in the
  369. // lower address in both little- and big-Endian modes, but the "load"
  370. // will treat those bits as a different part of the i128: the low bits in
  371. // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
  372. // we need to shift the high bits down to the low before truncating.
  373. Width >>= 1;
  374. if (CGF.getTarget().isBigEndian()) {
  375. Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
  376. V = CGF.Builder.CreateLShr(V, ShiftCst);
  377. }
  378. // We are truncating value in order to extract the higher-order
  379. // double, which we will be using to extract the sign from.
  380. IntTy = llvm::IntegerType::get(C, Width);
  381. V = CGF.Builder.CreateTrunc(V, IntTy);
  382. }
  383. Value *Zero = llvm::Constant::getNullValue(IntTy);
  384. return CGF.Builder.CreateICmpSLT(V, Zero);
  385. }
  386. static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
  387. const CallExpr *E, llvm::Constant *calleeValue) {
  388. CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
  389. return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
  390. }
  391. /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
  392. /// depending on IntrinsicID.
  393. ///
  394. /// \arg CGF The current codegen function.
  395. /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
  396. /// \arg X The first argument to the llvm.*.with.overflow.*.
  397. /// \arg Y The second argument to the llvm.*.with.overflow.*.
  398. /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
  399. /// \returns The result (i.e. sum/product) returned by the intrinsic.
  400. static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
  401. const llvm::Intrinsic::ID IntrinsicID,
  402. llvm::Value *X, llvm::Value *Y,
  403. llvm::Value *&Carry) {
  404. // Make sure we have integers of the same width.
  405. assert(X->getType() == Y->getType() &&
  406. "Arguments must be the same type. (Did you forget to make sure both "
  407. "arguments have the same integer width?)");
  408. Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
  409. llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
  410. Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
  411. return CGF.Builder.CreateExtractValue(Tmp, 0);
  412. }
  413. static Value *emitRangedBuiltin(CodeGenFunction &CGF,
  414. unsigned IntrinsicID,
  415. int low, int high) {
  416. llvm::MDBuilder MDHelper(CGF.getLLVMContext());
  417. llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
  418. Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
  419. llvm::Instruction *Call = CGF.Builder.CreateCall(F);
  420. Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
  421. return Call;
  422. }
  423. namespace {
  424. struct WidthAndSignedness {
  425. unsigned Width;
  426. bool Signed;
  427. };
  428. }
  429. static WidthAndSignedness
  430. getIntegerWidthAndSignedness(const clang::ASTContext &context,
  431. const clang::QualType Type) {
  432. assert(Type->isIntegerType() && "Given type is not an integer.");
  433. unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
  434. bool Signed = Type->isSignedIntegerType();
  435. return {Width, Signed};
  436. }
  437. // Given one or more integer types, this function produces an integer type that
  438. // encompasses them: any value in one of the given types could be expressed in
  439. // the encompassing type.
  440. static struct WidthAndSignedness
  441. EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
  442. assert(Types.size() > 0 && "Empty list of types.");
  443. // If any of the given types is signed, we must return a signed type.
  444. bool Signed = false;
  445. for (const auto &Type : Types) {
  446. Signed |= Type.Signed;
  447. }
  448. // The encompassing type must have a width greater than or equal to the width
  449. // of the specified types. Additionally, if the encompassing type is signed,
  450. // its width must be strictly greater than the width of any unsigned types
  451. // given.
  452. unsigned Width = 0;
  453. for (const auto &Type : Types) {
  454. unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
  455. if (Width < MinWidth) {
  456. Width = MinWidth;
  457. }
  458. }
  459. return {Width, Signed};
  460. }
  461. Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
  462. llvm::Type *DestType = Int8PtrTy;
  463. if (ArgValue->getType() != DestType)
  464. ArgValue =
  465. Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
  466. Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
  467. return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
  468. }
  469. /// Checks if using the result of __builtin_object_size(p, @p From) in place of
  470. /// __builtin_object_size(p, @p To) is correct
  471. static bool areBOSTypesCompatible(int From, int To) {
  472. // Note: Our __builtin_object_size implementation currently treats Type=0 and
  473. // Type=2 identically. Encoding this implementation detail here may make
  474. // improving __builtin_object_size difficult in the future, so it's omitted.
  475. return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
  476. }
  477. static llvm::Value *
  478. getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
  479. return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
  480. }
  481. llvm::Value *
  482. CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
  483. llvm::IntegerType *ResType,
  484. llvm::Value *EmittedE,
  485. bool IsDynamic) {
  486. uint64_t ObjectSize;
  487. if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
  488. return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
  489. return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
  490. }
  491. /// Returns a Value corresponding to the size of the given expression.
  492. /// This Value may be either of the following:
  493. /// - A llvm::Argument (if E is a param with the pass_object_size attribute on
  494. /// it)
  495. /// - A call to the @llvm.objectsize intrinsic
  496. ///
  497. /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
  498. /// and we wouldn't otherwise try to reference a pass_object_size parameter,
  499. /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
  500. llvm::Value *
  501. CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
  502. llvm::IntegerType *ResType,
  503. llvm::Value *EmittedE, bool IsDynamic) {
  504. // We need to reference an argument if the pointer is a parameter with the
  505. // pass_object_size attribute.
  506. if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
  507. auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
  508. auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
  509. if (Param != nullptr && PS != nullptr &&
  510. areBOSTypesCompatible(PS->getType(), Type)) {
  511. auto Iter = SizeArguments.find(Param);
  512. assert(Iter != SizeArguments.end());
  513. const ImplicitParamDecl *D = Iter->second;
  514. auto DIter = LocalDeclMap.find(D);
  515. assert(DIter != LocalDeclMap.end());
  516. return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
  517. getContext().getSizeType(), E->getBeginLoc());
  518. }
  519. }
  520. // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
  521. // evaluate E for side-effects. In either case, we shouldn't lower to
  522. // @llvm.objectsize.
  523. if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
  524. return getDefaultBuiltinObjectSizeResult(Type, ResType);
  525. Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
  526. assert(Ptr->getType()->isPointerTy() &&
  527. "Non-pointer passed to __builtin_object_size?");
  528. Function *F =
  529. CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
  530. // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
  531. Value *Min = Builder.getInt1((Type & 2) != 0);
  532. // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
  533. Value *NullIsUnknown = Builder.getTrue();
  534. Value *Dynamic = Builder.getInt1(IsDynamic);
  535. return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
  536. }
  537. namespace {
  538. /// A struct to generically describe a bit test intrinsic.
  539. struct BitTest {
  540. enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
  541. enum InterlockingKind : uint8_t {
  542. Unlocked,
  543. Sequential,
  544. Acquire,
  545. Release,
  546. NoFence
  547. };
  548. ActionKind Action;
  549. InterlockingKind Interlocking;
  550. bool Is64Bit;
  551. static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
  552. };
  553. } // namespace
  554. BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
  555. switch (BuiltinID) {
  556. // Main portable variants.
  557. case Builtin::BI_bittest:
  558. return {TestOnly, Unlocked, false};
  559. case Builtin::BI_bittestandcomplement:
  560. return {Complement, Unlocked, false};
  561. case Builtin::BI_bittestandreset:
  562. return {Reset, Unlocked, false};
  563. case Builtin::BI_bittestandset:
  564. return {Set, Unlocked, false};
  565. case Builtin::BI_interlockedbittestandreset:
  566. return {Reset, Sequential, false};
  567. case Builtin::BI_interlockedbittestandset:
  568. return {Set, Sequential, false};
  569. // X86-specific 64-bit variants.
  570. case Builtin::BI_bittest64:
  571. return {TestOnly, Unlocked, true};
  572. case Builtin::BI_bittestandcomplement64:
  573. return {Complement, Unlocked, true};
  574. case Builtin::BI_bittestandreset64:
  575. return {Reset, Unlocked, true};
  576. case Builtin::BI_bittestandset64:
  577. return {Set, Unlocked, true};
  578. case Builtin::BI_interlockedbittestandreset64:
  579. return {Reset, Sequential, true};
  580. case Builtin::BI_interlockedbittestandset64:
  581. return {Set, Sequential, true};
  582. // ARM/AArch64-specific ordering variants.
  583. case Builtin::BI_interlockedbittestandset_acq:
  584. return {Set, Acquire, false};
  585. case Builtin::BI_interlockedbittestandset_rel:
  586. return {Set, Release, false};
  587. case Builtin::BI_interlockedbittestandset_nf:
  588. return {Set, NoFence, false};
  589. case Builtin::BI_interlockedbittestandreset_acq:
  590. return {Reset, Acquire, false};
  591. case Builtin::BI_interlockedbittestandreset_rel:
  592. return {Reset, Release, false};
  593. case Builtin::BI_interlockedbittestandreset_nf:
  594. return {Reset, NoFence, false};
  595. }
  596. llvm_unreachable("expected only bittest intrinsics");
  597. }
  598. static char bitActionToX86BTCode(BitTest::ActionKind A) {
  599. switch (A) {
  600. case BitTest::TestOnly: return '\0';
  601. case BitTest::Complement: return 'c';
  602. case BitTest::Reset: return 'r';
  603. case BitTest::Set: return 's';
  604. }
  605. llvm_unreachable("invalid action");
  606. }
  607. static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
  608. BitTest BT,
  609. const CallExpr *E, Value *BitBase,
  610. Value *BitPos) {
  611. char Action = bitActionToX86BTCode(BT.Action);
  612. char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
  613. // Build the assembly.
  614. SmallString<64> Asm;
  615. raw_svector_ostream AsmOS(Asm);
  616. if (BT.Interlocking != BitTest::Unlocked)
  617. AsmOS << "lock ";
  618. AsmOS << "bt";
  619. if (Action)
  620. AsmOS << Action;
  621. AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}";
  622. // Build the constraints. FIXME: We should support immediates when possible.
  623. std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}";
  624. llvm::IntegerType *IntType = llvm::IntegerType::get(
  625. CGF.getLLVMContext(),
  626. CGF.getContext().getTypeSize(E->getArg(1)->getType()));
  627. llvm::Type *IntPtrType = IntType->getPointerTo();
  628. llvm::FunctionType *FTy =
  629. llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
  630. llvm::InlineAsm *IA =
  631. llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
  632. return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
  633. }
  634. static llvm::AtomicOrdering
  635. getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
  636. switch (I) {
  637. case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
  638. case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
  639. case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
  640. case BitTest::Release: return llvm::AtomicOrdering::Release;
  641. case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
  642. }
  643. llvm_unreachable("invalid interlocking");
  644. }
  645. /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
  646. /// bits and a bit position and read and optionally modify the bit at that
  647. /// position. The position index can be arbitrarily large, i.e. it can be larger
  648. /// than 31 or 63, so we need an indexed load in the general case.
  649. static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
  650. unsigned BuiltinID,
  651. const CallExpr *E) {
  652. Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
  653. Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
  654. BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
  655. // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
  656. // indexing operation internally. Use them if possible.
  657. llvm::Triple::ArchType Arch = CGF.getTarget().getTriple().getArch();
  658. if (Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64)
  659. return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
  660. // Otherwise, use generic code to load one byte and test the bit. Use all but
  661. // the bottom three bits as the array index, and the bottom three bits to form
  662. // a mask.
  663. // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
  664. Value *ByteIndex = CGF.Builder.CreateAShr(
  665. BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
  666. Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
  667. Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
  668. ByteIndex, "bittest.byteaddr"),
  669. CharUnits::One());
  670. Value *PosLow =
  671. CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
  672. llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
  673. // The updating instructions will need a mask.
  674. Value *Mask = nullptr;
  675. if (BT.Action != BitTest::TestOnly) {
  676. Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
  677. "bittest.mask");
  678. }
  679. // Check the action and ordering of the interlocked intrinsics.
  680. llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
  681. Value *OldByte = nullptr;
  682. if (Ordering != llvm::AtomicOrdering::NotAtomic) {
  683. // Emit a combined atomicrmw load/store operation for the interlocked
  684. // intrinsics.
  685. llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
  686. if (BT.Action == BitTest::Reset) {
  687. Mask = CGF.Builder.CreateNot(Mask);
  688. RMWOp = llvm::AtomicRMWInst::And;
  689. }
  690. OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
  691. Ordering);
  692. } else {
  693. // Emit a plain load for the non-interlocked intrinsics.
  694. OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
  695. Value *NewByte = nullptr;
  696. switch (BT.Action) {
  697. case BitTest::TestOnly:
  698. // Don't store anything.
  699. break;
  700. case BitTest::Complement:
  701. NewByte = CGF.Builder.CreateXor(OldByte, Mask);
  702. break;
  703. case BitTest::Reset:
  704. NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
  705. break;
  706. case BitTest::Set:
  707. NewByte = CGF.Builder.CreateOr(OldByte, Mask);
  708. break;
  709. }
  710. if (NewByte)
  711. CGF.Builder.CreateStore(NewByte, ByteAddr);
  712. }
  713. // However we loaded the old byte, either by plain load or atomicrmw, shift
  714. // the bit into the low position and mask it to 0 or 1.
  715. Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
  716. return CGF.Builder.CreateAnd(
  717. ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
  718. }
  719. namespace {
  720. enum class MSVCSetJmpKind {
  721. _setjmpex,
  722. _setjmp3,
  723. _setjmp
  724. };
  725. }
  726. /// MSVC handles setjmp a bit differently on different platforms. On every
  727. /// architecture except 32-bit x86, the frame address is passed. On x86, extra
  728. /// parameters can be passed as variadic arguments, but we always pass none.
  729. static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
  730. const CallExpr *E) {
  731. llvm::Value *Arg1 = nullptr;
  732. llvm::Type *Arg1Ty = nullptr;
  733. StringRef Name;
  734. bool IsVarArg = false;
  735. if (SJKind == MSVCSetJmpKind::_setjmp3) {
  736. Name = "_setjmp3";
  737. Arg1Ty = CGF.Int32Ty;
  738. Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
  739. IsVarArg = true;
  740. } else {
  741. Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
  742. Arg1Ty = CGF.Int8PtrTy;
  743. if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
  744. Arg1 = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::sponentry));
  745. } else
  746. Arg1 = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::frameaddress),
  747. llvm::ConstantInt::get(CGF.Int32Ty, 0));
  748. }
  749. // Mark the call site and declaration with ReturnsTwice.
  750. llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
  751. llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
  752. CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
  753. llvm::Attribute::ReturnsTwice);
  754. llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
  755. llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
  756. ReturnsTwiceAttr, /*Local=*/true);
  757. llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
  758. CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
  759. llvm::Value *Args[] = {Buf, Arg1};
  760. llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
  761. CB->setAttributes(ReturnsTwiceAttr);
  762. return RValue::get(CB);
  763. }
  764. // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
  765. // we handle them here.
  766. enum class CodeGenFunction::MSVCIntrin {
  767. _BitScanForward,
  768. _BitScanReverse,
  769. _InterlockedAnd,
  770. _InterlockedDecrement,
  771. _InterlockedExchange,
  772. _InterlockedExchangeAdd,
  773. _InterlockedExchangeSub,
  774. _InterlockedIncrement,
  775. _InterlockedOr,
  776. _InterlockedXor,
  777. _InterlockedExchangeAdd_acq,
  778. _InterlockedExchangeAdd_rel,
  779. _InterlockedExchangeAdd_nf,
  780. _InterlockedExchange_acq,
  781. _InterlockedExchange_rel,
  782. _InterlockedExchange_nf,
  783. _InterlockedCompareExchange_acq,
  784. _InterlockedCompareExchange_rel,
  785. _InterlockedCompareExchange_nf,
  786. _InterlockedOr_acq,
  787. _InterlockedOr_rel,
  788. _InterlockedOr_nf,
  789. _InterlockedXor_acq,
  790. _InterlockedXor_rel,
  791. _InterlockedXor_nf,
  792. _InterlockedAnd_acq,
  793. _InterlockedAnd_rel,
  794. _InterlockedAnd_nf,
  795. _InterlockedIncrement_acq,
  796. _InterlockedIncrement_rel,
  797. _InterlockedIncrement_nf,
  798. _InterlockedDecrement_acq,
  799. _InterlockedDecrement_rel,
  800. _InterlockedDecrement_nf,
  801. __fastfail,
  802. };
  803. Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
  804. const CallExpr *E) {
  805. switch (BuiltinID) {
  806. case MSVCIntrin::_BitScanForward:
  807. case MSVCIntrin::_BitScanReverse: {
  808. Value *ArgValue = EmitScalarExpr(E->getArg(1));
  809. llvm::Type *ArgType = ArgValue->getType();
  810. llvm::Type *IndexType =
  811. EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
  812. llvm::Type *ResultType = ConvertType(E->getType());
  813. Value *ArgZero = llvm::Constant::getNullValue(ArgType);
  814. Value *ResZero = llvm::Constant::getNullValue(ResultType);
  815. Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
  816. BasicBlock *Begin = Builder.GetInsertBlock();
  817. BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
  818. Builder.SetInsertPoint(End);
  819. PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
  820. Builder.SetInsertPoint(Begin);
  821. Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
  822. BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
  823. Builder.CreateCondBr(IsZero, End, NotZero);
  824. Result->addIncoming(ResZero, Begin);
  825. Builder.SetInsertPoint(NotZero);
  826. Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
  827. if (BuiltinID == MSVCIntrin::_BitScanForward) {
  828. Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
  829. Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
  830. ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
  831. Builder.CreateStore(ZeroCount, IndexAddress, false);
  832. } else {
  833. unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
  834. Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
  835. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
  836. Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
  837. ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
  838. Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
  839. Builder.CreateStore(Index, IndexAddress, false);
  840. }
  841. Builder.CreateBr(End);
  842. Result->addIncoming(ResOne, NotZero);
  843. Builder.SetInsertPoint(End);
  844. return Result;
  845. }
  846. case MSVCIntrin::_InterlockedAnd:
  847. return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
  848. case MSVCIntrin::_InterlockedExchange:
  849. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
  850. case MSVCIntrin::_InterlockedExchangeAdd:
  851. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
  852. case MSVCIntrin::_InterlockedExchangeSub:
  853. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
  854. case MSVCIntrin::_InterlockedOr:
  855. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
  856. case MSVCIntrin::_InterlockedXor:
  857. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
  858. case MSVCIntrin::_InterlockedExchangeAdd_acq:
  859. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
  860. AtomicOrdering::Acquire);
  861. case MSVCIntrin::_InterlockedExchangeAdd_rel:
  862. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
  863. AtomicOrdering::Release);
  864. case MSVCIntrin::_InterlockedExchangeAdd_nf:
  865. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
  866. AtomicOrdering::Monotonic);
  867. case MSVCIntrin::_InterlockedExchange_acq:
  868. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
  869. AtomicOrdering::Acquire);
  870. case MSVCIntrin::_InterlockedExchange_rel:
  871. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
  872. AtomicOrdering::Release);
  873. case MSVCIntrin::_InterlockedExchange_nf:
  874. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
  875. AtomicOrdering::Monotonic);
  876. case MSVCIntrin::_InterlockedCompareExchange_acq:
  877. return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
  878. case MSVCIntrin::_InterlockedCompareExchange_rel:
  879. return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
  880. case MSVCIntrin::_InterlockedCompareExchange_nf:
  881. return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
  882. case MSVCIntrin::_InterlockedOr_acq:
  883. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
  884. AtomicOrdering::Acquire);
  885. case MSVCIntrin::_InterlockedOr_rel:
  886. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
  887. AtomicOrdering::Release);
  888. case MSVCIntrin::_InterlockedOr_nf:
  889. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
  890. AtomicOrdering::Monotonic);
  891. case MSVCIntrin::_InterlockedXor_acq:
  892. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
  893. AtomicOrdering::Acquire);
  894. case MSVCIntrin::_InterlockedXor_rel:
  895. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
  896. AtomicOrdering::Release);
  897. case MSVCIntrin::_InterlockedXor_nf:
  898. return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
  899. AtomicOrdering::Monotonic);
  900. case MSVCIntrin::_InterlockedAnd_acq:
  901. return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
  902. AtomicOrdering::Acquire);
  903. case MSVCIntrin::_InterlockedAnd_rel:
  904. return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
  905. AtomicOrdering::Release);
  906. case MSVCIntrin::_InterlockedAnd_nf:
  907. return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
  908. AtomicOrdering::Monotonic);
  909. case MSVCIntrin::_InterlockedIncrement_acq:
  910. return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
  911. case MSVCIntrin::_InterlockedIncrement_rel:
  912. return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
  913. case MSVCIntrin::_InterlockedIncrement_nf:
  914. return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
  915. case MSVCIntrin::_InterlockedDecrement_acq:
  916. return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
  917. case MSVCIntrin::_InterlockedDecrement_rel:
  918. return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
  919. case MSVCIntrin::_InterlockedDecrement_nf:
  920. return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
  921. case MSVCIntrin::_InterlockedDecrement:
  922. return EmitAtomicDecrementValue(*this, E);
  923. case MSVCIntrin::_InterlockedIncrement:
  924. return EmitAtomicIncrementValue(*this, E);
  925. case MSVCIntrin::__fastfail: {
  926. // Request immediate process termination from the kernel. The instruction
  927. // sequences to do this are documented on MSDN:
  928. // https://msdn.microsoft.com/en-us/library/dn774154.aspx
  929. llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
  930. StringRef Asm, Constraints;
  931. switch (ISA) {
  932. default:
  933. ErrorUnsupported(E, "__fastfail call for this architecture");
  934. break;
  935. case llvm::Triple::x86:
  936. case llvm::Triple::x86_64:
  937. Asm = "int $$0x29";
  938. Constraints = "{cx}";
  939. break;
  940. case llvm::Triple::thumb:
  941. Asm = "udf #251";
  942. Constraints = "{r0}";
  943. break;
  944. case llvm::Triple::aarch64:
  945. Asm = "brk #0xF003";
  946. Constraints = "{w0}";
  947. }
  948. llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
  949. llvm::InlineAsm *IA =
  950. llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
  951. llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
  952. getLLVMContext(), llvm::AttributeList::FunctionIndex,
  953. llvm::Attribute::NoReturn);
  954. llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
  955. CI->setAttributes(NoReturnAttr);
  956. return CI;
  957. }
  958. }
  959. llvm_unreachable("Incorrect MSVC intrinsic!");
  960. }
  961. namespace {
  962. // ARC cleanup for __builtin_os_log_format
  963. struct CallObjCArcUse final : EHScopeStack::Cleanup {
  964. CallObjCArcUse(llvm::Value *object) : object(object) {}
  965. llvm::Value *object;
  966. void Emit(CodeGenFunction &CGF, Flags flags) override {
  967. CGF.EmitARCIntrinsicUse(object);
  968. }
  969. };
  970. }
  971. Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
  972. BuiltinCheckKind Kind) {
  973. assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
  974. && "Unsupported builtin check kind");
  975. Value *ArgValue = EmitScalarExpr(E);
  976. if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
  977. return ArgValue;
  978. SanitizerScope SanScope(this);
  979. Value *Cond = Builder.CreateICmpNE(
  980. ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
  981. EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
  982. SanitizerHandler::InvalidBuiltin,
  983. {EmitCheckSourceLocation(E->getExprLoc()),
  984. llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
  985. None);
  986. return ArgValue;
  987. }
  988. /// Get the argument type for arguments to os_log_helper.
  989. static CanQualType getOSLogArgType(ASTContext &C, int Size) {
  990. QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
  991. return C.getCanonicalType(UnsignedTy);
  992. }
  993. llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
  994. const analyze_os_log::OSLogBufferLayout &Layout,
  995. CharUnits BufferAlignment) {
  996. ASTContext &Ctx = getContext();
  997. llvm::SmallString<64> Name;
  998. {
  999. raw_svector_ostream OS(Name);
  1000. OS << "__os_log_helper";
  1001. OS << "_" << BufferAlignment.getQuantity();
  1002. OS << "_" << int(Layout.getSummaryByte());
  1003. OS << "_" << int(Layout.getNumArgsByte());
  1004. for (const auto &Item : Layout.Items)
  1005. OS << "_" << int(Item.getSizeByte()) << "_"
  1006. << int(Item.getDescriptorByte());
  1007. }
  1008. if (llvm::Function *F = CGM.getModule().getFunction(Name))
  1009. return F;
  1010. llvm::SmallVector<QualType, 4> ArgTys;
  1011. FunctionArgList Args;
  1012. Args.push_back(ImplicitParamDecl::Create(
  1013. Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
  1014. ImplicitParamDecl::Other));
  1015. ArgTys.emplace_back(Ctx.VoidPtrTy);
  1016. for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
  1017. char Size = Layout.Items[I].getSizeByte();
  1018. if (!Size)
  1019. continue;
  1020. QualType ArgTy = getOSLogArgType(Ctx, Size);
  1021. Args.push_back(ImplicitParamDecl::Create(
  1022. Ctx, nullptr, SourceLocation(),
  1023. &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
  1024. ImplicitParamDecl::Other));
  1025. ArgTys.emplace_back(ArgTy);
  1026. }
  1027. QualType ReturnTy = Ctx.VoidTy;
  1028. QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
  1029. // The helper function has linkonce_odr linkage to enable the linker to merge
  1030. // identical functions. To ensure the merging always happens, 'noinline' is
  1031. // attached to the function when compiling with -Oz.
  1032. const CGFunctionInfo &FI =
  1033. CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
  1034. llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
  1035. llvm::Function *Fn = llvm::Function::Create(
  1036. FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
  1037. Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
  1038. CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn);
  1039. CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
  1040. Fn->setDoesNotThrow();
  1041. // Attach 'noinline' at -Oz.
  1042. if (CGM.getCodeGenOpts().OptimizeSize == 2)
  1043. Fn->addFnAttr(llvm::Attribute::NoInline);
  1044. auto NL = ApplyDebugLocation::CreateEmpty(*this);
  1045. IdentifierInfo *II = &Ctx.Idents.get(Name);
  1046. FunctionDecl *FD = FunctionDecl::Create(
  1047. Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
  1048. FuncionTy, nullptr, SC_PrivateExtern, false, false);
  1049. StartFunction(FD, ReturnTy, Fn, FI, Args);
  1050. // Create a scope with an artificial location for the body of this function.
  1051. auto AL = ApplyDebugLocation::CreateArtificial(*this);
  1052. CharUnits Offset;
  1053. Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
  1054. BufferAlignment);
  1055. Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
  1056. Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
  1057. Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
  1058. Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
  1059. unsigned I = 1;
  1060. for (const auto &Item : Layout.Items) {
  1061. Builder.CreateStore(
  1062. Builder.getInt8(Item.getDescriptorByte()),
  1063. Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
  1064. Builder.CreateStore(
  1065. Builder.getInt8(Item.getSizeByte()),
  1066. Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
  1067. CharUnits Size = Item.size();
  1068. if (!Size.getQuantity())
  1069. continue;
  1070. Address Arg = GetAddrOfLocalVar(Args[I]);
  1071. Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
  1072. Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
  1073. "argDataCast");
  1074. Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
  1075. Offset += Size;
  1076. ++I;
  1077. }
  1078. FinishFunction();
  1079. return Fn;
  1080. }
  1081. RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
  1082. assert(E.getNumArgs() >= 2 &&
  1083. "__builtin_os_log_format takes at least 2 arguments");
  1084. ASTContext &Ctx = getContext();
  1085. analyze_os_log::OSLogBufferLayout Layout;
  1086. analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
  1087. Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
  1088. llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
  1089. // Ignore argument 1, the format string. It is not currently used.
  1090. CallArgList Args;
  1091. Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
  1092. for (const auto &Item : Layout.Items) {
  1093. int Size = Item.getSizeByte();
  1094. if (!Size)
  1095. continue;
  1096. llvm::Value *ArgVal;
  1097. if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
  1098. uint64_t Val = 0;
  1099. for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
  1100. Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
  1101. ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
  1102. } else if (const Expr *TheExpr = Item.getExpr()) {
  1103. ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
  1104. // Check if this is a retainable type.
  1105. if (TheExpr->getType()->isObjCRetainableType()) {
  1106. assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
  1107. "Only scalar can be a ObjC retainable type");
  1108. // Check if the object is constant, if not, save it in
  1109. // RetainableOperands.
  1110. if (!isa<Constant>(ArgVal))
  1111. RetainableOperands.push_back(ArgVal);
  1112. }
  1113. } else {
  1114. ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
  1115. }
  1116. unsigned ArgValSize =
  1117. CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
  1118. llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
  1119. ArgValSize);
  1120. ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
  1121. CanQualType ArgTy = getOSLogArgType(Ctx, Size);
  1122. // If ArgVal has type x86_fp80, zero-extend ArgVal.
  1123. ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
  1124. Args.add(RValue::get(ArgVal), ArgTy);
  1125. }
  1126. const CGFunctionInfo &FI =
  1127. CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
  1128. llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
  1129. Layout, BufAddr.getAlignment());
  1130. EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
  1131. // Push a clang.arc.use cleanup for each object in RetainableOperands. The
  1132. // cleanup will cause the use to appear after the final log call, keeping
  1133. // the object valid while it’s held in the log buffer. Note that if there’s
  1134. // a release cleanup on the object, it will already be active; since
  1135. // cleanups are emitted in reverse order, the use will occur before the
  1136. // object is released.
  1137. if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount &&
  1138. CGM.getCodeGenOpts().OptimizationLevel != 0)
  1139. for (llvm::Value *Object : RetainableOperands)
  1140. pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), Object);
  1141. return RValue::get(BufAddr.getPointer());
  1142. }
  1143. /// Determine if a binop is a checked mixed-sign multiply we can specialize.
  1144. static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
  1145. WidthAndSignedness Op1Info,
  1146. WidthAndSignedness Op2Info,
  1147. WidthAndSignedness ResultInfo) {
  1148. return BuiltinID == Builtin::BI__builtin_mul_overflow &&
  1149. std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
  1150. Op1Info.Signed != Op2Info.Signed;
  1151. }
  1152. /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
  1153. /// the generic checked-binop irgen.
  1154. static RValue
  1155. EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
  1156. WidthAndSignedness Op1Info, const clang::Expr *Op2,
  1157. WidthAndSignedness Op2Info,
  1158. const clang::Expr *ResultArg, QualType ResultQTy,
  1159. WidthAndSignedness ResultInfo) {
  1160. assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
  1161. Op2Info, ResultInfo) &&
  1162. "Not a mixed-sign multipliction we can specialize");
  1163. // Emit the signed and unsigned operands.
  1164. const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
  1165. const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
  1166. llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
  1167. llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
  1168. unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
  1169. unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
  1170. // One of the operands may be smaller than the other. If so, [s|z]ext it.
  1171. if (SignedOpWidth < UnsignedOpWidth)
  1172. Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
  1173. if (UnsignedOpWidth < SignedOpWidth)
  1174. Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
  1175. llvm::Type *OpTy = Signed->getType();
  1176. llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
  1177. Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
  1178. llvm::Type *ResTy = ResultPtr.getElementType();
  1179. unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
  1180. // Take the absolute value of the signed operand.
  1181. llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
  1182. llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
  1183. llvm::Value *AbsSigned =
  1184. CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
  1185. // Perform a checked unsigned multiplication.
  1186. llvm::Value *UnsignedOverflow;
  1187. llvm::Value *UnsignedResult =
  1188. EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
  1189. Unsigned, UnsignedOverflow);
  1190. llvm::Value *Overflow, *Result;
  1191. if (ResultInfo.Signed) {
  1192. // Signed overflow occurs if the result is greater than INT_MAX or lesser
  1193. // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
  1194. auto IntMax =
  1195. llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
  1196. llvm::Value *MaxResult =
  1197. CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
  1198. CGF.Builder.CreateZExt(IsNegative, OpTy));
  1199. llvm::Value *SignedOverflow =
  1200. CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
  1201. Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
  1202. // Prepare the signed result (possibly by negating it).
  1203. llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
  1204. llvm::Value *SignedResult =
  1205. CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
  1206. Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
  1207. } else {
  1208. // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
  1209. llvm::Value *Underflow = CGF.Builder.CreateAnd(
  1210. IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
  1211. Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
  1212. if (ResultInfo.Width < OpWidth) {
  1213. auto IntMax =
  1214. llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
  1215. llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
  1216. UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
  1217. Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
  1218. }
  1219. // Negate the product if it would be negative in infinite precision.
  1220. Result = CGF.Builder.CreateSelect(
  1221. IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
  1222. Result = CGF.Builder.CreateTrunc(Result, ResTy);
  1223. }
  1224. assert(Overflow && Result && "Missing overflow or result");
  1225. bool isVolatile =
  1226. ResultArg->getType()->getPointeeType().isVolatileQualified();
  1227. CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
  1228. isVolatile);
  1229. return RValue::get(Overflow);
  1230. }
  1231. static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
  1232. Value *&RecordPtr, CharUnits Align,
  1233. llvm::FunctionCallee Func, int Lvl) {
  1234. const auto *RT = RType->getAs<RecordType>();
  1235. ASTContext &Context = CGF.getContext();
  1236. RecordDecl *RD = RT->getDecl()->getDefinition();
  1237. std::string Pad = std::string(Lvl * 4, ' ');
  1238. Value *GString =
  1239. CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
  1240. Value *Res = CGF.Builder.CreateCall(Func, {GString});
  1241. static llvm::DenseMap<QualType, const char *> Types;
  1242. if (Types.empty()) {
  1243. Types[Context.CharTy] = "%c";
  1244. Types[Context.BoolTy] = "%d";
  1245. Types[Context.SignedCharTy] = "%hhd";
  1246. Types[Context.UnsignedCharTy] = "%hhu";
  1247. Types[Context.IntTy] = "%d";
  1248. Types[Context.UnsignedIntTy] = "%u";
  1249. Types[Context.LongTy] = "%ld";
  1250. Types[Context.UnsignedLongTy] = "%lu";
  1251. Types[Context.LongLongTy] = "%lld";
  1252. Types[Context.UnsignedLongLongTy] = "%llu";
  1253. Types[Context.ShortTy] = "%hd";
  1254. Types[Context.UnsignedShortTy] = "%hu";
  1255. Types[Context.VoidPtrTy] = "%p";
  1256. Types[Context.FloatTy] = "%f";
  1257. Types[Context.DoubleTy] = "%f";
  1258. Types[Context.LongDoubleTy] = "%Lf";
  1259. Types[Context.getPointerType(Context.CharTy)] = "%s";
  1260. Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
  1261. }
  1262. for (const auto *FD : RD->fields()) {
  1263. Value *FieldPtr = RecordPtr;
  1264. if (RD->isUnion())
  1265. FieldPtr = CGF.Builder.CreatePointerCast(
  1266. FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
  1267. else
  1268. FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
  1269. FD->getFieldIndex());
  1270. GString = CGF.Builder.CreateGlobalStringPtr(
  1271. llvm::Twine(Pad)
  1272. .concat(FD->getType().getAsString())
  1273. .concat(llvm::Twine(' '))
  1274. .concat(FD->getNameAsString())
  1275. .concat(" : ")
  1276. .str());
  1277. Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
  1278. Res = CGF.Builder.CreateAdd(Res, TmpRes);
  1279. QualType CanonicalType =
  1280. FD->getType().getUnqualifiedType().getCanonicalType();
  1281. // We check whether we are in a recursive type
  1282. if (CanonicalType->isRecordType()) {
  1283. Value *TmpRes =
  1284. dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
  1285. Res = CGF.Builder.CreateAdd(TmpRes, Res);
  1286. continue;
  1287. }
  1288. // We try to determine the best format to print the current field
  1289. llvm::Twine Format = Types.find(CanonicalType) == Types.end()
  1290. ? Types[Context.VoidPtrTy]
  1291. : Types[CanonicalType];
  1292. Address FieldAddress = Address(FieldPtr, Align);
  1293. FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
  1294. // FIXME Need to handle bitfield here
  1295. GString = CGF.Builder.CreateGlobalStringPtr(
  1296. Format.concat(llvm::Twine('\n')).str());
  1297. TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
  1298. Res = CGF.Builder.CreateAdd(Res, TmpRes);
  1299. }
  1300. GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
  1301. Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
  1302. Res = CGF.Builder.CreateAdd(Res, TmpRes);
  1303. return Res;
  1304. }
  1305. static bool
  1306. TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
  1307. llvm::SmallPtrSetImpl<const Decl *> &Seen) {
  1308. if (const auto *Arr = Ctx.getAsArrayType(Ty))
  1309. Ty = Ctx.getBaseElementType(Arr);
  1310. const auto *Record = Ty->getAsCXXRecordDecl();
  1311. if (!Record)
  1312. return false;
  1313. // We've already checked this type, or are in the process of checking it.
  1314. if (!Seen.insert(Record).second)
  1315. return false;
  1316. assert(Record->hasDefinition() &&
  1317. "Incomplete types should already be diagnosed");
  1318. if (Record->isDynamicClass())
  1319. return true;
  1320. for (FieldDecl *F : Record->fields()) {
  1321. if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
  1322. return true;
  1323. }
  1324. return false;
  1325. }
  1326. /// Determine if the specified type requires laundering by checking if it is a
  1327. /// dynamic class type or contains a subobject which is a dynamic class type.
  1328. static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
  1329. if (!CGM.getCodeGenOpts().StrictVTablePointers)
  1330. return false;
  1331. llvm::SmallPtrSet<const Decl *, 16> Seen;
  1332. return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
  1333. }
  1334. RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
  1335. llvm::Value *Src = EmitScalarExpr(E->getArg(0));
  1336. llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
  1337. // The builtin's shift arg may have a different type than the source arg and
  1338. // result, but the LLVM intrinsic uses the same type for all values.
  1339. llvm::Type *Ty = Src->getType();
  1340. ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
  1341. // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
  1342. unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
  1343. Function *F = CGM.getIntrinsic(IID, Ty);
  1344. return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
  1345. }
  1346. RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
  1347. const CallExpr *E,
  1348. ReturnValueSlot ReturnValue) {
  1349. const FunctionDecl *FD = GD.getDecl()->getAsFunction();
  1350. // See if we can constant fold this builtin. If so, don't emit it at all.
  1351. Expr::EvalResult Result;
  1352. if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
  1353. !Result.hasSideEffects()) {
  1354. if (Result.Val.isInt())
  1355. return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
  1356. Result.Val.getInt()));
  1357. if (Result.Val.isFloat())
  1358. return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
  1359. Result.Val.getFloat()));
  1360. }
  1361. // There are LLVM math intrinsics/instructions corresponding to math library
  1362. // functions except the LLVM op will never set errno while the math library
  1363. // might. Also, math builtins have the same semantics as their math library
  1364. // twins. Thus, we can transform math library and builtin calls to their
  1365. // LLVM counterparts if the call is marked 'const' (known to never set errno).
  1366. if (FD->hasAttr<ConstAttr>()) {
  1367. switch (BuiltinID) {
  1368. case Builtin::BIceil:
  1369. case Builtin::BIceilf:
  1370. case Builtin::BIceill:
  1371. case Builtin::BI__builtin_ceil:
  1372. case Builtin::BI__builtin_ceilf:
  1373. case Builtin::BI__builtin_ceill:
  1374. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil));
  1375. case Builtin::BIcopysign:
  1376. case Builtin::BIcopysignf:
  1377. case Builtin::BIcopysignl:
  1378. case Builtin::BI__builtin_copysign:
  1379. case Builtin::BI__builtin_copysignf:
  1380. case Builtin::BI__builtin_copysignl:
  1381. case Builtin::BI__builtin_copysignf128:
  1382. return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
  1383. case Builtin::BIcos:
  1384. case Builtin::BIcosf:
  1385. case Builtin::BIcosl:
  1386. case Builtin::BI__builtin_cos:
  1387. case Builtin::BI__builtin_cosf:
  1388. case Builtin::BI__builtin_cosl:
  1389. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::cos));
  1390. case Builtin::BIexp:
  1391. case Builtin::BIexpf:
  1392. case Builtin::BIexpl:
  1393. case Builtin::BI__builtin_exp:
  1394. case Builtin::BI__builtin_expf:
  1395. case Builtin::BI__builtin_expl:
  1396. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp));
  1397. case Builtin::BIexp2:
  1398. case Builtin::BIexp2f:
  1399. case Builtin::BIexp2l:
  1400. case Builtin::BI__builtin_exp2:
  1401. case Builtin::BI__builtin_exp2f:
  1402. case Builtin::BI__builtin_exp2l:
  1403. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp2));
  1404. case Builtin::BIfabs:
  1405. case Builtin::BIfabsf:
  1406. case Builtin::BIfabsl:
  1407. case Builtin::BI__builtin_fabs:
  1408. case Builtin::BI__builtin_fabsf:
  1409. case Builtin::BI__builtin_fabsl:
  1410. case Builtin::BI__builtin_fabsf128:
  1411. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
  1412. case Builtin::BIfloor:
  1413. case Builtin::BIfloorf:
  1414. case Builtin::BIfloorl:
  1415. case Builtin::BI__builtin_floor:
  1416. case Builtin::BI__builtin_floorf:
  1417. case Builtin::BI__builtin_floorl:
  1418. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor));
  1419. case Builtin::BIfma:
  1420. case Builtin::BIfmaf:
  1421. case Builtin::BIfmal:
  1422. case Builtin::BI__builtin_fma:
  1423. case Builtin::BI__builtin_fmaf:
  1424. case Builtin::BI__builtin_fmal:
  1425. return RValue::get(emitTernaryBuiltin(*this, E, Intrinsic::fma));
  1426. case Builtin::BIfmax:
  1427. case Builtin::BIfmaxf:
  1428. case Builtin::BIfmaxl:
  1429. case Builtin::BI__builtin_fmax:
  1430. case Builtin::BI__builtin_fmaxf:
  1431. case Builtin::BI__builtin_fmaxl:
  1432. return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum));
  1433. case Builtin::BIfmin:
  1434. case Builtin::BIfminf:
  1435. case Builtin::BIfminl:
  1436. case Builtin::BI__builtin_fmin:
  1437. case Builtin::BI__builtin_fminf:
  1438. case Builtin::BI__builtin_fminl:
  1439. return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum));
  1440. // fmod() is a special-case. It maps to the frem instruction rather than an
  1441. // LLVM intrinsic.
  1442. case Builtin::BIfmod:
  1443. case Builtin::BIfmodf:
  1444. case Builtin::BIfmodl:
  1445. case Builtin::BI__builtin_fmod:
  1446. case Builtin::BI__builtin_fmodf:
  1447. case Builtin::BI__builtin_fmodl: {
  1448. Value *Arg1 = EmitScalarExpr(E->getArg(0));
  1449. Value *Arg2 = EmitScalarExpr(E->getArg(1));
  1450. return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
  1451. }
  1452. case Builtin::BIlog:
  1453. case Builtin::BIlogf:
  1454. case Builtin::BIlogl:
  1455. case Builtin::BI__builtin_log:
  1456. case Builtin::BI__builtin_logf:
  1457. case Builtin::BI__builtin_logl:
  1458. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log));
  1459. case Builtin::BIlog10:
  1460. case Builtin::BIlog10f:
  1461. case Builtin::BIlog10l:
  1462. case Builtin::BI__builtin_log10:
  1463. case Builtin::BI__builtin_log10f:
  1464. case Builtin::BI__builtin_log10l:
  1465. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log10));
  1466. case Builtin::BIlog2:
  1467. case Builtin::BIlog2f:
  1468. case Builtin::BIlog2l:
  1469. case Builtin::BI__builtin_log2:
  1470. case Builtin::BI__builtin_log2f:
  1471. case Builtin::BI__builtin_log2l:
  1472. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log2));
  1473. case Builtin::BInearbyint:
  1474. case Builtin::BInearbyintf:
  1475. case Builtin::BInearbyintl:
  1476. case Builtin::BI__builtin_nearbyint:
  1477. case Builtin::BI__builtin_nearbyintf:
  1478. case Builtin::BI__builtin_nearbyintl:
  1479. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint));
  1480. case Builtin::BIpow:
  1481. case Builtin::BIpowf:
  1482. case Builtin::BIpowl:
  1483. case Builtin::BI__builtin_pow:
  1484. case Builtin::BI__builtin_powf:
  1485. case Builtin::BI__builtin_powl:
  1486. return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::pow));
  1487. case Builtin::BIrint:
  1488. case Builtin::BIrintf:
  1489. case Builtin::BIrintl:
  1490. case Builtin::BI__builtin_rint:
  1491. case Builtin::BI__builtin_rintf:
  1492. case Builtin::BI__builtin_rintl:
  1493. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint));
  1494. case Builtin::BIround:
  1495. case Builtin::BIroundf:
  1496. case Builtin::BIroundl:
  1497. case Builtin::BI__builtin_round:
  1498. case Builtin::BI__builtin_roundf:
  1499. case Builtin::BI__builtin_roundl:
  1500. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round));
  1501. case Builtin::BIsin:
  1502. case Builtin::BIsinf:
  1503. case Builtin::BIsinl:
  1504. case Builtin::BI__builtin_sin:
  1505. case Builtin::BI__builtin_sinf:
  1506. case Builtin::BI__builtin_sinl:
  1507. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sin));
  1508. case Builtin::BIsqrt:
  1509. case Builtin::BIsqrtf:
  1510. case Builtin::BIsqrtl:
  1511. case Builtin::BI__builtin_sqrt:
  1512. case Builtin::BI__builtin_sqrtf:
  1513. case Builtin::BI__builtin_sqrtl:
  1514. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sqrt));
  1515. case Builtin::BItrunc:
  1516. case Builtin::BItruncf:
  1517. case Builtin::BItruncl:
  1518. case Builtin::BI__builtin_trunc:
  1519. case Builtin::BI__builtin_truncf:
  1520. case Builtin::BI__builtin_truncl:
  1521. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc));
  1522. case Builtin::BIlround:
  1523. case Builtin::BIlroundf:
  1524. case Builtin::BIlroundl:
  1525. case Builtin::BI__builtin_lround:
  1526. case Builtin::BI__builtin_lroundf:
  1527. case Builtin::BI__builtin_lroundl:
  1528. return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lround));
  1529. case Builtin::BIllround:
  1530. case Builtin::BIllroundf:
  1531. case Builtin::BIllroundl:
  1532. case Builtin::BI__builtin_llround:
  1533. case Builtin::BI__builtin_llroundf:
  1534. case Builtin::BI__builtin_llroundl:
  1535. return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llround));
  1536. case Builtin::BIlrint:
  1537. case Builtin::BIlrintf:
  1538. case Builtin::BIlrintl:
  1539. case Builtin::BI__builtin_lrint:
  1540. case Builtin::BI__builtin_lrintf:
  1541. case Builtin::BI__builtin_lrintl:
  1542. return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lrint));
  1543. case Builtin::BIllrint:
  1544. case Builtin::BIllrintf:
  1545. case Builtin::BIllrintl:
  1546. case Builtin::BI__builtin_llrint:
  1547. case Builtin::BI__builtin_llrintf:
  1548. case Builtin::BI__builtin_llrintl:
  1549. return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llrint));
  1550. default:
  1551. break;
  1552. }
  1553. }
  1554. switch (BuiltinID) {
  1555. default: break;
  1556. case Builtin::BI__builtin___CFStringMakeConstantString:
  1557. case Builtin::BI__builtin___NSStringMakeConstantString:
  1558. return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
  1559. case Builtin::BI__builtin_stdarg_start:
  1560. case Builtin::BI__builtin_va_start:
  1561. case Builtin::BI__va_start:
  1562. case Builtin::BI__builtin_va_end:
  1563. return RValue::get(
  1564. EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
  1565. ? EmitScalarExpr(E->getArg(0))
  1566. : EmitVAListRef(E->getArg(0)).getPointer(),
  1567. BuiltinID != Builtin::BI__builtin_va_end));
  1568. case Builtin::BI__builtin_va_copy: {
  1569. Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
  1570. Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
  1571. llvm::Type *Type = Int8PtrTy;
  1572. DstPtr = Builder.CreateBitCast(DstPtr, Type);
  1573. SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
  1574. return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
  1575. {DstPtr, SrcPtr}));
  1576. }
  1577. case Builtin::BI__builtin_abs:
  1578. case Builtin::BI__builtin_labs:
  1579. case Builtin::BI__builtin_llabs: {
  1580. // X < 0 ? -X : X
  1581. // The negation has 'nsw' because abs of INT_MIN is undefined.
  1582. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1583. Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
  1584. Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
  1585. Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
  1586. Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
  1587. return RValue::get(Result);
  1588. }
  1589. case Builtin::BI__builtin_conj:
  1590. case Builtin::BI__builtin_conjf:
  1591. case Builtin::BI__builtin_conjl: {
  1592. ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
  1593. Value *Real = ComplexVal.first;
  1594. Value *Imag = ComplexVal.second;
  1595. Value *Zero =
  1596. Imag->getType()->isFPOrFPVectorTy()
  1597. ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
  1598. : llvm::Constant::getNullValue(Imag->getType());
  1599. Imag = Builder.CreateFSub(Zero, Imag, "sub");
  1600. return RValue::getComplex(std::make_pair(Real, Imag));
  1601. }
  1602. case Builtin::BI__builtin_creal:
  1603. case Builtin::BI__builtin_crealf:
  1604. case Builtin::BI__builtin_creall:
  1605. case Builtin::BIcreal:
  1606. case Builtin::BIcrealf:
  1607. case Builtin::BIcreall: {
  1608. ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
  1609. return RValue::get(ComplexVal.first);
  1610. }
  1611. case Builtin::BI__builtin_dump_struct: {
  1612. llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
  1613. llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
  1614. LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
  1615. Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
  1616. CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
  1617. const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
  1618. QualType Arg0Type = Arg0->getType()->getPointeeType();
  1619. Value *RecordPtr = EmitScalarExpr(Arg0);
  1620. Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
  1621. {LLVMFuncType, Func}, 0);
  1622. return RValue::get(Res);
  1623. }
  1624. case Builtin::BI__builtin_preserve_access_index: {
  1625. // Only enabled preserved access index region when debuginfo
  1626. // is available as debuginfo is needed to preserve user-level
  1627. // access pattern.
  1628. if (!getDebugInfo()) {
  1629. CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
  1630. return RValue::get(EmitScalarExpr(E->getArg(0)));
  1631. }
  1632. // Nested builtin_preserve_access_index() not supported
  1633. if (IsInPreservedAIRegion) {
  1634. CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
  1635. return RValue::get(EmitScalarExpr(E->getArg(0)));
  1636. }
  1637. IsInPreservedAIRegion = true;
  1638. Value *Res = EmitScalarExpr(E->getArg(0));
  1639. IsInPreservedAIRegion = false;
  1640. return RValue::get(Res);
  1641. }
  1642. case Builtin::BI__builtin_cimag:
  1643. case Builtin::BI__builtin_cimagf:
  1644. case Builtin::BI__builtin_cimagl:
  1645. case Builtin::BIcimag:
  1646. case Builtin::BIcimagf:
  1647. case Builtin::BIcimagl: {
  1648. ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
  1649. return RValue::get(ComplexVal.second);
  1650. }
  1651. case Builtin::BI__builtin_clrsb:
  1652. case Builtin::BI__builtin_clrsbl:
  1653. case Builtin::BI__builtin_clrsbll: {
  1654. // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
  1655. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1656. llvm::Type *ArgType = ArgValue->getType();
  1657. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
  1658. llvm::Type *ResultType = ConvertType(E->getType());
  1659. Value *Zero = llvm::Constant::getNullValue(ArgType);
  1660. Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
  1661. Value *Inverse = Builder.CreateNot(ArgValue, "not");
  1662. Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
  1663. Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
  1664. Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
  1665. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  1666. "cast");
  1667. return RValue::get(Result);
  1668. }
  1669. case Builtin::BI__builtin_ctzs:
  1670. case Builtin::BI__builtin_ctz:
  1671. case Builtin::BI__builtin_ctzl:
  1672. case Builtin::BI__builtin_ctzll: {
  1673. Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
  1674. llvm::Type *ArgType = ArgValue->getType();
  1675. Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
  1676. llvm::Type *ResultType = ConvertType(E->getType());
  1677. Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
  1678. Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
  1679. if (Result->getType() != ResultType)
  1680. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  1681. "cast");
  1682. return RValue::get(Result);
  1683. }
  1684. case Builtin::BI__builtin_clzs:
  1685. case Builtin::BI__builtin_clz:
  1686. case Builtin::BI__builtin_clzl:
  1687. case Builtin::BI__builtin_clzll: {
  1688. Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
  1689. llvm::Type *ArgType = ArgValue->getType();
  1690. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
  1691. llvm::Type *ResultType = ConvertType(E->getType());
  1692. Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
  1693. Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
  1694. if (Result->getType() != ResultType)
  1695. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  1696. "cast");
  1697. return RValue::get(Result);
  1698. }
  1699. case Builtin::BI__builtin_ffs:
  1700. case Builtin::BI__builtin_ffsl:
  1701. case Builtin::BI__builtin_ffsll: {
  1702. // ffs(x) -> x ? cttz(x) + 1 : 0
  1703. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1704. llvm::Type *ArgType = ArgValue->getType();
  1705. Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
  1706. llvm::Type *ResultType = ConvertType(E->getType());
  1707. Value *Tmp =
  1708. Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
  1709. llvm::ConstantInt::get(ArgType, 1));
  1710. Value *Zero = llvm::Constant::getNullValue(ArgType);
  1711. Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
  1712. Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
  1713. if (Result->getType() != ResultType)
  1714. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  1715. "cast");
  1716. return RValue::get(Result);
  1717. }
  1718. case Builtin::BI__builtin_parity:
  1719. case Builtin::BI__builtin_parityl:
  1720. case Builtin::BI__builtin_parityll: {
  1721. // parity(x) -> ctpop(x) & 1
  1722. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1723. llvm::Type *ArgType = ArgValue->getType();
  1724. Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
  1725. llvm::Type *ResultType = ConvertType(E->getType());
  1726. Value *Tmp = Builder.CreateCall(F, ArgValue);
  1727. Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
  1728. if (Result->getType() != ResultType)
  1729. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  1730. "cast");
  1731. return RValue::get(Result);
  1732. }
  1733. case Builtin::BI__lzcnt16:
  1734. case Builtin::BI__lzcnt:
  1735. case Builtin::BI__lzcnt64: {
  1736. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1737. llvm::Type *ArgType = ArgValue->getType();
  1738. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
  1739. llvm::Type *ResultType = ConvertType(E->getType());
  1740. Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
  1741. if (Result->getType() != ResultType)
  1742. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  1743. "cast");
  1744. return RValue::get(Result);
  1745. }
  1746. case Builtin::BI__popcnt16:
  1747. case Builtin::BI__popcnt:
  1748. case Builtin::BI__popcnt64:
  1749. case Builtin::BI__builtin_popcount:
  1750. case Builtin::BI__builtin_popcountl:
  1751. case Builtin::BI__builtin_popcountll: {
  1752. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1753. llvm::Type *ArgType = ArgValue->getType();
  1754. Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
  1755. llvm::Type *ResultType = ConvertType(E->getType());
  1756. Value *Result = Builder.CreateCall(F, ArgValue);
  1757. if (Result->getType() != ResultType)
  1758. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  1759. "cast");
  1760. return RValue::get(Result);
  1761. }
  1762. case Builtin::BI__builtin_unpredictable: {
  1763. // Always return the argument of __builtin_unpredictable. LLVM does not
  1764. // handle this builtin. Metadata for this builtin should be added directly
  1765. // to instructions such as branches or switches that use it.
  1766. return RValue::get(EmitScalarExpr(E->getArg(0)));
  1767. }
  1768. case Builtin::BI__builtin_expect: {
  1769. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1770. llvm::Type *ArgType = ArgValue->getType();
  1771. Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
  1772. // Don't generate llvm.expect on -O0 as the backend won't use it for
  1773. // anything.
  1774. // Note, we still IRGen ExpectedValue because it could have side-effects.
  1775. if (CGM.getCodeGenOpts().OptimizationLevel == 0)
  1776. return RValue::get(ArgValue);
  1777. Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
  1778. Value *Result =
  1779. Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
  1780. return RValue::get(Result);
  1781. }
  1782. case Builtin::BI__builtin_assume_aligned: {
  1783. const Expr *Ptr = E->getArg(0);
  1784. Value *PtrValue = EmitScalarExpr(Ptr);
  1785. Value *OffsetValue =
  1786. (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
  1787. Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
  1788. ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
  1789. unsigned Alignment = (unsigned)AlignmentCI->getZExtValue();
  1790. EmitAlignmentAssumption(PtrValue, Ptr,
  1791. /*The expr loc is sufficient.*/ SourceLocation(),
  1792. Alignment, OffsetValue);
  1793. return RValue::get(PtrValue);
  1794. }
  1795. case Builtin::BI__assume:
  1796. case Builtin::BI__builtin_assume: {
  1797. if (E->getArg(0)->HasSideEffects(getContext()))
  1798. return RValue::get(nullptr);
  1799. Value *ArgValue = EmitScalarExpr(E->getArg(0));
  1800. Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
  1801. return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
  1802. }
  1803. case Builtin::BI__builtin_bswap16:
  1804. case Builtin::BI__builtin_bswap32:
  1805. case Builtin::BI__builtin_bswap64: {
  1806. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
  1807. }
  1808. case Builtin::BI__builtin_bitreverse8:
  1809. case Builtin::BI__builtin_bitreverse16:
  1810. case Builtin::BI__builtin_bitreverse32:
  1811. case Builtin::BI__builtin_bitreverse64: {
  1812. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
  1813. }
  1814. case Builtin::BI__builtin_rotateleft8:
  1815. case Builtin::BI__builtin_rotateleft16:
  1816. case Builtin::BI__builtin_rotateleft32:
  1817. case Builtin::BI__builtin_rotateleft64:
  1818. case Builtin::BI_rotl8: // Microsoft variants of rotate left
  1819. case Builtin::BI_rotl16:
  1820. case Builtin::BI_rotl:
  1821. case Builtin::BI_lrotl:
  1822. case Builtin::BI_rotl64:
  1823. return emitRotate(E, false);
  1824. case Builtin::BI__builtin_rotateright8:
  1825. case Builtin::BI__builtin_rotateright16:
  1826. case Builtin::BI__builtin_rotateright32:
  1827. case Builtin::BI__builtin_rotateright64:
  1828. case Builtin::BI_rotr8: // Microsoft variants of rotate right
  1829. case Builtin::BI_rotr16:
  1830. case Builtin::BI_rotr:
  1831. case Builtin::BI_lrotr:
  1832. case Builtin::BI_rotr64:
  1833. return emitRotate(E, true);
  1834. case Builtin::BI__builtin_constant_p: {
  1835. llvm::Type *ResultType = ConvertType(E->getType());
  1836. if (CGM.getCodeGenOpts().OptimizationLevel == 0)
  1837. // At -O0, we don't perform inlining, so we don't need to delay the
  1838. // processing.
  1839. return RValue::get(ConstantInt::get(ResultType, 0));
  1840. const Expr *Arg = E->getArg(0);
  1841. QualType ArgType = Arg->getType();
  1842. // FIXME: The allowance for Obj-C pointers and block pointers is historical
  1843. // and likely a mistake.
  1844. if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
  1845. !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
  1846. // Per the GCC documentation, only numeric constants are recognized after
  1847. // inlining.
  1848. return RValue::get(ConstantInt::get(ResultType, 0));
  1849. if (Arg->HasSideEffects(getContext()))
  1850. // The argument is unevaluated, so be conservative if it might have
  1851. // side-effects.
  1852. return RValue::get(ConstantInt::get(ResultType, 0));
  1853. Value *ArgValue = EmitScalarExpr(Arg);
  1854. if (ArgType->isObjCObjectPointerType()) {
  1855. // Convert Objective-C objects to id because we cannot distinguish between
  1856. // LLVM types for Obj-C classes as they are opaque.
  1857. ArgType = CGM.getContext().getObjCIdType();
  1858. ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
  1859. }
  1860. Function *F =
  1861. CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
  1862. Value *Result = Builder.CreateCall(F, ArgValue);
  1863. if (Result->getType() != ResultType)
  1864. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
  1865. return RValue::get(Result);
  1866. }
  1867. case Builtin::BI__builtin_dynamic_object_size:
  1868. case Builtin::BI__builtin_object_size: {
  1869. unsigned Type =
  1870. E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
  1871. auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
  1872. // We pass this builtin onto the optimizer so that it can figure out the
  1873. // object size in more complex cases.
  1874. bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
  1875. return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
  1876. /*EmittedE=*/nullptr, IsDynamic));
  1877. }
  1878. case Builtin::BI__builtin_prefetch: {
  1879. Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
  1880. // FIXME: Technically these constants should of type 'int', yes?
  1881. RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
  1882. llvm::ConstantInt::get(Int32Ty, 0);
  1883. Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
  1884. llvm::ConstantInt::get(Int32Ty, 3);
  1885. Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
  1886. Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
  1887. return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
  1888. }
  1889. case Builtin::BI__builtin_readcyclecounter: {
  1890. Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
  1891. return RValue::get(Builder.CreateCall(F));
  1892. }
  1893. case Builtin::BI__builtin___clear_cache: {
  1894. Value *Begin = EmitScalarExpr(E->getArg(0));
  1895. Value *End = EmitScalarExpr(E->getArg(1));
  1896. Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
  1897. return RValue::get(Builder.CreateCall(F, {Begin, End}));
  1898. }
  1899. case Builtin::BI__builtin_trap:
  1900. return RValue::get(EmitTrapCall(Intrinsic::trap));
  1901. case Builtin::BI__debugbreak:
  1902. return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
  1903. case Builtin::BI__builtin_unreachable: {
  1904. EmitUnreachable(E->getExprLoc());
  1905. // We do need to preserve an insertion point.
  1906. EmitBlock(createBasicBlock("unreachable.cont"));
  1907. return RValue::get(nullptr);
  1908. }
  1909. case Builtin::BI__builtin_powi:
  1910. case Builtin::BI__builtin_powif:
  1911. case Builtin::BI__builtin_powil: {
  1912. Value *Base = EmitScalarExpr(E->getArg(0));
  1913. Value *Exponent = EmitScalarExpr(E->getArg(1));
  1914. llvm::Type *ArgType = Base->getType();
  1915. Function *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
  1916. return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
  1917. }
  1918. case Builtin::BI__builtin_isgreater:
  1919. case Builtin::BI__builtin_isgreaterequal:
  1920. case Builtin::BI__builtin_isless:
  1921. case Builtin::BI__builtin_islessequal:
  1922. case Builtin::BI__builtin_islessgreater:
  1923. case Builtin::BI__builtin_isunordered: {
  1924. // Ordered comparisons: we know the arguments to these are matching scalar
  1925. // floating point values.
  1926. Value *LHS = EmitScalarExpr(E->getArg(0));
  1927. Value *RHS = EmitScalarExpr(E->getArg(1));
  1928. switch (BuiltinID) {
  1929. default: llvm_unreachable("Unknown ordered comparison");
  1930. case Builtin::BI__builtin_isgreater:
  1931. LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
  1932. break;
  1933. case Builtin::BI__builtin_isgreaterequal:
  1934. LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
  1935. break;
  1936. case Builtin::BI__builtin_isless:
  1937. LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
  1938. break;
  1939. case Builtin::BI__builtin_islessequal:
  1940. LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
  1941. break;
  1942. case Builtin::BI__builtin_islessgreater:
  1943. LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
  1944. break;
  1945. case Builtin::BI__builtin_isunordered:
  1946. LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
  1947. break;
  1948. }
  1949. // ZExt bool to int type.
  1950. return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
  1951. }
  1952. case Builtin::BI__builtin_isnan: {
  1953. Value *V = EmitScalarExpr(E->getArg(0));
  1954. V = Builder.CreateFCmpUNO(V, V, "cmp");
  1955. return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
  1956. }
  1957. case Builtin::BIfinite:
  1958. case Builtin::BI__finite:
  1959. case Builtin::BIfinitef:
  1960. case Builtin::BI__finitef:
  1961. case Builtin::BIfinitel:
  1962. case Builtin::BI__finitel:
  1963. case Builtin::BI__builtin_isinf:
  1964. case Builtin::BI__builtin_isfinite: {
  1965. // isinf(x) --> fabs(x) == infinity
  1966. // isfinite(x) --> fabs(x) != infinity
  1967. // x != NaN via the ordered compare in either case.
  1968. Value *V = EmitScalarExpr(E->getArg(0));
  1969. Value *Fabs = EmitFAbs(*this, V);
  1970. Constant *Infinity = ConstantFP::getInfinity(V->getType());
  1971. CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
  1972. ? CmpInst::FCMP_OEQ
  1973. : CmpInst::FCMP_ONE;
  1974. Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
  1975. return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
  1976. }
  1977. case Builtin::BI__builtin_isinf_sign: {
  1978. // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
  1979. Value *Arg = EmitScalarExpr(E->getArg(0));
  1980. Value *AbsArg = EmitFAbs(*this, Arg);
  1981. Value *IsInf = Builder.CreateFCmpOEQ(
  1982. AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
  1983. Value *IsNeg = EmitSignBit(*this, Arg);
  1984. llvm::Type *IntTy = ConvertType(E->getType());
  1985. Value *Zero = Constant::getNullValue(IntTy);
  1986. Value *One = ConstantInt::get(IntTy, 1);
  1987. Value *NegativeOne = ConstantInt::get(IntTy, -1);
  1988. Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
  1989. Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
  1990. return RValue::get(Result);
  1991. }
  1992. case Builtin::BI__builtin_isnormal: {
  1993. // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
  1994. Value *V = EmitScalarExpr(E->getArg(0));
  1995. Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
  1996. Value *Abs = EmitFAbs(*this, V);
  1997. Value *IsLessThanInf =
  1998. Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
  1999. APFloat Smallest = APFloat::getSmallestNormalized(
  2000. getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
  2001. Value *IsNormal =
  2002. Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
  2003. "isnormal");
  2004. V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
  2005. V = Builder.CreateAnd(V, IsNormal, "and");
  2006. return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
  2007. }
  2008. case Builtin::BI__builtin_flt_rounds: {
  2009. Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
  2010. llvm::Type *ResultType = ConvertType(E->getType());
  2011. Value *Result = Builder.CreateCall(F);
  2012. if (Result->getType() != ResultType)
  2013. Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
  2014. "cast");
  2015. return RValue::get(Result);
  2016. }
  2017. case Builtin::BI__builtin_fpclassify: {
  2018. Value *V = EmitScalarExpr(E->getArg(5));
  2019. llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
  2020. // Create Result
  2021. BasicBlock *Begin = Builder.GetInsertBlock();
  2022. BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
  2023. Builder.SetInsertPoint(End);
  2024. PHINode *Result =
  2025. Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
  2026. "fpclassify_result");
  2027. // if (V==0) return FP_ZERO
  2028. Builder.SetInsertPoint(Begin);
  2029. Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
  2030. "iszero");
  2031. Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
  2032. BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
  2033. Builder.CreateCondBr(IsZero, End, NotZero);
  2034. Result->addIncoming(ZeroLiteral, Begin);
  2035. // if (V != V) return FP_NAN
  2036. Builder.SetInsertPoint(NotZero);
  2037. Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
  2038. Value *NanLiteral = EmitScalarExpr(E->getArg(0));
  2039. BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
  2040. Builder.CreateCondBr(IsNan, End, NotNan);
  2041. Result->addIncoming(NanLiteral, NotZero);
  2042. // if (fabs(V) == infinity) return FP_INFINITY
  2043. Builder.SetInsertPoint(NotNan);
  2044. Value *VAbs = EmitFAbs(*this, V);
  2045. Value *IsInf =
  2046. Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
  2047. "isinf");
  2048. Value *InfLiteral = EmitScalarExpr(E->getArg(1));
  2049. BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
  2050. Builder.CreateCondBr(IsInf, End, NotInf);
  2051. Result->addIncoming(InfLiteral, NotNan);
  2052. // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
  2053. Builder.SetInsertPoint(NotInf);
  2054. APFloat Smallest = APFloat::getSmallestNormalized(
  2055. getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
  2056. Value *IsNormal =
  2057. Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
  2058. "isnormal");
  2059. Value *NormalResult =
  2060. Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
  2061. EmitScalarExpr(E->getArg(3)));
  2062. Builder.CreateBr(End);
  2063. Result->addIncoming(NormalResult, NotInf);
  2064. // return Result
  2065. Builder.SetInsertPoint(End);
  2066. return RValue::get(Result);
  2067. }
  2068. case Builtin::BIalloca:
  2069. case Builtin::BI_alloca:
  2070. case Builtin::BI__builtin_alloca: {
  2071. Value *Size = EmitScalarExpr(E->getArg(0));
  2072. const TargetInfo &TI = getContext().getTargetInfo();
  2073. // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
  2074. unsigned SuitableAlignmentInBytes =
  2075. CGM.getContext()
  2076. .toCharUnitsFromBits(TI.getSuitableAlign())
  2077. .getQuantity();
  2078. AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
  2079. AI->setAlignment(SuitableAlignmentInBytes);
  2080. initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
  2081. return RValue::get(AI);
  2082. }
  2083. case Builtin::BI__builtin_alloca_with_align: {
  2084. Value *Size = EmitScalarExpr(E->getArg(0));
  2085. Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
  2086. auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
  2087. unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
  2088. unsigned AlignmentInBytes =
  2089. CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity();
  2090. AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
  2091. AI->setAlignment(AlignmentInBytes);
  2092. initializeAlloca(*this, AI, Size, AlignmentInBytes);
  2093. return RValue::get(AI);
  2094. }
  2095. case Builtin::BIbzero:
  2096. case Builtin::BI__builtin_bzero: {
  2097. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  2098. Value *SizeVal = EmitScalarExpr(E->getArg(1));
  2099. EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
  2100. E->getArg(0)->getExprLoc(), FD, 0);
  2101. Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
  2102. return RValue::get(nullptr);
  2103. }
  2104. case Builtin::BImemcpy:
  2105. case Builtin::BI__builtin_memcpy: {
  2106. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  2107. Address Src = EmitPointerWithAlignment(E->getArg(1));
  2108. Value *SizeVal = EmitScalarExpr(E->getArg(2));
  2109. EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
  2110. E->getArg(0)->getExprLoc(), FD, 0);
  2111. EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
  2112. E->getArg(1)->getExprLoc(), FD, 1);
  2113. Builder.CreateMemCpy(Dest, Src, SizeVal, false);
  2114. return RValue::get(Dest.getPointer());
  2115. }
  2116. case Builtin::BI__builtin_char_memchr:
  2117. BuiltinID = Builtin::BI__builtin_memchr;
  2118. break;
  2119. case Builtin::BI__builtin___memcpy_chk: {
  2120. // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
  2121. Expr::EvalResult SizeResult, DstSizeResult;
  2122. if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
  2123. !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
  2124. break;
  2125. llvm::APSInt Size = SizeResult.Val.getInt();
  2126. llvm::APSInt DstSize = DstSizeResult.Val.getInt();
  2127. if (Size.ugt(DstSize))
  2128. break;
  2129. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  2130. Address Src = EmitPointerWithAlignment(E->getArg(1));
  2131. Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
  2132. Builder.CreateMemCpy(Dest, Src, SizeVal, false);
  2133. return RValue::get(Dest.getPointer());
  2134. }
  2135. case Builtin::BI__builtin_objc_memmove_collectable: {
  2136. Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
  2137. Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
  2138. Value *SizeVal = EmitScalarExpr(E->getArg(2));
  2139. CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
  2140. DestAddr, SrcAddr, SizeVal);
  2141. return RValue::get(DestAddr.getPointer());
  2142. }
  2143. case Builtin::BI__builtin___memmove_chk: {
  2144. // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
  2145. Expr::EvalResult SizeResult, DstSizeResult;
  2146. if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
  2147. !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
  2148. break;
  2149. llvm::APSInt Size = SizeResult.Val.getInt();
  2150. llvm::APSInt DstSize = DstSizeResult.Val.getInt();
  2151. if (Size.ugt(DstSize))
  2152. break;
  2153. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  2154. Address Src = EmitPointerWithAlignment(E->getArg(1));
  2155. Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
  2156. Builder.CreateMemMove(Dest, Src, SizeVal, false);
  2157. return RValue::get(Dest.getPointer());
  2158. }
  2159. case Builtin::BImemmove:
  2160. case Builtin::BI__builtin_memmove: {
  2161. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  2162. Address Src = EmitPointerWithAlignment(E->getArg(1));
  2163. Value *SizeVal = EmitScalarExpr(E->getArg(2));
  2164. EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
  2165. E->getArg(0)->getExprLoc(), FD, 0);
  2166. EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
  2167. E->getArg(1)->getExprLoc(), FD, 1);
  2168. Builder.CreateMemMove(Dest, Src, SizeVal, false);
  2169. return RValue::get(Dest.getPointer());
  2170. }
  2171. case Builtin::BImemset:
  2172. case Builtin::BI__builtin_memset: {
  2173. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  2174. Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
  2175. Builder.getInt8Ty());
  2176. Value *SizeVal = EmitScalarExpr(E->getArg(2));
  2177. EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
  2178. E->getArg(0)->getExprLoc(), FD, 0);
  2179. Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
  2180. return RValue::get(Dest.getPointer());
  2181. }
  2182. case Builtin::BI__builtin___memset_chk: {
  2183. // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
  2184. Expr::EvalResult SizeResult, DstSizeResult;
  2185. if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
  2186. !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
  2187. break;
  2188. llvm::APSInt Size = SizeResult.Val.getInt();
  2189. llvm::APSInt DstSize = DstSizeResult.Val.getInt();
  2190. if (Size.ugt(DstSize))
  2191. break;
  2192. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  2193. Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
  2194. Builder.getInt8Ty());
  2195. Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
  2196. Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
  2197. return RValue::get(Dest.getPointer());
  2198. }
  2199. case Builtin::BI__builtin_wmemcmp: {
  2200. // The MSVC runtime library does not provide a definition of wmemcmp, so we
  2201. // need an inline implementation.
