ThreadSafetyCommon.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978
  1. //===- ThreadSafetyCommon.cpp ----------------------------------*- C++ --*-===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // Implementation of the interfaces declared in ThreadSafetyCommon.h
  11. //
  12. //===----------------------------------------------------------------------===//
  13. #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
  14. #include "clang/AST/Attr.h"
  15. #include "clang/AST/DeclCXX.h"
  16. #include "clang/AST/DeclObjC.h"
  17. #include "clang/AST/ExprCXX.h"
  18. #include "clang/AST/StmtCXX.h"
  19. #include "clang/Analysis/Analyses/PostOrderCFGView.h"
  20. #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
  21. #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
  22. #include "clang/Analysis/AnalysisContext.h"
  23. #include "clang/Analysis/CFG.h"
  24. #include "clang/Basic/OperatorKinds.h"
  25. #include "clang/Basic/SourceLocation.h"
  26. #include "clang/Basic/SourceManager.h"
  27. #include "llvm/ADT/DenseMap.h"
  28. #include "llvm/ADT/SmallVector.h"
  29. #include "llvm/ADT/StringRef.h"
  30. #include <algorithm>
  31. #include <climits>
  32. #include <vector>
  33. using namespace clang;
  34. using namespace threadSafety;
  35. // From ThreadSafetyUtil.h
  36. std::string threadSafety::getSourceLiteralString(const clang::Expr *CE) {
  37. switch (CE->getStmtClass()) {
  38. case Stmt::IntegerLiteralClass:
  39. return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
  40. case Stmt::StringLiteralClass: {
  41. std::string ret("\"");
  42. ret += cast<StringLiteral>(CE)->getString();
  43. ret += "\"";
  44. return ret;
  45. }
  46. case Stmt::CharacterLiteralClass:
  47. case Stmt::CXXNullPtrLiteralExprClass:
  48. case Stmt::GNUNullExprClass:
  49. case Stmt::CXXBoolLiteralExprClass:
  50. case Stmt::FloatingLiteralClass:
  51. case Stmt::ImaginaryLiteralClass:
  52. case Stmt::ObjCStringLiteralClass:
  53. default:
  54. return "#lit";
  55. }
  56. }
  57. // Return true if E is a variable that points to an incomplete Phi node.
  58. static bool isIncompletePhi(const til::SExpr *E) {
  59. if (const auto *Ph = dyn_cast<til::Phi>(E))
  60. return Ph->status() == til::Phi::PH_Incomplete;
  61. return false;
  62. }
  63. typedef SExprBuilder::CallingContext CallingContext;
  64. til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) {
  65. auto It = SMap.find(S);
  66. if (It != SMap.end())
  67. return It->second;
  68. return nullptr;
  69. }
  70. til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
  71. Walker.walk(*this);
  72. return Scfg;
  73. }
  74. static bool isCalleeArrow(const Expr *E) {
  75. const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
  76. return ME ? ME->isArrow() : false;
  77. }
  78. /// \brief Translate a clang expression in an attribute to a til::SExpr.
  79. /// Constructs the context from D, DeclExp, and SelfDecl.
  80. ///
  81. /// \param AttrExp The expression to translate.
  82. /// \param D The declaration to which the attribute is attached.
  83. /// \param DeclExp An expression involving the Decl to which the attribute
  84. /// is attached. E.g. the call to a function.
  85. CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
  86. const NamedDecl *D,
  87. const Expr *DeclExp,
  88. VarDecl *SelfDecl) {
  89. // If we are processing a raw attribute expression, with no substitutions.
  90. if (!DeclExp)
  91. return translateAttrExpr(AttrExp, nullptr);
  92. CallingContext Ctx(nullptr, D);
  93. // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
  94. // for formal parameters when we call buildMutexID later.
