Expr.cpp 159 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543
  1. //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file implements the Expr class and subclasses.
  10. //
  11. //===----------------------------------------------------------------------===//
  12. #include "clang/AST/Expr.h"
  13. #include "clang/AST/APValue.h"
  14. #include "clang/AST/ASTContext.h"
  15. #include "clang/AST/Attr.h"
  16. #include "clang/AST/DeclCXX.h"
  17. #include "clang/AST/DeclObjC.h"
  18. #include "clang/AST/DeclTemplate.h"
  19. #include "clang/AST/EvaluatedExprVisitor.h"
  20. #include "clang/AST/ExprCXX.h"
  21. #include "clang/AST/Mangle.h"
  22. #include "clang/AST/RecordLayout.h"
  23. #include "clang/AST/StmtVisitor.h"
  24. #include "clang/Basic/Builtins.h"
  25. #include "clang/Basic/CharInfo.h"
  26. #include "clang/Basic/SourceManager.h"
  27. #include "clang/Basic/TargetInfo.h"
  28. #include "clang/Lex/Lexer.h"
  29. #include "clang/Lex/LiteralSupport.h"
  30. #include "llvm/Support/ErrorHandling.h"
  31. #include "llvm/Support/raw_ostream.h"
  32. #include <algorithm>
  33. #include <cstring>
  34. using namespace clang;
  35. const Expr *Expr::getBestDynamicClassTypeExpr() const {
  36. const Expr *E = this;
  37. while (true) {
  38. E = E->ignoreParenBaseCasts();
  39. // Follow the RHS of a comma operator.
  40. if (auto *BO = dyn_cast<BinaryOperator>(E)) {
  41. if (BO->getOpcode() == BO_Comma) {
  42. E = BO->getRHS();
  43. continue;
  44. }
  45. }
  46. // Step into initializer for materialized temporaries.
  47. if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
  48. E = MTE->GetTemporaryExpr();
  49. continue;
  50. }
  51. break;
  52. }
  53. return E;
  54. }
  55. const CXXRecordDecl *Expr::getBestDynamicClassType() const {
  56. const Expr *E = getBestDynamicClassTypeExpr();
  57. QualType DerivedType = E->getType();
  58. if (const PointerType *PTy = DerivedType->getAs<PointerType>())
  59. DerivedType = PTy->getPointeeType();
  60. if (DerivedType->isDependentType())
  61. return nullptr;
  62. const RecordType *Ty = DerivedType->castAs<RecordType>();
  63. Decl *D = Ty->getDecl();
  64. return cast<CXXRecordDecl>(D);
  65. }
  66. const Expr *Expr::skipRValueSubobjectAdjustments(
  67. SmallVectorImpl<const Expr *> &CommaLHSs,
  68. SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
  69. const Expr *E = this;
  70. while (true) {
  71. E = E->IgnoreParens();
  72. if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
  73. if ((CE->getCastKind() == CK_DerivedToBase ||
  74. CE->getCastKind() == CK_UncheckedDerivedToBase) &&
  75. E->getType()->isRecordType()) {
  76. E = CE->getSubExpr();
  77. CXXRecordDecl *Derived
  78. = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
  79. Adjustments.push_back(SubobjectAdjustment(CE, Derived));
  80. continue;
  81. }
  82. if (CE->getCastKind() == CK_NoOp) {
  83. E = CE->getSubExpr();
  84. continue;
  85. }
  86. } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
  87. if (!ME->isArrow()) {
  88. assert(ME->getBase()->getType()->isRecordType());
  89. if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
  90. if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
  91. E = ME->getBase();
  92. Adjustments.push_back(SubobjectAdjustment(Field));
  93. continue;
  94. }
  95. }
  96. }
  97. } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
  98. if (BO->getOpcode() == BO_PtrMemD) {
  99. assert(BO->getRHS()->isRValue());
  100. E = BO->getLHS();
  101. const MemberPointerType *MPT =
  102. BO->getRHS()->getType()->getAs<MemberPointerType>();
  103. Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
  104. continue;
  105. } else if (BO->getOpcode() == BO_Comma) {
  106. CommaLHSs.push_back(BO->getLHS());
  107. E = BO->getRHS();
  108. continue;
  109. }
  110. }
  111. // Nothing changed.
  112. break;
  113. }
  114. return E;
  115. }
  116. /// isKnownToHaveBooleanValue - Return true if this is an integer expression
  117. /// that is known to return 0 or 1. This happens for _Bool/bool expressions
  118. /// but also int expressions which are produced by things like comparisons in
  119. /// C.
  120. bool Expr::isKnownToHaveBooleanValue() const {
  121. const Expr *E = IgnoreParens();
  122. // If this value has _Bool type, it is obvious 0/1.
  123. if (E->getType()->isBooleanType()) return true;
  124. // If this is a non-scalar-integer type, we don't care enough to try.
  125. if (!E->getType()->isIntegralOrEnumerationType()) return false;
  126. if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
  127. switch (UO->getOpcode()) {
  128. case UO_Plus:
  129. return UO->getSubExpr()->isKnownToHaveBooleanValue();
  130. case UO_LNot:
  131. return true;
  132. default:
  133. return false;
  134. }
  135. }
  136. // Only look through implicit casts. If the user writes
  137. // '(int) (a && b)' treat it as an arbitrary int.
  138. if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
  139. return CE->getSubExpr()->isKnownToHaveBooleanValue();
  140. if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
  141. switch (BO->getOpcode()) {
  142. default: return false;
  143. case BO_LT: // Relational operators.
  144. case BO_GT:
  145. case BO_LE:
  146. case BO_GE:
  147. case BO_EQ: // Equality operators.
  148. case BO_NE:
  149. case BO_LAnd: // AND operator.
  150. case BO_LOr: // Logical OR operator.
  151. return true;
  152. case BO_And: // Bitwise AND operator.
  153. case BO_Xor: // Bitwise XOR operator.
  154. case BO_Or: // Bitwise OR operator.
  155. // Handle things like (x==2)|(y==12).
  156. return BO->getLHS()->isKnownToHaveBooleanValue() &&
  157. BO->getRHS()->isKnownToHaveBooleanValue();
  158. case BO_Comma:
  159. case BO_Assign:
  160. return BO->getRHS()->isKnownToHaveBooleanValue();
  161. }
  162. }
  163. if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
  164. return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
  165. CO->getFalseExpr()->isKnownToHaveBooleanValue();
  166. return false;
  167. }
  168. // Amusing macro metaprogramming hack: check whether a class provides
  169. // a more specific implementation of getExprLoc().
  170. //
  171. // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
  172. namespace {
  173. /// This implementation is used when a class provides a custom
  174. /// implementation of getExprLoc.
  175. template <class E, class T>
  176. SourceLocation getExprLocImpl(const Expr *expr,
  177. SourceLocation (T::*v)() const) {
  178. return static_cast<const E*>(expr)->getExprLoc();
  179. }
  180. /// This implementation is used when a class doesn't provide
  181. /// a custom implementation of getExprLoc. Overload resolution
  182. /// should pick it over the implementation above because it's
  183. /// more specialized according to function template partial ordering.
  184. template <class E>
  185. SourceLocation getExprLocImpl(const Expr *expr,
  186. SourceLocation (Expr::*v)() const) {
  187. return static_cast<const E *>(expr)->getBeginLoc();
  188. }
  189. }
  190. SourceLocation Expr::getExprLoc() const {
  191. switch (getStmtClass()) {
  192. case Stmt::NoStmtClass: llvm_unreachable("statement without class");
  193. #define ABSTRACT_STMT(type)
  194. #define STMT(type, base) \
  195. case Stmt::type##Class: break;
  196. #define EXPR(type, base) \
  197. case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
  198. #include "clang/AST/StmtNodes.inc"
  199. }
  200. llvm_unreachable("unknown expression kind");
  201. }
  202. //===----------------------------------------------------------------------===//
  203. // Primary Expressions.
  204. //===----------------------------------------------------------------------===//
  205. static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
  206. assert((Kind == ConstantExpr::RSK_APValue ||
  207. Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
  208. "Invalid StorageKind Value");
  209. }
  210. ConstantExpr::ResultStorageKind
  211. ConstantExpr::getStorageKind(const APValue &Value) {
  212. switch (Value.getKind()) {
  213. case APValue::None:
  214. case APValue::Indeterminate:
  215. return ConstantExpr::RSK_None;
  216. case APValue::Int:
  217. if (!Value.getInt().needsCleanup())
  218. return ConstantExpr::RSK_Int64;
  219. LLVM_FALLTHROUGH;
  220. default:
  221. return ConstantExpr::RSK_APValue;
  222. }
  223. }
  224. ConstantExpr::ResultStorageKind
  225. ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
  226. if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
  227. return ConstantExpr::RSK_Int64;
  228. return ConstantExpr::RSK_APValue;
  229. }
  230. void ConstantExpr::DefaultInit(ResultStorageKind StorageKind) {
  231. ConstantExprBits.ResultKind = StorageKind;
  232. ConstantExprBits.APValueKind = APValue::None;
  233. ConstantExprBits.HasCleanup = false;
  234. if (StorageKind == ConstantExpr::RSK_APValue)
  235. ::new (getTrailingObjects<APValue>()) APValue();
  236. }
  237. ConstantExpr::ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind)
  238. : FullExpr(ConstantExprClass, subexpr) {
  239. DefaultInit(StorageKind);
  240. }
  241. ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
  242. ResultStorageKind StorageKind) {
  243. assert(!isa<ConstantExpr>(E));
  244. AssertResultStorageKind(StorageKind);
  245. unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
  246. StorageKind == ConstantExpr::RSK_APValue,
  247. StorageKind == ConstantExpr::RSK_Int64);
  248. void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
  249. ConstantExpr *Self = new (Mem) ConstantExpr(E, StorageKind);
  250. return Self;
  251. }
  252. ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
  253. const APValue &Result) {
  254. ResultStorageKind StorageKind = getStorageKind(Result);
  255. ConstantExpr *Self = Create(Context, E, StorageKind);
  256. Self->SetResult(Result, Context);
  257. return Self;
  258. }
  259. ConstantExpr::ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty)
  260. : FullExpr(ConstantExprClass, Empty) {
  261. DefaultInit(StorageKind);
  262. }
  263. ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
  264. ResultStorageKind StorageKind,
  265. EmptyShell Empty) {
  266. AssertResultStorageKind(StorageKind);
  267. unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
  268. StorageKind == ConstantExpr::RSK_APValue,
  269. StorageKind == ConstantExpr::RSK_Int64);
  270. void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
  271. ConstantExpr *Self = new (Mem) ConstantExpr(StorageKind, Empty);
  272. return Self;
  273. }
  274. void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
  275. assert(getStorageKind(Value) == ConstantExprBits.ResultKind &&
  276. "Invalid storage for this value kind");
  277. ConstantExprBits.APValueKind = Value.getKind();
  278. switch (ConstantExprBits.ResultKind) {
  279. case RSK_None:
  280. return;
  281. case RSK_Int64:
  282. Int64Result() = *Value.getInt().getRawData();
  283. ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
  284. ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
  285. return;
  286. case RSK_APValue:
  287. if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
  288. ConstantExprBits.HasCleanup = true;
  289. Context.addDestruction(&APValueResult());
  290. }
  291. APValueResult() = std::move(Value);
  292. return;
  293. }
  294. llvm_unreachable("Invalid ResultKind Bits");
  295. }
  296. llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
  297. switch (ConstantExprBits.ResultKind) {
  298. case ConstantExpr::RSK_APValue:
  299. return APValueResult().getInt();
  300. case ConstantExpr::RSK_Int64:
  301. return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
  302. ConstantExprBits.IsUnsigned);
  303. default:
  304. llvm_unreachable("invalid Accessor");
  305. }
  306. }
  307. APValue ConstantExpr::getAPValueResult() const {
  308. switch (ConstantExprBits.ResultKind) {
  309. case ConstantExpr::RSK_APValue:
  310. return APValueResult();
  311. case ConstantExpr::RSK_Int64:
  312. return APValue(
  313. llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
  314. ConstantExprBits.IsUnsigned));
  315. case ConstantExpr::RSK_None:
  316. return APValue();
  317. }
  318. llvm_unreachable("invalid ResultKind");
  319. }
  320. /// Compute the type-, value-, and instantiation-dependence of a
  321. /// declaration reference
  322. /// based on the declaration being referenced.
  323. static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
  324. QualType T, bool &TypeDependent,
  325. bool &ValueDependent,
  326. bool &InstantiationDependent) {
  327. TypeDependent = false;
  328. ValueDependent = false;
  329. InstantiationDependent = false;
  330. // (TD) C++ [temp.dep.expr]p3:
  331. // An id-expression is type-dependent if it contains:
  332. //
  333. // and
  334. //
  335. // (VD) C++ [temp.dep.constexpr]p2:
  336. // An identifier is value-dependent if it is:
  337. // (TD) - an identifier that was declared with dependent type
  338. // (VD) - a name declared with a dependent type,
  339. if (T->isDependentType()) {
  340. TypeDependent = true;
  341. ValueDependent = true;
  342. InstantiationDependent = true;
  343. return;
  344. } else if (T->isInstantiationDependentType()) {
  345. InstantiationDependent = true;
  346. }
  347. // (TD) - a conversion-function-id that specifies a dependent type
  348. if (D->getDeclName().getNameKind()
  349. == DeclarationName::CXXConversionFunctionName) {
  350. QualType T = D->getDeclName().getCXXNameType();
  351. if (T->isDependentType()) {
  352. TypeDependent = true;
  353. ValueDependent = true;
  354. InstantiationDependent = true;
  355. return;
  356. }
  357. if (T->isInstantiationDependentType())
  358. InstantiationDependent = true;
  359. }
  360. // (VD) - the name of a non-type template parameter,
  361. if (isa<NonTypeTemplateParmDecl>(D)) {
  362. ValueDependent = true;
  363. InstantiationDependent = true;
  364. return;
  365. }
  366. // (VD) - a constant with integral or enumeration type and is
  367. // initialized with an expression that is value-dependent.
  368. // (VD) - a constant with literal type and is initialized with an
  369. // expression that is value-dependent [C++11].
  370. // (VD) - FIXME: Missing from the standard:
  371. // - an entity with reference type and is initialized with an
  372. // expression that is value-dependent [C++11]
  373. if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
  374. if ((Ctx.getLangOpts().CPlusPlus11 ?
  375. Var->getType()->isLiteralType(Ctx) :
  376. Var->getType()->isIntegralOrEnumerationType()) &&
  377. (Var->getType().isConstQualified() ||
  378. Var->getType()->isReferenceType())) {
  379. if (const Expr *Init = Var->getAnyInitializer())
  380. if (Init->isValueDependent()) {
  381. ValueDependent = true;
  382. InstantiationDependent = true;
  383. }
  384. }
  385. // (VD) - FIXME: Missing from the standard:
  386. // - a member function or a static data member of the current
  387. // instantiation
  388. if (Var->isStaticDataMember() &&
  389. Var->getDeclContext()->isDependentContext()) {
  390. ValueDependent = true;
  391. InstantiationDependent = true;
  392. TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
  393. if (TInfo->getType()->isIncompleteArrayType())
  394. TypeDependent = true;
  395. }
  396. return;
  397. }
  398. // (VD) - FIXME: Missing from the standard:
  399. // - a member function or a static data member of the current
  400. // instantiation
  401. if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
  402. ValueDependent = true;
  403. InstantiationDependent = true;
  404. }
  405. }
  406. void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
  407. bool TypeDependent = false;
  408. bool ValueDependent = false;
  409. bool InstantiationDependent = false;
  410. computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
  411. ValueDependent, InstantiationDependent);
  412. ExprBits.TypeDependent |= TypeDependent;
  413. ExprBits.ValueDependent |= ValueDependent;
  414. ExprBits.InstantiationDependent |= InstantiationDependent;
  415. // Is the declaration a parameter pack?
  416. if (getDecl()->isParameterPack())
  417. ExprBits.ContainsUnexpandedParameterPack = true;
  418. }
  419. DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
  420. bool RefersToEnclosingVariableOrCapture, QualType T,
  421. ExprValueKind VK, SourceLocation L,
  422. const DeclarationNameLoc &LocInfo,
  423. NonOdrUseReason NOUR)
  424. : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
  425. D(D), DNLoc(LocInfo) {
  426. DeclRefExprBits.HasQualifier = false;
  427. DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
  428. DeclRefExprBits.HasFoundDecl = false;
  429. DeclRefExprBits.HadMultipleCandidates = false;
  430. DeclRefExprBits.RefersToEnclosingVariableOrCapture =
  431. RefersToEnclosingVariableOrCapture;
  432. DeclRefExprBits.NonOdrUseReason = NOUR;
  433. DeclRefExprBits.Loc = L;
  434. computeDependence(Ctx);
  435. }
  436. DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
  437. NestedNameSpecifierLoc QualifierLoc,
  438. SourceLocation TemplateKWLoc, ValueDecl *D,
  439. bool RefersToEnclosingVariableOrCapture,
  440. const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
  441. const TemplateArgumentListInfo *TemplateArgs,
  442. QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
  443. : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
  444. D(D), DNLoc(NameInfo.getInfo()) {
  445. DeclRefExprBits.Loc = NameInfo.getLoc();
  446. DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
  447. if (QualifierLoc) {
  448. new (getTrailingObjects<NestedNameSpecifierLoc>())
  449. NestedNameSpecifierLoc(QualifierLoc);
  450. auto *NNS = QualifierLoc.getNestedNameSpecifier();
  451. if (NNS->isInstantiationDependent())
  452. ExprBits.InstantiationDependent = true;
  453. if (NNS->containsUnexpandedParameterPack())
  454. ExprBits.ContainsUnexpandedParameterPack = true;
  455. }
  456. DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
  457. if (FoundD)
  458. *getTrailingObjects<NamedDecl *>() = FoundD;
  459. DeclRefExprBits.HasTemplateKWAndArgsInfo
  460. = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
  461. DeclRefExprBits.RefersToEnclosingVariableOrCapture =
  462. RefersToEnclosingVariableOrCapture;
  463. DeclRefExprBits.NonOdrUseReason = NOUR;
  464. if (TemplateArgs) {
  465. bool Dependent = false;
  466. bool InstantiationDependent = false;
  467. bool ContainsUnexpandedParameterPack = false;
  468. getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
  469. TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
  470. Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
  471. assert(!Dependent && "built a DeclRefExpr with dependent template args");
  472. ExprBits.InstantiationDependent |= InstantiationDependent;
  473. ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
  474. } else if (TemplateKWLoc.isValid()) {
  475. getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
  476. TemplateKWLoc);
  477. }
  478. DeclRefExprBits.HadMultipleCandidates = 0;
  479. computeDependence(Ctx);
  480. }
  481. DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
  482. NestedNameSpecifierLoc QualifierLoc,
  483. SourceLocation TemplateKWLoc, ValueDecl *D,
  484. bool RefersToEnclosingVariableOrCapture,
  485. SourceLocation NameLoc, QualType T,
  486. ExprValueKind VK, NamedDecl *FoundD,
  487. const TemplateArgumentListInfo *TemplateArgs,
  488. NonOdrUseReason NOUR) {
  489. return Create(Context, QualifierLoc, TemplateKWLoc, D,
  490. RefersToEnclosingVariableOrCapture,
  491. DeclarationNameInfo(D->getDeclName(), NameLoc),
  492. T, VK, FoundD, TemplateArgs, NOUR);
  493. }
  494. DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
  495. NestedNameSpecifierLoc QualifierLoc,
  496. SourceLocation TemplateKWLoc, ValueDecl *D,
  497. bool RefersToEnclosingVariableOrCapture,
  498. const DeclarationNameInfo &NameInfo,
  499. QualType T, ExprValueKind VK,
  500. NamedDecl *FoundD,
  501. const TemplateArgumentListInfo *TemplateArgs,
  502. NonOdrUseReason NOUR) {
  503. // Filter out cases where the found Decl is the same as the value refenenced.