  2202. if (!getTarget().getTriple().isOSMSVCRT())
  2203. break;
  2204. llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
  2205. Value *Dst = EmitScalarExpr(E->getArg(0));
  2206. Value *Src = EmitScalarExpr(E->getArg(1));
  2207. Value *Size = EmitScalarExpr(E->getArg(2));
  2208. BasicBlock *Entry = Builder.GetInsertBlock();
  2209. BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
  2210. BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
  2211. BasicBlock *Next = createBasicBlock("wmemcmp.next");
  2212. BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
  2213. Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
  2214. Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
  2215. EmitBlock(CmpGT);
  2216. PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
  2217. DstPhi->addIncoming(Dst, Entry);
  2218. PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
  2219. SrcPhi->addIncoming(Src, Entry);
  2220. PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
  2221. SizePhi->addIncoming(Size, Entry);
  2222. CharUnits WCharAlign =
  2223. getContext().getTypeAlignInChars(getContext().WCharTy);
  2224. Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
  2225. Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
  2226. Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
  2227. Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
  2228. EmitBlock(CmpLT);
  2229. Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
  2230. Builder.CreateCondBr(DstLtSrc, Exit, Next);
  2231. EmitBlock(Next);
  2232. Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
  2233. Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
  2234. Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
  2235. Value *NextSizeEq0 =
  2236. Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
  2237. Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
  2238. DstPhi->addIncoming(NextDst, Next);
  2239. SrcPhi->addIncoming(NextSrc, Next);
  2240. SizePhi->addIncoming(NextSize, Next);
  2241. EmitBlock(Exit);
  2242. PHINode *Ret = Builder.CreatePHI(IntTy, 4);
  2243. Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
  2244. Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
  2245. Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
  2246. Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
  2247. return RValue::get(Ret);
  2248. }
  2249. case Builtin::BI__builtin_dwarf_cfa: {
  2250. // The offset in bytes from the first argument to the CFA.
  2251. //
  2252. // Why on earth is this in the frontend? Is there any reason at
  2253. // all that the backend can't reasonably determine this while
  2254. // lowering llvm.eh.dwarf.cfa()?
  2255. //
  2256. // TODO: If there's a satisfactory reason, add a target hook for
  2257. // this instead of hard-coding 0, which is correct for most targets.
  2258. int32_t Offset = 0;
  2259. Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
  2260. return RValue::get(Builder.CreateCall(F,
  2261. llvm::ConstantInt::get(Int32Ty, Offset)));
  2262. }
  2263. case Builtin::BI__builtin_return_address: {
  2264. Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
  2265. getContext().UnsignedIntTy);
  2266. Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
  2267. return RValue::get(Builder.CreateCall(F, Depth));
  2268. }
  2269. case Builtin::BI_ReturnAddress: {
  2270. Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
  2271. return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
  2272. }
  2273. case Builtin::BI__builtin_frame_address: {
  2274. Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
  2275. getContext().UnsignedIntTy);
  2276. Function *F = CGM.getIntrinsic(Intrinsic::frameaddress);
  2277. return RValue::get(Builder.CreateCall(F, Depth));
  2278. }
  2279. case Builtin::BI__builtin_extract_return_addr: {
  2280. Value *Address = EmitScalarExpr(E->getArg(0));
  2281. Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
  2282. return RValue::get(Result);
  2283. }
  2284. case Builtin::BI__builtin_frob_return_addr: {
  2285. Value *Address = EmitScalarExpr(E->getArg(0));
  2286. Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
  2287. return RValue::get(Result);
  2288. }
  2289. case Builtin::BI__builtin_dwarf_sp_column: {
  2290. llvm::IntegerType *Ty
  2291. = cast<llvm::IntegerType>(ConvertType(E->getType()));
  2292. int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
  2293. if (Column == -1) {
  2294. CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
  2295. return RValue::get(llvm::UndefValue::get(Ty));
  2296. }
  2297. return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
  2298. }
  2299. case Builtin::BI__builtin_init_dwarf_reg_size_table: {
  2300. Value *Address = EmitScalarExpr(E->getArg(0));
  2301. if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
  2302. CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
  2303. return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
  2304. }
  2305. case Builtin::BI__builtin_eh_return: {
  2306. Value *Int = EmitScalarExpr(E->getArg(0));
  2307. Value *Ptr = EmitScalarExpr(E->getArg(1));
  2308. llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
  2309. assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
  2310. "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
  2311. Function *F =
  2312. CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
  2313. : Intrinsic::eh_return_i64);
  2314. Builder.CreateCall(F, {Int, Ptr});
  2315. Builder.CreateUnreachable();
  2316. // We do need to preserve an insertion point.
  2317. EmitBlock(createBasicBlock("builtin_eh_return.cont"));
  2318. return RValue::get(nullptr);
  2319. }
  2320. case Builtin::BI__builtin_unwind_init: {
  2321. Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
  2322. return RValue::get(Builder.CreateCall(F));
  2323. }
  2324. case Builtin::BI__builtin_extend_pointer: {
  2325. // Extends a pointer to the size of an _Unwind_Word, which is
  2326. // uint64_t on all platforms. Generally this gets poked into a
  2327. // register and eventually used as an address, so if the
  2328. // addressing registers are wider than pointers and the platform
  2329. // doesn't implicitly ignore high-order bits when doing
  2330. // addressing, we need to make sure we zext / sext based on
  2331. // the platform's expectations.
  2332. //
  2333. // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
  2334. // Cast the pointer to intptr_t.
  2335. Value *Ptr = EmitScalarExpr(E->getArg(0));
  2336. Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
  2337. // If that's 64 bits, we're done.
  2338. if (IntPtrTy->getBitWidth() == 64)
  2339. return RValue::get(Result);
  2340. // Otherwise, ask the codegen data what to do.
  2341. if (getTargetHooks().extendPointerWithSExt())
  2342. return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
  2343. else
  2344. return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
  2345. }
  2346. case Builtin::BI__builtin_setjmp: {
  2347. // Buffer is a void**.
  2348. Address Buf = EmitPointerWithAlignment(E->getArg(0));
  2349. // Store the frame pointer to the setjmp buffer.
  2350. Value *FrameAddr =
  2351. Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
  2352. ConstantInt::get(Int32Ty, 0));
  2353. Builder.CreateStore(FrameAddr, Buf);
  2354. // Store the stack pointer to the setjmp buffer.
  2355. Value *StackAddr =
  2356. Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
  2357. Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
  2358. Builder.CreateStore(StackAddr, StackSaveSlot);
  2359. // Call LLVM's EH setjmp, which is lightweight.
  2360. Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
  2361. Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
  2362. return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
  2363. }
  2364. case Builtin::BI__builtin_longjmp: {
  2365. Value *Buf = EmitScalarExpr(E->getArg(0));
  2366. Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
  2367. // Call LLVM's EH longjmp, which is lightweight.
  2368. Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
  2369. // longjmp doesn't return; mark this as unreachable.
  2370. Builder.CreateUnreachable();
  2371. // We do need to preserve an insertion point.
  2372. EmitBlock(createBasicBlock("longjmp.cont"));
  2373. return RValue::get(nullptr);
  2374. }
  2375. case Builtin::BI__builtin_launder: {
  2376. const Expr *Arg = E->getArg(0);
  2377. QualType ArgTy = Arg->getType()->getPointeeType();
  2378. Value *Ptr = EmitScalarExpr(Arg);
  2379. if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
  2380. Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
  2381. return RValue::get(Ptr);
  2382. }
  2383. case Builtin::BI__sync_fetch_and_add:
  2384. case Builtin::BI__sync_fetch_and_sub:
  2385. case Builtin::BI__sync_fetch_and_or:
  2386. case Builtin::BI__sync_fetch_and_and:
  2387. case Builtin::BI__sync_fetch_and_xor:
  2388. case Builtin::BI__sync_fetch_and_nand:
  2389. case Builtin::BI__sync_add_and_fetch:
  2390. case Builtin::BI__sync_sub_and_fetch:
  2391. case Builtin::BI__sync_and_and_fetch:
  2392. case Builtin::BI__sync_or_and_fetch:
  2393. case Builtin::BI__sync_xor_and_fetch:
  2394. case Builtin::BI__sync_nand_and_fetch:
  2395. case Builtin::BI__sync_val_compare_and_swap:
  2396. case Builtin::BI__sync_bool_compare_and_swap:
  2397. case Builtin::BI__sync_lock_test_and_set:
  2398. case Builtin::BI__sync_lock_release:
  2399. case Builtin::BI__sync_swap:
  2400. llvm_unreachable("Shouldn't make it through sema");
  2401. case Builtin::BI__sync_fetch_and_add_1:
  2402. case Builtin::BI__sync_fetch_and_add_2:
  2403. case Builtin::BI__sync_fetch_and_add_4:
  2404. case Builtin::BI__sync_fetch_and_add_8:
  2405. case Builtin::BI__sync_fetch_and_add_16:
  2406. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
  2407. case Builtin::BI__sync_fetch_and_sub_1:
  2408. case Builtin::BI__sync_fetch_and_sub_2:
  2409. case Builtin::BI__sync_fetch_and_sub_4:
  2410. case Builtin::BI__sync_fetch_and_sub_8:
  2411. case Builtin::BI__sync_fetch_and_sub_16:
  2412. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
  2413. case Builtin::BI__sync_fetch_and_or_1:
  2414. case Builtin::BI__sync_fetch_and_or_2:
  2415. case Builtin::BI__sync_fetch_and_or_4:
  2416. case Builtin::BI__sync_fetch_and_or_8:
  2417. case Builtin::BI__sync_fetch_and_or_16:
  2418. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
  2419. case Builtin::BI__sync_fetch_and_and_1:
  2420. case Builtin::BI__sync_fetch_and_and_2:
  2421. case Builtin::BI__sync_fetch_and_and_4:
  2422. case Builtin::BI__sync_fetch_and_and_8:
  2423. case Builtin::BI__sync_fetch_and_and_16:
  2424. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
  2425. case Builtin::BI__sync_fetch_and_xor_1:
  2426. case Builtin::BI__sync_fetch_and_xor_2:
  2427. case Builtin::BI__sync_fetch_and_xor_4:
  2428. case Builtin::BI__sync_fetch_and_xor_8:
  2429. case Builtin::BI__sync_fetch_and_xor_16:
  2430. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
  2431. case Builtin::BI__sync_fetch_and_nand_1:
  2432. case Builtin::BI__sync_fetch_and_nand_2:
  2433. case Builtin::BI__sync_fetch_and_nand_4:
  2434. case Builtin::BI__sync_fetch_and_nand_8:
  2435. case Builtin::BI__sync_fetch_and_nand_16:
  2436. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
  2437. // Clang extensions: not overloaded yet.
  2438. case Builtin::BI__sync_fetch_and_min:
  2439. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
  2440. case Builtin::BI__sync_fetch_and_max:
  2441. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
  2442. case Builtin::BI__sync_fetch_and_umin:
  2443. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
  2444. case Builtin::BI__sync_fetch_and_umax:
  2445. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
  2446. case Builtin::BI__sync_add_and_fetch_1:
  2447. case Builtin::BI__sync_add_and_fetch_2:
  2448. case Builtin::BI__sync_add_and_fetch_4:
  2449. case Builtin::BI__sync_add_and_fetch_8:
  2450. case Builtin::BI__sync_add_and_fetch_16:
  2451. return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
  2452. llvm::Instruction::Add);
  2453. case Builtin::BI__sync_sub_and_fetch_1:
  2454. case Builtin::BI__sync_sub_and_fetch_2:
  2455. case Builtin::BI__sync_sub_and_fetch_4:
  2456. case Builtin::BI__sync_sub_and_fetch_8:
  2457. case Builtin::BI__sync_sub_and_fetch_16:
  2458. return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
  2459. llvm::Instruction::Sub);
  2460. case Builtin::BI__sync_and_and_fetch_1:
  2461. case Builtin::BI__sync_and_and_fetch_2:
  2462. case Builtin::BI__sync_and_and_fetch_4:
  2463. case Builtin::BI__sync_and_and_fetch_8:
  2464. case Builtin::BI__sync_and_and_fetch_16:
  2465. return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
  2466. llvm::Instruction::And);
  2467. case Builtin::BI__sync_or_and_fetch_1:
  2468. case Builtin::BI__sync_or_and_fetch_2:
  2469. case Builtin::BI__sync_or_and_fetch_4:
  2470. case Builtin::BI__sync_or_and_fetch_8:
  2471. case Builtin::BI__sync_or_and_fetch_16:
  2472. return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
  2473. llvm::Instruction::Or);
  2474. case Builtin::BI__sync_xor_and_fetch_1:
  2475. case Builtin::BI__sync_xor_and_fetch_2:
  2476. case Builtin::BI__sync_xor_and_fetch_4:
  2477. case Builtin::BI__sync_xor_and_fetch_8:
  2478. case Builtin::BI__sync_xor_and_fetch_16:
  2479. return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
  2480. llvm::Instruction::Xor);
  2481. case Builtin::BI__sync_nand_and_fetch_1:
  2482. case Builtin::BI__sync_nand_and_fetch_2:
  2483. case Builtin::BI__sync_nand_and_fetch_4:
  2484. case Builtin::BI__sync_nand_and_fetch_8:
  2485. case Builtin::BI__sync_nand_and_fetch_16:
  2486. return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
  2487. llvm::Instruction::And, true);
  2488. case Builtin::BI__sync_val_compare_and_swap_1:
  2489. case Builtin::BI__sync_val_compare_and_swap_2:
  2490. case Builtin::BI__sync_val_compare_and_swap_4:
  2491. case Builtin::BI__sync_val_compare_and_swap_8:
  2492. case Builtin::BI__sync_val_compare_and_swap_16:
  2493. return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
  2494. case Builtin::BI__sync_bool_compare_and_swap_1:
  2495. case Builtin::BI__sync_bool_compare_and_swap_2:
  2496. case Builtin::BI__sync_bool_compare_and_swap_4:
  2497. case Builtin::BI__sync_bool_compare_and_swap_8:
  2498. case Builtin::BI__sync_bool_compare_and_swap_16:
  2499. return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
  2500. case Builtin::BI__sync_swap_1:
  2501. case Builtin::BI__sync_swap_2:
  2502. case Builtin::BI__sync_swap_4:
  2503. case Builtin::BI__sync_swap_8:
  2504. case Builtin::BI__sync_swap_16:
  2505. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
  2506. case Builtin::BI__sync_lock_test_and_set_1:
  2507. case Builtin::BI__sync_lock_test_and_set_2:
  2508. case Builtin::BI__sync_lock_test_and_set_4:
  2509. case Builtin::BI__sync_lock_test_and_set_8:
  2510. case Builtin::BI__sync_lock_test_and_set_16:
  2511. return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
  2512. case Builtin::BI__sync_lock_release_1:
  2513. case Builtin::BI__sync_lock_release_2:
  2514. case Builtin::BI__sync_lock_release_4:
  2515. case Builtin::BI__sync_lock_release_8:
  2516. case Builtin::BI__sync_lock_release_16: {
  2517. Value *Ptr = EmitScalarExpr(E->getArg(0));
  2518. QualType ElTy = E->getArg(0)->getType()->getPointeeType();
  2519. CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
  2520. llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
  2521. StoreSize.getQuantity() * 8);
  2522. Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
  2523. llvm::StoreInst *Store =
  2524. Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
  2525. StoreSize);
  2526. Store->setAtomic(llvm::AtomicOrdering::Release);
  2527. return RValue::get(nullptr);
  2528. }
  2529. case Builtin::BI__sync_synchronize: {
  2530. // We assume this is supposed to correspond to a C++0x-style
  2531. // sequentially-consistent fence (i.e. this is only usable for
  2532. // synchronization, not device I/O or anything like that). This intrinsic
  2533. // is really badly designed in the sense that in theory, there isn't
  2534. // any way to safely use it... but in practice, it mostly works
  2535. // to use it with non-atomic loads and stores to get acquire/release
  2536. // semantics.
  2537. Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
  2538. return RValue::get(nullptr);
  2539. }
  2540. case Builtin::BI__builtin_nontemporal_load:
  2541. return RValue::get(EmitNontemporalLoad(*this, E));
  2542. case Builtin::BI__builtin_nontemporal_store:
  2543. return RValue::get(EmitNontemporalStore(*this, E));
  2544. case Builtin::BI__c11_atomic_is_lock_free:
  2545. case Builtin::BI__atomic_is_lock_free: {
  2546. // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
  2547. // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
  2548. // _Atomic(T) is always properly-aligned.
  2549. const char *LibCallName = "__atomic_is_lock_free";
  2550. CallArgList Args;
  2551. Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
  2552. getContext().getSizeType());
  2553. if (BuiltinID == Builtin::BI__atomic_is_lock_free)
  2554. Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
  2555. getContext().VoidPtrTy);
  2556. else
  2557. Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
  2558. getContext().VoidPtrTy);
  2559. const CGFunctionInfo &FuncInfo =
  2560. CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
  2561. llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
  2562. llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
  2563. return EmitCall(FuncInfo, CGCallee::forDirect(Func),
  2564. ReturnValueSlot(), Args);
  2565. }
  2566. case Builtin::BI__atomic_test_and_set: {
  2567. // Look at the argument type to determine whether this is a volatile
  2568. // operation. The parameter type is always volatile.
  2569. QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
  2570. bool Volatile =
  2571. PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
  2572. Value *Ptr = EmitScalarExpr(E->getArg(0));
  2573. unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
  2574. Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
  2575. Value *NewVal = Builder.getInt8(1);
  2576. Value *Order = EmitScalarExpr(E->getArg(1));
  2577. if (isa<llvm::ConstantInt>(Order)) {
  2578. int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
  2579. AtomicRMWInst *Result = nullptr;
  2580. switch (ord) {
  2581. case 0: // memory_order_relaxed
  2582. default: // invalid order
  2583. Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
  2584. llvm::AtomicOrdering::Monotonic);
  2585. break;
  2586. case 1: // memory_order_consume
  2587. case 2: // memory_order_acquire
  2588. Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
  2589. llvm::AtomicOrdering::Acquire);
  2590. break;
  2591. case 3: // memory_order_release
  2592. Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
  2593. llvm::AtomicOrdering::Release);
  2594. break;
  2595. case 4: // memory_order_acq_rel
  2596. Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
  2597. llvm::AtomicOrdering::AcquireRelease);
  2598. break;
  2599. case 5: // memory_order_seq_cst
  2600. Result = Builder.CreateAtomicRMW(
  2601. llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
  2602. llvm::AtomicOrdering::SequentiallyConsistent);
  2603. break;
  2604. }
  2605. Result->setVolatile(Volatile);
  2606. return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
  2607. }
  2608. llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
  2609. llvm::BasicBlock *BBs[5] = {
  2610. createBasicBlock("monotonic", CurFn),
  2611. createBasicBlock("acquire", CurFn),
  2612. createBasicBlock("release", CurFn),
  2613. createBasicBlock("acqrel", CurFn),
  2614. createBasicBlock("seqcst", CurFn)
  2615. };
  2616. llvm::AtomicOrdering Orders[5] = {
  2617. llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
  2618. llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
  2619. llvm::AtomicOrdering::SequentiallyConsistent};
  2620. Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
  2621. llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
  2622. Builder.SetInsertPoint(ContBB);
  2623. PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
  2624. for (unsigned i = 0; i < 5; ++i) {
  2625. Builder.SetInsertPoint(BBs[i]);
  2626. AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
  2627. Ptr, NewVal, Orders[i]);
  2628. RMW->setVolatile(Volatile);
  2629. Result->addIncoming(RMW, BBs[i]);
  2630. Builder.CreateBr(ContBB);
  2631. }
  2632. SI->addCase(Builder.getInt32(0), BBs[0]);
  2633. SI->addCase(Builder.getInt32(1), BBs[1]);
  2634. SI->addCase(Builder.getInt32(2), BBs[1]);
  2635. SI->addCase(Builder.getInt32(3), BBs[2]);
  2636. SI->addCase(Builder.getInt32(4), BBs[3]);
  2637. SI->addCase(Builder.getInt32(5), BBs[4]);
  2638. Builder.SetInsertPoint(ContBB);
  2639. return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
  2640. }
  2641. case Builtin::BI__atomic_clear: {
  2642. QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
  2643. bool Volatile =
  2644. PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
  2645. Address Ptr = EmitPointerWithAlignment(E->getArg(0));
  2646. unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
  2647. Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
  2648. Value *NewVal = Builder.getInt8(0);
  2649. Value *Order = EmitScalarExpr(E->getArg(1));
  2650. if (isa<llvm::ConstantInt>(Order)) {
  2651. int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
  2652. StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
  2653. switch (ord) {
  2654. case 0: // memory_order_relaxed
  2655. default: // invalid order
  2656. Store->setOrdering(llvm::AtomicOrdering::Monotonic);
  2657. break;
  2658. case 3: // memory_order_release
  2659. Store->setOrdering(llvm::AtomicOrdering::Release);
  2660. break;
  2661. case 5: // memory_order_seq_cst
  2662. Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
  2663. break;
  2664. }
  2665. return RValue::get(nullptr);
  2666. }
  2667. llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
  2668. llvm::BasicBlock *BBs[3] = {
  2669. createBasicBlock("monotonic", CurFn),
  2670. createBasicBlock("release", CurFn),
  2671. createBasicBlock("seqcst", CurFn)
  2672. };
  2673. llvm::AtomicOrdering Orders[3] = {
  2674. llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
  2675. llvm::AtomicOrdering::SequentiallyConsistent};
  2676. Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
  2677. llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
  2678. for (unsigned i = 0; i < 3; ++i) {
  2679. Builder.SetInsertPoint(BBs[i]);
  2680. StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
  2681. Store->setOrdering(Orders[i]);
  2682. Builder.CreateBr(ContBB);
  2683. }
  2684. SI->addCase(Builder.getInt32(0), BBs[0]);
  2685. SI->addCase(Builder.getInt32(3), BBs[1]);
  2686. SI->addCase(Builder.getInt32(5), BBs[2]);
  2687. Builder.SetInsertPoint(ContBB);
  2688. return RValue::get(nullptr);
  2689. }
  2690. case Builtin::BI__atomic_thread_fence:
  2691. case Builtin::BI__atomic_signal_fence:
  2692. case Builtin::BI__c11_atomic_thread_fence:
  2693. case Builtin::BI__c11_atomic_signal_fence: {
  2694. llvm::SyncScope::ID SSID;
  2695. if (BuiltinID == Builtin::BI__atomic_signal_fence ||
  2696. BuiltinID == Builtin::BI__c11_atomic_signal_fence)
  2697. SSID = llvm::SyncScope::SingleThread;
  2698. else
  2699. SSID = llvm::SyncScope::System;
  2700. Value *Order = EmitScalarExpr(E->getArg(0));
  2701. if (isa<llvm::ConstantInt>(Order)) {
  2702. int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
  2703. switch (ord) {
  2704. case 0: // memory_order_relaxed
  2705. default: // invalid order
  2706. break;
  2707. case 1: // memory_order_consume
  2708. case 2: // memory_order_acquire
  2709. Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
  2710. break;
  2711. case 3: // memory_order_release
  2712. Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
  2713. break;
  2714. case 4: // memory_order_acq_rel
  2715. Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
  2716. break;
  2717. case 5: // memory_order_seq_cst
  2718. Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
  2719. break;
  2720. }
  2721. return RValue::get(nullptr);
  2722. }
  2723. llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
  2724. AcquireBB = createBasicBlock("acquire", CurFn);
  2725. ReleaseBB = createBasicBlock("release", CurFn);
  2726. AcqRelBB = createBasicBlock("acqrel", CurFn);
  2727. SeqCstBB = createBasicBlock("seqcst", CurFn);
  2728. llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
  2729. Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
  2730. llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
  2731. Builder.SetInsertPoint(AcquireBB);
  2732. Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
  2733. Builder.CreateBr(ContBB);
  2734. SI->addCase(Builder.getInt32(1), AcquireBB);
  2735. SI->addCase(Builder.getInt32(2), AcquireBB);
  2736. Builder.SetInsertPoint(ReleaseBB);
  2737. Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
  2738. Builder.CreateBr(ContBB);
  2739. SI->addCase(Builder.getInt32(3), ReleaseBB);
  2740. Builder.SetInsertPoint(AcqRelBB);
  2741. Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
  2742. Builder.CreateBr(ContBB);
  2743. SI->addCase(Builder.getInt32(4), AcqRelBB);
  2744. Builder.SetInsertPoint(SeqCstBB);
  2745. Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
  2746. Builder.CreateBr(ContBB);
  2747. SI->addCase(Builder.getInt32(5), SeqCstBB);
  2748. Builder.SetInsertPoint(ContBB);
  2749. return RValue::get(nullptr);
  2750. }
  2751. case Builtin::BI__builtin_signbit:
  2752. case Builtin::BI__builtin_signbitf:
  2753. case Builtin::BI__builtin_signbitl: {
  2754. return RValue::get(
  2755. Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
  2756. ConvertType(E->getType())));
  2757. }
  2758. case Builtin::BI__annotation: {
  2759. // Re-encode each wide string to UTF8 and make an MDString.
  2760. SmallVector<Metadata *, 1> Strings;
  2761. for (const Expr *Arg : E->arguments()) {
  2762. const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
  2763. assert(Str->getCharByteWidth() == 2);
  2764. StringRef WideBytes = Str->getBytes();
  2765. std::string StrUtf8;
  2766. if (!convertUTF16ToUTF8String(
  2767. makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
  2768. CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
  2769. continue;
  2770. }
  2771. Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
  2772. }
  2773. // Build and MDTuple of MDStrings and emit the intrinsic call.
  2774. llvm::Function *F =
  2775. CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
  2776. MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
  2777. Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
  2778. return RValue::getIgnored();
  2779. }
  2780. case Builtin::BI__builtin_annotation: {
  2781. llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
  2782. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
  2783. AnnVal->getType());
  2784. // Get the annotation string, go through casts. Sema requires this to be a
  2785. // non-wide string literal, potentially casted, so the cast<> is safe.
  2786. const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
  2787. StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
  2788. return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
  2789. }
  2790. case Builtin::BI__builtin_addcb:
  2791. case Builtin::BI__builtin_addcs:
  2792. case Builtin::BI__builtin_addc:
  2793. case Builtin::BI__builtin_addcl:
  2794. case Builtin::BI__builtin_addcll:
  2795. case Builtin::BI__builtin_subcb:
  2796. case Builtin::BI__builtin_subcs:
  2797. case Builtin::BI__builtin_subc:
  2798. case Builtin::BI__builtin_subcl:
  2799. case Builtin::BI__builtin_subcll: {
  2800. // We translate all of these builtins from expressions of the form:
  2801. // int x = ..., y = ..., carryin = ..., carryout, result;
  2802. // result = __builtin_addc(x, y, carryin, &carryout);
  2803. //
  2804. // to LLVM IR of the form:
  2805. //
  2806. // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
  2807. // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
  2808. // %carry1 = extractvalue {i32, i1} %tmp1, 1
  2809. // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
  2810. // i32 %carryin)
  2811. // %result = extractvalue {i32, i1} %tmp2, 0
  2812. // %carry2 = extractvalue {i32, i1} %tmp2, 1
  2813. // %tmp3 = or i1 %carry1, %carry2
  2814. // %tmp4 = zext i1 %tmp3 to i32
  2815. // store i32 %tmp4, i32* %carryout
  2816. // Scalarize our inputs.
  2817. llvm::Value *X = EmitScalarExpr(E->getArg(0));
  2818. llvm::Value *Y = EmitScalarExpr(E->getArg(1));
  2819. llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
  2820. Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
  2821. // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
  2822. llvm::Intrinsic::ID IntrinsicId;
  2823. switch (BuiltinID) {
  2824. default: llvm_unreachable("Unknown multiprecision builtin id.");
  2825. case Builtin::BI__builtin_addcb:
  2826. case Builtin::BI__builtin_addcs:
  2827. case Builtin::BI__builtin_addc:
  2828. case Builtin::BI__builtin_addcl:
  2829. case Builtin::BI__builtin_addcll:
  2830. IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
  2831. break;
  2832. case Builtin::BI__builtin_subcb:
  2833. case Builtin::BI__builtin_subcs:
  2834. case Builtin::BI__builtin_subc:
  2835. case Builtin::BI__builtin_subcl:
  2836. case Builtin::BI__builtin_subcll:
  2837. IntrinsicId = llvm::Intrinsic::usub_with_overflow;
  2838. break;
  2839. }
  2840. // Construct our resulting LLVM IR expression.
  2841. llvm::Value *Carry1;
  2842. llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
  2843. X, Y, Carry1);
  2844. llvm::Value *Carry2;
  2845. llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
  2846. Sum1, Carryin, Carry2);
  2847. llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
  2848. X->getType());
  2849. Builder.CreateStore(CarryOut, CarryOutPtr);
  2850. return RValue::get(Sum2);
  2851. }
  2852. case Builtin::BI__builtin_add_overflow:
  2853. case Builtin::BI__builtin_sub_overflow:
  2854. case Builtin::BI__builtin_mul_overflow: {
  2855. const clang::Expr *LeftArg = E->getArg(0);
  2856. const clang::Expr *RightArg = E->getArg(1);
  2857. const clang::Expr *ResultArg = E->getArg(2);
  2858. clang::QualType ResultQTy =
  2859. ResultArg->getType()->castAs<PointerType>()->getPointeeType();
  2860. WidthAndSignedness LeftInfo =
  2861. getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
  2862. WidthAndSignedness RightInfo =
  2863. getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
  2864. WidthAndSignedness ResultInfo =
  2865. getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
  2866. // Handle mixed-sign multiplication as a special case, because adding
  2867. // runtime or backend support for our generic irgen would be too expensive.
  2868. if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
  2869. return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
  2870. RightInfo, ResultArg, ResultQTy,
  2871. ResultInfo);
  2872. WidthAndSignedness EncompassingInfo =
  2873. EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
  2874. llvm::Type *EncompassingLLVMTy =
  2875. llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
  2876. llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
  2877. llvm::Intrinsic::ID IntrinsicId;
  2878. switch (BuiltinID) {
  2879. default:
  2880. llvm_unreachable("Unknown overflow builtin id.");
  2881. case Builtin::BI__builtin_add_overflow:
  2882. IntrinsicId = EncompassingInfo.Signed
  2883. ? llvm::Intrinsic::sadd_with_overflow
  2884. : llvm::Intrinsic::uadd_with_overflow;
  2885. break;
  2886. case Builtin::BI__builtin_sub_overflow:
  2887. IntrinsicId = EncompassingInfo.Signed
  2888. ? llvm::Intrinsic::ssub_with_overflow
  2889. : llvm::Intrinsic::usub_with_overflow;
  2890. break;
  2891. case Builtin::BI__builtin_mul_overflow:
  2892. IntrinsicId = EncompassingInfo.Signed
  2893. ? llvm::Intrinsic::smul_with_overflow
  2894. : llvm::Intrinsic::umul_with_overflow;
  2895. break;
  2896. }
  2897. llvm::Value *Left = EmitScalarExpr(LeftArg);
  2898. llvm::Value *Right = EmitScalarExpr(RightArg);
  2899. Address ResultPtr = EmitPointerWithAlignment(ResultArg);
  2900. // Extend each operand to the encompassing type.
  2901. Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
  2902. Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
  2903. // Perform the operation on the extended values.
  2904. llvm::Value *Overflow, *Result;
  2905. Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
  2906. if (EncompassingInfo.Width > ResultInfo.Width) {
  2907. // The encompassing type is wider than the result type, so we need to
  2908. // truncate it.
  2909. llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
  2910. // To see if the truncation caused an overflow, we will extend
  2911. // the result and then compare it to the original result.
  2912. llvm::Value *ResultTruncExt = Builder.CreateIntCast(
  2913. ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
  2914. llvm::Value *TruncationOverflow =
  2915. Builder.CreateICmpNE(Result, ResultTruncExt);
  2916. Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
  2917. Result = ResultTrunc;
  2918. }
  2919. // Finally, store the result using the pointer.
  2920. bool isVolatile =
  2921. ResultArg->getType()->getPointeeType().isVolatileQualified();
  2922. Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
  2923. return RValue::get(Overflow);
  2924. }
  2925. case Builtin::BI__builtin_uadd_overflow:
  2926. case Builtin::BI__builtin_uaddl_overflow:
  2927. case Builtin::BI__builtin_uaddll_overflow:
  2928. case Builtin::BI__builtin_usub_overflow:
  2929. case Builtin::BI__builtin_usubl_overflow:
  2930. case Builtin::BI__builtin_usubll_overflow:
  2931. case Builtin::BI__builtin_umul_overflow:
  2932. case Builtin::BI__builtin_umull_overflow:
  2933. case Builtin::BI__builtin_umulll_overflow:
  2934. case Builtin::BI__builtin_sadd_overflow:
  2935. case Builtin::BI__builtin_saddl_overflow:
  2936. case Builtin::BI__builtin_saddll_overflow:
  2937. case Builtin::BI__builtin_ssub_overflow:
  2938. case Builtin::BI__builtin_ssubl_overflow:
  2939. case Builtin::BI__builtin_ssubll_overflow:
  2940. case Builtin::BI__builtin_smul_overflow:
  2941. case Builtin::BI__builtin_smull_overflow:
  2942. case Builtin::BI__builtin_smulll_overflow: {
  2943. // We translate all of these builtins directly to the relevant llvm IR node.
  2944. // Scalarize our inputs.
  2945. llvm::Value *X = EmitScalarExpr(E->getArg(0));
  2946. llvm::Value *Y = EmitScalarExpr(E->getArg(1));
  2947. Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
  2948. // Decide which of the overflow intrinsics we are lowering to:
  2949. llvm::Intrinsic::ID IntrinsicId;
  2950. switch (BuiltinID) {
  2951. default: llvm_unreachable("Unknown overflow builtin id.");
  2952. case Builtin::BI__builtin_uadd_overflow:
  2953. case Builtin::BI__builtin_uaddl_overflow:
  2954. case Builtin::BI__builtin_uaddll_overflow:
  2955. IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
  2956. break;
  2957. case Builtin::BI__builtin_usub_overflow:
  2958. case Builtin::BI__builtin_usubl_overflow:
  2959. case Builtin::BI__builtin_usubll_overflow:
  2960. IntrinsicId = llvm::Intrinsic::usub_with_overflow;
  2961. break;
  2962. case Builtin::BI__builtin_umul_overflow:
  2963. case Builtin::BI__builtin_umull_overflow:
  2964. case Builtin::BI__builtin_umulll_overflow:
  2965. IntrinsicId = llvm::Intrinsic::umul_with_overflow;
  2966. break;
  2967. case Builtin::BI__builtin_sadd_overflow:
  2968. case Builtin::BI__builtin_saddl_overflow:
  2969. case Builtin::BI__builtin_saddll_overflow:
  2970. IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
  2971. break;
  2972. case Builtin::BI__builtin_ssub_overflow:
  2973. case Builtin::BI__builtin_ssubl_overflow:
  2974. case Builtin::BI__builtin_ssubll_overflow:
  2975. IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
  2976. break;
  2977. case Builtin::BI__builtin_smul_overflow:
  2978. case Builtin::BI__builtin_smull_overflow:
  2979. case Builtin::BI__builtin_smulll_overflow:
  2980. IntrinsicId = llvm::Intrinsic::smul_with_overflow;
  2981. break;
  2982. }
  2983. llvm::Value *Carry;
  2984. llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
  2985. Builder.CreateStore(Sum, SumOutPtr);
  2986. return RValue::get(Carry);
  2987. }
  2988. case Builtin::BI__builtin_addressof:
  2989. return RValue::get(EmitLValue(E->getArg(0)).getPointer());
  2990. case Builtin::BI__builtin_operator_new:
  2991. return EmitBuiltinNewDeleteCall(
  2992. E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
  2993. case Builtin::BI__builtin_operator_delete:
  2994. return EmitBuiltinNewDeleteCall(
  2995. E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
  2996. case Builtin::BI__noop:
  2997. // __noop always evaluates to an integer literal zero.
  2998. return RValue::get(ConstantInt::get(IntTy, 0));
  2999. case Builtin::BI__builtin_call_with_static_chain: {
  3000. const CallExpr *Call = cast<CallExpr>(E->getArg(0));
  3001. const Expr *Chain = E->getArg(1);
  3002. return EmitCall(Call->getCallee()->getType(),
  3003. EmitCallee(Call->getCallee()), Call, ReturnValue,
  3004. EmitScalarExpr(Chain));
  3005. }
  3006. case Builtin::BI_InterlockedExchange8:
  3007. case Builtin::BI_InterlockedExchange16:
  3008. case Builtin::BI_InterlockedExchange:
  3009. case Builtin::BI_InterlockedExchangePointer:
  3010. return RValue::get(
  3011. EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
  3012. case Builtin::BI_InterlockedCompareExchangePointer:
  3013. case Builtin::BI_InterlockedCompareExchangePointer_nf: {
  3014. llvm::Type *RTy;
  3015. llvm::IntegerType *IntType =
  3016. IntegerType::get(getLLVMContext(),
  3017. getContext().getTypeSize(E->getType()));
  3018. llvm::Type *IntPtrType = IntType->getPointerTo();
  3019. llvm::Value *Destination =
  3020. Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
  3021. llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
  3022. RTy = Exchange->getType();
  3023. Exchange = Builder.CreatePtrToInt(Exchange, IntType);
  3024. llvm::Value *Comparand =
  3025. Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
  3026. auto Ordering =
  3027. BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
  3028. AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
  3029. auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
  3030. Ordering, Ordering);
  3031. Result->setVolatile(true);
  3032. return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
  3033. 0),
  3034. RTy));
  3035. }
  3036. case Builtin::BI_InterlockedCompareExchange8:
  3037. case Builtin::BI_InterlockedCompareExchange16:
  3038. case Builtin::BI_InterlockedCompareExchange:
  3039. case Builtin::BI_InterlockedCompareExchange64:
  3040. return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
  3041. case Builtin::BI_InterlockedIncrement16:
  3042. case Builtin::BI_InterlockedIncrement:
  3043. return RValue::get(
  3044. EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
  3045. case Builtin::BI_InterlockedDecrement16:
  3046. case Builtin::BI_InterlockedDecrement:
  3047. return RValue::get(
  3048. EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
  3049. case Builtin::BI_InterlockedAnd8:
  3050. case Builtin::BI_InterlockedAnd16:
  3051. case Builtin::BI_InterlockedAnd:
  3052. return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
  3053. case Builtin::BI_InterlockedExchangeAdd8:
  3054. case Builtin::BI_InterlockedExchangeAdd16:
  3055. case Builtin::BI_InterlockedExchangeAdd:
  3056. return RValue::get(
  3057. EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
  3058. case Builtin::BI_InterlockedExchangeSub8:
  3059. case Builtin::BI_InterlockedExchangeSub16:
  3060. case Builtin::BI_InterlockedExchangeSub:
  3061. return RValue::get(
  3062. EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
  3063. case Builtin::BI_InterlockedOr8:
  3064. case Builtin::BI_InterlockedOr16:
  3065. case Builtin::BI_InterlockedOr:
  3066. return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
  3067. case Builtin::BI_InterlockedXor8:
  3068. case Builtin::BI_InterlockedXor16:
  3069. case Builtin::BI_InterlockedXor:
  3070. return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
  3071. case Builtin::BI_bittest64:
  3072. case Builtin::BI_bittest:
  3073. case Builtin::BI_bittestandcomplement64:
  3074. case Builtin::BI_bittestandcomplement:
  3075. case Builtin::BI_bittestandreset64:
  3076. case Builtin::BI_bittestandreset:
  3077. case Builtin::BI_bittestandset64:
  3078. case Builtin::BI_bittestandset:
  3079. case Builtin::BI_interlockedbittestandreset:
  3080. case Builtin::BI_interlockedbittestandreset64:
  3081. case Builtin::BI_interlockedbittestandset64:
  3082. case Builtin::BI_interlockedbittestandset:
  3083. case Builtin::BI_interlockedbittestandset_acq:
  3084. case Builtin::BI_interlockedbittestandset_rel:
  3085. case Builtin::BI_interlockedbittestandset_nf:
  3086. case Builtin::BI_interlockedbittestandreset_acq:
  3087. case Builtin::BI_interlockedbittestandreset_rel:
  3088. case Builtin::BI_interlockedbittestandreset_nf:
  3089. return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
  3090. // These builtins exist to emit regular volatile loads and stores not
  3091. // affected by the -fms-volatile setting.
  3092. case Builtin::BI__iso_volatile_load8:
  3093. case Builtin::BI__iso_volatile_load16:
  3094. case Builtin::BI__iso_volatile_load32:
  3095. case Builtin::BI__iso_volatile_load64:
  3096. return RValue::get(EmitISOVolatileLoad(*this, E));
  3097. case Builtin::BI__iso_volatile_store8:
  3098. case Builtin::BI__iso_volatile_store16:
  3099. case Builtin::BI__iso_volatile_store32:
  3100. case Builtin::BI__iso_volatile_store64:
  3101. return RValue::get(EmitISOVolatileStore(*this, E));
  3102. case Builtin::BI__exception_code:
  3103. case Builtin::BI_exception_code:
  3104. return RValue::get(EmitSEHExceptionCode());
  3105. case Builtin::BI__exception_info:
  3106. case Builtin::BI_exception_info:
  3107. return RValue::get(EmitSEHExceptionInfo());
  3108. case Builtin::BI__abnormal_termination:
  3109. case Builtin::BI_abnormal_termination:
  3110. return RValue::get(EmitSEHAbnormalTermination());
  3111. case Builtin::BI_setjmpex:
  3112. if (getTarget().getTriple().isOSMSVCRT())
  3113. return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
  3114. break;
  3115. case Builtin::BI_setjmp:
  3116. if (getTarget().getTriple().isOSMSVCRT()) {
  3117. if (getTarget().getTriple().getArch() == llvm::Triple::x86)
  3118. return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
  3119. else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
  3120. return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
  3121. return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
  3122. }
  3123. break;
  3124. case Builtin::BI__GetExceptionInfo: {
  3125. if (llvm::GlobalVariable *GV =
  3126. CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
  3127. return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
  3128. break;
  3129. }
  3130. case Builtin::BI__fastfail:
  3131. return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
  3132. case Builtin::BI__builtin_coro_size: {
  3133. auto & Context = getContext();
  3134. auto SizeTy = Context.getSizeType();
  3135. auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
  3136. Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
  3137. return RValue::get(Builder.CreateCall(F));
  3138. }
  3139. case Builtin::BI__builtin_coro_id:
  3140. return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
  3141. case Builtin::BI__builtin_coro_promise:
  3142. return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
  3143. case Builtin::BI__builtin_coro_resume:
  3144. return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
  3145. case Builtin::BI__builtin_coro_frame:
  3146. return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
  3147. case Builtin::BI__builtin_coro_noop:
  3148. return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
  3149. case Builtin::BI__builtin_coro_free:
  3150. return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
  3151. case Builtin::BI__builtin_coro_destroy:
  3152. return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
  3153. case Builtin::BI__builtin_coro_done:
  3154. return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
  3155. case Builtin::BI__builtin_coro_alloc:
  3156. return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
  3157. case Builtin::BI__builtin_coro_begin:
  3158. return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
  3159. case Builtin::BI__builtin_coro_end:
  3160. return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
  3161. case Builtin::BI__builtin_coro_suspend:
  3162. return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
  3163. case Builtin::BI__builtin_coro_param:
  3164. return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
  3165. // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
  3166. case Builtin::BIread_pipe:
  3167. case Builtin::BIwrite_pipe: {
  3168. Value *Arg0 = EmitScalarExpr(E->getArg(0)),
  3169. *Arg1 = EmitScalarExpr(E->getArg(1));
  3170. CGOpenCLRuntime OpenCLRT(CGM);
  3171. Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
  3172. Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
  3173. // Type of the generic packet parameter.
  3174. unsigned GenericAS =
  3175. getContext().getTargetAddressSpace(LangAS::opencl_generic);
  3176. llvm::Type *I8PTy = llvm::PointerType::get(
  3177. llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
  3178. // Testing which overloaded version we should generate the call for.
  3179. if (2U == E->getNumArgs()) {
  3180. const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
  3181. : "__write_pipe_2";
  3182. // Creating a generic function type to be able to call with any builtin or
  3183. // user defined type.
  3184. llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
  3185. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3186. Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3187. Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
  3188. return RValue::get(
  3189. Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
  3190. {Arg0, BCast, PacketSize, PacketAlign}));
  3191. } else {
  3192. assert(4 == E->getNumArgs() &&
  3193. "Illegal number of parameters to pipe function");
  3194. const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
  3195. : "__write_pipe_4";
  3196. llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
  3197. Int32Ty, Int32Ty};
  3198. Value *Arg2 = EmitScalarExpr(E->getArg(2)),
  3199. *Arg3 = EmitScalarExpr(E->getArg(3));
  3200. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3201. Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3202. Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
  3203. // We know the third argument is an integer type, but we may need to cast
  3204. // it to i32.
  3205. if (Arg2->getType() != Int32Ty)
  3206. Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
  3207. return RValue::get(Builder.CreateCall(
  3208. CGM.CreateRuntimeFunction(FTy, Name),
  3209. {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
  3210. }
  3211. }
  3212. // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
  3213. // functions
  3214. case Builtin::BIreserve_read_pipe:
  3215. case Builtin::BIreserve_write_pipe:
  3216. case Builtin::BIwork_group_reserve_read_pipe:
  3217. case Builtin::BIwork_group_reserve_write_pipe:
  3218. case Builtin::BIsub_group_reserve_read_pipe:
  3219. case Builtin::BIsub_group_reserve_write_pipe: {
  3220. // Composing the mangled name for the function.
  3221. const char *Name;
  3222. if (BuiltinID == Builtin::BIreserve_read_pipe)
  3223. Name = "__reserve_read_pipe";
  3224. else if (BuiltinID == Builtin::BIreserve_write_pipe)
  3225. Name = "__reserve_write_pipe";
  3226. else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
  3227. Name = "__work_group_reserve_read_pipe";
  3228. else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
  3229. Name = "__work_group_reserve_write_pipe";
  3230. else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
  3231. Name = "__sub_group_reserve_read_pipe";
  3232. else
  3233. Name = "__sub_group_reserve_write_pipe";
  3234. Value *Arg0 = EmitScalarExpr(E->getArg(0)),
  3235. *Arg1 = EmitScalarExpr(E->getArg(1));
  3236. llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
  3237. CGOpenCLRuntime OpenCLRT(CGM);
  3238. Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
  3239. Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
  3240. // Building the generic function prototype.
  3241. llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
  3242. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3243. ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3244. // We know the second argument is an integer type, but we may need to cast
  3245. // it to i32.
  3246. if (Arg1->getType() != Int32Ty)
  3247. Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
  3248. return RValue::get(
  3249. Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
  3250. {Arg0, Arg1, PacketSize, PacketAlign}));
  3251. }
  3252. // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
  3253. // functions
  3254. case Builtin::BIcommit_read_pipe:
  3255. case Builtin::BIcommit_write_pipe:
  3256. case Builtin::BIwork_group_commit_read_pipe:
  3257. case Builtin::BIwork_group_commit_write_pipe:
  3258. case Builtin::BIsub_group_commit_read_pipe:
  3259. case Builtin::BIsub_group_commit_write_pipe: {
  3260. const char *Name;
  3261. if (BuiltinID == Builtin::BIcommit_read_pipe)
  3262. Name = "__commit_read_pipe";
  3263. else if (BuiltinID == Builtin::BIcommit_write_pipe)
  3264. Name = "__commit_write_pipe";
  3265. else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
  3266. Name = "__work_group_commit_read_pipe";
  3267. else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
  3268. Name = "__work_group_commit_write_pipe";
  3269. else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
  3270. Name = "__sub_group_commit_read_pipe";
  3271. else
  3272. Name = "__sub_group_commit_write_pipe";
  3273. Value *Arg0 = EmitScalarExpr(E->getArg(0)),
  3274. *Arg1 = EmitScalarExpr(E->getArg(1));
  3275. CGOpenCLRuntime OpenCLRT(CGM);
  3276. Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
  3277. Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
  3278. // Building the generic function prototype.
  3279. llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
  3280. llvm::FunctionType *FTy =
  3281. llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
  3282. llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3283. return RValue::get(
  3284. Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
  3285. {Arg0, Arg1, PacketSize, PacketAlign}));
  3286. }
  3287. // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
  3288. case Builtin::BIget_pipe_num_packets:
  3289. case Builtin::BIget_pipe_max_packets: {
  3290. const char *BaseName;
  3291. const PipeType *PipeTy = E->getArg(0)->getType()->getAs<PipeType>();
  3292. if (BuiltinID == Builtin::BIget_pipe_num_packets)
  3293. BaseName = "__get_pipe_num_packets";
  3294. else
  3295. BaseName = "__get_pipe_max_packets";
  3296. auto Name = std::string(BaseName) +
  3297. std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
  3298. // Building the generic function prototype.
  3299. Value *Arg0 = EmitScalarExpr(E->getArg(0));
  3300. CGOpenCLRuntime OpenCLRT(CGM);
  3301. Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
  3302. Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
  3303. llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
  3304. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3305. Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3306. return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
  3307. {Arg0, PacketSize, PacketAlign}));
  3308. }
  3309. // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
  3310. case Builtin::BIto_global:
  3311. case Builtin::BIto_local:
  3312. case Builtin::BIto_private: {
  3313. auto Arg0 = EmitScalarExpr(E->getArg(0));
  3314. auto NewArgT = llvm::PointerType::get(Int8Ty,
  3315. CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
  3316. auto NewRetT = llvm::PointerType::get(Int8Ty,
  3317. CGM.getContext().getTargetAddressSpace(
  3318. E->getType()->getPointeeType().getAddressSpace()));
  3319. auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
  3320. llvm::Value *NewArg;
  3321. if (Arg0->getType()->getPointerAddressSpace() !=
  3322. NewArgT->getPointerAddressSpace())
  3323. NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
  3324. else
  3325. NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
  3326. auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
  3327. auto NewCall =
  3328. Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
  3329. return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
  3330. ConvertType(E->getType())));
  3331. }
  3332. // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
  3333. // It contains four different overload formats specified in Table 6.13.17.1.
  3334. case Builtin::BIenqueue_kernel: {
  3335. StringRef Name; // Generated function call name
  3336. unsigned NumArgs = E->getNumArgs();
  3337. llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
  3338. llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
  3339. getContext().getTargetAddressSpace(LangAS::opencl_generic));
  3340. llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
  3341. llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
  3342. LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
  3343. llvm::Value *Range = NDRangeL.getAddress().getPointer();
  3344. llvm::Type *RangeTy = NDRangeL.getAddress().getType();
  3345. if (NumArgs == 4) {
  3346. // The most basic form of the call with parameters:
  3347. // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
  3348. Name = "__enqueue_kernel_basic";
  3349. llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
  3350. GenericVoidPtrTy};
  3351. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3352. Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3353. auto Info =
  3354. CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
  3355. llvm::Value *Kernel =
  3356. Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
  3357. llvm::Value *Block =
  3358. Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
  3359. AttrBuilder B;
  3360. B.addByValAttr(NDRangeL.getAddress().getElementType());
  3361. llvm::AttributeList ByValAttrSet =
  3362. llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
  3363. auto RTCall =
  3364. Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
  3365. {Queue, Flags, Range, Kernel, Block});
  3366. RTCall->setAttributes(ByValAttrSet);
  3367. return RValue::get(RTCall);
  3368. }
  3369. assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
  3370. // Create a temporary array to hold the sizes of local pointer arguments
  3371. // for the block. \p First is the position of the first size argument.
  3372. auto CreateArrayForSizeVar = [=](unsigned First)
  3373. -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
  3374. llvm::APInt ArraySize(32, NumArgs - First);
  3375. QualType SizeArrayTy = getContext().getConstantArrayType(
  3376. getContext().getSizeType(), ArraySize, ArrayType::Normal,
  3377. /*IndexTypeQuals=*/0);
  3378. auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
  3379. llvm::Value *TmpPtr = Tmp.getPointer();
  3380. llvm::Value *TmpSize = EmitLifetimeStart(
  3381. CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
  3382. llvm::Value *ElemPtr;
  3383. // Each of the following arguments specifies the size of the corresponding
  3384. // argument passed to the enqueued block.
  3385. auto *Zero = llvm::ConstantInt::get(IntTy, 0);
  3386. for (unsigned I = First; I < NumArgs; ++I) {
  3387. auto *Index = llvm::ConstantInt::get(IntTy, I - First);
  3388. auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index});
  3389. if (I == First)
  3390. ElemPtr = GEP;
  3391. auto *V =
  3392. Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
  3393. Builder.CreateAlignedStore(
  3394. V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy));
  3395. }
  3396. return std::tie(ElemPtr, TmpSize, TmpPtr);
  3397. };
  3398. // Could have events and/or varargs.
  3399. if (E->getArg(3)->getType()->isBlockPointerType()) {
  3400. // No events passed, but has variadic arguments.
  3401. Name = "__enqueue_kernel_varargs";
  3402. auto Info =
  3403. CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
  3404. llvm::Value *Kernel =
  3405. Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
  3406. auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
  3407. llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
  3408. std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
  3409. // Create a vector of the arguments, as well as a constant value to
  3410. // express to the runtime the number of variadic arguments.
  3411. std::vector<llvm::Value *> Args = {
  3412. Queue, Flags, Range,
  3413. Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4),
  3414. ElemPtr};
  3415. std::vector<llvm::Type *> ArgTys = {
  3416. QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
  3417. GenericVoidPtrTy, IntTy, ElemPtr->getType()};
  3418. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3419. Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3420. auto Call =
  3421. RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
  3422. llvm::ArrayRef<llvm::Value *>(Args)));
  3423. if (TmpSize)
  3424. EmitLifetimeEnd(TmpSize, TmpPtr);
  3425. return Call;
  3426. }
  3427. // Any calls now have event arguments passed.
  3428. if (NumArgs >= 7) {
  3429. llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
  3430. llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
  3431. CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
  3432. llvm::Value *NumEvents =
  3433. Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
  3434. // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
  3435. // to be a null pointer constant (including `0` literal), we can take it
  3436. // into account and emit null pointer directly.
  3437. llvm::Value *EventWaitList = nullptr;
  3438. if (E->getArg(4)->isNullPointerConstant(
  3439. getContext(), Expr::NPC_ValueDependentIsNotNull)) {
  3440. EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
  3441. } else {
  3442. EventWaitList = E->getArg(4)->getType()->isArrayType()
  3443. ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
  3444. : EmitScalarExpr(E->getArg(4));
  3445. // Convert to generic address space.
  3446. EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
  3447. }
  3448. llvm::Value *EventRet = nullptr;
  3449. if (E->getArg(5)->isNullPointerConstant(
  3450. getContext(), Expr::NPC_ValueDependentIsNotNull)) {
  3451. EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
  3452. } else {
  3453. EventRet =
  3454. Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
  3455. }
  3456. auto Info =
  3457. CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
  3458. llvm::Value *Kernel =
  3459. Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
  3460. llvm::Value *Block =
  3461. Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
  3462. std::vector<llvm::Type *> ArgTys = {
  3463. QueueTy, Int32Ty, RangeTy, Int32Ty,
  3464. EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
  3465. std::vector<llvm::Value *> Args = {Queue, Flags, Range,
  3466. NumEvents, EventWaitList, EventRet,
  3467. Kernel, Block};
  3468. if (NumArgs == 7) {
  3469. // Has events but no variadics.
  3470. Name = "__enqueue_kernel_basic_events";
  3471. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3472. Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3473. return RValue::get(
  3474. Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
  3475. llvm::ArrayRef<llvm::Value *>(Args)));
  3476. }
  3477. // Has event info and variadics
  3478. // Pass the number of variadics to the runtime function too.
  3479. Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
  3480. ArgTys.push_back(Int32Ty);
  3481. Name = "__enqueue_kernel_events_varargs";
  3482. llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
  3483. std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
  3484. Args.push_back(ElemPtr);
  3485. ArgTys.push_back(ElemPtr->getType());
  3486. llvm::FunctionType *FTy = llvm::FunctionType::get(
  3487. Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
  3488. auto Call =
  3489. RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
  3490. llvm::ArrayRef<llvm::Value *>(Args)));
  3491. if (TmpSize)
  3492. EmitLifetimeEnd(TmpSize, TmpPtr);
  3493. return Call;
  3494. }
  3495. LLVM_FALLTHROUGH;
  3496. }
  3497. // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
  3498. // parameter.
  3499. case Builtin::BIget_kernel_work_group_size: {
  3500. llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
  3501. getContext().getTargetAddressSpace(LangAS::opencl_generic));
  3502. auto Info =
  3503. CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
  3504. Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
  3505. Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
  3506. return RValue::get(Builder.CreateCall(
  3507. CGM.CreateRuntimeFunction(
  3508. llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
  3509. false),
  3510. "__get_kernel_work_group_size_impl"),
  3511. {Kernel, Arg}));
  3512. }
  3513. case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
  3514. llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
  3515. getContext().getTargetAddressSpace(LangAS::opencl_generic));
  3516. auto Info =
  3517. CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
  3518. Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
  3519. Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
  3520. return RValue::get(Builder.CreateCall(
  3521. CGM.CreateRuntimeFunction(
  3522. llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
  3523. false),
  3524. "__get_kernel_preferred_work_group_size_multiple_impl"),
  3525. {Kernel, Arg}));
  3526. }
  3527. case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
  3528. case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
  3529. llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
  3530. getContext().getTargetAddressSpace(LangAS::opencl_generic));
  3531. LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
  3532. llvm::Value *NDRange = NDRangeL.getAddress().getPointer();
  3533. auto Info =
  3534. CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
  3535. Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
  3536. Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
  3537. const char *Name =
  3538. BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
  3539. ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
  3540. : "__get_kernel_sub_group_count_for_ndrange_impl";
  3541. return RValue::get(Builder.CreateCall(
  3542. CGM.CreateRuntimeFunction(
  3543. llvm::FunctionType::get(
  3544. IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
  3545. false),
  3546. Name),
  3547. {NDRange, Kernel, Block}));
  3548. }
  3549. case Builtin::BI__builtin_store_half:
  3550. case Builtin::BI__builtin_store_halff: {
  3551. Value *Val = EmitScalarExpr(E->getArg(0));
  3552. Address Address = EmitPointerWithAlignment(E->getArg(1));
  3553. Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
  3554. return RValue::get(Builder.CreateStore(HalfVal, Address));
  3555. }
  3556. case Builtin::BI__builtin_load_half: {
  3557. Address Address = EmitPointerWithAlignment(E->getArg(0));
  3558. Value *HalfVal = Builder.CreateLoad(Address);
  3559. return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
  3560. }
  3561. case Builtin::BI__builtin_load_halff: {
  3562. Address Address = EmitPointerWithAlignment(E->getArg(0));
  3563. Value *HalfVal = Builder.CreateLoad(Address);
  3564. return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
  3565. }
  3566. case Builtin::BIprintf:
  3567. if (getTarget().getTriple().isNVPTX())
  3568. return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
  3569. break;
  3570. case Builtin::BI__builtin_canonicalize:
  3571. case Builtin::BI__builtin_canonicalizef:
  3572. case Builtin::BI__builtin_canonicalizel:
  3573. return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
  3574. case Builtin::BI__builtin_thread_pointer: {
  3575. if (!getContext().getTargetInfo().isTLSSupported())
  3576. CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
  3577. // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
  3578. break;
  3579. }
  3580. case Builtin::BI__builtin_os_log_format:
  3581. return emitBuiltinOSLogFormat(*E);
  3582. case Builtin::BI__xray_customevent: {
  3583. if (!ShouldXRayInstrumentFunction())
  3584. return RValue::getIgnored();
  3585. if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
  3586. XRayInstrKind::Custom))
  3587. return RValue::getIgnored();
  3588. if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
  3589. if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
  3590. return RValue::getIgnored();
  3591. Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
  3592. auto FTy = F->getFunctionType();
  3593. auto Arg0 = E->getArg(0);
  3594. auto Arg0Val = EmitScalarExpr(Arg0);
  3595. auto Arg0Ty = Arg0->getType();
  3596. auto PTy0 = FTy->getParamType(0);
  3597. if (PTy0 != Arg0Val->getType()) {
  3598. if (Arg0Ty->isArrayType())
  3599. Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
  3600. else
  3601. Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
  3602. }
  3603. auto Arg1 = EmitScalarExpr(E->getArg(1));
  3604. auto PTy1 = FTy->getParamType(1);
  3605. if (PTy1 != Arg1->getType())
  3606. Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
  3607. return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
  3608. }
  3609. case Builtin::BI__xray_typedevent: {
  3610. // TODO: There should be a way to always emit events even if the current
  3611. // function is not instrumented. Losing events in a stream can cripple
  3612. // a trace.
  3613. if (!ShouldXRayInstrumentFunction())
  3614. return RValue::getIgnored();
  3615. if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
  3616. XRayInstrKind::Typed))
  3617. return RValue::getIgnored();
  3618. if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
  3619. if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
  3620. return RValue::getIgnored();
  3621. Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
  3622. auto FTy = F->getFunctionType();
  3623. auto Arg0 = EmitScalarExpr(E->getArg(0));
  3624. auto PTy0 = FTy->getParamType(0);
  3625. if (PTy0 != Arg0->getType())
  3626. Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
  3627. auto Arg1 = E->getArg(1);
  3628. auto Arg1Val = EmitScalarExpr(Arg1);
  3629. auto Arg1Ty = Arg1->getType();
  3630. auto PTy1 = FTy->getParamType(1);
  3631. if (PTy1 != Arg1Val->getType()) {
  3632. if (Arg1Ty->isArrayType())
  3633. Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
  3634. else
  3635. Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
  3636. }
  3637. auto Arg2 = EmitScalarExpr(E->getArg(2));
  3638. auto PTy2 = FTy->getParamType(2);
  3639. if (PTy2 != Arg2->getType())
  3640. Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
  3641. return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
  3642. }
  3643. case Builtin::BI__builtin_ms_va_start:
  3644. case Builtin::BI__builtin_ms_va_end:
  3645. return RValue::get(
  3646. EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
  3647. BuiltinID == Builtin::BI__builtin_ms_va_start));
  3648. case Builtin::BI__builtin_ms_va_copy: {
  3649. // Lower this manually. We can't reliably determine whether or not any
  3650. // given va_copy() is for a Win64 va_list from the calling convention
  3651. // alone, because it's legal to do this from a System V ABI function.
  3652. // With opaque pointer types, we won't have enough information in LLVM
  3653. // IR to determine this from the argument types, either. Best to do it
  3654. // now, while we have enough information.
  3655. Address DestAddr = EmitMSVAListRef(E->getArg(0));
  3656. Address SrcAddr = EmitMSVAListRef(E->getArg(1));
  3657. llvm::Type *BPP = Int8PtrPtrTy;
  3658. DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
  3659. DestAddr.getAlignment());
  3660. SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
  3661. SrcAddr.getAlignment());
  3662. Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
  3663. return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
  3664. }
  3665. }
  3666. // If this is an alias for a lib function (e.g. __builtin_sin), emit
  3667. // the call using the normal call path, but using the unmangled
  3668. // version of the function name.
  3669. if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
  3670. return emitLibraryCall(*this, FD, E,
  3671. CGM.getBuiltinLibFunction(FD, BuiltinID));
  3672. // If this is a predefined lib function (e.g. malloc), emit the call
  3673. // using exactly the normal call path.
  3674. if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
  3675. return emitLibraryCall(*this, FD, E,
  3676. cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
  3677. // Check that a call to a target specific builtin has the correct target
  3678. // features.
  3679. // This is down here to avoid non-target specific builtins, however, if
  3680. // generic builtins start to require generic target features then we
  3681. // can move this up to the beginning of the function.
  3682. checkTargetFeatures(E, FD);
  3683. if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
  3684. LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
  3685. // See if we have a target specific intrinsic.
  3686. const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
  3687. Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
  3688. StringRef Prefix =
  3689. llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
  3690. if (!Prefix.empty()) {
  3691. IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
  3692. // NOTE we don't need to perform a compatibility flag check here since the
  3693. // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
  3694. // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
  3695. if (IntrinsicID == Intrinsic::not_intrinsic)
  3696. IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
  3697. }
  3698. if (IntrinsicID != Intrinsic::not_intrinsic) {
  3699. SmallVector<Value*, 16> Args;
  3700. // Find out if any arguments are required to be integer constant
  3701. // expressions.
  3702. unsigned ICEArguments = 0;
  3703. ASTContext::GetBuiltinTypeError Error;
  3704. getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
  3705. assert(Error == ASTContext::GE_None && "Should not codegen an error");
  3706. Function *F = CGM.getIntrinsic(IntrinsicID);
  3707. llvm::FunctionType *FTy = F->getFunctionType();
  3708. for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
  3709. Value *ArgValue;
  3710. // If this is a normal argument, just emit it as a scalar.
  3711. if ((ICEArguments & (1 << i)) == 0) {
  3712. ArgValue = EmitScalarExpr(E->getArg(i));
  3713. } else {
  3714. // If this is required to be a constant, constant fold it so that we
  3715. // know that the generated intrinsic gets a ConstantInt.
  3716. llvm::APSInt Result;
  3717. bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
  3718. assert(IsConst && "Constant arg isn't actually constant?");
  3719. (void)IsConst;
  3720. ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
  3721. }
  3722. // If the intrinsic arg type is different from the builtin arg type
  3723. // we need to do a bit cast.
  3724. llvm::Type *PTy = FTy->getParamType(i);
  3725. if (PTy != ArgValue->getType()) {
  3726. // XXX - vector of pointers?
  3727. if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
  3728. if (PtrTy->getAddressSpace() !=
  3729. ArgValue->getType()->getPointerAddressSpace()) {
  3730. ArgValue = Builder.CreateAddrSpaceCast(
  3731. ArgValue,
  3732. ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
  3733. }
  3734. }
  3735. assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
  3736. "Must be able to losslessly bit cast to param");
  3737. ArgValue = Builder.CreateBitCast(ArgValue, PTy);
  3738. }
  3739. Args.push_back(ArgValue);
  3740. }
  3741. Value *V = Builder.CreateCall(F, Args);
  3742. QualType BuiltinRetType = E->getType();
  3743. llvm::Type *RetTy = VoidTy;
  3744. if (!BuiltinRetType->isVoidType())
  3745. RetTy = ConvertType(BuiltinRetType);
  3746. if (RetTy != V->getType()) {
  3747. // XXX - vector of pointers?