  95. if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
  96. Ctx.SelfArg = ME->getBase();
  97. Ctx.SelfArrow = ME->isArrow();
  98. } else if (const CXXMemberCallExpr *CE =
  99. dyn_cast<CXXMemberCallExpr>(DeclExp)) {
  100. Ctx.SelfArg = CE->getImplicitObjectArgument();
  101. Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
  102. Ctx.NumArgs = CE->getNumArgs();
  103. Ctx.FunArgs = CE->getArgs();
  104. } else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
  105. Ctx.NumArgs = CE->getNumArgs();
  106. Ctx.FunArgs = CE->getArgs();
  107. } else if (const CXXConstructExpr *CE =
  108. dyn_cast<CXXConstructExpr>(DeclExp)) {
  109. Ctx.SelfArg = nullptr; // Will be set below
  110. Ctx.NumArgs = CE->getNumArgs();
  111. Ctx.FunArgs = CE->getArgs();
  112. } else if (D && isa<CXXDestructorDecl>(D)) {
  113. // There's no such thing as a "destructor call" in the AST.
  114. Ctx.SelfArg = DeclExp;
  115. }
  116. // Hack to handle constructors, where self cannot be recovered from
  117. // the expression.
  118. if (SelfDecl && !Ctx.SelfArg) {
  119. DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
  120. SelfDecl->getLocation());
  121. Ctx.SelfArg = &SelfDRE;
  122. // If the attribute has no arguments, then assume the argument is "this".
  123. if (!AttrExp)
  124. return translateAttrExpr(Ctx.SelfArg, nullptr);
  125. else // For most attributes.
  126. return translateAttrExpr(AttrExp, &Ctx);
  127. }
  128. // If the attribute has no arguments, then assume the argument is "this".
  129. if (!AttrExp)
  130. return translateAttrExpr(Ctx.SelfArg, nullptr);
  131. else // For most attributes.
  132. return translateAttrExpr(AttrExp, &Ctx);
  133. }
  134. /// \brief Translate a clang expression in an attribute to a til::SExpr.
  135. // This assumes a CallingContext has already been created.
  136. CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
  137. CallingContext *Ctx) {
  138. if (!AttrExp)
  139. return CapabilityExpr(nullptr, false);
  140. if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
  141. if (SLit->getString() == StringRef("*"))
  142. // The "*" expr is a universal lock, which essentially turns off
  143. // checks until it is removed from the lockset.
  144. return CapabilityExpr(new (Arena) til::Wildcard(), false);
  145. else
  146. // Ignore other string literals for now.
  147. return CapabilityExpr(nullptr, false);
  148. }
  149. bool Neg = false;
  150. if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
  151. if (OE->getOperator() == OO_Exclaim) {
  152. Neg = true;
  153. AttrExp = OE->getArg(0);
  154. }
  155. }
  156. else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
  157. if (UO->getOpcode() == UO_LNot) {
  158. Neg = true;
  159. AttrExp = UO->getSubExpr();
  160. }
  161. }
  162. til::SExpr *E = translate(AttrExp, Ctx);
  163. // Trap mutex expressions like nullptr, or 0.
  164. // Any literal value is nonsense.
  165. if (!E || isa<til::Literal>(E))
  166. return CapabilityExpr(nullptr, false);
  167. // Hack to deal with smart pointers -- strip off top-level pointer casts.
  168. if (auto *CE = dyn_cast_or_null<til::Cast>(E)) {
  169. if (CE->castOpcode() == til::CAST_objToPtr)
  170. return CapabilityExpr(CE->expr(), Neg);
  171. }
  172. return CapabilityExpr(E, Neg);
  173. }
  174. // Translate a clang statement or expression to a TIL expression.
  175. // Also performs substitution of variables; Ctx provides the context.
  176. // Dispatches on the type of S.
  177. til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
  178. if (!S)
  179. return nullptr;
  180. // Check if S has already been translated and cached.
  181. // This handles the lookup of SSA names for DeclRefExprs here.
