CGExpr.cpp 193 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931
  1. //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This contains code to emit Expr nodes as LLVM code.
  10. //
  11. //===----------------------------------------------------------------------===//
  12. #include "CGCXXABI.h"
  13. #include "CGCall.h"
  14. #include "CGCleanup.h"
  15. #include "CGDebugInfo.h"
  16. #include "CGObjCRuntime.h"
  17. #include "CGOpenMPRuntime.h"
  18. #include "CGRecordLayout.h"
  19. #include "CodeGenFunction.h"
  20. #include "CodeGenModule.h"
  21. #include "ConstantEmitter.h"
  22. #include "TargetInfo.h"
  23. #include "clang/AST/ASTContext.h"
  24. #include "clang/AST/Attr.h"
  25. #include "clang/AST/DeclObjC.h"
  26. #include "clang/AST/NSAPI.h"
  27. #include "clang/Basic/CodeGenOptions.h"
  28. #include "llvm/ADT/Hashing.h"
  29. #include "llvm/ADT/StringExtras.h"
  30. #include "llvm/IR/DataLayout.h"
  31. #include "llvm/IR/Intrinsics.h"
  32. #include "llvm/IR/LLVMContext.h"
  33. #include "llvm/IR/MDBuilder.h"
  34. #include "llvm/Support/ConvertUTF.h"
  35. #include "llvm/Support/MathExtras.h"
  36. #include "llvm/Support/Path.h"
  37. #include "llvm/Transforms/Utils/SanitizerStats.h"
  38. #include <string>
  39. using namespace clang;
  40. using namespace CodeGen;
  41. //===--------------------------------------------------------------------===//
  42. // Miscellaneous Helper Methods
  43. //===--------------------------------------------------------------------===//
  44. llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
  45. unsigned addressSpace =
  46. cast<llvm::PointerType>(value->getType())->getAddressSpace();
  47. llvm::PointerType *destType = Int8PtrTy;
  48. if (addressSpace)
  49. destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
  50. if (value->getType() == destType) return value;
  51. return Builder.CreateBitCast(value, destType);
  52. }
  53. /// CreateTempAlloca - This creates a alloca and inserts it into the entry
  54. /// block.
  55. Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
  56. CharUnits Align,
  57. const Twine &Name,
  58. llvm::Value *ArraySize) {
  59. auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
  60. Alloca->setAlignment(Align.getQuantity());
  61. return Address(Alloca, Align);
  62. }
  63. /// CreateTempAlloca - This creates a alloca and inserts it into the entry
  64. /// block. The alloca is casted to default address space if necessary.
  65. Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
  66. const Twine &Name,
  67. llvm::Value *ArraySize,
  68. Address *AllocaAddr) {
  69. auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
  70. if (AllocaAddr)
  71. *AllocaAddr = Alloca;
  72. llvm::Value *V = Alloca.getPointer();
  73. // Alloca always returns a pointer in alloca address space, which may
  74. // be different from the type defined by the language. For example,
  75. // in C++ the auto variables are in the default address space. Therefore
  76. // cast alloca to the default address space when necessary.
  77. if (getASTAllocaAddressSpace() != LangAS::Default) {
  78. auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
  79. llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
  80. // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
  81. // otherwise alloca is inserted at the current insertion point of the
  82. // builder.
  83. if (!ArraySize)
  84. Builder.SetInsertPoint(AllocaInsertPt);
  85. V = getTargetHooks().performAddrSpaceCast(
  86. *this, V, getASTAllocaAddressSpace(), LangAS::Default,
  87. Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
  88. }
  89. return Address(V, Align);
  90. }
  91. /// CreateTempAlloca - This creates an alloca and inserts it into the entry
  92. /// block if \p ArraySize is nullptr, otherwise inserts it at the current
  93. /// insertion point of the builder.
  94. llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
  95. const Twine &Name,
  96. llvm::Value *ArraySize) {
  97. if (ArraySize)
  98. return Builder.CreateAlloca(Ty, ArraySize, Name);
  99. return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
  100. ArraySize, Name, AllocaInsertPt);
  101. }
  102. /// CreateDefaultAlignTempAlloca - This creates an alloca with the
  103. /// default alignment of the corresponding LLVM type, which is *not*
  104. /// guaranteed to be related in any way to the expected alignment of
  105. /// an AST type that might have been lowered to Ty.