  504. if (D == FoundD)
  505. FoundD = nullptr;
  506. bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
  507. std::size_t Size =
  508. totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
  509. ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
  510. QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
  511. HasTemplateKWAndArgsInfo ? 1 : 0,
  512. TemplateArgs ? TemplateArgs->size() : 0);
  513. void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
  514. return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
  515. RefersToEnclosingVariableOrCapture, NameInfo,
  516. FoundD, TemplateArgs, T, VK, NOUR);
  517. }
  518. DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
  519. bool HasQualifier,
  520. bool HasFoundDecl,
  521. bool HasTemplateKWAndArgsInfo,
  522. unsigned NumTemplateArgs) {
  523. assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
  524. std::size_t Size =
  525. totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
  526. ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
  527. HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
  528. NumTemplateArgs);
  529. void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
  530. return new (Mem) DeclRefExpr(EmptyShell());
  531. }
  532. SourceLocation DeclRefExpr::getBeginLoc() const {
  533. if (hasQualifier())
  534. return getQualifierLoc().getBeginLoc();
  535. return getNameInfo().getBeginLoc();
  536. }
  537. SourceLocation DeclRefExpr::getEndLoc() const {
  538. if (hasExplicitTemplateArgs())
  539. return getRAngleLoc();
  540. return getNameInfo().getEndLoc();
  541. }
  542. PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
  543. StringLiteral *SL)
  544. : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
  545. FNTy->isDependentType(), FNTy->isDependentType(),
  546. FNTy->isInstantiationDependentType(),
  547. /*ContainsUnexpandedParameterPack=*/false) {
  548. PredefinedExprBits.Kind = IK;
  549. assert((getIdentKind() == IK) &&
  550. "IdentKind do not fit in PredefinedExprBitfields!");
  551. bool HasFunctionName = SL != nullptr;
  552. PredefinedExprBits.HasFunctionName = HasFunctionName;
  553. PredefinedExprBits.Loc = L;
  554. if (HasFunctionName)
  555. setFunctionName(SL);
  556. }
  557. PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
  558. : Expr(PredefinedExprClass, Empty) {
  559. PredefinedExprBits.HasFunctionName = HasFunctionName;
  560. }
  561. PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
  562. QualType FNTy, IdentKind IK,
  563. StringLiteral *SL) {
  564. bool HasFunctionName = SL != nullptr;
  565. void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
  566. alignof(PredefinedExpr));
  567. return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
  568. }
  569. PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
  570. bool HasFunctionName) {
  571. void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
  572. alignof(PredefinedExpr));
  573. return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
  574. }
  575. StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
  576. switch (IK) {
  577. case Func:
  578. return "__func__";
  579. case Function:
  580. return "__FUNCTION__";
  581. case FuncDName:
  582. return "__FUNCDNAME__";
  583. case LFunction:
  584. return "L__FUNCTION__";
  585. case PrettyFunction:
  586. return "__PRETTY_FUNCTION__";
  587. case FuncSig:
  588. return "__FUNCSIG__";
  589. case LFuncSig:
  590. return "L__FUNCSIG__";
  591. case PrettyFunctionNoVirtual:
  592. break;
  593. }
  594. llvm_unreachable("Unknown ident kind for PredefinedExpr");
  595. }
  596. // FIXME: Maybe this should use DeclPrinter with a special "print predefined
  597. // expr" policy instead.
  598. std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
  599. ASTContext &Context = CurrentDecl->getASTContext();
  600. if (IK == PredefinedExpr::FuncDName) {
  601. if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
  602. std::unique_ptr<MangleContext> MC;
  603. MC.reset(Context.createMangleContext());
  604. if (MC->shouldMangleDeclName(ND)) {
  605. SmallString<256> Buffer;
  606. llvm::raw_svector_ostream Out(Buffer);
  607. if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
  608. MC->mangleCXXCtor(CD, Ctor_Base, Out);
  609. else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
  610. MC->mangleCXXDtor(DD, Dtor_Base, Out);
  611. else
  612. MC->mangleName(ND, Out);
  613. if (!Buffer.empty() && Buffer.front() == '\01')
  614. return Buffer.substr(1);
  615. return Buffer.str();
  616. } else
  617. return ND->getIdentifier()->getName();
  618. }
  619. return "";
  620. }
  621. if (isa<BlockDecl>(CurrentDecl)) {
  622. // For blocks we only emit something if it is enclosed in a function
  623. // For top-level block we'd like to include the name of variable, but we
  624. // don't have it at this point.
  625. auto DC = CurrentDecl->getDeclContext();
  626. if (DC->isFileContext())
  627. return "";
  628. SmallString<256> Buffer;
  629. llvm::raw_svector_ostream Out(Buffer);
  630. if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
  631. // For nested blocks, propagate up to the parent.
  632. Out << ComputeName(IK, DCBlock);
  633. else if (auto *DCDecl = dyn_cast<Decl>(DC))
  634. Out << ComputeName(IK, DCDecl) << "_block_invoke";
  635. return Out.str();
  636. }
  637. if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
  638. if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
  639. IK != FuncSig && IK != LFuncSig)
  640. return FD->getNameAsString();
  641. SmallString<256> Name;
  642. llvm::raw_svector_ostream Out(Name);
  643. if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
  644. if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
  645. Out << "virtual ";
  646. if (MD->isStatic())
  647. Out << "static ";
  648. }
  649. PrintingPolicy Policy(Context.getLangOpts());
  650. std::string Proto;
  651. llvm::raw_string_ostream POut(Proto);
  652. const FunctionDecl *Decl = FD;
  653. if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
  654. Decl = Pattern;
  655. const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
  656. const FunctionProtoType *FT = nullptr;
  657. if (FD->hasWrittenPrototype())
  658. FT = dyn_cast<FunctionProtoType>(AFT);
  659. if (IK == FuncSig || IK == LFuncSig) {
  660. switch (AFT->getCallConv()) {
  661. case CC_C: POut << "__cdecl "; break;
  662. case CC_X86StdCall: POut << "__stdcall "; break;
  663. case CC_X86FastCall: POut << "__fastcall "; break;
  664. case CC_X86ThisCall: POut << "__thiscall "; break;
  665. case CC_X86VectorCall: POut << "__vectorcall "; break;
  666. case CC_X86RegCall: POut << "__regcall "; break;
  667. // Only bother printing the conventions that MSVC knows about.
  668. default: break;
  669. }
  670. }
  671. FD->printQualifiedName(POut, Policy);
  672. POut << "(";
  673. if (FT) {
  674. for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
  675. if (i) POut << ", ";
  676. POut << Decl->getParamDecl(i)->getType().stream(Policy);
  677. }
  678. if (FT->isVariadic()) {
  679. if (FD->getNumParams()) POut << ", ";
  680. POut << "...";
  681. } else if ((IK == FuncSig || IK == LFuncSig ||
  682. !Context.getLangOpts().CPlusPlus) &&
  683. !Decl->getNumParams()) {
  684. POut << "void";
  685. }
  686. }
  687. POut << ")";
  688. if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
  689. assert(FT && "We must have a written prototype in this case.");
  690. if (FT->isConst())
  691. POut << " const";
  692. if (FT->isVolatile())
  693. POut << " volatile";
  694. RefQualifierKind Ref = MD->getRefQualifier();
  695. if (Ref == RQ_LValue)
  696. POut << " &";
  697. else if (Ref == RQ_RValue)
  698. POut << " &&";
  699. }
  700. typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
  701. SpecsTy Specs;
  702. const DeclContext *Ctx = FD->getDeclContext();
  703. while (Ctx && isa<NamedDecl>(Ctx)) {
  704. const ClassTemplateSpecializationDecl *Spec
  705. = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
  706. if (Spec && !Spec->isExplicitSpecialization())
  707. Specs.push_back(Spec);
  708. Ctx = Ctx->getParent();
  709. }
  710. std::string TemplateParams;
  711. llvm::raw_string_ostream TOut(TemplateParams);
  712. for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
  713. I != E; ++I) {
  714. const TemplateParameterList *Params
  715. = (*I)->getSpecializedTemplate()->getTemplateParameters();
  716. const TemplateArgumentList &Args = (*I)->getTemplateArgs();
  717. assert(Params->size() == Args.size());
  718. for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
  719. StringRef Param = Params->getParam(i)->getName();
  720. if (Param.empty()) continue;
  721. TOut << Param << " = ";
  722. Args.get(i).print(Policy, TOut);
  723. TOut << ", ";
  724. }
  725. }
  726. FunctionTemplateSpecializationInfo *FSI
  727. = FD->getTemplateSpecializationInfo();
  728. if (FSI && !FSI->isExplicitSpecialization()) {
  729. const TemplateParameterList* Params
  730. = FSI->getTemplate()->getTemplateParameters();
  731. const TemplateArgumentList* Args = FSI->TemplateArguments;
  732. assert(Params->size() == Args->size());
  733. for (unsigned i = 0, e = Params->size(); i != e; ++i) {
  734. StringRef Param = Params->getParam(i)->getName();
  735. if (Param.empty()) continue;
  736. TOut << Param << " = ";
  737. Args->get(i).print(Policy, TOut);
  738. TOut << ", ";
  739. }
  740. }
  741. TOut.flush();
  742. if (!TemplateParams.empty()) {
  743. // remove the trailing comma and space
  744. TemplateParams.resize(TemplateParams.size() - 2);
  745. POut << " [" << TemplateParams << "]";
  746. }
  747. POut.flush();
  748. // Print "auto" for all deduced return types. This includes C++1y return
  749. // type deduction and lambdas. For trailing return types resolve the
  750. // decltype expression. Otherwise print the real type when this is
  751. // not a constructor or destructor.
  752. if (isa<CXXMethodDecl>(FD) &&
  753. cast<CXXMethodDecl>(FD)->getParent()->isLambda())
  754. Proto = "auto " + Proto;
  755. else if (FT && FT->getReturnType()->getAs<DecltypeType>())
  756. FT->getReturnType()
  757. ->getAs<DecltypeType>()
  758. ->getUnderlyingType()
  759. .getAsStringInternal(Proto, Policy);
  760. else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
  761. AFT->getReturnType().getAsStringInternal(Proto, Policy);
  762. Out << Proto;
  763. return Name.str().str();
  764. }
  765. if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
  766. for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
  767. // Skip to its enclosing function or method, but not its enclosing
  768. // CapturedDecl.
  769. if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
  770. const Decl *D = Decl::castFromDeclContext(DC);
  771. return ComputeName(IK, D);
  772. }
  773. llvm_unreachable("CapturedDecl not inside a function or method");
  774. }
  775. if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
  776. SmallString<256> Name;
  777. llvm::raw_svector_ostream Out(Name);
  778. Out << (MD->isInstanceMethod() ? '-' : '+');
  779. Out << '[';
  780. // For incorrect code, there might not be an ObjCInterfaceDecl. Do
  781. // a null check to avoid a crash.
  782. if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
  783. Out << *ID;
  784. if (const ObjCCategoryImplDecl *CID =
  785. dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
  786. Out << '(' << *CID << ')';
  787. Out << ' ';
  788. MD->getSelector().print(Out);
  789. Out << ']';
  790. return Name.str().str();
  791. }
  792. if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
  793. // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
  794. return "top level";
  795. }
  796. return "";
  797. }
  798. void APNumericStorage::setIntValue(const ASTContext &C,
  799. const llvm::APInt &Val) {
  800. if (hasAllocation())
  801. C.Deallocate(pVal);
  802. BitWidth = Val.getBitWidth();
  803. unsigned NumWords = Val.getNumWords();
  804. const uint64_t* Words = Val.getRawData();
  805. if (NumWords > 1) {
  806. pVal = new (C) uint64_t[NumWords];
  807. std::copy(Words, Words + NumWords, pVal);
  808. } else if (NumWords == 1)
  809. VAL = Words[0];
  810. else
  811. VAL = 0;
  812. }
  813. IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
  814. QualType type, SourceLocation l)
  815. : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
  816. false, false),
  817. Loc(l) {
  818. assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
  819. assert(V.getBitWidth() == C.getIntWidth(type) &&
  820. "Integer type is not the correct size for constant.");
  821. setValue(C, V);
  822. }
  823. IntegerLiteral *
  824. IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
  825. QualType type, SourceLocation l) {
  826. return new (C) IntegerLiteral(C, V, type, l);
  827. }
  828. IntegerLiteral *
  829. IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
  830. return new (C) IntegerLiteral(Empty);
  831. }
  832. FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
  833. QualType type, SourceLocation l,
  834. unsigned Scale)
  835. : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
  836. false, false),
  837. Loc(l), Scale(Scale) {
  838. assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
  839. assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
  840. "Fixed point type is not the correct size for constant.");
  841. setValue(C, V);
  842. }
  843. FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
  844. const llvm::APInt &V,
  845. QualType type,
  846. SourceLocation l,
  847. unsigned Scale) {
  848. return new (C) FixedPointLiteral(C, V, type, l, Scale);
  849. }
  850. std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
  851. // Currently the longest decimal number that can be printed is the max for an
  852. // unsigned long _Accum: 4294967295.99999999976716935634613037109375
  853. // which is 43 characters.
  854. SmallString<64> S;
  855. FixedPointValueToString(
  856. S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
  857. return S.str();
  858. }
  859. FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
  860. bool isexact, QualType Type, SourceLocation L)
  861. : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
  862. false, false), Loc(L) {
  863. setSemantics(V.getSemantics());
  864. FloatingLiteralBits.IsExact = isexact;
  865. setValue(C, V);
  866. }
  867. FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
  868. : Expr(FloatingLiteralClass, Empty) {
  869. setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
  870. FloatingLiteralBits.IsExact = false;
  871. }
  872. FloatingLiteral *
  873. FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
  874. bool isexact, QualType Type, SourceLocation L) {
  875. return new (C) FloatingLiteral(C, V, isexact, Type, L);
  876. }
  877. FloatingLiteral *
  878. FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
  879. return new (C) FloatingLiteral(C, Empty);
  880. }
  881. /// getValueAsApproximateDouble - This returns the value as an inaccurate
  882. /// double. Note that this may cause loss of precision, but is useful for
  883. /// debugging dumps, etc.
  884. double FloatingLiteral::getValueAsApproximateDouble() const {
  885. llvm::APFloat V = getValue();
  886. bool ignored;
  887. V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
  888. &ignored);
  889. return V.convertToDouble();
  890. }
  891. unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
  892. StringKind SK) {
  893. unsigned CharByteWidth = 0;
  894. switch (SK) {
  895. case Ascii:
  896. case UTF8:
  897. CharByteWidth = Target.getCharWidth();
  898. break;
  899. case Wide:
  900. CharByteWidth = Target.getWCharWidth();
  901. break;
  902. case UTF16:
  903. CharByteWidth = Target.getChar16Width();
  904. break;
  905. case UTF32:
  906. CharByteWidth = Target.getChar32Width();
  907. break;
  908. }
  909. assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
  910. CharByteWidth /= 8;
  911. assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
  912. "The only supported character byte widths are 1,2 and 4!");
  913. return CharByteWidth;
  914. }
  915. StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
  916. StringKind Kind, bool Pascal, QualType Ty,
  917. const SourceLocation *Loc,
  918. unsigned NumConcatenated)
  919. : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
  920. false) {
  921. assert(Ctx.getAsConstantArrayType(Ty) &&
  922. "StringLiteral must be of constant array type!");
  923. unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
  924. unsigned ByteLength = Str.size();
  925. assert((ByteLength % CharByteWidth == 0) &&
  926. "The size of the data must be a multiple of CharByteWidth!");
  927. // Avoid the expensive division. The compiler should be able to figure it
  928. // out by itself. However as of clang 7, even with the appropriate
  929. // llvm_unreachable added just here, it is not able to do so.
  930. unsigned Length;
  931. switch (CharByteWidth) {
  932. case 1:
  933. Length = ByteLength;
  934. break;
  935. case 2:
  936. Length = ByteLength / 2;
  937. break;
  938. case 4:
  939. Length = ByteLength / 4;
  940. break;
  941. default:
  942. llvm_unreachable("Unsupported character width!");
  943. }
  944. StringLiteralBits.Kind = Kind;
  945. StringLiteralBits.CharByteWidth = CharByteWidth;
  946. StringLiteralBits.IsPascal = Pascal;
  947. StringLiteralBits.NumConcatenated = NumConcatenated;
  948. *getTrailingObjects<unsigned>() = Length;
  949. // Initialize the trailing array of SourceLocation.
  950. // This is safe since SourceLocation is POD-like.
  951. std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
  952. NumConcatenated * sizeof(SourceLocation));
  953. // Initialize the trailing array of char holding the string data.
  954. std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
  955. }
  956. StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
  957. unsigned Length, unsigned CharByteWidth)
  958. : Expr(StringLiteralClass, Empty) {
  959. StringLiteralBits.CharByteWidth = CharByteWidth;
  960. StringLiteralBits.NumConcatenated = NumConcatenated;
  961. *getTrailingObjects<unsigned>() = Length;
  962. }
  963. StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
  964. StringKind Kind, bool Pascal, QualType Ty,
  965. const SourceLocation *Loc,
  966. unsigned NumConcatenated) {
  967. void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
  968. 1, NumConcatenated, Str.size()),
  969. alignof(StringLiteral));
  970. return new (Mem)
  971. StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
  972. }
  973. StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
  974. unsigned NumConcatenated,
  975. unsigned Length,
  976. unsigned CharByteWidth) {
  977. void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
  978. 1, NumConcatenated, Length * CharByteWidth),
  979. alignof(StringLiteral));
  980. return new (Mem)
  981. StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
  982. }
  983. void StringLiteral::outputString(raw_ostream &OS) const {
  984. switch (getKind()) {
  985. case Ascii: break; // no prefix.
  986. case Wide: OS << 'L'; break;
  987. case UTF8: OS << "u8"; break;
  988. case UTF16: OS << 'u'; break;
  989. case UTF32: OS << 'U'; break;
  990. }
  991. OS << '"';
  992. static const char Hex[] = "0123456789ABCDEF";
  993. unsigned LastSlashX = getLength();
  994. for (unsigned I = 0, N = getLength(); I != N; ++I) {
  995. switch (uint32_t Char = getCodeUnit(I)) {
  996. default:
  997. // FIXME: Convert UTF-8 back to codepoints before rendering.
  998. // Convert UTF-16 surrogate pairs back to codepoints before rendering.
  999. // Leave invalid surrogates alone; we'll use \x for those.
  1000. if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
  1001. Char <= 0xdbff) {
  1002. uint32_t Trail = getCodeUnit(I + 1);
  1003. if (Trail >= 0xdc00 && Trail <= 0xdfff) {
  1004. Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
  1005. ++I;
  1006. }
  1007. }
  1008. if (Char > 0xff) {
  1009. // If this is a wide string, output characters over 0xff using \x
  1010. // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
  1011. // codepoint: use \x escapes for invalid codepoints.
  1012. if (getKind() == Wide ||
  1013. (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
  1014. // FIXME: Is this the best way to print wchar_t?
  1015. OS << "\\x";
  1016. int Shift = 28;
  1017. while ((Char >> Shift) == 0)
  1018. Shift -= 4;
  1019. for (/**/; Shift >= 0; Shift -= 4)
  1020. OS << Hex[(Char >> Shift) & 15];
  1021. LastSlashX = I;
  1022. break;
  1023. }
  1024. if (Char > 0xffff)
  1025. OS << "\\U00"
  1026. << Hex[(Char >> 20) & 15]
  1027. << Hex[(Char >> 16) & 15];
  1028. else
  1029. OS << "\\u";
  1030. OS << Hex[(Char >> 12) & 15]
  1031. << Hex[(Char >> 8) & 15]
  1032. << Hex[(Char >> 4) & 15]
  1033. << Hex[(Char >> 0) & 15];
  1034. break;
  1035. }
  1036. // If we used \x... for the previous character, and this character is a
  1037. // hexadecimal digit, prevent it being slurped as part of the \x.