  182. if (til::SExpr *E = lookupStmt(S))
  183. return E;
  184. switch (S->getStmtClass()) {
  185. case Stmt::DeclRefExprClass:
  186. return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
  187. case Stmt::CXXThisExprClass:
  188. return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
  189. case Stmt::MemberExprClass:
  190. return translateMemberExpr(cast<MemberExpr>(S), Ctx);
  191. case Stmt::CallExprClass:
  192. return translateCallExpr(cast<CallExpr>(S), Ctx);
  193. case Stmt::CXXMemberCallExprClass:
  194. return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
  195. case Stmt::CXXOperatorCallExprClass:
  196. return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
  197. case Stmt::UnaryOperatorClass:
  198. return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
  199. case Stmt::BinaryOperatorClass:
  200. case Stmt::CompoundAssignOperatorClass:
  201. return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
  202. case Stmt::ArraySubscriptExprClass:
  203. return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
  204. case Stmt::ConditionalOperatorClass:
  205. return translateAbstractConditionalOperator(
  206. cast<ConditionalOperator>(S), Ctx);
  207. case Stmt::BinaryConditionalOperatorClass:
  208. return translateAbstractConditionalOperator(
  209. cast<BinaryConditionalOperator>(S), Ctx);
  210. // We treat these as no-ops
  211. case Stmt::ParenExprClass:
  212. return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
  213. case Stmt::ExprWithCleanupsClass:
  214. return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
  215. case Stmt::CXXBindTemporaryExprClass:
  216. return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
  217. // Collect all literals
  218. case Stmt::CharacterLiteralClass:
  219. case Stmt::CXXNullPtrLiteralExprClass:
  220. case Stmt::GNUNullExprClass:
  221. case Stmt::CXXBoolLiteralExprClass:
  222. case Stmt::FloatingLiteralClass:
  223. case Stmt::ImaginaryLiteralClass:
  224. case Stmt::IntegerLiteralClass:
  225. case Stmt::StringLiteralClass:
  226. case Stmt::ObjCStringLiteralClass:
  227. return new (Arena) til::Literal(cast<Expr>(S));
  228. case Stmt::DeclStmtClass:
  229. return translateDeclStmt(cast<DeclStmt>(S), Ctx);
  230. default:
  231. break;
  232. }
  233. if (const CastExpr *CE = dyn_cast<CastExpr>(S))
  234. return translateCastExpr(CE, Ctx);
  235. return new (Arena) til::Undefined(S);
  236. }
  237. til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
  238. CallingContext *Ctx) {
  239. const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
  240. // Function parameters require substitution and/or renaming.
  241. if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
  242. const FunctionDecl *FD =
  243. cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
  244. unsigned I = PV->getFunctionScopeIndex();
  245. if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) {
  246. // Substitute call arguments for references to function parameters
  247. assert(I < Ctx->NumArgs);
  248. return translate(Ctx->FunArgs[I], Ctx->Prev);
  249. }
  250. // Map the param back to the param of the original function declaration
  251. // for consistent comparisons.
  252. VD = FD->getParamDecl(I);
  253. }
  254. // For non-local variables, treat it as a reference to a named object.
  255. return new (Arena) til::LiteralPtr(VD);
  256. }
  257. til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
  258. CallingContext *Ctx) {
  259. // Substitute for 'this'
  260. if (Ctx && Ctx->SelfArg)
  261. return translate(Ctx->SelfArg, Ctx->Prev);
  262. assert(SelfVar && "We have no variable for 'this'!");
  263. return SelfVar;
  264. }
  265. static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
  266. if (auto *V = dyn_cast<til::Variable>(E))
  267. return V->clangDecl();
  268. if (auto *Ph = dyn_cast<til::Phi>(E))
  269. return Ph->clangDecl();
  270. if (auto *P = dyn_cast<til::Project>(E))
  271. return P->clangDecl();
  272. if (auto *L = dyn_cast<til::LiteralPtr>(E))
  273. return L->clangDecl();
  274. return 0;
  275. }
  276. static bool hasCppPointerType(const til::SExpr *E) {
  277. auto *VD = getValueDeclFromSExpr(E);
  278. if (VD && VD->getType()->isPointerType())
  279. return true;
  280. if (auto *C = dyn_cast<til::Cast>(E))
  281. return C->castOpcode() == til::CAST_objToPtr;
  282. return false;
  283. }
  284. // Grab the very first declaration of virtual method D
  285. static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
  286. while (true) {
  287. D = D->getCanonicalDecl();
  288. CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
  289. E = D->end_overridden_methods();
  290. if (I == E)