  106. Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
  107. const Twine &Name) {
  108. CharUnits Align =
  109. CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
  110. return CreateTempAlloca(Ty, Align, Name);
  111. }
  112. void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
  113. assert(isa<llvm::AllocaInst>(Var.getPointer()));
  114. auto *Store = new llvm::StoreInst(Init, Var.getPointer());
  115. Store->setAlignment(Var.getAlignment().getQuantity());
  116. llvm::BasicBlock *Block = AllocaInsertPt->getParent();
  117. Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
  118. }
  119. Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
  120. CharUnits Align = getContext().getTypeAlignInChars(Ty);
  121. return CreateTempAlloca(ConvertType(Ty), Align, Name);
  122. }
  123. Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
  124. Address *Alloca) {
  125. // FIXME: Should we prefer the preferred type alignment here?
  126. return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
  127. }
  128. Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
  129. const Twine &Name, Address *Alloca) {
  130. return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
  131. /*ArraySize=*/nullptr, Alloca);
  132. }
  133. Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
  134. const Twine &Name) {
  135. return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
  136. }
  137. Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
  138. const Twine &Name) {
  139. return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
  140. Name);
  141. }
  142. /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
  143. /// expression and compare the result against zero, returning an Int1Ty value.
  144. llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
  145. PGO.setCurrentStmt(E);
  146. if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
  147. llvm::Value *MemPtr = EmitScalarExpr(E);
  148. return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
  149. }
  150. QualType BoolTy = getContext().BoolTy;
  151. SourceLocation Loc = E->getExprLoc();
  152. if (!E->getType()->isAnyComplexType())
  153. return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
  154. return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
  155. Loc);
  156. }
  157. /// EmitIgnoredExpr - Emit code to compute the specified expression,
  158. /// ignoring the result.
  159. void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
  160. if (E->isRValue())
  161. return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
  162. // Just emit it as an l-value and drop the result.
  163. EmitLValue(E);
  164. }
  165. /// EmitAnyExpr - Emit code to compute the specified expression which
  166. /// can have any type. The result is returned as an RValue struct.
  167. /// If this is an aggregate expression, AggSlot indicates where the
  168. /// result should be returned.
  169. RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
  170. AggValueSlot aggSlot,
  171. bool ignoreResult) {
  172. switch (getEvaluationKind(E->getType())) {
  173. case TEK_Scalar:
  174. return RValue::get(EmitScalarExpr(E, ignoreResult));
  175. case TEK_Complex:
  176. return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
  177. case TEK_Aggregate:
  178. if (!ignoreResult && aggSlot.isIgnored())
  179. aggSlot = CreateAggTemp(E->getType(), "agg-temp");
  180. EmitAggExpr(E, aggSlot);
  181. return aggSlot.asRValue();
  182. }
  183. llvm_unreachable("bad evaluation kind");
  184. }
  185. /// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
  186. /// always be accessible even if no aggregate location is provided.
  187. RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
  188. AggValueSlot AggSlot = AggValueSlot::ignored();
  189. if (hasAggregateEvaluationKind(E->getType()))
  190. AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
  191. return EmitAnyExpr(E, AggSlot);
  192. }
  193. /// EmitAnyExprToMem - Evaluate an expression into a given memory
  194. /// location.
  195. void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
  196. Address Location,
  197. Qualifiers Quals,
  198. bool IsInit) {
  199. // FIXME: This function should take an LValue as an argument.