  3748. if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
  3749. if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
  3750. V = Builder.CreateAddrSpaceCast(
  3751. V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
  3752. }
  3753. }
  3754. assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
  3755. "Must be able to losslessly bit cast result type");
  3756. V = Builder.CreateBitCast(V, RetTy);
  3757. }
  3758. return RValue::get(V);
  3759. }
  3760. // See if we have a target specific builtin that needs to be lowered.
  3761. if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
  3762. return RValue::get(V);
  3763. ErrorUnsupported(E, "builtin function");
  3764. // Unknown builtin, for now just dump it out and return undef.
  3765. return GetUndefRValue(E->getType());
  3766. }
  3767. static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
  3768. unsigned BuiltinID, const CallExpr *E,
  3769. llvm::Triple::ArchType Arch) {
  3770. switch (Arch) {
  3771. case llvm::Triple::arm:
  3772. case llvm::Triple::armeb:
  3773. case llvm::Triple::thumb:
  3774. case llvm::Triple::thumbeb:
  3775. return CGF->EmitARMBuiltinExpr(BuiltinID, E, Arch);
  3776. case llvm::Triple::aarch64:
  3777. case llvm::Triple::aarch64_be:
  3778. return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
  3779. case llvm::Triple::x86:
  3780. case llvm::Triple::x86_64:
  3781. return CGF->EmitX86BuiltinExpr(BuiltinID, E);
  3782. case llvm::Triple::ppc:
  3783. case llvm::Triple::ppc64:
  3784. case llvm::Triple::ppc64le:
  3785. return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
  3786. case llvm::Triple::r600:
  3787. case llvm::Triple::amdgcn:
  3788. return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
  3789. case llvm::Triple::systemz:
  3790. return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
  3791. case llvm::Triple::nvptx:
  3792. case llvm::Triple::nvptx64:
  3793. return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
  3794. case llvm::Triple::wasm32:
  3795. case llvm::Triple::wasm64:
  3796. return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
  3797. case llvm::Triple::hexagon:
  3798. return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
  3799. default:
  3800. return nullptr;
  3801. }
  3802. }
  3803. Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
  3804. const CallExpr *E) {
  3805. if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
  3806. assert(getContext().getAuxTargetInfo() && "Missing aux target info");
  3807. return EmitTargetArchBuiltinExpr(
  3808. this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
  3809. getContext().getAuxTargetInfo()->getTriple().getArch());
  3810. }
  3811. return EmitTargetArchBuiltinExpr(this, BuiltinID, E,
  3812. getTarget().getTriple().getArch());
  3813. }
  3814. static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
  3815. NeonTypeFlags TypeFlags,
  3816. bool HasLegalHalfType=true,
  3817. bool V1Ty=false) {
  3818. int IsQuad = TypeFlags.isQuad();
  3819. switch (TypeFlags.getEltType()) {
  3820. case NeonTypeFlags::Int8:
  3821. case NeonTypeFlags::Poly8:
  3822. return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
  3823. case NeonTypeFlags::Int16:
  3824. case NeonTypeFlags::Poly16:
  3825. return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
  3826. case NeonTypeFlags::Float16:
  3827. if (HasLegalHalfType)
  3828. return llvm::VectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
  3829. else
  3830. return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
  3831. case NeonTypeFlags::Int32:
  3832. return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
  3833. case NeonTypeFlags::Int64:
  3834. case NeonTypeFlags::Poly64:
  3835. return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
  3836. case NeonTypeFlags::Poly128:
  3837. // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
  3838. // There is a lot of i128 and f128 API missing.
  3839. // so we use v16i8 to represent poly128 and get pattern matched.
  3840. return llvm::VectorType::get(CGF->Int8Ty, 16);
  3841. case NeonTypeFlags::Float32:
  3842. return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
  3843. case NeonTypeFlags::Float64:
  3844. return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
  3845. }
  3846. llvm_unreachable("Unknown vector element type!");
  3847. }
  3848. static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
  3849. NeonTypeFlags IntTypeFlags) {
  3850. int IsQuad = IntTypeFlags.isQuad();
  3851. switch (IntTypeFlags.getEltType()) {
  3852. case NeonTypeFlags::Int16:
  3853. return llvm::VectorType::get(CGF->HalfTy, (4 << IsQuad));
  3854. case NeonTypeFlags::Int32:
  3855. return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
  3856. case NeonTypeFlags::Int64:
  3857. return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
  3858. default:
  3859. llvm_unreachable("Type can't be converted to floating-point!");
  3860. }
  3861. }
  3862. Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
  3863. unsigned nElts = V->getType()->getVectorNumElements();
  3864. Value* SV = llvm::ConstantVector::getSplat(nElts, C);
  3865. return Builder.CreateShuffleVector(V, V, SV, "lane");
  3866. }
  3867. Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
  3868. const char *name,
  3869. unsigned shift, bool rightshift) {
  3870. unsigned j = 0;
  3871. for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
  3872. ai != ae; ++ai, ++j)
  3873. if (shift > 0 && shift == j)
  3874. Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
  3875. else
  3876. Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
  3877. return Builder.CreateCall(F, Ops, name);
  3878. }
  3879. Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
  3880. bool neg) {
  3881. int SV = cast<ConstantInt>(V)->getSExtValue();
  3882. return ConstantInt::get(Ty, neg ? -SV : SV);
  3883. }
  3884. // Right-shift a vector by a constant.
  3885. Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
  3886. llvm::Type *Ty, bool usgn,
  3887. const char *name) {
  3888. llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
  3889. int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
  3890. int EltSize = VTy->getScalarSizeInBits();
  3891. Vec = Builder.CreateBitCast(Vec, Ty);
  3892. // lshr/ashr are undefined when the shift amount is equal to the vector
  3893. // element size.
  3894. if (ShiftAmt == EltSize) {
  3895. if (usgn) {
  3896. // Right-shifting an unsigned value by its size yields 0.
  3897. return llvm::ConstantAggregateZero::get(VTy);
  3898. } else {
  3899. // Right-shifting a signed value by its size is equivalent
  3900. // to a shift of size-1.
  3901. --ShiftAmt;
  3902. Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
  3903. }
  3904. }
  3905. Shift = EmitNeonShiftVector(Shift, Ty, false);
  3906. if (usgn)
  3907. return Builder.CreateLShr(Vec, Shift, name);
  3908. else
  3909. return Builder.CreateAShr(Vec, Shift, name);
  3910. }
  3911. enum {
  3912. AddRetType = (1 << 0),
  3913. Add1ArgType = (1 << 1),
  3914. Add2ArgTypes = (1 << 2),
  3915. VectorizeRetType = (1 << 3),
  3916. VectorizeArgTypes = (1 << 4),
  3917. InventFloatType = (1 << 5),
  3918. UnsignedAlts = (1 << 6),
  3919. Use64BitVectors = (1 << 7),
  3920. Use128BitVectors = (1 << 8),
  3921. Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
  3922. VectorRet = AddRetType | VectorizeRetType,
  3923. VectorRetGetArgs01 =
  3924. AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
  3925. FpCmpzModifiers =
  3926. AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
  3927. };
  3928. namespace {
  3929. struct NeonIntrinsicInfo {
  3930. const char *NameHint;
  3931. unsigned BuiltinID;
  3932. unsigned LLVMIntrinsic;
  3933. unsigned AltLLVMIntrinsic;
  3934. unsigned TypeModifier;
  3935. bool operator<(unsigned RHSBuiltinID) const {
  3936. return BuiltinID < RHSBuiltinID;
  3937. }
  3938. bool operator<(const NeonIntrinsicInfo &TE) const {
  3939. return BuiltinID < TE.BuiltinID;
  3940. }
  3941. };
  3942. } // end anonymous namespace
  3943. #define NEONMAP0(NameBase) \
  3944. { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
  3945. #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
  3946. { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
  3947. Intrinsic::LLVMIntrinsic, 0, TypeModifier }
  3948. #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
  3949. { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
  3950. Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
  3951. TypeModifier }
  3952. static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
  3953. NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
  3954. NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
  3955. NEONMAP1(vabs_v, arm_neon_vabs, 0),
  3956. NEONMAP1(vabsq_v, arm_neon_vabs, 0),
  3957. NEONMAP0(vaddhn_v),
  3958. NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
  3959. NEONMAP1(vaeseq_v, arm_neon_aese, 0),
  3960. NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
  3961. NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
  3962. NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
  3963. NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
  3964. NEONMAP1(vcage_v, arm_neon_vacge, 0),
  3965. NEONMAP1(vcageq_v, arm_neon_vacge, 0),
  3966. NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
  3967. NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
  3968. NEONMAP1(vcale_v, arm_neon_vacge, 0),
  3969. NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
  3970. NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
  3971. NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
  3972. NEONMAP0(vceqz_v),
  3973. NEONMAP0(vceqzq_v),
  3974. NEONMAP0(vcgez_v),
  3975. NEONMAP0(vcgezq_v),
  3976. NEONMAP0(vcgtz_v),
  3977. NEONMAP0(vcgtzq_v),
  3978. NEONMAP0(vclez_v),
  3979. NEONMAP0(vclezq_v),
  3980. NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
  3981. NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
  3982. NEONMAP0(vcltz_v),
  3983. NEONMAP0(vcltzq_v),
  3984. NEONMAP1(vclz_v, ctlz, Add1ArgType),
  3985. NEONMAP1(vclzq_v, ctlz, Add1ArgType),
  3986. NEONMAP1(vcnt_v, ctpop, Add1ArgType),
  3987. NEONMAP1(vcntq_v, ctpop, Add1ArgType),
  3988. NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
  3989. NEONMAP0(vcvt_f16_v),
  3990. NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
  3991. NEONMAP0(vcvt_f32_v),
  3992. NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
  3993. NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
  3994. NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
  3995. NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
  3996. NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
  3997. NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
  3998. NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
  3999. NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
  4000. NEONMAP0(vcvt_s16_v),
  4001. NEONMAP0(vcvt_s32_v),
  4002. NEONMAP0(vcvt_s64_v),
  4003. NEONMAP0(vcvt_u16_v),
  4004. NEONMAP0(vcvt_u32_v),
  4005. NEONMAP0(vcvt_u64_v),
  4006. NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
  4007. NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
  4008. NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
  4009. NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
  4010. NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
  4011. NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
  4012. NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
  4013. NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
  4014. NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
  4015. NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
  4016. NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
  4017. NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
  4018. NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
  4019. NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
  4020. NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
  4021. NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
  4022. NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
  4023. NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
  4024. NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
  4025. NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
  4026. NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
  4027. NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
  4028. NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
  4029. NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
  4030. NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
  4031. NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
  4032. NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
  4033. NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
  4034. NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
  4035. NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
  4036. NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
  4037. NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
  4038. NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
  4039. NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
  4040. NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
  4041. NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
  4042. NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
  4043. NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
  4044. NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
  4045. NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
  4046. NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
  4047. NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
  4048. NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
  4049. NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
  4050. NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
  4051. NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
  4052. NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
  4053. NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
  4054. NEONMAP0(vcvtq_f16_v),
  4055. NEONMAP0(vcvtq_f32_v),
  4056. NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
  4057. NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
  4058. NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
  4059. NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
  4060. NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
  4061. NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
  4062. NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
  4063. NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
  4064. NEONMAP0(vcvtq_s16_v),
  4065. NEONMAP0(vcvtq_s32_v),
  4066. NEONMAP0(vcvtq_s64_v),
  4067. NEONMAP0(vcvtq_u16_v),
  4068. NEONMAP0(vcvtq_u32_v),
  4069. NEONMAP0(vcvtq_u64_v),
  4070. NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
  4071. NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
  4072. NEONMAP0(vext_v),
  4073. NEONMAP0(vextq_v),
  4074. NEONMAP0(vfma_v),
  4075. NEONMAP0(vfmaq_v),
  4076. NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
  4077. NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
  4078. NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
  4079. NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
  4080. NEONMAP0(vld1_dup_v),
  4081. NEONMAP1(vld1_v, arm_neon_vld1, 0),
  4082. NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
  4083. NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
  4084. NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
  4085. NEONMAP0(vld1q_dup_v),
  4086. NEONMAP1(vld1q_v, arm_neon_vld1, 0),
  4087. NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
  4088. NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
  4089. NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
  4090. NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
  4091. NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
  4092. NEONMAP1(vld2_v, arm_neon_vld2, 0),
  4093. NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
  4094. NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
  4095. NEONMAP1(vld2q_v, arm_neon_vld2, 0),
  4096. NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
  4097. NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
  4098. NEONMAP1(vld3_v, arm_neon_vld3, 0),
  4099. NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
  4100. NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
  4101. NEONMAP1(vld3q_v, arm_neon_vld3, 0),
  4102. NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
  4103. NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
  4104. NEONMAP1(vld4_v, arm_neon_vld4, 0),
  4105. NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
  4106. NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
  4107. NEONMAP1(vld4q_v, arm_neon_vld4, 0),
  4108. NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
  4109. NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
  4110. NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
  4111. NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
  4112. NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
  4113. NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
  4114. NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
  4115. NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
  4116. NEONMAP0(vmovl_v),
  4117. NEONMAP0(vmovn_v),
  4118. NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
  4119. NEONMAP0(vmull_v),
  4120. NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
  4121. NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
  4122. NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
  4123. NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
  4124. NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
  4125. NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
  4126. NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
  4127. NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
  4128. NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
  4129. NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
  4130. NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
  4131. NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
  4132. NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
  4133. NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
  4134. NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
  4135. NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
  4136. NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
  4137. NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
  4138. NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
  4139. NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
  4140. NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
  4141. NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
  4142. NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
  4143. NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
  4144. NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
  4145. NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
  4146. NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
  4147. NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
  4148. NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
  4149. NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
  4150. NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
  4151. NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
  4152. NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
  4153. NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
  4154. NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
  4155. NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
  4156. NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
  4157. NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
  4158. NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
  4159. NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
  4160. NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
  4161. NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
  4162. NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
  4163. NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
  4164. NEONMAP0(vrndi_v),
  4165. NEONMAP0(vrndiq_v),
  4166. NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
  4167. NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
  4168. NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
  4169. NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
  4170. NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
  4171. NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
  4172. NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
  4173. NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
  4174. NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
  4175. NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
  4176. NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
  4177. NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
  4178. NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
  4179. NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
  4180. NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
  4181. NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
  4182. NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
  4183. NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
  4184. NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
  4185. NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
  4186. NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
  4187. NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
  4188. NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
  4189. NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
  4190. NEONMAP0(vshl_n_v),
  4191. NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
  4192. NEONMAP0(vshll_n_v),
  4193. NEONMAP0(vshlq_n_v),
  4194. NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
  4195. NEONMAP0(vshr_n_v),
  4196. NEONMAP0(vshrn_n_v),
  4197. NEONMAP0(vshrq_n_v),
  4198. NEONMAP1(vst1_v, arm_neon_vst1, 0),
  4199. NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
  4200. NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
  4201. NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
  4202. NEONMAP1(vst1q_v, arm_neon_vst1, 0),
  4203. NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
  4204. NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
  4205. NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
  4206. NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
  4207. NEONMAP1(vst2_v, arm_neon_vst2, 0),
  4208. NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
  4209. NEONMAP1(vst2q_v, arm_neon_vst2, 0),
  4210. NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
  4211. NEONMAP1(vst3_v, arm_neon_vst3, 0),
  4212. NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
  4213. NEONMAP1(vst3q_v, arm_neon_vst3, 0),
  4214. NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
  4215. NEONMAP1(vst4_v, arm_neon_vst4, 0),
  4216. NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
  4217. NEONMAP1(vst4q_v, arm_neon_vst4, 0),
  4218. NEONMAP0(vsubhn_v),
  4219. NEONMAP0(vtrn_v),
  4220. NEONMAP0(vtrnq_v),
  4221. NEONMAP0(vtst_v),
  4222. NEONMAP0(vtstq_v),
  4223. NEONMAP0(vuzp_v),
  4224. NEONMAP0(vuzpq_v),
  4225. NEONMAP0(vzip_v),
  4226. NEONMAP0(vzipq_v)
  4227. };
  4228. static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
  4229. NEONMAP1(vabs_v, aarch64_neon_abs, 0),
  4230. NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
  4231. NEONMAP0(vaddhn_v),
  4232. NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
  4233. NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
  4234. NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
  4235. NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
  4236. NEONMAP1(vcage_v, aarch64_neon_facge, 0),
  4237. NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
  4238. NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
  4239. NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
  4240. NEONMAP1(vcale_v, aarch64_neon_facge, 0),
  4241. NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
  4242. NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
  4243. NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
  4244. NEONMAP0(vceqz_v),
  4245. NEONMAP0(vceqzq_v),
  4246. NEONMAP0(vcgez_v),
  4247. NEONMAP0(vcgezq_v),
  4248. NEONMAP0(vcgtz_v),
  4249. NEONMAP0(vcgtzq_v),
  4250. NEONMAP0(vclez_v),
  4251. NEONMAP0(vclezq_v),
  4252. NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
  4253. NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
  4254. NEONMAP0(vcltz_v),
  4255. NEONMAP0(vcltzq_v),
  4256. NEONMAP1(vclz_v, ctlz, Add1ArgType),
  4257. NEONMAP1(vclzq_v, ctlz, Add1ArgType),
  4258. NEONMAP1(vcnt_v, ctpop, Add1ArgType),
  4259. NEONMAP1(vcntq_v, ctpop, Add1ArgType),
  4260. NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
  4261. NEONMAP0(vcvt_f16_v),
  4262. NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
  4263. NEONMAP0(vcvt_f32_v),
  4264. NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
  4265. NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
  4266. NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
  4267. NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
  4268. NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
  4269. NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
  4270. NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
  4271. NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
  4272. NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
  4273. NEONMAP0(vcvtq_f16_v),
  4274. NEONMAP0(vcvtq_f32_v),
  4275. NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
  4276. NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
  4277. NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
  4278. NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
  4279. NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
  4280. NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
  4281. NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
  4282. NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
  4283. NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
  4284. NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
  4285. NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
  4286. NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
  4287. NEONMAP0(vext_v),
  4288. NEONMAP0(vextq_v),
  4289. NEONMAP0(vfma_v),
  4290. NEONMAP0(vfmaq_v),
  4291. NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
  4292. NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
  4293. NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
  4294. NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
  4295. NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
  4296. NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
  4297. NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
  4298. NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
  4299. NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
  4300. NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
  4301. NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
  4302. NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
  4303. NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
  4304. NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
  4305. NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
  4306. NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
  4307. NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
  4308. NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
  4309. NEONMAP0(vmovl_v),
  4310. NEONMAP0(vmovn_v),
  4311. NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
  4312. NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
  4313. NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
  4314. NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
  4315. NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
  4316. NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
  4317. NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
  4318. NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
  4319. NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
  4320. NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
  4321. NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
  4322. NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
  4323. NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
  4324. NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
  4325. NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
  4326. NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
  4327. NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
  4328. NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
  4329. NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
  4330. NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
  4331. NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
  4332. NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
  4333. NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
  4334. NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
  4335. NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
  4336. NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
  4337. NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
  4338. NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
  4339. NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
  4340. NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
  4341. NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
  4342. NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
  4343. NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
  4344. NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
  4345. NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
  4346. NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
  4347. NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
  4348. NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
  4349. NEONMAP0(vrndi_v),
  4350. NEONMAP0(vrndiq_v),
  4351. NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
  4352. NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
  4353. NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
  4354. NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
  4355. NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
  4356. NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
  4357. NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
  4358. NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
  4359. NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
  4360. NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
  4361. NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
  4362. NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
  4363. NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
  4364. NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
  4365. NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
  4366. NEONMAP0(vshl_n_v),
  4367. NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
  4368. NEONMAP0(vshll_n_v),
  4369. NEONMAP0(vshlq_n_v),
  4370. NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
  4371. NEONMAP0(vshr_n_v),
  4372. NEONMAP0(vshrn_n_v),
  4373. NEONMAP0(vshrq_n_v),
  4374. NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
  4375. NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
  4376. NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
  4377. NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
  4378. NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
  4379. NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
  4380. NEONMAP0(vsubhn_v),
  4381. NEONMAP0(vtst_v),
  4382. NEONMAP0(vtstq_v),
  4383. };
  4384. static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
  4385. NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
  4386. NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
  4387. NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
  4388. NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
  4389. NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
  4390. NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
  4391. NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
  4392. NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
  4393. NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
  4394. NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
  4395. NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
  4396. NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
  4397. NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
  4398. NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
  4399. NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
  4400. NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
  4401. NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
  4402. NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
  4403. NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
  4404. NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
  4405. NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
  4406. NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
  4407. NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
  4408. NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
  4409. NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
  4410. NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
  4411. NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
  4412. NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
  4413. NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
  4414. NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
  4415. NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
  4416. NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
  4417. NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
  4418. NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
  4419. NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
  4420. NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
  4421. NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
  4422. NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
  4423. NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
  4424. NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
  4425. NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
  4426. NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
  4427. NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
  4428. NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
  4429. NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
  4430. NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
  4431. NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
  4432. NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
  4433. NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
  4434. NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
  4435. NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
  4436. NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
  4437. NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
  4438. NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
  4439. NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
  4440. NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
  4441. NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
  4442. NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
  4443. NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
  4444. NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
  4445. NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
  4446. NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
  4447. NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
  4448. NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
  4449. NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
  4450. NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
  4451. NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
  4452. NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
  4453. NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
  4454. NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
  4455. NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
  4456. NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
  4457. NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
  4458. NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
  4459. NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
  4460. NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
  4461. NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
  4462. NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
  4463. NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
  4464. NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
  4465. NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
  4466. NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
  4467. NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
  4468. NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
  4469. NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
  4470. NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
  4471. NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
  4472. NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
  4473. NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
  4474. NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
  4475. NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
  4476. NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
  4477. NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
  4478. NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
  4479. NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
  4480. NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
  4481. NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
  4482. NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
  4483. NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
  4484. NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
  4485. NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
  4486. NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
  4487. NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
  4488. NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
  4489. NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
  4490. NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
  4491. NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
  4492. NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
  4493. NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
  4494. NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
  4495. NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
  4496. NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
  4497. NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
  4498. NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
  4499. NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
  4500. NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
  4501. NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
  4502. NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
  4503. NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
  4504. NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
  4505. NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
  4506. NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
  4507. NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
  4508. NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
  4509. NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
  4510. NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
  4511. NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
  4512. NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
  4513. NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
  4514. NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
  4515. NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
  4516. NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
  4517. NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
  4518. NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
  4519. NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
  4520. NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
  4521. NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
  4522. NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
  4523. NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
  4524. NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
  4525. NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
  4526. NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
  4527. NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
  4528. NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
  4529. NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
  4530. NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
  4531. NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
  4532. NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
  4533. NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
  4534. NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
  4535. NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
  4536. NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
  4537. NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
  4538. NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
  4539. NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
  4540. NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
  4541. NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
  4542. NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
  4543. NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
  4544. NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
  4545. NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
  4546. NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
  4547. NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
  4548. NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
  4549. NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
  4550. NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
  4551. NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
  4552. NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
  4553. NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
  4554. NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
  4555. NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
  4556. NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
  4557. NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
  4558. NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
  4559. NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
  4560. NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
  4561. NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
  4562. NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
  4563. NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
  4564. NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
  4565. NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
  4566. NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
  4567. NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
  4568. NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
  4569. NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
  4570. NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
  4571. NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
  4572. NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
  4573. NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
  4574. NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
  4575. NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
  4576. NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
  4577. // FP16 scalar intrinisics go here.
  4578. NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
  4579. NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
  4580. NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
  4581. NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
  4582. NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
  4583. NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
  4584. NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
  4585. NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
  4586. NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
  4587. NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
  4588. NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
  4589. NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
  4590. NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
  4591. NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
  4592. NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
  4593. NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
  4594. NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
  4595. NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
  4596. NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
  4597. NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
  4598. NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
  4599. NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
  4600. NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
  4601. NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
  4602. NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
  4603. NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
  4604. NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
  4605. NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
  4606. NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
  4607. NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
  4608. };
  4609. #undef NEONMAP0
  4610. #undef NEONMAP1
  4611. #undef NEONMAP2
  4612. static bool NEONSIMDIntrinsicsProvenSorted = false;
  4613. static bool AArch64SIMDIntrinsicsProvenSorted = false;
  4614. static bool AArch64SISDIntrinsicsProvenSorted = false;
  4615. static const NeonIntrinsicInfo *
  4616. findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
  4617. unsigned BuiltinID, bool &MapProvenSorted) {
  4618. #ifndef NDEBUG
  4619. if (!MapProvenSorted) {
  4620. assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)));
  4621. MapProvenSorted = true;
  4622. }
  4623. #endif
  4624. const NeonIntrinsicInfo *Builtin = llvm::lower_bound(IntrinsicMap, BuiltinID);
  4625. if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
  4626. return Builtin;
  4627. return nullptr;
  4628. }
  4629. Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
  4630. unsigned Modifier,
  4631. llvm::Type *ArgType,
  4632. const CallExpr *E) {
  4633. int VectorSize = 0;
  4634. if (Modifier & Use64BitVectors)
  4635. VectorSize = 64;
  4636. else if (Modifier & Use128BitVectors)
  4637. VectorSize = 128;
  4638. // Return type.
  4639. SmallVector<llvm::Type *, 3> Tys;
  4640. if (Modifier & AddRetType) {
  4641. llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
  4642. if (Modifier & VectorizeRetType)
  4643. Ty = llvm::VectorType::get(
  4644. Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
  4645. Tys.push_back(Ty);
  4646. }
  4647. // Arguments.
  4648. if (Modifier & VectorizeArgTypes) {
  4649. int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
  4650. ArgType = llvm::VectorType::get(ArgType, Elts);
  4651. }
  4652. if (Modifier & (Add1ArgType | Add2ArgTypes))
  4653. Tys.push_back(ArgType);
  4654. if (Modifier & Add2ArgTypes)
  4655. Tys.push_back(ArgType);
  4656. if (Modifier & InventFloatType)
  4657. Tys.push_back(FloatTy);
  4658. return CGM.getIntrinsic(IntrinsicID, Tys);
  4659. }
  4660. static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
  4661. const NeonIntrinsicInfo &SISDInfo,
  4662. SmallVectorImpl<Value *> &Ops,
  4663. const CallExpr *E) {
  4664. unsigned BuiltinID = SISDInfo.BuiltinID;
  4665. unsigned int Int = SISDInfo.LLVMIntrinsic;
  4666. unsigned Modifier = SISDInfo.TypeModifier;
  4667. const char *s = SISDInfo.NameHint;
  4668. switch (BuiltinID) {
  4669. case NEON::BI__builtin_neon_vcled_s64:
  4670. case NEON::BI__builtin_neon_vcled_u64:
  4671. case NEON::BI__builtin_neon_vcles_f32:
  4672. case NEON::BI__builtin_neon_vcled_f64:
  4673. case NEON::BI__builtin_neon_vcltd_s64:
  4674. case NEON::BI__builtin_neon_vcltd_u64:
  4675. case NEON::BI__builtin_neon_vclts_f32:
  4676. case NEON::BI__builtin_neon_vcltd_f64:
  4677. case NEON::BI__builtin_neon_vcales_f32:
  4678. case NEON::BI__builtin_neon_vcaled_f64:
  4679. case NEON::BI__builtin_neon_vcalts_f32:
  4680. case NEON::BI__builtin_neon_vcaltd_f64:
  4681. // Only one direction of comparisons actually exist, cmle is actually a cmge
  4682. // with swapped operands. The table gives us the right intrinsic but we
  4683. // still need to do the swap.
  4684. std::swap(Ops[0], Ops[1]);
  4685. break;
  4686. }
  4687. assert(Int && "Generic code assumes a valid intrinsic");
  4688. // Determine the type(s) of this overloaded AArch64 intrinsic.
  4689. const Expr *Arg = E->getArg(0);
  4690. llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
  4691. Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
  4692. int j = 0;
  4693. ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
  4694. for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
  4695. ai != ae; ++ai, ++j) {
  4696. llvm::Type *ArgTy = ai->getType();
  4697. if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
  4698. ArgTy->getPrimitiveSizeInBits())
  4699. continue;
  4700. assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
  4701. // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
  4702. // it before inserting.
  4703. Ops[j] =
  4704. CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
  4705. Ops[j] =
  4706. CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
  4707. }
  4708. Value *Result = CGF.EmitNeonCall(F, Ops, s);
  4709. llvm::Type *ResultType = CGF.ConvertType(E->getType());
  4710. if (ResultType->getPrimitiveSizeInBits() <
  4711. Result->getType()->getPrimitiveSizeInBits())
  4712. return CGF.Builder.CreateExtractElement(Result, C0);
  4713. return CGF.Builder.CreateBitCast(Result, ResultType, s);
  4714. }
  4715. Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
  4716. unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
  4717. const char *NameHint, unsigned Modifier, const CallExpr *E,
  4718. SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
  4719. llvm::Triple::ArchType Arch) {
  4720. // Get the last argument, which specifies the vector type.
  4721. llvm::APSInt NeonTypeConst;
  4722. const Expr *Arg = E->getArg(E->getNumArgs() - 1);
  4723. if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
  4724. return nullptr;
  4725. // Determine the type of this overloaded NEON intrinsic.
  4726. NeonTypeFlags Type(NeonTypeConst.getZExtValue());
  4727. bool Usgn = Type.isUnsigned();
  4728. bool Quad = Type.isQuad();
  4729. const bool HasLegalHalfType = getTarget().hasLegalHalfType();
  4730. llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType);
  4731. llvm::Type *Ty = VTy;
  4732. if (!Ty)
  4733. return nullptr;
  4734. auto getAlignmentValue32 = [&](Address addr) -> Value* {
  4735. return Builder.getInt32(addr.getAlignment().getQuantity());
  4736. };
  4737. unsigned Int = LLVMIntrinsic;
  4738. if ((Modifier & UnsignedAlts) && !Usgn)
  4739. Int = AltLLVMIntrinsic;
  4740. switch (BuiltinID) {
  4741. default: break;
  4742. case NEON::BI__builtin_neon_vpadd_v:
  4743. case NEON::BI__builtin_neon_vpaddq_v:
  4744. // We don't allow fp/int overloading of intrinsics.
  4745. if (VTy->getElementType()->isFloatingPointTy() &&
  4746. Int == Intrinsic::aarch64_neon_addp)
  4747. Int = Intrinsic::aarch64_neon_faddp;
  4748. break;
  4749. case NEON::BI__builtin_neon_vabs_v:
  4750. case NEON::BI__builtin_neon_vabsq_v:
  4751. if (VTy->getElementType()->isFloatingPointTy())
  4752. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
  4753. return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
  4754. case NEON::BI__builtin_neon_vaddhn_v: {
  4755. llvm::VectorType *SrcTy =
  4756. llvm::VectorType::getExtendedElementVectorType(VTy);
  4757. // %sum = add <4 x i32> %lhs, %rhs
  4758. Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
  4759. Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
  4760. Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
  4761. // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
  4762. Constant *ShiftAmt =
  4763. ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
  4764. Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
  4765. // %res = trunc <4 x i32> %high to <4 x i16>
  4766. return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
  4767. }
  4768. case NEON::BI__builtin_neon_vcale_v:
  4769. case NEON::BI__builtin_neon_vcaleq_v:
  4770. case NEON::BI__builtin_neon_vcalt_v:
  4771. case NEON::BI__builtin_neon_vcaltq_v:
  4772. std::swap(Ops[0], Ops[1]);
  4773. LLVM_FALLTHROUGH;
  4774. case NEON::BI__builtin_neon_vcage_v:
  4775. case NEON::BI__builtin_neon_vcageq_v:
  4776. case NEON::BI__builtin_neon_vcagt_v:
  4777. case NEON::BI__builtin_neon_vcagtq_v: {
  4778. llvm::Type *Ty;
  4779. switch (VTy->getScalarSizeInBits()) {
  4780. default: llvm_unreachable("unexpected type");
  4781. case 32:
  4782. Ty = FloatTy;
  4783. break;
  4784. case 64:
  4785. Ty = DoubleTy;
  4786. break;
  4787. case 16:
  4788. Ty = HalfTy;
  4789. break;
  4790. }
  4791. llvm::Type *VecFlt = llvm::VectorType::get(Ty, VTy->getNumElements());
  4792. llvm::Type *Tys[] = { VTy, VecFlt };
  4793. Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
  4794. return EmitNeonCall(F, Ops, NameHint);
  4795. }
  4796. case NEON::BI__builtin_neon_vceqz_v:
  4797. case NEON::BI__builtin_neon_vceqzq_v:
  4798. return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
  4799. ICmpInst::ICMP_EQ, "vceqz");
  4800. case NEON::BI__builtin_neon_vcgez_v:
  4801. case NEON::BI__builtin_neon_vcgezq_v:
  4802. return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
  4803. ICmpInst::ICMP_SGE, "vcgez");
  4804. case NEON::BI__builtin_neon_vclez_v:
  4805. case NEON::BI__builtin_neon_vclezq_v:
  4806. return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
  4807. ICmpInst::ICMP_SLE, "vclez");
  4808. case NEON::BI__builtin_neon_vcgtz_v:
  4809. case NEON::BI__builtin_neon_vcgtzq_v:
  4810. return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
  4811. ICmpInst::ICMP_SGT, "vcgtz");
  4812. case NEON::BI__builtin_neon_vcltz_v:
  4813. case NEON::BI__builtin_neon_vcltzq_v:
  4814. return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
  4815. ICmpInst::ICMP_SLT, "vcltz");
  4816. case NEON::BI__builtin_neon_vclz_v:
  4817. case NEON::BI__builtin_neon_vclzq_v:
  4818. // We generate target-independent intrinsic, which needs a second argument
  4819. // for whether or not clz of zero is undefined; on ARM it isn't.
  4820. Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
  4821. break;
  4822. case NEON::BI__builtin_neon_vcvt_f32_v:
  4823. case NEON::BI__builtin_neon_vcvtq_f32_v:
  4824. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  4825. Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
  4826. HasLegalHalfType);
  4827. return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
  4828. : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
  4829. case NEON::BI__builtin_neon_vcvt_f16_v:
  4830. case NEON::BI__builtin_neon_vcvtq_f16_v:
  4831. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  4832. Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
  4833. HasLegalHalfType);
  4834. return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
  4835. : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
  4836. case NEON::BI__builtin_neon_vcvt_n_f16_v:
  4837. case NEON::BI__builtin_neon_vcvt_n_f32_v:
  4838. case NEON::BI__builtin_neon_vcvt_n_f64_v:
  4839. case NEON::BI__builtin_neon_vcvtq_n_f16_v:
  4840. case NEON::BI__builtin_neon_vcvtq_n_f32_v:
  4841. case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
  4842. llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
  4843. Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
  4844. Function *F = CGM.getIntrinsic(Int, Tys);
  4845. return EmitNeonCall(F, Ops, "vcvt_n");
  4846. }
  4847. case NEON::BI__builtin_neon_vcvt_n_s16_v:
  4848. case NEON::BI__builtin_neon_vcvt_n_s32_v:
  4849. case NEON::BI__builtin_neon_vcvt_n_u16_v:
  4850. case NEON::BI__builtin_neon_vcvt_n_u32_v:
  4851. case NEON::BI__builtin_neon_vcvt_n_s64_v:
  4852. case NEON::BI__builtin_neon_vcvt_n_u64_v:
  4853. case NEON::BI__builtin_neon_vcvtq_n_s16_v:
  4854. case NEON::BI__builtin_neon_vcvtq_n_s32_v:
  4855. case NEON::BI__builtin_neon_vcvtq_n_u16_v:
  4856. case NEON::BI__builtin_neon_vcvtq_n_u32_v:
  4857. case NEON::BI__builtin_neon_vcvtq_n_s64_v:
  4858. case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
  4859. llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
  4860. Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
  4861. return EmitNeonCall(F, Ops, "vcvt_n");
  4862. }
  4863. case NEON::BI__builtin_neon_vcvt_s32_v:
  4864. case NEON::BI__builtin_neon_vcvt_u32_v:
  4865. case NEON::BI__builtin_neon_vcvt_s64_v:
  4866. case NEON::BI__builtin_neon_vcvt_u64_v:
  4867. case NEON::BI__builtin_neon_vcvt_s16_v:
  4868. case NEON::BI__builtin_neon_vcvt_u16_v:
  4869. case NEON::BI__builtin_neon_vcvtq_s32_v:
  4870. case NEON::BI__builtin_neon_vcvtq_u32_v:
  4871. case NEON::BI__builtin_neon_vcvtq_s64_v:
  4872. case NEON::BI__builtin_neon_vcvtq_u64_v:
  4873. case NEON::BI__builtin_neon_vcvtq_s16_v:
  4874. case NEON::BI__builtin_neon_vcvtq_u16_v: {
  4875. Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
  4876. return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
  4877. : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
  4878. }
  4879. case NEON::BI__builtin_neon_vcvta_s16_v:
  4880. case NEON::BI__builtin_neon_vcvta_s32_v:
  4881. case NEON::BI__builtin_neon_vcvta_s64_v:
  4882. case NEON::BI__builtin_neon_vcvta_u16_v:
  4883. case NEON::BI__builtin_neon_vcvta_u32_v:
  4884. case NEON::BI__builtin_neon_vcvta_u64_v:
  4885. case NEON::BI__builtin_neon_vcvtaq_s16_v:
  4886. case NEON::BI__builtin_neon_vcvtaq_s32_v:
  4887. case NEON::BI__builtin_neon_vcvtaq_s64_v:
  4888. case NEON::BI__builtin_neon_vcvtaq_u16_v:
  4889. case NEON::BI__builtin_neon_vcvtaq_u32_v:
  4890. case NEON::BI__builtin_neon_vcvtaq_u64_v:
  4891. case NEON::BI__builtin_neon_vcvtn_s16_v:
  4892. case NEON::BI__builtin_neon_vcvtn_s32_v:
  4893. case NEON::BI__builtin_neon_vcvtn_s64_v:
  4894. case NEON::BI__builtin_neon_vcvtn_u16_v:
  4895. case NEON::BI__builtin_neon_vcvtn_u32_v:
  4896. case NEON::BI__builtin_neon_vcvtn_u64_v:
  4897. case NEON::BI__builtin_neon_vcvtnq_s16_v:
  4898. case NEON::BI__builtin_neon_vcvtnq_s32_v:
  4899. case NEON::BI__builtin_neon_vcvtnq_s64_v:
  4900. case NEON::BI__builtin_neon_vcvtnq_u16_v:
  4901. case NEON::BI__builtin_neon_vcvtnq_u32_v:
  4902. case NEON::BI__builtin_neon_vcvtnq_u64_v:
  4903. case NEON::BI__builtin_neon_vcvtp_s16_v:
  4904. case NEON::BI__builtin_neon_vcvtp_s32_v:
  4905. case NEON::BI__builtin_neon_vcvtp_s64_v:
  4906. case NEON::BI__builtin_neon_vcvtp_u16_v:
  4907. case NEON::BI__builtin_neon_vcvtp_u32_v:
  4908. case NEON::BI__builtin_neon_vcvtp_u64_v:
  4909. case NEON::BI__builtin_neon_vcvtpq_s16_v:
  4910. case NEON::BI__builtin_neon_vcvtpq_s32_v:
  4911. case NEON::BI__builtin_neon_vcvtpq_s64_v:
  4912. case NEON::BI__builtin_neon_vcvtpq_u16_v:
  4913. case NEON::BI__builtin_neon_vcvtpq_u32_v:
  4914. case NEON::BI__builtin_neon_vcvtpq_u64_v:
  4915. case NEON::BI__builtin_neon_vcvtm_s16_v:
  4916. case NEON::BI__builtin_neon_vcvtm_s32_v:
  4917. case NEON::BI__builtin_neon_vcvtm_s64_v:
  4918. case NEON::BI__builtin_neon_vcvtm_u16_v:
  4919. case NEON::BI__builtin_neon_vcvtm_u32_v:
  4920. case NEON::BI__builtin_neon_vcvtm_u64_v:
  4921. case NEON::BI__builtin_neon_vcvtmq_s16_v:
  4922. case NEON::BI__builtin_neon_vcvtmq_s32_v:
  4923. case NEON::BI__builtin_neon_vcvtmq_s64_v:
  4924. case NEON::BI__builtin_neon_vcvtmq_u16_v:
  4925. case NEON::BI__builtin_neon_vcvtmq_u32_v:
  4926. case NEON::BI__builtin_neon_vcvtmq_u64_v: {
  4927. llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
  4928. return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
  4929. }
  4930. case NEON::BI__builtin_neon_vext_v:
  4931. case NEON::BI__builtin_neon_vextq_v: {
  4932. int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
  4933. SmallVector<uint32_t, 16> Indices;
  4934. for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
  4935. Indices.push_back(i+CV);
  4936. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  4937. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  4938. return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
  4939. }
  4940. case NEON::BI__builtin_neon_vfma_v:
  4941. case NEON::BI__builtin_neon_vfmaq_v: {
  4942. Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
  4943. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  4944. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  4945. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  4946. // NEON intrinsic puts accumulator first, unlike the LLVM fma.
  4947. return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
  4948. }
  4949. case NEON::BI__builtin_neon_vld1_v:
  4950. case NEON::BI__builtin_neon_vld1q_v: {
  4951. llvm::Type *Tys[] = {Ty, Int8PtrTy};
  4952. Ops.push_back(getAlignmentValue32(PtrOp0));
  4953. return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
  4954. }
  4955. case NEON::BI__builtin_neon_vld1_x2_v:
  4956. case NEON::BI__builtin_neon_vld1q_x2_v:
  4957. case NEON::BI__builtin_neon_vld1_x3_v:
  4958. case NEON::BI__builtin_neon_vld1q_x3_v:
  4959. case NEON::BI__builtin_neon_vld1_x4_v:
  4960. case NEON::BI__builtin_neon_vld1q_x4_v: {
  4961. llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
  4962. Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
  4963. llvm::Type *Tys[2] = { VTy, PTy };
  4964. Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
  4965. Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
  4966. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  4967. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  4968. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  4969. }
  4970. case NEON::BI__builtin_neon_vld2_v:
  4971. case NEON::BI__builtin_neon_vld2q_v:
  4972. case NEON::BI__builtin_neon_vld3_v:
  4973. case NEON::BI__builtin_neon_vld3q_v:
  4974. case NEON::BI__builtin_neon_vld4_v:
  4975. case NEON::BI__builtin_neon_vld4q_v:
  4976. case NEON::BI__builtin_neon_vld2_dup_v:
  4977. case NEON::BI__builtin_neon_vld2q_dup_v:
  4978. case NEON::BI__builtin_neon_vld3_dup_v:
  4979. case NEON::BI__builtin_neon_vld3q_dup_v:
  4980. case NEON::BI__builtin_neon_vld4_dup_v:
  4981. case NEON::BI__builtin_neon_vld4q_dup_v: {
  4982. llvm::Type *Tys[] = {Ty, Int8PtrTy};
  4983. Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
  4984. Value *Align = getAlignmentValue32(PtrOp1);
  4985. Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
  4986. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  4987. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  4988. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  4989. }
  4990. case NEON::BI__builtin_neon_vld1_dup_v:
  4991. case NEON::BI__builtin_neon_vld1q_dup_v: {
  4992. Value *V = UndefValue::get(Ty);
  4993. Ty = llvm::PointerType::getUnqual(VTy->getElementType());
  4994. PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
  4995. LoadInst *Ld = Builder.CreateLoad(PtrOp0);
  4996. llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
  4997. Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
  4998. return EmitNeonSplat(Ops[0], CI);
  4999. }
  5000. case NEON::BI__builtin_neon_vld2_lane_v:
  5001. case NEON::BI__builtin_neon_vld2q_lane_v:
  5002. case NEON::BI__builtin_neon_vld3_lane_v:
  5003. case NEON::BI__builtin_neon_vld3q_lane_v:
  5004. case NEON::BI__builtin_neon_vld4_lane_v:
  5005. case NEON::BI__builtin_neon_vld4q_lane_v: {
  5006. llvm::Type *Tys[] = {Ty, Int8PtrTy};
  5007. Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
  5008. for (unsigned I = 2; I < Ops.size() - 1; ++I)
  5009. Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
  5010. Ops.push_back(getAlignmentValue32(PtrOp1));
  5011. Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
  5012. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  5013. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  5014. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  5015. }
  5016. case NEON::BI__builtin_neon_vmovl_v: {
  5017. llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
  5018. Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
  5019. if (Usgn)
  5020. return Builder.CreateZExt(Ops[0], Ty, "vmovl");
  5021. return Builder.CreateSExt(Ops[0], Ty, "vmovl");
  5022. }
  5023. case NEON::BI__builtin_neon_vmovn_v: {
  5024. llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
  5025. Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
  5026. return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
  5027. }
  5028. case NEON::BI__builtin_neon_vmull_v:
  5029. // FIXME: the integer vmull operations could be emitted in terms of pure
  5030. // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
  5031. // hoisting the exts outside loops. Until global ISel comes along that can
  5032. // see through such movement this leads to bad CodeGen. So we need an
  5033. // intrinsic for now.
  5034. Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
  5035. Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
  5036. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
  5037. case NEON::BI__builtin_neon_vpadal_v:
  5038. case NEON::BI__builtin_neon_vpadalq_v: {
  5039. // The source operand type has twice as many elements of half the size.
  5040. unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
  5041. llvm::Type *EltTy =
  5042. llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
  5043. llvm::Type *NarrowTy =
  5044. llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
  5045. llvm::Type *Tys[2] = { Ty, NarrowTy };
  5046. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
  5047. }
  5048. case NEON::BI__builtin_neon_vpaddl_v:
  5049. case NEON::BI__builtin_neon_vpaddlq_v: {
  5050. // The source operand type has twice as many elements of half the size.
  5051. unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
  5052. llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
  5053. llvm::Type *NarrowTy =
  5054. llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
  5055. llvm::Type *Tys[2] = { Ty, NarrowTy };
  5056. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
  5057. }
  5058. case NEON::BI__builtin_neon_vqdmlal_v:
  5059. case NEON::BI__builtin_neon_vqdmlsl_v: {
  5060. SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
  5061. Ops[1] =
  5062. EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
  5063. Ops.resize(2);
  5064. return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
  5065. }
  5066. case NEON::BI__builtin_neon_vqshl_n_v:
  5067. case NEON::BI__builtin_neon_vqshlq_n_v:
  5068. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
  5069. 1, false);
  5070. case NEON::BI__builtin_neon_vqshlu_n_v:
  5071. case NEON::BI__builtin_neon_vqshluq_n_v:
  5072. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
  5073. 1, false);
  5074. case NEON::BI__builtin_neon_vrecpe_v:
  5075. case NEON::BI__builtin_neon_vrecpeq_v:
  5076. case NEON::BI__builtin_neon_vrsqrte_v:
  5077. case NEON::BI__builtin_neon_vrsqrteq_v:
  5078. Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
  5079. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
  5080. case NEON::BI__builtin_neon_vrndi_v:
  5081. case NEON::BI__builtin_neon_vrndiq_v:
  5082. Int = Intrinsic::nearbyint;
  5083. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
  5084. case NEON::BI__builtin_neon_vrshr_n_v:
  5085. case NEON::BI__builtin_neon_vrshrq_n_v:
  5086. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
  5087. 1, true);
  5088. case NEON::BI__builtin_neon_vshl_n_v:
  5089. case NEON::BI__builtin_neon_vshlq_n_v:
  5090. Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
  5091. return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
  5092. "vshl_n");
  5093. case NEON::BI__builtin_neon_vshll_n_v: {
  5094. llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
  5095. Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
  5096. if (Usgn)
  5097. Ops[0] = Builder.CreateZExt(Ops[0], VTy);
  5098. else
  5099. Ops[0] = Builder.CreateSExt(Ops[0], VTy);
  5100. Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
  5101. return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
  5102. }
  5103. case NEON::BI__builtin_neon_vshrn_n_v: {
  5104. llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
  5105. Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
  5106. Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
  5107. if (Usgn)
  5108. Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
  5109. else
  5110. Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
  5111. return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
  5112. }
  5113. case NEON::BI__builtin_neon_vshr_n_v:
  5114. case NEON::BI__builtin_neon_vshrq_n_v:
  5115. return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
  5116. case NEON::BI__builtin_neon_vst1_v:
  5117. case NEON::BI__builtin_neon_vst1q_v:
  5118. case NEON::BI__builtin_neon_vst2_v:
  5119. case NEON::BI__builtin_neon_vst2q_v:
  5120. case NEON::BI__builtin_neon_vst3_v:
  5121. case NEON::BI__builtin_neon_vst3q_v:
  5122. case NEON::BI__builtin_neon_vst4_v:
  5123. case NEON::BI__builtin_neon_vst4q_v:
  5124. case NEON::BI__builtin_neon_vst2_lane_v:
  5125. case NEON::BI__builtin_neon_vst2q_lane_v:
  5126. case NEON::BI__builtin_neon_vst3_lane_v:
  5127. case NEON::BI__builtin_neon_vst3q_lane_v:
  5128. case NEON::BI__builtin_neon_vst4_lane_v:
  5129. case NEON::BI__builtin_neon_vst4q_lane_v: {
  5130. llvm::Type *Tys[] = {Int8PtrTy, Ty};
  5131. Ops.push_back(getAlignmentValue32(PtrOp0));
  5132. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
  5133. }
  5134. case NEON::BI__builtin_neon_vst1_x2_v:
  5135. case NEON::BI__builtin_neon_vst1q_x2_v:
  5136. case NEON::BI__builtin_neon_vst1_x3_v:
  5137. case NEON::BI__builtin_neon_vst1q_x3_v:
  5138. case NEON::BI__builtin_neon_vst1_x4_v:
  5139. case NEON::BI__builtin_neon_vst1q_x4_v: {
  5140. llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
  5141. // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
  5142. // in AArch64 it comes last. We may want to stick to one or another.
  5143. if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) {
  5144. llvm::Type *Tys[2] = { VTy, PTy };
  5145. std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
  5146. return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
  5147. }
  5148. llvm::Type *Tys[2] = { PTy, VTy };
  5149. return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
  5150. }
  5151. case NEON::BI__builtin_neon_vsubhn_v: {
  5152. llvm::VectorType *SrcTy =
  5153. llvm::VectorType::getExtendedElementVectorType(VTy);
  5154. // %sum = add <4 x i32> %lhs, %rhs
  5155. Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
  5156. Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
  5157. Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
  5158. // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
  5159. Constant *ShiftAmt =
  5160. ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
  5161. Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
  5162. // %res = trunc <4 x i32> %high to <4 x i16>
  5163. return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
  5164. }
  5165. case NEON::BI__builtin_neon_vtrn_v:
  5166. case NEON::BI__builtin_neon_vtrnq_v: {
  5167. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
  5168. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  5169. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  5170. Value *SV = nullptr;
  5171. for (unsigned vi = 0; vi != 2; ++vi) {
  5172. SmallVector<uint32_t, 16> Indices;
  5173. for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
  5174. Indices.push_back(i+vi);
  5175. Indices.push_back(i+e+vi);
  5176. }
  5177. Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
  5178. SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
  5179. SV = Builder.CreateDefaultAlignedStore(SV, Addr);
  5180. }
  5181. return SV;
  5182. }
  5183. case NEON::BI__builtin_neon_vtst_v:
  5184. case NEON::BI__builtin_neon_vtstq_v: {
  5185. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  5186. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  5187. Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
  5188. Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
  5189. ConstantAggregateZero::get(Ty));
  5190. return Builder.CreateSExt(Ops[0], Ty, "vtst");
  5191. }
  5192. case NEON::BI__builtin_neon_vuzp_v:
  5193. case NEON::BI__builtin_neon_vuzpq_v: {
  5194. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
  5195. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  5196. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  5197. Value *SV = nullptr;
  5198. for (unsigned vi = 0; vi != 2; ++vi) {
  5199. SmallVector<uint32_t, 16> Indices;
  5200. for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
  5201. Indices.push_back(2*i+vi);
  5202. Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
  5203. SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
  5204. SV = Builder.CreateDefaultAlignedStore(SV, Addr);
  5205. }
  5206. return SV;
  5207. }
  5208. case NEON::BI__builtin_neon_vzip_v:
  5209. case NEON::BI__builtin_neon_vzipq_v: {
  5210. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
  5211. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  5212. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  5213. Value *SV = nullptr;
  5214. for (unsigned vi = 0; vi != 2; ++vi) {
  5215. SmallVector<uint32_t, 16> Indices;
  5216. for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
  5217. Indices.push_back((i + vi*e) >> 1);
  5218. Indices.push_back(((i + vi*e) >> 1)+e);
  5219. }
  5220. Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
  5221. SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
  5222. SV = Builder.CreateDefaultAlignedStore(SV, Addr);
  5223. }
  5224. return SV;
  5225. }
  5226. case NEON::BI__builtin_neon_vdot_v:
  5227. case NEON::BI__builtin_neon_vdotq_v: {
  5228. llvm::Type *InputTy =
  5229. llvm::VectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
  5230. llvm::Type *Tys[2] = { Ty, InputTy };
  5231. Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
  5232. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
  5233. }
  5234. case NEON::BI__builtin_neon_vfmlal_low_v:
  5235. case NEON::BI__builtin_neon_vfmlalq_low_v: {
  5236. llvm::Type *InputTy =
  5237. llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
  5238. llvm::Type *Tys[2] = { Ty, InputTy };
  5239. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
  5240. }
  5241. case NEON::BI__builtin_neon_vfmlsl_low_v:
  5242. case NEON::BI__builtin_neon_vfmlslq_low_v: {
  5243. llvm::Type *InputTy =
  5244. llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
  5245. llvm::Type *Tys[2] = { Ty, InputTy };
  5246. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
  5247. }
  5248. case NEON::BI__builtin_neon_vfmlal_high_v:
  5249. case NEON::BI__builtin_neon_vfmlalq_high_v: {
  5250. llvm::Type *InputTy =
  5251. llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
  5252. llvm::Type *Tys[2] = { Ty, InputTy };
  5253. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
  5254. }
  5255. case NEON::BI__builtin_neon_vfmlsl_high_v:
  5256. case NEON::BI__builtin_neon_vfmlslq_high_v: {
  5257. llvm::Type *InputTy =
  5258. llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
  5259. llvm::Type *Tys[2] = { Ty, InputTy };
  5260. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
  5261. }
  5262. }
  5263. assert(Int && "Expected valid intrinsic number");
  5264. // Determine the type(s) of this overloaded AArch64 intrinsic.
  5265. Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
  5266. Value *Result = EmitNeonCall(F, Ops, NameHint);
  5267. llvm::Type *ResultType = ConvertType(E->getType());
  5268. // AArch64 intrinsic one-element vector type cast to
  5269. // scalar type expected by the builtin
  5270. return Builder.CreateBitCast(Result, ResultType, NameHint);
  5271. }
  5272. Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
  5273. Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
  5274. const CmpInst::Predicate Ip, const Twine &Name) {
  5275. llvm::Type *OTy = Op->getType();
  5276. // FIXME: this is utterly horrific. We should not be looking at previous
  5277. // codegen context to find out what needs doing. Unfortunately TableGen
  5278. // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
  5279. // (etc).
  5280. if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
  5281. OTy = BI->getOperand(0)->getType();
  5282. Op = Builder.CreateBitCast(Op, OTy);
  5283. if (OTy->getScalarType()->isFloatingPointTy()) {
  5284. Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
  5285. } else {
  5286. Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
  5287. }
  5288. return Builder.CreateSExt(Op, Ty, Name);
  5289. }
  5290. static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
  5291. Value *ExtOp, Value *IndexOp,
  5292. llvm::Type *ResTy, unsigned IntID,
  5293. const char *Name) {
  5294. SmallVector<Value *, 2> TblOps;
  5295. if (ExtOp)
  5296. TblOps.push_back(ExtOp);
  5297. // Build a vector containing sequential number like (0, 1, 2, ..., 15)
  5298. SmallVector<uint32_t, 16> Indices;
  5299. llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
  5300. for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
  5301. Indices.push_back(2*i);
  5302. Indices.push_back(2*i+1);
  5303. }
  5304. int PairPos = 0, End = Ops.size() - 1;
  5305. while (PairPos < End) {
  5306. TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
  5307. Ops[PairPos+1], Indices,
  5308. Name));
  5309. PairPos += 2;
  5310. }
  5311. // If there's an odd number of 64-bit lookup table, fill the high 64-bit
  5312. // of the 128-bit lookup table with zero.
  5313. if (PairPos == End) {
  5314. Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
  5315. TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
  5316. ZeroTbl, Indices, Name));
  5317. }
  5318. Function *TblF;
  5319. TblOps.push_back(IndexOp);
  5320. TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
  5321. return CGF.EmitNeonCall(TblF, TblOps, Name);
  5322. }
  5323. Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
  5324. unsigned Value;
  5325. switch (BuiltinID) {
  5326. default:
  5327. return nullptr;
  5328. case ARM::BI__builtin_arm_nop:
  5329. Value = 0;
  5330. break;
  5331. case ARM::BI__builtin_arm_yield:
  5332. case ARM::BI__yield:
  5333. Value = 1;
  5334. break;
  5335. case ARM::BI__builtin_arm_wfe:
  5336. case ARM::BI__wfe:
  5337. Value = 2;
  5338. break;
  5339. case ARM::BI__builtin_arm_wfi:
  5340. case ARM::BI__wfi:
  5341. Value = 3;
  5342. break;
  5343. case ARM::BI__builtin_arm_sev:
  5344. case ARM::BI__sev:
  5345. Value = 4;
  5346. break;
  5347. case ARM::BI__builtin_arm_sevl:
  5348. case ARM::BI__sevl:
  5349. Value = 5;
  5350. break;
  5351. }
  5352. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
  5353. llvm::ConstantInt::get(Int32Ty, Value));
  5354. }
  5355. // Generates the IR for the read/write special register builtin,
  5356. // ValueType is the type of the value that is to be written or read,
  5357. // RegisterType is the type of the register being written to or read from.
  5358. static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
  5359. const CallExpr *E,
  5360. llvm::Type *RegisterType,
  5361. llvm::Type *ValueType,
  5362. bool IsRead,
  5363. StringRef SysReg = "") {
  5364. // write and register intrinsics only support 32 and 64 bit operations.
  5365. assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
  5366. && "Unsupported size for register.");
  5367. CodeGen::CGBuilderTy &Builder = CGF.Builder;
  5368. CodeGen::CodeGenModule &CGM = CGF.CGM;
  5369. LLVMContext &Context = CGM.getLLVMContext();
  5370. if (SysReg.empty()) {
  5371. const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
  5372. SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
  5373. }
  5374. llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
  5375. llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
  5376. llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
  5377. llvm::Type *Types[] = { RegisterType };
  5378. bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
  5379. assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
  5380. && "Can't fit 64-bit value in 32-bit register");
  5381. if (IsRead) {
  5382. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
  5383. llvm::Value *Call = Builder.CreateCall(F, Metadata);
  5384. if (MixedTypes)
  5385. // Read into 64 bit register and then truncate result to 32 bit.
  5386. return Builder.CreateTrunc(Call, ValueType);
  5387. if (ValueType->isPointerTy())
  5388. // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
  5389. return Builder.CreateIntToPtr(Call, ValueType);
  5390. return Call;
  5391. }
  5392. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
  5393. llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
  5394. if (MixedTypes) {
  5395. // Extend 32 bit write value to 64 bit to pass to write.
  5396. ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
  5397. return Builder.CreateCall(F, { Metadata, ArgValue });
  5398. }
  5399. if (ValueType->isPointerTy()) {
  5400. // Have VoidPtrTy ArgValue but want to return an i32/i64.
  5401. ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
  5402. return Builder.CreateCall(F, { Metadata, ArgValue });
  5403. }
  5404. return Builder.CreateCall(F, { Metadata, ArgValue });
  5405. }
  5406. /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
  5407. /// argument that specifies the vector type.
  5408. static bool HasExtraNeonArgument(unsigned BuiltinID) {
  5409. switch (BuiltinID) {
  5410. default: break;
  5411. case NEON::BI__builtin_neon_vget_lane_i8:
  5412. case NEON::BI__builtin_neon_vget_lane_i16:
  5413. case NEON::BI__builtin_neon_vget_lane_i32:
  5414. case NEON::BI__builtin_neon_vget_lane_i64:
  5415. case NEON::BI__builtin_neon_vget_lane_f32:
  5416. case NEON::BI__builtin_neon_vgetq_lane_i8:
  5417. case NEON::BI__builtin_neon_vgetq_lane_i16:
  5418. case NEON::BI__builtin_neon_vgetq_lane_i32:
  5419. case NEON::BI__builtin_neon_vgetq_lane_i64:
  5420. case NEON::BI__builtin_neon_vgetq_lane_f32:
  5421. case NEON::BI__builtin_neon_vset_lane_i8:
  5422. case NEON::BI__builtin_neon_vset_lane_i16:
  5423. case NEON::BI__builtin_neon_vset_lane_i32:
  5424. case NEON::BI__builtin_neon_vset_lane_i64:
  5425. case NEON::BI__builtin_neon_vset_lane_f32:
  5426. case NEON::BI__builtin_neon_vsetq_lane_i8:
  5427. case NEON::BI__builtin_neon_vsetq_lane_i16:
  5428. case NEON::BI__builtin_neon_vsetq_lane_i32:
  5429. case NEON::BI__builtin_neon_vsetq_lane_i64:
  5430. case NEON::BI__builtin_neon_vsetq_lane_f32:
  5431. case NEON::BI__builtin_neon_vsha1h_u32:
  5432. case NEON::BI__builtin_neon_vsha1cq_u32:
  5433. case NEON::BI__builtin_neon_vsha1pq_u32:
  5434. case NEON::BI__builtin_neon_vsha1mq_u32:
  5435. case clang::ARM::BI_MoveToCoprocessor:
  5436. case clang::ARM::BI_MoveToCoprocessor2:
  5437. return false;
  5438. }
  5439. return true;
  5440. }
  5441. Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
  5442. const CallExpr *E,
  5443. llvm::Triple::ArchType Arch) {
  5444. if (auto Hint = GetValueForARMHint(BuiltinID))
  5445. return Hint;
  5446. if (BuiltinID == ARM::BI__emit) {
  5447. bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
  5448. llvm::FunctionType *FTy =
  5449. llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
  5450. Expr::EvalResult Result;
  5451. if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
  5452. llvm_unreachable("Sema will ensure that the parameter is constant");
  5453. llvm::APSInt Value = Result.Val.getInt();
  5454. uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
  5455. llvm::InlineAsm *Emit =
  5456. IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
  5457. /*hasSideEffects=*/true)
  5458. : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
  5459. /*hasSideEffects=*/true);
  5460. return Builder.CreateCall(Emit);
  5461. }
  5462. if (BuiltinID == ARM::BI__builtin_arm_dbg) {
  5463. Value *Option = EmitScalarExpr(E->getArg(0));
  5464. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
  5465. }
  5466. if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
  5467. Value *Address = EmitScalarExpr(E->getArg(0));
  5468. Value *RW = EmitScalarExpr(E->getArg(1));
  5469. Value *IsData = EmitScalarExpr(E->getArg(2));
  5470. // Locality is not supported on ARM target
  5471. Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
  5472. Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
  5473. return Builder.CreateCall(F, {Address, RW, Locality, IsData});
  5474. }
  5475. if (BuiltinID == ARM::BI__builtin_arm_rbit) {
  5476. llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
  5477. return Builder.CreateCall(
  5478. CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
  5479. }
  5480. if (BuiltinID == ARM::BI__clear_cache) {
  5481. assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
  5482. const FunctionDecl *FD = E->getDirectCallee();
  5483. Value *Ops[2];
  5484. for (unsigned i = 0; i < 2; i++)
  5485. Ops[i] = EmitScalarExpr(E->getArg(i));
  5486. llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
  5487. llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
  5488. StringRef Name = FD->getName();
  5489. return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
  5490. }
  5491. if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
  5492. BuiltinID == ARM::BI__builtin_arm_mcrr2) {
  5493. Function *F;
  5494. switch (BuiltinID) {
  5495. default: llvm_unreachable("unexpected builtin");
  5496. case ARM::BI__builtin_arm_mcrr:
  5497. F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
  5498. break;
  5499. case ARM::BI__builtin_arm_mcrr2:
  5500. F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
  5501. break;
  5502. }
  5503. // MCRR{2} instruction has 5 operands but
  5504. // the intrinsic has 4 because Rt and Rt2
  5505. // are represented as a single unsigned 64
  5506. // bit integer in the intrinsic definition
  5507. // but internally it's represented as 2 32
  5508. // bit integers.
  5509. Value *Coproc = EmitScalarExpr(E->getArg(0));
  5510. Value *Opc1 = EmitScalarExpr(E->getArg(1));
  5511. Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
  5512. Value *CRm = EmitScalarExpr(E->getArg(3));
  5513. Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
  5514. Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
  5515. Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
  5516. Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
  5517. return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
  5518. }
  5519. if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
  5520. BuiltinID == ARM::BI__builtin_arm_mrrc2) {
  5521. Function *F;
  5522. switch (BuiltinID) {
  5523. default: llvm_unreachable("unexpected builtin");
  5524. case ARM::BI__builtin_arm_mrrc:
  5525. F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
  5526. break;
  5527. case ARM::BI__builtin_arm_mrrc2:
  5528. F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
  5529. break;
  5530. }
  5531. Value *Coproc = EmitScalarExpr(E->getArg(0));
  5532. Value *Opc1 = EmitScalarExpr(E->getArg(1));
  5533. Value *CRm = EmitScalarExpr(E->getArg(2));
  5534. Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
  5535. // Returns an unsigned 64 bit integer, represented
  5536. // as two 32 bit integers.
  5537. Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
  5538. Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
  5539. Rt = Builder.CreateZExt(Rt, Int64Ty);
  5540. Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
  5541. Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
  5542. RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
  5543. RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
  5544. return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
  5545. }
  5546. if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
  5547. ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
  5548. BuiltinID == ARM::BI__builtin_arm_ldaex) &&
  5549. getContext().getTypeSize(E->getType()) == 64) ||
  5550. BuiltinID == ARM::BI__ldrexd) {
  5551. Function *F;
  5552. switch (BuiltinID) {
  5553. default: llvm_unreachable("unexpected builtin");
  5554. case ARM::BI__builtin_arm_ldaex:
  5555. F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
  5556. break;
  5557. case ARM::BI__builtin_arm_ldrexd:
  5558. case ARM::BI__builtin_arm_ldrex:
  5559. case ARM::BI__ldrexd:
  5560. F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
  5561. break;
  5562. }
  5563. Value *LdPtr = EmitScalarExpr(E->getArg(0));
  5564. Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
  5565. "ldrexd");
  5566. Value *Val0 = Builder.CreateExtractValue(Val, 1);
  5567. Value *Val1 = Builder.CreateExtractValue(Val, 0);
  5568. Val0 = Builder.CreateZExt(Val0, Int64Ty);
  5569. Val1 = Builder.CreateZExt(Val1, Int64Ty);
  5570. Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
  5571. Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
  5572. Val = Builder.CreateOr(Val, Val1);
  5573. return Builder.CreateBitCast(Val, ConvertType(E->getType()));
  5574. }
  5575. if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
  5576. BuiltinID == ARM::BI__builtin_arm_ldaex) {
  5577. Value *LoadAddr = EmitScalarExpr(E->getArg(0));
  5578. QualType Ty = E->getType();
  5579. llvm::Type *RealResTy = ConvertType(Ty);
  5580. llvm::Type *PtrTy = llvm::IntegerType::get(
  5581. getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
  5582. LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
  5583. Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
  5584. ? Intrinsic::arm_ldaex
  5585. : Intrinsic::arm_ldrex,
  5586. PtrTy);
  5587. Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
  5588. if (RealResTy->isPointerTy())
  5589. return Builder.CreateIntToPtr(Val, RealResTy);
  5590. else {
  5591. llvm::Type *IntResTy = llvm::IntegerType::get(
  5592. getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
  5593. Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
  5594. return Builder.CreateBitCast(Val, RealResTy);
  5595. }
  5596. }
  5597. if (BuiltinID == ARM::BI__builtin_arm_strexd ||
  5598. ((BuiltinID == ARM::BI__builtin_arm_stlex ||
  5599. BuiltinID == ARM::BI__builtin_arm_strex) &&
  5600. getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
  5601. Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
  5602. ? Intrinsic::arm_stlexd
  5603. : Intrinsic::arm_strexd);
  5604. llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
  5605. Address Tmp = CreateMemTemp(E->getArg(0)->getType());
  5606. Value *Val = EmitScalarExpr(E->getArg(0));
  5607. Builder.CreateStore(Val, Tmp);
  5608. Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
  5609. Val = Builder.CreateLoad(LdPtr);
  5610. Value *Arg0 = Builder.CreateExtractValue(Val, 0);
  5611. Value *Arg1 = Builder.CreateExtractValue(Val, 1);
  5612. Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
  5613. return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
  5614. }
  5615. if (BuiltinID == ARM::BI__builtin_arm_strex ||
  5616. BuiltinID == ARM::BI__builtin_arm_stlex) {
  5617. Value *StoreVal = EmitScalarExpr(E->getArg(0));
  5618. Value *StoreAddr = EmitScalarExpr(E->getArg(1));
  5619. QualType Ty = E->getArg(0)->getType();
  5620. llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
  5621. getContext().getTypeSize(Ty));
  5622. StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
  5623. if (StoreVal->getType()->isPointerTy())
  5624. StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
  5625. else {
  5626. llvm::Type *IntTy = llvm::IntegerType::get(
  5627. getLLVMContext(),
  5628. CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
  5629. StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
  5630. StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
  5631. }
  5632. Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
  5633. ? Intrinsic::arm_stlex
  5634. : Intrinsic::arm_strex,
  5635. StoreAddr->getType());
  5636. return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
  5637. }
  5638. if (BuiltinID == ARM::BI__builtin_arm_clrex) {
  5639. Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
  5640. return Builder.CreateCall(F);
  5641. }
  5642. // CRC32
  5643. Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
  5644. switch (BuiltinID) {
  5645. case ARM::BI__builtin_arm_crc32b:
  5646. CRCIntrinsicID = Intrinsic::arm_crc32b; break;
  5647. case ARM::BI__builtin_arm_crc32cb:
  5648. CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
  5649. case ARM::BI__builtin_arm_crc32h:
  5650. CRCIntrinsicID = Intrinsic::arm_crc32h; break;
  5651. case ARM::BI__builtin_arm_crc32ch:
  5652. CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
  5653. case ARM::BI__builtin_arm_crc32w:
  5654. case ARM::BI__builtin_arm_crc32d:
  5655. CRCIntrinsicID = Intrinsic::arm_crc32w; break;
  5656. case ARM::BI__builtin_arm_crc32cw:
  5657. case ARM::BI__builtin_arm_crc32cd:
  5658. CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
  5659. }
  5660. if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
  5661. Value *Arg0 = EmitScalarExpr(E->getArg(0));
  5662. Value *Arg1 = EmitScalarExpr(E->getArg(1));
  5663. // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
  5664. // intrinsics, hence we need different codegen for these cases.