  291. return D; // Method does not override anything
  292. D = *I; // FIXME: this does not work with multiple inheritance.
  293. }
  294. return nullptr;
  295. }
  296. til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
  297. CallingContext *Ctx) {
  298. til::SExpr *BE = translate(ME->getBase(), Ctx);
  299. til::SExpr *E = new (Arena) til::SApply(BE);
  300. const ValueDecl *D =
  301. cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
  302. if (auto *VD = dyn_cast<CXXMethodDecl>(D))
  303. D = getFirstVirtualDecl(VD);
  304. til::Project *P = new (Arena) til::Project(E, D);
  305. if (hasCppPointerType(BE))
  306. P->setArrow(true);
  307. return P;
  308. }
  309. til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
  310. CallingContext *Ctx,
  311. const Expr *SelfE) {
  312. if (CapabilityExprMode) {
  313. // Handle LOCK_RETURNED
  314. const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl();
  315. if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
  316. CallingContext LRCallCtx(Ctx);
  317. LRCallCtx.AttrDecl = CE->getDirectCallee();
  318. LRCallCtx.SelfArg = SelfE;
  319. LRCallCtx.NumArgs = CE->getNumArgs();
  320. LRCallCtx.FunArgs = CE->getArgs();
  321. return const_cast<til::SExpr*>(
  322. translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
  323. }
  324. }
  325. til::SExpr *E = translate(CE->getCallee(), Ctx);
  326. for (const auto *Arg : CE->arguments()) {
  327. til::SExpr *A = translate(Arg, Ctx);
  328. E = new (Arena) til::Apply(E, A);
  329. }
  330. return new (Arena) til::Call(E, CE);
  331. }
  332. til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
  333. const CXXMemberCallExpr *ME, CallingContext *Ctx) {
  334. if (CapabilityExprMode) {
  335. // Ignore calls to get() on smart pointers.
  336. if (ME->getMethodDecl()->getNameAsString() == "get" &&
  337. ME->getNumArgs() == 0) {
  338. auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
  339. return new (Arena) til::Cast(til::CAST_objToPtr, E);
  340. // return E;
  341. }
  342. }
  343. return translateCallExpr(cast<CallExpr>(ME), Ctx,
  344. ME->getImplicitObjectArgument());
  345. }
  346. til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
  347. const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
  348. if (CapabilityExprMode) {
  349. // Ignore operator * and operator -> on smart pointers.
  350. OverloadedOperatorKind k = OCE->getOperator();
  351. if (k == OO_Star || k == OO_Arrow) {
  352. auto *E = translate(OCE->getArg(0), Ctx);
  353. return new (Arena) til::Cast(til::CAST_objToPtr, E);
  354. // return E;
  355. }
  356. }
  357. return translateCallExpr(cast<CallExpr>(OCE), Ctx);
  358. }
  359. til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
  360. CallingContext *Ctx) {
  361. switch (UO->getOpcode()) {
  362. case UO_PostInc:
  363. case UO_PostDec:
  364. case UO_PreInc:
  365. case UO_PreDec:
  366. return new (Arena) til::Undefined(UO);
  367. case UO_AddrOf: {
  368. if (CapabilityExprMode) {
  369. // interpret &Graph::mu_ as an existential.
  370. if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
  371. if (DRE->getDecl()->isCXXInstanceMember()) {
  372. // This is a pointer-to-member expression, e.g. &MyClass::mu_.
  373. // We interpret this syntax specially, as a wildcard.