  200. switch (getEvaluationKind(E->getType())) {
  201. case TEK_Complex:
  202. EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
  203. /*isInit*/ false);
  204. return;
  205. case TEK_Aggregate: {
  206. EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
  207. AggValueSlot::IsDestructed_t(IsInit),
  208. AggValueSlot::DoesNotNeedGCBarriers,
  209. AggValueSlot::IsAliased_t(!IsInit),
  210. AggValueSlot::MayOverlap));
  211. return;
  212. }
  213. case TEK_Scalar: {
  214. RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
  215. LValue LV = MakeAddrLValue(Location, E->getType());
  216. EmitStoreThroughLValue(RV, LV);
  217. return;
  218. }
  219. }
  220. llvm_unreachable("bad evaluation kind");
  221. }
  222. static void
  223. pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
  224. const Expr *E, Address ReferenceTemporary) {
  225. // Objective-C++ ARC:
  226. // If we are binding a reference to a temporary that has ownership, we
  227. // need to perform retain/release operations on the temporary.
  228. //
  229. // FIXME: This should be looking at E, not M.
  230. if (auto Lifetime = M->getType().getObjCLifetime()) {
  231. switch (Lifetime) {
  232. case Qualifiers::OCL_None:
  233. case Qualifiers::OCL_ExplicitNone:
  234. // Carry on to normal cleanup handling.
  235. break;
  236. case Qualifiers::OCL_Autoreleasing:
  237. // Nothing to do; cleaned up by an autorelease pool.
  238. return;
  239. case Qualifiers::OCL_Strong:
  240. case Qualifiers::OCL_Weak:
  241. switch (StorageDuration Duration = M->getStorageDuration()) {
  242. case SD_Static:
  243. // Note: we intentionally do not register a cleanup to release
  244. // the object on program termination.
  245. return;
  246. case SD_Thread:
  247. // FIXME: We should probably register a cleanup in this case.
  248. return;
  249. case SD_Automatic:
  250. case SD_FullExpression:
  251. CodeGenFunction::Destroyer *Destroy;
  252. CleanupKind CleanupKind;
  253. if (Lifetime == Qualifiers::OCL_Strong) {
  254. const ValueDecl *VD = M->getExtendingDecl();
  255. bool Precise =
  256. VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
  257. CleanupKind = CGF.getARCCleanupKind();
  258. Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
  259. : &CodeGenFunction::destroyARCStrongImprecise;
  260. } else {
  261. // __weak objects always get EH cleanups; otherwise, exceptions
  262. // could cause really nasty crashes instead of mere leaks.
  263. CleanupKind = NormalAndEHCleanup;
  264. Destroy = &CodeGenFunction::destroyARCWeak;
  265. }
  266. if (Duration == SD_FullExpression)
  267. CGF.pushDestroy(CleanupKind, ReferenceTemporary,
  268. M->getType(), *Destroy,
  269. CleanupKind & EHCleanup);
  270. else
  271. CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
  272. M->getType(),
  273. *Destroy, CleanupKind & EHCleanup);
  274. return;
  275. case SD_Dynamic:
  276. llvm_unreachable("temporary cannot have dynamic storage duration");
  277. }
  278. llvm_unreachable("unknown storage duration");
  279. }
  280. }
  281. CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
  282. if (const RecordType *RT =
  283. E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
  284. // Get the destructor for the reference temporary.
  285. auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
  286. if (!ClassDecl->hasTrivialDestructor())
  287. ReferenceTemporaryDtor = ClassDecl->getDestructor();
  288. }
  289. if (!ReferenceTemporaryDtor)
  290. return;
  291. // Call the destructor for the temporary.
  292. switch (M->getStorageDuration()) {
  293. case SD_Static:
  294. case SD_Thread: {
  295. llvm::FunctionCallee CleanupFn;
  296. llvm::Constant *CleanupArg;
  297. if (E->getType()->isArrayType()) {
  298. CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
  299. ReferenceTemporary, E->getType(),
  300. CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
  301. dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
  302. CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
  303. } else {
  304. CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
  305. GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
  306. CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
  307. }
  308. CGF.CGM.getCXXABI().registerGlobalDtor(
  309. CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
  310. break;
  311. }
  312. case SD_FullExpression:
  313. CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
  314. CodeGenFunction::destroyCXXObject,
  315. CGF.getLangOpts().Exceptions);
  316. break;
  317. case SD_Automatic:
  318. CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
  319. ReferenceTemporary, E->getType(),
  320. CodeGenFunction::destroyCXXObject,
  321. CGF.getLangOpts().Exceptions);
  322. break;
  323. case SD_Dynamic:
  324. llvm_unreachable("temporary cannot have dynamic storage duration");
  325. }
  326. }
  327. static Address createReferenceTemporary(CodeGenFunction &CGF,
  328. const MaterializeTemporaryExpr *M,
  329. const Expr *Inner,
  330. Address *Alloca = nullptr) {
  331. auto &TCG = CGF.getTargetHooks();
  332. switch (M->getStorageDuration()) {
  333. case SD_FullExpression:
  334. case SD_Automatic: {
  335. // If we have a constant temporary array or record try to promote it into a
  336. // constant global under the same rules a normal constant would've been
  337. // promoted. This is easier on the optimizer and generally emits fewer
  338. // instructions.