  1038. if (LastSlashX + 1 == I) {
  1039. switch (Char) {
  1040. case '0': case '1': case '2': case '3': case '4':
  1041. case '5': case '6': case '7': case '8': case '9':
  1042. case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
  1043. case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
  1044. OS << "\"\"";
  1045. }
  1046. }
  1047. assert(Char <= 0xff &&
  1048. "Characters above 0xff should already have been handled.");
  1049. if (isPrintable(Char))
  1050. OS << (char)Char;
  1051. else // Output anything hard as an octal escape.
  1052. OS << '\\'
  1053. << (char)('0' + ((Char >> 6) & 7))
  1054. << (char)('0' + ((Char >> 3) & 7))
  1055. << (char)('0' + ((Char >> 0) & 7));
  1056. break;
  1057. // Handle some common non-printable cases to make dumps prettier.
  1058. case '\\': OS << "\\\\"; break;
  1059. case '"': OS << "\\\""; break;
  1060. case '\a': OS << "\\a"; break;
  1061. case '\b': OS << "\\b"; break;
  1062. case '\f': OS << "\\f"; break;
  1063. case '\n': OS << "\\n"; break;
  1064. case '\r': OS << "\\r"; break;
  1065. case '\t': OS << "\\t"; break;
  1066. case '\v': OS << "\\v"; break;
  1067. }
  1068. }
  1069. OS << '"';
  1070. }
  1071. /// getLocationOfByte - Return a source location that points to the specified
  1072. /// byte of this string literal.
  1073. ///
  1074. /// Strings are amazingly complex. They can be formed from multiple tokens and
  1075. /// can have escape sequences in them in addition to the usual trigraph and
  1076. /// escaped newline business. This routine handles this complexity.
  1077. ///
  1078. /// The *StartToken sets the first token to be searched in this function and
  1079. /// the *StartTokenByteOffset is the byte offset of the first token. Before
  1080. /// returning, it updates the *StartToken to the TokNo of the token being found
  1081. /// and sets *StartTokenByteOffset to the byte offset of the token in the
  1082. /// string.
  1083. /// Using these two parameters can reduce the time complexity from O(n^2) to
  1084. /// O(n) if one wants to get the location of byte for all the tokens in a
  1085. /// string.
  1086. ///
  1087. SourceLocation
  1088. StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
  1089. const LangOptions &Features,
  1090. const TargetInfo &Target, unsigned *StartToken,
  1091. unsigned *StartTokenByteOffset) const {
  1092. assert((getKind() == StringLiteral::Ascii ||
  1093. getKind() == StringLiteral::UTF8) &&
  1094. "Only narrow string literals are currently supported");
  1095. // Loop over all of the tokens in this string until we find the one that
  1096. // contains the byte we're looking for.
  1097. unsigned TokNo = 0;
  1098. unsigned StringOffset = 0;
  1099. if (StartToken)
  1100. TokNo = *StartToken;
  1101. if (StartTokenByteOffset) {
  1102. StringOffset = *StartTokenByteOffset;
  1103. ByteNo -= StringOffset;
  1104. }
  1105. while (1) {
  1106. assert(TokNo < getNumConcatenated() && "Invalid byte number!");
  1107. SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
  1108. // Get the spelling of the string so that we can get the data that makes up
  1109. // the string literal, not the identifier for the macro it is potentially
  1110. // expanded through.
  1111. SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
  1112. // Re-lex the token to get its length and original spelling.
  1113. std::pair<FileID, unsigned> LocInfo =
  1114. SM.getDecomposedLoc(StrTokSpellingLoc);
  1115. bool Invalid = false;
  1116. StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
  1117. if (Invalid) {
  1118. if (StartTokenByteOffset != nullptr)
  1119. *StartTokenByteOffset = StringOffset;
  1120. if (StartToken != nullptr)
  1121. *StartToken = TokNo;
  1122. return StrTokSpellingLoc;
  1123. }
  1124. const char *StrData = Buffer.data()+LocInfo.second;
  1125. // Create a lexer starting at the beginning of this token.
  1126. Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
  1127. Buffer.begin(), StrData, Buffer.end());
  1128. Token TheTok;
  1129. TheLexer.LexFromRawLexer(TheTok);
  1130. // Use the StringLiteralParser to compute the length of the string in bytes.
  1131. StringLiteralParser SLP(TheTok, SM, Features, Target);
  1132. unsigned TokNumBytes = SLP.GetStringLength();
  1133. // If the byte is in this token, return the location of the byte.
  1134. if (ByteNo < TokNumBytes ||
  1135. (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
  1136. unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
  1137. // Now that we know the offset of the token in the spelling, use the
  1138. // preprocessor to get the offset in the original source.
  1139. if (StartTokenByteOffset != nullptr)
  1140. *StartTokenByteOffset = StringOffset;
  1141. if (StartToken != nullptr)
  1142. *StartToken = TokNo;
  1143. return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
  1144. }
  1145. // Move to the next string token.
  1146. StringOffset += TokNumBytes;
  1147. ++TokNo;
  1148. ByteNo -= TokNumBytes;
  1149. }
  1150. }
  1151. /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
  1152. /// corresponds to, e.g. "sizeof" or "[pre]++".
  1153. StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
  1154. switch (Op) {
  1155. #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
  1156. #include "clang/AST/OperationKinds.def"
  1157. }
  1158. llvm_unreachable("Unknown unary operator");
  1159. }
  1160. UnaryOperatorKind
  1161. UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
  1162. switch (OO) {
  1163. default: llvm_unreachable("No unary operator for overloaded function");
  1164. case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
  1165. case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
  1166. case OO_Amp: return UO_AddrOf;
  1167. case OO_Star: return UO_Deref;
  1168. case OO_Plus: return UO_Plus;
  1169. case OO_Minus: return UO_Minus;
  1170. case OO_Tilde: return UO_Not;
  1171. case OO_Exclaim: return UO_LNot;
  1172. case OO_Coawait: return UO_Coawait;
  1173. }
  1174. }
  1175. OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
  1176. switch (Opc) {
  1177. case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
  1178. case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
  1179. case UO_AddrOf: return OO_Amp;
  1180. case UO_Deref: return OO_Star;
  1181. case UO_Plus: return OO_Plus;
  1182. case UO_Minus: return OO_Minus;
  1183. case UO_Not: return OO_Tilde;
  1184. case UO_LNot: return OO_Exclaim;
  1185. case UO_Coawait: return OO_Coawait;
  1186. default: return OO_None;
  1187. }
  1188. }
  1189. //===----------------------------------------------------------------------===//
  1190. // Postfix Operators.
  1191. //===----------------------------------------------------------------------===//
  1192. CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
  1193. ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
  1194. SourceLocation RParenLoc, unsigned MinNumArgs,
  1195. ADLCallKind UsesADL)
  1196. : Expr(SC, Ty, VK, OK_Ordinary, Fn->isTypeDependent(),
  1197. Fn->isValueDependent(), Fn->isInstantiationDependent(),
  1198. Fn->containsUnexpandedParameterPack()),
  1199. RParenLoc(RParenLoc) {
  1200. NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
  1201. unsigned NumPreArgs = PreArgs.size();
  1202. CallExprBits.NumPreArgs = NumPreArgs;
  1203. assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
  1204. unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
  1205. CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
  1206. assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
  1207. "OffsetToTrailingObjects overflow!");
  1208. CallExprBits.UsesADL = static_cast<bool>(UsesADL);
  1209. setCallee(Fn);
  1210. for (unsigned I = 0; I != NumPreArgs; ++I) {
  1211. updateDependenciesFromArg(PreArgs[I]);
  1212. setPreArg(I, PreArgs[I]);
  1213. }
  1214. for (unsigned I = 0; I != Args.size(); ++I) {
  1215. updateDependenciesFromArg(Args[I]);
  1216. setArg(I, Args[I]);
  1217. }
  1218. for (unsigned I = Args.size(); I != NumArgs; ++I) {
  1219. setArg(I, nullptr);
  1220. }
  1221. }
  1222. CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
  1223. EmptyShell Empty)
  1224. : Expr(SC, Empty), NumArgs(NumArgs) {
  1225. CallExprBits.NumPreArgs = NumPreArgs;
  1226. assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
  1227. unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
  1228. CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
  1229. assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
  1230. "OffsetToTrailingObjects overflow!");
  1231. }
  1232. CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
  1233. ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
  1234. SourceLocation RParenLoc, unsigned MinNumArgs,
  1235. ADLCallKind UsesADL) {
  1236. unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
  1237. unsigned SizeOfTrailingObjects =
  1238. CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
  1239. void *Mem =
  1240. Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
  1241. return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
  1242. RParenLoc, MinNumArgs, UsesADL);
  1243. }
  1244. CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
  1245. ExprValueKind VK, SourceLocation RParenLoc,
  1246. ADLCallKind UsesADL) {
  1247. assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
  1248. "Misaligned memory in CallExpr::CreateTemporary!");
  1249. return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
  1250. VK, RParenLoc, /*MinNumArgs=*/0, UsesADL);
  1251. }
  1252. CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
  1253. EmptyShell Empty) {
  1254. unsigned SizeOfTrailingObjects =
  1255. CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
  1256. void *Mem =
  1257. Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
  1258. return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty);
  1259. }
  1260. unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
  1261. switch (SC) {
  1262. case CallExprClass:
  1263. return sizeof(CallExpr);
  1264. case CXXOperatorCallExprClass:
  1265. return sizeof(CXXOperatorCallExpr);
  1266. case CXXMemberCallExprClass:
  1267. return sizeof(CXXMemberCallExpr);
  1268. case UserDefinedLiteralClass:
  1269. return sizeof(UserDefinedLiteral);
  1270. case CUDAKernelCallExprClass:
  1271. return sizeof(CUDAKernelCallExpr);
  1272. default:
  1273. llvm_unreachable("unexpected class deriving from CallExpr!");
  1274. }
  1275. }
  1276. void CallExpr::updateDependenciesFromArg(Expr *Arg) {
  1277. if (Arg->isTypeDependent())
  1278. ExprBits.TypeDependent = true;
  1279. if (Arg->isValueDependent())
  1280. ExprBits.ValueDependent = true;
  1281. if (Arg->isInstantiationDependent())
  1282. ExprBits.InstantiationDependent = true;
  1283. if (Arg->containsUnexpandedParameterPack())
  1284. ExprBits.ContainsUnexpandedParameterPack = true;
  1285. }
  1286. Decl *Expr::getReferencedDeclOfCallee() {
  1287. Expr *CEE = IgnoreParenImpCasts();
  1288. while (SubstNonTypeTemplateParmExpr *NTTP
  1289. = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
  1290. CEE = NTTP->getReplacement()->IgnoreParenCasts();
  1291. }
  1292. // If we're calling a dereference, look at the pointer instead.
  1293. if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
  1294. if (BO->isPtrMemOp())
  1295. CEE = BO->getRHS()->IgnoreParenCasts();
  1296. } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
  1297. if (UO->getOpcode() == UO_Deref)
  1298. CEE = UO->getSubExpr()->IgnoreParenCasts();
  1299. }
  1300. if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
  1301. return DRE->getDecl();
  1302. if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
  1303. return ME->getMemberDecl();
  1304. if (auto *BE = dyn_cast<BlockExpr>(CEE))
  1305. return BE->getBlockDecl();
  1306. return nullptr;
  1307. }
  1308. /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
  1309. /// not, return 0.
  1310. unsigned CallExpr::getBuiltinCallee() const {
  1311. // All simple function calls (e.g. func()) are implicitly cast to pointer to
  1312. // function. As a result, we try and obtain the DeclRefExpr from the
  1313. // ImplicitCastExpr.
  1314. const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
  1315. if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
  1316. return 0;
  1317. const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
  1318. if (!DRE)
  1319. return 0;
  1320. const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
  1321. if (!FDecl)
  1322. return 0;
  1323. if (!FDecl->getIdentifier())
  1324. return 0;
  1325. return FDecl->getBuiltinID();
  1326. }
  1327. bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
  1328. if (unsigned BI = getBuiltinCallee())
  1329. return Ctx.BuiltinInfo.isUnevaluated(BI);
  1330. return false;
  1331. }
  1332. QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
  1333. const Expr *Callee = getCallee();
  1334. QualType CalleeType = Callee->getType();
  1335. if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
  1336. CalleeType = FnTypePtr->getPointeeType();
  1337. } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
  1338. CalleeType = BPT->getPointeeType();
  1339. } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
  1340. if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
  1341. return Ctx.VoidTy;
  1342. // This should never be overloaded and so should never return null.
  1343. CalleeType = Expr::findBoundMemberType(Callee);
  1344. }
  1345. const FunctionType *FnType = CalleeType->castAs<FunctionType>();
  1346. return FnType->getReturnType();
  1347. }
  1348. const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
  1349. // If the return type is a struct, union, or enum that is marked nodiscard,
  1350. // then return the return type attribute.
  1351. if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
  1352. if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
  1353. return A;
  1354. // Otherwise, see if the callee is marked nodiscard and return that attribute
  1355. // instead.
  1356. const Decl *D = getCalleeDecl();
  1357. return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
  1358. }
  1359. SourceLocation CallExpr::getBeginLoc() const {
  1360. if (isa<CXXOperatorCallExpr>(this))
  1361. return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
  1362. SourceLocation begin = getCallee()->getBeginLoc();
  1363. if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
  1364. begin = getArg(0)->getBeginLoc();
  1365. return begin;
  1366. }
  1367. SourceLocation CallExpr::getEndLoc() const {
  1368. if (isa<CXXOperatorCallExpr>(this))
  1369. return cast<CXXOperatorCallExpr>(this)->getEndLoc();
  1370. SourceLocation end = getRParenLoc();
  1371. if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
  1372. end = getArg(getNumArgs() - 1)->getEndLoc();
  1373. return end;
  1374. }
  1375. OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
  1376. SourceLocation OperatorLoc,
  1377. TypeSourceInfo *tsi,
  1378. ArrayRef<OffsetOfNode> comps,
  1379. ArrayRef<Expr*> exprs,
  1380. SourceLocation RParenLoc) {
  1381. void *Mem = C.Allocate(
  1382. totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
  1383. return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
  1384. RParenLoc);
  1385. }
  1386. OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
  1387. unsigned numComps, unsigned numExprs) {
  1388. void *Mem =
  1389. C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
  1390. return new (Mem) OffsetOfExpr(numComps, numExprs);
  1391. }
  1392. OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
  1393. SourceLocation OperatorLoc, TypeSourceInfo *tsi,
  1394. ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
  1395. SourceLocation RParenLoc)
  1396. : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
  1397. /*TypeDependent=*/false,
  1398. /*ValueDependent=*/tsi->getType()->isDependentType(),
  1399. tsi->getType()->isInstantiationDependentType(),
  1400. tsi->getType()->containsUnexpandedParameterPack()),
  1401. OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
  1402. NumComps(comps.size()), NumExprs(exprs.size())
  1403. {
  1404. for (unsigned i = 0; i != comps.size(); ++i) {
  1405. setComponent(i, comps[i]);
  1406. }
  1407. for (unsigned i = 0; i != exprs.size(); ++i) {
  1408. if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
  1409. ExprBits.ValueDependent = true;
  1410. if (exprs[i]->containsUnexpandedParameterPack())
  1411. ExprBits.ContainsUnexpandedParameterPack = true;
  1412. setIndexExpr(i, exprs[i]);
  1413. }
  1414. }
  1415. IdentifierInfo *OffsetOfNode::getFieldName() const {
  1416. assert(getKind() == Field || getKind() == Identifier);
  1417. if (getKind() == Field)
  1418. return getField()->getIdentifier();
  1419. return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
  1420. }
  1421. UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
  1422. UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
  1423. SourceLocation op, SourceLocation rp)
  1424. : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
  1425. false, // Never type-dependent (C++ [temp.dep.expr]p3).
  1426. // Value-dependent if the argument is type-dependent.
  1427. E->isTypeDependent(), E->isInstantiationDependent(),
  1428. E->containsUnexpandedParameterPack()),
  1429. OpLoc(op), RParenLoc(rp) {
  1430. UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
  1431. UnaryExprOrTypeTraitExprBits.IsType = false;
  1432. Argument.Ex = E;
  1433. // Check to see if we are in the situation where alignof(decl) should be
  1434. // dependent because decl's alignment is dependent.
  1435. if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
  1436. if (!isValueDependent() || !isInstantiationDependent()) {
  1437. E = E->IgnoreParens();
  1438. const ValueDecl *D = nullptr;
  1439. if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
  1440. D = DRE->getDecl();
  1441. else if (const auto *ME = dyn_cast<MemberExpr>(E))
  1442. D = ME->getMemberDecl();
  1443. if (D) {
  1444. for (const auto *I : D->specific_attrs<AlignedAttr>()) {
  1445. if (I->isAlignmentDependent()) {
  1446. setValueDependent(true);
  1447. setInstantiationDependent(true);
  1448. break;
  1449. }
  1450. }
  1451. }
  1452. }
  1453. }
  1454. }
  1455. MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
  1456. ValueDecl *MemberDecl,
  1457. const DeclarationNameInfo &NameInfo, QualType T,
  1458. ExprValueKind VK, ExprObjectKind OK,
  1459. NonOdrUseReason NOUR)
  1460. : Expr(MemberExprClass, T, VK, OK, Base->isTypeDependent(),
  1461. Base->isValueDependent(), Base->isInstantiationDependent(),
  1462. Base->containsUnexpandedParameterPack()),
  1463. Base(Base), MemberDecl(MemberDecl), MemberDNLoc(NameInfo.getInfo()),
  1464. MemberLoc(NameInfo.getLoc()) {
  1465. assert(!NameInfo.getName() ||
  1466. MemberDecl->getDeclName() == NameInfo.getName());
  1467. MemberExprBits.IsArrow = IsArrow;
  1468. MemberExprBits.HasQualifierOrFoundDecl = false;
  1469. MemberExprBits.HasTemplateKWAndArgsInfo = false;
  1470. MemberExprBits.HadMultipleCandidates = false;
  1471. MemberExprBits.NonOdrUseReason = NOUR;
  1472. MemberExprBits.OperatorLoc = OperatorLoc;
  1473. }
  1474. MemberExpr *MemberExpr::Create(
  1475. const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
  1476. NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
  1477. ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
  1478. DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
  1479. QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
  1480. bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
  1481. FoundDecl.getAccess() != MemberDecl->getAccess();
  1482. bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
  1483. std::size_t Size =
  1484. totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
  1485. TemplateArgumentLoc>(
  1486. HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
  1487. TemplateArgs ? TemplateArgs->size() : 0);
  1488. void *Mem = C.Allocate(Size, alignof(MemberExpr));
  1489. MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
  1490. NameInfo, T, VK, OK, NOUR);
  1491. if (HasQualOrFound) {
  1492. // FIXME: Wrong. We should be looking at the member declaration we found.
  1493. if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
  1494. E->setValueDependent(true);
  1495. E->setTypeDependent(true);
  1496. E->setInstantiationDependent(true);
  1497. }
  1498. else if (QualifierLoc &&
  1499. QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
  1500. E->setInstantiationDependent(true);
  1501. E->MemberExprBits.HasQualifierOrFoundDecl = true;
  1502. MemberExprNameQualifier *NQ =
  1503. E->getTrailingObjects<MemberExprNameQualifier>();
  1504. NQ->QualifierLoc = QualifierLoc;
  1505. NQ->FoundDecl = FoundDecl;
  1506. }
  1507. E->MemberExprBits.HasTemplateKWAndArgsInfo =
  1508. TemplateArgs || TemplateKWLoc.isValid();
  1509. if (TemplateArgs) {
  1510. bool Dependent = false;
  1511. bool InstantiationDependent = false;
  1512. bool ContainsUnexpandedParameterPack = false;
  1513. E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
  1514. TemplateKWLoc, *TemplateArgs,
  1515. E->getTrailingObjects<TemplateArgumentLoc>(), Dependent,
  1516. InstantiationDependent, ContainsUnexpandedParameterPack);
  1517. if (InstantiationDependent)
  1518. E->setInstantiationDependent(true);
  1519. } else if (TemplateKWLoc.isValid()) {
  1520. E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
  1521. TemplateKWLoc);
  1522. }
  1523. return E;
  1524. }
  1525. MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
  1526. bool HasQualifier, bool HasFoundDecl,
  1527. bool HasTemplateKWAndArgsInfo,
  1528. unsigned NumTemplateArgs) {
  1529. assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
  1530. "template args but no template arg info?");
  1531. bool HasQualOrFound = HasQualifier || HasFoundDecl;
  1532. std::size_t Size =
  1533. totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
  1534. TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
  1535. HasTemplateKWAndArgsInfo ? 1 : 0,
  1536. NumTemplateArgs);
  1537. void *Mem = Context.Allocate(Size, alignof(MemberExpr));
  1538. return new (Mem) MemberExpr(EmptyShell());
  1539. }
  1540. SourceLocation MemberExpr::getBeginLoc() const {
  1541. if (isImplicitAccess()) {
  1542. if (hasQualifier())
  1543. return getQualifierLoc().getBeginLoc();
  1544. return MemberLoc;
  1545. }
  1546. // FIXME: We don't want this to happen. Rather, we should be able to
  1547. // detect all kinds of implicit accesses more cleanly.