  374. auto *W = new (Arena) til::Wildcard();
  375. return new (Arena) til::Project(W, DRE->getDecl());
  376. }
  377. }
  378. }
  379. // otherwise, & is a no-op
  380. return translate(UO->getSubExpr(), Ctx);
  381. }
  382. // We treat these as no-ops
  383. case UO_Deref:
  384. case UO_Plus:
  385. return translate(UO->getSubExpr(), Ctx);
  386. case UO_Minus:
  387. return new (Arena)
  388. til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
  389. case UO_Not:
  390. return new (Arena)
  391. til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
  392. case UO_LNot:
  393. return new (Arena)
  394. til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
  395. // Currently unsupported
  396. case UO_Real:
  397. case UO_Imag:
  398. case UO_Extension:
  399. return new (Arena) til::Undefined(UO);
  400. }
  401. return new (Arena) til::Undefined(UO);
  402. }
  403. til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
  404. const BinaryOperator *BO,
  405. CallingContext *Ctx, bool Reverse) {
  406. til::SExpr *E0 = translate(BO->getLHS(), Ctx);
  407. til::SExpr *E1 = translate(BO->getRHS(), Ctx);
  408. if (Reverse)
  409. return new (Arena) til::BinaryOp(Op, E1, E0);
  410. else
  411. return new (Arena) til::BinaryOp(Op, E0, E1);
  412. }
  413. til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
  414. const BinaryOperator *BO,
  415. CallingContext *Ctx,
  416. bool Assign) {
  417. const Expr *LHS = BO->getLHS();
  418. const Expr *RHS = BO->getRHS();
  419. til::SExpr *E0 = translate(LHS, Ctx);
  420. til::SExpr *E1 = translate(RHS, Ctx);
  421. const ValueDecl *VD = nullptr;
  422. til::SExpr *CV = nullptr;
  423. if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) {
  424. VD = DRE->getDecl();
  425. CV = lookupVarDecl(VD);
  426. }
  427. if (!Assign) {
  428. til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
  429. E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
  430. E1 = addStatement(E1, nullptr, VD);
  431. }
  432. if (VD && CV)
  433. return updateVarDecl(VD, E1);
  434. return new (Arena) til::Store(E0, E1);
  435. }
  436. til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
  437. CallingContext *Ctx) {
  438. switch (BO->getOpcode()) {
  439. case BO_PtrMemD:
  440. case BO_PtrMemI:
  441. return new (Arena) til::Undefined(BO);
  442. case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx);
  443. case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx);
  444. case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx);
  445. case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx);
  446. case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx);
  447. case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx);
  448. case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx);
  449. case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx);
  450. case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true);
  451. case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx);
  452. case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true);
  453. case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx);
  454. case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx);
  455. case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx);
  456. case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx);
  457. case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx);
  458. case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
  459. case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx);
  460. case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true);
  461. case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
  462. case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
  463. case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
  464. case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
  465. case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
  466. case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
  467. case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
  468. case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
  469. case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
  470. case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx);
  471. case BO_Comma:
  472. // The clang CFG should have already processed both sides.
  473. return translate(BO->getRHS(), Ctx);
  474. }
  475. return new (Arena) til::Undefined(BO);
  476. }
  477. til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
  478. CallingContext *Ctx) {
  479. clang::CastKind K = CE->getCastKind();
  480. switch (K) {
  481. case CK_LValueToRValue: {
  482. if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
  483. til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
  484. if (E0)
  485. return E0;
  486. }
  487. til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
  488. return E0;
  489. // FIXME!! -- get Load working properly
  490. // return new (Arena) til::Load(E0);
  491. }
  492. case CK_NoOp:
  493. case CK_DerivedToBase:
  494. case CK_UncheckedDerivedToBase:
  495. case CK_ArrayToPointerDecay:
  496. case CK_FunctionToPointerDecay: {
  497. til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
  498. return E0;
  499. }
  500. default: {
  501. // FIXME: handle different kinds of casts.
  502. til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
  503. if (CapabilityExprMode)
  504. return E0;
  505. return new (Arena) til::Cast(til::CAST_none, E0);
  506. }
  507. }
  508. }
  509. til::SExpr *
  510. SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
  511. CallingContext *Ctx) {
  512. til::SExpr *E0 = translate(E->getBase(), Ctx);
  513. til::SExpr *E1 = translate(E->getIdx(), Ctx);
  514. return new (Arena) til::ArrayIndex(E0, E1);
  515. }
  516. til::SExpr *
  517. SExprBuilder::translateAbstractConditionalOperator(
  518. const AbstractConditionalOperator *CO, CallingContext *Ctx) {
  519. auto *C = translate(CO->getCond(), Ctx);
  520. auto *T = translate(CO->getTrueExpr(), Ctx);
  521. auto *E = translate(CO->getFalseExpr(), Ctx);
  522. return new (Arena) til::IfThenElse(C, T, E);
  523. }
  524. til::SExpr *
  525. SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
  526. DeclGroupRef DGrp = S->getDeclGroup();
  527. for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
  528. if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
  529. Expr *E = VD->getInit();
  530. til::SExpr* SE = translate(E, Ctx);
  531. // Add local variables with trivial type to the variable map
  532. QualType T = VD->getType();
  533. if (T.isTrivialType(VD->getASTContext())) {
  534. return addVarDecl(VD, SE);
  535. }
  536. else {
  537. // TODO: add alloca
  538. }
  539. }
  540. }
  541. return nullptr;
  542. }
  543. // If (E) is non-trivial, then add it to the current basic block, and
  544. // update the statement map so that S refers to E. Returns a new variable
  545. // that refers to E.