  339. QualType Ty = Inner->getType();
  340. if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
  341. (Ty->isArrayType() || Ty->isRecordType()) &&
  342. CGF.CGM.isTypeConstant(Ty, true))
  343. if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
  344. if (auto AddrSpace = CGF.getTarget().getConstantAddressSpace()) {
  345. auto AS = AddrSpace.getValue();
  346. auto *GV = new llvm::GlobalVariable(
  347. CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
  348. llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
  349. llvm::GlobalValue::NotThreadLocal,
  350. CGF.getContext().getTargetAddressSpace(AS));
  351. CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
  352. GV->setAlignment(alignment.getQuantity());
  353. llvm::Constant *C = GV;
  354. if (AS != LangAS::Default)
  355. C = TCG.performAddrSpaceCast(
  356. CGF.CGM, GV, AS, LangAS::Default,
  357. GV->getValueType()->getPointerTo(
  358. CGF.getContext().getTargetAddressSpace(LangAS::Default)));
  359. // FIXME: Should we put the new global into a COMDAT?
  360. return Address(C, alignment);
  361. }
  362. }
  363. return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
  364. }
  365. case SD_Thread:
  366. case SD_Static:
  367. return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
  368. case SD_Dynamic:
  369. llvm_unreachable("temporary can't have dynamic storage duration");
  370. }
  371. llvm_unreachable("unknown storage duration");
  372. }
  373. LValue CodeGenFunction::
  374. EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
  375. const Expr *E = M->GetTemporaryExpr();
  376. assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
  377. !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
  378. "Reference should never be pseudo-strong!");
  379. // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
  380. // as that will cause the lifetime adjustment to be lost for ARC
  381. auto ownership = M->getType().getObjCLifetime();
  382. if (ownership != Qualifiers::OCL_None &&
  383. ownership != Qualifiers::OCL_ExplicitNone) {
  384. Address Object = createReferenceTemporary(*this, M, E);
  385. if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
  386. Object = Address(llvm::ConstantExpr::getBitCast(Var,
  387. ConvertTypeForMem(E->getType())
  388. ->getPointerTo(Object.getAddressSpace())),
  389. Object.getAlignment());
  390. // createReferenceTemporary will promote the temporary to a global with a
  391. // constant initializer if it can. It can only do this to a value of
  392. // ARC-manageable type if the value is global and therefore "immune" to
  393. // ref-counting operations. Therefore we have no need to emit either a
  394. // dynamic initialization or a cleanup and we can just return the address
  395. // of the temporary.
  396. if (Var->hasInitializer())
  397. return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
  398. Var->setInitializer(CGM.EmitNullConstant(E->getType()));
  399. }
  400. LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
  401. AlignmentSource::Decl);
  402. switch (getEvaluationKind(E->getType())) {
  403. default: llvm_unreachable("expected scalar or aggregate expression");
  404. case TEK_Scalar:
  405. EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
  406. break;
  407. case TEK_Aggregate: {
  408. EmitAggExpr(E, AggValueSlot::forAddr(Object,
  409. E->getType().getQualifiers(),
  410. AggValueSlot::IsDestructed,
  411. AggValueSlot::DoesNotNeedGCBarriers,
  412. AggValueSlot::IsNotAliased,
  413. AggValueSlot::DoesNotOverlap));
  414. break;
  415. }
  416. }
  417. pushTemporaryCleanup(*this, M, E, Object);
  418. return RefTempDst;
  419. }
  420. SmallVector<const Expr *, 2> CommaLHSs;
  421. SmallVector<SubobjectAdjustment, 2> Adjustments;
  422. E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
  423. for (const auto &Ignored : CommaLHSs)
  424. EmitIgnoredExpr(Ignored);
  425. if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
  426. if (opaque->getType()->isRecordType()) {
  427. assert(Adjustments.empty());
  428. return EmitOpaqueValueLValue(opaque);
  429. }
  430. }
  431. // Create and initialize the reference temporary.