  1548. SourceLocation BaseStartLoc = getBase()->getBeginLoc();
  1549. if (BaseStartLoc.isValid())
  1550. return BaseStartLoc;
  1551. return MemberLoc;
  1552. }
  1553. SourceLocation MemberExpr::getEndLoc() const {
  1554. SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
  1555. if (hasExplicitTemplateArgs())
  1556. EndLoc = getRAngleLoc();
  1557. else if (EndLoc.isInvalid())
  1558. EndLoc = getBase()->getEndLoc();
  1559. return EndLoc;
  1560. }
  1561. bool CastExpr::CastConsistency() const {
  1562. switch (getCastKind()) {
  1563. case CK_DerivedToBase:
  1564. case CK_UncheckedDerivedToBase:
  1565. case CK_DerivedToBaseMemberPointer:
  1566. case CK_BaseToDerived:
  1567. case CK_BaseToDerivedMemberPointer:
  1568. assert(!path_empty() && "Cast kind should have a base path!");
  1569. break;
  1570. case CK_CPointerToObjCPointerCast:
  1571. assert(getType()->isObjCObjectPointerType());
  1572. assert(getSubExpr()->getType()->isPointerType());
  1573. goto CheckNoBasePath;
  1574. case CK_BlockPointerToObjCPointerCast:
  1575. assert(getType()->isObjCObjectPointerType());
  1576. assert(getSubExpr()->getType()->isBlockPointerType());
  1577. goto CheckNoBasePath;
  1578. case CK_ReinterpretMemberPointer:
  1579. assert(getType()->isMemberPointerType());
  1580. assert(getSubExpr()->getType()->isMemberPointerType());
  1581. goto CheckNoBasePath;
  1582. case CK_BitCast:
  1583. // Arbitrary casts to C pointer types count as bitcasts.
  1584. // Otherwise, we should only have block and ObjC pointer casts
  1585. // here if they stay within the type kind.
  1586. if (!getType()->isPointerType()) {
  1587. assert(getType()->isObjCObjectPointerType() ==
  1588. getSubExpr()->getType()->isObjCObjectPointerType());
  1589. assert(getType()->isBlockPointerType() ==
  1590. getSubExpr()->getType()->isBlockPointerType());
  1591. }
  1592. goto CheckNoBasePath;
  1593. case CK_AnyPointerToBlockPointerCast:
  1594. assert(getType()->isBlockPointerType());
  1595. assert(getSubExpr()->getType()->isAnyPointerType() &&
  1596. !getSubExpr()->getType()->isBlockPointerType());
  1597. goto CheckNoBasePath;
  1598. case CK_CopyAndAutoreleaseBlockObject:
  1599. assert(getType()->isBlockPointerType());
  1600. assert(getSubExpr()->getType()->isBlockPointerType());
  1601. goto CheckNoBasePath;
  1602. case CK_FunctionToPointerDecay:
  1603. assert(getType()->isPointerType());
  1604. assert(getSubExpr()->getType()->isFunctionType());
  1605. goto CheckNoBasePath;
  1606. case CK_AddressSpaceConversion: {
  1607. auto Ty = getType();
  1608. auto SETy = getSubExpr()->getType();
  1609. assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
  1610. if (/*isRValue()*/ !Ty->getPointeeType().isNull()) {
  1611. Ty = Ty->getPointeeType();
  1612. SETy = SETy->getPointeeType();
  1613. }
  1614. assert(!Ty.isNull() && !SETy.isNull() &&
  1615. Ty.getAddressSpace() != SETy.getAddressSpace());
  1616. goto CheckNoBasePath;
  1617. }
  1618. // These should not have an inheritance path.
  1619. case CK_Dynamic:
  1620. case CK_ToUnion:
  1621. case CK_ArrayToPointerDecay:
  1622. case CK_NullToMemberPointer:
  1623. case CK_NullToPointer:
  1624. case CK_ConstructorConversion:
  1625. case CK_IntegralToPointer:
  1626. case CK_PointerToIntegral:
  1627. case CK_ToVoid:
  1628. case CK_VectorSplat:
  1629. case CK_IntegralCast:
  1630. case CK_BooleanToSignedIntegral:
  1631. case CK_IntegralToFloating:
  1632. case CK_FloatingToIntegral:
  1633. case CK_FloatingCast:
  1634. case CK_ObjCObjectLValueCast:
  1635. case CK_FloatingRealToComplex:
  1636. case CK_FloatingComplexToReal:
  1637. case CK_FloatingComplexCast:
  1638. case CK_FloatingComplexToIntegralComplex:
  1639. case CK_IntegralRealToComplex:
  1640. case CK_IntegralComplexToReal:
  1641. case CK_IntegralComplexCast:
  1642. case CK_IntegralComplexToFloatingComplex:
  1643. case CK_ARCProduceObject:
  1644. case CK_ARCConsumeObject:
  1645. case CK_ARCReclaimReturnedObject:
  1646. case CK_ARCExtendBlockObject:
  1647. case CK_ZeroToOCLOpaqueType:
  1648. case CK_IntToOCLSampler:
  1649. case CK_FixedPointCast:
  1650. case CK_FixedPointToIntegral:
  1651. case CK_IntegralToFixedPoint:
  1652. assert(!getType()->isBooleanType() && "unheralded conversion to bool");
  1653. goto CheckNoBasePath;
  1654. case CK_Dependent:
  1655. case CK_LValueToRValue:
  1656. case CK_NoOp:
  1657. case CK_AtomicToNonAtomic:
  1658. case CK_NonAtomicToAtomic:
  1659. case CK_PointerToBoolean:
  1660. case CK_IntegralToBoolean:
  1661. case CK_FloatingToBoolean:
  1662. case CK_MemberPointerToBoolean:
  1663. case CK_FloatingComplexToBoolean:
  1664. case CK_IntegralComplexToBoolean:
  1665. case CK_LValueBitCast: // -> bool&
  1666. case CK_LValueToRValueBitCast:
  1667. case CK_UserDefinedConversion: // operator bool()
  1668. case CK_BuiltinFnToFnPtr:
  1669. case CK_FixedPointToBoolean:
  1670. CheckNoBasePath:
  1671. assert(path_empty() && "Cast kind should not have a base path!");
  1672. break;
  1673. }
  1674. return true;
  1675. }
  1676. const char *CastExpr::getCastKindName(CastKind CK) {
  1677. switch (CK) {
  1678. #define CAST_OPERATION(Name) case CK_##Name: return #Name;
  1679. #include "clang/AST/OperationKinds.def"
  1680. }
  1681. llvm_unreachable("Unhandled cast kind!");
  1682. }
  1683. namespace {
  1684. const Expr *skipImplicitTemporary(const Expr *E) {
  1685. // Skip through reference binding to temporary.
  1686. if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
  1687. E = Materialize->GetTemporaryExpr();
  1688. // Skip any temporary bindings; they're implicit.
  1689. if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
  1690. E = Binder->getSubExpr();
  1691. return E;
  1692. }
  1693. }
  1694. Expr *CastExpr::getSubExprAsWritten() {
  1695. const Expr *SubExpr = nullptr;
  1696. const CastExpr *E = this;
  1697. do {
  1698. SubExpr = skipImplicitTemporary(E->getSubExpr());
  1699. // Conversions by constructor and conversion functions have a
  1700. // subexpression describing the call; strip it off.
  1701. if (E->getCastKind() == CK_ConstructorConversion)
  1702. SubExpr =
  1703. skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
  1704. else if (E->getCastKind() == CK_UserDefinedConversion) {
  1705. assert((isa<CXXMemberCallExpr>(SubExpr) ||
  1706. isa<BlockExpr>(SubExpr)) &&
  1707. "Unexpected SubExpr for CK_UserDefinedConversion.");
  1708. if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
  1709. SubExpr = MCE->getImplicitObjectArgument();
  1710. }
  1711. // If the subexpression we're left with is an implicit cast, look
  1712. // through that, too.
  1713. } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
  1714. return const_cast<Expr*>(SubExpr);
  1715. }
  1716. NamedDecl *CastExpr::getConversionFunction() const {
  1717. const Expr *SubExpr = nullptr;
  1718. for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
  1719. SubExpr = skipImplicitTemporary(E->getSubExpr());
  1720. if (E->getCastKind() == CK_ConstructorConversion)
  1721. return cast<CXXConstructExpr>(SubExpr)->getConstructor();
  1722. if (E->getCastKind() == CK_UserDefinedConversion) {
  1723. if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
  1724. return MCE->getMethodDecl();
  1725. }
  1726. }
  1727. return nullptr;
  1728. }
  1729. CXXBaseSpecifier **CastExpr::path_buffer() {
  1730. switch (getStmtClass()) {
  1731. #define ABSTRACT_STMT(x)
  1732. #define CASTEXPR(Type, Base) \
  1733. case Stmt::Type##Class: \
  1734. return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
  1735. #define STMT(Type, Base)
  1736. #include "clang/AST/StmtNodes.inc"
  1737. default:
  1738. llvm_unreachable("non-cast expressions not possible here");
  1739. }
  1740. }
  1741. const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
  1742. QualType opType) {
  1743. auto RD = unionType->castAs<RecordType>()->getDecl();
  1744. return getTargetFieldForToUnionCast(RD, opType);
  1745. }
  1746. const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
  1747. QualType OpType) {
  1748. auto &Ctx = RD->getASTContext();
  1749. RecordDecl::field_iterator Field, FieldEnd;
  1750. for (Field = RD->field_begin(), FieldEnd = RD->field_end();
  1751. Field != FieldEnd; ++Field) {
  1752. if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
  1753. !Field->isUnnamedBitfield()) {
  1754. return *Field;
  1755. }
  1756. }
  1757. return nullptr;
  1758. }
  1759. ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
  1760. CastKind Kind, Expr *Operand,
  1761. const CXXCastPath *BasePath,
  1762. ExprValueKind VK) {
  1763. unsigned PathSize = (BasePath ? BasePath->size() : 0);
  1764. void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
  1765. // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
  1766. // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
  1767. assert((Kind != CK_LValueToRValue ||
  1768. !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
  1769. "invalid type for lvalue-to-rvalue conversion");
  1770. ImplicitCastExpr *E =
  1771. new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
  1772. if (PathSize)
  1773. std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
  1774. E->getTrailingObjects<CXXBaseSpecifier *>());
  1775. return E;
  1776. }
  1777. ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
  1778. unsigned PathSize) {
  1779. void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
  1780. return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
  1781. }
  1782. CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
  1783. ExprValueKind VK, CastKind K, Expr *Op,
  1784. const CXXCastPath *BasePath,
  1785. TypeSourceInfo *WrittenTy,
  1786. SourceLocation L, SourceLocation R) {
  1787. unsigned PathSize = (BasePath ? BasePath->size() : 0);
  1788. void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
  1789. CStyleCastExpr *E =
  1790. new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
  1791. if (PathSize)
  1792. std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
  1793. E->getTrailingObjects<CXXBaseSpecifier *>());
  1794. return E;
  1795. }
  1796. CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
  1797. unsigned PathSize) {
  1798. void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
  1799. return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
  1800. }
  1801. /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
  1802. /// corresponds to, e.g. "<<=".
  1803. StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
  1804. switch (Op) {
  1805. #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
  1806. #include "clang/AST/OperationKinds.def"
  1807. }
  1808. llvm_unreachable("Invalid OpCode!");
  1809. }
  1810. BinaryOperatorKind
  1811. BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
  1812. switch (OO) {
  1813. default: llvm_unreachable("Not an overloadable binary operator");
  1814. case OO_Plus: return BO_Add;
  1815. case OO_Minus: return BO_Sub;
  1816. case OO_Star: return BO_Mul;
  1817. case OO_Slash: return BO_Div;
  1818. case OO_Percent: return BO_Rem;
  1819. case OO_Caret: return BO_Xor;
  1820. case OO_Amp: return BO_And;
  1821. case OO_Pipe: return BO_Or;
  1822. case OO_Equal: return BO_Assign;
  1823. case OO_Spaceship: return BO_Cmp;
  1824. case OO_Less: return BO_LT;
  1825. case OO_Greater: return BO_GT;
  1826. case OO_PlusEqual: return BO_AddAssign;
  1827. case OO_MinusEqual: return BO_SubAssign;
  1828. case OO_StarEqual: return BO_MulAssign;
  1829. case OO_SlashEqual: return BO_DivAssign;
  1830. case OO_PercentEqual: return BO_RemAssign;
  1831. case OO_CaretEqual: return BO_XorAssign;
  1832. case OO_AmpEqual: return BO_AndAssign;
  1833. case OO_PipeEqual: return BO_OrAssign;
  1834. case OO_LessLess: return BO_Shl;
  1835. case OO_GreaterGreater: return BO_Shr;
  1836. case OO_LessLessEqual: return BO_ShlAssign;
  1837. case OO_GreaterGreaterEqual: return BO_ShrAssign;
  1838. case OO_EqualEqual: return BO_EQ;
  1839. case OO_ExclaimEqual: return BO_NE;
  1840. case OO_LessEqual: return BO_LE;
  1841. case OO_GreaterEqual: return BO_GE;
  1842. case OO_AmpAmp: return BO_LAnd;
  1843. case OO_PipePipe: return BO_LOr;
  1844. case OO_Comma: return BO_Comma;
  1845. case OO_ArrowStar: return BO_PtrMemI;
  1846. }
  1847. }
  1848. OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
  1849. static const OverloadedOperatorKind OverOps[] = {
  1850. /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
  1851. OO_Star, OO_Slash, OO_Percent,
  1852. OO_Plus, OO_Minus,
  1853. OO_LessLess, OO_GreaterGreater,
  1854. OO_Spaceship,
  1855. OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
  1856. OO_EqualEqual, OO_ExclaimEqual,
  1857. OO_Amp,
  1858. OO_Caret,
  1859. OO_Pipe,
  1860. OO_AmpAmp,
  1861. OO_PipePipe,
  1862. OO_Equal, OO_StarEqual,
  1863. OO_SlashEqual, OO_PercentEqual,
  1864. OO_PlusEqual, OO_MinusEqual,
  1865. OO_LessLessEqual, OO_GreaterGreaterEqual,
  1866. OO_AmpEqual, OO_CaretEqual,
  1867. OO_PipeEqual,
  1868. OO_Comma
  1869. };
  1870. return OverOps[Opc];
  1871. }
  1872. bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
  1873. Opcode Opc,
  1874. Expr *LHS, Expr *RHS) {
  1875. if (Opc != BO_Add)
  1876. return false;
  1877. // Check that we have one pointer and one integer operand.
  1878. Expr *PExp;
  1879. if (LHS->getType()->isPointerType()) {
  1880. if (!RHS->getType()->isIntegerType())
  1881. return false;
  1882. PExp = LHS;
  1883. } else if (RHS->getType()->isPointerType()) {
  1884. if (!LHS->getType()->isIntegerType())
  1885. return false;
  1886. PExp = RHS;
  1887. } else {
  1888. return false;
  1889. }
  1890. // Check that the pointer is a nullptr.
  1891. if (!PExp->IgnoreParenCasts()
  1892. ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
  1893. return false;
  1894. // Check that the pointee type is char-sized.
  1895. const PointerType *PTy = PExp->getType()->getAs<PointerType>();
  1896. if (!PTy || !PTy->getPointeeType()->isCharType())
  1897. return false;
  1898. return true;
  1899. }
  1900. static QualType getDecayedSourceLocExprType(const ASTContext &Ctx,
  1901. SourceLocExpr::IdentKind Kind) {
  1902. switch (Kind) {
  1903. case SourceLocExpr::File:
  1904. case SourceLocExpr::Function: {
  1905. QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
  1906. return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
  1907. }
  1908. case SourceLocExpr::Line:
  1909. case SourceLocExpr::Column:
  1910. return Ctx.UnsignedIntTy;
  1911. }
  1912. llvm_unreachable("unhandled case");
  1913. }
  1914. SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
  1915. SourceLocation BLoc, SourceLocation RParenLoc,
  1916. DeclContext *ParentContext)
  1917. : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
  1918. VK_RValue, OK_Ordinary, false, false, false, false),
  1919. BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
  1920. SourceLocExprBits.Kind = Kind;
  1921. }
  1922. StringRef SourceLocExpr::getBuiltinStr() const {
  1923. switch (getIdentKind()) {
  1924. case File:
  1925. return "__builtin_FILE";
  1926. case Function:
  1927. return "__builtin_FUNCTION";
  1928. case Line:
  1929. return "__builtin_LINE";
  1930. case Column:
  1931. return "__builtin_COLUMN";
  1932. }
  1933. llvm_unreachable("unexpected IdentKind!");
  1934. }
  1935. APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
  1936. const Expr *DefaultExpr) const {
  1937. SourceLocation Loc;
  1938. const DeclContext *Context;
  1939. std::tie(Loc,
  1940. Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
  1941. if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
  1942. return {DIE->getUsedLocation(), DIE->getUsedContext()};
  1943. if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
  1944. return {DAE->getUsedLocation(), DAE->getUsedContext()};
  1945. return {this->getLocation(), this->getParentContext()};
  1946. }();
  1947. PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
  1948. Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
  1949. auto MakeStringLiteral = [&](StringRef Tmp) {
  1950. using LValuePathEntry = APValue::LValuePathEntry;
  1951. StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
  1952. // Decay the string to a pointer to the first character.
  1953. LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
  1954. return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
  1955. };
  1956. switch (getIdentKind()) {
  1957. case SourceLocExpr::File:
  1958. return MakeStringLiteral(PLoc.getFilename());
  1959. case SourceLocExpr::Function: {
  1960. const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
  1961. return MakeStringLiteral(
  1962. CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
  1963. : std::string(""));
  1964. }
  1965. case SourceLocExpr::Line:
  1966. case SourceLocExpr::Column: {
  1967. llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
  1968. /*isUnsigned=*/true);
  1969. IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
  1970. : PLoc.getColumn();
  1971. return APValue(IntVal);
  1972. }
  1973. }
  1974. llvm_unreachable("unhandled case");
  1975. }
  1976. InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
  1977. ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
  1978. : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
  1979. false, false),
  1980. InitExprs(C, initExprs.size()),
  1981. LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
  1982. {
  1983. sawArrayRangeDesignator(false);
  1984. for (unsigned I = 0; I != initExprs.size(); ++I) {
  1985. if (initExprs[I]->isTypeDependent())
  1986. ExprBits.TypeDependent = true;
  1987. if (initExprs[I]->isValueDependent())
  1988. ExprBits.ValueDependent = true;
  1989. if (initExprs[I]->isInstantiationDependent())
  1990. ExprBits.InstantiationDependent = true;
  1991. if (initExprs[I]->containsUnexpandedParameterPack())
  1992. ExprBits.ContainsUnexpandedParameterPack = true;
  1993. }
  1994. InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
  1995. }
  1996. void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
  1997. if (NumInits > InitExprs.size())
  1998. InitExprs.reserve(C, NumInits);
  1999. }
  2000. void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
  2001. InitExprs.resize(C, NumInits, nullptr);
  2002. }
  2003. Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
  2004. if (Init >= InitExprs.size()) {
  2005. InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
  2006. setInit(Init, expr);
  2007. return nullptr;
  2008. }
  2009. Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
  2010. setInit(Init, expr);
  2011. return Result;
  2012. }
  2013. void InitListExpr::setArrayFiller(Expr *filler) {
  2014. assert(!hasArrayFiller() && "Filler already set!");
  2015. ArrayFillerOrUnionFieldInit = filler;
  2016. // Fill out any "holes" in the array due to designated initializers.