  5665. if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
  5666. BuiltinID == ARM::BI__builtin_arm_crc32cd) {
  5667. Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
  5668. Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
  5669. Value *Arg1b = Builder.CreateLShr(Arg1, C1);
  5670. Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
  5671. Function *F = CGM.getIntrinsic(CRCIntrinsicID);
  5672. Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
  5673. return Builder.CreateCall(F, {Res, Arg1b});
  5674. } else {
  5675. Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
  5676. Function *F = CGM.getIntrinsic(CRCIntrinsicID);
  5677. return Builder.CreateCall(F, {Arg0, Arg1});
  5678. }
  5679. }
  5680. if (BuiltinID == ARM::BI__builtin_arm_rsr ||
  5681. BuiltinID == ARM::BI__builtin_arm_rsr64 ||
  5682. BuiltinID == ARM::BI__builtin_arm_rsrp ||
  5683. BuiltinID == ARM::BI__builtin_arm_wsr ||
  5684. BuiltinID == ARM::BI__builtin_arm_wsr64 ||
  5685. BuiltinID == ARM::BI__builtin_arm_wsrp) {
  5686. bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
  5687. BuiltinID == ARM::BI__builtin_arm_rsr64 ||
  5688. BuiltinID == ARM::BI__builtin_arm_rsrp;
  5689. bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
  5690. BuiltinID == ARM::BI__builtin_arm_wsrp;
  5691. bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
  5692. BuiltinID == ARM::BI__builtin_arm_wsr64;
  5693. llvm::Type *ValueType;
  5694. llvm::Type *RegisterType;
  5695. if (IsPointerBuiltin) {
  5696. ValueType = VoidPtrTy;
  5697. RegisterType = Int32Ty;
  5698. } else if (Is64Bit) {
  5699. ValueType = RegisterType = Int64Ty;
  5700. } else {
  5701. ValueType = RegisterType = Int32Ty;
  5702. }
  5703. return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
  5704. }
  5705. // Find out if any arguments are required to be integer constant
  5706. // expressions.
  5707. unsigned ICEArguments = 0;
  5708. ASTContext::GetBuiltinTypeError Error;
  5709. getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
  5710. assert(Error == ASTContext::GE_None && "Should not codegen an error");
  5711. auto getAlignmentValue32 = [&](Address addr) -> Value* {
  5712. return Builder.getInt32(addr.getAlignment().getQuantity());
  5713. };
  5714. Address PtrOp0 = Address::invalid();
  5715. Address PtrOp1 = Address::invalid();
  5716. SmallVector<Value*, 4> Ops;
  5717. bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
  5718. unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
  5719. for (unsigned i = 0, e = NumArgs; i != e; i++) {
  5720. if (i == 0) {
  5721. switch (BuiltinID) {
  5722. case NEON::BI__builtin_neon_vld1_v:
  5723. case NEON::BI__builtin_neon_vld1q_v:
  5724. case NEON::BI__builtin_neon_vld1q_lane_v:
  5725. case NEON::BI__builtin_neon_vld1_lane_v:
  5726. case NEON::BI__builtin_neon_vld1_dup_v:
  5727. case NEON::BI__builtin_neon_vld1q_dup_v:
  5728. case NEON::BI__builtin_neon_vst1_v:
  5729. case NEON::BI__builtin_neon_vst1q_v:
  5730. case NEON::BI__builtin_neon_vst1q_lane_v:
  5731. case NEON::BI__builtin_neon_vst1_lane_v:
  5732. case NEON::BI__builtin_neon_vst2_v:
  5733. case NEON::BI__builtin_neon_vst2q_v:
  5734. case NEON::BI__builtin_neon_vst2_lane_v:
  5735. case NEON::BI__builtin_neon_vst2q_lane_v:
  5736. case NEON::BI__builtin_neon_vst3_v:
  5737. case NEON::BI__builtin_neon_vst3q_v:
  5738. case NEON::BI__builtin_neon_vst3_lane_v:
  5739. case NEON::BI__builtin_neon_vst3q_lane_v:
  5740. case NEON::BI__builtin_neon_vst4_v:
  5741. case NEON::BI__builtin_neon_vst4q_v:
  5742. case NEON::BI__builtin_neon_vst4_lane_v:
  5743. case NEON::BI__builtin_neon_vst4q_lane_v:
  5744. // Get the alignment for the argument in addition to the value;
  5745. // we'll use it later.
  5746. PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
  5747. Ops.push_back(PtrOp0.getPointer());
  5748. continue;
  5749. }
  5750. }
  5751. if (i == 1) {
  5752. switch (BuiltinID) {
  5753. case NEON::BI__builtin_neon_vld2_v:
  5754. case NEON::BI__builtin_neon_vld2q_v:
  5755. case NEON::BI__builtin_neon_vld3_v:
  5756. case NEON::BI__builtin_neon_vld3q_v:
  5757. case NEON::BI__builtin_neon_vld4_v:
  5758. case NEON::BI__builtin_neon_vld4q_v:
  5759. case NEON::BI__builtin_neon_vld2_lane_v:
  5760. case NEON::BI__builtin_neon_vld2q_lane_v:
  5761. case NEON::BI__builtin_neon_vld3_lane_v:
  5762. case NEON::BI__builtin_neon_vld3q_lane_v:
  5763. case NEON::BI__builtin_neon_vld4_lane_v:
  5764. case NEON::BI__builtin_neon_vld4q_lane_v:
  5765. case NEON::BI__builtin_neon_vld2_dup_v:
  5766. case NEON::BI__builtin_neon_vld2q_dup_v:
  5767. case NEON::BI__builtin_neon_vld3_dup_v:
  5768. case NEON::BI__builtin_neon_vld3q_dup_v:
  5769. case NEON::BI__builtin_neon_vld4_dup_v:
  5770. case NEON::BI__builtin_neon_vld4q_dup_v:
  5771. // Get the alignment for the argument in addition to the value;
  5772. // we'll use it later.
  5773. PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
  5774. Ops.push_back(PtrOp1.getPointer());
  5775. continue;
  5776. }
  5777. }
  5778. if ((ICEArguments & (1 << i)) == 0) {
  5779. Ops.push_back(EmitScalarExpr(E->getArg(i)));
  5780. } else {
  5781. // If this is required to be a constant, constant fold it so that we know
  5782. // that the generated intrinsic gets a ConstantInt.
  5783. llvm::APSInt Result;
  5784. bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
  5785. assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
  5786. Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
  5787. }
  5788. }
  5789. switch (BuiltinID) {
  5790. default: break;
  5791. case NEON::BI__builtin_neon_vget_lane_i8:
  5792. case NEON::BI__builtin_neon_vget_lane_i16:
  5793. case NEON::BI__builtin_neon_vget_lane_i32:
  5794. case NEON::BI__builtin_neon_vget_lane_i64:
  5795. case NEON::BI__builtin_neon_vget_lane_f32:
  5796. case NEON::BI__builtin_neon_vgetq_lane_i8:
  5797. case NEON::BI__builtin_neon_vgetq_lane_i16:
  5798. case NEON::BI__builtin_neon_vgetq_lane_i32:
  5799. case NEON::BI__builtin_neon_vgetq_lane_i64:
  5800. case NEON::BI__builtin_neon_vgetq_lane_f32:
  5801. return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
  5802. case NEON::BI__builtin_neon_vrndns_f32: {
  5803. Value *Arg = EmitScalarExpr(E->getArg(0));
  5804. llvm::Type *Tys[] = {Arg->getType()};
  5805. Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
  5806. return Builder.CreateCall(F, {Arg}, "vrndn"); }
  5807. case NEON::BI__builtin_neon_vset_lane_i8:
  5808. case NEON::BI__builtin_neon_vset_lane_i16:
  5809. case NEON::BI__builtin_neon_vset_lane_i32:
  5810. case NEON::BI__builtin_neon_vset_lane_i64:
  5811. case NEON::BI__builtin_neon_vset_lane_f32:
  5812. case NEON::BI__builtin_neon_vsetq_lane_i8:
  5813. case NEON::BI__builtin_neon_vsetq_lane_i16:
  5814. case NEON::BI__builtin_neon_vsetq_lane_i32:
  5815. case NEON::BI__builtin_neon_vsetq_lane_i64:
  5816. case NEON::BI__builtin_neon_vsetq_lane_f32:
  5817. return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
  5818. case NEON::BI__builtin_neon_vsha1h_u32:
  5819. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
  5820. "vsha1h");
  5821. case NEON::BI__builtin_neon_vsha1cq_u32:
  5822. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
  5823. "vsha1h");
  5824. case NEON::BI__builtin_neon_vsha1pq_u32:
  5825. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
  5826. "vsha1h");
  5827. case NEON::BI__builtin_neon_vsha1mq_u32:
  5828. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
  5829. "vsha1h");
  5830. // The ARM _MoveToCoprocessor builtins put the input register value as
  5831. // the first argument, but the LLVM intrinsic expects it as the third one.
  5832. case ARM::BI_MoveToCoprocessor:
  5833. case ARM::BI_MoveToCoprocessor2: {
  5834. Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
  5835. Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
  5836. return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
  5837. Ops[3], Ops[4], Ops[5]});
  5838. }
  5839. case ARM::BI_BitScanForward:
  5840. case ARM::BI_BitScanForward64:
  5841. return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
  5842. case ARM::BI_BitScanReverse:
  5843. case ARM::BI_BitScanReverse64:
  5844. return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
  5845. case ARM::BI_InterlockedAnd64:
  5846. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
  5847. case ARM::BI_InterlockedExchange64:
  5848. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
  5849. case ARM::BI_InterlockedExchangeAdd64:
  5850. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
  5851. case ARM::BI_InterlockedExchangeSub64:
  5852. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
  5853. case ARM::BI_InterlockedOr64:
  5854. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
  5855. case ARM::BI_InterlockedXor64:
  5856. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
  5857. case ARM::BI_InterlockedDecrement64:
  5858. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
  5859. case ARM::BI_InterlockedIncrement64:
  5860. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
  5861. case ARM::BI_InterlockedExchangeAdd8_acq:
  5862. case ARM::BI_InterlockedExchangeAdd16_acq:
  5863. case ARM::BI_InterlockedExchangeAdd_acq:
  5864. case ARM::BI_InterlockedExchangeAdd64_acq:
  5865. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
  5866. case ARM::BI_InterlockedExchangeAdd8_rel:
  5867. case ARM::BI_InterlockedExchangeAdd16_rel:
  5868. case ARM::BI_InterlockedExchangeAdd_rel:
  5869. case ARM::BI_InterlockedExchangeAdd64_rel:
  5870. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
  5871. case ARM::BI_InterlockedExchangeAdd8_nf:
  5872. case ARM::BI_InterlockedExchangeAdd16_nf:
  5873. case ARM::BI_InterlockedExchangeAdd_nf:
  5874. case ARM::BI_InterlockedExchangeAdd64_nf:
  5875. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
  5876. case ARM::BI_InterlockedExchange8_acq:
  5877. case ARM::BI_InterlockedExchange16_acq:
  5878. case ARM::BI_InterlockedExchange_acq:
  5879. case ARM::BI_InterlockedExchange64_acq:
  5880. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
  5881. case ARM::BI_InterlockedExchange8_rel:
  5882. case ARM::BI_InterlockedExchange16_rel:
  5883. case ARM::BI_InterlockedExchange_rel:
  5884. case ARM::BI_InterlockedExchange64_rel:
  5885. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
  5886. case ARM::BI_InterlockedExchange8_nf:
  5887. case ARM::BI_InterlockedExchange16_nf:
  5888. case ARM::BI_InterlockedExchange_nf:
  5889. case ARM::BI_InterlockedExchange64_nf:
  5890. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
  5891. case ARM::BI_InterlockedCompareExchange8_acq:
  5892. case ARM::BI_InterlockedCompareExchange16_acq:
  5893. case ARM::BI_InterlockedCompareExchange_acq:
  5894. case ARM::BI_InterlockedCompareExchange64_acq:
  5895. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
  5896. case ARM::BI_InterlockedCompareExchange8_rel:
  5897. case ARM::BI_InterlockedCompareExchange16_rel:
  5898. case ARM::BI_InterlockedCompareExchange_rel:
  5899. case ARM::BI_InterlockedCompareExchange64_rel:
  5900. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
  5901. case ARM::BI_InterlockedCompareExchange8_nf:
  5902. case ARM::BI_InterlockedCompareExchange16_nf:
  5903. case ARM::BI_InterlockedCompareExchange_nf:
  5904. case ARM::BI_InterlockedCompareExchange64_nf:
  5905. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
  5906. case ARM::BI_InterlockedOr8_acq:
  5907. case ARM::BI_InterlockedOr16_acq:
  5908. case ARM::BI_InterlockedOr_acq:
  5909. case ARM::BI_InterlockedOr64_acq:
  5910. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
  5911. case ARM::BI_InterlockedOr8_rel:
  5912. case ARM::BI_InterlockedOr16_rel:
  5913. case ARM::BI_InterlockedOr_rel:
  5914. case ARM::BI_InterlockedOr64_rel:
  5915. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
  5916. case ARM::BI_InterlockedOr8_nf:
  5917. case ARM::BI_InterlockedOr16_nf:
  5918. case ARM::BI_InterlockedOr_nf:
  5919. case ARM::BI_InterlockedOr64_nf:
  5920. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
  5921. case ARM::BI_InterlockedXor8_acq:
  5922. case ARM::BI_InterlockedXor16_acq:
  5923. case ARM::BI_InterlockedXor_acq:
  5924. case ARM::BI_InterlockedXor64_acq:
  5925. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
  5926. case ARM::BI_InterlockedXor8_rel:
  5927. case ARM::BI_InterlockedXor16_rel:
  5928. case ARM::BI_InterlockedXor_rel:
  5929. case ARM::BI_InterlockedXor64_rel:
  5930. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
  5931. case ARM::BI_InterlockedXor8_nf:
  5932. case ARM::BI_InterlockedXor16_nf:
  5933. case ARM::BI_InterlockedXor_nf:
  5934. case ARM::BI_InterlockedXor64_nf:
  5935. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
  5936. case ARM::BI_InterlockedAnd8_acq:
  5937. case ARM::BI_InterlockedAnd16_acq:
  5938. case ARM::BI_InterlockedAnd_acq:
  5939. case ARM::BI_InterlockedAnd64_acq:
  5940. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
  5941. case ARM::BI_InterlockedAnd8_rel:
  5942. case ARM::BI_InterlockedAnd16_rel:
  5943. case ARM::BI_InterlockedAnd_rel:
  5944. case ARM::BI_InterlockedAnd64_rel:
  5945. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
  5946. case ARM::BI_InterlockedAnd8_nf:
  5947. case ARM::BI_InterlockedAnd16_nf:
  5948. case ARM::BI_InterlockedAnd_nf:
  5949. case ARM::BI_InterlockedAnd64_nf:
  5950. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
  5951. case ARM::BI_InterlockedIncrement16_acq:
  5952. case ARM::BI_InterlockedIncrement_acq:
  5953. case ARM::BI_InterlockedIncrement64_acq:
  5954. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
  5955. case ARM::BI_InterlockedIncrement16_rel:
  5956. case ARM::BI_InterlockedIncrement_rel:
  5957. case ARM::BI_InterlockedIncrement64_rel:
  5958. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
  5959. case ARM::BI_InterlockedIncrement16_nf:
  5960. case ARM::BI_InterlockedIncrement_nf:
  5961. case ARM::BI_InterlockedIncrement64_nf:
  5962. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
  5963. case ARM::BI_InterlockedDecrement16_acq:
  5964. case ARM::BI_InterlockedDecrement_acq:
  5965. case ARM::BI_InterlockedDecrement64_acq:
  5966. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
  5967. case ARM::BI_InterlockedDecrement16_rel:
  5968. case ARM::BI_InterlockedDecrement_rel:
  5969. case ARM::BI_InterlockedDecrement64_rel:
  5970. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
  5971. case ARM::BI_InterlockedDecrement16_nf:
  5972. case ARM::BI_InterlockedDecrement_nf:
  5973. case ARM::BI_InterlockedDecrement64_nf:
  5974. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
  5975. }
  5976. // Get the last argument, which specifies the vector type.
  5977. assert(HasExtraArg);
  5978. llvm::APSInt Result;
  5979. const Expr *Arg = E->getArg(E->getNumArgs()-1);
  5980. if (!Arg->isIntegerConstantExpr(Result, getContext()))
  5981. return nullptr;
  5982. if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
  5983. BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
  5984. // Determine the overloaded type of this builtin.
  5985. llvm::Type *Ty;
  5986. if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
  5987. Ty = FloatTy;
  5988. else
  5989. Ty = DoubleTy;
  5990. // Determine whether this is an unsigned conversion or not.
  5991. bool usgn = Result.getZExtValue() == 1;
  5992. unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
  5993. // Call the appropriate intrinsic.
  5994. Function *F = CGM.getIntrinsic(Int, Ty);
  5995. return Builder.CreateCall(F, Ops, "vcvtr");
  5996. }
  5997. // Determine the type of this overloaded NEON intrinsic.
  5998. NeonTypeFlags Type(Result.getZExtValue());
  5999. bool usgn = Type.isUnsigned();
  6000. bool rightShift = false;
  6001. llvm::VectorType *VTy = GetNeonType(this, Type,
  6002. getTarget().hasLegalHalfType());
  6003. llvm::Type *Ty = VTy;
  6004. if (!Ty)
  6005. return nullptr;
  6006. // Many NEON builtins have identical semantics and uses in ARM and
  6007. // AArch64. Emit these in a single function.
  6008. auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
  6009. const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
  6010. IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
  6011. if (Builtin)
  6012. return EmitCommonNeonBuiltinExpr(
  6013. Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
  6014. Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
  6015. unsigned Int;
  6016. switch (BuiltinID) {
  6017. default: return nullptr;
  6018. case NEON::BI__builtin_neon_vld1q_lane_v:
  6019. // Handle 64-bit integer elements as a special case. Use shuffles of
  6020. // one-element vectors to avoid poor code for i64 in the backend.
  6021. if (VTy->getElementType()->isIntegerTy(64)) {
  6022. // Extract the other lane.
  6023. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  6024. uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
  6025. Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
  6026. Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
  6027. // Load the value as a one-element vector.
  6028. Ty = llvm::VectorType::get(VTy->getElementType(), 1);
  6029. llvm::Type *Tys[] = {Ty, Int8PtrTy};
  6030. Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
  6031. Value *Align = getAlignmentValue32(PtrOp0);
  6032. Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
  6033. // Combine them.
  6034. uint32_t Indices[] = {1 - Lane, Lane};
  6035. SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
  6036. return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
  6037. }
  6038. LLVM_FALLTHROUGH;
  6039. case NEON::BI__builtin_neon_vld1_lane_v: {
  6040. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  6041. PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
  6042. Value *Ld = Builder.CreateLoad(PtrOp0);
  6043. return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
  6044. }
  6045. case NEON::BI__builtin_neon_vqrshrn_n_v:
  6046. Int =
  6047. usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
  6048. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
  6049. 1, true);
  6050. case NEON::BI__builtin_neon_vqrshrun_n_v:
  6051. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
  6052. Ops, "vqrshrun_n", 1, true);
  6053. case NEON::BI__builtin_neon_vqshrn_n_v:
  6054. Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
  6055. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
  6056. 1, true);
  6057. case NEON::BI__builtin_neon_vqshrun_n_v:
  6058. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
  6059. Ops, "vqshrun_n", 1, true);
  6060. case NEON::BI__builtin_neon_vrecpe_v:
  6061. case NEON::BI__builtin_neon_vrecpeq_v:
  6062. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
  6063. Ops, "vrecpe");
  6064. case NEON::BI__builtin_neon_vrshrn_n_v:
  6065. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
  6066. Ops, "vrshrn_n", 1, true);
  6067. case NEON::BI__builtin_neon_vrsra_n_v:
  6068. case NEON::BI__builtin_neon_vrsraq_n_v:
  6069. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  6070. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  6071. Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
  6072. Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
  6073. Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
  6074. return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
  6075. case NEON::BI__builtin_neon_vsri_n_v:
  6076. case NEON::BI__builtin_neon_vsriq_n_v:
  6077. rightShift = true;
  6078. LLVM_FALLTHROUGH;
  6079. case NEON::BI__builtin_neon_vsli_n_v:
  6080. case NEON::BI__builtin_neon_vsliq_n_v:
  6081. Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
  6082. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
  6083. Ops, "vsli_n");
  6084. case NEON::BI__builtin_neon_vsra_n_v:
  6085. case NEON::BI__builtin_neon_vsraq_n_v:
  6086. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  6087. Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
  6088. return Builder.CreateAdd(Ops[0], Ops[1]);
  6089. case NEON::BI__builtin_neon_vst1q_lane_v:
  6090. // Handle 64-bit integer elements as a special case. Use a shuffle to get
  6091. // a one-element vector and avoid poor code for i64 in the backend.
  6092. if (VTy->getElementType()->isIntegerTy(64)) {
  6093. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  6094. Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
  6095. Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
  6096. Ops[2] = getAlignmentValue32(PtrOp0);
  6097. llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
  6098. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
  6099. Tys), Ops);
  6100. }
  6101. LLVM_FALLTHROUGH;
  6102. case NEON::BI__builtin_neon_vst1_lane_v: {
  6103. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  6104. Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
  6105. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  6106. auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
  6107. return St;
  6108. }
  6109. case NEON::BI__builtin_neon_vtbl1_v:
  6110. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
  6111. Ops, "vtbl1");
  6112. case NEON::BI__builtin_neon_vtbl2_v:
  6113. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
  6114. Ops, "vtbl2");
  6115. case NEON::BI__builtin_neon_vtbl3_v:
  6116. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
  6117. Ops, "vtbl3");
  6118. case NEON::BI__builtin_neon_vtbl4_v:
  6119. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
  6120. Ops, "vtbl4");
  6121. case NEON::BI__builtin_neon_vtbx1_v:
  6122. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
  6123. Ops, "vtbx1");
  6124. case NEON::BI__builtin_neon_vtbx2_v:
  6125. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
  6126. Ops, "vtbx2");
  6127. case NEON::BI__builtin_neon_vtbx3_v:
  6128. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
  6129. Ops, "vtbx3");
  6130. case NEON::BI__builtin_neon_vtbx4_v:
  6131. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
  6132. Ops, "vtbx4");
  6133. }
  6134. }
  6135. static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
  6136. const CallExpr *E,
  6137. SmallVectorImpl<Value *> &Ops,
  6138. llvm::Triple::ArchType Arch) {
  6139. unsigned int Int = 0;
  6140. const char *s = nullptr;
  6141. switch (BuiltinID) {
  6142. default:
  6143. return nullptr;
  6144. case NEON::BI__builtin_neon_vtbl1_v:
  6145. case NEON::BI__builtin_neon_vqtbl1_v:
  6146. case NEON::BI__builtin_neon_vqtbl1q_v:
  6147. case NEON::BI__builtin_neon_vtbl2_v:
  6148. case NEON::BI__builtin_neon_vqtbl2_v:
  6149. case NEON::BI__builtin_neon_vqtbl2q_v:
  6150. case NEON::BI__builtin_neon_vtbl3_v:
  6151. case NEON::BI__builtin_neon_vqtbl3_v:
  6152. case NEON::BI__builtin_neon_vqtbl3q_v:
  6153. case NEON::BI__builtin_neon_vtbl4_v:
  6154. case NEON::BI__builtin_neon_vqtbl4_v:
  6155. case NEON::BI__builtin_neon_vqtbl4q_v:
  6156. break;
  6157. case NEON::BI__builtin_neon_vtbx1_v:
  6158. case NEON::BI__builtin_neon_vqtbx1_v:
  6159. case NEON::BI__builtin_neon_vqtbx1q_v:
  6160. case NEON::BI__builtin_neon_vtbx2_v:
  6161. case NEON::BI__builtin_neon_vqtbx2_v:
  6162. case NEON::BI__builtin_neon_vqtbx2q_v:
  6163. case NEON::BI__builtin_neon_vtbx3_v:
  6164. case NEON::BI__builtin_neon_vqtbx3_v:
  6165. case NEON::BI__builtin_neon_vqtbx3q_v:
  6166. case NEON::BI__builtin_neon_vtbx4_v:
  6167. case NEON::BI__builtin_neon_vqtbx4_v:
  6168. case NEON::BI__builtin_neon_vqtbx4q_v:
  6169. break;
  6170. }
  6171. assert(E->getNumArgs() >= 3);
  6172. // Get the last argument, which specifies the vector type.
  6173. llvm::APSInt Result;
  6174. const Expr *Arg = E->getArg(E->getNumArgs() - 1);
  6175. if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
  6176. return nullptr;
  6177. // Determine the type of this overloaded NEON intrinsic.
  6178. NeonTypeFlags Type(Result.getZExtValue());
  6179. llvm::VectorType *Ty = GetNeonType(&CGF, Type);
  6180. if (!Ty)
  6181. return nullptr;
  6182. CodeGen::CGBuilderTy &Builder = CGF.Builder;
  6183. // AArch64 scalar builtins are not overloaded, they do not have an extra
  6184. // argument that specifies the vector type, need to handle each case.
  6185. switch (BuiltinID) {
  6186. case NEON::BI__builtin_neon_vtbl1_v: {
  6187. return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
  6188. Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
  6189. "vtbl1");
  6190. }
  6191. case NEON::BI__builtin_neon_vtbl2_v: {
  6192. return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
  6193. Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
  6194. "vtbl1");
  6195. }
  6196. case NEON::BI__builtin_neon_vtbl3_v: {
  6197. return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
  6198. Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
  6199. "vtbl2");
  6200. }
  6201. case NEON::BI__builtin_neon_vtbl4_v: {
  6202. return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
  6203. Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
  6204. "vtbl2");
  6205. }
  6206. case NEON::BI__builtin_neon_vtbx1_v: {
  6207. Value *TblRes =
  6208. packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
  6209. Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
  6210. llvm::Constant *EightV = ConstantInt::get(Ty, 8);
  6211. Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
  6212. CmpRes = Builder.CreateSExt(CmpRes, Ty);
  6213. Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
  6214. Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
  6215. return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
  6216. }
  6217. case NEON::BI__builtin_neon_vtbx2_v: {
  6218. return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
  6219. Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
  6220. "vtbx1");
  6221. }
  6222. case NEON::BI__builtin_neon_vtbx3_v: {
  6223. Value *TblRes =
  6224. packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
  6225. Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
  6226. llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
  6227. Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
  6228. TwentyFourV);
  6229. CmpRes = Builder.CreateSExt(CmpRes, Ty);
  6230. Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
  6231. Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
  6232. return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
  6233. }
  6234. case NEON::BI__builtin_neon_vtbx4_v: {
  6235. return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
  6236. Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
  6237. "vtbx2");
  6238. }
  6239. case NEON::BI__builtin_neon_vqtbl1_v:
  6240. case NEON::BI__builtin_neon_vqtbl1q_v:
  6241. Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
  6242. case NEON::BI__builtin_neon_vqtbl2_v:
  6243. case NEON::BI__builtin_neon_vqtbl2q_v: {
  6244. Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
  6245. case NEON::BI__builtin_neon_vqtbl3_v:
  6246. case NEON::BI__builtin_neon_vqtbl3q_v:
  6247. Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
  6248. case NEON::BI__builtin_neon_vqtbl4_v:
  6249. case NEON::BI__builtin_neon_vqtbl4q_v:
  6250. Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
  6251. case NEON::BI__builtin_neon_vqtbx1_v:
  6252. case NEON::BI__builtin_neon_vqtbx1q_v:
  6253. Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
  6254. case NEON::BI__builtin_neon_vqtbx2_v:
  6255. case NEON::BI__builtin_neon_vqtbx2q_v:
  6256. Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
  6257. case NEON::BI__builtin_neon_vqtbx3_v:
  6258. case NEON::BI__builtin_neon_vqtbx3q_v:
  6259. Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
  6260. case NEON::BI__builtin_neon_vqtbx4_v:
  6261. case NEON::BI__builtin_neon_vqtbx4q_v:
  6262. Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
  6263. }
  6264. }
  6265. if (!Int)
  6266. return nullptr;
  6267. Function *F = CGF.CGM.getIntrinsic(Int, Ty);
  6268. return CGF.EmitNeonCall(F, Ops, s);
  6269. }
  6270. Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
  6271. llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
  6272. Op = Builder.CreateBitCast(Op, Int16Ty);
  6273. Value *V = UndefValue::get(VTy);
  6274. llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
  6275. Op = Builder.CreateInsertElement(V, Op, CI);
  6276. return Op;
  6277. }
  6278. Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
  6279. const CallExpr *E,
  6280. llvm::Triple::ArchType Arch) {
  6281. unsigned HintID = static_cast<unsigned>(-1);
  6282. switch (BuiltinID) {
  6283. default: break;
  6284. case AArch64::BI__builtin_arm_nop:
  6285. HintID = 0;
  6286. break;
  6287. case AArch64::BI__builtin_arm_yield:
  6288. case AArch64::BI__yield:
  6289. HintID = 1;
  6290. break;
  6291. case AArch64::BI__builtin_arm_wfe:
  6292. case AArch64::BI__wfe:
  6293. HintID = 2;
  6294. break;
  6295. case AArch64::BI__builtin_arm_wfi:
  6296. case AArch64::BI__wfi:
  6297. HintID = 3;
  6298. break;
  6299. case AArch64::BI__builtin_arm_sev:
  6300. case AArch64::BI__sev:
  6301. HintID = 4;
  6302. break;
  6303. case AArch64::BI__builtin_arm_sevl:
  6304. case AArch64::BI__sevl:
  6305. HintID = 5;
  6306. break;
  6307. }
  6308. if (HintID != static_cast<unsigned>(-1)) {
  6309. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
  6310. return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
  6311. }
  6312. if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
  6313. Value *Address = EmitScalarExpr(E->getArg(0));
  6314. Value *RW = EmitScalarExpr(E->getArg(1));
  6315. Value *CacheLevel = EmitScalarExpr(E->getArg(2));
  6316. Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
  6317. Value *IsData = EmitScalarExpr(E->getArg(4));
  6318. Value *Locality = nullptr;
  6319. if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
  6320. // Temporal fetch, needs to convert cache level to locality.
  6321. Locality = llvm::ConstantInt::get(Int32Ty,
  6322. -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
  6323. } else {
  6324. // Streaming fetch.
  6325. Locality = llvm::ConstantInt::get(Int32Ty, 0);
  6326. }
  6327. // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
  6328. // PLDL3STRM or PLDL2STRM.
  6329. Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
  6330. return Builder.CreateCall(F, {Address, RW, Locality, IsData});
  6331. }
  6332. if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
  6333. assert((getContext().getTypeSize(E->getType()) == 32) &&
  6334. "rbit of unusual size!");
  6335. llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
  6336. return Builder.CreateCall(
  6337. CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
  6338. }
  6339. if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
  6340. assert((getContext().getTypeSize(E->getType()) == 64) &&
  6341. "rbit of unusual size!");
  6342. llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
  6343. return Builder.CreateCall(
  6344. CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
  6345. }
  6346. if (BuiltinID == AArch64::BI__clear_cache) {
  6347. assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
  6348. const FunctionDecl *FD = E->getDirectCallee();
  6349. Value *Ops[2];
  6350. for (unsigned i = 0; i < 2; i++)
  6351. Ops[i] = EmitScalarExpr(E->getArg(i));
  6352. llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
  6353. llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
  6354. StringRef Name = FD->getName();
  6355. return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
  6356. }
  6357. if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
  6358. BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
  6359. getContext().getTypeSize(E->getType()) == 128) {
  6360. Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
  6361. ? Intrinsic::aarch64_ldaxp
  6362. : Intrinsic::aarch64_ldxp);
  6363. Value *LdPtr = EmitScalarExpr(E->getArg(0));
  6364. Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
  6365. "ldxp");
  6366. Value *Val0 = Builder.CreateExtractValue(Val, 1);
  6367. Value *Val1 = Builder.CreateExtractValue(Val, 0);
  6368. llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
  6369. Val0 = Builder.CreateZExt(Val0, Int128Ty);
  6370. Val1 = Builder.CreateZExt(Val1, Int128Ty);
  6371. Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
  6372. Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
  6373. Val = Builder.CreateOr(Val, Val1);
  6374. return Builder.CreateBitCast(Val, ConvertType(E->getType()));
  6375. } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
  6376. BuiltinID == AArch64::BI__builtin_arm_ldaex) {
  6377. Value *LoadAddr = EmitScalarExpr(E->getArg(0));
  6378. QualType Ty = E->getType();
  6379. llvm::Type *RealResTy = ConvertType(Ty);
  6380. llvm::Type *PtrTy = llvm::IntegerType::get(
  6381. getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
  6382. LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
  6383. Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
  6384. ? Intrinsic::aarch64_ldaxr
  6385. : Intrinsic::aarch64_ldxr,
  6386. PtrTy);
  6387. Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
  6388. if (RealResTy->isPointerTy())
  6389. return Builder.CreateIntToPtr(Val, RealResTy);
  6390. llvm::Type *IntResTy = llvm::IntegerType::get(
  6391. getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
  6392. Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
  6393. return Builder.CreateBitCast(Val, RealResTy);
  6394. }
  6395. if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
  6396. BuiltinID == AArch64::BI__builtin_arm_stlex) &&
  6397. getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
  6398. Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
  6399. ? Intrinsic::aarch64_stlxp
  6400. : Intrinsic::aarch64_stxp);
  6401. llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
  6402. Address Tmp = CreateMemTemp(E->getArg(0)->getType());
  6403. EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
  6404. Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
  6405. llvm::Value *Val = Builder.CreateLoad(Tmp);
  6406. Value *Arg0 = Builder.CreateExtractValue(Val, 0);
  6407. Value *Arg1 = Builder.CreateExtractValue(Val, 1);
  6408. Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
  6409. Int8PtrTy);
  6410. return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
  6411. }
  6412. if (BuiltinID == AArch64::BI__builtin_arm_strex ||
  6413. BuiltinID == AArch64::BI__builtin_arm_stlex) {
  6414. Value *StoreVal = EmitScalarExpr(E->getArg(0));
  6415. Value *StoreAddr = EmitScalarExpr(E->getArg(1));
  6416. QualType Ty = E->getArg(0)->getType();
  6417. llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
  6418. getContext().getTypeSize(Ty));
  6419. StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
  6420. if (StoreVal->getType()->isPointerTy())
  6421. StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
  6422. else {
  6423. llvm::Type *IntTy = llvm::IntegerType::get(
  6424. getLLVMContext(),
  6425. CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
  6426. StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
  6427. StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
  6428. }
  6429. Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
  6430. ? Intrinsic::aarch64_stlxr
  6431. : Intrinsic::aarch64_stxr,
  6432. StoreAddr->getType());
  6433. return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
  6434. }
  6435. if (BuiltinID == AArch64::BI__getReg) {
  6436. Expr::EvalResult Result;
  6437. if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
  6438. llvm_unreachable("Sema will ensure that the parameter is constant");
  6439. llvm::APSInt Value = Result.Val.getInt();
  6440. LLVMContext &Context = CGM.getLLVMContext();
  6441. std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
  6442. llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
  6443. llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
  6444. llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
  6445. llvm::Function *F =
  6446. CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
  6447. return Builder.CreateCall(F, Metadata);
  6448. }
  6449. if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
  6450. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
  6451. return Builder.CreateCall(F);
  6452. }
  6453. if (BuiltinID == AArch64::BI_ReadWriteBarrier)
  6454. return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
  6455. llvm::SyncScope::SingleThread);
  6456. // CRC32
  6457. Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
  6458. switch (BuiltinID) {
  6459. case AArch64::BI__builtin_arm_crc32b:
  6460. CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
  6461. case AArch64::BI__builtin_arm_crc32cb:
  6462. CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
  6463. case AArch64::BI__builtin_arm_crc32h:
  6464. CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
  6465. case AArch64::BI__builtin_arm_crc32ch:
  6466. CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
  6467. case AArch64::BI__builtin_arm_crc32w:
  6468. CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
  6469. case AArch64::BI__builtin_arm_crc32cw:
  6470. CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
  6471. case AArch64::BI__builtin_arm_crc32d:
  6472. CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
  6473. case AArch64::BI__builtin_arm_crc32cd:
  6474. CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
  6475. }
  6476. if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
  6477. Value *Arg0 = EmitScalarExpr(E->getArg(0));
  6478. Value *Arg1 = EmitScalarExpr(E->getArg(1));
  6479. Function *F = CGM.getIntrinsic(CRCIntrinsicID);
  6480. llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
  6481. Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
  6482. return Builder.CreateCall(F, {Arg0, Arg1});
  6483. }
  6484. // Memory Tagging Extensions (MTE) Intrinsics
  6485. Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
  6486. switch (BuiltinID) {
  6487. case AArch64::BI__builtin_arm_irg:
  6488. MTEIntrinsicID = Intrinsic::aarch64_irg; break;
  6489. case AArch64::BI__builtin_arm_addg:
  6490. MTEIntrinsicID = Intrinsic::aarch64_addg; break;
  6491. case AArch64::BI__builtin_arm_gmi:
  6492. MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
  6493. case AArch64::BI__builtin_arm_ldg:
  6494. MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
  6495. case AArch64::BI__builtin_arm_stg:
  6496. MTEIntrinsicID = Intrinsic::aarch64_stg; break;
  6497. case AArch64::BI__builtin_arm_subp:
  6498. MTEIntrinsicID = Intrinsic::aarch64_subp; break;
  6499. }
  6500. if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
  6501. llvm::Type *T = ConvertType(E->getType());
  6502. if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
  6503. Value *Pointer = EmitScalarExpr(E->getArg(0));
  6504. Value *Mask = EmitScalarExpr(E->getArg(1));
  6505. Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
  6506. Mask = Builder.CreateZExt(Mask, Int64Ty);
  6507. Value *RV = Builder.CreateCall(
  6508. CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
  6509. return Builder.CreatePointerCast(RV, T);
  6510. }
  6511. if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
  6512. Value *Pointer = EmitScalarExpr(E->getArg(0));
  6513. Value *TagOffset = EmitScalarExpr(E->getArg(1));
  6514. Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
  6515. TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
  6516. Value *RV = Builder.CreateCall(
  6517. CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
  6518. return Builder.CreatePointerCast(RV, T);
  6519. }
  6520. if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
  6521. Value *Pointer = EmitScalarExpr(E->getArg(0));
  6522. Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
  6523. ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
  6524. Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
  6525. return Builder.CreateCall(
  6526. CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
  6527. }
  6528. // Although it is possible to supply a different return
  6529. // address (first arg) to this intrinsic, for now we set
  6530. // return address same as input address.
  6531. if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
  6532. Value *TagAddress = EmitScalarExpr(E->getArg(0));
  6533. TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
  6534. Value *RV = Builder.CreateCall(
  6535. CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
  6536. return Builder.CreatePointerCast(RV, T);
  6537. }
  6538. // Although it is possible to supply a different tag (to set)
  6539. // to this intrinsic (as first arg), for now we supply
  6540. // the tag that is in input address arg (common use case).
  6541. if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
  6542. Value *TagAddress = EmitScalarExpr(E->getArg(0));
  6543. TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
  6544. return Builder.CreateCall(
  6545. CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
  6546. }
  6547. if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
  6548. Value *PointerA = EmitScalarExpr(E->getArg(0));
  6549. Value *PointerB = EmitScalarExpr(E->getArg(1));
  6550. PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
  6551. PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
  6552. return Builder.CreateCall(
  6553. CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
  6554. }
  6555. }
  6556. if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
  6557. BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
  6558. BuiltinID == AArch64::BI__builtin_arm_rsrp ||
  6559. BuiltinID == AArch64::BI__builtin_arm_wsr ||
  6560. BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
  6561. BuiltinID == AArch64::BI__builtin_arm_wsrp) {
  6562. bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
  6563. BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
  6564. BuiltinID == AArch64::BI__builtin_arm_rsrp;
  6565. bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
  6566. BuiltinID == AArch64::BI__builtin_arm_wsrp;
  6567. bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
  6568. BuiltinID != AArch64::BI__builtin_arm_wsr;
  6569. llvm::Type *ValueType;
  6570. llvm::Type *RegisterType = Int64Ty;
  6571. if (IsPointerBuiltin) {
  6572. ValueType = VoidPtrTy;
  6573. } else if (Is64Bit) {
  6574. ValueType = Int64Ty;
  6575. } else {
  6576. ValueType = Int32Ty;
  6577. }
  6578. return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
  6579. }
  6580. if (BuiltinID == AArch64::BI_ReadStatusReg ||
  6581. BuiltinID == AArch64::BI_WriteStatusReg) {
  6582. LLVMContext &Context = CGM.getLLVMContext();
  6583. unsigned SysReg =
  6584. E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
  6585. std::string SysRegStr;
  6586. llvm::raw_string_ostream(SysRegStr) <<
  6587. ((1 << 1) | ((SysReg >> 14) & 1)) << ":" <<
  6588. ((SysReg >> 11) & 7) << ":" <<
  6589. ((SysReg >> 7) & 15) << ":" <<
  6590. ((SysReg >> 3) & 15) << ":" <<
  6591. ( SysReg & 7);
  6592. llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
  6593. llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
  6594. llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
  6595. llvm::Type *RegisterType = Int64Ty;
  6596. llvm::Type *Types[] = { RegisterType };
  6597. if (BuiltinID == AArch64::BI_ReadStatusReg) {
  6598. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
  6599. return Builder.CreateCall(F, Metadata);
  6600. }
  6601. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
  6602. llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
  6603. return Builder.CreateCall(F, { Metadata, ArgValue });
  6604. }
  6605. if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
  6606. llvm::Function *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress);
  6607. return Builder.CreateCall(F);
  6608. }
  6609. if (BuiltinID == AArch64::BI__builtin_sponentry) {
  6610. llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry);
  6611. return Builder.CreateCall(F);
  6612. }
  6613. // Find out if any arguments are required to be integer constant
  6614. // expressions.
  6615. unsigned ICEArguments = 0;
  6616. ASTContext::GetBuiltinTypeError Error;
  6617. getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
  6618. assert(Error == ASTContext::GE_None && "Should not codegen an error");
  6619. llvm::SmallVector<Value*, 4> Ops;
  6620. for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
  6621. if ((ICEArguments & (1 << i)) == 0) {
  6622. Ops.push_back(EmitScalarExpr(E->getArg(i)));
  6623. } else {
  6624. // If this is required to be a constant, constant fold it so that we know
  6625. // that the generated intrinsic gets a ConstantInt.
  6626. llvm::APSInt Result;
  6627. bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
  6628. assert(IsConst && "Constant arg isn't actually constant?");
  6629. (void)IsConst;
  6630. Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
  6631. }
  6632. }
  6633. auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
  6634. const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
  6635. SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
  6636. if (Builtin) {
  6637. Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
  6638. Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
  6639. assert(Result && "SISD intrinsic should have been handled");
  6640. return Result;
  6641. }
  6642. llvm::APSInt Result;
  6643. const Expr *Arg = E->getArg(E->getNumArgs()-1);
  6644. NeonTypeFlags Type(0);
  6645. if (Arg->isIntegerConstantExpr(Result, getContext()))
  6646. // Determine the type of this overloaded NEON intrinsic.
  6647. Type = NeonTypeFlags(Result.getZExtValue());
  6648. bool usgn = Type.isUnsigned();
  6649. bool quad = Type.isQuad();
  6650. // Handle non-overloaded intrinsics first.
  6651. switch (BuiltinID) {
  6652. default: break;
  6653. case NEON::BI__builtin_neon_vabsh_f16:
  6654. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6655. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
  6656. case NEON::BI__builtin_neon_vldrq_p128: {
  6657. llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
  6658. llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
  6659. Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
  6660. return Builder.CreateAlignedLoad(Int128Ty, Ptr,
  6661. CharUnits::fromQuantity(16));
  6662. }
  6663. case NEON::BI__builtin_neon_vstrq_p128: {
  6664. llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
  6665. Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
  6666. return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
  6667. }
  6668. case NEON::BI__builtin_neon_vcvts_u32_f32:
  6669. case NEON::BI__builtin_neon_vcvtd_u64_f64:
  6670. usgn = true;
  6671. LLVM_FALLTHROUGH;
  6672. case NEON::BI__builtin_neon_vcvts_s32_f32:
  6673. case NEON::BI__builtin_neon_vcvtd_s64_f64: {
  6674. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6675. bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
  6676. llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
  6677. llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
  6678. Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
  6679. if (usgn)
  6680. return Builder.CreateFPToUI(Ops[0], InTy);
  6681. return Builder.CreateFPToSI(Ops[0], InTy);
  6682. }
  6683. case NEON::BI__builtin_neon_vcvts_f32_u32:
  6684. case NEON::BI__builtin_neon_vcvtd_f64_u64:
  6685. usgn = true;
  6686. LLVM_FALLTHROUGH;
  6687. case NEON::BI__builtin_neon_vcvts_f32_s32:
  6688. case NEON::BI__builtin_neon_vcvtd_f64_s64: {
  6689. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6690. bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
  6691. llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
  6692. llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
  6693. Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
  6694. if (usgn)
  6695. return Builder.CreateUIToFP(Ops[0], FTy);
  6696. return Builder.CreateSIToFP(Ops[0], FTy);
  6697. }
  6698. case NEON::BI__builtin_neon_vcvth_f16_u16:
  6699. case NEON::BI__builtin_neon_vcvth_f16_u32:
  6700. case NEON::BI__builtin_neon_vcvth_f16_u64:
  6701. usgn = true;
  6702. LLVM_FALLTHROUGH;
  6703. case NEON::BI__builtin_neon_vcvth_f16_s16:
  6704. case NEON::BI__builtin_neon_vcvth_f16_s32:
  6705. case NEON::BI__builtin_neon_vcvth_f16_s64: {
  6706. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6707. llvm::Type *FTy = HalfTy;
  6708. llvm::Type *InTy;
  6709. if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
  6710. InTy = Int64Ty;
  6711. else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
  6712. InTy = Int32Ty;
  6713. else
  6714. InTy = Int16Ty;
  6715. Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
  6716. if (usgn)
  6717. return Builder.CreateUIToFP(Ops[0], FTy);
  6718. return Builder.CreateSIToFP(Ops[0], FTy);
  6719. }
  6720. case NEON::BI__builtin_neon_vcvth_u16_f16:
  6721. usgn = true;
  6722. LLVM_FALLTHROUGH;
  6723. case NEON::BI__builtin_neon_vcvth_s16_f16: {
  6724. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6725. Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
  6726. if (usgn)
  6727. return Builder.CreateFPToUI(Ops[0], Int16Ty);
  6728. return Builder.CreateFPToSI(Ops[0], Int16Ty);
  6729. }
  6730. case NEON::BI__builtin_neon_vcvth_u32_f16:
  6731. usgn = true;
  6732. LLVM_FALLTHROUGH;
  6733. case NEON::BI__builtin_neon_vcvth_s32_f16: {
  6734. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6735. Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
  6736. if (usgn)
  6737. return Builder.CreateFPToUI(Ops[0], Int32Ty);
  6738. return Builder.CreateFPToSI(Ops[0], Int32Ty);
  6739. }
  6740. case NEON::BI__builtin_neon_vcvth_u64_f16:
  6741. usgn = true;
  6742. LLVM_FALLTHROUGH;
  6743. case NEON::BI__builtin_neon_vcvth_s64_f16: {
  6744. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6745. Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
  6746. if (usgn)
  6747. return Builder.CreateFPToUI(Ops[0], Int64Ty);
  6748. return Builder.CreateFPToSI(Ops[0], Int64Ty);
  6749. }
  6750. case NEON::BI__builtin_neon_vcvtah_u16_f16:
  6751. case NEON::BI__builtin_neon_vcvtmh_u16_f16:
  6752. case NEON::BI__builtin_neon_vcvtnh_u16_f16:
  6753. case NEON::BI__builtin_neon_vcvtph_u16_f16:
  6754. case NEON::BI__builtin_neon_vcvtah_s16_f16:
  6755. case NEON::BI__builtin_neon_vcvtmh_s16_f16:
  6756. case NEON::BI__builtin_neon_vcvtnh_s16_f16:
  6757. case NEON::BI__builtin_neon_vcvtph_s16_f16: {
  6758. unsigned Int;
  6759. llvm::Type* InTy = Int32Ty;
  6760. llvm::Type* FTy = HalfTy;
  6761. llvm::Type *Tys[2] = {InTy, FTy};
  6762. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6763. switch (BuiltinID) {
  6764. default: llvm_unreachable("missing builtin ID in switch!");
  6765. case NEON::BI__builtin_neon_vcvtah_u16_f16:
  6766. Int = Intrinsic::aarch64_neon_fcvtau; break;
  6767. case NEON::BI__builtin_neon_vcvtmh_u16_f16:
  6768. Int = Intrinsic::aarch64_neon_fcvtmu; break;
  6769. case NEON::BI__builtin_neon_vcvtnh_u16_f16:
  6770. Int = Intrinsic::aarch64_neon_fcvtnu; break;
  6771. case NEON::BI__builtin_neon_vcvtph_u16_f16:
  6772. Int = Intrinsic::aarch64_neon_fcvtpu; break;
  6773. case NEON::BI__builtin_neon_vcvtah_s16_f16:
  6774. Int = Intrinsic::aarch64_neon_fcvtas; break;
  6775. case NEON::BI__builtin_neon_vcvtmh_s16_f16:
  6776. Int = Intrinsic::aarch64_neon_fcvtms; break;
  6777. case NEON::BI__builtin_neon_vcvtnh_s16_f16:
  6778. Int = Intrinsic::aarch64_neon_fcvtns; break;
  6779. case NEON::BI__builtin_neon_vcvtph_s16_f16:
  6780. Int = Intrinsic::aarch64_neon_fcvtps; break;
  6781. }
  6782. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
  6783. return Builder.CreateTrunc(Ops[0], Int16Ty);
  6784. }
  6785. case NEON::BI__builtin_neon_vcaleh_f16:
  6786. case NEON::BI__builtin_neon_vcalth_f16:
  6787. case NEON::BI__builtin_neon_vcageh_f16:
  6788. case NEON::BI__builtin_neon_vcagth_f16: {
  6789. unsigned Int;
  6790. llvm::Type* InTy = Int32Ty;
  6791. llvm::Type* FTy = HalfTy;
  6792. llvm::Type *Tys[2] = {InTy, FTy};
  6793. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  6794. switch (BuiltinID) {
  6795. default: llvm_unreachable("missing builtin ID in switch!");
  6796. case NEON::BI__builtin_neon_vcageh_f16:
  6797. Int = Intrinsic::aarch64_neon_facge; break;
  6798. case NEON::BI__builtin_neon_vcagth_f16:
  6799. Int = Intrinsic::aarch64_neon_facgt; break;
  6800. case NEON::BI__builtin_neon_vcaleh_f16:
  6801. Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
  6802. case NEON::BI__builtin_neon_vcalth_f16:
  6803. Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
  6804. }
  6805. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
  6806. return Builder.CreateTrunc(Ops[0], Int16Ty);
  6807. }
  6808. case NEON::BI__builtin_neon_vcvth_n_s16_f16:
  6809. case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
  6810. unsigned Int;
  6811. llvm::Type* InTy = Int32Ty;
  6812. llvm::Type* FTy = HalfTy;
  6813. llvm::Type *Tys[2] = {InTy, FTy};
  6814. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  6815. switch (BuiltinID) {
  6816. default: llvm_unreachable("missing builtin ID in switch!");
  6817. case NEON::BI__builtin_neon_vcvth_n_s16_f16:
  6818. Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
  6819. case NEON::BI__builtin_neon_vcvth_n_u16_f16:
  6820. Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
  6821. }
  6822. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
  6823. return Builder.CreateTrunc(Ops[0], Int16Ty);
  6824. }
  6825. case NEON::BI__builtin_neon_vcvth_n_f16_s16:
  6826. case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
  6827. unsigned Int;
  6828. llvm::Type* FTy = HalfTy;
  6829. llvm::Type* InTy = Int32Ty;
  6830. llvm::Type *Tys[2] = {FTy, InTy};
  6831. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  6832. switch (BuiltinID) {
  6833. default: llvm_unreachable("missing builtin ID in switch!");
  6834. case NEON::BI__builtin_neon_vcvth_n_f16_s16:
  6835. Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
  6836. Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
  6837. break;
  6838. case NEON::BI__builtin_neon_vcvth_n_f16_u16:
  6839. Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
  6840. Ops[0] = Builder.CreateZExt(Ops[0], InTy);
  6841. break;
  6842. }
  6843. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
  6844. }
  6845. case NEON::BI__builtin_neon_vpaddd_s64: {
  6846. llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
  6847. Value *Vec = EmitScalarExpr(E->getArg(0));
  6848. // The vector is v2f64, so make sure it's bitcast to that.
  6849. Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
  6850. llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
  6851. llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
  6852. Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
  6853. Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
  6854. // Pairwise addition of a v2f64 into a scalar f64.
  6855. return Builder.CreateAdd(Op0, Op1, "vpaddd");
  6856. }
  6857. case NEON::BI__builtin_neon_vpaddd_f64: {
  6858. llvm::Type *Ty =
  6859. llvm::VectorType::get(DoubleTy, 2);
  6860. Value *Vec = EmitScalarExpr(E->getArg(0));
  6861. // The vector is v2f64, so make sure it's bitcast to that.
  6862. Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
  6863. llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
  6864. llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
  6865. Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
  6866. Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
  6867. // Pairwise addition of a v2f64 into a scalar f64.
  6868. return Builder.CreateFAdd(Op0, Op1, "vpaddd");
  6869. }
  6870. case NEON::BI__builtin_neon_vpadds_f32: {
  6871. llvm::Type *Ty =
  6872. llvm::VectorType::get(FloatTy, 2);
  6873. Value *Vec = EmitScalarExpr(E->getArg(0));
  6874. // The vector is v2f32, so make sure it's bitcast to that.
  6875. Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
  6876. llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
  6877. llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
  6878. Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
  6879. Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
  6880. // Pairwise addition of a v2f32 into a scalar f32.
  6881. return Builder.CreateFAdd(Op0, Op1, "vpaddd");
  6882. }
  6883. case NEON::BI__builtin_neon_vceqzd_s64:
  6884. case NEON::BI__builtin_neon_vceqzd_f64:
  6885. case NEON::BI__builtin_neon_vceqzs_f32:
  6886. case NEON::BI__builtin_neon_vceqzh_f16:
  6887. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6888. return EmitAArch64CompareBuiltinExpr(
  6889. Ops[0], ConvertType(E->getCallReturnType(getContext())),
  6890. ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
  6891. case NEON::BI__builtin_neon_vcgezd_s64:
  6892. case NEON::BI__builtin_neon_vcgezd_f64:
  6893. case NEON::BI__builtin_neon_vcgezs_f32:
  6894. case NEON::BI__builtin_neon_vcgezh_f16:
  6895. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6896. return EmitAArch64CompareBuiltinExpr(
  6897. Ops[0], ConvertType(E->getCallReturnType(getContext())),
  6898. ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
  6899. case NEON::BI__builtin_neon_vclezd_s64:
  6900. case NEON::BI__builtin_neon_vclezd_f64:
  6901. case NEON::BI__builtin_neon_vclezs_f32:
  6902. case NEON::BI__builtin_neon_vclezh_f16:
  6903. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6904. return EmitAArch64CompareBuiltinExpr(
  6905. Ops[0], ConvertType(E->getCallReturnType(getContext())),
  6906. ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
  6907. case NEON::BI__builtin_neon_vcgtzd_s64:
  6908. case NEON::BI__builtin_neon_vcgtzd_f64:
  6909. case NEON::BI__builtin_neon_vcgtzs_f32:
  6910. case NEON::BI__builtin_neon_vcgtzh_f16:
  6911. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6912. return EmitAArch64CompareBuiltinExpr(
  6913. Ops[0], ConvertType(E->getCallReturnType(getContext())),
  6914. ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
  6915. case NEON::BI__builtin_neon_vcltzd_s64:
  6916. case NEON::BI__builtin_neon_vcltzd_f64:
  6917. case NEON::BI__builtin_neon_vcltzs_f32:
  6918. case NEON::BI__builtin_neon_vcltzh_f16:
  6919. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6920. return EmitAArch64CompareBuiltinExpr(
  6921. Ops[0], ConvertType(E->getCallReturnType(getContext())),
  6922. ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
  6923. case NEON::BI__builtin_neon_vceqzd_u64: {
  6924. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  6925. Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
  6926. Ops[0] =
  6927. Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
  6928. return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
  6929. }
  6930. case NEON::BI__builtin_neon_vceqd_f64:
  6931. case NEON::BI__builtin_neon_vcled_f64:
  6932. case NEON::BI__builtin_neon_vcltd_f64:
  6933. case NEON::BI__builtin_neon_vcged_f64:
  6934. case NEON::BI__builtin_neon_vcgtd_f64: {
  6935. llvm::CmpInst::Predicate P;
  6936. switch (BuiltinID) {
  6937. default: llvm_unreachable("missing builtin ID in switch!");
  6938. case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
  6939. case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
  6940. case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
  6941. case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
  6942. case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
  6943. }
  6944. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  6945. Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
  6946. Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
  6947. Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
  6948. return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
  6949. }
  6950. case NEON::BI__builtin_neon_vceqs_f32:
  6951. case NEON::BI__builtin_neon_vcles_f32:
  6952. case NEON::BI__builtin_neon_vclts_f32:
  6953. case NEON::BI__builtin_neon_vcges_f32:
  6954. case NEON::BI__builtin_neon_vcgts_f32: {
  6955. llvm::CmpInst::Predicate P;
  6956. switch (BuiltinID) {
  6957. default: llvm_unreachable("missing builtin ID in switch!");
  6958. case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
  6959. case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
  6960. case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
  6961. case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
  6962. case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
  6963. }
  6964. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  6965. Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
  6966. Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
  6967. Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
  6968. return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
  6969. }
  6970. case NEON::BI__builtin_neon_vceqh_f16:
  6971. case NEON::BI__builtin_neon_vcleh_f16:
  6972. case NEON::BI__builtin_neon_vclth_f16:
  6973. case NEON::BI__builtin_neon_vcgeh_f16:
  6974. case NEON::BI__builtin_neon_vcgth_f16: {
  6975. llvm::CmpInst::Predicate P;
  6976. switch (BuiltinID) {
  6977. default: llvm_unreachable("missing builtin ID in switch!");
  6978. case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
  6979. case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
  6980. case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
  6981. case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
  6982. case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
  6983. }
  6984. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  6985. Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
  6986. Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
  6987. Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
  6988. return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
  6989. }
  6990. case NEON::BI__builtin_neon_vceqd_s64:
  6991. case NEON::BI__builtin_neon_vceqd_u64:
  6992. case NEON::BI__builtin_neon_vcgtd_s64:
  6993. case NEON::BI__builtin_neon_vcgtd_u64:
  6994. case NEON::BI__builtin_neon_vcltd_s64:
  6995. case NEON::BI__builtin_neon_vcltd_u64:
  6996. case NEON::BI__builtin_neon_vcged_u64:
  6997. case NEON::BI__builtin_neon_vcged_s64:
  6998. case NEON::BI__builtin_neon_vcled_u64:
  6999. case NEON::BI__builtin_neon_vcled_s64: {
  7000. llvm::CmpInst::Predicate P;
  7001. switch (BuiltinID) {
  7002. default: llvm_unreachable("missing builtin ID in switch!");
  7003. case NEON::BI__builtin_neon_vceqd_s64:
  7004. case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
  7005. case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
  7006. case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
  7007. case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
  7008. case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
  7009. case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
  7010. case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
  7011. case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
  7012. case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
  7013. }
  7014. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7015. Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
  7016. Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
  7017. Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
  7018. return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
  7019. }
  7020. case NEON::BI__builtin_neon_vtstd_s64:
  7021. case NEON::BI__builtin_neon_vtstd_u64: {
  7022. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7023. Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
  7024. Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
  7025. Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
  7026. Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
  7027. llvm::Constant::getNullValue(Int64Ty));
  7028. return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
  7029. }
  7030. case NEON::BI__builtin_neon_vset_lane_i8:
  7031. case NEON::BI__builtin_neon_vset_lane_i16:
  7032. case NEON::BI__builtin_neon_vset_lane_i32:
  7033. case NEON::BI__builtin_neon_vset_lane_i64:
  7034. case NEON::BI__builtin_neon_vset_lane_f32:
  7035. case NEON::BI__builtin_neon_vsetq_lane_i8:
  7036. case NEON::BI__builtin_neon_vsetq_lane_i16:
  7037. case NEON::BI__builtin_neon_vsetq_lane_i32:
  7038. case NEON::BI__builtin_neon_vsetq_lane_i64:
  7039. case NEON::BI__builtin_neon_vsetq_lane_f32:
  7040. Ops.push_back(EmitScalarExpr(E->getArg(2)));
  7041. return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
  7042. case NEON::BI__builtin_neon_vset_lane_f64:
  7043. // The vector type needs a cast for the v1f64 variant.
  7044. Ops[1] = Builder.CreateBitCast(Ops[1],
  7045. llvm::VectorType::get(DoubleTy, 1));
  7046. Ops.push_back(EmitScalarExpr(E->getArg(2)));
  7047. return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
  7048. case NEON::BI__builtin_neon_vsetq_lane_f64:
  7049. // The vector type needs a cast for the v2f64 variant.
  7050. Ops[1] = Builder.CreateBitCast(Ops[1],
  7051. llvm::VectorType::get(DoubleTy, 2));
  7052. Ops.push_back(EmitScalarExpr(E->getArg(2)));
  7053. return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
  7054. case NEON::BI__builtin_neon_vget_lane_i8:
  7055. case NEON::BI__builtin_neon_vdupb_lane_i8:
  7056. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
  7057. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7058. "vget_lane");
  7059. case NEON::BI__builtin_neon_vgetq_lane_i8:
  7060. case NEON::BI__builtin_neon_vdupb_laneq_i8:
  7061. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
  7062. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7063. "vgetq_lane");
  7064. case NEON::BI__builtin_neon_vget_lane_i16:
  7065. case NEON::BI__builtin_neon_vduph_lane_i16:
  7066. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
  7067. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7068. "vget_lane");
  7069. case NEON::BI__builtin_neon_vgetq_lane_i16:
  7070. case NEON::BI__builtin_neon_vduph_laneq_i16:
  7071. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
  7072. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7073. "vgetq_lane");
  7074. case NEON::BI__builtin_neon_vget_lane_i32:
  7075. case NEON::BI__builtin_neon_vdups_lane_i32:
  7076. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
  7077. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7078. "vget_lane");
  7079. case NEON::BI__builtin_neon_vdups_lane_f32:
  7080. Ops[0] = Builder.CreateBitCast(Ops[0],
  7081. llvm::VectorType::get(FloatTy, 2));
  7082. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7083. "vdups_lane");
  7084. case NEON::BI__builtin_neon_vgetq_lane_i32:
  7085. case NEON::BI__builtin_neon_vdups_laneq_i32:
  7086. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
  7087. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7088. "vgetq_lane");
  7089. case NEON::BI__builtin_neon_vget_lane_i64:
  7090. case NEON::BI__builtin_neon_vdupd_lane_i64:
  7091. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
  7092. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7093. "vget_lane");
  7094. case NEON::BI__builtin_neon_vdupd_lane_f64:
  7095. Ops[0] = Builder.CreateBitCast(Ops[0],
  7096. llvm::VectorType::get(DoubleTy, 1));
  7097. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7098. "vdupd_lane");
  7099. case NEON::BI__builtin_neon_vgetq_lane_i64:
  7100. case NEON::BI__builtin_neon_vdupd_laneq_i64:
  7101. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
  7102. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7103. "vgetq_lane");
  7104. case NEON::BI__builtin_neon_vget_lane_f32:
  7105. Ops[0] = Builder.CreateBitCast(Ops[0],
  7106. llvm::VectorType::get(FloatTy, 2));
  7107. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7108. "vget_lane");
  7109. case NEON::BI__builtin_neon_vget_lane_f64:
  7110. Ops[0] = Builder.CreateBitCast(Ops[0],
  7111. llvm::VectorType::get(DoubleTy, 1));
  7112. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7113. "vget_lane");
  7114. case NEON::BI__builtin_neon_vgetq_lane_f32:
  7115. case NEON::BI__builtin_neon_vdups_laneq_f32:
  7116. Ops[0] = Builder.CreateBitCast(Ops[0],
  7117. llvm::VectorType::get(FloatTy, 4));
  7118. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7119. "vgetq_lane");
  7120. case NEON::BI__builtin_neon_vgetq_lane_f64:
  7121. case NEON::BI__builtin_neon_vdupd_laneq_f64:
  7122. Ops[0] = Builder.CreateBitCast(Ops[0],
  7123. llvm::VectorType::get(DoubleTy, 2));
  7124. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7125. "vgetq_lane");
  7126. case NEON::BI__builtin_neon_vaddh_f16:
  7127. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7128. return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
  7129. case NEON::BI__builtin_neon_vsubh_f16:
  7130. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7131. return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
  7132. case NEON::BI__builtin_neon_vmulh_f16:
  7133. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7134. return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
  7135. case NEON::BI__builtin_neon_vdivh_f16:
  7136. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7137. return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
  7138. case NEON::BI__builtin_neon_vfmah_f16: {
  7139. Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
  7140. // NEON intrinsic puts accumulator first, unlike the LLVM fma.
  7141. return Builder.CreateCall(F,
  7142. {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
  7143. }
  7144. case NEON::BI__builtin_neon_vfmsh_f16: {
  7145. Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
  7146. Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
  7147. Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
  7148. // NEON intrinsic puts accumulator first, unlike the LLVM fma.
  7149. return Builder.CreateCall(F, {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
  7150. }
  7151. case NEON::BI__builtin_neon_vaddd_s64:
  7152. case NEON::BI__builtin_neon_vaddd_u64:
  7153. return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
  7154. case NEON::BI__builtin_neon_vsubd_s64:
  7155. case NEON::BI__builtin_neon_vsubd_u64:
  7156. return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
  7157. case NEON::BI__builtin_neon_vqdmlalh_s16:
  7158. case NEON::BI__builtin_neon_vqdmlslh_s16: {
  7159. SmallVector<Value *, 2> ProductOps;
  7160. ProductOps.push_back(vectorWrapScalar16(Ops[1]));
  7161. ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
  7162. llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
  7163. Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
  7164. ProductOps, "vqdmlXl");
  7165. Constant *CI = ConstantInt::get(SizeTy, 0);
  7166. Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
  7167. unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
  7168. ? Intrinsic::aarch64_neon_sqadd
  7169. : Intrinsic::aarch64_neon_sqsub;
  7170. return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
  7171. }
  7172. case NEON::BI__builtin_neon_vqshlud_n_s64: {
  7173. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7174. Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
  7175. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
  7176. Ops, "vqshlu_n");
  7177. }
  7178. case NEON::BI__builtin_neon_vqshld_n_u64:
  7179. case NEON::BI__builtin_neon_vqshld_n_s64: {
  7180. unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
  7181. ? Intrinsic::aarch64_neon_uqshl
  7182. : Intrinsic::aarch64_neon_sqshl;
  7183. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7184. Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
  7185. return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
  7186. }
  7187. case NEON::BI__builtin_neon_vrshrd_n_u64:
  7188. case NEON::BI__builtin_neon_vrshrd_n_s64: {
  7189. unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
  7190. ? Intrinsic::aarch64_neon_urshl
  7191. : Intrinsic::aarch64_neon_srshl;
  7192. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7193. int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
  7194. Ops[1] = ConstantInt::get(Int64Ty, -SV);
  7195. return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
  7196. }
  7197. case NEON::BI__builtin_neon_vrsrad_n_u64:
  7198. case NEON::BI__builtin_neon_vrsrad_n_s64: {
  7199. unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
  7200. ? Intrinsic::aarch64_neon_urshl
  7201. : Intrinsic::aarch64_neon_srshl;
  7202. Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
  7203. Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
  7204. Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
  7205. {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
  7206. return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
  7207. }
  7208. case NEON::BI__builtin_neon_vshld_n_s64:
  7209. case NEON::BI__builtin_neon_vshld_n_u64: {
  7210. llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
  7211. return Builder.CreateShl(
  7212. Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
  7213. }
  7214. case NEON::BI__builtin_neon_vshrd_n_s64: {
  7215. llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
  7216. return Builder.CreateAShr(
  7217. Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
  7218. Amt->getZExtValue())),
  7219. "shrd_n");
  7220. }
  7221. case NEON::BI__builtin_neon_vshrd_n_u64: {
  7222. llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
  7223. uint64_t ShiftAmt = Amt->getZExtValue();
  7224. // Right-shifting an unsigned value by its size yields 0.