  432. Address Alloca = Address::invalid();
  433. Address Object = createReferenceTemporary(*this, M, E, &Alloca);
  434. if (auto *Var = dyn_cast<llvm::GlobalVariable>(
  435. Object.getPointer()->stripPointerCasts())) {
  436. Object = Address(llvm::ConstantExpr::getBitCast(
  437. cast<llvm::Constant>(Object.getPointer()),
  438. ConvertTypeForMem(E->getType())->getPointerTo()),
  439. Object.getAlignment());
  440. // If the temporary is a global and has a constant initializer or is a
  441. // constant temporary that we promoted to a global, we may have already
  442. // initialized it.
  443. if (!Var->hasInitializer()) {
  444. Var->setInitializer(CGM.EmitNullConstant(E->getType()));
  445. EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
  446. }
  447. } else {
  448. switch (M->getStorageDuration()) {
  449. case SD_Automatic:
  450. if (auto *Size = EmitLifetimeStart(
  451. CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
  452. Alloca.getPointer())) {
  453. pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
  454. Alloca, Size);
  455. }
  456. break;
  457. case SD_FullExpression: {
  458. if (!ShouldEmitLifetimeMarkers)
  459. break;
  460. // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
  461. // marker. Instead, start the lifetime of a conditional temporary earlier
  462. // so that it's unconditional. Don't do this in ASan's use-after-scope
  463. // mode so that it gets the more precise lifetime marks. If the type has
  464. // a non-trivial destructor, we'll have a cleanup block for it anyway,
  465. // so this typically doesn't help; skip it in that case.
  466. ConditionalEvaluation *OldConditional = nullptr;
  467. CGBuilderTy::InsertPoint OldIP;
  468. if (isInConditionalBranch() && !E->getType().isDestructedType() &&
  469. !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) {
  470. OldConditional = OutermostConditional;
  471. OutermostConditional = nullptr;
  472. OldIP = Builder.saveIP();
  473. llvm::BasicBlock *Block = OldConditional->getStartingBlock();
  474. Builder.restoreIP(CGBuilderTy::InsertPoint(
  475. Block, llvm::BasicBlock::iterator(Block->back())));
  476. }
  477. if (auto *Size = EmitLifetimeStart(
  478. CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
  479. Alloca.getPointer())) {
  480. pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
  481. Size);
  482. }
  483. if (OldConditional) {
  484. OutermostConditional = OldConditional;
  485. Builder.restoreIP(OldIP);
  486. }
  487. break;
  488. }
  489. default:
  490. break;
  491. }
  492. EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
  493. }
  494. pushTemporaryCleanup(*this, M, E, Object);
  495. // Perform derived-to-base casts and/or field accesses, to get from the
  496. // temporary object we created (and, potentially, for which we extended
  497. // the lifetime) to the subobject we're binding the reference to.
  498. for (unsigned I = Adjustments.size(); I != 0; --I) {
  499. SubobjectAdjustment &Adjustment = Adjustments[I-1];
  500. switch (Adjustment.Kind) {
  501. case SubobjectAdjustment::DerivedToBaseAdjustment:
  502. Object =
  503. GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
  504. Adjustment.DerivedToBase.BasePath->path_begin(),
  505. Adjustment.DerivedToBase.BasePath->path_end(),
  506. /*NullCheckValue=*/ false, E->getExprLoc());
  507. break;
  508. case SubobjectAdjustment::FieldAdjustment: {
  509. LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
  510. LV = EmitLValueForField(LV, Adjustment.Field);
  511. assert(LV.isSimple() &&
  512. "materialized temporary field is not a simple lvalue");
  513. Object = LV.getAddress();
  514. break;
  515. }
  516. case SubobjectAdjustment::MemberPointerAdjustment: {
  517. llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
  518. Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
  519. Adjustment.Ptr.MPT);
  520. break;
  521. }
  522. }
  523. }
  524. return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
  525. }
  526. RValue
  527. CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
  528. // Emit the expression as an lvalue.