  2017. Expr **inits = getInits();
  2018. for (unsigned i = 0, e = getNumInits(); i != e; ++i)
  2019. if (inits[i] == nullptr)
  2020. inits[i] = filler;
  2021. }
  2022. bool InitListExpr::isStringLiteralInit() const {
  2023. if (getNumInits() != 1)
  2024. return false;
  2025. const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
  2026. if (!AT || !AT->getElementType()->isIntegerType())
  2027. return false;
  2028. // It is possible for getInit() to return null.
  2029. const Expr *Init = getInit(0);
  2030. if (!Init)
  2031. return false;
  2032. Init = Init->IgnoreParens();
  2033. return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
  2034. }
  2035. bool InitListExpr::isTransparent() const {
  2036. assert(isSemanticForm() && "syntactic form never semantically transparent");
  2037. // A glvalue InitListExpr is always just sugar.
  2038. if (isGLValue()) {
  2039. assert(getNumInits() == 1 && "multiple inits in glvalue init list");
  2040. return true;
  2041. }
  2042. // Otherwise, we're sugar if and only if we have exactly one initializer that
  2043. // is of the same type.
  2044. if (getNumInits() != 1 || !getInit(0))
  2045. return false;
  2046. // Don't confuse aggregate initialization of a struct X { X &x; }; with a
  2047. // transparent struct copy.
  2048. if (!getInit(0)->isRValue() && getType()->isRecordType())
  2049. return false;
  2050. return getType().getCanonicalType() ==
  2051. getInit(0)->getType().getCanonicalType();
  2052. }
  2053. bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
  2054. assert(isSyntacticForm() && "only test syntactic form as zero initializer");
  2055. if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
  2056. return false;
  2057. }
  2058. const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
  2059. return Lit && Lit->getValue() == 0;
  2060. }
  2061. SourceLocation InitListExpr::getBeginLoc() const {
  2062. if (InitListExpr *SyntacticForm = getSyntacticForm())
  2063. return SyntacticForm->getBeginLoc();
  2064. SourceLocation Beg = LBraceLoc;
  2065. if (Beg.isInvalid()) {
  2066. // Find the first non-null initializer.
  2067. for (InitExprsTy::const_iterator I = InitExprs.begin(),
  2068. E = InitExprs.end();
  2069. I != E; ++I) {
  2070. if (Stmt *S = *I) {
  2071. Beg = S->getBeginLoc();
  2072. break;
  2073. }
  2074. }
  2075. }
  2076. return Beg;
  2077. }
  2078. SourceLocation InitListExpr::getEndLoc() const {
  2079. if (InitListExpr *SyntacticForm = getSyntacticForm())
  2080. return SyntacticForm->getEndLoc();
  2081. SourceLocation End = RBraceLoc;
  2082. if (End.isInvalid()) {
  2083. // Find the first non-null initializer from the end.
  2084. for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
  2085. E = InitExprs.rend();
  2086. I != E; ++I) {
  2087. if (Stmt *S = *I) {
  2088. End = S->getEndLoc();
  2089. break;
  2090. }
  2091. }
  2092. }
  2093. return End;
  2094. }
  2095. /// getFunctionType - Return the underlying function type for this block.
  2096. ///
  2097. const FunctionProtoType *BlockExpr::getFunctionType() const {
  2098. // The block pointer is never sugared, but the function type might be.
  2099. return cast<BlockPointerType>(getType())
  2100. ->getPointeeType()->castAs<FunctionProtoType>();
  2101. }
  2102. SourceLocation BlockExpr::getCaretLocation() const {
  2103. return TheBlock->getCaretLocation();
  2104. }
  2105. const Stmt *BlockExpr::getBody() const {
  2106. return TheBlock->getBody();
  2107. }
  2108. Stmt *BlockExpr::getBody() {
  2109. return TheBlock->getBody();
  2110. }
  2111. //===----------------------------------------------------------------------===//
  2112. // Generic Expression Routines
  2113. //===----------------------------------------------------------------------===//
  2114. /// isUnusedResultAWarning - Return true if this immediate expression should
  2115. /// be warned about if the result is unused. If so, fill in Loc and Ranges
  2116. /// with location to warn on and the source range[s] to report with the
  2117. /// warning.
  2118. bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
  2119. SourceRange &R1, SourceRange &R2,
  2120. ASTContext &Ctx) const {
  2121. // Don't warn if the expr is type dependent. The type could end up
  2122. // instantiating to void.
  2123. if (isTypeDependent())
  2124. return false;
  2125. switch (getStmtClass()) {
  2126. default:
  2127. if (getType()->isVoidType())
  2128. return false;
  2129. WarnE = this;
  2130. Loc = getExprLoc();
  2131. R1 = getSourceRange();
  2132. return true;
  2133. case ParenExprClass:
  2134. return cast<ParenExpr>(this)->getSubExpr()->
  2135. isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2136. case GenericSelectionExprClass:
  2137. return cast<GenericSelectionExpr>(this)->getResultExpr()->
  2138. isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2139. case CoawaitExprClass:
  2140. case CoyieldExprClass:
  2141. return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
  2142. isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2143. case ChooseExprClass:
  2144. return cast<ChooseExpr>(this)->getChosenSubExpr()->
  2145. isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2146. case UnaryOperatorClass: {
  2147. const UnaryOperator *UO = cast<UnaryOperator>(this);
  2148. switch (UO->getOpcode()) {
  2149. case UO_Plus:
  2150. case UO_Minus:
  2151. case UO_AddrOf:
  2152. case UO_Not:
  2153. case UO_LNot:
  2154. case UO_Deref:
  2155. break;
  2156. case UO_Coawait:
  2157. // This is just the 'operator co_await' call inside the guts of a
  2158. // dependent co_await call.
  2159. case UO_PostInc:
  2160. case UO_PostDec:
  2161. case UO_PreInc:
  2162. case UO_PreDec: // ++/--
  2163. return false; // Not a warning.
  2164. case UO_Real:
  2165. case UO_Imag:
  2166. // accessing a piece of a volatile complex is a side-effect.
  2167. if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
  2168. .isVolatileQualified())
  2169. return false;
  2170. break;
  2171. case UO_Extension:
  2172. return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2173. }
  2174. WarnE = this;
  2175. Loc = UO->getOperatorLoc();
  2176. R1 = UO->getSubExpr()->getSourceRange();
  2177. return true;
  2178. }
  2179. case BinaryOperatorClass: {
  2180. const BinaryOperator *BO = cast<BinaryOperator>(this);
  2181. switch (BO->getOpcode()) {
  2182. default:
  2183. break;
  2184. // Consider the RHS of comma for side effects. LHS was checked by
  2185. // Sema::CheckCommaOperands.
  2186. case BO_Comma:
  2187. // ((foo = <blah>), 0) is an idiom for hiding the result (and
  2188. // lvalue-ness) of an assignment written in a macro.
  2189. if (IntegerLiteral *IE =
  2190. dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
  2191. if (IE->getValue() == 0)
  2192. return false;
  2193. return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2194. // Consider '||', '&&' to have side effects if the LHS or RHS does.
  2195. case BO_LAnd:
  2196. case BO_LOr:
  2197. if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
  2198. !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
  2199. return false;
  2200. break;
  2201. }
  2202. if (BO->isAssignmentOp())
  2203. return false;
  2204. WarnE = this;
  2205. Loc = BO->getOperatorLoc();
  2206. R1 = BO->getLHS()->getSourceRange();
  2207. R2 = BO->getRHS()->getSourceRange();
  2208. return true;
  2209. }
  2210. case CompoundAssignOperatorClass:
  2211. case VAArgExprClass:
  2212. case AtomicExprClass:
  2213. return false;
  2214. case ConditionalOperatorClass: {
  2215. // If only one of the LHS or RHS is a warning, the operator might
  2216. // be being used for control flow. Only warn if both the LHS and
  2217. // RHS are warnings.
  2218. const auto *Exp = cast<ConditionalOperator>(this);
  2219. return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
  2220. Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2221. }
  2222. case BinaryConditionalOperatorClass: {
  2223. const auto *Exp = cast<BinaryConditionalOperator>(this);
  2224. return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2225. }
  2226. case MemberExprClass:
  2227. WarnE = this;
  2228. Loc = cast<MemberExpr>(this)->getMemberLoc();
  2229. R1 = SourceRange(Loc, Loc);
  2230. R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
  2231. return true;
  2232. case ArraySubscriptExprClass:
  2233. WarnE = this;
  2234. Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
  2235. R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
  2236. R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
  2237. return true;
  2238. case CXXOperatorCallExprClass: {
  2239. // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
  2240. // overloads as there is no reasonable way to define these such that they
  2241. // have non-trivial, desirable side-effects. See the -Wunused-comparison
  2242. // warning: operators == and != are commonly typo'ed, and so warning on them
  2243. // provides additional value as well. If this list is updated,
  2244. // DiagnoseUnusedComparison should be as well.
  2245. const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
  2246. switch (Op->getOperator()) {
  2247. default:
  2248. break;
  2249. case OO_EqualEqual:
  2250. case OO_ExclaimEqual:
  2251. case OO_Less:
  2252. case OO_Greater:
  2253. case OO_GreaterEqual:
  2254. case OO_LessEqual:
  2255. if (Op->getCallReturnType(Ctx)->isReferenceType() ||
  2256. Op->getCallReturnType(Ctx)->isVoidType())
  2257. break;
  2258. WarnE = this;
  2259. Loc = Op->getOperatorLoc();
  2260. R1 = Op->getSourceRange();
  2261. return true;
  2262. }
  2263. // Fallthrough for generic call handling.
  2264. LLVM_FALLTHROUGH;
  2265. }
  2266. case CallExprClass:
  2267. case CXXMemberCallExprClass:
  2268. case UserDefinedLiteralClass: {
  2269. // If this is a direct call, get the callee.
  2270. const CallExpr *CE = cast<CallExpr>(this);
  2271. if (const Decl *FD = CE->getCalleeDecl()) {
  2272. // If the callee has attribute pure, const, or warn_unused_result, warn
  2273. // about it. void foo() { strlen("bar"); } should warn.
  2274. //
  2275. // Note: If new cases are added here, DiagnoseUnusedExprResult should be
  2276. // updated to match for QoI.
  2277. if (CE->hasUnusedResultAttr(Ctx) ||
  2278. FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
  2279. WarnE = this;
  2280. Loc = CE->getCallee()->getBeginLoc();
  2281. R1 = CE->getCallee()->getSourceRange();
  2282. if (unsigned NumArgs = CE->getNumArgs())
  2283. R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
  2284. CE->getArg(NumArgs - 1)->getEndLoc());
  2285. return true;
  2286. }
  2287. }
  2288. return false;
  2289. }
  2290. // If we don't know precisely what we're looking at, let's not warn.
  2291. case UnresolvedLookupExprClass:
  2292. case CXXUnresolvedConstructExprClass:
  2293. return false;
  2294. case CXXTemporaryObjectExprClass:
  2295. case CXXConstructExprClass: {
  2296. if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
  2297. if (Type->hasAttr<WarnUnusedAttr>()) {
  2298. WarnE = this;
  2299. Loc = getBeginLoc();
  2300. R1 = getSourceRange();
  2301. return true;
  2302. }
  2303. }
  2304. return false;
  2305. }
  2306. case ObjCMessageExprClass: {
  2307. const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
  2308. if (Ctx.getLangOpts().ObjCAutoRefCount &&
  2309. ME->isInstanceMessage() &&
  2310. !ME->getType()->isVoidType() &&
  2311. ME->getMethodFamily() == OMF_init) {
  2312. WarnE = this;
  2313. Loc = getExprLoc();
  2314. R1 = ME->getSourceRange();
  2315. return true;
  2316. }
  2317. if (const ObjCMethodDecl *MD = ME->getMethodDecl())
  2318. if (MD->hasAttr<WarnUnusedResultAttr>()) {
  2319. WarnE = this;
  2320. Loc = getExprLoc();
  2321. return true;
  2322. }
  2323. return false;
  2324. }
  2325. case ObjCPropertyRefExprClass:
  2326. WarnE = this;
  2327. Loc = getExprLoc();
  2328. R1 = getSourceRange();
  2329. return true;
  2330. case PseudoObjectExprClass: {
  2331. const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
  2332. // Only complain about things that have the form of a getter.
  2333. if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
  2334. isa<BinaryOperator>(PO->getSyntacticForm()))
  2335. return false;
  2336. WarnE = this;
  2337. Loc = getExprLoc();
  2338. R1 = getSourceRange();
  2339. return true;
  2340. }
  2341. case StmtExprClass: {
  2342. // Statement exprs don't logically have side effects themselves, but are
  2343. // sometimes used in macros in ways that give them a type that is unused.
  2344. // For example ({ blah; foo(); }) will end up with a type if foo has a type.
  2345. // however, if the result of the stmt expr is dead, we don't want to emit a
  2346. // warning.
  2347. const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
  2348. if (!CS->body_empty()) {
  2349. if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
  2350. return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2351. if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
  2352. if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
  2353. return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2354. }
  2355. if (getType()->isVoidType())
  2356. return false;
  2357. WarnE = this;
  2358. Loc = cast<StmtExpr>(this)->getLParenLoc();
  2359. R1 = getSourceRange();
  2360. return true;
  2361. }
  2362. case CXXFunctionalCastExprClass:
  2363. case CStyleCastExprClass: {
  2364. // Ignore an explicit cast to void unless the operand is a non-trivial
  2365. // volatile lvalue.
  2366. const CastExpr *CE = cast<CastExpr>(this);
  2367. if (CE->getCastKind() == CK_ToVoid) {
  2368. if (CE->getSubExpr()->isGLValue() &&
  2369. CE->getSubExpr()->getType().isVolatileQualified()) {
  2370. const DeclRefExpr *DRE =
  2371. dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
  2372. if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
  2373. cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) &&
  2374. !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) {
  2375. return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
  2376. R1, R2, Ctx);
  2377. }
  2378. }
  2379. return false;
  2380. }
  2381. // If this is a cast to a constructor conversion, check the operand.
  2382. // Otherwise, the result of the cast is unused.
  2383. if (CE->getCastKind() == CK_ConstructorConversion)
  2384. return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2385. WarnE = this;
  2386. if (const CXXFunctionalCastExpr *CXXCE =
  2387. dyn_cast<CXXFunctionalCastExpr>(this)) {
  2388. Loc = CXXCE->getBeginLoc();
  2389. R1 = CXXCE->getSubExpr()->getSourceRange();
  2390. } else {
  2391. const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
  2392. Loc = CStyleCE->getLParenLoc();
  2393. R1 = CStyleCE->getSubExpr()->getSourceRange();
  2394. }
  2395. return true;
  2396. }
  2397. case ImplicitCastExprClass: {
  2398. const CastExpr *ICE = cast<ImplicitCastExpr>(this);
  2399. // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
  2400. if (ICE->getCastKind() == CK_LValueToRValue &&
  2401. ICE->getSubExpr()->getType().isVolatileQualified())
  2402. return false;
  2403. return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2404. }
  2405. case CXXDefaultArgExprClass:
  2406. return (cast<CXXDefaultArgExpr>(this)
  2407. ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
  2408. case CXXDefaultInitExprClass:
  2409. return (cast<CXXDefaultInitExpr>(this)
  2410. ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
  2411. case CXXNewExprClass:
  2412. // FIXME: In theory, there might be new expressions that don't have side
  2413. // effects (e.g. a placement new with an uninitialized POD).
  2414. case CXXDeleteExprClass:
  2415. return false;
  2416. case MaterializeTemporaryExprClass:
  2417. return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
  2418. ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2419. case CXXBindTemporaryExprClass:
  2420. return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
  2421. ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2422. case ExprWithCleanupsClass:
  2423. return cast<ExprWithCleanups>(this)->getSubExpr()
  2424. ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2425. }
  2426. }
  2427. /// isOBJCGCCandidate - Check if an expression is objc gc'able.
  2428. /// returns true, if it is; false otherwise.
  2429. bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
  2430. const Expr *E = IgnoreParens();
  2431. switch (E->getStmtClass()) {
  2432. default:
  2433. return false;
  2434. case ObjCIvarRefExprClass:
  2435. return true;
  2436. case Expr::UnaryOperatorClass:
  2437. return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  2438. case ImplicitCastExprClass:
  2439. return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  2440. case MaterializeTemporaryExprClass:
  2441. return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
  2442. ->isOBJCGCCandidate(Ctx);
  2443. case CStyleCastExprClass:
  2444. return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  2445. case DeclRefExprClass: {
  2446. const Decl *D = cast<DeclRefExpr>(E)->getDecl();
  2447. if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
  2448. if (VD->hasGlobalStorage())
  2449. return true;
  2450. QualType T = VD->getType();
  2451. // dereferencing to a pointer is always a gc'able candidate,
  2452. // unless it is __weak.
  2453. return T->isPointerType() &&
  2454. (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
  2455. }
  2456. return false;
  2457. }
  2458. case MemberExprClass: {
  2459. const MemberExpr *M = cast<MemberExpr>(E);
  2460. return M->getBase()->isOBJCGCCandidate(Ctx);
  2461. }
  2462. case ArraySubscriptExprClass:
  2463. return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
  2464. }
  2465. }
  2466. bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
  2467. if (isTypeDependent())
  2468. return false;
  2469. return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
  2470. }
  2471. QualType Expr::findBoundMemberType(const Expr *expr) {
  2472. assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
  2473. // Bound member expressions are always one of these possibilities:
  2474. // x->m x.m x->*y x.*y
  2475. // (possibly parenthesized)
  2476. expr = expr->IgnoreParens();
  2477. if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
  2478. assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
  2479. return mem->getMemberDecl()->getType();
  2480. }
  2481. if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
  2482. QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
  2483. ->getPointeeType();
  2484. assert(type->isFunctionType());
  2485. return type;
  2486. }
  2487. assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
  2488. return QualType();
  2489. }
  2490. static Expr *IgnoreImpCastsSingleStep(Expr *E) {
  2491. if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
  2492. return ICE->getSubExpr();
  2493. if (auto *FE = dyn_cast<FullExpr>(E))
  2494. return FE->getSubExpr();
  2495. return E;
  2496. }
  2497. static Expr *IgnoreImpCastsExtraSingleStep(Expr *E) {
  2498. // FIXME: Skip MaterializeTemporaryExpr and SubstNonTypeTemplateParmExpr in
  2499. // addition to what IgnoreImpCasts() skips to account for the current
  2500. // behaviour of IgnoreParenImpCasts().
  2501. Expr *SubE = IgnoreImpCastsSingleStep(E);
  2502. if (SubE != E)
  2503. return SubE;
  2504. if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
  2505. return MTE->GetTemporaryExpr();
  2506. if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
  2507. return NTTP->getReplacement();
  2508. return E;
  2509. }
  2510. static Expr *IgnoreCastsSingleStep(Expr *E) {
  2511. if (auto *CE = dyn_cast<CastExpr>(E))
  2512. return CE->getSubExpr();
  2513. if (auto *FE = dyn_cast<FullExpr>(E))
  2514. return FE->getSubExpr();
  2515. if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
  2516. return MTE->GetTemporaryExpr();
  2517. if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
  2518. return NTTP->getReplacement();
  2519. return E;
  2520. }
  2521. static Expr *IgnoreLValueCastsSingleStep(Expr *E) {
  2522. // Skip what IgnoreCastsSingleStep skips, except that only
  2523. // lvalue-to-rvalue casts are skipped.