  7225. if (ShiftAmt == 64)
  7226. return ConstantInt::get(Int64Ty, 0);
  7227. return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
  7228. "shrd_n");
  7229. }
  7230. case NEON::BI__builtin_neon_vsrad_n_s64: {
  7231. llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
  7232. Ops[1] = Builder.CreateAShr(
  7233. Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
  7234. Amt->getZExtValue())),
  7235. "shrd_n");
  7236. return Builder.CreateAdd(Ops[0], Ops[1]);
  7237. }
  7238. case NEON::BI__builtin_neon_vsrad_n_u64: {
  7239. llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
  7240. uint64_t ShiftAmt = Amt->getZExtValue();
  7241. // Right-shifting an unsigned value by its size yields 0.
  7242. // As Op + 0 = Op, return Ops[0] directly.
  7243. if (ShiftAmt == 64)
  7244. return Ops[0];
  7245. Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
  7246. "shrd_n");
  7247. return Builder.CreateAdd(Ops[0], Ops[1]);
  7248. }
  7249. case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
  7250. case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
  7251. case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
  7252. case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
  7253. Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
  7254. "lane");
  7255. SmallVector<Value *, 2> ProductOps;
  7256. ProductOps.push_back(vectorWrapScalar16(Ops[1]));
  7257. ProductOps.push_back(vectorWrapScalar16(Ops[2]));
  7258. llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
  7259. Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
  7260. ProductOps, "vqdmlXl");
  7261. Constant *CI = ConstantInt::get(SizeTy, 0);
  7262. Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
  7263. Ops.pop_back();
  7264. unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
  7265. BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
  7266. ? Intrinsic::aarch64_neon_sqadd
  7267. : Intrinsic::aarch64_neon_sqsub;
  7268. return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
  7269. }
  7270. case NEON::BI__builtin_neon_vqdmlals_s32:
  7271. case NEON::BI__builtin_neon_vqdmlsls_s32: {
  7272. SmallVector<Value *, 2> ProductOps;
  7273. ProductOps.push_back(Ops[1]);
  7274. ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
  7275. Ops[1] =
  7276. EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
  7277. ProductOps, "vqdmlXl");
  7278. unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
  7279. ? Intrinsic::aarch64_neon_sqadd
  7280. : Intrinsic::aarch64_neon_sqsub;
  7281. return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
  7282. }
  7283. case NEON::BI__builtin_neon_vqdmlals_lane_s32:
  7284. case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
  7285. case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
  7286. case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
  7287. Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
  7288. "lane");
  7289. SmallVector<Value *, 2> ProductOps;
  7290. ProductOps.push_back(Ops[1]);
  7291. ProductOps.push_back(Ops[2]);
  7292. Ops[1] =
  7293. EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
  7294. ProductOps, "vqdmlXl");
  7295. Ops.pop_back();
  7296. unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
  7297. BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
  7298. ? Intrinsic::aarch64_neon_sqadd
  7299. : Intrinsic::aarch64_neon_sqsub;
  7300. return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
  7301. }
  7302. case NEON::BI__builtin_neon_vduph_lane_f16: {
  7303. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7304. "vget_lane");
  7305. }
  7306. case NEON::BI__builtin_neon_vduph_laneq_f16: {
  7307. return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
  7308. "vgetq_lane");
  7309. }
  7310. }
  7311. llvm::VectorType *VTy = GetNeonType(this, Type);
  7312. llvm::Type *Ty = VTy;
  7313. if (!Ty)
  7314. return nullptr;
  7315. // Not all intrinsics handled by the common case work for AArch64 yet, so only
  7316. // defer to common code if it's been added to our special map.
  7317. Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
  7318. AArch64SIMDIntrinsicsProvenSorted);
  7319. if (Builtin)
  7320. return EmitCommonNeonBuiltinExpr(
  7321. Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
  7322. Builtin->NameHint, Builtin->TypeModifier, E, Ops,
  7323. /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
  7324. if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
  7325. return V;
  7326. unsigned Int;
  7327. switch (BuiltinID) {
  7328. default: return nullptr;
  7329. case NEON::BI__builtin_neon_vbsl_v:
  7330. case NEON::BI__builtin_neon_vbslq_v: {
  7331. llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
  7332. Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
  7333. Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
  7334. Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
  7335. Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
  7336. Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
  7337. Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
  7338. return Builder.CreateBitCast(Ops[0], Ty);
  7339. }
  7340. case NEON::BI__builtin_neon_vfma_lane_v:
  7341. case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
  7342. // The ARM builtins (and instructions) have the addend as the first
  7343. // operand, but the 'fma' intrinsics have it last. Swap it around here.
  7344. Value *Addend = Ops[0];
  7345. Value *Multiplicand = Ops[1];
  7346. Value *LaneSource = Ops[2];
  7347. Ops[0] = Multiplicand;
  7348. Ops[1] = LaneSource;
  7349. Ops[2] = Addend;
  7350. // Now adjust things to handle the lane access.
  7351. llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
  7352. llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
  7353. VTy;
  7354. llvm::Constant *cst = cast<Constant>(Ops[3]);
  7355. Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
  7356. Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
  7357. Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
  7358. Ops.pop_back();
  7359. Int = Intrinsic::fma;
  7360. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
  7361. }
  7362. case NEON::BI__builtin_neon_vfma_laneq_v: {
  7363. llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
  7364. // v1f64 fma should be mapped to Neon scalar f64 fma
  7365. if (VTy && VTy->getElementType() == DoubleTy) {
  7366. Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
  7367. Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
  7368. llvm::Type *VTy = GetNeonType(this,
  7369. NeonTypeFlags(NeonTypeFlags::Float64, false, true));
  7370. Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
  7371. Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
  7372. Function *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
  7373. Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
  7374. return Builder.CreateBitCast(Result, Ty);
  7375. }
  7376. Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
  7377. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  7378. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  7379. llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
  7380. VTy->getNumElements() * 2);
  7381. Ops[2] = Builder.CreateBitCast(Ops[2], STy);
  7382. Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
  7383. cast<ConstantInt>(Ops[3]));
  7384. Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
  7385. return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
  7386. }
  7387. case NEON::BI__builtin_neon_vfmaq_laneq_v: {
  7388. Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
  7389. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  7390. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  7391. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  7392. Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
  7393. return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
  7394. }
  7395. case NEON::BI__builtin_neon_vfmah_lane_f16:
  7396. case NEON::BI__builtin_neon_vfmas_lane_f32:
  7397. case NEON::BI__builtin_neon_vfmah_laneq_f16:
  7398. case NEON::BI__builtin_neon_vfmas_laneq_f32:
  7399. case NEON::BI__builtin_neon_vfmad_lane_f64:
  7400. case NEON::BI__builtin_neon_vfmad_laneq_f64: {
  7401. Ops.push_back(EmitScalarExpr(E->getArg(3)));
  7402. llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
  7403. Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
  7404. Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
  7405. return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
  7406. }
  7407. case NEON::BI__builtin_neon_vmull_v:
  7408. // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
  7409. Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
  7410. if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
  7411. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
  7412. case NEON::BI__builtin_neon_vmax_v:
  7413. case NEON::BI__builtin_neon_vmaxq_v:
  7414. // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
  7415. Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
  7416. if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
  7417. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
  7418. case NEON::BI__builtin_neon_vmaxh_f16: {
  7419. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7420. Int = Intrinsic::aarch64_neon_fmax;
  7421. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
  7422. }
  7423. case NEON::BI__builtin_neon_vmin_v:
  7424. case NEON::BI__builtin_neon_vminq_v:
  7425. // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
  7426. Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
  7427. if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
  7428. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
  7429. case NEON::BI__builtin_neon_vminh_f16: {
  7430. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7431. Int = Intrinsic::aarch64_neon_fmin;
  7432. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
  7433. }
  7434. case NEON::BI__builtin_neon_vabd_v:
  7435. case NEON::BI__builtin_neon_vabdq_v:
  7436. // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
  7437. Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
  7438. if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
  7439. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
  7440. case NEON::BI__builtin_neon_vpadal_v:
  7441. case NEON::BI__builtin_neon_vpadalq_v: {
  7442. unsigned ArgElts = VTy->getNumElements();
  7443. llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
  7444. unsigned BitWidth = EltTy->getBitWidth();
  7445. llvm::Type *ArgTy = llvm::VectorType::get(
  7446. llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
  7447. llvm::Type* Tys[2] = { VTy, ArgTy };
  7448. Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
  7449. SmallVector<llvm::Value*, 1> TmpOps;
  7450. TmpOps.push_back(Ops[1]);
  7451. Function *F = CGM.getIntrinsic(Int, Tys);
  7452. llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
  7453. llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
  7454. return Builder.CreateAdd(tmp, addend);
  7455. }
  7456. case NEON::BI__builtin_neon_vpmin_v:
  7457. case NEON::BI__builtin_neon_vpminq_v:
  7458. // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
  7459. Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
  7460. if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
  7461. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
  7462. case NEON::BI__builtin_neon_vpmax_v:
  7463. case NEON::BI__builtin_neon_vpmaxq_v:
  7464. // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
  7465. Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
  7466. if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
  7467. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
  7468. case NEON::BI__builtin_neon_vminnm_v:
  7469. case NEON::BI__builtin_neon_vminnmq_v:
  7470. Int = Intrinsic::aarch64_neon_fminnm;
  7471. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
  7472. case NEON::BI__builtin_neon_vminnmh_f16:
  7473. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7474. Int = Intrinsic::aarch64_neon_fminnm;
  7475. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
  7476. case NEON::BI__builtin_neon_vmaxnm_v:
  7477. case NEON::BI__builtin_neon_vmaxnmq_v:
  7478. Int = Intrinsic::aarch64_neon_fmaxnm;
  7479. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
  7480. case NEON::BI__builtin_neon_vmaxnmh_f16:
  7481. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7482. Int = Intrinsic::aarch64_neon_fmaxnm;
  7483. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
  7484. case NEON::BI__builtin_neon_vrecpss_f32: {
  7485. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7486. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
  7487. Ops, "vrecps");
  7488. }
  7489. case NEON::BI__builtin_neon_vrecpsd_f64:
  7490. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7491. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
  7492. Ops, "vrecps");
  7493. case NEON::BI__builtin_neon_vrecpsh_f16:
  7494. Ops.push_back(EmitScalarExpr(E->getArg(1)));
  7495. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
  7496. Ops, "vrecps");
  7497. case NEON::BI__builtin_neon_vqshrun_n_v:
  7498. Int = Intrinsic::aarch64_neon_sqshrun;
  7499. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
  7500. case NEON::BI__builtin_neon_vqrshrun_n_v:
  7501. Int = Intrinsic::aarch64_neon_sqrshrun;
  7502. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
  7503. case NEON::BI__builtin_neon_vqshrn_n_v:
  7504. Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
  7505. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
  7506. case NEON::BI__builtin_neon_vrshrn_n_v:
  7507. Int = Intrinsic::aarch64_neon_rshrn;
  7508. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
  7509. case NEON::BI__builtin_neon_vqrshrn_n_v:
  7510. Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
  7511. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
  7512. case NEON::BI__builtin_neon_vrndah_f16: {
  7513. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7514. Int = Intrinsic::round;
  7515. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
  7516. }
  7517. case NEON::BI__builtin_neon_vrnda_v:
  7518. case NEON::BI__builtin_neon_vrndaq_v: {
  7519. Int = Intrinsic::round;
  7520. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
  7521. }
  7522. case NEON::BI__builtin_neon_vrndih_f16: {
  7523. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7524. Int = Intrinsic::nearbyint;
  7525. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
  7526. }
  7527. case NEON::BI__builtin_neon_vrndmh_f16: {
  7528. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7529. Int = Intrinsic::floor;
  7530. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
  7531. }
  7532. case NEON::BI__builtin_neon_vrndm_v:
  7533. case NEON::BI__builtin_neon_vrndmq_v: {
  7534. Int = Intrinsic::floor;
  7535. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
  7536. }
  7537. case NEON::BI__builtin_neon_vrndnh_f16: {
  7538. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7539. Int = Intrinsic::aarch64_neon_frintn;
  7540. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
  7541. }
  7542. case NEON::BI__builtin_neon_vrndn_v:
  7543. case NEON::BI__builtin_neon_vrndnq_v: {
  7544. Int = Intrinsic::aarch64_neon_frintn;
  7545. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
  7546. }
  7547. case NEON::BI__builtin_neon_vrndns_f32: {
  7548. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7549. Int = Intrinsic::aarch64_neon_frintn;
  7550. return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
  7551. }
  7552. case NEON::BI__builtin_neon_vrndph_f16: {
  7553. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7554. Int = Intrinsic::ceil;
  7555. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
  7556. }
  7557. case NEON::BI__builtin_neon_vrndp_v:
  7558. case NEON::BI__builtin_neon_vrndpq_v: {
  7559. Int = Intrinsic::ceil;
  7560. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
  7561. }
  7562. case NEON::BI__builtin_neon_vrndxh_f16: {
  7563. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7564. Int = Intrinsic::rint;
  7565. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
  7566. }
  7567. case NEON::BI__builtin_neon_vrndx_v:
  7568. case NEON::BI__builtin_neon_vrndxq_v: {
  7569. Int = Intrinsic::rint;
  7570. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
  7571. }
  7572. case NEON::BI__builtin_neon_vrndh_f16: {
  7573. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7574. Int = Intrinsic::trunc;
  7575. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
  7576. }
  7577. case NEON::BI__builtin_neon_vrnd_v:
  7578. case NEON::BI__builtin_neon_vrndq_v: {
  7579. Int = Intrinsic::trunc;
  7580. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
  7581. }
  7582. case NEON::BI__builtin_neon_vcvt_f64_v:
  7583. case NEON::BI__builtin_neon_vcvtq_f64_v:
  7584. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  7585. Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
  7586. return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
  7587. : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
  7588. case NEON::BI__builtin_neon_vcvt_f64_f32: {
  7589. assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
  7590. "unexpected vcvt_f64_f32 builtin");
  7591. NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
  7592. Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
  7593. return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
  7594. }
  7595. case NEON::BI__builtin_neon_vcvt_f32_f64: {
  7596. assert(Type.getEltType() == NeonTypeFlags::Float32 &&
  7597. "unexpected vcvt_f32_f64 builtin");
  7598. NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
  7599. Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
  7600. return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
  7601. }
  7602. case NEON::BI__builtin_neon_vcvt_s32_v:
  7603. case NEON::BI__builtin_neon_vcvt_u32_v:
  7604. case NEON::BI__builtin_neon_vcvt_s64_v:
  7605. case NEON::BI__builtin_neon_vcvt_u64_v:
  7606. case NEON::BI__builtin_neon_vcvt_s16_v:
  7607. case NEON::BI__builtin_neon_vcvt_u16_v:
  7608. case NEON::BI__builtin_neon_vcvtq_s32_v:
  7609. case NEON::BI__builtin_neon_vcvtq_u32_v:
  7610. case NEON::BI__builtin_neon_vcvtq_s64_v:
  7611. case NEON::BI__builtin_neon_vcvtq_u64_v:
  7612. case NEON::BI__builtin_neon_vcvtq_s16_v:
  7613. case NEON::BI__builtin_neon_vcvtq_u16_v: {
  7614. Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
  7615. if (usgn)
  7616. return Builder.CreateFPToUI(Ops[0], Ty);
  7617. return Builder.CreateFPToSI(Ops[0], Ty);
  7618. }
  7619. case NEON::BI__builtin_neon_vcvta_s16_v:
  7620. case NEON::BI__builtin_neon_vcvta_u16_v:
  7621. case NEON::BI__builtin_neon_vcvta_s32_v:
  7622. case NEON::BI__builtin_neon_vcvtaq_s16_v:
  7623. case NEON::BI__builtin_neon_vcvtaq_s32_v:
  7624. case NEON::BI__builtin_neon_vcvta_u32_v:
  7625. case NEON::BI__builtin_neon_vcvtaq_u16_v:
  7626. case NEON::BI__builtin_neon_vcvtaq_u32_v:
  7627. case NEON::BI__builtin_neon_vcvta_s64_v:
  7628. case NEON::BI__builtin_neon_vcvtaq_s64_v:
  7629. case NEON::BI__builtin_neon_vcvta_u64_v:
  7630. case NEON::BI__builtin_neon_vcvtaq_u64_v: {
  7631. Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
  7632. llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
  7633. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
  7634. }
  7635. case NEON::BI__builtin_neon_vcvtm_s16_v:
  7636. case NEON::BI__builtin_neon_vcvtm_s32_v:
  7637. case NEON::BI__builtin_neon_vcvtmq_s16_v:
  7638. case NEON::BI__builtin_neon_vcvtmq_s32_v:
  7639. case NEON::BI__builtin_neon_vcvtm_u16_v:
  7640. case NEON::BI__builtin_neon_vcvtm_u32_v:
  7641. case NEON::BI__builtin_neon_vcvtmq_u16_v:
  7642. case NEON::BI__builtin_neon_vcvtmq_u32_v:
  7643. case NEON::BI__builtin_neon_vcvtm_s64_v:
  7644. case NEON::BI__builtin_neon_vcvtmq_s64_v:
  7645. case NEON::BI__builtin_neon_vcvtm_u64_v:
  7646. case NEON::BI__builtin_neon_vcvtmq_u64_v: {
  7647. Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
  7648. llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
  7649. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
  7650. }
  7651. case NEON::BI__builtin_neon_vcvtn_s16_v:
  7652. case NEON::BI__builtin_neon_vcvtn_s32_v:
  7653. case NEON::BI__builtin_neon_vcvtnq_s16_v:
  7654. case NEON::BI__builtin_neon_vcvtnq_s32_v:
  7655. case NEON::BI__builtin_neon_vcvtn_u16_v:
  7656. case NEON::BI__builtin_neon_vcvtn_u32_v:
  7657. case NEON::BI__builtin_neon_vcvtnq_u16_v:
  7658. case NEON::BI__builtin_neon_vcvtnq_u32_v:
  7659. case NEON::BI__builtin_neon_vcvtn_s64_v:
  7660. case NEON::BI__builtin_neon_vcvtnq_s64_v:
  7661. case NEON::BI__builtin_neon_vcvtn_u64_v:
  7662. case NEON::BI__builtin_neon_vcvtnq_u64_v: {
  7663. Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
  7664. llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
  7665. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
  7666. }
  7667. case NEON::BI__builtin_neon_vcvtp_s16_v:
  7668. case NEON::BI__builtin_neon_vcvtp_s32_v:
  7669. case NEON::BI__builtin_neon_vcvtpq_s16_v:
  7670. case NEON::BI__builtin_neon_vcvtpq_s32_v:
  7671. case NEON::BI__builtin_neon_vcvtp_u16_v:
  7672. case NEON::BI__builtin_neon_vcvtp_u32_v:
  7673. case NEON::BI__builtin_neon_vcvtpq_u16_v:
  7674. case NEON::BI__builtin_neon_vcvtpq_u32_v:
  7675. case NEON::BI__builtin_neon_vcvtp_s64_v:
  7676. case NEON::BI__builtin_neon_vcvtpq_s64_v:
  7677. case NEON::BI__builtin_neon_vcvtp_u64_v:
  7678. case NEON::BI__builtin_neon_vcvtpq_u64_v: {
  7679. Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
  7680. llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
  7681. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
  7682. }
  7683. case NEON::BI__builtin_neon_vmulx_v:
  7684. case NEON::BI__builtin_neon_vmulxq_v: {
  7685. Int = Intrinsic::aarch64_neon_fmulx;
  7686. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
  7687. }
  7688. case NEON::BI__builtin_neon_vmulxh_lane_f16:
  7689. case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
  7690. // vmulx_lane should be mapped to Neon scalar mulx after
  7691. // extracting the scalar element
  7692. Ops.push_back(EmitScalarExpr(E->getArg(2)));
  7693. Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
  7694. Ops.pop_back();
  7695. Int = Intrinsic::aarch64_neon_fmulx;
  7696. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
  7697. }
  7698. case NEON::BI__builtin_neon_vmul_lane_v:
  7699. case NEON::BI__builtin_neon_vmul_laneq_v: {
  7700. // v1f64 vmul_lane should be mapped to Neon scalar mul lane
  7701. bool Quad = false;
  7702. if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
  7703. Quad = true;
  7704. Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
  7705. llvm::Type *VTy = GetNeonType(this,
  7706. NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
  7707. Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
  7708. Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
  7709. Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
  7710. return Builder.CreateBitCast(Result, Ty);
  7711. }
  7712. case NEON::BI__builtin_neon_vnegd_s64:
  7713. return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
  7714. case NEON::BI__builtin_neon_vnegh_f16:
  7715. return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
  7716. case NEON::BI__builtin_neon_vpmaxnm_v:
  7717. case NEON::BI__builtin_neon_vpmaxnmq_v: {
  7718. Int = Intrinsic::aarch64_neon_fmaxnmp;
  7719. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
  7720. }
  7721. case NEON::BI__builtin_neon_vpminnm_v:
  7722. case NEON::BI__builtin_neon_vpminnmq_v: {
  7723. Int = Intrinsic::aarch64_neon_fminnmp;
  7724. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
  7725. }
  7726. case NEON::BI__builtin_neon_vsqrth_f16: {
  7727. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7728. Int = Intrinsic::sqrt;
  7729. return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
  7730. }
  7731. case NEON::BI__builtin_neon_vsqrt_v:
  7732. case NEON::BI__builtin_neon_vsqrtq_v: {
  7733. Int = Intrinsic::sqrt;
  7734. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  7735. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
  7736. }
  7737. case NEON::BI__builtin_neon_vrbit_v:
  7738. case NEON::BI__builtin_neon_vrbitq_v: {
  7739. Int = Intrinsic::aarch64_neon_rbit;
  7740. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
  7741. }
  7742. case NEON::BI__builtin_neon_vaddv_u8:
  7743. // FIXME: These are handled by the AArch64 scalar code.
  7744. usgn = true;
  7745. LLVM_FALLTHROUGH;
  7746. case NEON::BI__builtin_neon_vaddv_s8: {
  7747. Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
  7748. Ty = Int32Ty;
  7749. VTy = llvm::VectorType::get(Int8Ty, 8);
  7750. llvm::Type *Tys[2] = { Ty, VTy };
  7751. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7752. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
  7753. return Builder.CreateTrunc(Ops[0], Int8Ty);
  7754. }
  7755. case NEON::BI__builtin_neon_vaddv_u16:
  7756. usgn = true;
  7757. LLVM_FALLTHROUGH;
  7758. case NEON::BI__builtin_neon_vaddv_s16: {
  7759. Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
  7760. Ty = Int32Ty;
  7761. VTy = llvm::VectorType::get(Int16Ty, 4);
  7762. llvm::Type *Tys[2] = { Ty, VTy };
  7763. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7764. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
  7765. return Builder.CreateTrunc(Ops[0], Int16Ty);
  7766. }
  7767. case NEON::BI__builtin_neon_vaddvq_u8:
  7768. usgn = true;
  7769. LLVM_FALLTHROUGH;
  7770. case NEON::BI__builtin_neon_vaddvq_s8: {
  7771. Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
  7772. Ty = Int32Ty;
  7773. VTy = llvm::VectorType::get(Int8Ty, 16);
  7774. llvm::Type *Tys[2] = { Ty, VTy };
  7775. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7776. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
  7777. return Builder.CreateTrunc(Ops[0], Int8Ty);
  7778. }
  7779. case NEON::BI__builtin_neon_vaddvq_u16:
  7780. usgn = true;
  7781. LLVM_FALLTHROUGH;
  7782. case NEON::BI__builtin_neon_vaddvq_s16: {
  7783. Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
  7784. Ty = Int32Ty;
  7785. VTy = llvm::VectorType::get(Int16Ty, 8);
  7786. llvm::Type *Tys[2] = { Ty, VTy };
  7787. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7788. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
  7789. return Builder.CreateTrunc(Ops[0], Int16Ty);
  7790. }
  7791. case NEON::BI__builtin_neon_vmaxv_u8: {
  7792. Int = Intrinsic::aarch64_neon_umaxv;
  7793. Ty = Int32Ty;
  7794. VTy = llvm::VectorType::get(Int8Ty, 8);
  7795. llvm::Type *Tys[2] = { Ty, VTy };
  7796. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7797. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  7798. return Builder.CreateTrunc(Ops[0], Int8Ty);
  7799. }
  7800. case NEON::BI__builtin_neon_vmaxv_u16: {
  7801. Int = Intrinsic::aarch64_neon_umaxv;
  7802. Ty = Int32Ty;
  7803. VTy = llvm::VectorType::get(Int16Ty, 4);
  7804. llvm::Type *Tys[2] = { Ty, VTy };
  7805. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7806. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  7807. return Builder.CreateTrunc(Ops[0], Int16Ty);
  7808. }
  7809. case NEON::BI__builtin_neon_vmaxvq_u8: {
  7810. Int = Intrinsic::aarch64_neon_umaxv;
  7811. Ty = Int32Ty;
  7812. VTy = llvm::VectorType::get(Int8Ty, 16);
  7813. llvm::Type *Tys[2] = { Ty, VTy };
  7814. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7815. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  7816. return Builder.CreateTrunc(Ops[0], Int8Ty);
  7817. }
  7818. case NEON::BI__builtin_neon_vmaxvq_u16: {
  7819. Int = Intrinsic::aarch64_neon_umaxv;
  7820. Ty = Int32Ty;
  7821. VTy = llvm::VectorType::get(Int16Ty, 8);
  7822. llvm::Type *Tys[2] = { Ty, VTy };
  7823. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7824. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  7825. return Builder.CreateTrunc(Ops[0], Int16Ty);
  7826. }
  7827. case NEON::BI__builtin_neon_vmaxv_s8: {
  7828. Int = Intrinsic::aarch64_neon_smaxv;
  7829. Ty = Int32Ty;
  7830. VTy = llvm::VectorType::get(Int8Ty, 8);
  7831. llvm::Type *Tys[2] = { Ty, VTy };
  7832. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7833. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  7834. return Builder.CreateTrunc(Ops[0], Int8Ty);
  7835. }
  7836. case NEON::BI__builtin_neon_vmaxv_s16: {
  7837. Int = Intrinsic::aarch64_neon_smaxv;
  7838. Ty = Int32Ty;
  7839. VTy = llvm::VectorType::get(Int16Ty, 4);
  7840. llvm::Type *Tys[2] = { Ty, VTy };
  7841. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7842. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  7843. return Builder.CreateTrunc(Ops[0], Int16Ty);
  7844. }
  7845. case NEON::BI__builtin_neon_vmaxvq_s8: {
  7846. Int = Intrinsic::aarch64_neon_smaxv;
  7847. Ty = Int32Ty;
  7848. VTy = llvm::VectorType::get(Int8Ty, 16);
  7849. llvm::Type *Tys[2] = { Ty, VTy };
  7850. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7851. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  7852. return Builder.CreateTrunc(Ops[0], Int8Ty);
  7853. }
  7854. case NEON::BI__builtin_neon_vmaxvq_s16: {
  7855. Int = Intrinsic::aarch64_neon_smaxv;
  7856. Ty = Int32Ty;
  7857. VTy = llvm::VectorType::get(Int16Ty, 8);
  7858. llvm::Type *Tys[2] = { Ty, VTy };
  7859. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7860. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  7861. return Builder.CreateTrunc(Ops[0], Int16Ty);
  7862. }
  7863. case NEON::BI__builtin_neon_vmaxv_f16: {
  7864. Int = Intrinsic::aarch64_neon_fmaxv;
  7865. Ty = HalfTy;
  7866. VTy = llvm::VectorType::get(HalfTy, 4);
  7867. llvm::Type *Tys[2] = { Ty, VTy };
  7868. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7869. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  7870. return Builder.CreateTrunc(Ops[0], HalfTy);
  7871. }
  7872. case NEON::BI__builtin_neon_vmaxvq_f16: {
  7873. Int = Intrinsic::aarch64_neon_fmaxv;
  7874. Ty = HalfTy;
  7875. VTy = llvm::VectorType::get(HalfTy, 8);
  7876. llvm::Type *Tys[2] = { Ty, VTy };
  7877. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7878. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
  7879. return Builder.CreateTrunc(Ops[0], HalfTy);
  7880. }
  7881. case NEON::BI__builtin_neon_vminv_u8: {
  7882. Int = Intrinsic::aarch64_neon_uminv;
  7883. Ty = Int32Ty;
  7884. VTy = llvm::VectorType::get(Int8Ty, 8);
  7885. llvm::Type *Tys[2] = { Ty, VTy };
  7886. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7887. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  7888. return Builder.CreateTrunc(Ops[0], Int8Ty);
  7889. }
  7890. case NEON::BI__builtin_neon_vminv_u16: {
  7891. Int = Intrinsic::aarch64_neon_uminv;
  7892. Ty = Int32Ty;
  7893. VTy = llvm::VectorType::get(Int16Ty, 4);
  7894. llvm::Type *Tys[2] = { Ty, VTy };
  7895. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7896. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  7897. return Builder.CreateTrunc(Ops[0], Int16Ty);
  7898. }
  7899. case NEON::BI__builtin_neon_vminvq_u8: {
  7900. Int = Intrinsic::aarch64_neon_uminv;
  7901. Ty = Int32Ty;
  7902. VTy = llvm::VectorType::get(Int8Ty, 16);
  7903. llvm::Type *Tys[2] = { Ty, VTy };
  7904. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7905. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  7906. return Builder.CreateTrunc(Ops[0], Int8Ty);
  7907. }
  7908. case NEON::BI__builtin_neon_vminvq_u16: {
  7909. Int = Intrinsic::aarch64_neon_uminv;
  7910. Ty = Int32Ty;
  7911. VTy = llvm::VectorType::get(Int16Ty, 8);
  7912. llvm::Type *Tys[2] = { Ty, VTy };
  7913. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7914. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  7915. return Builder.CreateTrunc(Ops[0], Int16Ty);
  7916. }
  7917. case NEON::BI__builtin_neon_vminv_s8: {
  7918. Int = Intrinsic::aarch64_neon_sminv;
  7919. Ty = Int32Ty;
  7920. VTy = llvm::VectorType::get(Int8Ty, 8);
  7921. llvm::Type *Tys[2] = { Ty, VTy };
  7922. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7923. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  7924. return Builder.CreateTrunc(Ops[0], Int8Ty);
  7925. }
  7926. case NEON::BI__builtin_neon_vminv_s16: {
  7927. Int = Intrinsic::aarch64_neon_sminv;
  7928. Ty = Int32Ty;
  7929. VTy = llvm::VectorType::get(Int16Ty, 4);
  7930. llvm::Type *Tys[2] = { Ty, VTy };
  7931. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7932. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  7933. return Builder.CreateTrunc(Ops[0], Int16Ty);
  7934. }
  7935. case NEON::BI__builtin_neon_vminvq_s8: {
  7936. Int = Intrinsic::aarch64_neon_sminv;
  7937. Ty = Int32Ty;
  7938. VTy = llvm::VectorType::get(Int8Ty, 16);
  7939. llvm::Type *Tys[2] = { Ty, VTy };
  7940. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7941. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  7942. return Builder.CreateTrunc(Ops[0], Int8Ty);
  7943. }
  7944. case NEON::BI__builtin_neon_vminvq_s16: {
  7945. Int = Intrinsic::aarch64_neon_sminv;
  7946. Ty = Int32Ty;
  7947. VTy = llvm::VectorType::get(Int16Ty, 8);
  7948. llvm::Type *Tys[2] = { Ty, VTy };
  7949. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7950. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  7951. return Builder.CreateTrunc(Ops[0], Int16Ty);
  7952. }
  7953. case NEON::BI__builtin_neon_vminv_f16: {
  7954. Int = Intrinsic::aarch64_neon_fminv;
  7955. Ty = HalfTy;
  7956. VTy = llvm::VectorType::get(HalfTy, 4);
  7957. llvm::Type *Tys[2] = { Ty, VTy };
  7958. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7959. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  7960. return Builder.CreateTrunc(Ops[0], HalfTy);
  7961. }
  7962. case NEON::BI__builtin_neon_vminvq_f16: {
  7963. Int = Intrinsic::aarch64_neon_fminv;
  7964. Ty = HalfTy;
  7965. VTy = llvm::VectorType::get(HalfTy, 8);
  7966. llvm::Type *Tys[2] = { Ty, VTy };
  7967. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7968. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
  7969. return Builder.CreateTrunc(Ops[0], HalfTy);
  7970. }
  7971. case NEON::BI__builtin_neon_vmaxnmv_f16: {
  7972. Int = Intrinsic::aarch64_neon_fmaxnmv;
  7973. Ty = HalfTy;
  7974. VTy = llvm::VectorType::get(HalfTy, 4);
  7975. llvm::Type *Tys[2] = { Ty, VTy };
  7976. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7977. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
  7978. return Builder.CreateTrunc(Ops[0], HalfTy);
  7979. }
  7980. case NEON::BI__builtin_neon_vmaxnmvq_f16: {
  7981. Int = Intrinsic::aarch64_neon_fmaxnmv;
  7982. Ty = HalfTy;
  7983. VTy = llvm::VectorType::get(HalfTy, 8);
  7984. llvm::Type *Tys[2] = { Ty, VTy };
  7985. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7986. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
  7987. return Builder.CreateTrunc(Ops[0], HalfTy);
  7988. }
  7989. case NEON::BI__builtin_neon_vminnmv_f16: {
  7990. Int = Intrinsic::aarch64_neon_fminnmv;
  7991. Ty = HalfTy;
  7992. VTy = llvm::VectorType::get(HalfTy, 4);
  7993. llvm::Type *Tys[2] = { Ty, VTy };
  7994. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  7995. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
  7996. return Builder.CreateTrunc(Ops[0], HalfTy);
  7997. }
  7998. case NEON::BI__builtin_neon_vminnmvq_f16: {
  7999. Int = Intrinsic::aarch64_neon_fminnmv;
  8000. Ty = HalfTy;
  8001. VTy = llvm::VectorType::get(HalfTy, 8);
  8002. llvm::Type *Tys[2] = { Ty, VTy };
  8003. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8004. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
  8005. return Builder.CreateTrunc(Ops[0], HalfTy);
  8006. }
  8007. case NEON::BI__builtin_neon_vmul_n_f64: {
  8008. Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
  8009. Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
  8010. return Builder.CreateFMul(Ops[0], RHS);
  8011. }
  8012. case NEON::BI__builtin_neon_vaddlv_u8: {
  8013. Int = Intrinsic::aarch64_neon_uaddlv;
  8014. Ty = Int32Ty;
  8015. VTy = llvm::VectorType::get(Int8Ty, 8);
  8016. llvm::Type *Tys[2] = { Ty, VTy };
  8017. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8018. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8019. return Builder.CreateTrunc(Ops[0], Int16Ty);
  8020. }
  8021. case NEON::BI__builtin_neon_vaddlv_u16: {
  8022. Int = Intrinsic::aarch64_neon_uaddlv;
  8023. Ty = Int32Ty;
  8024. VTy = llvm::VectorType::get(Int16Ty, 4);
  8025. llvm::Type *Tys[2] = { Ty, VTy };
  8026. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8027. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8028. }
  8029. case NEON::BI__builtin_neon_vaddlvq_u8: {
  8030. Int = Intrinsic::aarch64_neon_uaddlv;
  8031. Ty = Int32Ty;
  8032. VTy = llvm::VectorType::get(Int8Ty, 16);
  8033. llvm::Type *Tys[2] = { Ty, VTy };
  8034. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8035. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8036. return Builder.CreateTrunc(Ops[0], Int16Ty);
  8037. }
  8038. case NEON::BI__builtin_neon_vaddlvq_u16: {
  8039. Int = Intrinsic::aarch64_neon_uaddlv;
  8040. Ty = Int32Ty;
  8041. VTy = llvm::VectorType::get(Int16Ty, 8);
  8042. llvm::Type *Tys[2] = { Ty, VTy };
  8043. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8044. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8045. }
  8046. case NEON::BI__builtin_neon_vaddlv_s8: {
  8047. Int = Intrinsic::aarch64_neon_saddlv;
  8048. Ty = Int32Ty;
  8049. VTy = llvm::VectorType::get(Int8Ty, 8);
  8050. llvm::Type *Tys[2] = { Ty, VTy };
  8051. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8052. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8053. return Builder.CreateTrunc(Ops[0], Int16Ty);
  8054. }
  8055. case NEON::BI__builtin_neon_vaddlv_s16: {
  8056. Int = Intrinsic::aarch64_neon_saddlv;
  8057. Ty = Int32Ty;
  8058. VTy = llvm::VectorType::get(Int16Ty, 4);
  8059. llvm::Type *Tys[2] = { Ty, VTy };
  8060. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8061. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8062. }
  8063. case NEON::BI__builtin_neon_vaddlvq_s8: {
  8064. Int = Intrinsic::aarch64_neon_saddlv;
  8065. Ty = Int32Ty;
  8066. VTy = llvm::VectorType::get(Int8Ty, 16);
  8067. llvm::Type *Tys[2] = { Ty, VTy };
  8068. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8069. Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8070. return Builder.CreateTrunc(Ops[0], Int16Ty);
  8071. }
  8072. case NEON::BI__builtin_neon_vaddlvq_s16: {
  8073. Int = Intrinsic::aarch64_neon_saddlv;
  8074. Ty = Int32Ty;
  8075. VTy = llvm::VectorType::get(Int16Ty, 8);
  8076. llvm::Type *Tys[2] = { Ty, VTy };
  8077. Ops.push_back(EmitScalarExpr(E->getArg(0)));
  8078. return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
  8079. }
  8080. case NEON::BI__builtin_neon_vsri_n_v:
  8081. case NEON::BI__builtin_neon_vsriq_n_v: {
  8082. Int = Intrinsic::aarch64_neon_vsri;
  8083. llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
  8084. return EmitNeonCall(Intrin, Ops, "vsri_n");
  8085. }
  8086. case NEON::BI__builtin_neon_vsli_n_v:
  8087. case NEON::BI__builtin_neon_vsliq_n_v: {
  8088. Int = Intrinsic::aarch64_neon_vsli;
  8089. llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
  8090. return EmitNeonCall(Intrin, Ops, "vsli_n");
  8091. }
  8092. case NEON::BI__builtin_neon_vsra_n_v:
  8093. case NEON::BI__builtin_neon_vsraq_n_v:
  8094. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  8095. Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
  8096. return Builder.CreateAdd(Ops[0], Ops[1]);
  8097. case NEON::BI__builtin_neon_vrsra_n_v:
  8098. case NEON::BI__builtin_neon_vrsraq_n_v: {
  8099. Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
  8100. SmallVector<llvm::Value*,2> TmpOps;
  8101. TmpOps.push_back(Ops[1]);
  8102. TmpOps.push_back(Ops[2]);
  8103. Function* F = CGM.getIntrinsic(Int, Ty);
  8104. llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
  8105. Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
  8106. return Builder.CreateAdd(Ops[0], tmp);
  8107. }
  8108. case NEON::BI__builtin_neon_vld1_v:
  8109. case NEON::BI__builtin_neon_vld1q_v: {
  8110. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
  8111. auto Alignment = CharUnits::fromQuantity(
  8112. BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16);
  8113. return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment);
  8114. }
  8115. case NEON::BI__builtin_neon_vst1_v:
  8116. case NEON::BI__builtin_neon_vst1q_v:
  8117. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
  8118. Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
  8119. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8120. case NEON::BI__builtin_neon_vld1_lane_v:
  8121. case NEON::BI__builtin_neon_vld1q_lane_v: {
  8122. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8123. Ty = llvm::PointerType::getUnqual(VTy->getElementType());
  8124. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  8125. auto Alignment = CharUnits::fromQuantity(
  8126. BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16);
  8127. Ops[0] =
  8128. Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
  8129. return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
  8130. }
  8131. case NEON::BI__builtin_neon_vld1_dup_v:
  8132. case NEON::BI__builtin_neon_vld1q_dup_v: {
  8133. Value *V = UndefValue::get(Ty);
  8134. Ty = llvm::PointerType::getUnqual(VTy->getElementType());
  8135. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  8136. auto Alignment = CharUnits::fromQuantity(
  8137. BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16);
  8138. Ops[0] =
  8139. Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
  8140. llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
  8141. Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
  8142. return EmitNeonSplat(Ops[0], CI);
  8143. }
  8144. case NEON::BI__builtin_neon_vst1_lane_v:
  8145. case NEON::BI__builtin_neon_vst1q_lane_v:
  8146. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8147. Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
  8148. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  8149. return Builder.CreateDefaultAlignedStore(Ops[1],
  8150. Builder.CreateBitCast(Ops[0], Ty));
  8151. case NEON::BI__builtin_neon_vld2_v:
  8152. case NEON::BI__builtin_neon_vld2q_v: {
  8153. llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
  8154. Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
  8155. llvm::Type *Tys[2] = { VTy, PTy };
  8156. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
  8157. Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
  8158. Ops[0] = Builder.CreateBitCast(Ops[0],
  8159. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8160. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8161. }
  8162. case NEON::BI__builtin_neon_vld3_v:
  8163. case NEON::BI__builtin_neon_vld3q_v: {
  8164. llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
  8165. Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
  8166. llvm::Type *Tys[2] = { VTy, PTy };
  8167. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
  8168. Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
  8169. Ops[0] = Builder.CreateBitCast(Ops[0],
  8170. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8171. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8172. }
  8173. case NEON::BI__builtin_neon_vld4_v:
  8174. case NEON::BI__builtin_neon_vld4q_v: {
  8175. llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
  8176. Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
  8177. llvm::Type *Tys[2] = { VTy, PTy };
  8178. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
  8179. Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
  8180. Ops[0] = Builder.CreateBitCast(Ops[0],
  8181. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8182. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8183. }
  8184. case NEON::BI__builtin_neon_vld2_dup_v:
  8185. case NEON::BI__builtin_neon_vld2q_dup_v: {
  8186. llvm::Type *PTy =
  8187. llvm::PointerType::getUnqual(VTy->getElementType());
  8188. Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
  8189. llvm::Type *Tys[2] = { VTy, PTy };
  8190. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
  8191. Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
  8192. Ops[0] = Builder.CreateBitCast(Ops[0],
  8193. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8194. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8195. }
  8196. case NEON::BI__builtin_neon_vld3_dup_v:
  8197. case NEON::BI__builtin_neon_vld3q_dup_v: {
  8198. llvm::Type *PTy =
  8199. llvm::PointerType::getUnqual(VTy->getElementType());
  8200. Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
  8201. llvm::Type *Tys[2] = { VTy, PTy };
  8202. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
  8203. Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
  8204. Ops[0] = Builder.CreateBitCast(Ops[0],
  8205. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8206. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8207. }
  8208. case NEON::BI__builtin_neon_vld4_dup_v:
  8209. case NEON::BI__builtin_neon_vld4q_dup_v: {
  8210. llvm::Type *PTy =
  8211. llvm::PointerType::getUnqual(VTy->getElementType());
  8212. Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
  8213. llvm::Type *Tys[2] = { VTy, PTy };
  8214. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
  8215. Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
  8216. Ops[0] = Builder.CreateBitCast(Ops[0],
  8217. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8218. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8219. }
  8220. case NEON::BI__builtin_neon_vld2_lane_v:
  8221. case NEON::BI__builtin_neon_vld2q_lane_v: {
  8222. llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
  8223. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
  8224. Ops.push_back(Ops[1]);
  8225. Ops.erase(Ops.begin()+1);
  8226. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8227. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  8228. Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
  8229. Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
  8230. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  8231. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  8232. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8233. }
  8234. case NEON::BI__builtin_neon_vld3_lane_v:
  8235. case NEON::BI__builtin_neon_vld3q_lane_v: {
  8236. llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
  8237. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
  8238. Ops.push_back(Ops[1]);
  8239. Ops.erase(Ops.begin()+1);
  8240. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8241. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  8242. Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
  8243. Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
  8244. Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
  8245. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  8246. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  8247. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8248. }
  8249. case NEON::BI__builtin_neon_vld4_lane_v:
  8250. case NEON::BI__builtin_neon_vld4q_lane_v: {
  8251. llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
  8252. Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
  8253. Ops.push_back(Ops[1]);
  8254. Ops.erase(Ops.begin()+1);
  8255. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8256. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  8257. Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
  8258. Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
  8259. Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
  8260. Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
  8261. Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
  8262. Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
  8263. return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
  8264. }
  8265. case NEON::BI__builtin_neon_vst2_v:
  8266. case NEON::BI__builtin_neon_vst2q_v: {
  8267. Ops.push_back(Ops[0]);
  8268. Ops.erase(Ops.begin());
  8269. llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
  8270. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
  8271. Ops, "");
  8272. }
  8273. case NEON::BI__builtin_neon_vst2_lane_v:
  8274. case NEON::BI__builtin_neon_vst2q_lane_v: {
  8275. Ops.push_back(Ops[0]);
  8276. Ops.erase(Ops.begin());
  8277. Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
  8278. llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
  8279. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
  8280. Ops, "");
  8281. }
  8282. case NEON::BI__builtin_neon_vst3_v:
  8283. case NEON::BI__builtin_neon_vst3q_v: {
  8284. Ops.push_back(Ops[0]);
  8285. Ops.erase(Ops.begin());
  8286. llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
  8287. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
  8288. Ops, "");
  8289. }
  8290. case NEON::BI__builtin_neon_vst3_lane_v:
  8291. case NEON::BI__builtin_neon_vst3q_lane_v: {
  8292. Ops.push_back(Ops[0]);
  8293. Ops.erase(Ops.begin());
  8294. Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
  8295. llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
  8296. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
  8297. Ops, "");
  8298. }
  8299. case NEON::BI__builtin_neon_vst4_v:
  8300. case NEON::BI__builtin_neon_vst4q_v: {
  8301. Ops.push_back(Ops[0]);
  8302. Ops.erase(Ops.begin());
  8303. llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
  8304. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
  8305. Ops, "");
  8306. }
  8307. case NEON::BI__builtin_neon_vst4_lane_v:
  8308. case NEON::BI__builtin_neon_vst4q_lane_v: {
  8309. Ops.push_back(Ops[0]);
  8310. Ops.erase(Ops.begin());
  8311. Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
  8312. llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
  8313. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
  8314. Ops, "");
  8315. }
  8316. case NEON::BI__builtin_neon_vtrn_v:
  8317. case NEON::BI__builtin_neon_vtrnq_v: {
  8318. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
  8319. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8320. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  8321. Value *SV = nullptr;
  8322. for (unsigned vi = 0; vi != 2; ++vi) {
  8323. SmallVector<uint32_t, 16> Indices;
  8324. for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
  8325. Indices.push_back(i+vi);
  8326. Indices.push_back(i+e+vi);
  8327. }
  8328. Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
  8329. SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
  8330. SV = Builder.CreateDefaultAlignedStore(SV, Addr);
  8331. }
  8332. return SV;
  8333. }
  8334. case NEON::BI__builtin_neon_vuzp_v:
  8335. case NEON::BI__builtin_neon_vuzpq_v: {
  8336. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
  8337. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8338. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  8339. Value *SV = nullptr;
  8340. for (unsigned vi = 0; vi != 2; ++vi) {
  8341. SmallVector<uint32_t, 16> Indices;
  8342. for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
  8343. Indices.push_back(2*i+vi);
  8344. Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
  8345. SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
  8346. SV = Builder.CreateDefaultAlignedStore(SV, Addr);
  8347. }
  8348. return SV;
  8349. }
  8350. case NEON::BI__builtin_neon_vzip_v:
  8351. case NEON::BI__builtin_neon_vzipq_v: {
  8352. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
  8353. Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
  8354. Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
  8355. Value *SV = nullptr;
  8356. for (unsigned vi = 0; vi != 2; ++vi) {
  8357. SmallVector<uint32_t, 16> Indices;
  8358. for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
  8359. Indices.push_back((i + vi*e) >> 1);
  8360. Indices.push_back(((i + vi*e) >> 1)+e);
  8361. }
  8362. Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
  8363. SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
  8364. SV = Builder.CreateDefaultAlignedStore(SV, Addr);
  8365. }
  8366. return SV;
  8367. }
  8368. case NEON::BI__builtin_neon_vqtbl1q_v: {
  8369. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
  8370. Ops, "vtbl1");
  8371. }
  8372. case NEON::BI__builtin_neon_vqtbl2q_v: {
  8373. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
  8374. Ops, "vtbl2");
  8375. }
  8376. case NEON::BI__builtin_neon_vqtbl3q_v: {
  8377. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
  8378. Ops, "vtbl3");
  8379. }
  8380. case NEON::BI__builtin_neon_vqtbl4q_v: {
  8381. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
  8382. Ops, "vtbl4");
  8383. }
  8384. case NEON::BI__builtin_neon_vqtbx1q_v: {
  8385. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
  8386. Ops, "vtbx1");
  8387. }
  8388. case NEON::BI__builtin_neon_vqtbx2q_v: {
  8389. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
  8390. Ops, "vtbx2");
  8391. }
  8392. case NEON::BI__builtin_neon_vqtbx3q_v: {
  8393. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
  8394. Ops, "vtbx3");
  8395. }
  8396. case NEON::BI__builtin_neon_vqtbx4q_v: {
  8397. return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
  8398. Ops, "vtbx4");
  8399. }
  8400. case NEON::BI__builtin_neon_vsqadd_v:
  8401. case NEON::BI__builtin_neon_vsqaddq_v: {
  8402. Int = Intrinsic::aarch64_neon_usqadd;
  8403. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
  8404. }
  8405. case NEON::BI__builtin_neon_vuqadd_v:
  8406. case NEON::BI__builtin_neon_vuqaddq_v: {
  8407. Int = Intrinsic::aarch64_neon_suqadd;
  8408. return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
  8409. }
  8410. case AArch64::BI_BitScanForward:
  8411. case AArch64::BI_BitScanForward64:
  8412. return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
  8413. case AArch64::BI_BitScanReverse:
  8414. case AArch64::BI_BitScanReverse64:
  8415. return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
  8416. case AArch64::BI_InterlockedAnd64:
  8417. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
  8418. case AArch64::BI_InterlockedExchange64:
  8419. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
  8420. case AArch64::BI_InterlockedExchangeAdd64:
  8421. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
  8422. case AArch64::BI_InterlockedExchangeSub64:
  8423. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
  8424. case AArch64::BI_InterlockedOr64:
  8425. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
  8426. case AArch64::BI_InterlockedXor64:
  8427. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
  8428. case AArch64::BI_InterlockedDecrement64:
  8429. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
  8430. case AArch64::BI_InterlockedIncrement64:
  8431. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
  8432. case AArch64::BI_InterlockedExchangeAdd8_acq:
  8433. case AArch64::BI_InterlockedExchangeAdd16_acq:
  8434. case AArch64::BI_InterlockedExchangeAdd_acq:
  8435. case AArch64::BI_InterlockedExchangeAdd64_acq:
  8436. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
  8437. case AArch64::BI_InterlockedExchangeAdd8_rel:
  8438. case AArch64::BI_InterlockedExchangeAdd16_rel:
  8439. case AArch64::BI_InterlockedExchangeAdd_rel:
  8440. case AArch64::BI_InterlockedExchangeAdd64_rel:
  8441. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
  8442. case AArch64::BI_InterlockedExchangeAdd8_nf:
  8443. case AArch64::BI_InterlockedExchangeAdd16_nf:
  8444. case AArch64::BI_InterlockedExchangeAdd_nf:
  8445. case AArch64::BI_InterlockedExchangeAdd64_nf:
  8446. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
  8447. case AArch64::BI_InterlockedExchange8_acq:
  8448. case AArch64::BI_InterlockedExchange16_acq:
  8449. case AArch64::BI_InterlockedExchange_acq:
  8450. case AArch64::BI_InterlockedExchange64_acq:
  8451. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
  8452. case AArch64::BI_InterlockedExchange8_rel:
  8453. case AArch64::BI_InterlockedExchange16_rel:
  8454. case AArch64::BI_InterlockedExchange_rel:
  8455. case AArch64::BI_InterlockedExchange64_rel:
  8456. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
  8457. case AArch64::BI_InterlockedExchange8_nf:
  8458. case AArch64::BI_InterlockedExchange16_nf:
  8459. case AArch64::BI_InterlockedExchange_nf:
  8460. case AArch64::BI_InterlockedExchange64_nf:
  8461. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
  8462. case AArch64::BI_InterlockedCompareExchange8_acq:
  8463. case AArch64::BI_InterlockedCompareExchange16_acq:
  8464. case AArch64::BI_InterlockedCompareExchange_acq:
  8465. case AArch64::BI_InterlockedCompareExchange64_acq:
  8466. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
  8467. case AArch64::BI_InterlockedCompareExchange8_rel:
  8468. case AArch64::BI_InterlockedCompareExchange16_rel:
  8469. case AArch64::BI_InterlockedCompareExchange_rel:
  8470. case AArch64::BI_InterlockedCompareExchange64_rel:
  8471. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
  8472. case AArch64::BI_InterlockedCompareExchange8_nf:
  8473. case AArch64::BI_InterlockedCompareExchange16_nf:
  8474. case AArch64::BI_InterlockedCompareExchange_nf:
  8475. case AArch64::BI_InterlockedCompareExchange64_nf:
  8476. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
  8477. case AArch64::BI_InterlockedOr8_acq:
  8478. case AArch64::BI_InterlockedOr16_acq:
  8479. case AArch64::BI_InterlockedOr_acq:
  8480. case AArch64::BI_InterlockedOr64_acq:
  8481. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
  8482. case AArch64::BI_InterlockedOr8_rel:
  8483. case AArch64::BI_InterlockedOr16_rel:
  8484. case AArch64::BI_InterlockedOr_rel:
  8485. case AArch64::BI_InterlockedOr64_rel:
  8486. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
  8487. case AArch64::BI_InterlockedOr8_nf:
  8488. case AArch64::BI_InterlockedOr16_nf:
  8489. case AArch64::BI_InterlockedOr_nf:
  8490. case AArch64::BI_InterlockedOr64_nf:
  8491. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
  8492. case AArch64::BI_InterlockedXor8_acq:
  8493. case AArch64::BI_InterlockedXor16_acq:
  8494. case AArch64::BI_InterlockedXor_acq:
  8495. case AArch64::BI_InterlockedXor64_acq:
  8496. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
  8497. case AArch64::BI_InterlockedXor8_rel:
  8498. case AArch64::BI_InterlockedXor16_rel:
  8499. case AArch64::BI_InterlockedXor_rel:
  8500. case AArch64::BI_InterlockedXor64_rel:
  8501. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
  8502. case AArch64::BI_InterlockedXor8_nf:
  8503. case AArch64::BI_InterlockedXor16_nf:
  8504. case AArch64::BI_InterlockedXor_nf:
  8505. case AArch64::BI_InterlockedXor64_nf:
  8506. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
  8507. case AArch64::BI_InterlockedAnd8_acq:
  8508. case AArch64::BI_InterlockedAnd16_acq:
  8509. case AArch64::BI_InterlockedAnd_acq:
  8510. case AArch64::BI_InterlockedAnd64_acq:
  8511. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
  8512. case AArch64::BI_InterlockedAnd8_rel:
  8513. case AArch64::BI_InterlockedAnd16_rel:
  8514. case AArch64::BI_InterlockedAnd_rel:
  8515. case AArch64::BI_InterlockedAnd64_rel:
  8516. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
  8517. case AArch64::BI_InterlockedAnd8_nf:
  8518. case AArch64::BI_InterlockedAnd16_nf:
  8519. case AArch64::BI_InterlockedAnd_nf:
  8520. case AArch64::BI_InterlockedAnd64_nf:
  8521. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
  8522. case AArch64::BI_InterlockedIncrement16_acq:
  8523. case AArch64::BI_InterlockedIncrement_acq:
  8524. case AArch64::BI_InterlockedIncrement64_acq:
  8525. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
  8526. case AArch64::BI_InterlockedIncrement16_rel:
  8527. case AArch64::BI_InterlockedIncrement_rel:
  8528. case AArch64::BI_InterlockedIncrement64_rel:
  8529. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
  8530. case AArch64::BI_InterlockedIncrement16_nf:
  8531. case AArch64::BI_InterlockedIncrement_nf:
  8532. case AArch64::BI_InterlockedIncrement64_nf:
  8533. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
  8534. case AArch64::BI_InterlockedDecrement16_acq:
  8535. case AArch64::BI_InterlockedDecrement_acq:
  8536. case AArch64::BI_InterlockedDecrement64_acq:
  8537. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
  8538. case AArch64::BI_InterlockedDecrement16_rel:
  8539. case AArch64::BI_InterlockedDecrement_rel:
  8540. case AArch64::BI_InterlockedDecrement64_rel:
  8541. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
  8542. case AArch64::BI_InterlockedDecrement16_nf:
  8543. case AArch64::BI_InterlockedDecrement_nf:
  8544. case AArch64::BI_InterlockedDecrement64_nf:
  8545. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
  8546. case AArch64::BI_InterlockedAdd: {
  8547. Value *Arg0 = EmitScalarExpr(E->getArg(0));
  8548. Value *Arg1 = EmitScalarExpr(E->getArg(1));
  8549. AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
  8550. AtomicRMWInst::Add, Arg0, Arg1,
  8551. llvm::AtomicOrdering::SequentiallyConsistent);
  8552. return Builder.CreateAdd(RMWI, Arg1);
  8553. }
  8554. }
  8555. }
  8556. llvm::Value *CodeGenFunction::
  8557. BuildVector(ArrayRef<llvm::Value*> Ops) {
  8558. assert((Ops.size() & (Ops.size() - 1)) == 0 &&
  8559. "Not a power-of-two sized vector!");
  8560. bool AllConstants = true;
  8561. for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
  8562. AllConstants &= isa<Constant>(Ops[i]);
  8563. // If this is a constant vector, create a ConstantVector.
  8564. if (AllConstants) {
  8565. SmallVector<llvm::Constant*, 16> CstOps;
  8566. for (unsigned i = 0, e = Ops.size(); i != e; ++i)
  8567. CstOps.push_back(cast<Constant>(Ops[i]));
  8568. return llvm::ConstantVector::get(CstOps);
  8569. }
  8570. // Otherwise, insertelement the values to build the vector.
  8571. Value *Result =
  8572. llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
  8573. for (unsigned i = 0, e = Ops.size(); i != e; ++i)
  8574. Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
  8575. return Result;
  8576. }
  8577. // Convert the mask from an integer type to a vector of i1.
  8578. static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
  8579. unsigned NumElts) {
  8580. llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(),
  8581. cast<IntegerType>(Mask->getType())->getBitWidth());
  8582. Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
  8583. // If we have less than 8 elements, then the starting mask was an i8 and
  8584. // we need to extract down to the right number of elements.
  8585. if (NumElts < 8) {
  8586. uint32_t Indices[4];
  8587. for (unsigned i = 0; i != NumElts; ++i)
  8588. Indices[i] = i;
  8589. MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
  8590. makeArrayRef(Indices, NumElts),
  8591. "extract");
  8592. }
  8593. return MaskVec;
  8594. }
  8595. static Value *EmitX86MaskedStore(CodeGenFunction &CGF,
  8596. ArrayRef<Value *> Ops,
  8597. unsigned Align) {
  8598. // Cast the pointer to right type.
  8599. Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
  8600. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8601. Value *MaskVec = getMaskVecValue(CGF, Ops[2],
  8602. Ops[1]->getType()->getVectorNumElements());
  8603. return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Align, MaskVec);
  8604. }
  8605. static Value *EmitX86MaskedLoad(CodeGenFunction &CGF,
  8606. ArrayRef<Value *> Ops, unsigned Align) {
  8607. // Cast the pointer to right type.
  8608. Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
  8609. llvm::PointerType::getUnqual(Ops[1]->getType()));
  8610. Value *MaskVec = getMaskVecValue(CGF, Ops[2],
  8611. Ops[1]->getType()->getVectorNumElements());
  8612. return CGF.Builder.CreateMaskedLoad(Ptr, Align, MaskVec, Ops[1]);
  8613. }
  8614. static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
  8615. ArrayRef<Value *> Ops) {
  8616. llvm::Type *ResultTy = Ops[1]->getType();
  8617. llvm::Type *PtrTy = ResultTy->getVectorElementType();
  8618. // Cast the pointer to element type.
  8619. Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
  8620. llvm::PointerType::getUnqual(PtrTy));
  8621. Value *MaskVec = getMaskVecValue(CGF, Ops[2],
  8622. ResultTy->getVectorNumElements());
  8623. llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
  8624. ResultTy);
  8625. return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
  8626. }
  8627. static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
  8628. ArrayRef<Value *> Ops,
  8629. bool IsCompress) {
  8630. llvm::Type *ResultTy = Ops[1]->getType();
  8631. Value *MaskVec = getMaskVecValue(CGF, Ops[2],
  8632. ResultTy->getVectorNumElements());
  8633. Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
  8634. : Intrinsic::x86_avx512_mask_expand;
  8635. llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
  8636. return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
  8637. }
  8638. static Value *EmitX86CompressStore(CodeGenFunction &CGF,
  8639. ArrayRef<Value *> Ops) {
  8640. llvm::Type *ResultTy = Ops[1]->getType();
  8641. llvm::Type *PtrTy = ResultTy->getVectorElementType();
  8642. // Cast the pointer to element type.
  8643. Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
  8644. llvm::PointerType::getUnqual(PtrTy));
  8645. Value *MaskVec = getMaskVecValue(CGF, Ops[2],
  8646. ResultTy->getVectorNumElements());
  8647. llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
  8648. ResultTy);
  8649. return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
  8650. }
  8651. static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
  8652. ArrayRef<Value *> Ops,
  8653. bool InvertLHS = false) {
  8654. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  8655. Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
  8656. Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
  8657. if (InvertLHS)
  8658. LHS = CGF.Builder.CreateNot(LHS);
  8659. return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
  8660. Ops[0]->getType());
  8661. }
  8662. static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
  8663. Value *Amt, bool IsRight) {
  8664. llvm::Type *Ty = Op0->getType();
  8665. // Amount may be scalar immediate, in which case create a splat vector.
  8666. // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
  8667. // we only care about the lowest log2 bits anyway.
  8668. if (Amt->getType() != Ty) {
  8669. unsigned NumElts = Ty->getVectorNumElements();
  8670. Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
  8671. Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
  8672. }
  8673. unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
  8674. Function *F = CGF.CGM.getIntrinsic(IID, Ty);
  8675. return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
  8676. }
  8677. static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
  8678. bool IsSigned) {
  8679. Value *Op0 = Ops[0];
  8680. Value *Op1 = Ops[1];
  8681. llvm::Type *Ty = Op0->getType();
  8682. uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
  8683. CmpInst::Predicate Pred;
  8684. switch (Imm) {
  8685. case 0x0:
  8686. Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
  8687. break;
  8688. case 0x1:
  8689. Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
  8690. break;
  8691. case 0x2:
  8692. Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
  8693. break;
  8694. case 0x3:
  8695. Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
  8696. break;
  8697. case 0x4:
  8698. Pred = ICmpInst::ICMP_EQ;
  8699. break;
  8700. case 0x5:
  8701. Pred = ICmpInst::ICMP_NE;
  8702. break;
  8703. case 0x6:
  8704. return llvm::Constant::getNullValue(Ty); // FALSE
  8705. case 0x7:
  8706. return llvm::Constant::getAllOnesValue(Ty); // TRUE
  8707. default:
  8708. llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
  8709. }
  8710. Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
  8711. Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
  8712. return Res;
  8713. }
  8714. static Value *EmitX86Select(CodeGenFunction &CGF,
  8715. Value *Mask, Value *Op0, Value *Op1) {
  8716. // If the mask is all ones just return first argument.
  8717. if (const auto *C = dyn_cast<Constant>(Mask))
  8718. if (C->isAllOnesValue())
  8719. return Op0;
  8720. Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements());
  8721. return CGF.Builder.CreateSelect(Mask, Op0, Op1);
  8722. }
  8723. static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
  8724. Value *Mask, Value *Op0, Value *Op1) {
  8725. // If the mask is all ones just return first argument.
  8726. if (const auto *C = dyn_cast<Constant>(Mask))
  8727. if (C->isAllOnesValue())
  8728. return Op0;
  8729. llvm::VectorType *MaskTy =
  8730. llvm::VectorType::get(CGF.Builder.getInt1Ty(),
  8731. Mask->getType()->getIntegerBitWidth());
  8732. Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
  8733. Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
  8734. return CGF.Builder.CreateSelect(Mask, Op0, Op1);
  8735. }
  8736. static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
  8737. unsigned NumElts, Value *MaskIn) {
  8738. if (MaskIn) {
  8739. const auto *C = dyn_cast<Constant>(MaskIn);
  8740. if (!C || !C->isAllOnesValue())
  8741. Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
  8742. }
  8743. if (NumElts < 8) {
  8744. uint32_t Indices[8];
  8745. for (unsigned i = 0; i != NumElts; ++i)
  8746. Indices[i] = i;
  8747. for (unsigned i = NumElts; i != 8; ++i)
  8748. Indices[i] = i % NumElts + NumElts;
  8749. Cmp = CGF.Builder.CreateShuffleVector(
  8750. Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
  8751. }
  8752. return CGF.Builder.CreateBitCast(Cmp,
  8753. IntegerType::get(CGF.getLLVMContext(),
  8754. std::max(NumElts, 8U)));
  8755. }
  8756. static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
  8757. bool Signed, ArrayRef<Value *> Ops) {
  8758. assert((Ops.size() == 2 || Ops.size() == 4) &&
  8759. "Unexpected number of arguments");
  8760. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  8761. Value *Cmp;
  8762. if (CC == 3) {
  8763. Cmp = Constant::getNullValue(
  8764. llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
  8765. } else if (CC == 7) {
  8766. Cmp = Constant::getAllOnesValue(
  8767. llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
  8768. } else {
  8769. ICmpInst::Predicate Pred;
  8770. switch (CC) {
  8771. default: llvm_unreachable("Unknown condition code");
  8772. case 0: Pred = ICmpInst::ICMP_EQ; break;
  8773. case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
  8774. case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
  8775. case 4: Pred = ICmpInst::ICMP_NE; break;
  8776. case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
  8777. case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
  8778. }
  8779. Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
  8780. }
  8781. Value *MaskIn = nullptr;
  8782. if (Ops.size() == 4)
  8783. MaskIn = Ops[3];
  8784. return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
  8785. }
  8786. static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
  8787. Value *Zero = Constant::getNullValue(In->getType());
  8788. return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
  8789. }
  8790. static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF,
  8791. ArrayRef<Value *> Ops, bool IsSigned) {
  8792. unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
  8793. llvm::Type *Ty = Ops[1]->getType();
  8794. Value *Res;
  8795. if (Rnd != 4) {
  8796. Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
  8797. : Intrinsic::x86_avx512_uitofp_round;
  8798. Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
  8799. Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
  8800. } else {
  8801. Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
  8802. : CGF.Builder.CreateUIToFP(Ops[0], Ty);
  8803. }
  8804. return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
  8805. }
  8806. static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) {
  8807. llvm::Type *Ty = Ops[0]->getType();
  8808. Value *Zero = llvm::Constant::getNullValue(Ty);
  8809. Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]);
  8810. Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero);
  8811. Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub);
  8812. return Res;
  8813. }
  8814. static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred,
  8815. ArrayRef<Value *> Ops) {
  8816. Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
  8817. Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]);
  8818. assert(Ops.size() == 2);
  8819. return Res;
  8820. }
  8821. // Lowers X86 FMA intrinsics to IR.
  8822. static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
  8823. unsigned BuiltinID, bool IsAddSub) {
  8824. bool Subtract = false;
  8825. Intrinsic::ID IID = Intrinsic::not_intrinsic;
  8826. switch (BuiltinID) {
  8827. default: break;
  8828. case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
  8829. Subtract = true;
  8830. LLVM_FALLTHROUGH;
  8831. case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
  8832. case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
  8833. case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
  8834. IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
  8835. case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
  8836. Subtract = true;
  8837. LLVM_FALLTHROUGH;
  8838. case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
  8839. case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
  8840. case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
  8841. IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
  8842. case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
  8843. Subtract = true;
  8844. LLVM_FALLTHROUGH;
  8845. case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
  8846. case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
  8847. case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
  8848. IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
  8849. break;
  8850. case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
  8851. Subtract = true;
  8852. LLVM_FALLTHROUGH;
  8853. case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
  8854. case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
  8855. case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
  8856. IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
  8857. break;
  8858. }
  8859. Value *A = Ops[0];
  8860. Value *B = Ops[1];
  8861. Value *C = Ops[2];
  8862. if (Subtract)
  8863. C = CGF.Builder.CreateFNeg(C);
  8864. Value *Res;
  8865. // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
  8866. if (IID != Intrinsic::not_intrinsic &&
  8867. cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4) {
  8868. Function *Intr = CGF.CGM.getIntrinsic(IID);
  8869. Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
  8870. } else {
  8871. llvm::Type *Ty = A->getType();
  8872. Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
  8873. Res = CGF.Builder.CreateCall(FMA, {A, B, C} );
  8874. if (IsAddSub) {
  8875. // Negate even elts in C using a mask.
  8876. unsigned NumElts = Ty->getVectorNumElements();
  8877. SmallVector<uint32_t, 16> Indices(NumElts);
  8878. for (unsigned i = 0; i != NumElts; ++i)
  8879. Indices[i] = i + (i % 2) * NumElts;
  8880. Value *NegC = CGF.Builder.CreateFNeg(C);
  8881. Value *FMSub = CGF.Builder.CreateCall(FMA, {A, B, NegC} );
  8882. Res = CGF.Builder.CreateShuffleVector(FMSub, Res, Indices);
  8883. }
  8884. }
  8885. // Handle any required masking.
  8886. Value *MaskFalseVal = nullptr;
  8887. switch (BuiltinID) {
  8888. case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
  8889. case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
  8890. case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
  8891. case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
  8892. MaskFalseVal = Ops[0];
  8893. break;
  8894. case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
  8895. case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
  8896. case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
  8897. case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
  8898. MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
  8899. break;
  8900. case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
  8901. case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
  8902. case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
  8903. case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
  8904. case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
  8905. case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
  8906. case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
  8907. case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
  8908. MaskFalseVal = Ops[2];
  8909. break;
  8910. }
  8911. if (MaskFalseVal)
  8912. return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
  8913. return Res;
  8914. }
  8915. static Value *
  8916. EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops,
  8917. Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0,
  8918. bool NegAcc = false) {
  8919. unsigned Rnd = 4;
  8920. if (Ops.size() > 4)
  8921. Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
  8922. if (NegAcc)
  8923. Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
  8924. Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
  8925. Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
  8926. Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
  8927. Value *Res;
  8928. if (Rnd != 4) {
  8929. Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
  8930. Intrinsic::x86_avx512_vfmadd_f32 :
  8931. Intrinsic::x86_avx512_vfmadd_f64;
  8932. Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
  8933. {Ops[0], Ops[1], Ops[2], Ops[4]});
  8934. } else {
  8935. Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
  8936. Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
  8937. }
  8938. // If we have more than 3 arguments, we need to do masking.