  529. LValue LV = EmitLValue(E);
  530. assert(LV.isSimple());
  531. llvm::Value *Value = LV.getPointer();
  532. if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
  533. // C++11 [dcl.ref]p5 (as amended by core issue 453):
  534. // If a glvalue to which a reference is directly bound designates neither
  535. // an existing object or function of an appropriate type nor a region of
  536. // storage of suitable size and alignment to contain an object of the
  537. // reference's type, the behavior is undefined.
  538. QualType Ty = E->getType();
  539. EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
  540. }
  541. return RValue::get(Value);
  542. }
  543. /// getAccessedFieldNo - Given an encoded value and a result number, return the
  544. /// input field number being accessed.
  545. unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
  546. const llvm::Constant *Elts) {
  547. return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
  548. ->getZExtValue();
  549. }
  550. /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
  551. static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
  552. llvm::Value *High) {
  553. llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
  554. llvm::Value *K47 = Builder.getInt64(47);
  555. llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
  556. llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
  557. llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
  558. llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
  559. return Builder.CreateMul(B1, KMul);
  560. }
  561. bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
  562. return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
  563. TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
  564. }
  565. bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
  566. CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
  567. return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
  568. (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
  569. TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
  570. TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
  571. }
  572. bool CodeGenFunction::sanitizePerformTypeCheck() const {
  573. return SanOpts.has(SanitizerKind::Null) |
  574. SanOpts.has(SanitizerKind::Alignment) |
  575. SanOpts.has(SanitizerKind::ObjectSize) |
  576. SanOpts.has(SanitizerKind::Vptr);
  577. }
  578. void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
  579. llvm::Value *Ptr, QualType Ty,
  580. CharUnits Alignment,
  581. SanitizerSet SkippedChecks,
  582. llvm::Value *ArraySize) {
  583. if (!sanitizePerformTypeCheck())
  584. return;
  585. // Don't check pointers outside the default address space. The null check
  586. // isn't correct, the object-size check isn't supported by LLVM, and we can't
  587. // communicate the addresses to the runtime handler for the vptr check.
  588. if (Ptr->getType()->getPointerAddressSpace())
  589. return;
  590. // Don't check pointers to volatile data. The behavior here is implementation-
  591. // defined.
  592. if (Ty.isVolatileQualified())
  593. return;
  594. SanitizerScope SanScope(this);
  595. SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
  596. llvm::BasicBlock *Done = nullptr;
  597. // Quickly determine whether we have a pointer to an alloca. It's possible
  598. // to skip null checks, and some alignment checks, for these pointers. This
  599. // can reduce compile-time significantly.
  600. auto PtrToAlloca =
  601. dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCastsNoFollowAliases());
  602. llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
  603. llvm::Value *IsNonNull = nullptr;
  604. bool IsGuaranteedNonNull =
  605. SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
  606. bool AllowNullPointers = isNullPointerAllowed(TCK);
  607. if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
  608. !IsGuaranteedNonNull) {
  609. // The glvalue must not be an empty glvalue.
  610. IsNonNull = Builder.CreateIsNotNull(Ptr);
  611. // The IR builder can constant-fold the null check if the pointer points to
  612. // a constant.
  613. IsGuaranteedNonNull = IsNonNull == True;
  614. // Skip the null check if the pointer is known to be non-null.
  615. if (!IsGuaranteedNonNull) {
  616. if (AllowNullPointers) {
  617. // When performing pointer casts, it's OK if the value is null.
  618. // Skip the remaining checks in that case.