  546. // If E is trivial returns E.
  547. til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
  548. const ValueDecl *VD) {
  549. if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
  550. return E;
  551. if (VD)
  552. E = new (Arena) til::Variable(E, VD);
  553. CurrentInstructions.push_back(E);
  554. if (S)
  555. insertStmt(S, E);
  556. return E;
  557. }
  558. // Returns the current value of VD, if known, and nullptr otherwise.
  559. til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
  560. auto It = LVarIdxMap.find(VD);
  561. if (It != LVarIdxMap.end()) {
  562. assert(CurrentLVarMap[It->second].first == VD);
  563. return CurrentLVarMap[It->second].second;
  564. }
  565. return nullptr;
  566. }
  567. // if E is a til::Variable, update its clangDecl.
  568. static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
  569. if (!E)
  570. return;
  571. if (til::Variable *V = dyn_cast<til::Variable>(E)) {
  572. if (!V->clangDecl())
  573. V->setClangDecl(VD);
  574. }
  575. }
  576. // Adds a new variable declaration.
  577. til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
  578. maybeUpdateVD(E, VD);
  579. LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
  580. CurrentLVarMap.makeWritable();
  581. CurrentLVarMap.push_back(std::make_pair(VD, E));
  582. return E;
  583. }
  584. // Updates a current variable declaration. (E.g. by assignment)
  585. til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
  586. maybeUpdateVD(E, VD);
  587. auto It = LVarIdxMap.find(VD);
  588. if (It == LVarIdxMap.end()) {
  589. til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
  590. til::SExpr *St = new (Arena) til::Store(Ptr, E);
  591. return St;
  592. }
  593. CurrentLVarMap.makeWritable();
  594. CurrentLVarMap.elem(It->second).second = E;
  595. return E;
  596. }
  597. // Make a Phi node in the current block for the i^th variable in CurrentVarMap.
  598. // If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
  599. // If E == null, this is a backedge and will be set later.
  600. void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
  601. unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
  602. assert(ArgIndex > 0 && ArgIndex < NPreds);
  603. til::SExpr *CurrE = CurrentLVarMap[i].second;
  604. if (CurrE->block() == CurrentBB) {
  605. // We already have a Phi node in the current block,
  606. // so just add the new variable to the Phi node.
  607. til::Phi *Ph = dyn_cast<til::Phi>(CurrE);
  608. assert(Ph && "Expecting Phi node.");
  609. if (E)
  610. Ph->values()[ArgIndex] = E;
  611. return;
  612. }
  613. // Make a new phi node: phi(..., E)
  614. // All phi args up to the current index are set to the current value.
  615. til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
  616. Ph->values().setValues(NPreds, nullptr);
  617. for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
  618. Ph->values()[PIdx] = CurrE;
  619. if (E)
  620. Ph->values()[ArgIndex] = E;
  621. Ph->setClangDecl(CurrentLVarMap[i].first);
  622. // If E is from a back-edge, or either E or CurrE are incomplete, then
  623. // mark this node as incomplete; we may need to remove it later.
  624. if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) {
  625. Ph->setStatus(til::Phi::PH_Incomplete);
  626. }
  627. // Add Phi node to current block, and update CurrentLVarMap[i]
  628. CurrentArguments.push_back(Ph);
  629. if (Ph->status() == til::Phi::PH_Incomplete)
  630. IncompleteArgs.push_back(Ph);
  631. CurrentLVarMap.makeWritable();
  632. CurrentLVarMap.elem(i).second = Ph;
  633. }
  634. // Merge values from Map into the current variable map.