  2524. if (auto *CE = dyn_cast<CastExpr>(E))
  2525. if (CE->getCastKind() != CK_LValueToRValue)
  2526. return E;
  2527. return IgnoreCastsSingleStep(E);
  2528. }
  2529. static Expr *IgnoreBaseCastsSingleStep(Expr *E) {
  2530. if (auto *CE = dyn_cast<CastExpr>(E))
  2531. if (CE->getCastKind() == CK_DerivedToBase ||
  2532. CE->getCastKind() == CK_UncheckedDerivedToBase ||
  2533. CE->getCastKind() == CK_NoOp)
  2534. return CE->getSubExpr();
  2535. return E;
  2536. }
  2537. static Expr *IgnoreImplicitSingleStep(Expr *E) {
  2538. Expr *SubE = IgnoreImpCastsSingleStep(E);
  2539. if (SubE != E)
  2540. return SubE;
  2541. if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
  2542. return MTE->GetTemporaryExpr();
  2543. if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
  2544. return BTE->getSubExpr();
  2545. return E;
  2546. }
  2547. static Expr *IgnoreParensSingleStep(Expr *E) {
  2548. if (auto *PE = dyn_cast<ParenExpr>(E))
  2549. return PE->getSubExpr();
  2550. if (auto *UO = dyn_cast<UnaryOperator>(E)) {
  2551. if (UO->getOpcode() == UO_Extension)
  2552. return UO->getSubExpr();
  2553. }
  2554. else if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
  2555. if (!GSE->isResultDependent())
  2556. return GSE->getResultExpr();
  2557. }
  2558. else if (auto *CE = dyn_cast<ChooseExpr>(E)) {
  2559. if (!CE->isConditionDependent())
  2560. return CE->getChosenSubExpr();
  2561. }
  2562. else if (auto *CE = dyn_cast<ConstantExpr>(E))
  2563. return CE->getSubExpr();
  2564. return E;
  2565. }
  2566. static Expr *IgnoreNoopCastsSingleStep(const ASTContext &Ctx, Expr *E) {
  2567. if (auto *CE = dyn_cast<CastExpr>(E)) {
  2568. // We ignore integer <-> casts that are of the same width, ptr<->ptr and
  2569. // ptr<->int casts of the same width. We also ignore all identity casts.
  2570. Expr *SubExpr = CE->getSubExpr();
  2571. bool IsIdentityCast =
  2572. Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
  2573. bool IsSameWidthCast =
  2574. (E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) &&
  2575. (SubExpr->getType()->isPointerType() ||
  2576. SubExpr->getType()->isIntegralType(Ctx)) &&
  2577. (Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SubExpr->getType()));
  2578. if (IsIdentityCast || IsSameWidthCast)
  2579. return SubExpr;
  2580. }
  2581. else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
  2582. return NTTP->getReplacement();
  2583. return E;
  2584. }
  2585. static Expr *IgnoreExprNodesImpl(Expr *E) { return E; }
  2586. template <typename FnTy, typename... FnTys>
  2587. static Expr *IgnoreExprNodesImpl(Expr *E, FnTy &&Fn, FnTys &&... Fns) {
  2588. return IgnoreExprNodesImpl(Fn(E), std::forward<FnTys>(Fns)...);
  2589. }
  2590. /// Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *,
  2591. /// Recursively apply each of the functions to E until reaching a fixed point.
  2592. /// Note that a null E is valid; in this case nothing is done.
  2593. template <typename... FnTys>
  2594. static Expr *IgnoreExprNodes(Expr *E, FnTys &&... Fns) {
  2595. Expr *LastE = nullptr;
  2596. while (E != LastE) {
  2597. LastE = E;
  2598. E = IgnoreExprNodesImpl(E, std::forward<FnTys>(Fns)...);
  2599. }
  2600. return E;
  2601. }
  2602. Expr *Expr::IgnoreImpCasts() {
  2603. return IgnoreExprNodes(this, IgnoreImpCastsSingleStep);
  2604. }
  2605. Expr *Expr::IgnoreCasts() {
  2606. return IgnoreExprNodes(this, IgnoreCastsSingleStep);
  2607. }
  2608. Expr *Expr::IgnoreImplicit() {
  2609. return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
  2610. }
  2611. Expr *Expr::IgnoreParens() {
  2612. return IgnoreExprNodes(this, IgnoreParensSingleStep);
  2613. }
  2614. Expr *Expr::IgnoreParenImpCasts() {
  2615. return IgnoreExprNodes(this, IgnoreParensSingleStep,
  2616. IgnoreImpCastsExtraSingleStep);
  2617. }
  2618. Expr *Expr::IgnoreParenCasts() {
  2619. return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
  2620. }
  2621. Expr *Expr::IgnoreConversionOperator() {
  2622. if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
  2623. if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
  2624. return MCE->getImplicitObjectArgument();
  2625. }
  2626. return this;
  2627. }
  2628. Expr *Expr::IgnoreParenLValueCasts() {
  2629. return IgnoreExprNodes(this, IgnoreParensSingleStep,
  2630. IgnoreLValueCastsSingleStep);
  2631. }
  2632. Expr *Expr::ignoreParenBaseCasts() {
  2633. return IgnoreExprNodes(this, IgnoreParensSingleStep,
  2634. IgnoreBaseCastsSingleStep);
  2635. }
  2636. Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
  2637. return IgnoreExprNodes(this, IgnoreParensSingleStep, [&Ctx](Expr *E) {
  2638. return IgnoreNoopCastsSingleStep(Ctx, E);
  2639. });
  2640. }
  2641. bool Expr::isDefaultArgument() const {
  2642. const Expr *E = this;
  2643. if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
  2644. E = M->GetTemporaryExpr();
  2645. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
  2646. E = ICE->getSubExprAsWritten();
  2647. return isa<CXXDefaultArgExpr>(E);
  2648. }
  2649. /// Skip over any no-op casts and any temporary-binding
  2650. /// expressions.
  2651. static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
  2652. if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
  2653. E = M->GetTemporaryExpr();
  2654. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  2655. if (ICE->getCastKind() == CK_NoOp)
  2656. E = ICE->getSubExpr();
  2657. else
  2658. break;
  2659. }
  2660. while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
  2661. E = BE->getSubExpr();
  2662. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  2663. if (ICE->getCastKind() == CK_NoOp)
  2664. E = ICE->getSubExpr();
  2665. else
  2666. break;
  2667. }
  2668. return E->IgnoreParens();
  2669. }
  2670. /// isTemporaryObject - Determines if this expression produces a
  2671. /// temporary of the given class type.
  2672. bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
  2673. if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
  2674. return false;
  2675. const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
  2676. // Temporaries are by definition pr-values of class type.
  2677. if (!E->Classify(C).isPRValue()) {
  2678. // In this context, property reference is a message call and is pr-value.
  2679. if (!isa<ObjCPropertyRefExpr>(E))
  2680. return false;
  2681. }
  2682. // Black-list a few cases which yield pr-values of class type that don't
  2683. // refer to temporaries of that type:
  2684. // - implicit derived-to-base conversions
  2685. if (isa<ImplicitCastExpr>(E)) {
  2686. switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
  2687. case CK_DerivedToBase:
  2688. case CK_UncheckedDerivedToBase:
  2689. return false;
  2690. default:
  2691. break;
  2692. }
  2693. }
  2694. // - member expressions (all)
  2695. if (isa<MemberExpr>(E))
  2696. return false;
  2697. if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
  2698. if (BO->isPtrMemOp())
  2699. return false;
  2700. // - opaque values (all)
  2701. if (isa<OpaqueValueExpr>(E))
  2702. return false;
  2703. return true;
  2704. }
  2705. bool Expr::isImplicitCXXThis() const {
  2706. const Expr *E = this;
  2707. // Strip away parentheses and casts we don't care about.
  2708. while (true) {
  2709. if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
  2710. E = Paren->getSubExpr();
  2711. continue;
  2712. }
  2713. if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  2714. if (ICE->getCastKind() == CK_NoOp ||
  2715. ICE->getCastKind() == CK_LValueToRValue ||
  2716. ICE->getCastKind() == CK_DerivedToBase ||
  2717. ICE->getCastKind() == CK_UncheckedDerivedToBase) {
  2718. E = ICE->getSubExpr();
  2719. continue;
  2720. }
  2721. }
  2722. if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
  2723. if (UnOp->getOpcode() == UO_Extension) {
  2724. E = UnOp->getSubExpr();
  2725. continue;
  2726. }
  2727. }
  2728. if (const MaterializeTemporaryExpr *M
  2729. = dyn_cast<MaterializeTemporaryExpr>(E)) {
  2730. E = M->GetTemporaryExpr();
  2731. continue;
  2732. }
  2733. break;
  2734. }
  2735. if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
  2736. return This->isImplicit();
  2737. return false;
  2738. }
  2739. /// hasAnyTypeDependentArguments - Determines if any of the expressions
  2740. /// in Exprs is type-dependent.
  2741. bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
  2742. for (unsigned I = 0; I < Exprs.size(); ++I)
  2743. if (Exprs[I]->isTypeDependent())
  2744. return true;
  2745. return false;
  2746. }
  2747. bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
  2748. const Expr **Culprit) const {
  2749. assert(!isValueDependent() &&
  2750. "Expression evaluator can't be called on a dependent expression.");
  2751. // This function is attempting whether an expression is an initializer
  2752. // which can be evaluated at compile-time. It very closely parallels
  2753. // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
  2754. // will lead to unexpected results. Like ConstExprEmitter, it falls back
  2755. // to isEvaluatable most of the time.
  2756. //
  2757. // If we ever capture reference-binding directly in the AST, we can
  2758. // kill the second parameter.
  2759. if (IsForRef) {
  2760. EvalResult Result;
  2761. if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
  2762. return true;
  2763. if (Culprit)
  2764. *Culprit = this;
  2765. return false;
  2766. }
  2767. switch (getStmtClass()) {
  2768. default: break;
  2769. case StringLiteralClass:
  2770. case ObjCEncodeExprClass:
  2771. return true;
  2772. case CXXTemporaryObjectExprClass:
  2773. case CXXConstructExprClass: {
  2774. const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
  2775. if (CE->getConstructor()->isTrivial() &&
  2776. CE->getConstructor()->getParent()->hasTrivialDestructor()) {
  2777. // Trivial default constructor
  2778. if (!CE->getNumArgs()) return true;
  2779. // Trivial copy constructor
  2780. assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
  2781. return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
  2782. }
  2783. break;
  2784. }
  2785. case ConstantExprClass: {
  2786. // FIXME: We should be able to return "true" here, but it can lead to extra
  2787. // error messages. E.g. in Sema/array-init.c.
  2788. const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
  2789. return Exp->isConstantInitializer(Ctx, false, Culprit);
  2790. }
  2791. case CompoundLiteralExprClass: {
  2792. // This handles gcc's extension that allows global initializers like
  2793. // "struct x {int x;} x = (struct x) {};".
  2794. // FIXME: This accepts other cases it shouldn't!
  2795. const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
  2796. return Exp->isConstantInitializer(Ctx, false, Culprit);
  2797. }
  2798. case DesignatedInitUpdateExprClass: {
  2799. const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
  2800. return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
  2801. DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
  2802. }
  2803. case InitListExprClass: {
  2804. const InitListExpr *ILE = cast<InitListExpr>(this);
  2805. assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
  2806. if (ILE->getType()->isArrayType()) {
  2807. unsigned numInits = ILE->getNumInits();
  2808. for (unsigned i = 0; i < numInits; i++) {
  2809. if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
  2810. return false;
  2811. }
  2812. return true;
  2813. }
  2814. if (ILE->getType()->isRecordType()) {
  2815. unsigned ElementNo = 0;
  2816. RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
  2817. for (const auto *Field : RD->fields()) {
  2818. // If this is a union, skip all the fields that aren't being initialized.
  2819. if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
  2820. continue;
  2821. // Don't emit anonymous bitfields, they just affect layout.
  2822. if (Field->isUnnamedBitfield())
  2823. continue;
  2824. if (ElementNo < ILE->getNumInits()) {
  2825. const Expr *Elt = ILE->getInit(ElementNo++);
  2826. if (Field->isBitField()) {
  2827. // Bitfields have to evaluate to an integer.
  2828. EvalResult Result;
  2829. if (!Elt->EvaluateAsInt(Result, Ctx)) {
  2830. if (Culprit)
  2831. *Culprit = Elt;
  2832. return false;
  2833. }
  2834. } else {
  2835. bool RefType = Field->getType()->isReferenceType();
  2836. if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
  2837. return false;
  2838. }
  2839. }
  2840. }
  2841. return true;
  2842. }
  2843. break;
  2844. }
  2845. case ImplicitValueInitExprClass:
  2846. case NoInitExprClass:
  2847. return true;
  2848. case ParenExprClass:
  2849. return cast<ParenExpr>(this)->getSubExpr()
  2850. ->isConstantInitializer(Ctx, IsForRef, Culprit);
  2851. case GenericSelectionExprClass:
  2852. return cast<GenericSelectionExpr>(this)->getResultExpr()
  2853. ->isConstantInitializer(Ctx, IsForRef, Culprit);
  2854. case ChooseExprClass:
  2855. if (cast<ChooseExpr>(this)->isConditionDependent()) {
  2856. if (Culprit)
  2857. *Culprit = this;
  2858. return false;
  2859. }
  2860. return cast<ChooseExpr>(this)->getChosenSubExpr()
  2861. ->isConstantInitializer(Ctx, IsForRef, Culprit);
  2862. case UnaryOperatorClass: {
  2863. const UnaryOperator* Exp = cast<UnaryOperator>(this);
  2864. if (Exp->getOpcode() == UO_Extension)
  2865. return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
  2866. break;
  2867. }
  2868. case CXXFunctionalCastExprClass:
  2869. case CXXStaticCastExprClass:
  2870. case ImplicitCastExprClass:
  2871. case CStyleCastExprClass:
  2872. case ObjCBridgedCastExprClass:
  2873. case CXXDynamicCastExprClass:
  2874. case CXXReinterpretCastExprClass:
  2875. case CXXConstCastExprClass: {
  2876. const CastExpr *CE = cast<CastExpr>(this);
  2877. // Handle misc casts we want to ignore.
  2878. if (CE->getCastKind() == CK_NoOp ||
  2879. CE->getCastKind() == CK_LValueToRValue ||
  2880. CE->getCastKind() == CK_ToUnion ||
  2881. CE->getCastKind() == CK_ConstructorConversion ||
  2882. CE->getCastKind() == CK_NonAtomicToAtomic ||
  2883. CE->getCastKind() == CK_AtomicToNonAtomic ||
  2884. CE->getCastKind() == CK_IntToOCLSampler)
  2885. return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
  2886. break;
  2887. }
  2888. case MaterializeTemporaryExprClass:
  2889. return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
  2890. ->isConstantInitializer(Ctx, false, Culprit);
  2891. case SubstNonTypeTemplateParmExprClass:
  2892. return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
  2893. ->isConstantInitializer(Ctx, false, Culprit);
  2894. case CXXDefaultArgExprClass:
  2895. return cast<CXXDefaultArgExpr>(this)->getExpr()
  2896. ->isConstantInitializer(Ctx, false, Culprit);
  2897. case CXXDefaultInitExprClass:
  2898. return cast<CXXDefaultInitExpr>(this)->getExpr()
  2899. ->isConstantInitializer(Ctx, false, Culprit);
  2900. }
  2901. // Allow certain forms of UB in constant initializers: signed integer
  2902. // overflow and floating-point division by zero. We'll give a warning on
  2903. // these, but they're common enough that we have to accept them.
  2904. if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
  2905. return true;
  2906. if (Culprit)
  2907. *Culprit = this;
  2908. return false;
  2909. }
  2910. bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
  2911. const FunctionDecl* FD = getDirectCallee();
  2912. if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
  2913. FD->getBuiltinID() != Builtin::BI__builtin_assume))
  2914. return false;
  2915. const Expr* Arg = getArg(0);
  2916. bool ArgVal;
  2917. return !Arg->isValueDependent() &&
  2918. Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
  2919. }
  2920. namespace {
  2921. /// Look for any side effects within a Stmt.
  2922. class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
  2923. typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
  2924. const bool IncludePossibleEffects;
  2925. bool HasSideEffects;
  2926. public:
  2927. explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
  2928. : Inherited(Context),
  2929. IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
  2930. bool hasSideEffects() const { return HasSideEffects; }
  2931. void VisitExpr(const Expr *E) {
  2932. if (!HasSideEffects &&
  2933. E->HasSideEffects(Context, IncludePossibleEffects))
  2934. HasSideEffects = true;
  2935. }
  2936. };
  2937. }
  2938. bool Expr::HasSideEffects(const ASTContext &Ctx,
  2939. bool IncludePossibleEffects) const {
  2940. // In circumstances where we care about definite side effects instead of
  2941. // potential side effects, we want to ignore expressions that are part of a
  2942. // macro expansion as a potential side effect.
  2943. if (!IncludePossibleEffects && getExprLoc().isMacroID())
  2944. return false;
  2945. if (isInstantiationDependent())
  2946. return IncludePossibleEffects;
  2947. switch (getStmtClass()) {
  2948. case NoStmtClass:
  2949. #define ABSTRACT_STMT(Type)
  2950. #define STMT(Type, Base) case Type##Class:
  2951. #define EXPR(Type, Base)
  2952. #include "clang/AST/StmtNodes.inc"
  2953. llvm_unreachable("unexpected Expr kind");
  2954. case DependentScopeDeclRefExprClass:
  2955. case CXXUnresolvedConstructExprClass:
  2956. case CXXDependentScopeMemberExprClass:
  2957. case UnresolvedLookupExprClass:
  2958. case UnresolvedMemberExprClass:
  2959. case PackExpansionExprClass:
  2960. case SubstNonTypeTemplateParmPackExprClass:
  2961. case FunctionParmPackExprClass:
  2962. case TypoExprClass:
  2963. case CXXFoldExprClass:
  2964. llvm_unreachable("shouldn't see dependent / unresolved nodes here");
  2965. case DeclRefExprClass:
  2966. case ObjCIvarRefExprClass:
  2967. case PredefinedExprClass:
  2968. case IntegerLiteralClass:
  2969. case FixedPointLiteralClass:
  2970. case FloatingLiteralClass:
  2971. case ImaginaryLiteralClass:
  2972. case StringLiteralClass:
  2973. case CharacterLiteralClass:
  2974. case OffsetOfExprClass:
  2975. case ImplicitValueInitExprClass:
  2976. case UnaryExprOrTypeTraitExprClass:
  2977. case AddrLabelExprClass:
  2978. case GNUNullExprClass:
  2979. case ArrayInitIndexExprClass:
  2980. case NoInitExprClass:
  2981. case CXXBoolLiteralExprClass:
  2982. case CXXNullPtrLiteralExprClass:
  2983. case CXXThisExprClass:
  2984. case CXXScalarValueInitExprClass:
  2985. case TypeTraitExprClass:
  2986. case ArrayTypeTraitExprClass:
  2987. case ExpressionTraitExprClass:
  2988. case CXXNoexceptExprClass:
  2989. case SizeOfPackExprClass:
  2990. case ObjCStringLiteralClass:
  2991. case ObjCEncodeExprClass:
  2992. case ObjCBoolLiteralExprClass:
  2993. case ObjCAvailabilityCheckExprClass:
  2994. case CXXUuidofExprClass:
  2995. case OpaqueValueExprClass:
  2996. case SourceLocExprClass:
  2997. // These never have a side-effect.
  2998. return false;
  2999. case ConstantExprClass:
  3000. // FIXME: Move this into the "return false;" block above.
  3001. return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
  3002. Ctx, IncludePossibleEffects);
  3003. case CallExprClass:
  3004. case CXXOperatorCallExprClass:
  3005. case CXXMemberCallExprClass:
  3006. case CUDAKernelCallExprClass:
  3007. case UserDefinedLiteralClass: {
  3008. // We don't know a call definitely has side effects, except for calls
  3009. // to pure/const functions that definitely don't.
  3010. // If the call itself is considered side-effect free, check the operands.