  8939. if (Ops.size() > 3) {
  8940. Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
  8941. : Ops[PTIdx];
  8942. // If we negated the accumulator and the its the PassThru value we need to
  8943. // bypass the negate. Conveniently Upper should be the same thing in this
  8944. // case.
  8945. if (NegAcc && PTIdx == 2)
  8946. PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
  8947. Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
  8948. }
  8949. return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
  8950. }
  8951. static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
  8952. ArrayRef<Value *> Ops) {
  8953. llvm::Type *Ty = Ops[0]->getType();
  8954. // Arguments have a vXi32 type so cast to vXi64.
  8955. Ty = llvm::VectorType::get(CGF.Int64Ty,
  8956. Ty->getPrimitiveSizeInBits() / 64);
  8957. Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
  8958. Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
  8959. if (IsSigned) {
  8960. // Shift left then arithmetic shift right.
  8961. Constant *ShiftAmt = ConstantInt::get(Ty, 32);
  8962. LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
  8963. LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
  8964. RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
  8965. RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
  8966. } else {
  8967. // Clear the upper bits.
  8968. Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
  8969. LHS = CGF.Builder.CreateAnd(LHS, Mask);
  8970. RHS = CGF.Builder.CreateAnd(RHS, Mask);
  8971. }
  8972. return CGF.Builder.CreateMul(LHS, RHS);
  8973. }
  8974. // Emit a masked pternlog intrinsic. This only exists because the header has to
  8975. // use a macro and we aren't able to pass the input argument to a pternlog
  8976. // builtin and a select builtin without evaluating it twice.
  8977. static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
  8978. ArrayRef<Value *> Ops) {
  8979. llvm::Type *Ty = Ops[0]->getType();
  8980. unsigned VecWidth = Ty->getPrimitiveSizeInBits();
  8981. unsigned EltWidth = Ty->getScalarSizeInBits();
  8982. Intrinsic::ID IID;
  8983. if (VecWidth == 128 && EltWidth == 32)
  8984. IID = Intrinsic::x86_avx512_pternlog_d_128;
  8985. else if (VecWidth == 256 && EltWidth == 32)
  8986. IID = Intrinsic::x86_avx512_pternlog_d_256;
  8987. else if (VecWidth == 512 && EltWidth == 32)
  8988. IID = Intrinsic::x86_avx512_pternlog_d_512;
  8989. else if (VecWidth == 128 && EltWidth == 64)
  8990. IID = Intrinsic::x86_avx512_pternlog_q_128;
  8991. else if (VecWidth == 256 && EltWidth == 64)
  8992. IID = Intrinsic::x86_avx512_pternlog_q_256;
  8993. else if (VecWidth == 512 && EltWidth == 64)
  8994. IID = Intrinsic::x86_avx512_pternlog_q_512;
  8995. else
  8996. llvm_unreachable("Unexpected intrinsic");
  8997. Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
  8998. Ops.drop_back());
  8999. Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
  9000. return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
  9001. }
  9002. static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
  9003. llvm::Type *DstTy) {
  9004. unsigned NumberOfElements = DstTy->getVectorNumElements();
  9005. Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
  9006. return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
  9007. }
  9008. // Emit addition or subtraction with signed/unsigned saturation.
  9009. static Value *EmitX86AddSubSatExpr(CodeGenFunction &CGF,
  9010. ArrayRef<Value *> Ops, bool IsSigned,
  9011. bool IsAddition) {
  9012. Intrinsic::ID IID =
  9013. IsSigned ? (IsAddition ? Intrinsic::sadd_sat : Intrinsic::ssub_sat)
  9014. : (IsAddition ? Intrinsic::uadd_sat : Intrinsic::usub_sat);
  9015. llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
  9016. return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
  9017. }
  9018. Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
  9019. const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
  9020. StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
  9021. return EmitX86CpuIs(CPUStr);
  9022. }
  9023. // Convert a BF16 to a float.
  9024. static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
  9025. const CallExpr *E,
  9026. ArrayRef<Value *> Ops) {
  9027. llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
  9028. Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
  9029. Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
  9030. llvm::Type *ResultType = CGF.ConvertType(E->getType());
  9031. Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
  9032. return BitCast;
  9033. }
  9034. Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
  9035. llvm::Type *Int32Ty = Builder.getInt32Ty();
  9036. // Matching the struct layout from the compiler-rt/libgcc structure that is
  9037. // filled in:
  9038. // unsigned int __cpu_vendor;
  9039. // unsigned int __cpu_type;
  9040. // unsigned int __cpu_subtype;
  9041. // unsigned int __cpu_features[1];
  9042. llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
  9043. llvm::ArrayType::get(Int32Ty, 1));
  9044. // Grab the global __cpu_model.
  9045. llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
  9046. cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
  9047. // Calculate the index needed to access the correct field based on the
  9048. // range. Also adjust the expected value.
  9049. unsigned Index;
  9050. unsigned Value;
  9051. std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
  9052. #define X86_VENDOR(ENUM, STRING) \
  9053. .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
  9054. #define X86_CPU_TYPE_COMPAT_WITH_ALIAS(ARCHNAME, ENUM, STR, ALIAS) \
  9055. .Cases(STR, ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
  9056. #define X86_CPU_TYPE_COMPAT(ARCHNAME, ENUM, STR) \
  9057. .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
  9058. #define X86_CPU_SUBTYPE_COMPAT(ARCHNAME, ENUM, STR) \
  9059. .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
  9060. #include "llvm/Support/X86TargetParser.def"
  9061. .Default({0, 0});
  9062. assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
  9063. // Grab the appropriate field from __cpu_model.
  9064. llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
  9065. ConstantInt::get(Int32Ty, Index)};
  9066. llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
  9067. CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
  9068. // Check the value of the field against the requested value.
  9069. return Builder.CreateICmpEQ(CpuValue,
  9070. llvm::ConstantInt::get(Int32Ty, Value));
  9071. }
  9072. Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
  9073. const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
  9074. StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
  9075. return EmitX86CpuSupports(FeatureStr);
  9076. }
  9077. uint64_t
  9078. CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
  9079. // Processor features and mapping to processor feature value.
  9080. uint64_t FeaturesMask = 0;
  9081. for (const StringRef &FeatureStr : FeatureStrs) {
  9082. unsigned Feature =
  9083. StringSwitch<unsigned>(FeatureStr)
  9084. #define X86_FEATURE_COMPAT(VAL, ENUM, STR) .Case(STR, VAL)
  9085. #include "llvm/Support/X86TargetParser.def"
  9086. ;
  9087. FeaturesMask |= (1ULL << Feature);
  9088. }
  9089. return FeaturesMask;
  9090. }
  9091. Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
  9092. return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
  9093. }
  9094. llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
  9095. uint32_t Features1 = Lo_32(FeaturesMask);
  9096. uint32_t Features2 = Hi_32(FeaturesMask);
  9097. Value *Result = Builder.getTrue();
  9098. if (Features1 != 0) {
  9099. // Matching the struct layout from the compiler-rt/libgcc structure that is
  9100. // filled in:
  9101. // unsigned int __cpu_vendor;
  9102. // unsigned int __cpu_type;
  9103. // unsigned int __cpu_subtype;
  9104. // unsigned int __cpu_features[1];
  9105. llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
  9106. llvm::ArrayType::get(Int32Ty, 1));
  9107. // Grab the global __cpu_model.
  9108. llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
  9109. cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
  9110. // Grab the first (0th) element from the field __cpu_features off of the
  9111. // global in the struct STy.
  9112. Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
  9113. Builder.getInt32(0)};
  9114. Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
  9115. Value *Features =
  9116. Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
  9117. // Check the value of the bit corresponding to the feature requested.
  9118. Value *Mask = Builder.getInt32(Features1);
  9119. Value *Bitset = Builder.CreateAnd(Features, Mask);
  9120. Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
  9121. Result = Builder.CreateAnd(Result, Cmp);
  9122. }
  9123. if (Features2 != 0) {
  9124. llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
  9125. "__cpu_features2");
  9126. cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
  9127. Value *Features =
  9128. Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4));
  9129. // Check the value of the bit corresponding to the feature requested.
  9130. Value *Mask = Builder.getInt32(Features2);
  9131. Value *Bitset = Builder.CreateAnd(Features, Mask);
  9132. Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
  9133. Result = Builder.CreateAnd(Result, Cmp);
  9134. }
  9135. return Result;
  9136. }
  9137. Value *CodeGenFunction::EmitX86CpuInit() {
  9138. llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
  9139. /*Variadic*/ false);
  9140. llvm::FunctionCallee Func =
  9141. CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
  9142. cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
  9143. cast<llvm::GlobalValue>(Func.getCallee())
  9144. ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
  9145. return Builder.CreateCall(Func);
  9146. }
  9147. Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
  9148. const CallExpr *E) {
  9149. if (BuiltinID == X86::BI__builtin_cpu_is)
  9150. return EmitX86CpuIs(E);
  9151. if (BuiltinID == X86::BI__builtin_cpu_supports)
  9152. return EmitX86CpuSupports(E);
  9153. if (BuiltinID == X86::BI__builtin_cpu_init)
  9154. return EmitX86CpuInit();
  9155. SmallVector<Value*, 4> Ops;
  9156. // Find out if any arguments are required to be integer constant expressions.
  9157. unsigned ICEArguments = 0;
  9158. ASTContext::GetBuiltinTypeError Error;
  9159. getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
  9160. assert(Error == ASTContext::GE_None && "Should not codegen an error");
  9161. for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
  9162. // If this is a normal argument, just emit it as a scalar.
  9163. if ((ICEArguments & (1 << i)) == 0) {
  9164. Ops.push_back(EmitScalarExpr(E->getArg(i)));
  9165. continue;
  9166. }
  9167. // If this is required to be a constant, constant fold it so that we know
  9168. // that the generated intrinsic gets a ConstantInt.
  9169. llvm::APSInt Result;
  9170. bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
  9171. assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
  9172. Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
  9173. }
  9174. // These exist so that the builtin that takes an immediate can be bounds
  9175. // checked by clang to avoid passing bad immediates to the backend. Since
  9176. // AVX has a larger immediate than SSE we would need separate builtins to
  9177. // do the different bounds checking. Rather than create a clang specific
  9178. // SSE only builtin, this implements eight separate builtins to match gcc
  9179. // implementation.
  9180. auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
  9181. Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
  9182. llvm::Function *F = CGM.getIntrinsic(ID);
  9183. return Builder.CreateCall(F, Ops);
  9184. };
  9185. // For the vector forms of FP comparisons, translate the builtins directly to
  9186. // IR.
  9187. // TODO: The builtins could be removed if the SSE header files used vector
  9188. // extension comparisons directly (vector ordered/unordered may need
  9189. // additional support via __builtin_isnan()).
  9190. auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) {
  9191. Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
  9192. llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
  9193. llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
  9194. Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
  9195. return Builder.CreateBitCast(Sext, FPVecTy);
  9196. };
  9197. switch (BuiltinID) {
  9198. default: return nullptr;
  9199. case X86::BI_mm_prefetch: {
  9200. Value *Address = Ops[0];
  9201. ConstantInt *C = cast<ConstantInt>(Ops[1]);
  9202. Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
  9203. Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
  9204. Value *Data = ConstantInt::get(Int32Ty, 1);
  9205. Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
  9206. return Builder.CreateCall(F, {Address, RW, Locality, Data});
  9207. }
  9208. case X86::BI_mm_clflush: {
  9209. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
  9210. Ops[0]);
  9211. }
  9212. case X86::BI_mm_lfence: {
  9213. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
  9214. }
  9215. case X86::BI_mm_mfence: {
  9216. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
  9217. }
  9218. case X86::BI_mm_sfence: {
  9219. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
  9220. }
  9221. case X86::BI_mm_pause: {
  9222. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
  9223. }
  9224. case X86::BI__rdtsc: {
  9225. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
  9226. }
  9227. case X86::BI__builtin_ia32_rdtscp: {
  9228. Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
  9229. Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
  9230. Ops[0]);
  9231. return Builder.CreateExtractValue(Call, 0);
  9232. }
  9233. case X86::BI__builtin_ia32_lzcnt_u16:
  9234. case X86::BI__builtin_ia32_lzcnt_u32:
  9235. case X86::BI__builtin_ia32_lzcnt_u64: {
  9236. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
  9237. return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
  9238. }
  9239. case X86::BI__builtin_ia32_tzcnt_u16:
  9240. case X86::BI__builtin_ia32_tzcnt_u32:
  9241. case X86::BI__builtin_ia32_tzcnt_u64: {
  9242. Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
  9243. return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
  9244. }
  9245. case X86::BI__builtin_ia32_undef128:
  9246. case X86::BI__builtin_ia32_undef256:
  9247. case X86::BI__builtin_ia32_undef512:
  9248. // The x86 definition of "undef" is not the same as the LLVM definition
  9249. // (PR32176). We leave optimizing away an unnecessary zero constant to the
  9250. // IR optimizer and backend.
  9251. // TODO: If we had a "freeze" IR instruction to generate a fixed undef
  9252. // value, we should use that here instead of a zero.
  9253. return llvm::Constant::getNullValue(ConvertType(E->getType()));
  9254. case X86::BI__builtin_ia32_vec_init_v8qi:
  9255. case X86::BI__builtin_ia32_vec_init_v4hi:
  9256. case X86::BI__builtin_ia32_vec_init_v2si:
  9257. return Builder.CreateBitCast(BuildVector(Ops),
  9258. llvm::Type::getX86_MMXTy(getLLVMContext()));
  9259. case X86::BI__builtin_ia32_vec_ext_v2si:
  9260. case X86::BI__builtin_ia32_vec_ext_v16qi:
  9261. case X86::BI__builtin_ia32_vec_ext_v8hi:
  9262. case X86::BI__builtin_ia32_vec_ext_v4si:
  9263. case X86::BI__builtin_ia32_vec_ext_v4sf:
  9264. case X86::BI__builtin_ia32_vec_ext_v2di:
  9265. case X86::BI__builtin_ia32_vec_ext_v32qi:
  9266. case X86::BI__builtin_ia32_vec_ext_v16hi:
  9267. case X86::BI__builtin_ia32_vec_ext_v8si:
  9268. case X86::BI__builtin_ia32_vec_ext_v4di: {
  9269. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  9270. uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
  9271. Index &= NumElts - 1;
  9272. // These builtins exist so we can ensure the index is an ICE and in range.
  9273. // Otherwise we could just do this in the header file.
  9274. return Builder.CreateExtractElement(Ops[0], Index);
  9275. }
  9276. case X86::BI__builtin_ia32_vec_set_v16qi:
  9277. case X86::BI__builtin_ia32_vec_set_v8hi:
  9278. case X86::BI__builtin_ia32_vec_set_v4si:
  9279. case X86::BI__builtin_ia32_vec_set_v2di:
  9280. case X86::BI__builtin_ia32_vec_set_v32qi:
  9281. case X86::BI__builtin_ia32_vec_set_v16hi:
  9282. case X86::BI__builtin_ia32_vec_set_v8si:
  9283. case X86::BI__builtin_ia32_vec_set_v4di: {
  9284. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  9285. unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
  9286. Index &= NumElts - 1;
  9287. // These builtins exist so we can ensure the index is an ICE and in range.
  9288. // Otherwise we could just do this in the header file.
  9289. return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
  9290. }
  9291. case X86::BI_mm_setcsr:
  9292. case X86::BI__builtin_ia32_ldmxcsr: {
  9293. Address Tmp = CreateMemTemp(E->getArg(0)->getType());
  9294. Builder.CreateStore(Ops[0], Tmp);
  9295. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
  9296. Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
  9297. }
  9298. case X86::BI_mm_getcsr:
  9299. case X86::BI__builtin_ia32_stmxcsr: {
  9300. Address Tmp = CreateMemTemp(E->getType());
  9301. Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
  9302. Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
  9303. return Builder.CreateLoad(Tmp, "stmxcsr");
  9304. }
  9305. case X86::BI__builtin_ia32_xsave:
  9306. case X86::BI__builtin_ia32_xsave64:
  9307. case X86::BI__builtin_ia32_xrstor:
  9308. case X86::BI__builtin_ia32_xrstor64:
  9309. case X86::BI__builtin_ia32_xsaveopt:
  9310. case X86::BI__builtin_ia32_xsaveopt64:
  9311. case X86::BI__builtin_ia32_xrstors:
  9312. case X86::BI__builtin_ia32_xrstors64:
  9313. case X86::BI__builtin_ia32_xsavec:
  9314. case X86::BI__builtin_ia32_xsavec64:
  9315. case X86::BI__builtin_ia32_xsaves:
  9316. case X86::BI__builtin_ia32_xsaves64:
  9317. case X86::BI__builtin_ia32_xsetbv:
  9318. case X86::BI_xsetbv: {
  9319. Intrinsic::ID ID;
  9320. #define INTRINSIC_X86_XSAVE_ID(NAME) \
  9321. case X86::BI__builtin_ia32_##NAME: \
  9322. ID = Intrinsic::x86_##NAME; \
  9323. break
  9324. switch (BuiltinID) {
  9325. default: llvm_unreachable("Unsupported intrinsic!");
  9326. INTRINSIC_X86_XSAVE_ID(xsave);
  9327. INTRINSIC_X86_XSAVE_ID(xsave64);
  9328. INTRINSIC_X86_XSAVE_ID(xrstor);
  9329. INTRINSIC_X86_XSAVE_ID(xrstor64);
  9330. INTRINSIC_X86_XSAVE_ID(xsaveopt);
  9331. INTRINSIC_X86_XSAVE_ID(xsaveopt64);
  9332. INTRINSIC_X86_XSAVE_ID(xrstors);
  9333. INTRINSIC_X86_XSAVE_ID(xrstors64);
  9334. INTRINSIC_X86_XSAVE_ID(xsavec);
  9335. INTRINSIC_X86_XSAVE_ID(xsavec64);
  9336. INTRINSIC_X86_XSAVE_ID(xsaves);
  9337. INTRINSIC_X86_XSAVE_ID(xsaves64);
  9338. INTRINSIC_X86_XSAVE_ID(xsetbv);
  9339. case X86::BI_xsetbv:
  9340. ID = Intrinsic::x86_xsetbv;
  9341. break;
  9342. }
  9343. #undef INTRINSIC_X86_XSAVE_ID
  9344. Value *Mhi = Builder.CreateTrunc(
  9345. Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
  9346. Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
  9347. Ops[1] = Mhi;
  9348. Ops.push_back(Mlo);
  9349. return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
  9350. }
  9351. case X86::BI__builtin_ia32_xgetbv:
  9352. case X86::BI_xgetbv:
  9353. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
  9354. case X86::BI__builtin_ia32_storedqudi128_mask:
  9355. case X86::BI__builtin_ia32_storedqusi128_mask:
  9356. case X86::BI__builtin_ia32_storedquhi128_mask:
  9357. case X86::BI__builtin_ia32_storedquqi128_mask:
  9358. case X86::BI__builtin_ia32_storeupd128_mask:
  9359. case X86::BI__builtin_ia32_storeups128_mask:
  9360. case X86::BI__builtin_ia32_storedqudi256_mask:
  9361. case X86::BI__builtin_ia32_storedqusi256_mask:
  9362. case X86::BI__builtin_ia32_storedquhi256_mask:
  9363. case X86::BI__builtin_ia32_storedquqi256_mask:
  9364. case X86::BI__builtin_ia32_storeupd256_mask:
  9365. case X86::BI__builtin_ia32_storeups256_mask:
  9366. case X86::BI__builtin_ia32_storedqudi512_mask:
  9367. case X86::BI__builtin_ia32_storedqusi512_mask:
  9368. case X86::BI__builtin_ia32_storedquhi512_mask:
  9369. case X86::BI__builtin_ia32_storedquqi512_mask:
  9370. case X86::BI__builtin_ia32_storeupd512_mask:
  9371. case X86::BI__builtin_ia32_storeups512_mask:
  9372. return EmitX86MaskedStore(*this, Ops, 1);
  9373. case X86::BI__builtin_ia32_storess128_mask:
  9374. case X86::BI__builtin_ia32_storesd128_mask: {
  9375. return EmitX86MaskedStore(*this, Ops, 1);
  9376. }
  9377. case X86::BI__builtin_ia32_vpopcntb_128:
  9378. case X86::BI__builtin_ia32_vpopcntd_128:
  9379. case X86::BI__builtin_ia32_vpopcntq_128:
  9380. case X86::BI__builtin_ia32_vpopcntw_128:
  9381. case X86::BI__builtin_ia32_vpopcntb_256:
  9382. case X86::BI__builtin_ia32_vpopcntd_256:
  9383. case X86::BI__builtin_ia32_vpopcntq_256:
  9384. case X86::BI__builtin_ia32_vpopcntw_256:
  9385. case X86::BI__builtin_ia32_vpopcntb_512:
  9386. case X86::BI__builtin_ia32_vpopcntd_512:
  9387. case X86::BI__builtin_ia32_vpopcntq_512:
  9388. case X86::BI__builtin_ia32_vpopcntw_512: {
  9389. llvm::Type *ResultType = ConvertType(E->getType());
  9390. llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
  9391. return Builder.CreateCall(F, Ops);
  9392. }
  9393. case X86::BI__builtin_ia32_cvtmask2b128:
  9394. case X86::BI__builtin_ia32_cvtmask2b256:
  9395. case X86::BI__builtin_ia32_cvtmask2b512:
  9396. case X86::BI__builtin_ia32_cvtmask2w128:
  9397. case X86::BI__builtin_ia32_cvtmask2w256:
  9398. case X86::BI__builtin_ia32_cvtmask2w512:
  9399. case X86::BI__builtin_ia32_cvtmask2d128:
  9400. case X86::BI__builtin_ia32_cvtmask2d256:
  9401. case X86::BI__builtin_ia32_cvtmask2d512:
  9402. case X86::BI__builtin_ia32_cvtmask2q128:
  9403. case X86::BI__builtin_ia32_cvtmask2q256:
  9404. case X86::BI__builtin_ia32_cvtmask2q512:
  9405. return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
  9406. case X86::BI__builtin_ia32_cvtb2mask128:
  9407. case X86::BI__builtin_ia32_cvtb2mask256:
  9408. case X86::BI__builtin_ia32_cvtb2mask512:
  9409. case X86::BI__builtin_ia32_cvtw2mask128:
  9410. case X86::BI__builtin_ia32_cvtw2mask256:
  9411. case X86::BI__builtin_ia32_cvtw2mask512:
  9412. case X86::BI__builtin_ia32_cvtd2mask128:
  9413. case X86::BI__builtin_ia32_cvtd2mask256:
  9414. case X86::BI__builtin_ia32_cvtd2mask512:
  9415. case X86::BI__builtin_ia32_cvtq2mask128:
  9416. case X86::BI__builtin_ia32_cvtq2mask256:
  9417. case X86::BI__builtin_ia32_cvtq2mask512:
  9418. return EmitX86ConvertToMask(*this, Ops[0]);
  9419. case X86::BI__builtin_ia32_cvtdq2ps512_mask:
  9420. case X86::BI__builtin_ia32_cvtqq2ps512_mask:
  9421. case X86::BI__builtin_ia32_cvtqq2pd512_mask:
  9422. return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true);
  9423. case X86::BI__builtin_ia32_cvtudq2ps512_mask:
  9424. case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
  9425. case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
  9426. return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false);
  9427. case X86::BI__builtin_ia32_vfmaddss3:
  9428. case X86::BI__builtin_ia32_vfmaddsd3:
  9429. case X86::BI__builtin_ia32_vfmaddss3_mask:
  9430. case X86::BI__builtin_ia32_vfmaddsd3_mask:
  9431. return EmitScalarFMAExpr(*this, Ops, Ops[0]);
  9432. case X86::BI__builtin_ia32_vfmaddss:
  9433. case X86::BI__builtin_ia32_vfmaddsd:
  9434. return EmitScalarFMAExpr(*this, Ops,
  9435. Constant::getNullValue(Ops[0]->getType()));
  9436. case X86::BI__builtin_ia32_vfmaddss3_maskz:
  9437. case X86::BI__builtin_ia32_vfmaddsd3_maskz:
  9438. return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true);
  9439. case X86::BI__builtin_ia32_vfmaddss3_mask3:
  9440. case X86::BI__builtin_ia32_vfmaddsd3_mask3:
  9441. return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2);
  9442. case X86::BI__builtin_ia32_vfmsubss3_mask3:
  9443. case X86::BI__builtin_ia32_vfmsubsd3_mask3:
  9444. return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2,
  9445. /*NegAcc*/true);
  9446. case X86::BI__builtin_ia32_vfmaddps:
  9447. case X86::BI__builtin_ia32_vfmaddpd:
  9448. case X86::BI__builtin_ia32_vfmaddps256:
  9449. case X86::BI__builtin_ia32_vfmaddpd256:
  9450. case X86::BI__builtin_ia32_vfmaddps512_mask:
  9451. case X86::BI__builtin_ia32_vfmaddps512_maskz:
  9452. case X86::BI__builtin_ia32_vfmaddps512_mask3:
  9453. case X86::BI__builtin_ia32_vfmsubps512_mask3:
  9454. case X86::BI__builtin_ia32_vfmaddpd512_mask:
  9455. case X86::BI__builtin_ia32_vfmaddpd512_maskz:
  9456. case X86::BI__builtin_ia32_vfmaddpd512_mask3:
  9457. case X86::BI__builtin_ia32_vfmsubpd512_mask3:
  9458. return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false);
  9459. case X86::BI__builtin_ia32_vfmaddsubps:
  9460. case X86::BI__builtin_ia32_vfmaddsubpd:
  9461. case X86::BI__builtin_ia32_vfmaddsubps256:
  9462. case X86::BI__builtin_ia32_vfmaddsubpd256:
  9463. case X86::BI__builtin_ia32_vfmaddsubps512_mask:
  9464. case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
  9465. case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
  9466. case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
  9467. case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
  9468. case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
  9469. case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
  9470. case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
  9471. return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true);
  9472. case X86::BI__builtin_ia32_movdqa32store128_mask:
  9473. case X86::BI__builtin_ia32_movdqa64store128_mask:
  9474. case X86::BI__builtin_ia32_storeaps128_mask:
  9475. case X86::BI__builtin_ia32_storeapd128_mask:
  9476. case X86::BI__builtin_ia32_movdqa32store256_mask:
  9477. case X86::BI__builtin_ia32_movdqa64store256_mask:
  9478. case X86::BI__builtin_ia32_storeaps256_mask:
  9479. case X86::BI__builtin_ia32_storeapd256_mask:
  9480. case X86::BI__builtin_ia32_movdqa32store512_mask:
  9481. case X86::BI__builtin_ia32_movdqa64store512_mask:
  9482. case X86::BI__builtin_ia32_storeaps512_mask:
  9483. case X86::BI__builtin_ia32_storeapd512_mask: {
  9484. unsigned Align =
  9485. getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
  9486. return EmitX86MaskedStore(*this, Ops, Align);
  9487. }
  9488. case X86::BI__builtin_ia32_loadups128_mask:
  9489. case X86::BI__builtin_ia32_loadups256_mask:
  9490. case X86::BI__builtin_ia32_loadups512_mask:
  9491. case X86::BI__builtin_ia32_loadupd128_mask:
  9492. case X86::BI__builtin_ia32_loadupd256_mask:
  9493. case X86::BI__builtin_ia32_loadupd512_mask:
  9494. case X86::BI__builtin_ia32_loaddquqi128_mask:
  9495. case X86::BI__builtin_ia32_loaddquqi256_mask:
  9496. case X86::BI__builtin_ia32_loaddquqi512_mask:
  9497. case X86::BI__builtin_ia32_loaddquhi128_mask:
  9498. case X86::BI__builtin_ia32_loaddquhi256_mask:
  9499. case X86::BI__builtin_ia32_loaddquhi512_mask:
  9500. case X86::BI__builtin_ia32_loaddqusi128_mask:
  9501. case X86::BI__builtin_ia32_loaddqusi256_mask:
  9502. case X86::BI__builtin_ia32_loaddqusi512_mask:
  9503. case X86::BI__builtin_ia32_loaddqudi128_mask:
  9504. case X86::BI__builtin_ia32_loaddqudi256_mask:
  9505. case X86::BI__builtin_ia32_loaddqudi512_mask:
  9506. return EmitX86MaskedLoad(*this, Ops, 1);
  9507. case X86::BI__builtin_ia32_loadss128_mask:
  9508. case X86::BI__builtin_ia32_loadsd128_mask:
  9509. return EmitX86MaskedLoad(*this, Ops, 1);
  9510. case X86::BI__builtin_ia32_loadaps128_mask:
  9511. case X86::BI__builtin_ia32_loadaps256_mask:
  9512. case X86::BI__builtin_ia32_loadaps512_mask:
  9513. case X86::BI__builtin_ia32_loadapd128_mask:
  9514. case X86::BI__builtin_ia32_loadapd256_mask:
  9515. case X86::BI__builtin_ia32_loadapd512_mask:
  9516. case X86::BI__builtin_ia32_movdqa32load128_mask:
  9517. case X86::BI__builtin_ia32_movdqa32load256_mask:
  9518. case X86::BI__builtin_ia32_movdqa32load512_mask:
  9519. case X86::BI__builtin_ia32_movdqa64load128_mask:
  9520. case X86::BI__builtin_ia32_movdqa64load256_mask:
  9521. case X86::BI__builtin_ia32_movdqa64load512_mask: {
  9522. unsigned Align =
  9523. getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
  9524. return EmitX86MaskedLoad(*this, Ops, Align);
  9525. }
  9526. case X86::BI__builtin_ia32_expandloaddf128_mask:
  9527. case X86::BI__builtin_ia32_expandloaddf256_mask:
  9528. case X86::BI__builtin_ia32_expandloaddf512_mask:
  9529. case X86::BI__builtin_ia32_expandloadsf128_mask:
  9530. case X86::BI__builtin_ia32_expandloadsf256_mask:
  9531. case X86::BI__builtin_ia32_expandloadsf512_mask:
  9532. case X86::BI__builtin_ia32_expandloaddi128_mask:
  9533. case X86::BI__builtin_ia32_expandloaddi256_mask:
  9534. case X86::BI__builtin_ia32_expandloaddi512_mask:
  9535. case X86::BI__builtin_ia32_expandloadsi128_mask:
  9536. case X86::BI__builtin_ia32_expandloadsi256_mask:
  9537. case X86::BI__builtin_ia32_expandloadsi512_mask:
  9538. case X86::BI__builtin_ia32_expandloadhi128_mask:
  9539. case X86::BI__builtin_ia32_expandloadhi256_mask:
  9540. case X86::BI__builtin_ia32_expandloadhi512_mask:
  9541. case X86::BI__builtin_ia32_expandloadqi128_mask:
  9542. case X86::BI__builtin_ia32_expandloadqi256_mask:
  9543. case X86::BI__builtin_ia32_expandloadqi512_mask:
  9544. return EmitX86ExpandLoad(*this, Ops);
  9545. case X86::BI__builtin_ia32_compressstoredf128_mask:
  9546. case X86::BI__builtin_ia32_compressstoredf256_mask:
  9547. case X86::BI__builtin_ia32_compressstoredf512_mask:
  9548. case X86::BI__builtin_ia32_compressstoresf128_mask:
  9549. case X86::BI__builtin_ia32_compressstoresf256_mask:
  9550. case X86::BI__builtin_ia32_compressstoresf512_mask:
  9551. case X86::BI__builtin_ia32_compressstoredi128_mask:
  9552. case X86::BI__builtin_ia32_compressstoredi256_mask:
  9553. case X86::BI__builtin_ia32_compressstoredi512_mask:
  9554. case X86::BI__builtin_ia32_compressstoresi128_mask:
  9555. case X86::BI__builtin_ia32_compressstoresi256_mask:
  9556. case X86::BI__builtin_ia32_compressstoresi512_mask:
  9557. case X86::BI__builtin_ia32_compressstorehi128_mask:
  9558. case X86::BI__builtin_ia32_compressstorehi256_mask:
  9559. case X86::BI__builtin_ia32_compressstorehi512_mask:
  9560. case X86::BI__builtin_ia32_compressstoreqi128_mask:
  9561. case X86::BI__builtin_ia32_compressstoreqi256_mask:
  9562. case X86::BI__builtin_ia32_compressstoreqi512_mask:
  9563. return EmitX86CompressStore(*this, Ops);
  9564. case X86::BI__builtin_ia32_expanddf128_mask:
  9565. case X86::BI__builtin_ia32_expanddf256_mask:
  9566. case X86::BI__builtin_ia32_expanddf512_mask:
  9567. case X86::BI__builtin_ia32_expandsf128_mask:
  9568. case X86::BI__builtin_ia32_expandsf256_mask:
  9569. case X86::BI__builtin_ia32_expandsf512_mask:
  9570. case X86::BI__builtin_ia32_expanddi128_mask:
  9571. case X86::BI__builtin_ia32_expanddi256_mask:
  9572. case X86::BI__builtin_ia32_expanddi512_mask:
  9573. case X86::BI__builtin_ia32_expandsi128_mask:
  9574. case X86::BI__builtin_ia32_expandsi256_mask:
  9575. case X86::BI__builtin_ia32_expandsi512_mask:
  9576. case X86::BI__builtin_ia32_expandhi128_mask:
  9577. case X86::BI__builtin_ia32_expandhi256_mask:
  9578. case X86::BI__builtin_ia32_expandhi512_mask:
  9579. case X86::BI__builtin_ia32_expandqi128_mask:
  9580. case X86::BI__builtin_ia32_expandqi256_mask:
  9581. case X86::BI__builtin_ia32_expandqi512_mask:
  9582. return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
  9583. case X86::BI__builtin_ia32_compressdf128_mask:
  9584. case X86::BI__builtin_ia32_compressdf256_mask:
  9585. case X86::BI__builtin_ia32_compressdf512_mask:
  9586. case X86::BI__builtin_ia32_compresssf128_mask:
  9587. case X86::BI__builtin_ia32_compresssf256_mask:
  9588. case X86::BI__builtin_ia32_compresssf512_mask:
  9589. case X86::BI__builtin_ia32_compressdi128_mask:
  9590. case X86::BI__builtin_ia32_compressdi256_mask:
  9591. case X86::BI__builtin_ia32_compressdi512_mask:
  9592. case X86::BI__builtin_ia32_compresssi128_mask:
  9593. case X86::BI__builtin_ia32_compresssi256_mask:
  9594. case X86::BI__builtin_ia32_compresssi512_mask:
  9595. case X86::BI__builtin_ia32_compresshi128_mask:
  9596. case X86::BI__builtin_ia32_compresshi256_mask:
  9597. case X86::BI__builtin_ia32_compresshi512_mask:
  9598. case X86::BI__builtin_ia32_compressqi128_mask:
  9599. case X86::BI__builtin_ia32_compressqi256_mask:
  9600. case X86::BI__builtin_ia32_compressqi512_mask:
  9601. return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
  9602. case X86::BI__builtin_ia32_gather3div2df:
  9603. case X86::BI__builtin_ia32_gather3div2di:
  9604. case X86::BI__builtin_ia32_gather3div4df:
  9605. case X86::BI__builtin_ia32_gather3div4di:
  9606. case X86::BI__builtin_ia32_gather3div4sf:
  9607. case X86::BI__builtin_ia32_gather3div4si:
  9608. case X86::BI__builtin_ia32_gather3div8sf:
  9609. case X86::BI__builtin_ia32_gather3div8si:
  9610. case X86::BI__builtin_ia32_gather3siv2df:
  9611. case X86::BI__builtin_ia32_gather3siv2di:
  9612. case X86::BI__builtin_ia32_gather3siv4df:
  9613. case X86::BI__builtin_ia32_gather3siv4di:
  9614. case X86::BI__builtin_ia32_gather3siv4sf:
  9615. case X86::BI__builtin_ia32_gather3siv4si:
  9616. case X86::BI__builtin_ia32_gather3siv8sf:
  9617. case X86::BI__builtin_ia32_gather3siv8si:
  9618. case X86::BI__builtin_ia32_gathersiv8df:
  9619. case X86::BI__builtin_ia32_gathersiv16sf:
  9620. case X86::BI__builtin_ia32_gatherdiv8df:
  9621. case X86::BI__builtin_ia32_gatherdiv16sf:
  9622. case X86::BI__builtin_ia32_gathersiv8di:
  9623. case X86::BI__builtin_ia32_gathersiv16si:
  9624. case X86::BI__builtin_ia32_gatherdiv8di:
  9625. case X86::BI__builtin_ia32_gatherdiv16si: {
  9626. Intrinsic::ID IID;
  9627. switch (BuiltinID) {
  9628. default: llvm_unreachable("Unexpected builtin");
  9629. case X86::BI__builtin_ia32_gather3div2df:
  9630. IID = Intrinsic::x86_avx512_mask_gather3div2_df;
  9631. break;
  9632. case X86::BI__builtin_ia32_gather3div2di:
  9633. IID = Intrinsic::x86_avx512_mask_gather3div2_di;
  9634. break;
  9635. case X86::BI__builtin_ia32_gather3div4df:
  9636. IID = Intrinsic::x86_avx512_mask_gather3div4_df;
  9637. break;
  9638. case X86::BI__builtin_ia32_gather3div4di:
  9639. IID = Intrinsic::x86_avx512_mask_gather3div4_di;
  9640. break;
  9641. case X86::BI__builtin_ia32_gather3div4sf:
  9642. IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
  9643. break;
  9644. case X86::BI__builtin_ia32_gather3div4si:
  9645. IID = Intrinsic::x86_avx512_mask_gather3div4_si;
  9646. break;
  9647. case X86::BI__builtin_ia32_gather3div8sf:
  9648. IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
  9649. break;
  9650. case X86::BI__builtin_ia32_gather3div8si:
  9651. IID = Intrinsic::x86_avx512_mask_gather3div8_si;
  9652. break;
  9653. case X86::BI__builtin_ia32_gather3siv2df:
  9654. IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
  9655. break;
  9656. case X86::BI__builtin_ia32_gather3siv2di:
  9657. IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
  9658. break;
  9659. case X86::BI__builtin_ia32_gather3siv4df:
  9660. IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
  9661. break;
  9662. case X86::BI__builtin_ia32_gather3siv4di:
  9663. IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
  9664. break;
  9665. case X86::BI__builtin_ia32_gather3siv4sf:
  9666. IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
  9667. break;
  9668. case X86::BI__builtin_ia32_gather3siv4si:
  9669. IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
  9670. break;
  9671. case X86::BI__builtin_ia32_gather3siv8sf:
  9672. IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
  9673. break;
  9674. case X86::BI__builtin_ia32_gather3siv8si:
  9675. IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
  9676. break;
  9677. case X86::BI__builtin_ia32_gathersiv8df:
  9678. IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
  9679. break;
  9680. case X86::BI__builtin_ia32_gathersiv16sf:
  9681. IID = Intrinsic::x86_avx512_mask_gather_dps_512;
  9682. break;
  9683. case X86::BI__builtin_ia32_gatherdiv8df:
  9684. IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
  9685. break;
  9686. case X86::BI__builtin_ia32_gatherdiv16sf:
  9687. IID = Intrinsic::x86_avx512_mask_gather_qps_512;
  9688. break;
  9689. case X86::BI__builtin_ia32_gathersiv8di:
  9690. IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
  9691. break;
  9692. case X86::BI__builtin_ia32_gathersiv16si:
  9693. IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
  9694. break;
  9695. case X86::BI__builtin_ia32_gatherdiv8di:
  9696. IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
  9697. break;
  9698. case X86::BI__builtin_ia32_gatherdiv16si:
  9699. IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
  9700. break;
  9701. }
  9702. unsigned MinElts = std::min(Ops[0]->getType()->getVectorNumElements(),
  9703. Ops[2]->getType()->getVectorNumElements());
  9704. Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
  9705. Function *Intr = CGM.getIntrinsic(IID);
  9706. return Builder.CreateCall(Intr, Ops);
  9707. }
  9708. case X86::BI__builtin_ia32_scattersiv8df:
  9709. case X86::BI__builtin_ia32_scattersiv16sf:
  9710. case X86::BI__builtin_ia32_scatterdiv8df:
  9711. case X86::BI__builtin_ia32_scatterdiv16sf:
  9712. case X86::BI__builtin_ia32_scattersiv8di:
  9713. case X86::BI__builtin_ia32_scattersiv16si:
  9714. case X86::BI__builtin_ia32_scatterdiv8di:
  9715. case X86::BI__builtin_ia32_scatterdiv16si:
  9716. case X86::BI__builtin_ia32_scatterdiv2df:
  9717. case X86::BI__builtin_ia32_scatterdiv2di:
  9718. case X86::BI__builtin_ia32_scatterdiv4df:
  9719. case X86::BI__builtin_ia32_scatterdiv4di:
  9720. case X86::BI__builtin_ia32_scatterdiv4sf:
  9721. case X86::BI__builtin_ia32_scatterdiv4si:
  9722. case X86::BI__builtin_ia32_scatterdiv8sf:
  9723. case X86::BI__builtin_ia32_scatterdiv8si:
  9724. case X86::BI__builtin_ia32_scattersiv2df:
  9725. case X86::BI__builtin_ia32_scattersiv2di:
  9726. case X86::BI__builtin_ia32_scattersiv4df:
  9727. case X86::BI__builtin_ia32_scattersiv4di:
  9728. case X86::BI__builtin_ia32_scattersiv4sf:
  9729. case X86::BI__builtin_ia32_scattersiv4si:
  9730. case X86::BI__builtin_ia32_scattersiv8sf:
  9731. case X86::BI__builtin_ia32_scattersiv8si: {
  9732. Intrinsic::ID IID;
  9733. switch (BuiltinID) {
  9734. default: llvm_unreachable("Unexpected builtin");
  9735. case X86::BI__builtin_ia32_scattersiv8df:
  9736. IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
  9737. break;
  9738. case X86::BI__builtin_ia32_scattersiv16sf:
  9739. IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
  9740. break;
  9741. case X86::BI__builtin_ia32_scatterdiv8df:
  9742. IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
  9743. break;
  9744. case X86::BI__builtin_ia32_scatterdiv16sf:
  9745. IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
  9746. break;
  9747. case X86::BI__builtin_ia32_scattersiv8di:
  9748. IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
  9749. break;
  9750. case X86::BI__builtin_ia32_scattersiv16si:
  9751. IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
  9752. break;
  9753. case X86::BI__builtin_ia32_scatterdiv8di:
  9754. IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
  9755. break;
  9756. case X86::BI__builtin_ia32_scatterdiv16si:
  9757. IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
  9758. break;
  9759. case X86::BI__builtin_ia32_scatterdiv2df:
  9760. IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
  9761. break;
  9762. case X86::BI__builtin_ia32_scatterdiv2di:
  9763. IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
  9764. break;
  9765. case X86::BI__builtin_ia32_scatterdiv4df:
  9766. IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
  9767. break;
  9768. case X86::BI__builtin_ia32_scatterdiv4di:
  9769. IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
  9770. break;
  9771. case X86::BI__builtin_ia32_scatterdiv4sf:
  9772. IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
  9773. break;
  9774. case X86::BI__builtin_ia32_scatterdiv4si:
  9775. IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
  9776. break;
  9777. case X86::BI__builtin_ia32_scatterdiv8sf:
  9778. IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
  9779. break;
  9780. case X86::BI__builtin_ia32_scatterdiv8si:
  9781. IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
  9782. break;
  9783. case X86::BI__builtin_ia32_scattersiv2df:
  9784. IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
  9785. break;
  9786. case X86::BI__builtin_ia32_scattersiv2di:
  9787. IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
  9788. break;
  9789. case X86::BI__builtin_ia32_scattersiv4df:
  9790. IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
  9791. break;
  9792. case X86::BI__builtin_ia32_scattersiv4di:
  9793. IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
  9794. break;
  9795. case X86::BI__builtin_ia32_scattersiv4sf:
  9796. IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
  9797. break;
  9798. case X86::BI__builtin_ia32_scattersiv4si:
  9799. IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
  9800. break;
  9801. case X86::BI__builtin_ia32_scattersiv8sf:
  9802. IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
  9803. break;
  9804. case X86::BI__builtin_ia32_scattersiv8si:
  9805. IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
  9806. break;
  9807. }
  9808. unsigned MinElts = std::min(Ops[2]->getType()->getVectorNumElements(),
  9809. Ops[3]->getType()->getVectorNumElements());
  9810. Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
  9811. Function *Intr = CGM.getIntrinsic(IID);
  9812. return Builder.CreateCall(Intr, Ops);
  9813. }
  9814. case X86::BI__builtin_ia32_vextractf128_pd256:
  9815. case X86::BI__builtin_ia32_vextractf128_ps256:
  9816. case X86::BI__builtin_ia32_vextractf128_si256:
  9817. case X86::BI__builtin_ia32_extract128i256:
  9818. case X86::BI__builtin_ia32_extractf64x4_mask:
  9819. case X86::BI__builtin_ia32_extractf32x4_mask:
  9820. case X86::BI__builtin_ia32_extracti64x4_mask:
  9821. case X86::BI__builtin_ia32_extracti32x4_mask:
  9822. case X86::BI__builtin_ia32_extractf32x8_mask:
  9823. case X86::BI__builtin_ia32_extracti32x8_mask:
  9824. case X86::BI__builtin_ia32_extractf32x4_256_mask:
  9825. case X86::BI__builtin_ia32_extracti32x4_256_mask:
  9826. case X86::BI__builtin_ia32_extractf64x2_256_mask:
  9827. case X86::BI__builtin_ia32_extracti64x2_256_mask:
  9828. case X86::BI__builtin_ia32_extractf64x2_512_mask:
  9829. case X86::BI__builtin_ia32_extracti64x2_512_mask: {
  9830. llvm::Type *DstTy = ConvertType(E->getType());
  9831. unsigned NumElts = DstTy->getVectorNumElements();
  9832. unsigned SrcNumElts = Ops[0]->getType()->getVectorNumElements();
  9833. unsigned SubVectors = SrcNumElts / NumElts;
  9834. unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
  9835. assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
  9836. Index &= SubVectors - 1; // Remove any extra bits.
  9837. Index *= NumElts;
  9838. uint32_t Indices[16];
  9839. for (unsigned i = 0; i != NumElts; ++i)
  9840. Indices[i] = i + Index;
  9841. Value *Res = Builder.CreateShuffleVector(Ops[0],
  9842. UndefValue::get(Ops[0]->getType()),
  9843. makeArrayRef(Indices, NumElts),
  9844. "extract");
  9845. if (Ops.size() == 4)
  9846. Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
  9847. return Res;
  9848. }
  9849. case X86::BI__builtin_ia32_vinsertf128_pd256:
  9850. case X86::BI__builtin_ia32_vinsertf128_ps256:
  9851. case X86::BI__builtin_ia32_vinsertf128_si256:
  9852. case X86::BI__builtin_ia32_insert128i256:
  9853. case X86::BI__builtin_ia32_insertf64x4:
  9854. case X86::BI__builtin_ia32_insertf32x4:
  9855. case X86::BI__builtin_ia32_inserti64x4:
  9856. case X86::BI__builtin_ia32_inserti32x4:
  9857. case X86::BI__builtin_ia32_insertf32x8:
  9858. case X86::BI__builtin_ia32_inserti32x8:
  9859. case X86::BI__builtin_ia32_insertf32x4_256:
  9860. case X86::BI__builtin_ia32_inserti32x4_256:
  9861. case X86::BI__builtin_ia32_insertf64x2_256:
  9862. case X86::BI__builtin_ia32_inserti64x2_256:
  9863. case X86::BI__builtin_ia32_insertf64x2_512:
  9864. case X86::BI__builtin_ia32_inserti64x2_512: {
  9865. unsigned DstNumElts = Ops[0]->getType()->getVectorNumElements();
  9866. unsigned SrcNumElts = Ops[1]->getType()->getVectorNumElements();
  9867. unsigned SubVectors = DstNumElts / SrcNumElts;
  9868. unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
  9869. assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
  9870. Index &= SubVectors - 1; // Remove any extra bits.
  9871. Index *= SrcNumElts;
  9872. uint32_t Indices[16];
  9873. for (unsigned i = 0; i != DstNumElts; ++i)
  9874. Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
  9875. Value *Op1 = Builder.CreateShuffleVector(Ops[1],
  9876. UndefValue::get(Ops[1]->getType()),
  9877. makeArrayRef(Indices, DstNumElts),
  9878. "widen");
  9879. for (unsigned i = 0; i != DstNumElts; ++i) {
  9880. if (i >= Index && i < (Index + SrcNumElts))
  9881. Indices[i] = (i - Index) + DstNumElts;
  9882. else
  9883. Indices[i] = i;
  9884. }
  9885. return Builder.CreateShuffleVector(Ops[0], Op1,
  9886. makeArrayRef(Indices, DstNumElts),
  9887. "insert");
  9888. }
  9889. case X86::BI__builtin_ia32_pmovqd512_mask:
  9890. case X86::BI__builtin_ia32_pmovwb512_mask: {
  9891. Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
  9892. return EmitX86Select(*this, Ops[2], Res, Ops[1]);
  9893. }
  9894. case X86::BI__builtin_ia32_pmovdb512_mask:
  9895. case X86::BI__builtin_ia32_pmovdw512_mask:
  9896. case X86::BI__builtin_ia32_pmovqw512_mask: {
  9897. if (const auto *C = dyn_cast<Constant>(Ops[2]))
  9898. if (C->isAllOnesValue())
  9899. return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
  9900. Intrinsic::ID IID;
  9901. switch (BuiltinID) {
  9902. default: llvm_unreachable("Unsupported intrinsic!");
  9903. case X86::BI__builtin_ia32_pmovdb512_mask:
  9904. IID = Intrinsic::x86_avx512_mask_pmov_db_512;
  9905. break;
  9906. case X86::BI__builtin_ia32_pmovdw512_mask:
  9907. IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
  9908. break;
  9909. case X86::BI__builtin_ia32_pmovqw512_mask:
  9910. IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
  9911. break;
  9912. }
  9913. Function *Intr = CGM.getIntrinsic(IID);
  9914. return Builder.CreateCall(Intr, Ops);
  9915. }
  9916. case X86::BI__builtin_ia32_pblendw128:
  9917. case X86::BI__builtin_ia32_blendpd:
  9918. case X86::BI__builtin_ia32_blendps:
  9919. case X86::BI__builtin_ia32_blendpd256:
  9920. case X86::BI__builtin_ia32_blendps256:
  9921. case X86::BI__builtin_ia32_pblendw256:
  9922. case X86::BI__builtin_ia32_pblendd128:
  9923. case X86::BI__builtin_ia32_pblendd256: {
  9924. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  9925. unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
  9926. uint32_t Indices[16];
  9927. // If there are more than 8 elements, the immediate is used twice so make
  9928. // sure we handle that.
  9929. for (unsigned i = 0; i != NumElts; ++i)
  9930. Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
  9931. return Builder.CreateShuffleVector(Ops[0], Ops[1],
  9932. makeArrayRef(Indices, NumElts),
  9933. "blend");
  9934. }
  9935. case X86::BI__builtin_ia32_pshuflw:
  9936. case X86::BI__builtin_ia32_pshuflw256:
  9937. case X86::BI__builtin_ia32_pshuflw512: {
  9938. uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
  9939. llvm::Type *Ty = Ops[0]->getType();
  9940. unsigned NumElts = Ty->getVectorNumElements();
  9941. // Splat the 8-bits of immediate 4 times to help the loop wrap around.
  9942. Imm = (Imm & 0xff) * 0x01010101;
  9943. uint32_t Indices[32];
  9944. for (unsigned l = 0; l != NumElts; l += 8) {
  9945. for (unsigned i = 0; i != 4; ++i) {
  9946. Indices[l + i] = l + (Imm & 3);
  9947. Imm >>= 2;
  9948. }
  9949. for (unsigned i = 4; i != 8; ++i)
  9950. Indices[l + i] = l + i;
  9951. }
  9952. return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
  9953. makeArrayRef(Indices, NumElts),
  9954. "pshuflw");
  9955. }
  9956. case X86::BI__builtin_ia32_pshufhw:
  9957. case X86::BI__builtin_ia32_pshufhw256:
  9958. case X86::BI__builtin_ia32_pshufhw512: {
  9959. uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
  9960. llvm::Type *Ty = Ops[0]->getType();
  9961. unsigned NumElts = Ty->getVectorNumElements();
  9962. // Splat the 8-bits of immediate 4 times to help the loop wrap around.
  9963. Imm = (Imm & 0xff) * 0x01010101;
  9964. uint32_t Indices[32];
  9965. for (unsigned l = 0; l != NumElts; l += 8) {
  9966. for (unsigned i = 0; i != 4; ++i)
  9967. Indices[l + i] = l + i;
  9968. for (unsigned i = 4; i != 8; ++i) {
  9969. Indices[l + i] = l + 4 + (Imm & 3);
  9970. Imm >>= 2;
  9971. }
  9972. }
  9973. return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
  9974. makeArrayRef(Indices, NumElts),
  9975. "pshufhw");
  9976. }
  9977. case X86::BI__builtin_ia32_pshufd:
  9978. case X86::BI__builtin_ia32_pshufd256:
  9979. case X86::BI__builtin_ia32_pshufd512:
  9980. case X86::BI__builtin_ia32_vpermilpd:
  9981. case X86::BI__builtin_ia32_vpermilps:
  9982. case X86::BI__builtin_ia32_vpermilpd256:
  9983. case X86::BI__builtin_ia32_vpermilps256:
  9984. case X86::BI__builtin_ia32_vpermilpd512:
  9985. case X86::BI__builtin_ia32_vpermilps512: {
  9986. uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
  9987. llvm::Type *Ty = Ops[0]->getType();
  9988. unsigned NumElts = Ty->getVectorNumElements();
  9989. unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
  9990. unsigned NumLaneElts = NumElts / NumLanes;
  9991. // Splat the 8-bits of immediate 4 times to help the loop wrap around.
  9992. Imm = (Imm & 0xff) * 0x01010101;
  9993. uint32_t Indices[16];
  9994. for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
  9995. for (unsigned i = 0; i != NumLaneElts; ++i) {
  9996. Indices[i + l] = (Imm % NumLaneElts) + l;
  9997. Imm /= NumLaneElts;
  9998. }
  9999. }
  10000. return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
  10001. makeArrayRef(Indices, NumElts),
  10002. "permil");
  10003. }
  10004. case X86::BI__builtin_ia32_shufpd:
  10005. case X86::BI__builtin_ia32_shufpd256:
  10006. case X86::BI__builtin_ia32_shufpd512:
  10007. case X86::BI__builtin_ia32_shufps:
  10008. case X86::BI__builtin_ia32_shufps256:
  10009. case X86::BI__builtin_ia32_shufps512: {
  10010. uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
  10011. llvm::Type *Ty = Ops[0]->getType();
  10012. unsigned NumElts = Ty->getVectorNumElements();
  10013. unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
  10014. unsigned NumLaneElts = NumElts / NumLanes;
  10015. // Splat the 8-bits of immediate 4 times to help the loop wrap around.
  10016. Imm = (Imm & 0xff) * 0x01010101;
  10017. uint32_t Indices[16];
  10018. for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
  10019. for (unsigned i = 0; i != NumLaneElts; ++i) {
  10020. unsigned Index = Imm % NumLaneElts;
  10021. Imm /= NumLaneElts;
  10022. if (i >= (NumLaneElts / 2))
  10023. Index += NumElts;
  10024. Indices[l + i] = l + Index;
  10025. }
  10026. }
  10027. return Builder.CreateShuffleVector(Ops[0], Ops[1],
  10028. makeArrayRef(Indices, NumElts),
  10029. "shufp");
  10030. }
  10031. case X86::BI__builtin_ia32_permdi256:
  10032. case X86::BI__builtin_ia32_permdf256:
  10033. case X86::BI__builtin_ia32_permdi512:
  10034. case X86::BI__builtin_ia32_permdf512: {
  10035. unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
  10036. llvm::Type *Ty = Ops[0]->getType();
  10037. unsigned NumElts = Ty->getVectorNumElements();
  10038. // These intrinsics operate on 256-bit lanes of four 64-bit elements.
  10039. uint32_t Indices[8];
  10040. for (unsigned l = 0; l != NumElts; l += 4)
  10041. for (unsigned i = 0; i != 4; ++i)
  10042. Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
  10043. return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
  10044. makeArrayRef(Indices, NumElts),
  10045. "perm");
  10046. }
  10047. case X86::BI__builtin_ia32_palignr128:
  10048. case X86::BI__builtin_ia32_palignr256:
  10049. case X86::BI__builtin_ia32_palignr512: {
  10050. unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
  10051. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  10052. assert(NumElts % 16 == 0);
  10053. // If palignr is shifting the pair of vectors more than the size of two
  10054. // lanes, emit zero.
  10055. if (ShiftVal >= 32)
  10056. return llvm::Constant::getNullValue(ConvertType(E->getType()));
  10057. // If palignr is shifting the pair of input vectors more than one lane,
  10058. // but less than two lanes, convert to shifting in zeroes.
  10059. if (ShiftVal > 16) {
  10060. ShiftVal -= 16;
  10061. Ops[1] = Ops[0];
  10062. Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
  10063. }
  10064. uint32_t Indices[64];
  10065. // 256-bit palignr operates on 128-bit lanes so we need to handle that
  10066. for (unsigned l = 0; l != NumElts; l += 16) {
  10067. for (unsigned i = 0; i != 16; ++i) {
  10068. unsigned Idx = ShiftVal + i;
  10069. if (Idx >= 16)
  10070. Idx += NumElts - 16; // End of lane, switch operand.
  10071. Indices[l + i] = Idx + l;
  10072. }
  10073. }
  10074. return Builder.CreateShuffleVector(Ops[1], Ops[0],
  10075. makeArrayRef(Indices, NumElts),
  10076. "palignr");
  10077. }
  10078. case X86::BI__builtin_ia32_alignd128:
  10079. case X86::BI__builtin_ia32_alignd256:
  10080. case X86::BI__builtin_ia32_alignd512:
  10081. case X86::BI__builtin_ia32_alignq128:
  10082. case X86::BI__builtin_ia32_alignq256:
  10083. case X86::BI__builtin_ia32_alignq512: {
  10084. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  10085. unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
  10086. // Mask the shift amount to width of two vectors.
  10087. ShiftVal &= (2 * NumElts) - 1;
  10088. uint32_t Indices[16];
  10089. for (unsigned i = 0; i != NumElts; ++i)
  10090. Indices[i] = i + ShiftVal;
  10091. return Builder.CreateShuffleVector(Ops[1], Ops[0],
  10092. makeArrayRef(Indices, NumElts),
  10093. "valign");
  10094. }
  10095. case X86::BI__builtin_ia32_shuf_f32x4_256:
  10096. case X86::BI__builtin_ia32_shuf_f64x2_256:
  10097. case X86::BI__builtin_ia32_shuf_i32x4_256:
  10098. case X86::BI__builtin_ia32_shuf_i64x2_256:
  10099. case X86::BI__builtin_ia32_shuf_f32x4:
  10100. case X86::BI__builtin_ia32_shuf_f64x2:
  10101. case X86::BI__builtin_ia32_shuf_i32x4:
  10102. case X86::BI__builtin_ia32_shuf_i64x2: {
  10103. unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
  10104. llvm::Type *Ty = Ops[0]->getType();
  10105. unsigned NumElts = Ty->getVectorNumElements();
  10106. unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
  10107. unsigned NumLaneElts = NumElts / NumLanes;
  10108. uint32_t Indices[16];
  10109. for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
  10110. unsigned Index = (Imm % NumLanes) * NumLaneElts;
  10111. Imm /= NumLanes; // Discard the bits we just used.
  10112. if (l >= (NumElts / 2))
  10113. Index += NumElts; // Switch to other source.
  10114. for (unsigned i = 0; i != NumLaneElts; ++i) {
  10115. Indices[l + i] = Index + i;
  10116. }
  10117. }
  10118. return Builder.CreateShuffleVector(Ops[0], Ops[1],
  10119. makeArrayRef(Indices, NumElts),
  10120. "shuf");
  10121. }
  10122. case X86::BI__builtin_ia32_vperm2f128_pd256:
  10123. case X86::BI__builtin_ia32_vperm2f128_ps256:
  10124. case X86::BI__builtin_ia32_vperm2f128_si256:
  10125. case X86::BI__builtin_ia32_permti256: {
  10126. unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
  10127. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  10128. // This takes a very simple approach since there are two lanes and a
  10129. // shuffle can have 2 inputs. So we reserve the first input for the first
  10130. // lane and the second input for the second lane. This may result in
  10131. // duplicate sources, but this can be dealt with in the backend.
  10132. Value *OutOps[2];
  10133. uint32_t Indices[8];
  10134. for (unsigned l = 0; l != 2; ++l) {
  10135. // Determine the source for this lane.
  10136. if (Imm & (1 << ((l * 4) + 3)))
  10137. OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
  10138. else if (Imm & (1 << ((l * 4) + 1)))
  10139. OutOps[l] = Ops[1];
  10140. else
  10141. OutOps[l] = Ops[0];
  10142. for (unsigned i = 0; i != NumElts/2; ++i) {
  10143. // Start with ith element of the source for this lane.
  10144. unsigned Idx = (l * NumElts) + i;
  10145. // If bit 0 of the immediate half is set, switch to the high half of
  10146. // the source.
  10147. if (Imm & (1 << (l * 4)))
  10148. Idx += NumElts/2;
  10149. Indices[(l * (NumElts/2)) + i] = Idx;
  10150. }
  10151. }
  10152. return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
  10153. makeArrayRef(Indices, NumElts),
  10154. "vperm");
  10155. }
  10156. case X86::BI__builtin_ia32_pslldqi128_byteshift:
  10157. case X86::BI__builtin_ia32_pslldqi256_byteshift:
  10158. case X86::BI__builtin_ia32_pslldqi512_byteshift: {
  10159. unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
  10160. llvm::Type *ResultType = Ops[0]->getType();
  10161. // Builtin type is vXi64 so multiply by 8 to get bytes.
  10162. unsigned NumElts = ResultType->getVectorNumElements() * 8;
  10163. // If pslldq is shifting the vector more than 15 bytes, emit zero.
  10164. if (ShiftVal >= 16)
  10165. return llvm::Constant::getNullValue(ResultType);
  10166. uint32_t Indices[64];
  10167. // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
  10168. for (unsigned l = 0; l != NumElts; l += 16) {
  10169. for (unsigned i = 0; i != 16; ++i) {
  10170. unsigned Idx = NumElts + i - ShiftVal;
  10171. if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
  10172. Indices[l + i] = Idx + l;
  10173. }
  10174. }
  10175. llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
  10176. Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
  10177. Value *Zero = llvm::Constant::getNullValue(VecTy);
  10178. Value *SV = Builder.CreateShuffleVector(Zero, Cast,
  10179. makeArrayRef(Indices, NumElts),
  10180. "pslldq");
  10181. return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
  10182. }
  10183. case X86::BI__builtin_ia32_psrldqi128_byteshift:
  10184. case X86::BI__builtin_ia32_psrldqi256_byteshift:
  10185. case X86::BI__builtin_ia32_psrldqi512_byteshift: {
  10186. unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
  10187. llvm::Type *ResultType = Ops[0]->getType();
  10188. // Builtin type is vXi64 so multiply by 8 to get bytes.
  10189. unsigned NumElts = ResultType->getVectorNumElements() * 8;
  10190. // If psrldq is shifting the vector more than 15 bytes, emit zero.
  10191. if (ShiftVal >= 16)
  10192. return llvm::Constant::getNullValue(ResultType);
  10193. uint32_t Indices[64];
  10194. // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
  10195. for (unsigned l = 0; l != NumElts; l += 16) {
  10196. for (unsigned i = 0; i != 16; ++i) {
  10197. unsigned Idx = i + ShiftVal;
  10198. if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
  10199. Indices[l + i] = Idx + l;
  10200. }
  10201. }
  10202. llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
  10203. Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
  10204. Value *Zero = llvm::Constant::getNullValue(VecTy);
  10205. Value *SV = Builder.CreateShuffleVector(Cast, Zero,
  10206. makeArrayRef(Indices, NumElts),
  10207. "psrldq");
  10208. return Builder.CreateBitCast(SV, ResultType, "cast");
  10209. }
  10210. case X86::BI__builtin_ia32_kshiftliqi:
  10211. case X86::BI__builtin_ia32_kshiftlihi:
  10212. case X86::BI__builtin_ia32_kshiftlisi:
  10213. case X86::BI__builtin_ia32_kshiftlidi: {
  10214. unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
  10215. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  10216. if (ShiftVal >= NumElts)
  10217. return llvm::Constant::getNullValue(Ops[0]->getType());
  10218. Value *In = getMaskVecValue(*this, Ops[0], NumElts);
  10219. uint32_t Indices[64];
  10220. for (unsigned i = 0; i != NumElts; ++i)
  10221. Indices[i] = NumElts + i - ShiftVal;
  10222. Value *Zero = llvm::Constant::getNullValue(In->getType());
  10223. Value *SV = Builder.CreateShuffleVector(Zero, In,
  10224. makeArrayRef(Indices, NumElts),
  10225. "kshiftl");
  10226. return Builder.CreateBitCast(SV, Ops[0]->getType());
  10227. }
  10228. case X86::BI__builtin_ia32_kshiftriqi:
  10229. case X86::BI__builtin_ia32_kshiftrihi:
  10230. case X86::BI__builtin_ia32_kshiftrisi:
  10231. case X86::BI__builtin_ia32_kshiftridi: {
  10232. unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
  10233. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  10234. if (ShiftVal >= NumElts)
  10235. return llvm::Constant::getNullValue(Ops[0]->getType());
  10236. Value *In = getMaskVecValue(*this, Ops[0], NumElts);
  10237. uint32_t Indices[64];
  10238. for (unsigned i = 0; i != NumElts; ++i)
  10239. Indices[i] = i + ShiftVal;
  10240. Value *Zero = llvm::Constant::getNullValue(In->getType());
  10241. Value *SV = Builder.CreateShuffleVector(In, Zero,
  10242. makeArrayRef(Indices, NumElts),
  10243. "kshiftr");
  10244. return Builder.CreateBitCast(SV, Ops[0]->getType());
  10245. }
  10246. case X86::BI__builtin_ia32_movnti:
  10247. case X86::BI__builtin_ia32_movnti64:
  10248. case X86::BI__builtin_ia32_movntsd:
  10249. case X86::BI__builtin_ia32_movntss: {
  10250. llvm::MDNode *Node = llvm::MDNode::get(
  10251. getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
  10252. Value *Ptr = Ops[0];
  10253. Value *Src = Ops[1];
  10254. // Extract the 0'th element of the source vector.
  10255. if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
  10256. BuiltinID == X86::BI__builtin_ia32_movntss)
  10257. Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
  10258. // Convert the type of the pointer to a pointer to the stored type.
  10259. Value *BC = Builder.CreateBitCast(
  10260. Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
  10261. // Unaligned nontemporal store of the scalar value.
  10262. StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
  10263. SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
  10264. SI->setAlignment(1);
  10265. return SI;
  10266. }
  10267. // Rotate is a special case of funnel shift - 1st 2 args are the same.