  635. // This will construct Phi nodes in the current basic block as necessary.
  636. void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
  637. assert(CurrentBlockInfo && "Not processing a block!");
  638. if (!CurrentLVarMap.valid()) {
  639. // Steal Map, using copy-on-write.
  640. CurrentLVarMap = std::move(Map);
  641. return;
  642. }
  643. if (CurrentLVarMap.sameAs(Map))
  644. return; // Easy merge: maps from different predecessors are unchanged.
  645. unsigned NPreds = CurrentBB->numPredecessors();
  646. unsigned ESz = CurrentLVarMap.size();
  647. unsigned MSz = Map.size();
  648. unsigned Sz = std::min(ESz, MSz);
  649. for (unsigned i=0; i<Sz; ++i) {
  650. if (CurrentLVarMap[i].first != Map[i].first) {
  651. // We've reached the end of variables in common.
  652. CurrentLVarMap.makeWritable();
  653. CurrentLVarMap.downsize(i);
  654. break;
  655. }
  656. if (CurrentLVarMap[i].second != Map[i].second)
  657. makePhiNodeVar(i, NPreds, Map[i].second);
  658. }
  659. if (ESz > MSz) {
  660. CurrentLVarMap.makeWritable();
  661. CurrentLVarMap.downsize(Map.size());
  662. }
  663. }
  664. // Merge a back edge into the current variable map.
  665. // This will create phi nodes for all variables in the variable map.
  666. void SExprBuilder::mergeEntryMapBackEdge() {
  667. // We don't have definitions for variables on the backedge, because we
  668. // haven't gotten that far in the CFG. Thus, when encountering a back edge,
  669. // we conservatively create Phi nodes for all variables. Unnecessary Phi
  670. // nodes will be marked as incomplete, and stripped out at the end.
  671. //
  672. // An Phi node is unnecessary if it only refers to itself and one other
  673. // variable, e.g. x = Phi(y, y, x) can be reduced to x = y.
  674. assert(CurrentBlockInfo && "Not processing a block!");
  675. if (CurrentBlockInfo->HasBackEdges)
  676. return;
  677. CurrentBlockInfo->HasBackEdges = true;
  678. CurrentLVarMap.makeWritable();
  679. unsigned Sz = CurrentLVarMap.size();
  680. unsigned NPreds = CurrentBB->numPredecessors();
  681. for (unsigned i=0; i < Sz; ++i) {
  682. makePhiNodeVar(i, NPreds, nullptr);
  683. }
  684. }
  685. // Update the phi nodes that were initially created for a back edge
  686. // once the variable definitions have been computed.
  687. // I.e., merge the current variable map into the phi nodes for Blk.
  688. void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
  689. til::BasicBlock *BB = lookupBlock(Blk);
  690. unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
  691. assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
  692. for (til::SExpr *PE : BB->arguments()) {
  693. til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE);
  694. assert(Ph && "Expecting Phi Node.");
  695. assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
  696. til::SExpr *E = lookupVarDecl(Ph->clangDecl());
  697. assert(E && "Couldn't find local variable for Phi node.");
  698. Ph->values()[ArgIndex] = E;
  699. }
  700. }
  701. void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
  702. const CFGBlock *First) {
  703. // Perform initial setup operations.
  704. unsigned NBlocks = Cfg->getNumBlockIDs();
  705. Scfg = new (Arena) til::SCFG(Arena, NBlocks);
  706. // allocate all basic blocks immediately, to handle forward references.
  707. BBInfo.resize(NBlocks);
  708. BlockMap.resize(NBlocks, nullptr);
  709. // create map from clang blockID to til::BasicBlocks
  710. for (auto *B : *Cfg) {
  711. auto *BB = new (Arena) til::BasicBlock(Arena);
  712. BB->reserveInstructions(B->size());
  713. BlockMap[B->getBlockID()] = BB;
  714. }
  715. CurrentBB = lookupBlock(&Cfg->getEntry());
  716. auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
  717. : cast<FunctionDecl>(D)->parameters();
  718. for (auto *Pm : Parms) {
  719. QualType T = Pm->getType();
  720. if (!T.isTrivialType(Pm->getASTContext()))
  721. continue;
  722. // Add parameters to local variable map.