  3011. const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
  3012. bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
  3013. if (IsPure || !IncludePossibleEffects)
  3014. break;
  3015. return true;
  3016. }
  3017. case BlockExprClass:
  3018. case CXXBindTemporaryExprClass:
  3019. if (!IncludePossibleEffects)
  3020. break;
  3021. return true;
  3022. case MSPropertyRefExprClass:
  3023. case MSPropertySubscriptExprClass:
  3024. case CompoundAssignOperatorClass:
  3025. case VAArgExprClass:
  3026. case AtomicExprClass:
  3027. case CXXThrowExprClass:
  3028. case CXXNewExprClass:
  3029. case CXXDeleteExprClass:
  3030. case CoawaitExprClass:
  3031. case DependentCoawaitExprClass:
  3032. case CoyieldExprClass:
  3033. // These always have a side-effect.
  3034. return true;
  3035. case StmtExprClass: {
  3036. // StmtExprs have a side-effect if any substatement does.
  3037. SideEffectFinder Finder(Ctx, IncludePossibleEffects);
  3038. Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
  3039. return Finder.hasSideEffects();
  3040. }
  3041. case ExprWithCleanupsClass:
  3042. if (IncludePossibleEffects)
  3043. if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
  3044. return true;
  3045. break;
  3046. case ParenExprClass:
  3047. case ArraySubscriptExprClass:
  3048. case OMPArraySectionExprClass:
  3049. case MemberExprClass:
  3050. case ConditionalOperatorClass:
  3051. case BinaryConditionalOperatorClass:
  3052. case CompoundLiteralExprClass:
  3053. case ExtVectorElementExprClass:
  3054. case DesignatedInitExprClass:
  3055. case DesignatedInitUpdateExprClass:
  3056. case ArrayInitLoopExprClass:
  3057. case ParenListExprClass:
  3058. case CXXPseudoDestructorExprClass:
  3059. case CXXStdInitializerListExprClass:
  3060. case SubstNonTypeTemplateParmExprClass:
  3061. case MaterializeTemporaryExprClass:
  3062. case ShuffleVectorExprClass:
  3063. case ConvertVectorExprClass:
  3064. case AsTypeExprClass:
  3065. // These have a side-effect if any subexpression does.
  3066. break;
  3067. case UnaryOperatorClass:
  3068. if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
  3069. return true;
  3070. break;
  3071. case BinaryOperatorClass:
  3072. if (cast<BinaryOperator>(this)->isAssignmentOp())
  3073. return true;
  3074. break;
  3075. case InitListExprClass:
  3076. // FIXME: The children for an InitListExpr doesn't include the array filler.
  3077. if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
  3078. if (E->HasSideEffects(Ctx, IncludePossibleEffects))
  3079. return true;
  3080. break;
  3081. case GenericSelectionExprClass:
  3082. return cast<GenericSelectionExpr>(this)->getResultExpr()->
  3083. HasSideEffects(Ctx, IncludePossibleEffects);
  3084. case ChooseExprClass:
  3085. return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
  3086. Ctx, IncludePossibleEffects);
  3087. case CXXDefaultArgExprClass:
  3088. return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
  3089. Ctx, IncludePossibleEffects);
  3090. case CXXDefaultInitExprClass: {
  3091. const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
  3092. if (const Expr *E = FD->getInClassInitializer())
  3093. return E->HasSideEffects(Ctx, IncludePossibleEffects);
  3094. // If we've not yet parsed the initializer, assume it has side-effects.
  3095. return true;
  3096. }
  3097. case CXXDynamicCastExprClass: {
  3098. // A dynamic_cast expression has side-effects if it can throw.
  3099. const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
  3100. if (DCE->getTypeAsWritten()->isReferenceType() &&
  3101. DCE->getCastKind() == CK_Dynamic)
  3102. return true;
  3103. }
  3104. LLVM_FALLTHROUGH;
  3105. case ImplicitCastExprClass:
  3106. case CStyleCastExprClass:
  3107. case CXXStaticCastExprClass:
  3108. case CXXReinterpretCastExprClass:
  3109. case CXXConstCastExprClass:
  3110. case CXXFunctionalCastExprClass:
  3111. case BuiltinBitCastExprClass: {
  3112. // While volatile reads are side-effecting in both C and C++, we treat them
  3113. // as having possible (not definite) side-effects. This allows idiomatic
  3114. // code to behave without warning, such as sizeof(*v) for a volatile-
  3115. // qualified pointer.
  3116. if (!IncludePossibleEffects)
  3117. break;
  3118. const CastExpr *CE = cast<CastExpr>(this);
  3119. if (CE->getCastKind() == CK_LValueToRValue &&
  3120. CE->getSubExpr()->getType().isVolatileQualified())
  3121. return true;
  3122. break;
  3123. }
  3124. case CXXTypeidExprClass:
  3125. // typeid might throw if its subexpression is potentially-evaluated, so has
  3126. // side-effects in that case whether or not its subexpression does.
  3127. return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
  3128. case CXXConstructExprClass:
  3129. case CXXTemporaryObjectExprClass: {
  3130. const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
  3131. if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
  3132. return true;
  3133. // A trivial constructor does not add any side-effects of its own. Just look
  3134. // at its arguments.
  3135. break;
  3136. }
  3137. case CXXInheritedCtorInitExprClass: {
  3138. const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
  3139. if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
  3140. return true;
  3141. break;
  3142. }
  3143. case LambdaExprClass: {
  3144. const LambdaExpr *LE = cast<LambdaExpr>(this);
  3145. for (Expr *E : LE->capture_inits())
  3146. if (E->HasSideEffects(Ctx, IncludePossibleEffects))
  3147. return true;
  3148. return false;
  3149. }
  3150. case PseudoObjectExprClass: {
  3151. // Only look for side-effects in the semantic form, and look past
  3152. // OpaqueValueExpr bindings in that form.
  3153. const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
  3154. for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
  3155. E = PO->semantics_end();
  3156. I != E; ++I) {
  3157. const Expr *Subexpr = *I;
  3158. if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
  3159. Subexpr = OVE->getSourceExpr();
  3160. if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
  3161. return true;
  3162. }
  3163. return false;
  3164. }
  3165. case ObjCBoxedExprClass:
  3166. case ObjCArrayLiteralClass:
  3167. case ObjCDictionaryLiteralClass:
  3168. case ObjCSelectorExprClass:
  3169. case ObjCProtocolExprClass:
  3170. case ObjCIsaExprClass:
  3171. case ObjCIndirectCopyRestoreExprClass:
  3172. case ObjCSubscriptRefExprClass:
  3173. case ObjCBridgedCastExprClass:
  3174. case ObjCMessageExprClass:
  3175. case ObjCPropertyRefExprClass:
  3176. // FIXME: Classify these cases better.
  3177. if (IncludePossibleEffects)
  3178. return true;
  3179. break;
  3180. }
  3181. // Recurse to children.
  3182. for (const Stmt *SubStmt : children())
  3183. if (SubStmt &&
  3184. cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
  3185. return true;
  3186. return false;
  3187. }
  3188. namespace {
  3189. /// Look for a call to a non-trivial function within an expression.
  3190. class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
  3191. {
  3192. typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
  3193. bool NonTrivial;
  3194. public:
  3195. explicit NonTrivialCallFinder(const ASTContext &Context)
  3196. : Inherited(Context), NonTrivial(false) { }
  3197. bool hasNonTrivialCall() const { return NonTrivial; }
  3198. void VisitCallExpr(const CallExpr *E) {
  3199. if (const CXXMethodDecl *Method
  3200. = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
  3201. if (Method->isTrivial()) {
  3202. // Recurse to children of the call.
  3203. Inherited::VisitStmt(E);
  3204. return;
  3205. }
  3206. }
  3207. NonTrivial = true;
  3208. }
  3209. void VisitCXXConstructExpr(const CXXConstructExpr *E) {
  3210. if (E->getConstructor()->isTrivial()) {
  3211. // Recurse to children of the call.
  3212. Inherited::VisitStmt(E);
  3213. return;
  3214. }
  3215. NonTrivial = true;
  3216. }
  3217. void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
  3218. if (E->getTemporary()->getDestructor()->isTrivial()) {
  3219. Inherited::VisitStmt(E);
  3220. return;
  3221. }
  3222. NonTrivial = true;
  3223. }
  3224. };
  3225. }
  3226. bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
  3227. NonTrivialCallFinder Finder(Ctx);
  3228. Finder.Visit(this);
  3229. return Finder.hasNonTrivialCall();
  3230. }
  3231. /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
  3232. /// pointer constant or not, as well as the specific kind of constant detected.
  3233. /// Null pointer constants can be integer constant expressions with the
  3234. /// value zero, casts of zero to void*, nullptr (C++0X), or __null
  3235. /// (a GNU extension).
  3236. Expr::NullPointerConstantKind
  3237. Expr::isNullPointerConstant(ASTContext &Ctx,
  3238. NullPointerConstantValueDependence NPC) const {
  3239. if (isValueDependent() &&
  3240. (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
  3241. switch (NPC) {
  3242. case NPC_NeverValueDependent:
  3243. llvm_unreachable("Unexpected value dependent expression!");
  3244. case NPC_ValueDependentIsNull:
  3245. if (isTypeDependent() || getType()->isIntegralType(Ctx))
  3246. return NPCK_ZeroExpression;
  3247. else
  3248. return NPCK_NotNull;
  3249. case NPC_ValueDependentIsNotNull:
  3250. return NPCK_NotNull;
  3251. }
  3252. }
  3253. // Strip off a cast to void*, if it exists. Except in C++.
  3254. if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
  3255. if (!Ctx.getLangOpts().CPlusPlus) {
  3256. // Check that it is a cast to void*.
  3257. if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
  3258. QualType Pointee = PT->getPointeeType();
  3259. Qualifiers Qs = Pointee.getQualifiers();
  3260. // Only (void*)0 or equivalent are treated as nullptr. If pointee type
  3261. // has non-default address space it is not treated as nullptr.
  3262. // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
  3263. // since it cannot be assigned to a pointer to constant address space.
  3264. if ((Ctx.getLangOpts().OpenCLVersion >= 200 &&
  3265. Pointee.getAddressSpace() == LangAS::opencl_generic) ||
  3266. (Ctx.getLangOpts().OpenCL &&
  3267. Ctx.getLangOpts().OpenCLVersion < 200 &&
  3268. Pointee.getAddressSpace() == LangAS::opencl_private))
  3269. Qs.removeAddressSpace();
  3270. if (Pointee->isVoidType() && Qs.empty() && // to void*
  3271. CE->getSubExpr()->getType()->isIntegerType()) // from int
  3272. return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  3273. }
  3274. }
  3275. } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
  3276. // Ignore the ImplicitCastExpr type entirely.
  3277. return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  3278. } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
  3279. // Accept ((void*)0) as a null pointer constant, as many other
  3280. // implementations do.
  3281. return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  3282. } else if (const GenericSelectionExpr *GE =
  3283. dyn_cast<GenericSelectionExpr>(this)) {
  3284. if (GE->isResultDependent())
  3285. return NPCK_NotNull;
  3286. return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
  3287. } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
  3288. if (CE->isConditionDependent())
  3289. return NPCK_NotNull;
  3290. return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
  3291. } else if (const CXXDefaultArgExpr *DefaultArg
  3292. = dyn_cast<CXXDefaultArgExpr>(this)) {
  3293. // See through default argument expressions.
  3294. return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
  3295. } else if (const CXXDefaultInitExpr *DefaultInit
  3296. = dyn_cast<CXXDefaultInitExpr>(this)) {
  3297. // See through default initializer expressions.
  3298. return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
  3299. } else if (isa<GNUNullExpr>(this)) {
  3300. // The GNU __null extension is always a null pointer constant.
  3301. return NPCK_GNUNull;
  3302. } else if (const MaterializeTemporaryExpr *M
  3303. = dyn_cast<MaterializeTemporaryExpr>(this)) {
  3304. return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
  3305. } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
  3306. if (const Expr *Source = OVE->getSourceExpr())
  3307. return Source->isNullPointerConstant(Ctx, NPC);
  3308. }
  3309. // C++11 nullptr_t is always a null pointer constant.
  3310. if (getType()->isNullPtrType())
  3311. return NPCK_CXX11_nullptr;
  3312. if (const RecordType *UT = getType()->getAsUnionType())
  3313. if (!Ctx.getLangOpts().CPlusPlus11 &&
  3314. UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
  3315. if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
  3316. const Expr *InitExpr = CLE->getInitializer();
  3317. if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
  3318. return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
  3319. }
  3320. // This expression must be an integer type.
  3321. if (!getType()->isIntegerType() ||
  3322. (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
  3323. return NPCK_NotNull;
  3324. if (Ctx.getLangOpts().CPlusPlus11) {
  3325. // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
  3326. // value zero or a prvalue of type std::nullptr_t.
  3327. // Microsoft mode permits C++98 rules reflecting MSVC behavior.
  3328. const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
  3329. if (Lit && !Lit->getValue())
  3330. return NPCK_ZeroLiteral;
  3331. else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
  3332. return NPCK_NotNull;
  3333. } else {
  3334. // If we have an integer constant expression, we need to *evaluate* it and
  3335. // test for the value 0.
  3336. if (!isIntegerConstantExpr(Ctx))
  3337. return NPCK_NotNull;
  3338. }
  3339. if (EvaluateKnownConstInt(Ctx) != 0)
  3340. return NPCK_NotNull;
  3341. if (isa<IntegerLiteral>(this))
  3342. return NPCK_ZeroLiteral;
  3343. return NPCK_ZeroExpression;
  3344. }
  3345. /// If this expression is an l-value for an Objective C
  3346. /// property, find the underlying property reference expression.
  3347. const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
  3348. const Expr *E = this;
  3349. while (true) {
  3350. assert((E->getValueKind() == VK_LValue &&
  3351. E->getObjectKind() == OK_ObjCProperty) &&
  3352. "expression is not a property reference");
  3353. E = E->IgnoreParenCasts();
  3354. if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
  3355. if (BO->getOpcode() == BO_Comma) {
  3356. E = BO->getRHS();
  3357. continue;
  3358. }
  3359. }
  3360. break;
  3361. }
  3362. return cast<ObjCPropertyRefExpr>(E);
  3363. }
  3364. bool Expr::isObjCSelfExpr() const {
  3365. const Expr *E = IgnoreParenImpCasts();
  3366. const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
  3367. if (!DRE)
  3368. return false;
  3369. const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
  3370. if (!Param)
  3371. return false;
  3372. const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
  3373. if (!M)
  3374. return false;
  3375. return M->getSelfDecl() == Param;
  3376. }
  3377. FieldDecl *Expr::getSourceBitField() {
  3378. Expr *E = this->IgnoreParens();
  3379. while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  3380. if (ICE->getCastKind() == CK_LValueToRValue ||
  3381. (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
  3382. E = ICE->getSubExpr()->IgnoreParens();
  3383. else
  3384. break;
  3385. }
  3386. if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
  3387. if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
  3388. if (Field->isBitField())
  3389. return Field;
  3390. if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
  3391. FieldDecl *Ivar = IvarRef->getDecl();
  3392. if (Ivar->isBitField())
  3393. return Ivar;
  3394. }
  3395. if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
  3396. if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
  3397. if (Field->isBitField())
  3398. return Field;
  3399. if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
  3400. if (Expr *E = BD->getBinding())
  3401. return E->getSourceBitField();
  3402. }
  3403. if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
  3404. if (BinOp->isAssignmentOp() && BinOp->getLHS())
  3405. return BinOp->getLHS()->getSourceBitField();
  3406. if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
  3407. return BinOp->getRHS()->getSourceBitField();
  3408. }
  3409. if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
  3410. if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
  3411. return UnOp->getSubExpr()->getSourceBitField();
  3412. return nullptr;
  3413. }
  3414. bool Expr::refersToVectorElement() const {
  3415. // FIXME: Why do we not just look at the ObjectKind here?
  3416. const Expr *E = this->IgnoreParens();
  3417. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  3418. if (ICE->getValueKind() != VK_RValue &&
  3419. ICE->getCastKind() == CK_NoOp)
  3420. E = ICE->getSubExpr()->IgnoreParens();
  3421. else
  3422. break;
  3423. }
  3424. if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
  3425. return ASE->getBase()->getType()->isVectorType();
  3426. if (isa<ExtVectorElementExpr>(E))
  3427. return true;
  3428. if (auto *DRE = dyn_cast<DeclRefExpr>(E))
  3429. if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
  3430. if (auto *E = BD->getBinding())
  3431. return E->refersToVectorElement();
  3432. return false;
  3433. }
  3434. bool Expr::refersToGlobalRegisterVar() const {
  3435. const Expr *E = this->IgnoreParenImpCasts();
  3436. if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
  3437. if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
  3438. if (VD->getStorageClass() == SC_Register &&
  3439. VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
  3440. return true;
  3441. return false;
  3442. }
  3443. /// isArrow - Return true if the base expression is a pointer to vector,
  3444. /// return false if the base expression is a vector.
  3445. bool ExtVectorElementExpr::isArrow() const {
  3446. return getBase()->getType()->isPointerType();
  3447. }
  3448. unsigned ExtVectorElementExpr::getNumElements() const {
  3449. if (const VectorType *VT = getType()->getAs<VectorType>())
  3450. return VT->getNumElements();
  3451. return 1;
  3452. }
  3453. /// containsDuplicateElements - Return true if any element access is repeated.
  3454. bool ExtVectorElementExpr::containsDuplicateElements() const {
  3455. // FIXME: Refactor this code to an accessor on the AST node which returns the
  3456. // "type" of component access, and share with code below and in Sema.
  3457. StringRef Comp = Accessor->getName();
  3458. // Halving swizzles do not contain duplicate elements.
  3459. if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
  3460. return false;
  3461. // Advance past s-char prefix on hex swizzles.