  10268. case X86::BI__builtin_ia32_vprotb:
  10269. case X86::BI__builtin_ia32_vprotw:
  10270. case X86::BI__builtin_ia32_vprotd:
  10271. case X86::BI__builtin_ia32_vprotq:
  10272. case X86::BI__builtin_ia32_vprotbi:
  10273. case X86::BI__builtin_ia32_vprotwi:
  10274. case X86::BI__builtin_ia32_vprotdi:
  10275. case X86::BI__builtin_ia32_vprotqi:
  10276. case X86::BI__builtin_ia32_prold128:
  10277. case X86::BI__builtin_ia32_prold256:
  10278. case X86::BI__builtin_ia32_prold512:
  10279. case X86::BI__builtin_ia32_prolq128:
  10280. case X86::BI__builtin_ia32_prolq256:
  10281. case X86::BI__builtin_ia32_prolq512:
  10282. case X86::BI__builtin_ia32_prolvd128:
  10283. case X86::BI__builtin_ia32_prolvd256:
  10284. case X86::BI__builtin_ia32_prolvd512:
  10285. case X86::BI__builtin_ia32_prolvq128:
  10286. case X86::BI__builtin_ia32_prolvq256:
  10287. case X86::BI__builtin_ia32_prolvq512:
  10288. return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
  10289. case X86::BI__builtin_ia32_prord128:
  10290. case X86::BI__builtin_ia32_prord256:
  10291. case X86::BI__builtin_ia32_prord512:
  10292. case X86::BI__builtin_ia32_prorq128:
  10293. case X86::BI__builtin_ia32_prorq256:
  10294. case X86::BI__builtin_ia32_prorq512:
  10295. case X86::BI__builtin_ia32_prorvd128:
  10296. case X86::BI__builtin_ia32_prorvd256:
  10297. case X86::BI__builtin_ia32_prorvd512:
  10298. case X86::BI__builtin_ia32_prorvq128:
  10299. case X86::BI__builtin_ia32_prorvq256:
  10300. case X86::BI__builtin_ia32_prorvq512:
  10301. return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
  10302. case X86::BI__builtin_ia32_selectb_128:
  10303. case X86::BI__builtin_ia32_selectb_256:
  10304. case X86::BI__builtin_ia32_selectb_512:
  10305. case X86::BI__builtin_ia32_selectw_128:
  10306. case X86::BI__builtin_ia32_selectw_256:
  10307. case X86::BI__builtin_ia32_selectw_512:
  10308. case X86::BI__builtin_ia32_selectd_128:
  10309. case X86::BI__builtin_ia32_selectd_256:
  10310. case X86::BI__builtin_ia32_selectd_512:
  10311. case X86::BI__builtin_ia32_selectq_128:
  10312. case X86::BI__builtin_ia32_selectq_256:
  10313. case X86::BI__builtin_ia32_selectq_512:
  10314. case X86::BI__builtin_ia32_selectps_128:
  10315. case X86::BI__builtin_ia32_selectps_256:
  10316. case X86::BI__builtin_ia32_selectps_512:
  10317. case X86::BI__builtin_ia32_selectpd_128:
  10318. case X86::BI__builtin_ia32_selectpd_256:
  10319. case X86::BI__builtin_ia32_selectpd_512:
  10320. return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
  10321. case X86::BI__builtin_ia32_selectss_128:
  10322. case X86::BI__builtin_ia32_selectsd_128: {
  10323. Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
  10324. Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
  10325. A = EmitX86ScalarSelect(*this, Ops[0], A, B);
  10326. return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
  10327. }
  10328. case X86::BI__builtin_ia32_cmpb128_mask:
  10329. case X86::BI__builtin_ia32_cmpb256_mask:
  10330. case X86::BI__builtin_ia32_cmpb512_mask:
  10331. case X86::BI__builtin_ia32_cmpw128_mask:
  10332. case X86::BI__builtin_ia32_cmpw256_mask:
  10333. case X86::BI__builtin_ia32_cmpw512_mask:
  10334. case X86::BI__builtin_ia32_cmpd128_mask:
  10335. case X86::BI__builtin_ia32_cmpd256_mask:
  10336. case X86::BI__builtin_ia32_cmpd512_mask:
  10337. case X86::BI__builtin_ia32_cmpq128_mask:
  10338. case X86::BI__builtin_ia32_cmpq256_mask:
  10339. case X86::BI__builtin_ia32_cmpq512_mask: {
  10340. unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
  10341. return EmitX86MaskedCompare(*this, CC, true, Ops);
  10342. }
  10343. case X86::BI__builtin_ia32_ucmpb128_mask:
  10344. case X86::BI__builtin_ia32_ucmpb256_mask:
  10345. case X86::BI__builtin_ia32_ucmpb512_mask:
  10346. case X86::BI__builtin_ia32_ucmpw128_mask:
  10347. case X86::BI__builtin_ia32_ucmpw256_mask:
  10348. case X86::BI__builtin_ia32_ucmpw512_mask:
  10349. case X86::BI__builtin_ia32_ucmpd128_mask:
  10350. case X86::BI__builtin_ia32_ucmpd256_mask:
  10351. case X86::BI__builtin_ia32_ucmpd512_mask:
  10352. case X86::BI__builtin_ia32_ucmpq128_mask:
  10353. case X86::BI__builtin_ia32_ucmpq256_mask:
  10354. case X86::BI__builtin_ia32_ucmpq512_mask: {
  10355. unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
  10356. return EmitX86MaskedCompare(*this, CC, false, Ops);
  10357. }
  10358. case X86::BI__builtin_ia32_vpcomb:
  10359. case X86::BI__builtin_ia32_vpcomw:
  10360. case X86::BI__builtin_ia32_vpcomd:
  10361. case X86::BI__builtin_ia32_vpcomq:
  10362. return EmitX86vpcom(*this, Ops, true);
  10363. case X86::BI__builtin_ia32_vpcomub:
  10364. case X86::BI__builtin_ia32_vpcomuw:
  10365. case X86::BI__builtin_ia32_vpcomud:
  10366. case X86::BI__builtin_ia32_vpcomuq:
  10367. return EmitX86vpcom(*this, Ops, false);
  10368. case X86::BI__builtin_ia32_kortestcqi:
  10369. case X86::BI__builtin_ia32_kortestchi:
  10370. case X86::BI__builtin_ia32_kortestcsi:
  10371. case X86::BI__builtin_ia32_kortestcdi: {
  10372. Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
  10373. Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
  10374. Value *Cmp = Builder.CreateICmpEQ(Or, C);
  10375. return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
  10376. }
  10377. case X86::BI__builtin_ia32_kortestzqi:
  10378. case X86::BI__builtin_ia32_kortestzhi:
  10379. case X86::BI__builtin_ia32_kortestzsi:
  10380. case X86::BI__builtin_ia32_kortestzdi: {
  10381. Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
  10382. Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
  10383. Value *Cmp = Builder.CreateICmpEQ(Or, C);
  10384. return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
  10385. }
  10386. case X86::BI__builtin_ia32_ktestcqi:
  10387. case X86::BI__builtin_ia32_ktestzqi:
  10388. case X86::BI__builtin_ia32_ktestchi:
  10389. case X86::BI__builtin_ia32_ktestzhi:
  10390. case X86::BI__builtin_ia32_ktestcsi:
  10391. case X86::BI__builtin_ia32_ktestzsi:
  10392. case X86::BI__builtin_ia32_ktestcdi:
  10393. case X86::BI__builtin_ia32_ktestzdi: {
  10394. Intrinsic::ID IID;
  10395. switch (BuiltinID) {
  10396. default: llvm_unreachable("Unsupported intrinsic!");
  10397. case X86::BI__builtin_ia32_ktestcqi:
  10398. IID = Intrinsic::x86_avx512_ktestc_b;
  10399. break;
  10400. case X86::BI__builtin_ia32_ktestzqi:
  10401. IID = Intrinsic::x86_avx512_ktestz_b;
  10402. break;
  10403. case X86::BI__builtin_ia32_ktestchi:
  10404. IID = Intrinsic::x86_avx512_ktestc_w;
  10405. break;
  10406. case X86::BI__builtin_ia32_ktestzhi:
  10407. IID = Intrinsic::x86_avx512_ktestz_w;
  10408. break;
  10409. case X86::BI__builtin_ia32_ktestcsi:
  10410. IID = Intrinsic::x86_avx512_ktestc_d;
  10411. break;
  10412. case X86::BI__builtin_ia32_ktestzsi:
  10413. IID = Intrinsic::x86_avx512_ktestz_d;
  10414. break;
  10415. case X86::BI__builtin_ia32_ktestcdi:
  10416. IID = Intrinsic::x86_avx512_ktestc_q;
  10417. break;
  10418. case X86::BI__builtin_ia32_ktestzdi:
  10419. IID = Intrinsic::x86_avx512_ktestz_q;
  10420. break;
  10421. }
  10422. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  10423. Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
  10424. Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
  10425. Function *Intr = CGM.getIntrinsic(IID);
  10426. return Builder.CreateCall(Intr, {LHS, RHS});
  10427. }
  10428. case X86::BI__builtin_ia32_kaddqi:
  10429. case X86::BI__builtin_ia32_kaddhi:
  10430. case X86::BI__builtin_ia32_kaddsi:
  10431. case X86::BI__builtin_ia32_kadddi: {
  10432. Intrinsic::ID IID;
  10433. switch (BuiltinID) {
  10434. default: llvm_unreachable("Unsupported intrinsic!");
  10435. case X86::BI__builtin_ia32_kaddqi:
  10436. IID = Intrinsic::x86_avx512_kadd_b;
  10437. break;
  10438. case X86::BI__builtin_ia32_kaddhi:
  10439. IID = Intrinsic::x86_avx512_kadd_w;
  10440. break;
  10441. case X86::BI__builtin_ia32_kaddsi:
  10442. IID = Intrinsic::x86_avx512_kadd_d;
  10443. break;
  10444. case X86::BI__builtin_ia32_kadddi:
  10445. IID = Intrinsic::x86_avx512_kadd_q;
  10446. break;
  10447. }
  10448. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  10449. Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
  10450. Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
  10451. Function *Intr = CGM.getIntrinsic(IID);
  10452. Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
  10453. return Builder.CreateBitCast(Res, Ops[0]->getType());
  10454. }
  10455. case X86::BI__builtin_ia32_kandqi:
  10456. case X86::BI__builtin_ia32_kandhi:
  10457. case X86::BI__builtin_ia32_kandsi:
  10458. case X86::BI__builtin_ia32_kanddi:
  10459. return EmitX86MaskLogic(*this, Instruction::And, Ops);
  10460. case X86::BI__builtin_ia32_kandnqi:
  10461. case X86::BI__builtin_ia32_kandnhi:
  10462. case X86::BI__builtin_ia32_kandnsi:
  10463. case X86::BI__builtin_ia32_kandndi:
  10464. return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
  10465. case X86::BI__builtin_ia32_korqi:
  10466. case X86::BI__builtin_ia32_korhi:
  10467. case X86::BI__builtin_ia32_korsi:
  10468. case X86::BI__builtin_ia32_kordi:
  10469. return EmitX86MaskLogic(*this, Instruction::Or, Ops);
  10470. case X86::BI__builtin_ia32_kxnorqi:
  10471. case X86::BI__builtin_ia32_kxnorhi:
  10472. case X86::BI__builtin_ia32_kxnorsi:
  10473. case X86::BI__builtin_ia32_kxnordi:
  10474. return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
  10475. case X86::BI__builtin_ia32_kxorqi:
  10476. case X86::BI__builtin_ia32_kxorhi:
  10477. case X86::BI__builtin_ia32_kxorsi:
  10478. case X86::BI__builtin_ia32_kxordi:
  10479. return EmitX86MaskLogic(*this, Instruction::Xor, Ops);
  10480. case X86::BI__builtin_ia32_knotqi:
  10481. case X86::BI__builtin_ia32_knothi:
  10482. case X86::BI__builtin_ia32_knotsi:
  10483. case X86::BI__builtin_ia32_knotdi: {
  10484. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  10485. Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
  10486. return Builder.CreateBitCast(Builder.CreateNot(Res),
  10487. Ops[0]->getType());
  10488. }
  10489. case X86::BI__builtin_ia32_kmovb:
  10490. case X86::BI__builtin_ia32_kmovw:
  10491. case X86::BI__builtin_ia32_kmovd:
  10492. case X86::BI__builtin_ia32_kmovq: {
  10493. // Bitcast to vXi1 type and then back to integer. This gets the mask
  10494. // register type into the IR, but might be optimized out depending on
  10495. // what's around it.
  10496. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  10497. Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
  10498. return Builder.CreateBitCast(Res, Ops[0]->getType());
  10499. }
  10500. case X86::BI__builtin_ia32_kunpckdi:
  10501. case X86::BI__builtin_ia32_kunpcksi:
  10502. case X86::BI__builtin_ia32_kunpckhi: {
  10503. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
  10504. Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
  10505. Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
  10506. uint32_t Indices[64];
  10507. for (unsigned i = 0; i != NumElts; ++i)
  10508. Indices[i] = i;
  10509. // First extract half of each vector. This gives better codegen than
  10510. // doing it in a single shuffle.
  10511. LHS = Builder.CreateShuffleVector(LHS, LHS,
  10512. makeArrayRef(Indices, NumElts / 2));
  10513. RHS = Builder.CreateShuffleVector(RHS, RHS,
  10514. makeArrayRef(Indices, NumElts / 2));
  10515. // Concat the vectors.
  10516. // NOTE: Operands are swapped to match the intrinsic definition.
  10517. Value *Res = Builder.CreateShuffleVector(RHS, LHS,
  10518. makeArrayRef(Indices, NumElts));
  10519. return Builder.CreateBitCast(Res, Ops[0]->getType());
  10520. }
  10521. case X86::BI__builtin_ia32_vplzcntd_128:
  10522. case X86::BI__builtin_ia32_vplzcntd_256:
  10523. case X86::BI__builtin_ia32_vplzcntd_512:
  10524. case X86::BI__builtin_ia32_vplzcntq_128:
  10525. case X86::BI__builtin_ia32_vplzcntq_256:
  10526. case X86::BI__builtin_ia32_vplzcntq_512: {
  10527. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
  10528. return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
  10529. }
  10530. case X86::BI__builtin_ia32_sqrtss:
  10531. case X86::BI__builtin_ia32_sqrtsd: {
  10532. Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
  10533. Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
  10534. A = Builder.CreateCall(F, {A});
  10535. return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
  10536. }
  10537. case X86::BI__builtin_ia32_sqrtsd_round_mask:
  10538. case X86::BI__builtin_ia32_sqrtss_round_mask: {
  10539. unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
  10540. // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
  10541. // otherwise keep the intrinsic.
  10542. if (CC != 4) {
  10543. Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
  10544. Intrinsic::x86_avx512_mask_sqrt_sd :
  10545. Intrinsic::x86_avx512_mask_sqrt_ss;
  10546. return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
  10547. }
  10548. Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
  10549. Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
  10550. A = Builder.CreateCall(F, A);
  10551. Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
  10552. A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
  10553. return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
  10554. }
  10555. case X86::BI__builtin_ia32_sqrtpd256:
  10556. case X86::BI__builtin_ia32_sqrtpd:
  10557. case X86::BI__builtin_ia32_sqrtps256:
  10558. case X86::BI__builtin_ia32_sqrtps:
  10559. case X86::BI__builtin_ia32_sqrtps512:
  10560. case X86::BI__builtin_ia32_sqrtpd512: {
  10561. if (Ops.size() == 2) {
  10562. unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
  10563. // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
  10564. // otherwise keep the intrinsic.
  10565. if (CC != 4) {
  10566. Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
  10567. Intrinsic::x86_avx512_sqrt_ps_512 :
  10568. Intrinsic::x86_avx512_sqrt_pd_512;
  10569. return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
  10570. }
  10571. }
  10572. Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
  10573. return Builder.CreateCall(F, Ops[0]);
  10574. }
  10575. case X86::BI__builtin_ia32_pabsb128:
  10576. case X86::BI__builtin_ia32_pabsw128:
  10577. case X86::BI__builtin_ia32_pabsd128:
  10578. case X86::BI__builtin_ia32_pabsb256:
  10579. case X86::BI__builtin_ia32_pabsw256:
  10580. case X86::BI__builtin_ia32_pabsd256:
  10581. case X86::BI__builtin_ia32_pabsq128:
  10582. case X86::BI__builtin_ia32_pabsq256:
  10583. case X86::BI__builtin_ia32_pabsb512:
  10584. case X86::BI__builtin_ia32_pabsw512:
  10585. case X86::BI__builtin_ia32_pabsd512:
  10586. case X86::BI__builtin_ia32_pabsq512:
  10587. return EmitX86Abs(*this, Ops);
  10588. case X86::BI__builtin_ia32_pmaxsb128:
  10589. case X86::BI__builtin_ia32_pmaxsw128:
  10590. case X86::BI__builtin_ia32_pmaxsd128:
  10591. case X86::BI__builtin_ia32_pmaxsq128:
  10592. case X86::BI__builtin_ia32_pmaxsb256:
  10593. case X86::BI__builtin_ia32_pmaxsw256:
  10594. case X86::BI__builtin_ia32_pmaxsd256:
  10595. case X86::BI__builtin_ia32_pmaxsq256:
  10596. case X86::BI__builtin_ia32_pmaxsb512:
  10597. case X86::BI__builtin_ia32_pmaxsw512:
  10598. case X86::BI__builtin_ia32_pmaxsd512:
  10599. case X86::BI__builtin_ia32_pmaxsq512:
  10600. return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops);
  10601. case X86::BI__builtin_ia32_pmaxub128:
  10602. case X86::BI__builtin_ia32_pmaxuw128:
  10603. case X86::BI__builtin_ia32_pmaxud128:
  10604. case X86::BI__builtin_ia32_pmaxuq128:
  10605. case X86::BI__builtin_ia32_pmaxub256:
  10606. case X86::BI__builtin_ia32_pmaxuw256:
  10607. case X86::BI__builtin_ia32_pmaxud256:
  10608. case X86::BI__builtin_ia32_pmaxuq256:
  10609. case X86::BI__builtin_ia32_pmaxub512:
  10610. case X86::BI__builtin_ia32_pmaxuw512:
  10611. case X86::BI__builtin_ia32_pmaxud512:
  10612. case X86::BI__builtin_ia32_pmaxuq512:
  10613. return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops);
  10614. case X86::BI__builtin_ia32_pminsb128:
  10615. case X86::BI__builtin_ia32_pminsw128:
  10616. case X86::BI__builtin_ia32_pminsd128:
  10617. case X86::BI__builtin_ia32_pminsq128:
  10618. case X86::BI__builtin_ia32_pminsb256:
  10619. case X86::BI__builtin_ia32_pminsw256:
  10620. case X86::BI__builtin_ia32_pminsd256:
  10621. case X86::BI__builtin_ia32_pminsq256:
  10622. case X86::BI__builtin_ia32_pminsb512:
  10623. case X86::BI__builtin_ia32_pminsw512:
  10624. case X86::BI__builtin_ia32_pminsd512:
  10625. case X86::BI__builtin_ia32_pminsq512:
  10626. return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops);
  10627. case X86::BI__builtin_ia32_pminub128:
  10628. case X86::BI__builtin_ia32_pminuw128:
  10629. case X86::BI__builtin_ia32_pminud128:
  10630. case X86::BI__builtin_ia32_pminuq128:
  10631. case X86::BI__builtin_ia32_pminub256:
  10632. case X86::BI__builtin_ia32_pminuw256:
  10633. case X86::BI__builtin_ia32_pminud256:
  10634. case X86::BI__builtin_ia32_pminuq256:
  10635. case X86::BI__builtin_ia32_pminub512:
  10636. case X86::BI__builtin_ia32_pminuw512:
  10637. case X86::BI__builtin_ia32_pminud512:
  10638. case X86::BI__builtin_ia32_pminuq512:
  10639. return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops);
  10640. case X86::BI__builtin_ia32_pmuludq128:
  10641. case X86::BI__builtin_ia32_pmuludq256:
  10642. case X86::BI__builtin_ia32_pmuludq512:
  10643. return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
  10644. case X86::BI__builtin_ia32_pmuldq128:
  10645. case X86::BI__builtin_ia32_pmuldq256:
  10646. case X86::BI__builtin_ia32_pmuldq512:
  10647. return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
  10648. case X86::BI__builtin_ia32_pternlogd512_mask:
  10649. case X86::BI__builtin_ia32_pternlogq512_mask:
  10650. case X86::BI__builtin_ia32_pternlogd128_mask:
  10651. case X86::BI__builtin_ia32_pternlogd256_mask:
  10652. case X86::BI__builtin_ia32_pternlogq128_mask:
  10653. case X86::BI__builtin_ia32_pternlogq256_mask:
  10654. return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
  10655. case X86::BI__builtin_ia32_pternlogd512_maskz:
  10656. case X86::BI__builtin_ia32_pternlogq512_maskz:
  10657. case X86::BI__builtin_ia32_pternlogd128_maskz:
  10658. case X86::BI__builtin_ia32_pternlogd256_maskz:
  10659. case X86::BI__builtin_ia32_pternlogq128_maskz:
  10660. case X86::BI__builtin_ia32_pternlogq256_maskz:
  10661. return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
  10662. case X86::BI__builtin_ia32_vpshldd128:
  10663. case X86::BI__builtin_ia32_vpshldd256:
  10664. case X86::BI__builtin_ia32_vpshldd512:
  10665. case X86::BI__builtin_ia32_vpshldq128:
  10666. case X86::BI__builtin_ia32_vpshldq256:
  10667. case X86::BI__builtin_ia32_vpshldq512:
  10668. case X86::BI__builtin_ia32_vpshldw128:
  10669. case X86::BI__builtin_ia32_vpshldw256:
  10670. case X86::BI__builtin_ia32_vpshldw512:
  10671. return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
  10672. case X86::BI__builtin_ia32_vpshrdd128:
  10673. case X86::BI__builtin_ia32_vpshrdd256:
  10674. case X86::BI__builtin_ia32_vpshrdd512:
  10675. case X86::BI__builtin_ia32_vpshrdq128:
  10676. case X86::BI__builtin_ia32_vpshrdq256:
  10677. case X86::BI__builtin_ia32_vpshrdq512:
  10678. case X86::BI__builtin_ia32_vpshrdw128:
  10679. case X86::BI__builtin_ia32_vpshrdw256:
  10680. case X86::BI__builtin_ia32_vpshrdw512:
  10681. // Ops 0 and 1 are swapped.
  10682. return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
  10683. case X86::BI__builtin_ia32_vpshldvd128:
  10684. case X86::BI__builtin_ia32_vpshldvd256:
  10685. case X86::BI__builtin_ia32_vpshldvd512:
  10686. case X86::BI__builtin_ia32_vpshldvq128:
  10687. case X86::BI__builtin_ia32_vpshldvq256:
  10688. case X86::BI__builtin_ia32_vpshldvq512:
  10689. case X86::BI__builtin_ia32_vpshldvw128:
  10690. case X86::BI__builtin_ia32_vpshldvw256:
  10691. case X86::BI__builtin_ia32_vpshldvw512:
  10692. return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
  10693. case X86::BI__builtin_ia32_vpshrdvd128:
  10694. case X86::BI__builtin_ia32_vpshrdvd256:
  10695. case X86::BI__builtin_ia32_vpshrdvd512:
  10696. case X86::BI__builtin_ia32_vpshrdvq128:
  10697. case X86::BI__builtin_ia32_vpshrdvq256:
  10698. case X86::BI__builtin_ia32_vpshrdvq512:
  10699. case X86::BI__builtin_ia32_vpshrdvw128:
  10700. case X86::BI__builtin_ia32_vpshrdvw256:
  10701. case X86::BI__builtin_ia32_vpshrdvw512:
  10702. // Ops 0 and 1 are swapped.
  10703. return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
  10704. // 3DNow!
  10705. case X86::BI__builtin_ia32_pswapdsf:
  10706. case X86::BI__builtin_ia32_pswapdsi: {
  10707. llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
  10708. Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
  10709. llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
  10710. return Builder.CreateCall(F, Ops, "pswapd");
  10711. }
  10712. case X86::BI__builtin_ia32_rdrand16_step:
  10713. case X86::BI__builtin_ia32_rdrand32_step:
  10714. case X86::BI__builtin_ia32_rdrand64_step:
  10715. case X86::BI__builtin_ia32_rdseed16_step:
  10716. case X86::BI__builtin_ia32_rdseed32_step:
  10717. case X86::BI__builtin_ia32_rdseed64_step: {
  10718. Intrinsic::ID ID;
  10719. switch (BuiltinID) {
  10720. default: llvm_unreachable("Unsupported intrinsic!");
  10721. case X86::BI__builtin_ia32_rdrand16_step:
  10722. ID = Intrinsic::x86_rdrand_16;
  10723. break;
  10724. case X86::BI__builtin_ia32_rdrand32_step:
  10725. ID = Intrinsic::x86_rdrand_32;
  10726. break;
  10727. case X86::BI__builtin_ia32_rdrand64_step:
  10728. ID = Intrinsic::x86_rdrand_64;
  10729. break;
  10730. case X86::BI__builtin_ia32_rdseed16_step:
  10731. ID = Intrinsic::x86_rdseed_16;
  10732. break;
  10733. case X86::BI__builtin_ia32_rdseed32_step:
  10734. ID = Intrinsic::x86_rdseed_32;
  10735. break;
  10736. case X86::BI__builtin_ia32_rdseed64_step:
  10737. ID = Intrinsic::x86_rdseed_64;
  10738. break;
  10739. }
  10740. Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
  10741. Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
  10742. Ops[0]);
  10743. return Builder.CreateExtractValue(Call, 1);
  10744. }
  10745. case X86::BI__builtin_ia32_addcarryx_u32:
  10746. case X86::BI__builtin_ia32_addcarryx_u64:
  10747. case X86::BI__builtin_ia32_subborrow_u32:
  10748. case X86::BI__builtin_ia32_subborrow_u64: {
  10749. Intrinsic::ID IID;
  10750. switch (BuiltinID) {
  10751. default: llvm_unreachable("Unsupported intrinsic!");
  10752. case X86::BI__builtin_ia32_addcarryx_u32:
  10753. IID = Intrinsic::x86_addcarry_32;
  10754. break;
  10755. case X86::BI__builtin_ia32_addcarryx_u64:
  10756. IID = Intrinsic::x86_addcarry_64;
  10757. break;
  10758. case X86::BI__builtin_ia32_subborrow_u32:
  10759. IID = Intrinsic::x86_subborrow_32;
  10760. break;
  10761. case X86::BI__builtin_ia32_subborrow_u64:
  10762. IID = Intrinsic::x86_subborrow_64;
  10763. break;
  10764. }
  10765. Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
  10766. { Ops[0], Ops[1], Ops[2] });
  10767. Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
  10768. Ops[3]);
  10769. return Builder.CreateExtractValue(Call, 0);
  10770. }
  10771. case X86::BI__builtin_ia32_fpclassps128_mask:
  10772. case X86::BI__builtin_ia32_fpclassps256_mask:
  10773. case X86::BI__builtin_ia32_fpclassps512_mask:
  10774. case X86::BI__builtin_ia32_fpclasspd128_mask:
  10775. case X86::BI__builtin_ia32_fpclasspd256_mask:
  10776. case X86::BI__builtin_ia32_fpclasspd512_mask: {
  10777. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  10778. Value *MaskIn = Ops[2];
  10779. Ops.erase(&Ops[2]);
  10780. Intrinsic::ID ID;
  10781. switch (BuiltinID) {
  10782. default: llvm_unreachable("Unsupported intrinsic!");
  10783. case X86::BI__builtin_ia32_fpclassps128_mask:
  10784. ID = Intrinsic::x86_avx512_fpclass_ps_128;
  10785. break;
  10786. case X86::BI__builtin_ia32_fpclassps256_mask:
  10787. ID = Intrinsic::x86_avx512_fpclass_ps_256;
  10788. break;
  10789. case X86::BI__builtin_ia32_fpclassps512_mask:
  10790. ID = Intrinsic::x86_avx512_fpclass_ps_512;
  10791. break;
  10792. case X86::BI__builtin_ia32_fpclasspd128_mask:
  10793. ID = Intrinsic::x86_avx512_fpclass_pd_128;
  10794. break;
  10795. case X86::BI__builtin_ia32_fpclasspd256_mask:
  10796. ID = Intrinsic::x86_avx512_fpclass_pd_256;
  10797. break;
  10798. case X86::BI__builtin_ia32_fpclasspd512_mask:
  10799. ID = Intrinsic::x86_avx512_fpclass_pd_512;
  10800. break;
  10801. }
  10802. Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
  10803. return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
  10804. }
  10805. case X86::BI__builtin_ia32_vp2intersect_q_512:
  10806. case X86::BI__builtin_ia32_vp2intersect_q_256:
  10807. case X86::BI__builtin_ia32_vp2intersect_q_128:
  10808. case X86::BI__builtin_ia32_vp2intersect_d_512:
  10809. case X86::BI__builtin_ia32_vp2intersect_d_256:
  10810. case X86::BI__builtin_ia32_vp2intersect_d_128: {
  10811. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  10812. Intrinsic::ID ID;
  10813. switch (BuiltinID) {
  10814. default: llvm_unreachable("Unsupported intrinsic!");
  10815. case X86::BI__builtin_ia32_vp2intersect_q_512:
  10816. ID = Intrinsic::x86_avx512_vp2intersect_q_512;
  10817. break;
  10818. case X86::BI__builtin_ia32_vp2intersect_q_256:
  10819. ID = Intrinsic::x86_avx512_vp2intersect_q_256;
  10820. break;
  10821. case X86::BI__builtin_ia32_vp2intersect_q_128:
  10822. ID = Intrinsic::x86_avx512_vp2intersect_q_128;
  10823. break;
  10824. case X86::BI__builtin_ia32_vp2intersect_d_512:
  10825. ID = Intrinsic::x86_avx512_vp2intersect_d_512;
  10826. break;
  10827. case X86::BI__builtin_ia32_vp2intersect_d_256:
  10828. ID = Intrinsic::x86_avx512_vp2intersect_d_256;
  10829. break;
  10830. case X86::BI__builtin_ia32_vp2intersect_d_128:
  10831. ID = Intrinsic::x86_avx512_vp2intersect_d_128;
  10832. break;
  10833. }
  10834. Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
  10835. Value *Result = Builder.CreateExtractValue(Call, 0);
  10836. Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
  10837. Builder.CreateDefaultAlignedStore(Result, Ops[2]);
  10838. Result = Builder.CreateExtractValue(Call, 1);
  10839. Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
  10840. return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
  10841. }
  10842. case X86::BI__builtin_ia32_vpmultishiftqb128:
  10843. case X86::BI__builtin_ia32_vpmultishiftqb256:
  10844. case X86::BI__builtin_ia32_vpmultishiftqb512: {
  10845. Intrinsic::ID ID;
  10846. switch (BuiltinID) {
  10847. default: llvm_unreachable("Unsupported intrinsic!");
  10848. case X86::BI__builtin_ia32_vpmultishiftqb128:
  10849. ID = Intrinsic::x86_avx512_pmultishift_qb_128;
  10850. break;
  10851. case X86::BI__builtin_ia32_vpmultishiftqb256:
  10852. ID = Intrinsic::x86_avx512_pmultishift_qb_256;
  10853. break;
  10854. case X86::BI__builtin_ia32_vpmultishiftqb512:
  10855. ID = Intrinsic::x86_avx512_pmultishift_qb_512;
  10856. break;
  10857. }
  10858. return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
  10859. }
  10860. case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
  10861. case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
  10862. case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
  10863. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  10864. Value *MaskIn = Ops[2];
  10865. Ops.erase(&Ops[2]);
  10866. Intrinsic::ID ID;
  10867. switch (BuiltinID) {
  10868. default: llvm_unreachable("Unsupported intrinsic!");
  10869. case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
  10870. ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
  10871. break;
  10872. case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
  10873. ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
  10874. break;
  10875. case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
  10876. ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
  10877. break;
  10878. }
  10879. Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
  10880. return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
  10881. }
  10882. // packed comparison intrinsics
  10883. case X86::BI__builtin_ia32_cmpeqps:
  10884. case X86::BI__builtin_ia32_cmpeqpd:
  10885. return getVectorFCmpIR(CmpInst::FCMP_OEQ);
  10886. case X86::BI__builtin_ia32_cmpltps:
  10887. case X86::BI__builtin_ia32_cmpltpd:
  10888. return getVectorFCmpIR(CmpInst::FCMP_OLT);
  10889. case X86::BI__builtin_ia32_cmpleps:
  10890. case X86::BI__builtin_ia32_cmplepd:
  10891. return getVectorFCmpIR(CmpInst::FCMP_OLE);
  10892. case X86::BI__builtin_ia32_cmpunordps:
  10893. case X86::BI__builtin_ia32_cmpunordpd:
  10894. return getVectorFCmpIR(CmpInst::FCMP_UNO);
  10895. case X86::BI__builtin_ia32_cmpneqps:
  10896. case X86::BI__builtin_ia32_cmpneqpd:
  10897. return getVectorFCmpIR(CmpInst::FCMP_UNE);
  10898. case X86::BI__builtin_ia32_cmpnltps:
  10899. case X86::BI__builtin_ia32_cmpnltpd:
  10900. return getVectorFCmpIR(CmpInst::FCMP_UGE);
  10901. case X86::BI__builtin_ia32_cmpnleps:
  10902. case X86::BI__builtin_ia32_cmpnlepd:
  10903. return getVectorFCmpIR(CmpInst::FCMP_UGT);
  10904. case X86::BI__builtin_ia32_cmpordps:
  10905. case X86::BI__builtin_ia32_cmpordpd:
  10906. return getVectorFCmpIR(CmpInst::FCMP_ORD);
  10907. case X86::BI__builtin_ia32_cmpps:
  10908. case X86::BI__builtin_ia32_cmpps256:
  10909. case X86::BI__builtin_ia32_cmppd:
  10910. case X86::BI__builtin_ia32_cmppd256:
  10911. case X86::BI__builtin_ia32_cmpps128_mask:
  10912. case X86::BI__builtin_ia32_cmpps256_mask:
  10913. case X86::BI__builtin_ia32_cmpps512_mask:
  10914. case X86::BI__builtin_ia32_cmppd128_mask:
  10915. case X86::BI__builtin_ia32_cmppd256_mask:
  10916. case X86::BI__builtin_ia32_cmppd512_mask: {
  10917. // Lowering vector comparisons to fcmp instructions, while
  10918. // ignoring signalling behaviour requested
  10919. // ignoring rounding mode requested
  10920. // This is is only possible as long as FENV_ACCESS is not implemented.
  10921. // See also: https://reviews.llvm.org/D45616
  10922. // The third argument is the comparison condition, and integer in the
  10923. // range [0, 31]
  10924. unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
  10925. // Lowering to IR fcmp instruction.
  10926. // Ignoring requested signaling behaviour,
  10927. // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
  10928. FCmpInst::Predicate Pred;
  10929. switch (CC) {
  10930. case 0x00: Pred = FCmpInst::FCMP_OEQ; break;
  10931. case 0x01: Pred = FCmpInst::FCMP_OLT; break;
  10932. case 0x02: Pred = FCmpInst::FCMP_OLE; break;
  10933. case 0x03: Pred = FCmpInst::FCMP_UNO; break;
  10934. case 0x04: Pred = FCmpInst::FCMP_UNE; break;
  10935. case 0x05: Pred = FCmpInst::FCMP_UGE; break;
  10936. case 0x06: Pred = FCmpInst::FCMP_UGT; break;
  10937. case 0x07: Pred = FCmpInst::FCMP_ORD; break;
  10938. case 0x08: Pred = FCmpInst::FCMP_UEQ; break;
  10939. case 0x09: Pred = FCmpInst::FCMP_ULT; break;
  10940. case 0x0a: Pred = FCmpInst::FCMP_ULE; break;
  10941. case 0x0b: Pred = FCmpInst::FCMP_FALSE; break;
  10942. case 0x0c: Pred = FCmpInst::FCMP_ONE; break;
  10943. case 0x0d: Pred = FCmpInst::FCMP_OGE; break;
  10944. case 0x0e: Pred = FCmpInst::FCMP_OGT; break;
  10945. case 0x0f: Pred = FCmpInst::FCMP_TRUE; break;
  10946. case 0x10: Pred = FCmpInst::FCMP_OEQ; break;
  10947. case 0x11: Pred = FCmpInst::FCMP_OLT; break;
  10948. case 0x12: Pred = FCmpInst::FCMP_OLE; break;
  10949. case 0x13: Pred = FCmpInst::FCMP_UNO; break;
  10950. case 0x14: Pred = FCmpInst::FCMP_UNE; break;
  10951. case 0x15: Pred = FCmpInst::FCMP_UGE; break;
  10952. case 0x16: Pred = FCmpInst::FCMP_UGT; break;
  10953. case 0x17: Pred = FCmpInst::FCMP_ORD; break;
  10954. case 0x18: Pred = FCmpInst::FCMP_UEQ; break;
  10955. case 0x19: Pred = FCmpInst::FCMP_ULT; break;
  10956. case 0x1a: Pred = FCmpInst::FCMP_ULE; break;
  10957. case 0x1b: Pred = FCmpInst::FCMP_FALSE; break;
  10958. case 0x1c: Pred = FCmpInst::FCMP_ONE; break;
  10959. case 0x1d: Pred = FCmpInst::FCMP_OGE; break;
  10960. case 0x1e: Pred = FCmpInst::FCMP_OGT; break;
  10961. case 0x1f: Pred = FCmpInst::FCMP_TRUE; break;
  10962. default: llvm_unreachable("Unhandled CC");
  10963. }
  10964. // Builtins without the _mask suffix return a vector of integers
  10965. // of the same width as the input vectors
  10966. switch (BuiltinID) {
  10967. case X86::BI__builtin_ia32_cmpps512_mask:
  10968. case X86::BI__builtin_ia32_cmppd512_mask:
  10969. case X86::BI__builtin_ia32_cmpps128_mask:
  10970. case X86::BI__builtin_ia32_cmpps256_mask:
  10971. case X86::BI__builtin_ia32_cmppd128_mask:
  10972. case X86::BI__builtin_ia32_cmppd256_mask: {
  10973. unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
  10974. Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
  10975. return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
  10976. }
  10977. default:
  10978. return getVectorFCmpIR(Pred);
  10979. }
  10980. }
  10981. // SSE scalar comparison intrinsics
  10982. case X86::BI__builtin_ia32_cmpeqss:
  10983. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
  10984. case X86::BI__builtin_ia32_cmpltss:
  10985. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
  10986. case X86::BI__builtin_ia32_cmpless:
  10987. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
  10988. case X86::BI__builtin_ia32_cmpunordss:
  10989. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
  10990. case X86::BI__builtin_ia32_cmpneqss:
  10991. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
  10992. case X86::BI__builtin_ia32_cmpnltss:
  10993. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
  10994. case X86::BI__builtin_ia32_cmpnless:
  10995. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
  10996. case X86::BI__builtin_ia32_cmpordss:
  10997. return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
  10998. case X86::BI__builtin_ia32_cmpeqsd:
  10999. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
  11000. case X86::BI__builtin_ia32_cmpltsd:
  11001. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
  11002. case X86::BI__builtin_ia32_cmplesd:
  11003. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
  11004. case X86::BI__builtin_ia32_cmpunordsd:
  11005. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
  11006. case X86::BI__builtin_ia32_cmpneqsd:
  11007. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
  11008. case X86::BI__builtin_ia32_cmpnltsd:
  11009. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
  11010. case X86::BI__builtin_ia32_cmpnlesd:
  11011. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
  11012. case X86::BI__builtin_ia32_cmpordsd:
  11013. return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
  11014. // AVX512 bf16 intrinsics
  11015. case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
  11016. Ops[2] = getMaskVecValue(*this, Ops[2],
  11017. Ops[0]->getType()->getVectorNumElements());
  11018. Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
  11019. return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
  11020. }
  11021. case X86::BI__builtin_ia32_cvtsbf162ss_32:
  11022. return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
  11023. case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
  11024. case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
  11025. Intrinsic::ID IID;
  11026. switch (BuiltinID) {
  11027. default: llvm_unreachable("Unsupported intrinsic!");
  11028. case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
  11029. IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
  11030. break;
  11031. case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
  11032. IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
  11033. break;
  11034. }
  11035. Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
  11036. return EmitX86Select(*this, Ops[2], Res, Ops[1]);
  11037. }
  11038. case X86::BI__emul:
  11039. case X86::BI__emulu: {
  11040. llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
  11041. bool isSigned = (BuiltinID == X86::BI__emul);
  11042. Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
  11043. Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
  11044. return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
  11045. }
  11046. case X86::BI__mulh:
  11047. case X86::BI__umulh:
  11048. case X86::BI_mul128:
  11049. case X86::BI_umul128: {
  11050. llvm::Type *ResType = ConvertType(E->getType());
  11051. llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
  11052. bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
  11053. Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
  11054. Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
  11055. Value *MulResult, *HigherBits;
  11056. if (IsSigned) {
  11057. MulResult = Builder.CreateNSWMul(LHS, RHS);
  11058. HigherBits = Builder.CreateAShr(MulResult, 64);
  11059. } else {
  11060. MulResult = Builder.CreateNUWMul(LHS, RHS);
  11061. HigherBits = Builder.CreateLShr(MulResult, 64);
  11062. }
  11063. HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
  11064. if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
  11065. return HigherBits;
  11066. Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
  11067. Builder.CreateStore(HigherBits, HighBitsAddress);
  11068. return Builder.CreateIntCast(MulResult, ResType, IsSigned);
  11069. }
  11070. case X86::BI__faststorefence: {
  11071. return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
  11072. llvm::SyncScope::System);
  11073. }
  11074. case X86::BI__shiftleft128:
  11075. case X86::BI__shiftright128: {
  11076. // FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this:
  11077. // llvm::Function *F = CGM.getIntrinsic(
  11078. // BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
  11079. // Int64Ty);
  11080. // Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
  11081. // return Builder.CreateCall(F, Ops);
  11082. llvm::Type *Int128Ty = Builder.getInt128Ty();
  11083. Value *HighPart128 =
  11084. Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64);
  11085. Value *LowPart128 = Builder.CreateZExt(Ops[0], Int128Ty);
  11086. Value *Val = Builder.CreateOr(HighPart128, LowPart128);
  11087. Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty),
  11088. llvm::ConstantInt::get(Int128Ty, 0x3f));
  11089. Value *Res;
  11090. if (BuiltinID == X86::BI__shiftleft128)
  11091. Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64);
  11092. else
  11093. Res = Builder.CreateLShr(Val, Amt);
  11094. return Builder.CreateTrunc(Res, Int64Ty);
  11095. }
  11096. case X86::BI_ReadWriteBarrier:
  11097. case X86::BI_ReadBarrier:
  11098. case X86::BI_WriteBarrier: {
  11099. return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
  11100. llvm::SyncScope::SingleThread);
  11101. }
  11102. case X86::BI_BitScanForward:
  11103. case X86::BI_BitScanForward64:
  11104. return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
  11105. case X86::BI_BitScanReverse:
  11106. case X86::BI_BitScanReverse64:
  11107. return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
  11108. case X86::BI_InterlockedAnd64:
  11109. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
  11110. case X86::BI_InterlockedExchange64:
  11111. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
  11112. case X86::BI_InterlockedExchangeAdd64:
  11113. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
  11114. case X86::BI_InterlockedExchangeSub64:
  11115. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
  11116. case X86::BI_InterlockedOr64:
  11117. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
  11118. case X86::BI_InterlockedXor64:
  11119. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
  11120. case X86::BI_InterlockedDecrement64:
  11121. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
  11122. case X86::BI_InterlockedIncrement64:
  11123. return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
  11124. case X86::BI_InterlockedCompareExchange128: {
  11125. // InterlockedCompareExchange128 doesn't directly refer to 128bit ints,
  11126. // instead it takes pointers to 64bit ints for Destination and
  11127. // ComparandResult, and exchange is taken as two 64bit ints (high & low).
  11128. // The previous value is written to ComparandResult, and success is
  11129. // returned.
  11130. llvm::Type *Int128Ty = Builder.getInt128Ty();
  11131. llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
  11132. Value *Destination =
  11133. Builder.CreateBitCast(Ops[0], Int128PtrTy);
  11134. Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty);
  11135. Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty);
  11136. Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy),
  11137. getContext().toCharUnitsFromBits(128));
  11138. Value *Exchange = Builder.CreateOr(
  11139. Builder.CreateShl(ExchangeHigh128, 64, "", false, false),
  11140. ExchangeLow128);
  11141. Value *Comparand = Builder.CreateLoad(ComparandResult);
  11142. AtomicCmpXchgInst *CXI =
  11143. Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
  11144. AtomicOrdering::SequentiallyConsistent,
  11145. AtomicOrdering::SequentiallyConsistent);
  11146. CXI->setVolatile(true);
  11147. // Write the result back to the inout pointer.
  11148. Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult);
  11149. // Get the success boolean and zero extend it to i8.
  11150. Value *Success = Builder.CreateExtractValue(CXI, 1);
  11151. return Builder.CreateZExt(Success, ConvertType(E->getType()));
  11152. }
  11153. case X86::BI_AddressOfReturnAddress: {
  11154. Function *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress);
  11155. return Builder.CreateCall(F);
  11156. }
  11157. case X86::BI__stosb: {
  11158. // We treat __stosb as a volatile memset - it may not generate "rep stosb"
  11159. // instruction, but it will create a memset that won't be optimized away.
  11160. return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true);
  11161. }
  11162. case X86::BI__ud2:
  11163. // llvm.trap makes a ud2a instruction on x86.
  11164. return EmitTrapCall(Intrinsic::trap);
  11165. case X86::BI__int2c: {
  11166. // This syscall signals a driver assertion failure in x86 NT kernels.
  11167. llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
  11168. llvm::InlineAsm *IA =
  11169. llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
  11170. llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
  11171. getLLVMContext(), llvm::AttributeList::FunctionIndex,
  11172. llvm::Attribute::NoReturn);
  11173. llvm::CallInst *CI = Builder.CreateCall(IA);
  11174. CI->setAttributes(NoReturnAttr);
  11175. return CI;
  11176. }
  11177. case X86::BI__readfsbyte:
  11178. case X86::BI__readfsword:
  11179. case X86::BI__readfsdword:
  11180. case X86::BI__readfsqword: {
  11181. llvm::Type *IntTy = ConvertType(E->getType());
  11182. Value *Ptr =
  11183. Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
  11184. LoadInst *Load = Builder.CreateAlignedLoad(
  11185. IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
  11186. Load->setVolatile(true);
  11187. return Load;
  11188. }
  11189. case X86::BI__readgsbyte:
  11190. case X86::BI__readgsword:
  11191. case X86::BI__readgsdword:
  11192. case X86::BI__readgsqword: {
  11193. llvm::Type *IntTy = ConvertType(E->getType());
  11194. Value *Ptr =
  11195. Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
  11196. LoadInst *Load = Builder.CreateAlignedLoad(
  11197. IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
  11198. Load->setVolatile(true);
  11199. return Load;
  11200. }
  11201. case X86::BI__builtin_ia32_paddsb512:
  11202. case X86::BI__builtin_ia32_paddsw512:
  11203. case X86::BI__builtin_ia32_paddsb256:
  11204. case X86::BI__builtin_ia32_paddsw256:
  11205. case X86::BI__builtin_ia32_paddsb128:
  11206. case X86::BI__builtin_ia32_paddsw128:
  11207. return EmitX86AddSubSatExpr(*this, Ops, true, true);
  11208. case X86::BI__builtin_ia32_paddusb512:
  11209. case X86::BI__builtin_ia32_paddusw512:
  11210. case X86::BI__builtin_ia32_paddusb256:
  11211. case X86::BI__builtin_ia32_paddusw256:
  11212. case X86::BI__builtin_ia32_paddusb128:
  11213. case X86::BI__builtin_ia32_paddusw128:
  11214. return EmitX86AddSubSatExpr(*this, Ops, false, true);
  11215. case X86::BI__builtin_ia32_psubsb512:
  11216. case X86::BI__builtin_ia32_psubsw512:
  11217. case X86::BI__builtin_ia32_psubsb256:
  11218. case X86::BI__builtin_ia32_psubsw256:
  11219. case X86::BI__builtin_ia32_psubsb128:
  11220. case X86::BI__builtin_ia32_psubsw128:
  11221. return EmitX86AddSubSatExpr(*this, Ops, true, false);
  11222. case X86::BI__builtin_ia32_psubusb512:
  11223. case X86::BI__builtin_ia32_psubusw512:
  11224. case X86::BI__builtin_ia32_psubusb256:
  11225. case X86::BI__builtin_ia32_psubusw256:
  11226. case X86::BI__builtin_ia32_psubusb128:
  11227. case X86::BI__builtin_ia32_psubusw128:
  11228. return EmitX86AddSubSatExpr(*this, Ops, false, false);
  11229. }
  11230. }
  11231. Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
  11232. const CallExpr *E) {
  11233. SmallVector<Value*, 4> Ops;
  11234. for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
  11235. Ops.push_back(EmitScalarExpr(E->getArg(i)));
  11236. Intrinsic::ID ID = Intrinsic::not_intrinsic;
  11237. switch (BuiltinID) {
  11238. default: return nullptr;
  11239. // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
  11240. // call __builtin_readcyclecounter.
  11241. case PPC::BI__builtin_ppc_get_timebase:
  11242. return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
  11243. // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
  11244. case PPC::BI__builtin_altivec_lvx:
  11245. case PPC::BI__builtin_altivec_lvxl:
  11246. case PPC::BI__builtin_altivec_lvebx:
  11247. case PPC::BI__builtin_altivec_lvehx:
  11248. case PPC::BI__builtin_altivec_lvewx:
  11249. case PPC::BI__builtin_altivec_lvsl:
  11250. case PPC::BI__builtin_altivec_lvsr:
  11251. case PPC::BI__builtin_vsx_lxvd2x:
  11252. case PPC::BI__builtin_vsx_lxvw4x:
  11253. case PPC::BI__builtin_vsx_lxvd2x_be:
  11254. case PPC::BI__builtin_vsx_lxvw4x_be:
  11255. case PPC::BI__builtin_vsx_lxvl:
  11256. case PPC::BI__builtin_vsx_lxvll:
  11257. {
  11258. if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
  11259. BuiltinID == PPC::BI__builtin_vsx_lxvll){
  11260. Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
  11261. }else {
  11262. Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
  11263. Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
  11264. Ops.pop_back();
  11265. }
  11266. switch (BuiltinID) {
  11267. default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
  11268. case PPC::BI__builtin_altivec_lvx:
  11269. ID = Intrinsic::ppc_altivec_lvx;
  11270. break;
  11271. case PPC::BI__builtin_altivec_lvxl:
  11272. ID = Intrinsic::ppc_altivec_lvxl;
  11273. break;
  11274. case PPC::BI__builtin_altivec_lvebx:
  11275. ID = Intrinsic::ppc_altivec_lvebx;
  11276. break;
  11277. case PPC::BI__builtin_altivec_lvehx:
  11278. ID = Intrinsic::ppc_altivec_lvehx;
  11279. break;
  11280. case PPC::BI__builtin_altivec_lvewx:
  11281. ID = Intrinsic::ppc_altivec_lvewx;
  11282. break;
  11283. case PPC::BI__builtin_altivec_lvsl:
  11284. ID = Intrinsic::ppc_altivec_lvsl;
  11285. break;
  11286. case PPC::BI__builtin_altivec_lvsr:
  11287. ID = Intrinsic::ppc_altivec_lvsr;
  11288. break;
  11289. case PPC::BI__builtin_vsx_lxvd2x:
  11290. ID = Intrinsic::ppc_vsx_lxvd2x;
  11291. break;
  11292. case PPC::BI__builtin_vsx_lxvw4x:
  11293. ID = Intrinsic::ppc_vsx_lxvw4x;
  11294. break;
  11295. case PPC::BI__builtin_vsx_lxvd2x_be:
  11296. ID = Intrinsic::ppc_vsx_lxvd2x_be;
  11297. break;
  11298. case PPC::BI__builtin_vsx_lxvw4x_be:
  11299. ID = Intrinsic::ppc_vsx_lxvw4x_be;
  11300. break;
  11301. case PPC::BI__builtin_vsx_lxvl:
  11302. ID = Intrinsic::ppc_vsx_lxvl;
  11303. break;
  11304. case PPC::BI__builtin_vsx_lxvll:
  11305. ID = Intrinsic::ppc_vsx_lxvll;
  11306. break;
  11307. }
  11308. llvm::Function *F = CGM.getIntrinsic(ID);
  11309. return Builder.CreateCall(F, Ops, "");
  11310. }
  11311. // vec_st, vec_xst_be
  11312. case PPC::BI__builtin_altivec_stvx:
  11313. case PPC::BI__builtin_altivec_stvxl:
  11314. case PPC::BI__builtin_altivec_stvebx:
  11315. case PPC::BI__builtin_altivec_stvehx:
  11316. case PPC::BI__builtin_altivec_stvewx:
  11317. case PPC::BI__builtin_vsx_stxvd2x:
  11318. case PPC::BI__builtin_vsx_stxvw4x:
  11319. case PPC::BI__builtin_vsx_stxvd2x_be:
  11320. case PPC::BI__builtin_vsx_stxvw4x_be:
  11321. case PPC::BI__builtin_vsx_stxvl:
  11322. case PPC::BI__builtin_vsx_stxvll:
  11323. {
  11324. if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
  11325. BuiltinID == PPC::BI__builtin_vsx_stxvll ){
  11326. Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
  11327. }else {
  11328. Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
  11329. Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
  11330. Ops.pop_back();
  11331. }
  11332. switch (BuiltinID) {
  11333. default: llvm_unreachable("Unsupported st intrinsic!");
  11334. case PPC::BI__builtin_altivec_stvx:
  11335. ID = Intrinsic::ppc_altivec_stvx;
  11336. break;
  11337. case PPC::BI__builtin_altivec_stvxl:
  11338. ID = Intrinsic::ppc_altivec_stvxl;
  11339. break;
  11340. case PPC::BI__builtin_altivec_stvebx:
  11341. ID = Intrinsic::ppc_altivec_stvebx;
  11342. break;
  11343. case PPC::BI__builtin_altivec_stvehx:
  11344. ID = Intrinsic::ppc_altivec_stvehx;
  11345. break;
  11346. case PPC::BI__builtin_altivec_stvewx:
  11347. ID = Intrinsic::ppc_altivec_stvewx;
  11348. break;
  11349. case PPC::BI__builtin_vsx_stxvd2x:
  11350. ID = Intrinsic::ppc_vsx_stxvd2x;
  11351. break;
  11352. case PPC::BI__builtin_vsx_stxvw4x:
  11353. ID = Intrinsic::ppc_vsx_stxvw4x;
  11354. break;
  11355. case PPC::BI__builtin_vsx_stxvd2x_be:
  11356. ID = Intrinsic::ppc_vsx_stxvd2x_be;
  11357. break;
  11358. case PPC::BI__builtin_vsx_stxvw4x_be:
  11359. ID = Intrinsic::ppc_vsx_stxvw4x_be;
  11360. break;
  11361. case PPC::BI__builtin_vsx_stxvl:
  11362. ID = Intrinsic::ppc_vsx_stxvl;
  11363. break;
  11364. case PPC::BI__builtin_vsx_stxvll:
  11365. ID = Intrinsic::ppc_vsx_stxvll;
  11366. break;
  11367. }
  11368. llvm::Function *F = CGM.getIntrinsic(ID);
  11369. return Builder.CreateCall(F, Ops, "");
  11370. }
  11371. // Square root
  11372. case PPC::BI__builtin_vsx_xvsqrtsp:
  11373. case PPC::BI__builtin_vsx_xvsqrtdp: {
  11374. llvm::Type *ResultType = ConvertType(E->getType());
  11375. Value *X = EmitScalarExpr(E->getArg(0));
  11376. ID = Intrinsic::sqrt;
  11377. llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
  11378. return Builder.CreateCall(F, X);
  11379. }
  11380. // Count leading zeros
  11381. case PPC::BI__builtin_altivec_vclzb:
  11382. case PPC::BI__builtin_altivec_vclzh:
  11383. case PPC::BI__builtin_altivec_vclzw:
  11384. case PPC::BI__builtin_altivec_vclzd: {
  11385. llvm::Type *ResultType = ConvertType(E->getType());
  11386. Value *X = EmitScalarExpr(E->getArg(0));
  11387. Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
  11388. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
  11389. return Builder.CreateCall(F, {X, Undef});
  11390. }
  11391. case PPC::BI__builtin_altivec_vctzb:
  11392. case PPC::BI__builtin_altivec_vctzh:
  11393. case PPC::BI__builtin_altivec_vctzw:
  11394. case PPC::BI__builtin_altivec_vctzd: {
  11395. llvm::Type *ResultType = ConvertType(E->getType());
  11396. Value *X = EmitScalarExpr(E->getArg(0));
  11397. Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
  11398. Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
  11399. return Builder.CreateCall(F, {X, Undef});
  11400. }
  11401. case PPC::BI__builtin_altivec_vpopcntb:
  11402. case PPC::BI__builtin_altivec_vpopcnth:
  11403. case PPC::BI__builtin_altivec_vpopcntw:
  11404. case PPC::BI__builtin_altivec_vpopcntd: {
  11405. llvm::Type *ResultType = ConvertType(E->getType());
  11406. Value *X = EmitScalarExpr(E->getArg(0));
  11407. llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
  11408. return Builder.CreateCall(F, X);
  11409. }
  11410. // Copy sign
  11411. case PPC::BI__builtin_vsx_xvcpsgnsp:
  11412. case PPC::BI__builtin_vsx_xvcpsgndp: {
  11413. llvm::Type *ResultType = ConvertType(E->getType());
  11414. Value *X = EmitScalarExpr(E->getArg(0));
  11415. Value *Y = EmitScalarExpr(E->getArg(1));
  11416. ID = Intrinsic::copysign;
  11417. llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
  11418. return Builder.CreateCall(F, {X, Y});
  11419. }
  11420. // Rounding/truncation
  11421. case PPC::BI__builtin_vsx_xvrspip:
  11422. case PPC::BI__builtin_vsx_xvrdpip:
  11423. case PPC::BI__builtin_vsx_xvrdpim:
  11424. case PPC::BI__builtin_vsx_xvrspim:
  11425. case PPC::BI__builtin_vsx_xvrdpi:
  11426. case PPC::BI__builtin_vsx_xvrspi:
  11427. case PPC::BI__builtin_vsx_xvrdpic:
  11428. case PPC::BI__builtin_vsx_xvrspic:
  11429. case PPC::BI__builtin_vsx_xvrdpiz:
  11430. case PPC::BI__builtin_vsx_xvrspiz: {
  11431. llvm::Type *ResultType = ConvertType(E->getType());
  11432. Value *X = EmitScalarExpr(E->getArg(0));
  11433. if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
  11434. BuiltinID == PPC::BI__builtin_vsx_xvrspim)
  11435. ID = Intrinsic::floor;
  11436. else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
  11437. BuiltinID == PPC::BI__builtin_vsx_xvrspi)
  11438. ID = Intrinsic::round;
  11439. else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
  11440. BuiltinID == PPC::BI__builtin_vsx_xvrspic)
  11441. ID = Intrinsic::nearbyint;
  11442. else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
  11443. BuiltinID == PPC::BI__builtin_vsx_xvrspip)
  11444. ID = Intrinsic::ceil;
  11445. else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
  11446. BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
  11447. ID = Intrinsic::trunc;
  11448. llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
  11449. return Builder.CreateCall(F, X);
  11450. }
  11451. // Absolute value
  11452. case PPC::BI__builtin_vsx_xvabsdp:
  11453. case PPC::BI__builtin_vsx_xvabssp: {
  11454. llvm::Type *ResultType = ConvertType(E->getType());
  11455. Value *X = EmitScalarExpr(E->getArg(0));
  11456. llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
  11457. return Builder.CreateCall(F, X);
  11458. }
  11459. // FMA variations
  11460. case PPC::BI__builtin_vsx_xvmaddadp:
  11461. case PPC::BI__builtin_vsx_xvmaddasp:
  11462. case PPC::BI__builtin_vsx_xvnmaddadp:
  11463. case PPC::BI__builtin_vsx_xvnmaddasp:
  11464. case PPC::BI__builtin_vsx_xvmsubadp:
  11465. case PPC::BI__builtin_vsx_xvmsubasp:
  11466. case PPC::BI__builtin_vsx_xvnmsubadp:
  11467. case PPC::BI__builtin_vsx_xvnmsubasp: {
  11468. llvm::Type *ResultType = ConvertType(E->getType());
  11469. Value *X = EmitScalarExpr(E->getArg(0));
  11470. Value *Y = EmitScalarExpr(E->getArg(1));
  11471. Value *Z = EmitScalarExpr(E->getArg(2));
  11472. Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
  11473. llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
  11474. switch (BuiltinID) {
  11475. case PPC::BI__builtin_vsx_xvmaddadp:
  11476. case PPC::BI__builtin_vsx_xvmaddasp:
  11477. return Builder.CreateCall(F, {X, Y, Z});
  11478. case PPC::BI__builtin_vsx_xvnmaddadp:
  11479. case PPC::BI__builtin_vsx_xvnmaddasp:
  11480. return Builder.CreateFSub(Zero,
  11481. Builder.CreateCall(F, {X, Y, Z}), "sub");
  11482. case PPC::BI__builtin_vsx_xvmsubadp:
  11483. case PPC::BI__builtin_vsx_xvmsubasp:
  11484. return Builder.CreateCall(F,
  11485. {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
  11486. case PPC::BI__builtin_vsx_xvnmsubadp:
  11487. case PPC::BI__builtin_vsx_xvnmsubasp:
  11488. Value *FsubRes =
  11489. Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
  11490. return Builder.CreateFSub(Zero, FsubRes, "sub");
  11491. }
  11492. llvm_unreachable("Unknown FMA operation");
  11493. return nullptr; // Suppress no-return warning
  11494. }
  11495. case PPC::BI__builtin_vsx_insertword: {
  11496. llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
  11497. // Third argument is a compile time constant int. It must be clamped to
  11498. // to the range [0, 12].
  11499. ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
  11500. assert(ArgCI &&
  11501. "Third arg to xxinsertw intrinsic must be constant integer");
  11502. const int64_t MaxIndex = 12;
  11503. int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
  11504. // The builtin semantics don't exactly match the xxinsertw instructions
  11505. // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
  11506. // word from the first argument, and inserts it in the second argument. The
  11507. // instruction extracts the word from its second input register and inserts
  11508. // it into its first input register, so swap the first and second arguments.
  11509. std::swap(Ops[0], Ops[1]);
  11510. // Need to cast the second argument from a vector of unsigned int to a
  11511. // vector of long long.
  11512. Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
  11513. if (getTarget().isLittleEndian()) {
  11514. // Create a shuffle mask of (1, 0)
  11515. Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
  11516. ConstantInt::get(Int32Ty, 0)
  11517. };
  11518. Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
  11519. // Reverse the double words in the vector we will extract from.
  11520. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
  11521. Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask);
  11522. // Reverse the index.
  11523. Index = MaxIndex - Index;
  11524. }
  11525. // Intrinsic expects the first arg to be a vector of int.
  11526. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
  11527. Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
  11528. return Builder.CreateCall(F, Ops);
  11529. }
  11530. case PPC::BI__builtin_vsx_extractuword: {
  11531. llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
  11532. // Intrinsic expects the first argument to be a vector of doublewords.
  11533. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
  11534. // The second argument is a compile time constant int that needs to
  11535. // be clamped to the range [0, 12].
  11536. ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
  11537. assert(ArgCI &&
  11538. "Second Arg to xxextractuw intrinsic must be a constant integer!");
  11539. const int64_t MaxIndex = 12;
  11540. int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
  11541. if (getTarget().isLittleEndian()) {
  11542. // Reverse the index.
  11543. Index = MaxIndex - Index;
  11544. Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
  11545. // Emit the call, then reverse the double words of the results vector.
  11546. Value *Call = Builder.CreateCall(F, Ops);
  11547. // Create a shuffle mask of (1, 0)
  11548. Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
  11549. ConstantInt::get(Int32Ty, 0)
  11550. };
  11551. Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
  11552. Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask);
  11553. return ShuffleCall;
  11554. } else {
  11555. Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
  11556. return Builder.CreateCall(F, Ops);
  11557. }
  11558. }
  11559. case PPC::BI__builtin_vsx_xxpermdi: {
  11560. ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
  11561. assert(ArgCI && "Third arg must be constant integer!");
  11562. unsigned Index = ArgCI->getZExtValue();
  11563. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
  11564. Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
  11565. // Account for endianness by treating this as just a shuffle. So we use the
  11566. // same indices for both LE and BE in order to produce expected results in
  11567. // both cases.
  11568. unsigned ElemIdx0 = (Index & 2) >> 1;
  11569. unsigned ElemIdx1 = 2 + (Index & 1);
  11570. Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0),
  11571. ConstantInt::get(Int32Ty, ElemIdx1)};
  11572. Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
  11573. Value *ShuffleCall =
  11574. Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
  11575. QualType BIRetType = E->getType();
  11576. auto RetTy = ConvertType(BIRetType);
  11577. return Builder.CreateBitCast(ShuffleCall, RetTy);
  11578. }
  11579. case PPC::BI__builtin_vsx_xxsldwi: {
  11580. ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
  11581. assert(ArgCI && "Third argument must be a compile time constant");
  11582. unsigned Index = ArgCI->getZExtValue() & 0x3;
  11583. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
  11584. Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4));
  11585. // Create a shuffle mask
  11586. unsigned ElemIdx0;
  11587. unsigned ElemIdx1;
  11588. unsigned ElemIdx2;
  11589. unsigned ElemIdx3;
  11590. if (getTarget().isLittleEndian()) {
  11591. // Little endian element N comes from element 8+N-Index of the
  11592. // concatenated wide vector (of course, using modulo arithmetic on
  11593. // the total number of elements).
  11594. ElemIdx0 = (8 - Index) % 8;
  11595. ElemIdx1 = (9 - Index) % 8;
  11596. ElemIdx2 = (10 - Index) % 8;
  11597. ElemIdx3 = (11 - Index) % 8;
  11598. } else {
  11599. // Big endian ElemIdx<N> = Index + N
  11600. ElemIdx0 = Index;
  11601. ElemIdx1 = Index + 1;
  11602. ElemIdx2 = Index + 2;
  11603. ElemIdx3 = Index + 3;
  11604. }
  11605. Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0),
  11606. ConstantInt::get(Int32Ty, ElemIdx1),
  11607. ConstantInt::get(Int32Ty, ElemIdx2),
  11608. ConstantInt::get(Int32Ty, ElemIdx3)};
  11609. Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
  11610. Value *ShuffleCall =
  11611. Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
  11612. QualType BIRetType = E->getType();
  11613. auto RetTy = ConvertType(BIRetType);
  11614. return Builder.CreateBitCast(ShuffleCall, RetTy);
  11615. }
  11616. case PPC::BI__builtin_pack_vector_int128: {
  11617. bool isLittleEndian = getTarget().isLittleEndian();
  11618. Value *UndefValue =
  11619. llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), 2));
  11620. Value *Res = Builder.CreateInsertElement(
  11621. UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
  11622. Res = Builder.CreateInsertElement(Res, Ops[1],
  11623. (uint64_t)(isLittleEndian ? 0 : 1));
  11624. return Builder.CreateBitCast(Res, ConvertType(E->getType()));
  11625. }
  11626. case PPC::BI__builtin_unpack_vector_int128: {
  11627. ConstantInt *Index = cast<ConstantInt>(Ops[1]);
  11628. Value *Unpacked = Builder.CreateBitCast(
  11629. Ops[0], llvm::VectorType::get(ConvertType(E->getType()), 2));
  11630. if (getTarget().isLittleEndian())
  11631. Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
  11632. return Builder.CreateExtractElement(Unpacked, Index);
  11633. }
  11634. }
  11635. }
  11636. Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
  11637. const CallExpr *E) {
  11638. switch (BuiltinID) {
  11639. case AMDGPU::BI__builtin_amdgcn_div_scale:
  11640. case AMDGPU::BI__builtin_amdgcn_div_scalef: {
  11641. // Translate from the intrinsics's struct return to the builtin's out
  11642. // argument.
  11643. Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
  11644. llvm::Value *X = EmitScalarExpr(E->getArg(0));
  11645. llvm::Value *Y = EmitScalarExpr(E->getArg(1));
  11646. llvm::Value *Z = EmitScalarExpr(E->getArg(2));
  11647. llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
  11648. X->getType());
  11649. llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
  11650. llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
  11651. llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
  11652. llvm::Type *RealFlagType
  11653. = FlagOutPtr.getPointer()->getType()->getPointerElementType();
  11654. llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
  11655. Builder.CreateStore(FlagExt, FlagOutPtr);
  11656. return Result;
  11657. }
  11658. case AMDGPU::BI__builtin_amdgcn_div_fmas:
  11659. case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
  11660. llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
  11661. llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
  11662. llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
  11663. llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
  11664. llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
  11665. Src0->getType());
  11666. llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
  11667. return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
  11668. }
  11669. case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
  11670. return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
  11671. case AMDGPU::BI__builtin_amdgcn_mov_dpp:
  11672. case AMDGPU::BI__builtin_amdgcn_update_dpp: {
  11673. llvm::SmallVector<llvm::Value *, 6> Args;
  11674. for (unsigned I = 0; I != E->getNumArgs(); ++I)
  11675. Args.push_back(EmitScalarExpr(E->getArg(I)));
  11676. assert(Args.size() == 5 || Args.size() == 6);
  11677. if (Args.size() == 5)
  11678. Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
  11679. Function *F =
  11680. CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
  11681. return Builder.CreateCall(F, Args);
  11682. }
  11683. case AMDGPU::BI__builtin_amdgcn_div_fixup:
  11684. case AMDGPU::BI__builtin_amdgcn_div_fixupf:
  11685. case AMDGPU::BI__builtin_amdgcn_div_fixuph:
  11686. return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
  11687. case AMDGPU::BI__builtin_amdgcn_trig_preop:
  11688. case AMDGPU::BI__builtin_amdgcn_trig_preopf:
  11689. return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
  11690. case AMDGPU::BI__builtin_amdgcn_rcp:
  11691. case AMDGPU::BI__builtin_amdgcn_rcpf:
  11692. case AMDGPU::BI__builtin_amdgcn_rcph:
  11693. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
  11694. case AMDGPU::BI__builtin_amdgcn_rsq:
  11695. case AMDGPU::BI__builtin_amdgcn_rsqf:
  11696. case AMDGPU::BI__builtin_amdgcn_rsqh:
  11697. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
  11698. case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
  11699. case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
  11700. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
  11701. case AMDGPU::BI__builtin_amdgcn_sinf:
  11702. case AMDGPU::BI__builtin_amdgcn_sinh:
  11703. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
  11704. case AMDGPU::BI__builtin_amdgcn_cosf:
  11705. case AMDGPU::BI__builtin_amdgcn_cosh:
  11706. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
  11707. case AMDGPU::BI__builtin_amdgcn_log_clampf:
  11708. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
  11709. case AMDGPU::BI__builtin_amdgcn_ldexp:
  11710. case AMDGPU::BI__builtin_amdgcn_ldexpf:
  11711. case AMDGPU::BI__builtin_amdgcn_ldexph:
  11712. return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
  11713. case AMDGPU::BI__builtin_amdgcn_frexp_mant:
  11714. case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
  11715. case AMDGPU::BI__builtin_amdgcn_frexp_manth:
  11716. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
  11717. case AMDGPU::BI__builtin_amdgcn_frexp_exp:
  11718. case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
  11719. Value *Src0 = EmitScalarExpr(E->getArg(0));
  11720. Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
  11721. { Builder.getInt32Ty(), Src0->getType() });
  11722. return Builder.CreateCall(F, Src0);
  11723. }
  11724. case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
  11725. Value *Src0 = EmitScalarExpr(E->getArg(0));
  11726. Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
  11727. { Builder.getInt16Ty(), Src0->getType() });
  11728. return Builder.CreateCall(F, Src0);
  11729. }
  11730. case AMDGPU::BI__builtin_amdgcn_fract:
  11731. case AMDGPU::BI__builtin_amdgcn_fractf:
  11732. case AMDGPU::BI__builtin_amdgcn_fracth:
  11733. return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
  11734. case AMDGPU::BI__builtin_amdgcn_lerp:
  11735. return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
  11736. case AMDGPU::BI__builtin_amdgcn_uicmp:
  11737. case AMDGPU::BI__builtin_amdgcn_uicmpl:
  11738. case AMDGPU::BI__builtin_amdgcn_sicmp:
  11739. case AMDGPU::BI__builtin_amdgcn_sicmpl: {
  11740. llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
  11741. llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
  11742. llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
  11743. // FIXME-GFX10: How should 32 bit mask be handled?