  723. // FIXME: right now we emulate params with loads; that should be fixed.
  724. til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
  725. til::SExpr *Ld = new (Arena) til::Load(Lp);
  726. til::SExpr *V = addStatement(Ld, nullptr, Pm);
  727. addVarDecl(Pm, V);
  728. }
  729. }
  730. void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
  731. // Intialize TIL basic block and add it to the CFG.
  732. CurrentBB = lookupBlock(B);
  733. CurrentBB->reservePredecessors(B->pred_size());
  734. Scfg->add(CurrentBB);
  735. CurrentBlockInfo = &BBInfo[B->getBlockID()];
  736. // CurrentLVarMap is moved to ExitMap on block exit.
  737. // FIXME: the entry block will hold function parameters.
  738. // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
  739. }
  740. void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
  741. // Compute CurrentLVarMap on entry from ExitMaps of predecessors
  742. CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
  743. BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
  744. assert(PredInfo->UnprocessedSuccessors > 0);
  745. if (--PredInfo->UnprocessedSuccessors == 0)
  746. mergeEntryMap(std::move(PredInfo->ExitMap));
  747. else
  748. mergeEntryMap(PredInfo->ExitMap.clone());
  749. ++CurrentBlockInfo->ProcessedPredecessors;
  750. }
  751. void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
  752. mergeEntryMapBackEdge();
  753. }
  754. void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
  755. // The merge*() methods have created arguments.
  756. // Push those arguments onto the basic block.
  757. CurrentBB->arguments().reserve(
  758. static_cast<unsigned>(CurrentArguments.size()), Arena);
  759. for (auto *A : CurrentArguments)
  760. CurrentBB->addArgument(A);
  761. }
  762. void SExprBuilder::handleStatement(const Stmt *S) {
  763. til::SExpr *E = translate(S, nullptr);
  764. addStatement(E, S);
  765. }
  766. void SExprBuilder::handleDestructorCall(const VarDecl *VD,
  767. const CXXDestructorDecl *DD) {
  768. til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
  769. til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
  770. til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
  771. til::SExpr *E = new (Arena) til::Call(Ap);
  772. addStatement(E, nullptr);
  773. }
  774. void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
  775. CurrentBB->instructions().reserve(
  776. static_cast<unsigned>(CurrentInstructions.size()), Arena);
  777. for (auto *V : CurrentInstructions)
  778. CurrentBB->addInstruction(V);
  779. // Create an appropriate terminator
  780. unsigned N = B->succ_size();
  781. auto It = B->succ_begin();
  782. if (N == 1) {
  783. til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
  784. // TODO: set index
  785. unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
  786. auto *Tm = new (Arena) til::Goto(BB, Idx);
  787. CurrentBB->setTerminator(Tm);
  788. }
  789. else if (N == 2) {
  790. til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
  791. til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
  792. ++It;
  793. til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
  794. // FIXME: make sure these arent' critical edges.
  795. auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
  796. CurrentBB->setTerminator(Tm);
  797. }
  798. }
  799. void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
  800. ++CurrentBlockInfo->UnprocessedSuccessors;
  801. }
  802. void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
  803. mergePhiNodesBackEdge(Succ);
  804. ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
  805. }
  806. void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
  807. CurrentArguments.clear();
  808. CurrentInstructions.clear();
  809. CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
  810. CurrentBB = nullptr;
  811. CurrentBlockInfo = nullptr;
  812. }
  813. void SExprBuilder::exitCFG(const CFGBlock *Last) {
  814. for (auto *Ph : IncompleteArgs) {
  815. if (Ph->status() == til::Phi::PH_Incomplete)
  816. simplifyIncompleteArg(Ph);
  817. }
  818. CurrentArguments.clear();
  819. CurrentInstructions.clear();
  820. IncompleteArgs.clear();
  821. }
  822. /*
  823. void printSCFG(CFGWalker &Walker) {
  824. llvm::BumpPtrAllocator Bpa;
  825. til::MemRegionRef Arena(&Bpa);
  826. SExprBuilder SxBuilder(Arena);
  827. til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
  828. TILPrinter::print(Scfg, llvm::errs());
  829. }
  830. */