  3462. if (Comp[0] == 's' || Comp[0] == 'S')
  3463. Comp = Comp.substr(1);
  3464. for (unsigned i = 0, e = Comp.size(); i != e; ++i)
  3465. if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
  3466. return true;
  3467. return false;
  3468. }
  3469. /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
  3470. void ExtVectorElementExpr::getEncodedElementAccess(
  3471. SmallVectorImpl<uint32_t> &Elts) const {
  3472. StringRef Comp = Accessor->getName();
  3473. bool isNumericAccessor = false;
  3474. if (Comp[0] == 's' || Comp[0] == 'S') {
  3475. Comp = Comp.substr(1);
  3476. isNumericAccessor = true;
  3477. }
  3478. bool isHi = Comp == "hi";
  3479. bool isLo = Comp == "lo";
  3480. bool isEven = Comp == "even";
  3481. bool isOdd = Comp == "odd";
  3482. for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
  3483. uint64_t Index;
  3484. if (isHi)
  3485. Index = e + i;
  3486. else if (isLo)
  3487. Index = i;
  3488. else if (isEven)
  3489. Index = 2 * i;
  3490. else if (isOdd)
  3491. Index = 2 * i + 1;
  3492. else
  3493. Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
  3494. Elts.push_back(Index);
  3495. }
  3496. }
  3497. ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
  3498. QualType Type, SourceLocation BLoc,
  3499. SourceLocation RP)
  3500. : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
  3501. Type->isDependentType(), Type->isDependentType(),
  3502. Type->isInstantiationDependentType(),
  3503. Type->containsUnexpandedParameterPack()),
  3504. BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
  3505. {
  3506. SubExprs = new (C) Stmt*[args.size()];
  3507. for (unsigned i = 0; i != args.size(); i++) {
  3508. if (args[i]->isTypeDependent())
  3509. ExprBits.TypeDependent = true;
  3510. if (args[i]->isValueDependent())
  3511. ExprBits.ValueDependent = true;
  3512. if (args[i]->isInstantiationDependent())
  3513. ExprBits.InstantiationDependent = true;
  3514. if (args[i]->containsUnexpandedParameterPack())
  3515. ExprBits.ContainsUnexpandedParameterPack = true;
  3516. SubExprs[i] = args[i];
  3517. }
  3518. }
  3519. void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
  3520. if (SubExprs) C.Deallocate(SubExprs);
  3521. this->NumExprs = Exprs.size();
  3522. SubExprs = new (C) Stmt*[NumExprs];
  3523. memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
  3524. }
  3525. GenericSelectionExpr::GenericSelectionExpr(
  3526. const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
  3527. ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
  3528. SourceLocation DefaultLoc, SourceLocation RParenLoc,
  3529. bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
  3530. : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
  3531. AssocExprs[ResultIndex]->getValueKind(),
  3532. AssocExprs[ResultIndex]->getObjectKind(),
  3533. AssocExprs[ResultIndex]->isTypeDependent(),
  3534. AssocExprs[ResultIndex]->isValueDependent(),
  3535. AssocExprs[ResultIndex]->isInstantiationDependent(),
  3536. ContainsUnexpandedParameterPack),
  3537. NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
  3538. DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
  3539. assert(AssocTypes.size() == AssocExprs.size() &&
  3540. "Must have the same number of association expressions"
  3541. " and TypeSourceInfo!");
  3542. assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
  3543. GenericSelectionExprBits.GenericLoc = GenericLoc;
  3544. getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
  3545. std::copy(AssocExprs.begin(), AssocExprs.end(),
  3546. getTrailingObjects<Stmt *>() + AssocExprStartIndex);
  3547. std::copy(AssocTypes.begin(), AssocTypes.end(),
  3548. getTrailingObjects<TypeSourceInfo *>());
  3549. }
  3550. GenericSelectionExpr::GenericSelectionExpr(
  3551. const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
  3552. ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
  3553. SourceLocation DefaultLoc, SourceLocation RParenLoc,
  3554. bool ContainsUnexpandedParameterPack)
  3555. : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue,
  3556. OK_Ordinary,
  3557. /*isTypeDependent=*/true,
  3558. /*isValueDependent=*/true,
  3559. /*isInstantiationDependent=*/true, ContainsUnexpandedParameterPack),
  3560. NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
  3561. DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
  3562. assert(AssocTypes.size() == AssocExprs.size() &&
  3563. "Must have the same number of association expressions"
  3564. " and TypeSourceInfo!");
  3565. GenericSelectionExprBits.GenericLoc = GenericLoc;
  3566. getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
  3567. std::copy(AssocExprs.begin(), AssocExprs.end(),
  3568. getTrailingObjects<Stmt *>() + AssocExprStartIndex);
  3569. std::copy(AssocTypes.begin(), AssocTypes.end(),
  3570. getTrailingObjects<TypeSourceInfo *>());
  3571. }
  3572. GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
  3573. : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
  3574. GenericSelectionExpr *GenericSelectionExpr::Create(
  3575. const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
  3576. ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
  3577. SourceLocation DefaultLoc, SourceLocation RParenLoc,
  3578. bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
  3579. unsigned NumAssocs = AssocExprs.size();
  3580. void *Mem = Context.Allocate(
  3581. totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
  3582. alignof(GenericSelectionExpr));
  3583. return new (Mem) GenericSelectionExpr(
  3584. Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
  3585. RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
  3586. }
  3587. GenericSelectionExpr *GenericSelectionExpr::Create(
  3588. const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
  3589. ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
  3590. SourceLocation DefaultLoc, SourceLocation RParenLoc,
  3591. bool ContainsUnexpandedParameterPack) {
  3592. unsigned NumAssocs = AssocExprs.size();
  3593. void *Mem = Context.Allocate(
  3594. totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
  3595. alignof(GenericSelectionExpr));
  3596. return new (Mem) GenericSelectionExpr(
  3597. Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
  3598. RParenLoc, ContainsUnexpandedParameterPack);
  3599. }
  3600. GenericSelectionExpr *
  3601. GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
  3602. unsigned NumAssocs) {
  3603. void *Mem = Context.Allocate(
  3604. totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
  3605. alignof(GenericSelectionExpr));
  3606. return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
  3607. }
  3608. //===----------------------------------------------------------------------===//
  3609. // DesignatedInitExpr
  3610. //===----------------------------------------------------------------------===//
  3611. IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
  3612. assert(Kind == FieldDesignator && "Only valid on a field designator");
  3613. if (Field.NameOrField & 0x01)
  3614. return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
  3615. else
  3616. return getField()->getIdentifier();
  3617. }
  3618. DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
  3619. llvm::ArrayRef<Designator> Designators,
  3620. SourceLocation EqualOrColonLoc,
  3621. bool GNUSyntax,
  3622. ArrayRef<Expr*> IndexExprs,
  3623. Expr *Init)
  3624. : Expr(DesignatedInitExprClass, Ty,
  3625. Init->getValueKind(), Init->getObjectKind(),
  3626. Init->isTypeDependent(), Init->isValueDependent(),
  3627. Init->isInstantiationDependent(),
  3628. Init->containsUnexpandedParameterPack()),
  3629. EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
  3630. NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
  3631. this->Designators = new (C) Designator[NumDesignators];
  3632. // Record the initializer itself.
  3633. child_iterator Child = child_begin();
  3634. *Child++ = Init;
  3635. // Copy the designators and their subexpressions, computing
  3636. // value-dependence along the way.
  3637. unsigned IndexIdx = 0;
  3638. for (unsigned I = 0; I != NumDesignators; ++I) {
  3639. this->Designators[I] = Designators[I];
  3640. if (this->Designators[I].isArrayDesignator()) {
  3641. // Compute type- and value-dependence.
  3642. Expr *Index = IndexExprs[IndexIdx];
  3643. if (Index->isTypeDependent() || Index->isValueDependent())
  3644. ExprBits.TypeDependent = ExprBits.ValueDependent = true;
  3645. if (Index->isInstantiationDependent())
  3646. ExprBits.InstantiationDependent = true;
  3647. // Propagate unexpanded parameter packs.
  3648. if (Index->containsUnexpandedParameterPack())
  3649. ExprBits.ContainsUnexpandedParameterPack = true;
  3650. // Copy the index expressions into permanent storage.
  3651. *Child++ = IndexExprs[IndexIdx++];
  3652. } else if (this->Designators[I].isArrayRangeDesignator()) {
  3653. // Compute type- and value-dependence.
  3654. Expr *Start = IndexExprs[IndexIdx];
  3655. Expr *End = IndexExprs[IndexIdx + 1];
  3656. if (Start->isTypeDependent() || Start->isValueDependent() ||
  3657. End->isTypeDependent() || End->isValueDependent()) {
  3658. ExprBits.TypeDependent = ExprBits.ValueDependent = true;
  3659. ExprBits.InstantiationDependent = true;
  3660. } else if (Start->isInstantiationDependent() ||
  3661. End->isInstantiationDependent()) {
  3662. ExprBits.InstantiationDependent = true;
  3663. }
  3664. // Propagate unexpanded parameter packs.
  3665. if (Start->containsUnexpandedParameterPack() ||
  3666. End->containsUnexpandedParameterPack())
  3667. ExprBits.ContainsUnexpandedParameterPack = true;
  3668. // Copy the start/end expressions into permanent storage.
  3669. *Child++ = IndexExprs[IndexIdx++];
  3670. *Child++ = IndexExprs[IndexIdx++];
  3671. }
  3672. }
  3673. assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
  3674. }
  3675. DesignatedInitExpr *
  3676. DesignatedInitExpr::Create(const ASTContext &C,
  3677. llvm::ArrayRef<Designator> Designators,
  3678. ArrayRef<Expr*> IndexExprs,
  3679. SourceLocation ColonOrEqualLoc,
  3680. bool UsesColonSyntax, Expr *Init) {
  3681. void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
  3682. alignof(DesignatedInitExpr));
  3683. return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
  3684. ColonOrEqualLoc, UsesColonSyntax,
  3685. IndexExprs, Init);
  3686. }
  3687. DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
  3688. unsigned NumIndexExprs) {
  3689. void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
  3690. alignof(DesignatedInitExpr));
  3691. return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
  3692. }
  3693. void DesignatedInitExpr::setDesignators(const ASTContext &C,
  3694. const Designator *Desigs,
  3695. unsigned NumDesigs) {
  3696. Designators = new (C) Designator[NumDesigs];
  3697. NumDesignators = NumDesigs;
  3698. for (unsigned I = 0; I != NumDesigs; ++I)
  3699. Designators[I] = Desigs[I];
  3700. }
  3701. SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
  3702. DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
  3703. if (size() == 1)
  3704. return DIE->getDesignator(0)->getSourceRange();
  3705. return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
  3706. DIE->getDesignator(size() - 1)->getEndLoc());
  3707. }
  3708. SourceLocation DesignatedInitExpr::getBeginLoc() const {
  3709. SourceLocation StartLoc;
  3710. auto *DIE = const_cast<DesignatedInitExpr *>(this);
  3711. Designator &First = *DIE->getDesignator(0);
  3712. if (First.isFieldDesignator()) {
  3713. if (GNUSyntax)
  3714. StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
  3715. else
  3716. StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
  3717. } else
  3718. StartLoc =
  3719. SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
  3720. return StartLoc;
  3721. }
  3722. SourceLocation DesignatedInitExpr::getEndLoc() const {
  3723. return getInit()->getEndLoc();
  3724. }
  3725. Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
  3726. assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
  3727. return getSubExpr(D.ArrayOrRange.Index + 1);
  3728. }
  3729. Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
  3730. assert(D.Kind == Designator::ArrayRangeDesignator &&
  3731. "Requires array range designator");
  3732. return getSubExpr(D.ArrayOrRange.Index + 1);
  3733. }
  3734. Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
  3735. assert(D.Kind == Designator::ArrayRangeDesignator &&
  3736. "Requires array range designator");
  3737. return getSubExpr(D.ArrayOrRange.Index + 2);
  3738. }
  3739. /// Replaces the designator at index @p Idx with the series
  3740. /// of designators in [First, Last).
  3741. void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
  3742. const Designator *First,
  3743. const Designator *Last) {
  3744. unsigned NumNewDesignators = Last - First;
  3745. if (NumNewDesignators == 0) {
  3746. std::copy_backward(Designators + Idx + 1,
  3747. Designators + NumDesignators,
  3748. Designators + Idx);
  3749. --NumNewDesignators;
  3750. return;
  3751. } else if (NumNewDesignators == 1) {
  3752. Designators[Idx] = *First;
  3753. return;
  3754. }
  3755. Designator *NewDesignators
  3756. = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
  3757. std::copy(Designators, Designators + Idx, NewDesignators);
  3758. std::copy(First, Last, NewDesignators + Idx);
  3759. std::copy(Designators + Idx + 1, Designators + NumDesignators,
  3760. NewDesignators + Idx + NumNewDesignators);
  3761. Designators = NewDesignators;
  3762. NumDesignators = NumDesignators - 1 + NumNewDesignators;
  3763. }
  3764. DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
  3765. SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
  3766. : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
  3767. OK_Ordinary, false, false, false, false) {
  3768. BaseAndUpdaterExprs[0] = baseExpr;
  3769. InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
  3770. ILE->setType(baseExpr->getType());
  3771. BaseAndUpdaterExprs[1] = ILE;
  3772. }
  3773. SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
  3774. return getBase()->getBeginLoc();
  3775. }
  3776. SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
  3777. return getBase()->getEndLoc();
  3778. }
  3779. ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
  3780. SourceLocation RParenLoc)
  3781. : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
  3782. false, false),
  3783. LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
  3784. ParenListExprBits.NumExprs = Exprs.size();
  3785. for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
  3786. if (Exprs[I]->isTypeDependent())
  3787. ExprBits.TypeDependent = true;
  3788. if (Exprs[I]->isValueDependent())
  3789. ExprBits.ValueDependent = true;
  3790. if (Exprs[I]->isInstantiationDependent())
  3791. ExprBits.InstantiationDependent = true;
  3792. if (Exprs[I]->containsUnexpandedParameterPack())
  3793. ExprBits.ContainsUnexpandedParameterPack = true;
  3794. getTrailingObjects<Stmt *>()[I] = Exprs[I];
  3795. }
  3796. }
  3797. ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
  3798. : Expr(ParenListExprClass, Empty) {
  3799. ParenListExprBits.NumExprs = NumExprs;
  3800. }
  3801. ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
  3802. SourceLocation LParenLoc,
  3803. ArrayRef<Expr *> Exprs,
  3804. SourceLocation RParenLoc) {
  3805. void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
  3806. alignof(ParenListExpr));
  3807. return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
  3808. }
  3809. ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
  3810. unsigned NumExprs) {
  3811. void *Mem =
  3812. Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
  3813. return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
  3814. }
  3815. const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
  3816. if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
  3817. e = ewc->getSubExpr();
  3818. if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
  3819. e = m->GetTemporaryExpr();
  3820. e = cast<CXXConstructExpr>(e)->getArg(0);
  3821. while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
  3822. e = ice->getSubExpr();
  3823. return cast<OpaqueValueExpr>(e);
  3824. }
  3825. PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
  3826. EmptyShell sh,
  3827. unsigned numSemanticExprs) {
  3828. void *buffer =
  3829. Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
  3830. alignof(PseudoObjectExpr));
  3831. return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
  3832. }
  3833. PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
  3834. : Expr(PseudoObjectExprClass, shell) {
  3835. PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
  3836. }
  3837. PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
  3838. ArrayRef<Expr*> semantics,
  3839. unsigned resultIndex) {
  3840. assert(syntax && "no syntactic expression!");
  3841. assert(semantics.size() && "no semantic expressions!");
  3842. QualType type;
  3843. ExprValueKind VK;
  3844. if (resultIndex == NoResult) {
  3845. type = C.VoidTy;
  3846. VK = VK_RValue;
  3847. } else {
  3848. assert(resultIndex < semantics.size());
  3849. type = semantics[resultIndex]->getType();
  3850. VK = semantics[resultIndex]->getValueKind();
  3851. assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
  3852. }
  3853. void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
  3854. alignof(PseudoObjectExpr));
  3855. return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
  3856. resultIndex);
  3857. }
  3858. PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
  3859. Expr *syntax, ArrayRef<Expr*> semantics,
  3860. unsigned resultIndex)
  3861. : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
  3862. /*filled in at end of ctor*/ false, false, false, false) {
  3863. PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
  3864. PseudoObjectExprBits.ResultIndex = resultIndex + 1;
  3865. for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
  3866. Expr *E = (i == 0 ? syntax : semantics[i-1]);
  3867. getSubExprsBuffer()[i] = E;
  3868. if (E->isTypeDependent())
  3869. ExprBits.TypeDependent = true;
  3870. if (E->isValueDependent())
  3871. ExprBits.ValueDependent = true;
  3872. if (E->isInstantiationDependent())
  3873. ExprBits.InstantiationDependent = true;
  3874. if (E->containsUnexpandedParameterPack())
  3875. ExprBits.ContainsUnexpandedParameterPack = true;
  3876. if (isa<OpaqueValueExpr>(E))
  3877. assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
  3878. "opaque-value semantic expressions for pseudo-object "
  3879. "operations must have sources");
  3880. }
  3881. }
  3882. //===----------------------------------------------------------------------===//
  3883. // Child Iterators for iterating over subexpressions/substatements
  3884. //===----------------------------------------------------------------------===//
  3885. // UnaryExprOrTypeTraitExpr
  3886. Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
  3887. const_child_range CCR =
  3888. const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
  3889. return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
  3890. }
  3891. Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
  3892. // If this is of a type and the type is a VLA type (and not a typedef), the
  3893. // size expression of the VLA needs to be treated as an executable expression.
  3894. // Why isn't this weirdness documented better in StmtIterator?
  3895. if (isArgumentType()) {
  3896. if (const VariableArrayType *T =
  3897. dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
  3898. return const_child_range(const_child_iterator(T), const_child_iterator());
  3899. return const_child_range(const_child_iterator(), const_child_iterator());
  3900. }
  3901. return const_child_range(&Argument.Ex, &Argument.Ex + 1);
  3902. }
  3903. AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
  3904. QualType t, AtomicOp op, SourceLocation RP)
  3905. : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
  3906. false, false, false, false),
  3907. NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
  3908. {
  3909. assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
  3910. for (unsigned i = 0; i != args.size(); i++) {
  3911. if (args[i]->isTypeDependent())
  3912. ExprBits.TypeDependent = true;
  3913. if (args[i]->isValueDependent())
  3914. ExprBits.ValueDependent = true;
  3915. if (args[i]->isInstantiationDependent())
  3916. ExprBits.InstantiationDependent = true;
  3917. if (args[i]->containsUnexpandedParameterPack())
  3918. ExprBits.ContainsUnexpandedParameterPack = true;
  3919. SubExprs[i] = args[i];
  3920. }
  3921. }
  3922. unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
  3923. switch (Op) {
  3924. case AO__c11_atomic_init:
  3925. case AO__opencl_atomic_init:
  3926. case AO__c11_atomic_load:
  3927. case AO__atomic_load_n:
  3928. return 2;
  3929. case AO__opencl_atomic_load:
  3930. case AO__c11_atomic_store:
  3931. case AO__c11_atomic_exchange:
  3932. case AO__atomic_load:
  3933. case AO__atomic_store:
  3934. case AO__atomic_store_n:
  3935. case AO__atomic_exchange_n:
  3936. case AO__c11_atomic_fetch_add:
  3937. case AO__c11_atomic_fetch_sub:
  3938. case AO__c11_atomic_fetch_and:
  3939. case AO__c11_atomic_fetch_or:
  3940. case AO__c11_atomic_fetch_xor:
  3941. case AO__atomic_fetch_add:
  3942. case AO__atomic_fetch_sub:
  3943. case AO__atomic_fetch_and:
  3944. case AO__atomic_fetch_or:
  3945. case AO__atomic_fetch_xor:
  3946. case AO__atomic_fetch_nand:
  3947. case AO__atomic_add_fetch:
  3948. case AO__atomic_sub_fetch:
  3949. case AO__atomic_and_fetch:
  3950. case AO__atomic_or_fetch:
  3951. case AO__atomic_xor_fetch:
  3952. case AO__atomic_nand_fetch:
  3953. case AO__atomic_fetch_min:
  3954. case AO__atomic_fetch_max:
  3955. return 3;
  3956. case AO__opencl_atomic_store:
  3957. case AO__opencl_atomic_exchange:
  3958. case AO__opencl_atomic_fetch_add:
  3959. case AO__opencl_atomic_fetch_sub:
  3960. case AO__opencl_atomic_fetch_and:
  3961. case AO__opencl_atomic_fetch_or:
  3962. case AO__opencl_atomic_fetch_xor:
  3963. case AO__opencl_atomic_fetch_min:
  3964. case AO__opencl_atomic_fetch_max:
  3965. case AO__atomic_exchange:
  3966. return 4;
  3967. case AO__c11_atomic_compare_exchange_strong:
  3968. case AO__c11_atomic_compare_exchange_weak:
  3969. return 5;
  3970. case AO__opencl_atomic_compare_exchange_strong:
  3971. case AO__opencl_atomic_compare_exchange_weak:
  3972. case AO__atomic_compare_exchange:
  3973. case AO__atomic_compare_exchange_n:
  3974. return 6;
  3975. }
  3976. llvm_unreachable("unknown atomic op");
  3977. }
  3978. QualType AtomicExpr::getValueType() const {
  3979. auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
  3980. if (auto AT = T->getAs<AtomicType>())
  3981. return AT->getValueType();
  3982. return T;
  3983. }
  3984. QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
  3985. unsigned ArraySectionCount = 0;
  3986. while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
  3987. Base = OASE->getBase();
  3988. ++ArraySectionCount;
  3989. }
  3990. while (auto *ASE =
  3991. dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
  3992. Base = ASE->getBase();
  3993. ++ArraySectionCount;
  3994. }
  3995. Base = Base->IgnoreParenImpCasts();
  3996. auto OriginalTy = Base->getType();
  3997. if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
  3998. if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
  3999. OriginalTy = PVD->getOriginalType().getNonReferenceType();
  4000. for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
  4001. if (OriginalTy->isAnyPointerType())
  4002. OriginalTy = OriginalTy->getPointeeType();
  4003. else {
  4004. assert (OriginalTy->isArrayType());
  4005. OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
  4006. }
  4007. }
  4008. return OriginalTy;
  4009. }