  11744. Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
  11745. { Builder.getInt64Ty(), Src0->getType() });
  11746. return Builder.CreateCall(F, { Src0, Src1, Src2 });
  11747. }
  11748. case AMDGPU::BI__builtin_amdgcn_fcmp:
  11749. case AMDGPU::BI__builtin_amdgcn_fcmpf: {
  11750. llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
  11751. llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
  11752. llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
  11753. // FIXME-GFX10: How should 32 bit mask be handled?
  11754. Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
  11755. { Builder.getInt64Ty(), Src0->getType() });
  11756. return Builder.CreateCall(F, { Src0, Src1, Src2 });
  11757. }
  11758. case AMDGPU::BI__builtin_amdgcn_class:
  11759. case AMDGPU::BI__builtin_amdgcn_classf:
  11760. case AMDGPU::BI__builtin_amdgcn_classh:
  11761. return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
  11762. case AMDGPU::BI__builtin_amdgcn_fmed3f:
  11763. case AMDGPU::BI__builtin_amdgcn_fmed3h:
  11764. return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
  11765. case AMDGPU::BI__builtin_amdgcn_ds_append:
  11766. case AMDGPU::BI__builtin_amdgcn_ds_consume: {
  11767. Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
  11768. Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
  11769. Value *Src0 = EmitScalarExpr(E->getArg(0));
  11770. Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
  11771. return Builder.CreateCall(F, { Src0, Builder.getFalse() });
  11772. }
  11773. case AMDGPU::BI__builtin_amdgcn_read_exec: {
  11774. CallInst *CI = cast<CallInst>(
  11775. EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec"));
  11776. CI->setConvergent();
  11777. return CI;
  11778. }
  11779. case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
  11780. case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
  11781. StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
  11782. "exec_lo" : "exec_hi";
  11783. CallInst *CI = cast<CallInst>(
  11784. EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName));
  11785. CI->setConvergent();
  11786. return CI;
  11787. }
  11788. // amdgcn workitem
  11789. case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
  11790. return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
  11791. case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
  11792. return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
  11793. case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
  11794. return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
  11795. // r600 intrinsics
  11796. case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
  11797. case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
  11798. return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
  11799. case AMDGPU::BI__builtin_r600_read_tidig_x:
  11800. return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
  11801. case AMDGPU::BI__builtin_r600_read_tidig_y:
  11802. return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
  11803. case AMDGPU::BI__builtin_r600_read_tidig_z:
  11804. return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
  11805. default:
  11806. return nullptr;
  11807. }
  11808. }
  11809. /// Handle a SystemZ function in which the final argument is a pointer
  11810. /// to an int that receives the post-instruction CC value. At the LLVM level
  11811. /// this is represented as a function that returns a {result, cc} pair.
  11812. static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
  11813. unsigned IntrinsicID,
  11814. const CallExpr *E) {
  11815. unsigned NumArgs = E->getNumArgs() - 1;
  11816. SmallVector<Value *, 8> Args(NumArgs);
  11817. for (unsigned I = 0; I < NumArgs; ++I)
  11818. Args[I] = CGF.EmitScalarExpr(E->getArg(I));
  11819. Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
  11820. Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
  11821. Value *Call = CGF.Builder.CreateCall(F, Args);
  11822. Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
  11823. CGF.Builder.CreateStore(CC, CCPtr);
  11824. return CGF.Builder.CreateExtractValue(Call, 0);
  11825. }
  11826. Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
  11827. const CallExpr *E) {
  11828. switch (BuiltinID) {
  11829. case SystemZ::BI__builtin_tbegin: {
  11830. Value *TDB = EmitScalarExpr(E->getArg(0));
  11831. Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
  11832. Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
  11833. return Builder.CreateCall(F, {TDB, Control});
  11834. }
  11835. case SystemZ::BI__builtin_tbegin_nofloat: {
  11836. Value *TDB = EmitScalarExpr(E->getArg(0));
  11837. Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
  11838. Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
  11839. return Builder.CreateCall(F, {TDB, Control});
  11840. }
  11841. case SystemZ::BI__builtin_tbeginc: {
  11842. Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
  11843. Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
  11844. Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
  11845. return Builder.CreateCall(F, {TDB, Control});
  11846. }
  11847. case SystemZ::BI__builtin_tabort: {
  11848. Value *Data = EmitScalarExpr(E->getArg(0));
  11849. Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
  11850. return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
  11851. }
  11852. case SystemZ::BI__builtin_non_tx_store: {
  11853. Value *Address = EmitScalarExpr(E->getArg(0));
  11854. Value *Data = EmitScalarExpr(E->getArg(1));
  11855. Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
  11856. return Builder.CreateCall(F, {Data, Address});
  11857. }
  11858. // Vector builtins. Note that most vector builtins are mapped automatically
  11859. // to target-specific LLVM intrinsics. The ones handled specially here can
  11860. // be represented via standard LLVM IR, which is preferable to enable common
  11861. // LLVM optimizations.
  11862. case SystemZ::BI__builtin_s390_vpopctb:
  11863. case SystemZ::BI__builtin_s390_vpopcth:
  11864. case SystemZ::BI__builtin_s390_vpopctf:
  11865. case SystemZ::BI__builtin_s390_vpopctg: {
  11866. llvm::Type *ResultType = ConvertType(E->getType());
  11867. Value *X = EmitScalarExpr(E->getArg(0));
  11868. Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
  11869. return Builder.CreateCall(F, X);
  11870. }
  11871. case SystemZ::BI__builtin_s390_vclzb:
  11872. case SystemZ::BI__builtin_s390_vclzh:
  11873. case SystemZ::BI__builtin_s390_vclzf:
  11874. case SystemZ::BI__builtin_s390_vclzg: {
  11875. llvm::Type *ResultType = ConvertType(E->getType());
  11876. Value *X = EmitScalarExpr(E->getArg(0));
  11877. Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
  11878. Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
  11879. return Builder.CreateCall(F, {X, Undef});
  11880. }
  11881. case SystemZ::BI__builtin_s390_vctzb:
  11882. case SystemZ::BI__builtin_s390_vctzh:
  11883. case SystemZ::BI__builtin_s390_vctzf:
  11884. case SystemZ::BI__builtin_s390_vctzg: {
  11885. llvm::Type *ResultType = ConvertType(E->getType());
  11886. Value *X = EmitScalarExpr(E->getArg(0));
  11887. Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
  11888. Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
  11889. return Builder.CreateCall(F, {X, Undef});
  11890. }
  11891. case SystemZ::BI__builtin_s390_vfsqsb:
  11892. case SystemZ::BI__builtin_s390_vfsqdb: {
  11893. llvm::Type *ResultType = ConvertType(E->getType());
  11894. Value *X = EmitScalarExpr(E->getArg(0));
  11895. Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
  11896. return Builder.CreateCall(F, X);
  11897. }
  11898. case SystemZ::BI__builtin_s390_vfmasb:
  11899. case SystemZ::BI__builtin_s390_vfmadb: {
  11900. llvm::Type *ResultType = ConvertType(E->getType());
  11901. Value *X = EmitScalarExpr(E->getArg(0));
  11902. Value *Y = EmitScalarExpr(E->getArg(1));
  11903. Value *Z = EmitScalarExpr(E->getArg(2));
  11904. Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
  11905. return Builder.CreateCall(F, {X, Y, Z});
  11906. }
  11907. case SystemZ::BI__builtin_s390_vfmssb:
  11908. case SystemZ::BI__builtin_s390_vfmsdb: {
  11909. llvm::Type *ResultType = ConvertType(E->getType());
  11910. Value *X = EmitScalarExpr(E->getArg(0));
  11911. Value *Y = EmitScalarExpr(E->getArg(1));
  11912. Value *Z = EmitScalarExpr(E->getArg(2));
  11913. Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
  11914. Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
  11915. return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
  11916. }
  11917. case SystemZ::BI__builtin_s390_vfnmasb:
  11918. case SystemZ::BI__builtin_s390_vfnmadb: {
  11919. llvm::Type *ResultType = ConvertType(E->getType());
  11920. Value *X = EmitScalarExpr(E->getArg(0));
  11921. Value *Y = EmitScalarExpr(E->getArg(1));
  11922. Value *Z = EmitScalarExpr(E->getArg(2));
  11923. Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
  11924. Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
  11925. return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub");
  11926. }
  11927. case SystemZ::BI__builtin_s390_vfnmssb:
  11928. case SystemZ::BI__builtin_s390_vfnmsdb: {
  11929. llvm::Type *ResultType = ConvertType(E->getType());
  11930. Value *X = EmitScalarExpr(E->getArg(0));
  11931. Value *Y = EmitScalarExpr(E->getArg(1));
  11932. Value *Z = EmitScalarExpr(E->getArg(2));
  11933. Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
  11934. Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
  11935. Value *NegZ = Builder.CreateFSub(Zero, Z, "sub");
  11936. return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, NegZ}));
  11937. }
  11938. case SystemZ::BI__builtin_s390_vflpsb:
  11939. case SystemZ::BI__builtin_s390_vflpdb: {
  11940. llvm::Type *ResultType = ConvertType(E->getType());
  11941. Value *X = EmitScalarExpr(E->getArg(0));
  11942. Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
  11943. return Builder.CreateCall(F, X);
  11944. }
  11945. case SystemZ::BI__builtin_s390_vflnsb:
  11946. case SystemZ::BI__builtin_s390_vflndb: {
  11947. llvm::Type *ResultType = ConvertType(E->getType());
  11948. Value *X = EmitScalarExpr(E->getArg(0));
  11949. Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
  11950. Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
  11951. return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
  11952. }
  11953. case SystemZ::BI__builtin_s390_vfisb:
  11954. case SystemZ::BI__builtin_s390_vfidb: {
  11955. llvm::Type *ResultType = ConvertType(E->getType());
  11956. Value *X = EmitScalarExpr(E->getArg(0));
  11957. // Constant-fold the M4 and M5 mask arguments.
  11958. llvm::APSInt M4, M5;
  11959. bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
  11960. bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
  11961. assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?");
  11962. (void)IsConstM4; (void)IsConstM5;
  11963. // Check whether this instance can be represented via a LLVM standard
  11964. // intrinsic. We only support some combinations of M4 and M5.
  11965. Intrinsic::ID ID = Intrinsic::not_intrinsic;
  11966. switch (M4.getZExtValue()) {
  11967. default: break;
  11968. case 0: // IEEE-inexact exception allowed
  11969. switch (M5.getZExtValue()) {
  11970. default: break;
  11971. case 0: ID = Intrinsic::rint; break;
  11972. }
  11973. break;
  11974. case 4: // IEEE-inexact exception suppressed
  11975. switch (M5.getZExtValue()) {
  11976. default: break;
  11977. case 0: ID = Intrinsic::nearbyint; break;
  11978. case 1: ID = Intrinsic::round; break;
  11979. case 5: ID = Intrinsic::trunc; break;
  11980. case 6: ID = Intrinsic::ceil; break;
  11981. case 7: ID = Intrinsic::floor; break;
  11982. }
  11983. break;
  11984. }
  11985. if (ID != Intrinsic::not_intrinsic) {
  11986. Function *F = CGM.getIntrinsic(ID, ResultType);
  11987. return Builder.CreateCall(F, X);
  11988. }
  11989. switch (BuiltinID) {
  11990. case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
  11991. case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
  11992. default: llvm_unreachable("Unknown BuiltinID");
  11993. }
  11994. Function *F = CGM.getIntrinsic(ID);
  11995. Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
  11996. Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
  11997. return Builder.CreateCall(F, {X, M4Value, M5Value});
  11998. }
  11999. case SystemZ::BI__builtin_s390_vfmaxsb:
  12000. case SystemZ::BI__builtin_s390_vfmaxdb: {
  12001. llvm::Type *ResultType = ConvertType(E->getType());
  12002. Value *X = EmitScalarExpr(E->getArg(0));
  12003. Value *Y = EmitScalarExpr(E->getArg(1));
  12004. // Constant-fold the M4 mask argument.
  12005. llvm::APSInt M4;
  12006. bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
  12007. assert(IsConstM4 && "Constant arg isn't actually constant?");
  12008. (void)IsConstM4;
  12009. // Check whether this instance can be represented via a LLVM standard
  12010. // intrinsic. We only support some values of M4.
  12011. Intrinsic::ID ID = Intrinsic::not_intrinsic;
  12012. switch (M4.getZExtValue()) {
  12013. default: break;
  12014. case 4: ID = Intrinsic::maxnum; break;
  12015. }
  12016. if (ID != Intrinsic::not_intrinsic) {
  12017. Function *F = CGM.getIntrinsic(ID, ResultType);
  12018. return Builder.CreateCall(F, {X, Y});
  12019. }
  12020. switch (BuiltinID) {
  12021. case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
  12022. case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
  12023. default: llvm_unreachable("Unknown BuiltinID");
  12024. }
  12025. Function *F = CGM.getIntrinsic(ID);
  12026. Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
  12027. return Builder.CreateCall(F, {X, Y, M4Value});
  12028. }
  12029. case SystemZ::BI__builtin_s390_vfminsb:
  12030. case SystemZ::BI__builtin_s390_vfmindb: {
  12031. llvm::Type *ResultType = ConvertType(E->getType());
  12032. Value *X = EmitScalarExpr(E->getArg(0));
  12033. Value *Y = EmitScalarExpr(E->getArg(1));
  12034. // Constant-fold the M4 mask argument.
  12035. llvm::APSInt M4;
  12036. bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
  12037. assert(IsConstM4 && "Constant arg isn't actually constant?");
  12038. (void)IsConstM4;
  12039. // Check whether this instance can be represented via a LLVM standard
  12040. // intrinsic. We only support some values of M4.
  12041. Intrinsic::ID ID = Intrinsic::not_intrinsic;
  12042. switch (M4.getZExtValue()) {
  12043. default: break;
  12044. case 4: ID = Intrinsic::minnum; break;
  12045. }
  12046. if (ID != Intrinsic::not_intrinsic) {
  12047. Function *F = CGM.getIntrinsic(ID, ResultType);
  12048. return Builder.CreateCall(F, {X, Y});
  12049. }
  12050. switch (BuiltinID) {
  12051. case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
  12052. case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
  12053. default: llvm_unreachable("Unknown BuiltinID");
  12054. }
  12055. Function *F = CGM.getIntrinsic(ID);
  12056. Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
  12057. return Builder.CreateCall(F, {X, Y, M4Value});
  12058. }
  12059. case SystemZ::BI__builtin_s390_vlbrh:
  12060. case SystemZ::BI__builtin_s390_vlbrf:
  12061. case SystemZ::BI__builtin_s390_vlbrg: {
  12062. llvm::Type *ResultType = ConvertType(E->getType());
  12063. Value *X = EmitScalarExpr(E->getArg(0));
  12064. Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
  12065. return Builder.CreateCall(F, X);
  12066. }
  12067. // Vector intrinsics that output the post-instruction CC value.
  12068. #define INTRINSIC_WITH_CC(NAME) \
  12069. case SystemZ::BI__builtin_##NAME: \
  12070. return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
  12071. INTRINSIC_WITH_CC(s390_vpkshs);
  12072. INTRINSIC_WITH_CC(s390_vpksfs);
  12073. INTRINSIC_WITH_CC(s390_vpksgs);
  12074. INTRINSIC_WITH_CC(s390_vpklshs);
  12075. INTRINSIC_WITH_CC(s390_vpklsfs);
  12076. INTRINSIC_WITH_CC(s390_vpklsgs);
  12077. INTRINSIC_WITH_CC(s390_vceqbs);
  12078. INTRINSIC_WITH_CC(s390_vceqhs);
  12079. INTRINSIC_WITH_CC(s390_vceqfs);
  12080. INTRINSIC_WITH_CC(s390_vceqgs);
  12081. INTRINSIC_WITH_CC(s390_vchbs);
  12082. INTRINSIC_WITH_CC(s390_vchhs);
  12083. INTRINSIC_WITH_CC(s390_vchfs);
  12084. INTRINSIC_WITH_CC(s390_vchgs);
  12085. INTRINSIC_WITH_CC(s390_vchlbs);
  12086. INTRINSIC_WITH_CC(s390_vchlhs);
  12087. INTRINSIC_WITH_CC(s390_vchlfs);
  12088. INTRINSIC_WITH_CC(s390_vchlgs);
  12089. INTRINSIC_WITH_CC(s390_vfaebs);
  12090. INTRINSIC_WITH_CC(s390_vfaehs);
  12091. INTRINSIC_WITH_CC(s390_vfaefs);
  12092. INTRINSIC_WITH_CC(s390_vfaezbs);
  12093. INTRINSIC_WITH_CC(s390_vfaezhs);
  12094. INTRINSIC_WITH_CC(s390_vfaezfs);
  12095. INTRINSIC_WITH_CC(s390_vfeebs);
  12096. INTRINSIC_WITH_CC(s390_vfeehs);
  12097. INTRINSIC_WITH_CC(s390_vfeefs);
  12098. INTRINSIC_WITH_CC(s390_vfeezbs);
  12099. INTRINSIC_WITH_CC(s390_vfeezhs);
  12100. INTRINSIC_WITH_CC(s390_vfeezfs);
  12101. INTRINSIC_WITH_CC(s390_vfenebs);
  12102. INTRINSIC_WITH_CC(s390_vfenehs);
  12103. INTRINSIC_WITH_CC(s390_vfenefs);
  12104. INTRINSIC_WITH_CC(s390_vfenezbs);
  12105. INTRINSIC_WITH_CC(s390_vfenezhs);
  12106. INTRINSIC_WITH_CC(s390_vfenezfs);
  12107. INTRINSIC_WITH_CC(s390_vistrbs);
  12108. INTRINSIC_WITH_CC(s390_vistrhs);
  12109. INTRINSIC_WITH_CC(s390_vistrfs);
  12110. INTRINSIC_WITH_CC(s390_vstrcbs);
  12111. INTRINSIC_WITH_CC(s390_vstrchs);
  12112. INTRINSIC_WITH_CC(s390_vstrcfs);
  12113. INTRINSIC_WITH_CC(s390_vstrczbs);
  12114. INTRINSIC_WITH_CC(s390_vstrczhs);
  12115. INTRINSIC_WITH_CC(s390_vstrczfs);
  12116. INTRINSIC_WITH_CC(s390_vfcesbs);
  12117. INTRINSIC_WITH_CC(s390_vfcedbs);
  12118. INTRINSIC_WITH_CC(s390_vfchsbs);
  12119. INTRINSIC_WITH_CC(s390_vfchdbs);
  12120. INTRINSIC_WITH_CC(s390_vfchesbs);
  12121. INTRINSIC_WITH_CC(s390_vfchedbs);
  12122. INTRINSIC_WITH_CC(s390_vftcisb);
  12123. INTRINSIC_WITH_CC(s390_vftcidb);
  12124. INTRINSIC_WITH_CC(s390_vstrsb);
  12125. INTRINSIC_WITH_CC(s390_vstrsh);
  12126. INTRINSIC_WITH_CC(s390_vstrsf);
  12127. INTRINSIC_WITH_CC(s390_vstrszb);
  12128. INTRINSIC_WITH_CC(s390_vstrszh);
  12129. INTRINSIC_WITH_CC(s390_vstrszf);
  12130. #undef INTRINSIC_WITH_CC
  12131. default:
  12132. return nullptr;
  12133. }
  12134. }
  12135. namespace {
  12136. // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
  12137. struct NVPTXMmaLdstInfo {
  12138. unsigned NumResults; // Number of elements to load/store
  12139. // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
  12140. unsigned IID_col;
  12141. unsigned IID_row;
  12142. };
  12143. #define MMA_INTR(geom_op_type, layout) \
  12144. Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
  12145. #define MMA_LDST(n, geom_op_type) \
  12146. { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
  12147. static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
  12148. switch (BuiltinID) {
  12149. // FP MMA loads
  12150. case NVPTX::BI__hmma_m16n16k16_ld_a:
  12151. return MMA_LDST(8, m16n16k16_load_a_f16);
  12152. case NVPTX::BI__hmma_m16n16k16_ld_b:
  12153. return MMA_LDST(8, m16n16k16_load_b_f16);
  12154. case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
  12155. return MMA_LDST(4, m16n16k16_load_c_f16);
  12156. case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
  12157. return MMA_LDST(8, m16n16k16_load_c_f32);
  12158. case NVPTX::BI__hmma_m32n8k16_ld_a:
  12159. return MMA_LDST(8, m32n8k16_load_a_f16);
  12160. case NVPTX::BI__hmma_m32n8k16_ld_b:
  12161. return MMA_LDST(8, m32n8k16_load_b_f16);
  12162. case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
  12163. return MMA_LDST(4, m32n8k16_load_c_f16);
  12164. case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
  12165. return MMA_LDST(8, m32n8k16_load_c_f32);
  12166. case NVPTX::BI__hmma_m8n32k16_ld_a:
  12167. return MMA_LDST(8, m8n32k16_load_a_f16);
  12168. case NVPTX::BI__hmma_m8n32k16_ld_b:
  12169. return MMA_LDST(8, m8n32k16_load_b_f16);
  12170. case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
  12171. return MMA_LDST(4, m8n32k16_load_c_f16);
  12172. case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
  12173. return MMA_LDST(8, m8n32k16_load_c_f32);
  12174. // Integer MMA loads
  12175. case NVPTX::BI__imma_m16n16k16_ld_a_s8:
  12176. return MMA_LDST(2, m16n16k16_load_a_s8);
  12177. case NVPTX::BI__imma_m16n16k16_ld_a_u8:
  12178. return MMA_LDST(2, m16n16k16_load_a_u8);
  12179. case NVPTX::BI__imma_m16n16k16_ld_b_s8:
  12180. return MMA_LDST(2, m16n16k16_load_b_s8);
  12181. case NVPTX::BI__imma_m16n16k16_ld_b_u8:
  12182. return MMA_LDST(2, m16n16k16_load_b_u8);
  12183. case NVPTX::BI__imma_m16n16k16_ld_c:
  12184. return MMA_LDST(8, m16n16k16_load_c_s32);
  12185. case NVPTX::BI__imma_m32n8k16_ld_a_s8:
  12186. return MMA_LDST(4, m32n8k16_load_a_s8);
  12187. case NVPTX::BI__imma_m32n8k16_ld_a_u8:
  12188. return MMA_LDST(4, m32n8k16_load_a_u8);
  12189. case NVPTX::BI__imma_m32n8k16_ld_b_s8:
  12190. return MMA_LDST(1, m32n8k16_load_b_s8);
  12191. case NVPTX::BI__imma_m32n8k16_ld_b_u8:
  12192. return MMA_LDST(1, m32n8k16_load_b_u8);
  12193. case NVPTX::BI__imma_m32n8k16_ld_c:
  12194. return MMA_LDST(8, m32n8k16_load_c_s32);
  12195. case NVPTX::BI__imma_m8n32k16_ld_a_s8:
  12196. return MMA_LDST(1, m8n32k16_load_a_s8);
  12197. case NVPTX::BI__imma_m8n32k16_ld_a_u8:
  12198. return MMA_LDST(1, m8n32k16_load_a_u8);
  12199. case NVPTX::BI__imma_m8n32k16_ld_b_s8:
  12200. return MMA_LDST(4, m8n32k16_load_b_s8);
  12201. case NVPTX::BI__imma_m8n32k16_ld_b_u8:
  12202. return MMA_LDST(4, m8n32k16_load_b_u8);
  12203. case NVPTX::BI__imma_m8n32k16_ld_c:
  12204. return MMA_LDST(8, m8n32k16_load_c_s32);
  12205. // Sub-integer MMA loads.
  12206. // Only row/col layout is supported by A/B fragments.
  12207. case NVPTX::BI__imma_m8n8k32_ld_a_s4:
  12208. return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
  12209. case NVPTX::BI__imma_m8n8k32_ld_a_u4:
  12210. return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
  12211. case NVPTX::BI__imma_m8n8k32_ld_b_s4:
  12212. return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
  12213. case NVPTX::BI__imma_m8n8k32_ld_b_u4:
  12214. return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
  12215. case NVPTX::BI__imma_m8n8k32_ld_c:
  12216. return MMA_LDST(2, m8n8k32_load_c_s32);
  12217. case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
  12218. return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
  12219. case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
  12220. return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
  12221. case NVPTX::BI__bmma_m8n8k128_ld_c:
  12222. return MMA_LDST(2, m8n8k128_load_c_s32);
  12223. // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
  12224. // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
  12225. // use fragment C for both loads and stores.
  12226. // FP MMA stores.
  12227. case NVPTX::BI__hmma_m16n16k16_st_c_f16:
  12228. return MMA_LDST(4, m16n16k16_store_d_f16);
  12229. case NVPTX::BI__hmma_m16n16k16_st_c_f32:
  12230. return MMA_LDST(8, m16n16k16_store_d_f32);
  12231. case NVPTX::BI__hmma_m32n8k16_st_c_f16:
  12232. return MMA_LDST(4, m32n8k16_store_d_f16);
  12233. case NVPTX::BI__hmma_m32n8k16_st_c_f32:
  12234. return MMA_LDST(8, m32n8k16_store_d_f32);
  12235. case NVPTX::BI__hmma_m8n32k16_st_c_f16:
  12236. return MMA_LDST(4, m8n32k16_store_d_f16);
  12237. case NVPTX::BI__hmma_m8n32k16_st_c_f32:
  12238. return MMA_LDST(8, m8n32k16_store_d_f32);
  12239. // Integer and sub-integer MMA stores.
  12240. // Another naming quirk. Unlike other MMA builtins that use PTX types in the
  12241. // name, integer loads/stores use LLVM's i32.
  12242. case NVPTX::BI__imma_m16n16k16_st_c_i32:
  12243. return MMA_LDST(8, m16n16k16_store_d_s32);
  12244. case NVPTX::BI__imma_m32n8k16_st_c_i32:
  12245. return MMA_LDST(8, m32n8k16_store_d_s32);
  12246. case NVPTX::BI__imma_m8n32k16_st_c_i32:
  12247. return MMA_LDST(8, m8n32k16_store_d_s32);
  12248. case NVPTX::BI__imma_m8n8k32_st_c_i32:
  12249. return MMA_LDST(2, m8n8k32_store_d_s32);
  12250. case NVPTX::BI__bmma_m8n8k128_st_c_i32:
  12251. return MMA_LDST(2, m8n8k128_store_d_s32);
  12252. default:
  12253. llvm_unreachable("Unknown MMA builtin");
  12254. }
  12255. }
  12256. #undef MMA_LDST
  12257. #undef MMA_INTR
  12258. struct NVPTXMmaInfo {
  12259. unsigned NumEltsA;
  12260. unsigned NumEltsB;
  12261. unsigned NumEltsC;
  12262. unsigned NumEltsD;
  12263. std::array<unsigned, 8> Variants;
  12264. unsigned getMMAIntrinsic(int Layout, bool Satf) {
  12265. unsigned Index = Layout * 2 + Satf;
  12266. if (Index >= Variants.size())
  12267. return 0;
  12268. return Variants[Index];
  12269. }
  12270. };
  12271. // Returns an intrinsic that matches Layout and Satf for valid combinations of
  12272. // Layout and Satf, 0 otherwise.
  12273. static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
  12274. // clang-format off
  12275. #define MMA_VARIANTS(geom, type) {{ \
  12276. Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
  12277. Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
  12278. Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
  12279. Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
  12280. Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
  12281. Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
  12282. Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type, \
  12283. Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite \
  12284. }}
  12285. // Sub-integer MMA only supports row.col layout.
  12286. #define MMA_VARIANTS_I4(geom, type) {{ \
  12287. 0, \
  12288. 0, \
  12289. Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
  12290. Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
  12291. 0, \
  12292. 0, \
  12293. 0, \
  12294. 0 \
  12295. }}
  12296. // b1 MMA does not support .satfinite.
  12297. #define MMA_VARIANTS_B1(geom, type) {{ \
  12298. 0, \
  12299. 0, \
  12300. Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
  12301. 0, \
  12302. 0, \
  12303. 0, \
  12304. 0, \
  12305. 0 \
  12306. }}
  12307. // clang-format on
  12308. switch (BuiltinID) {
  12309. // FP MMA
  12310. // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
  12311. // NumEltsN of return value are ordered as A,B,C,D.
  12312. case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
  12313. return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
  12314. case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
  12315. return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
  12316. case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
  12317. return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
  12318. case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
  12319. return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
  12320. case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
  12321. return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
  12322. case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
  12323. return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
  12324. case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
  12325. return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
  12326. case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
  12327. return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
  12328. case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
  12329. return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
  12330. case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
  12331. return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
  12332. case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
  12333. return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
  12334. case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
  12335. return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
  12336. // Integer MMA
  12337. case NVPTX::BI__imma_m16n16k16_mma_s8:
  12338. return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
  12339. case NVPTX::BI__imma_m16n16k16_mma_u8:
  12340. return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
  12341. case NVPTX::BI__imma_m32n8k16_mma_s8:
  12342. return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
  12343. case NVPTX::BI__imma_m32n8k16_mma_u8:
  12344. return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
  12345. case NVPTX::BI__imma_m8n32k16_mma_s8:
  12346. return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
  12347. case NVPTX::BI__imma_m8n32k16_mma_u8:
  12348. return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
  12349. // Sub-integer MMA
  12350. case NVPTX::BI__imma_m8n8k32_mma_s4:
  12351. return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
  12352. case NVPTX::BI__imma_m8n8k32_mma_u4:
  12353. return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
  12354. case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
  12355. return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
  12356. default:
  12357. llvm_unreachable("Unexpected builtin ID.");
  12358. }
  12359. #undef MMA_VARIANTS
  12360. #undef MMA_VARIANTS_I4
  12361. #undef MMA_VARIANTS_B1
  12362. }
  12363. } // namespace
  12364. Value *
  12365. CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
  12366. auto MakeLdg = [&](unsigned IntrinsicID) {
  12367. Value *Ptr = EmitScalarExpr(E->getArg(0));
  12368. clang::CharUnits Align =
  12369. getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
  12370. return Builder.CreateCall(
  12371. CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
  12372. Ptr->getType()}),
  12373. {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
  12374. };
  12375. auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
  12376. Value *Ptr = EmitScalarExpr(E->getArg(0));
  12377. return Builder.CreateCall(
  12378. CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
  12379. Ptr->getType()}),
  12380. {Ptr, EmitScalarExpr(E->getArg(1))});
  12381. };
  12382. switch (BuiltinID) {
  12383. case NVPTX::BI__nvvm_atom_add_gen_i:
  12384. case NVPTX::BI__nvvm_atom_add_gen_l:
  12385. case NVPTX::BI__nvvm_atom_add_gen_ll:
  12386. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
  12387. case NVPTX::BI__nvvm_atom_sub_gen_i:
  12388. case NVPTX::BI__nvvm_atom_sub_gen_l:
  12389. case NVPTX::BI__nvvm_atom_sub_gen_ll:
  12390. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
  12391. case NVPTX::BI__nvvm_atom_and_gen_i:
  12392. case NVPTX::BI__nvvm_atom_and_gen_l:
  12393. case NVPTX::BI__nvvm_atom_and_gen_ll:
  12394. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
  12395. case NVPTX::BI__nvvm_atom_or_gen_i:
  12396. case NVPTX::BI__nvvm_atom_or_gen_l:
  12397. case NVPTX::BI__nvvm_atom_or_gen_ll:
  12398. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
  12399. case NVPTX::BI__nvvm_atom_xor_gen_i:
  12400. case NVPTX::BI__nvvm_atom_xor_gen_l:
  12401. case NVPTX::BI__nvvm_atom_xor_gen_ll:
  12402. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
  12403. case NVPTX::BI__nvvm_atom_xchg_gen_i:
  12404. case NVPTX::BI__nvvm_atom_xchg_gen_l:
  12405. case NVPTX::BI__nvvm_atom_xchg_gen_ll:
  12406. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
  12407. case NVPTX::BI__nvvm_atom_max_gen_i:
  12408. case NVPTX::BI__nvvm_atom_max_gen_l:
  12409. case NVPTX::BI__nvvm_atom_max_gen_ll:
  12410. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
  12411. case NVPTX::BI__nvvm_atom_max_gen_ui:
  12412. case NVPTX::BI__nvvm_atom_max_gen_ul:
  12413. case NVPTX::BI__nvvm_atom_max_gen_ull:
  12414. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
  12415. case NVPTX::BI__nvvm_atom_min_gen_i:
  12416. case NVPTX::BI__nvvm_atom_min_gen_l:
  12417. case NVPTX::BI__nvvm_atom_min_gen_ll:
  12418. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
  12419. case NVPTX::BI__nvvm_atom_min_gen_ui:
  12420. case NVPTX::BI__nvvm_atom_min_gen_ul:
  12421. case NVPTX::BI__nvvm_atom_min_gen_ull:
  12422. return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
  12423. case NVPTX::BI__nvvm_atom_cas_gen_i:
  12424. case NVPTX::BI__nvvm_atom_cas_gen_l:
  12425. case NVPTX::BI__nvvm_atom_cas_gen_ll:
  12426. // __nvvm_atom_cas_gen_* should return the old value rather than the
  12427. // success flag.
  12428. return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
  12429. case NVPTX::BI__nvvm_atom_add_gen_f:
  12430. case NVPTX::BI__nvvm_atom_add_gen_d: {
  12431. Value *Ptr = EmitScalarExpr(E->getArg(0));
  12432. Value *Val = EmitScalarExpr(E->getArg(1));
  12433. return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
  12434. AtomicOrdering::SequentiallyConsistent);
  12435. }
  12436. case NVPTX::BI__nvvm_atom_inc_gen_ui: {
  12437. Value *Ptr = EmitScalarExpr(E->getArg(0));
  12438. Value *Val = EmitScalarExpr(E->getArg(1));
  12439. Function *FnALI32 =
  12440. CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
  12441. return Builder.CreateCall(FnALI32, {Ptr, Val});
  12442. }
  12443. case NVPTX::BI__nvvm_atom_dec_gen_ui: {
  12444. Value *Ptr = EmitScalarExpr(E->getArg(0));
  12445. Value *Val = EmitScalarExpr(E->getArg(1));
  12446. Function *FnALD32 =
  12447. CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
  12448. return Builder.CreateCall(FnALD32, {Ptr, Val});
  12449. }
  12450. case NVPTX::BI__nvvm_ldg_c:
  12451. case NVPTX::BI__nvvm_ldg_c2:
  12452. case NVPTX::BI__nvvm_ldg_c4:
  12453. case NVPTX::BI__nvvm_ldg_s:
  12454. case NVPTX::BI__nvvm_ldg_s2:
  12455. case NVPTX::BI__nvvm_ldg_s4:
  12456. case NVPTX::BI__nvvm_ldg_i:
  12457. case NVPTX::BI__nvvm_ldg_i2:
  12458. case NVPTX::BI__nvvm_ldg_i4:
  12459. case NVPTX::BI__nvvm_ldg_l:
  12460. case NVPTX::BI__nvvm_ldg_ll:
  12461. case NVPTX::BI__nvvm_ldg_ll2:
  12462. case NVPTX::BI__nvvm_ldg_uc:
  12463. case NVPTX::BI__nvvm_ldg_uc2:
  12464. case NVPTX::BI__nvvm_ldg_uc4:
  12465. case NVPTX::BI__nvvm_ldg_us:
  12466. case NVPTX::BI__nvvm_ldg_us2:
  12467. case NVPTX::BI__nvvm_ldg_us4:
  12468. case NVPTX::BI__nvvm_ldg_ui:
  12469. case NVPTX::BI__nvvm_ldg_ui2:
  12470. case NVPTX::BI__nvvm_ldg_ui4:
  12471. case NVPTX::BI__nvvm_ldg_ul:
  12472. case NVPTX::BI__nvvm_ldg_ull:
  12473. case NVPTX::BI__nvvm_ldg_ull2:
  12474. // PTX Interoperability section 2.2: "For a vector with an even number of
  12475. // elements, its alignment is set to number of elements times the alignment
  12476. // of its member: n*alignof(t)."
  12477. return MakeLdg(Intrinsic::nvvm_ldg_global_i);
  12478. case NVPTX::BI__nvvm_ldg_f:
  12479. case NVPTX::BI__nvvm_ldg_f2:
  12480. case NVPTX::BI__nvvm_ldg_f4:
  12481. case NVPTX::BI__nvvm_ldg_d:
  12482. case NVPTX::BI__nvvm_ldg_d2:
  12483. return MakeLdg(Intrinsic::nvvm_ldg_global_f);
  12484. case NVPTX::BI__nvvm_atom_cta_add_gen_i:
  12485. case NVPTX::BI__nvvm_atom_cta_add_gen_l:
  12486. case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
  12487. return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
  12488. case NVPTX::BI__nvvm_atom_sys_add_gen_i:
  12489. case NVPTX::BI__nvvm_atom_sys_add_gen_l:
  12490. case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
  12491. return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
  12492. case NVPTX::BI__nvvm_atom_cta_add_gen_f:
  12493. case NVPTX::BI__nvvm_atom_cta_add_gen_d:
  12494. return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
  12495. case NVPTX::BI__nvvm_atom_sys_add_gen_f:
  12496. case NVPTX::BI__nvvm_atom_sys_add_gen_d:
  12497. return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
  12498. case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
  12499. case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
  12500. case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
  12501. return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
  12502. case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
  12503. case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
  12504. case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
  12505. return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
  12506. case NVPTX::BI__nvvm_atom_cta_max_gen_i:
  12507. case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
  12508. case NVPTX::BI__nvvm_atom_cta_max_gen_l:
  12509. case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
  12510. case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
  12511. case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
  12512. return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
  12513. case NVPTX::BI__nvvm_atom_sys_max_gen_i:
  12514. case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
  12515. case NVPTX::BI__nvvm_atom_sys_max_gen_l:
  12516. case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
  12517. case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
  12518. case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
  12519. return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
  12520. case NVPTX::BI__nvvm_atom_cta_min_gen_i:
  12521. case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
  12522. case NVPTX::BI__nvvm_atom_cta_min_gen_l:
  12523. case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
  12524. case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
  12525. case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
  12526. return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
  12527. case NVPTX::BI__nvvm_atom_sys_min_gen_i:
  12528. case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
  12529. case NVPTX::BI__nvvm_atom_sys_min_gen_l:
  12530. case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
  12531. case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
  12532. case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
  12533. return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
  12534. case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
  12535. return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
  12536. case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
  12537. return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
  12538. case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
  12539. return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
  12540. case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
  12541. return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
  12542. case NVPTX::BI__nvvm_atom_cta_and_gen_i:
  12543. case NVPTX::BI__nvvm_atom_cta_and_gen_l:
  12544. case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
  12545. return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
  12546. case NVPTX::BI__nvvm_atom_sys_and_gen_i:
  12547. case NVPTX::BI__nvvm_atom_sys_and_gen_l:
  12548. case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
  12549. return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
  12550. case NVPTX::BI__nvvm_atom_cta_or_gen_i:
  12551. case NVPTX::BI__nvvm_atom_cta_or_gen_l:
  12552. case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
  12553. return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
  12554. case NVPTX::BI__nvvm_atom_sys_or_gen_i:
  12555. case NVPTX::BI__nvvm_atom_sys_or_gen_l:
  12556. case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
  12557. return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
  12558. case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
  12559. case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
  12560. case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
  12561. return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
  12562. case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
  12563. case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
  12564. case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
  12565. return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
  12566. case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
  12567. case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
  12568. case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
  12569. Value *Ptr = EmitScalarExpr(E->getArg(0));
  12570. return Builder.CreateCall(
  12571. CGM.getIntrinsic(
  12572. Intrinsic::nvvm_atomic_cas_gen_i_cta,
  12573. {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
  12574. {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
  12575. }
  12576. case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
  12577. case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
  12578. case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
  12579. Value *Ptr = EmitScalarExpr(E->getArg(0));
  12580. return Builder.CreateCall(
  12581. CGM.getIntrinsic(
  12582. Intrinsic::nvvm_atomic_cas_gen_i_sys,
  12583. {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
  12584. {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
  12585. }
  12586. case NVPTX::BI__nvvm_match_all_sync_i32p:
  12587. case NVPTX::BI__nvvm_match_all_sync_i64p: {
  12588. Value *Mask = EmitScalarExpr(E->getArg(0));
  12589. Value *Val = EmitScalarExpr(E->getArg(1));
  12590. Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
  12591. Value *ResultPair = Builder.CreateCall(
  12592. CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
  12593. ? Intrinsic::nvvm_match_all_sync_i32p
  12594. : Intrinsic::nvvm_match_all_sync_i64p),
  12595. {Mask, Val});
  12596. Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
  12597. PredOutPtr.getElementType());
  12598. Builder.CreateStore(Pred, PredOutPtr);
  12599. return Builder.CreateExtractValue(ResultPair, 0);
  12600. }
  12601. // FP MMA loads
  12602. case NVPTX::BI__hmma_m16n16k16_ld_a:
  12603. case NVPTX::BI__hmma_m16n16k16_ld_b:
  12604. case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
  12605. case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
  12606. case NVPTX::BI__hmma_m32n8k16_ld_a:
  12607. case NVPTX::BI__hmma_m32n8k16_ld_b:
  12608. case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
  12609. case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
  12610. case NVPTX::BI__hmma_m8n32k16_ld_a:
  12611. case NVPTX::BI__hmma_m8n32k16_ld_b:
  12612. case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
  12613. case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
  12614. // Integer MMA loads.
  12615. case NVPTX::BI__imma_m16n16k16_ld_a_s8:
  12616. case NVPTX::BI__imma_m16n16k16_ld_a_u8:
  12617. case NVPTX::BI__imma_m16n16k16_ld_b_s8:
  12618. case NVPTX::BI__imma_m16n16k16_ld_b_u8:
  12619. case NVPTX::BI__imma_m16n16k16_ld_c:
  12620. case NVPTX::BI__imma_m32n8k16_ld_a_s8:
  12621. case NVPTX::BI__imma_m32n8k16_ld_a_u8:
  12622. case NVPTX::BI__imma_m32n8k16_ld_b_s8:
  12623. case NVPTX::BI__imma_m32n8k16_ld_b_u8:
  12624. case NVPTX::BI__imma_m32n8k16_ld_c:
  12625. case NVPTX::BI__imma_m8n32k16_ld_a_s8:
  12626. case NVPTX::BI__imma_m8n32k16_ld_a_u8:
  12627. case NVPTX::BI__imma_m8n32k16_ld_b_s8:
  12628. case NVPTX::BI__imma_m8n32k16_ld_b_u8:
  12629. case NVPTX::BI__imma_m8n32k16_ld_c:
  12630. // Sub-integer MMA loads.
  12631. case NVPTX::BI__imma_m8n8k32_ld_a_s4:
  12632. case NVPTX::BI__imma_m8n8k32_ld_a_u4:
  12633. case NVPTX::BI__imma_m8n8k32_ld_b_s4:
  12634. case NVPTX::BI__imma_m8n8k32_ld_b_u4:
  12635. case NVPTX::BI__imma_m8n8k32_ld_c:
  12636. case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
  12637. case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
  12638. case NVPTX::BI__bmma_m8n8k128_ld_c:
  12639. {
  12640. Address Dst = EmitPointerWithAlignment(E->getArg(0));
  12641. Value *Src = EmitScalarExpr(E->getArg(1));
  12642. Value *Ldm = EmitScalarExpr(E->getArg(2));
  12643. llvm::APSInt isColMajorArg;
  12644. if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
  12645. return nullptr;
  12646. bool isColMajor = isColMajorArg.getSExtValue();
  12647. NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
  12648. unsigned IID = isColMajor ? II.IID_col : II.IID_row;
  12649. if (IID == 0)
  12650. return nullptr;
  12651. Value *Result =
  12652. Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
  12653. // Save returned values.
  12654. assert(II.NumResults);
  12655. if (II.NumResults == 1) {
  12656. Builder.CreateAlignedStore(Result, Dst.getPointer(),
  12657. CharUnits::fromQuantity(4));
  12658. } else {
  12659. for (unsigned i = 0; i < II.NumResults; ++i) {
  12660. Builder.CreateAlignedStore(
  12661. Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
  12662. Dst.getElementType()),
  12663. Builder.CreateGEP(Dst.getPointer(),
  12664. llvm::ConstantInt::get(IntTy, i)),
  12665. CharUnits::fromQuantity(4));
  12666. }
  12667. }
  12668. return Result;
  12669. }
  12670. case NVPTX::BI__hmma_m16n16k16_st_c_f16:
  12671. case NVPTX::BI__hmma_m16n16k16_st_c_f32:
  12672. case NVPTX::BI__hmma_m32n8k16_st_c_f16:
  12673. case NVPTX::BI__hmma_m32n8k16_st_c_f32:
  12674. case NVPTX::BI__hmma_m8n32k16_st_c_f16:
  12675. case NVPTX::BI__hmma_m8n32k16_st_c_f32:
  12676. case NVPTX::BI__imma_m16n16k16_st_c_i32:
  12677. case NVPTX::BI__imma_m32n8k16_st_c_i32:
  12678. case NVPTX::BI__imma_m8n32k16_st_c_i32:
  12679. case NVPTX::BI__imma_m8n8k32_st_c_i32:
  12680. case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
  12681. Value *Dst = EmitScalarExpr(E->getArg(0));
  12682. Address Src = EmitPointerWithAlignment(E->getArg(1));
  12683. Value *Ldm = EmitScalarExpr(E->getArg(2));
  12684. llvm::APSInt isColMajorArg;
  12685. if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
  12686. return nullptr;
  12687. bool isColMajor = isColMajorArg.getSExtValue();
  12688. NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
  12689. unsigned IID = isColMajor ? II.IID_col : II.IID_row;
  12690. if (IID == 0)
  12691. return nullptr;
  12692. Function *Intrinsic =
  12693. CGM.getIntrinsic(IID, Dst->getType());
  12694. llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
  12695. SmallVector<Value *, 10> Values = {Dst};
  12696. for (unsigned i = 0; i < II.NumResults; ++i) {
  12697. Value *V = Builder.CreateAlignedLoad(
  12698. Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
  12699. CharUnits::fromQuantity(4));
  12700. Values.push_back(Builder.CreateBitCast(V, ParamType));
  12701. }
  12702. Values.push_back(Ldm);
  12703. Value *Result = Builder.CreateCall(Intrinsic, Values);
  12704. return Result;
  12705. }
  12706. // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
  12707. // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
  12708. case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
  12709. case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
  12710. case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
  12711. case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
  12712. case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
  12713. case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
  12714. case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
  12715. case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
  12716. case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
  12717. case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
  12718. case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
  12719. case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
  12720. case NVPTX::BI__imma_m16n16k16_mma_s8:
  12721. case NVPTX::BI__imma_m16n16k16_mma_u8:
  12722. case NVPTX::BI__imma_m32n8k16_mma_s8:
  12723. case NVPTX::BI__imma_m32n8k16_mma_u8:
  12724. case NVPTX::BI__imma_m8n32k16_mma_s8:
  12725. case NVPTX::BI__imma_m8n32k16_mma_u8:
  12726. case NVPTX::BI__imma_m8n8k32_mma_s4:
  12727. case NVPTX::BI__imma_m8n8k32_mma_u4:
  12728. case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
  12729. Address Dst = EmitPointerWithAlignment(E->getArg(0));
  12730. Address SrcA = EmitPointerWithAlignment(E->getArg(1));
  12731. Address SrcB = EmitPointerWithAlignment(E->getArg(2));
  12732. Address SrcC = EmitPointerWithAlignment(E->getArg(3));
  12733. llvm::APSInt LayoutArg;
  12734. if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext()))
  12735. return nullptr;
  12736. int Layout = LayoutArg.getSExtValue();
  12737. if (Layout < 0 || Layout > 3)
  12738. return nullptr;
  12739. llvm::APSInt SatfArg;
  12740. if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
  12741. SatfArg = 0; // .b1 does not have satf argument.
  12742. else if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext()))
  12743. return nullptr;
  12744. bool Satf = SatfArg.getSExtValue();
  12745. NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
  12746. unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
  12747. if (IID == 0) // Unsupported combination of Layout/Satf.
  12748. return nullptr;
  12749. SmallVector<Value *, 24> Values;
  12750. Function *Intrinsic = CGM.getIntrinsic(IID);
  12751. llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
  12752. // Load A
  12753. for (unsigned i = 0; i < MI.NumEltsA; ++i) {
  12754. Value *V = Builder.CreateAlignedLoad(
  12755. Builder.CreateGEP(SrcA.getPointer(),
  12756. llvm::ConstantInt::get(IntTy, i)),
  12757. CharUnits::fromQuantity(4));
  12758. Values.push_back(Builder.CreateBitCast(V, AType));
  12759. }
  12760. // Load B
  12761. llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
  12762. for (unsigned i = 0; i < MI.NumEltsB; ++i) {
  12763. Value *V = Builder.CreateAlignedLoad(
  12764. Builder.CreateGEP(SrcB.getPointer(),
  12765. llvm::ConstantInt::get(IntTy, i)),
  12766. CharUnits::fromQuantity(4));
  12767. Values.push_back(Builder.CreateBitCast(V, BType));
  12768. }
  12769. // Load C
  12770. llvm::Type *CType =
  12771. Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
  12772. for (unsigned i = 0; i < MI.NumEltsC; ++i) {
  12773. Value *V = Builder.CreateAlignedLoad(
  12774. Builder.CreateGEP(SrcC.getPointer(),
  12775. llvm::ConstantInt::get(IntTy, i)),
  12776. CharUnits::fromQuantity(4));
  12777. Values.push_back(Builder.CreateBitCast(V, CType));
  12778. }
  12779. Value *Result = Builder.CreateCall(Intrinsic, Values);
  12780. llvm::Type *DType = Dst.getElementType();
  12781. for (unsigned i = 0; i < MI.NumEltsD; ++i)
  12782. Builder.CreateAlignedStore(
  12783. Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
  12784. Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
  12785. CharUnits::fromQuantity(4));
  12786. return Result;
  12787. }
  12788. default:
  12789. return nullptr;
  12790. }
  12791. }
  12792. Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
  12793. const CallExpr *E) {
  12794. switch (BuiltinID) {
  12795. case WebAssembly::BI__builtin_wasm_memory_size: {
  12796. llvm::Type *ResultType = ConvertType(E->getType());
  12797. Value *I = EmitScalarExpr(E->getArg(0));
  12798. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
  12799. return Builder.CreateCall(Callee, I);
  12800. }
  12801. case WebAssembly::BI__builtin_wasm_memory_grow: {
  12802. llvm::Type *ResultType = ConvertType(E->getType());
  12803. Value *Args[] = {
  12804. EmitScalarExpr(E->getArg(0)),
  12805. EmitScalarExpr(E->getArg(1))
  12806. };
  12807. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
  12808. return Builder.CreateCall(Callee, Args);
  12809. }
  12810. case WebAssembly::BI__builtin_wasm_memory_init: {
  12811. llvm::APSInt SegConst;
  12812. if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
  12813. llvm_unreachable("Constant arg isn't actually constant?");
  12814. llvm::APSInt MemConst;
  12815. if (!E->getArg(1)->isIntegerConstantExpr(MemConst, getContext()))
  12816. llvm_unreachable("Constant arg isn't actually constant?");
  12817. if (!MemConst.isNullValue())
  12818. ErrorUnsupported(E, "non-zero memory index");
  12819. Value *Args[] = {llvm::ConstantInt::get(getLLVMContext(), SegConst),
  12820. llvm::ConstantInt::get(getLLVMContext(), MemConst),
  12821. EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)),
  12822. EmitScalarExpr(E->getArg(4))};
  12823. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_init);
  12824. return Builder.CreateCall(Callee, Args);
  12825. }
  12826. case WebAssembly::BI__builtin_wasm_data_drop: {
  12827. llvm::APSInt SegConst;
  12828. if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
  12829. llvm_unreachable("Constant arg isn't actually constant?");
  12830. Value *Arg = llvm::ConstantInt::get(getLLVMContext(), SegConst);
  12831. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_data_drop);
  12832. return Builder.CreateCall(Callee, {Arg});
  12833. }
  12834. case WebAssembly::BI__builtin_wasm_throw: {
  12835. Value *Tag = EmitScalarExpr(E->getArg(0));
  12836. Value *Obj = EmitScalarExpr(E->getArg(1));
  12837. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
  12838. return Builder.CreateCall(Callee, {Tag, Obj});
  12839. }
  12840. case WebAssembly::BI__builtin_wasm_rethrow_in_catch: {
  12841. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch);
  12842. return Builder.CreateCall(Callee);
  12843. }
  12844. case WebAssembly::BI__builtin_wasm_atomic_wait_i32: {
  12845. Value *Addr = EmitScalarExpr(E->getArg(0));
  12846. Value *Expected = EmitScalarExpr(E->getArg(1));
  12847. Value *Timeout = EmitScalarExpr(E->getArg(2));
  12848. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32);
  12849. return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
  12850. }
  12851. case WebAssembly::BI__builtin_wasm_atomic_wait_i64: {
  12852. Value *Addr = EmitScalarExpr(E->getArg(0));
  12853. Value *Expected = EmitScalarExpr(E->getArg(1));
  12854. Value *Timeout = EmitScalarExpr(E->getArg(2));
  12855. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64);
  12856. return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
  12857. }
  12858. case WebAssembly::BI__builtin_wasm_atomic_notify: {
  12859. Value *Addr = EmitScalarExpr(E->getArg(0));
  12860. Value *Count = EmitScalarExpr(E->getArg(1));
  12861. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify);
  12862. return Builder.CreateCall(Callee, {Addr, Count});
  12863. }
  12864. case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
  12865. case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
  12866. case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
  12867. case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
  12868. case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4:
  12869. case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64x2_f64x2: {
  12870. Value *Src = EmitScalarExpr(E->getArg(0));
  12871. llvm::Type *ResT = ConvertType(E->getType());
  12872. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed,
  12873. {ResT, Src->getType()});
  12874. return Builder.CreateCall(Callee, {Src});
  12875. }
  12876. case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
  12877. case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
  12878. case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
  12879. case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
  12880. case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4:
  12881. case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64x2_f64x2: {
  12882. Value *Src = EmitScalarExpr(E->getArg(0));
  12883. llvm::Type *ResT = ConvertType(E->getType());
  12884. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned,
  12885. {ResT, Src->getType()});
  12886. return Builder.CreateCall(Callee, {Src});
  12887. }
  12888. case WebAssembly::BI__builtin_wasm_min_f32:
  12889. case WebAssembly::BI__builtin_wasm_min_f64:
  12890. case WebAssembly::BI__builtin_wasm_min_f32x4:
  12891. case WebAssembly::BI__builtin_wasm_min_f64x2: {
  12892. Value *LHS = EmitScalarExpr(E->getArg(0));
  12893. Value *RHS = EmitScalarExpr(E->getArg(1));
  12894. Function *Callee = CGM.getIntrinsic(Intrinsic::minimum,
  12895. ConvertType(E->getType()));
  12896. return Builder.CreateCall(Callee, {LHS, RHS});
  12897. }
  12898. case WebAssembly::BI__builtin_wasm_max_f32:
  12899. case WebAssembly::BI__builtin_wasm_max_f64:
  12900. case WebAssembly::BI__builtin_wasm_max_f32x4:
  12901. case WebAssembly::BI__builtin_wasm_max_f64x2: {
  12902. Value *LHS = EmitScalarExpr(E->getArg(0));
  12903. Value *RHS = EmitScalarExpr(E->getArg(1));
  12904. Function *Callee = CGM.getIntrinsic(Intrinsic::maximum,
  12905. ConvertType(E->getType()));
  12906. return Builder.CreateCall(Callee, {LHS, RHS});
  12907. }
  12908. case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
  12909. case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
  12910. case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
  12911. case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
  12912. case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
  12913. case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
  12914. case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
  12915. case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
  12916. llvm::APSInt LaneConst;
  12917. if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
  12918. llvm_unreachable("Constant arg isn't actually constant?");
  12919. Value *Vec = EmitScalarExpr(E->getArg(0));
  12920. Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
  12921. Value *Extract = Builder.CreateExtractElement(Vec, Lane);
  12922. switch (BuiltinID) {
  12923. case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
  12924. case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
  12925. return Builder.CreateSExt(Extract, ConvertType(E->getType()));
  12926. case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
  12927. case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
  12928. return Builder.CreateZExt(Extract, ConvertType(E->getType()));
  12929. case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
  12930. case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
  12931. case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
  12932. case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
  12933. return Extract;
  12934. default:
  12935. llvm_unreachable("unexpected builtin ID");
  12936. }
  12937. }
  12938. case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
  12939. case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
  12940. case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
  12941. case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
  12942. case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
  12943. case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
  12944. llvm::APSInt LaneConst;
  12945. if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
  12946. llvm_unreachable("Constant arg isn't actually constant?");
  12947. Value *Vec = EmitScalarExpr(E->getArg(0));
  12948. Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
  12949. Value *Val = EmitScalarExpr(E->getArg(2));
  12950. switch (BuiltinID) {
  12951. case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
  12952. case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
  12953. llvm::Type *ElemType = ConvertType(E->getType())->getVectorElementType();
  12954. Value *Trunc = Builder.CreateTrunc(Val, ElemType);
  12955. return Builder.CreateInsertElement(Vec, Trunc, Lane);
  12956. }
  12957. case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
  12958. case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
  12959. case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
  12960. case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
  12961. return Builder.CreateInsertElement(Vec, Val, Lane);
  12962. default:
  12963. llvm_unreachable("unexpected builtin ID");
  12964. }
  12965. }
  12966. case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
  12967. case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
  12968. case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
  12969. case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
  12970. case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
  12971. case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
  12972. case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
  12973. case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: {
  12974. unsigned IntNo;
  12975. switch (BuiltinID) {
  12976. case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
  12977. case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
  12978. IntNo = Intrinsic::sadd_sat;
  12979. break;
  12980. case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
  12981. case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
  12982. IntNo = Intrinsic::uadd_sat;
  12983. break;
  12984. case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
  12985. case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
  12986. IntNo = Intrinsic::wasm_sub_saturate_signed;
  12987. break;
  12988. case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
  12989. case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8:
  12990. IntNo = Intrinsic::wasm_sub_saturate_unsigned;
  12991. break;
  12992. default:
  12993. llvm_unreachable("unexpected builtin ID");
  12994. }
  12995. Value *LHS = EmitScalarExpr(E->getArg(0));
  12996. Value *RHS = EmitScalarExpr(E->getArg(1));
  12997. Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
  12998. return Builder.CreateCall(Callee, {LHS, RHS});
  12999. }
  13000. case WebAssembly::BI__builtin_wasm_bitselect: {
  13001. Value *V1 = EmitScalarExpr(E->getArg(0));
  13002. Value *V2 = EmitScalarExpr(E->getArg(1));
  13003. Value *C = EmitScalarExpr(E->getArg(2));
  13004. Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitselect,
  13005. ConvertType(E->getType()));
  13006. return Builder.CreateCall(Callee, {V1, V2, C});
  13007. }
  13008. case WebAssembly::BI__builtin_wasm_any_true_i8x16:
  13009. case WebAssembly::BI__builtin_wasm_any_true_i16x8:
  13010. case WebAssembly::BI__builtin_wasm_any_true_i32x4:
  13011. case WebAssembly::BI__builtin_wasm_any_true_i64x2:
  13012. case WebAssembly::BI__builtin_wasm_all_true_i8x16:
  13013. case WebAssembly::BI__builtin_wasm_all_true_i16x8:
  13014. case WebAssembly::BI__builtin_wasm_all_true_i32x4:
  13015. case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
  13016. unsigned IntNo;
  13017. switch (BuiltinID) {
  13018. case WebAssembly::BI__builtin_wasm_any_true_i8x16:
  13019. case WebAssembly::BI__builtin_wasm_any_true_i16x8:
  13020. case WebAssembly::BI__builtin_wasm_any_true_i32x4:
  13021. case WebAssembly::BI__builtin_wasm_any_true_i64x2:
  13022. IntNo = Intrinsic::wasm_anytrue;
  13023. break;
  13024. case WebAssembly::BI__builtin_wasm_all_true_i8x16:
  13025. case WebAssembly::BI__builtin_wasm_all_true_i16x8:
  13026. case WebAssembly::BI__builtin_wasm_all_true_i32x4:
  13027. case WebAssembly::BI__builtin_wasm_all_true_i64x2:
  13028. IntNo = Intrinsic::wasm_alltrue;
  13029. break;
  13030. default:
  13031. llvm_unreachable("unexpected builtin ID");
  13032. }
  13033. Value *Vec = EmitScalarExpr(E->getArg(0));
  13034. Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
  13035. return Builder.CreateCall(Callee, {Vec});
  13036. }
  13037. case WebAssembly::BI__builtin_wasm_abs_f32x4:
  13038. case WebAssembly::BI__builtin_wasm_abs_f64x2: {
  13039. Value *Vec = EmitScalarExpr(E->getArg(0));
  13040. Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
  13041. return Builder.CreateCall(Callee, {Vec});
  13042. }
  13043. case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
  13044. case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
  13045. Value *Vec = EmitScalarExpr(E->getArg(0));
  13046. Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
  13047. return Builder.CreateCall(Callee, {Vec});
  13048. }
  13049. default:
  13050. return nullptr;
  13051. }
  13052. }
  13053. Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
  13054. const CallExpr *E) {
  13055. SmallVector<llvm::Value *, 4> Ops;
  13056. Intrinsic::ID ID = Intrinsic::not_intrinsic;
  13057. auto MakeCircLd = [&](unsigned IntID, bool HasImm) {
  13058. // The base pointer is passed by address, so it needs to be loaded.
  13059. Address BP = EmitPointerWithAlignment(E->getArg(0));
  13060. BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
  13061. BP.getAlignment());
  13062. llvm::Value *Base = Builder.CreateLoad(BP);
  13063. // Operands are Base, Increment, Modifier, Start.
  13064. if (HasImm)
  13065. Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
  13066. EmitScalarExpr(E->getArg(3)) };
  13067. else
  13068. Ops = { Base, EmitScalarExpr(E->getArg(1)),
  13069. EmitScalarExpr(E->getArg(2)) };
  13070. llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
  13071. llvm::Value *NewBase = Builder.CreateExtractValue(Result, 1);
  13072. llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
  13073. NewBase->getType()->getPointerTo());
  13074. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  13075. // The intrinsic generates two results. The new value for the base pointer
  13076. // needs to be stored.
  13077. Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
  13078. return Builder.CreateExtractValue(Result, 0);
  13079. };
  13080. auto MakeCircSt = [&](unsigned IntID, bool HasImm) {
  13081. // The base pointer is passed by address, so it needs to be loaded.
  13082. Address BP = EmitPointerWithAlignment(E->getArg(0));
  13083. BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
  13084. BP.getAlignment());
  13085. llvm::Value *Base = Builder.CreateLoad(BP);
  13086. // Operands are Base, Increment, Modifier, Value, Start.
  13087. if (HasImm)
  13088. Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
  13089. EmitScalarExpr(E->getArg(3)), EmitScalarExpr(E->getArg(4)) };
  13090. else
  13091. Ops = { Base, EmitScalarExpr(E->getArg(1)),
  13092. EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)) };
  13093. llvm::Value *NewBase = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
  13094. llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
  13095. NewBase->getType()->getPointerTo());
  13096. Address Dest = EmitPointerWithAlignment(E->getArg(0));
  13097. // The intrinsic generates one result, which is the new value for the base
  13098. // pointer. It needs to be stored.
  13099. return Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
  13100. };
  13101. // Handle the conversion of bit-reverse load intrinsics to bit code.
  13102. // The intrinsic call after this function only reads from memory and the
  13103. // write to memory is dealt by the store instruction.
  13104. auto MakeBrevLd = [&](unsigned IntID, llvm::Type *DestTy) {
  13105. // The intrinsic generates one result, which is the new value for the base
  13106. // pointer. It needs to be returned. The result of the load instruction is
  13107. // passed to intrinsic by address, so the value needs to be stored.
  13108. llvm::Value *BaseAddress =
  13109. Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
  13110. // Expressions like &(*pt++) will be incremented per evaluation.
  13111. // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
  13112. // per call.
  13113. Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
  13114. DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
  13115. DestAddr.getAlignment());
  13116. llvm::Value *DestAddress = DestAddr.getPointer();
  13117. // Operands are Base, Dest, Modifier.
  13118. // The intrinsic format in LLVM IR is defined as
  13119. // { ValueType, i8* } (i8*, i32).
  13120. Ops = {BaseAddress, EmitScalarExpr(E->getArg(2))};
  13121. llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
  13122. // The value needs to be stored as the variable is passed by reference.
  13123. llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
  13124. // The store needs to be truncated to fit the destination type.
  13125. // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
  13126. // to be handled with stores of respective destination type.
  13127. DestVal = Builder.CreateTrunc(DestVal, DestTy);
  13128. llvm::Value *DestForStore =
  13129. Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
  13130. Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
  13131. // The updated value of the base pointer is returned.
  13132. return Builder.CreateExtractValue(Result, 1);
  13133. };
  13134. switch (BuiltinID) {
  13135. case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
  13136. case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: {
  13137. Address Dest = EmitPointerWithAlignment(E->getArg(2));
  13138. unsigned Size;
  13139. if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vaddcarry) {
  13140. Size = 512;
  13141. ID = Intrinsic::hexagon_V6_vaddcarry;
  13142. } else {
  13143. Size = 1024;
  13144. ID = Intrinsic::hexagon_V6_vaddcarry_128B;
  13145. }
  13146. Dest = Builder.CreateBitCast(Dest,
  13147. llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
  13148. LoadInst *QLd = Builder.CreateLoad(Dest);
  13149. Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
  13150. llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
  13151. llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
  13152. llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
  13153. Vprd->getType()->getPointerTo(0));
  13154. Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
  13155. return Builder.CreateExtractValue(Result, 0);
  13156. }
  13157. case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
  13158. case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
  13159. Address Dest = EmitPointerWithAlignment(E->getArg(2));
  13160. unsigned Size;
  13161. if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vsubcarry) {
  13162. Size = 512;
  13163. ID = Intrinsic::hexagon_V6_vsubcarry;
  13164. } else {
  13165. Size = 1024;
  13166. ID = Intrinsic::hexagon_V6_vsubcarry_128B;
  13167. }
  13168. Dest = Builder.CreateBitCast(Dest,
  13169. llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
  13170. LoadInst *QLd = Builder.CreateLoad(Dest);
  13171. Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
  13172. llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
  13173. llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
  13174. llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
  13175. Vprd->getType()->getPointerTo(0));
  13176. Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
  13177. return Builder.CreateExtractValue(Result, 0);
  13178. }
  13179. case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
  13180. return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pci, /*HasImm*/true);
  13181. case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
  13182. return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pci, /*HasImm*/true);
  13183. case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
  13184. return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pci, /*HasImm*/true);
  13185. case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
  13186. return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pci, /*HasImm*/true);
  13187. case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
  13188. return MakeCircLd(Intrinsic::hexagon_L2_loadri_pci, /*HasImm*/true);
  13189. case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
  13190. return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pci, /*HasImm*/true);
  13191. case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
  13192. return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pcr, /*HasImm*/false);
  13193. case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
  13194. return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pcr, /*HasImm*/false);
  13195. case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
  13196. return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pcr, /*HasImm*/false);
  13197. case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
  13198. return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pcr, /*HasImm*/false);
  13199. case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
  13200. return MakeCircLd(Intrinsic::hexagon_L2_loadri_pcr, /*HasImm*/false);
  13201. case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
  13202. return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pcr, /*HasImm*/false);
  13203. case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
  13204. return MakeCircSt(Intrinsic::hexagon_S2_storerb_pci, /*HasImm*/true);
  13205. case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
  13206. return MakeCircSt(Intrinsic::hexagon_S2_storerh_pci, /*HasImm*/true);
  13207. case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
  13208. return MakeCircSt(Intrinsic::hexagon_S2_storerf_pci, /*HasImm*/true);
  13209. case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
  13210. return MakeCircSt(Intrinsic::hexagon_S2_storeri_pci, /*HasImm*/true);
  13211. case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
  13212. return MakeCircSt(Intrinsic::hexagon_S2_storerd_pci, /*HasImm*/true);
  13213. case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
  13214. return MakeCircSt(Intrinsic::hexagon_S2_storerb_pcr, /*HasImm*/false);
  13215. case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
  13216. return MakeCircSt(Intrinsic::hexagon_S2_storerh_pcr, /*HasImm*/false);
  13217. case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
  13218. return MakeCircSt(Intrinsic::hexagon_S2_storerf_pcr, /*HasImm*/false);
  13219. case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
  13220. return MakeCircSt(Intrinsic::hexagon_S2_storeri_pcr, /*HasImm*/false);
  13221. case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
  13222. return MakeCircSt(Intrinsic::hexagon_S2_storerd_pcr, /*HasImm*/false);
  13223. case Hexagon::BI__builtin_brev_ldub:
  13224. return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
  13225. case Hexagon::BI__builtin_brev_ldb:
  13226. return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
  13227. case Hexagon::BI__builtin_brev_lduh:
  13228. return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
  13229. case Hexagon::BI__builtin_brev_ldh:
  13230. return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
  13231. case Hexagon::BI__builtin_brev_ldw:
  13232. return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
  13233. case Hexagon::BI__builtin_brev_ldd:
  13234. return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
  13235. default:
  13236. break;
  13237. } // switch
  13238. return nullptr;
  13239. }