  619. Done = createBasicBlock("null");
  620. llvm::BasicBlock *Rest = createBasicBlock("not.null");
  621. Builder.CreateCondBr(IsNonNull, Rest, Done);
  622. EmitBlock(Rest);
  623. } else {
  624. Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
  625. }
  626. }
  627. }
  628. if (SanOpts.has(SanitizerKind::ObjectSize) &&
  629. !SkippedChecks.has(SanitizerKind::ObjectSize) &&
  630. !Ty->isIncompleteType()) {
  631. uint64_t TySize = getContext().getTypeSizeInChars(Ty).getQuantity();
  632. llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
  633. if (ArraySize)
  634. Size = Builder.CreateMul(Size, ArraySize);
  635. // Degenerate case: new X[0] does not need an objectsize check.
  636. llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
  637. if (!ConstantSize || !ConstantSize->isNullValue()) {
  638. // The glvalue must refer to a large enough storage region.
  639. // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
  640. // to check this.
  641. // FIXME: Get object address space
  642. llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
  643. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
  644. llvm::Value *Min = Builder.getFalse();
  645. llvm::Value *NullIsUnknown = Builder.getFalse();
  646. llvm::Value *Dynamic = Builder.getFalse();
  647. llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
  648. llvm::Value *LargeEnough = Builder.CreateICmpUGE(
  649. Builder.CreateCall(F, {CastAddr, Min, NullIsUnknown, Dynamic}), Size);
  650. Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
  651. }
  652. }
  653. uint64_t AlignVal = 0;
  654. llvm::Value *PtrAsInt = nullptr;
  655. if (SanOpts.has(SanitizerKind::Alignment) &&
  656. !SkippedChecks.has(SanitizerKind::Alignment)) {
  657. AlignVal = Alignment.getQuantity();
  658. if (!Ty->isIncompleteType() && !AlignVal)
  659. AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
  660. // The glvalue must be suitably aligned.
  661. if (AlignVal > 1 &&
  662. (!PtrToAlloca || PtrToAlloca->getAlignment() < AlignVal)) {
  663. PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
  664. llvm::Value *Align = Builder.CreateAnd(
  665. PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
  666. llvm::Value *Aligned =
  667. Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
  668. if (Aligned != True)
  669. Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
  670. }
  671. }
  672. if (Checks.size() > 0) {
  673. // Make sure we're not losing information. Alignment needs to be a power of
  674. // 2
  675. assert(!AlignVal || (uint64_t)1 << llvm::Log2_64(AlignVal) == AlignVal);
  676. llvm::Constant *StaticData[] = {
  677. EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
  678. llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2_64(AlignVal) : 1),
  679. llvm::ConstantInt::get(Int8Ty, TCK)};
  680. EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
  681. PtrAsInt ? PtrAsInt : Ptr);
  682. }
  683. // If possible, check that the vptr indicates that there is a subobject of
  684. // type Ty at offset zero within this object.
  685. //
  686. // C++11 [basic.life]p5,6:
  687. // [For storage which does not refer to an object within its lifetime]
  688. // The program has undefined behavior if:
  689. // -- the [pointer or glvalue] is used to access a non-static data member
  690. // or call a non-static member function
  691. if (SanOpts.has(SanitizerKind::Vptr) &&
  692. !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
  693. // Ensure that the pointer is non-null before loading it. If there is no
  694. // compile-time guarantee, reuse the run-time null check or emit a new one.
  695. if (!IsGuaranteedNonNull) {
  696. if (!IsNonNull)
  697. IsNonNull = Builder.CreateIsNotNull(Ptr);
  698. if (!Done)
  699. Done = createBasicBlock("vptr.null");
  700. llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
  701. Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
  702. EmitBlock(VptrNotNull);
  703. }
  704. // Compute a hash of the mangled name of the type.
  705. //
  706. // FIXME: This is not guaranteed to be deterministic! Move to a
  707. // fingerprinting mechanism once LLVM provides one. For the time
  708. // being the implementation happens to be deterministic.
  709. SmallString<64> MangledName;
  710. llvm::raw_svector_ostream Out(MangledName);
  711. CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
  712. Out);
  713. // Blacklist based on the mangled type.
  714. if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
  715. SanitizerKind::Vptr, Out.str())) {
  716. llvm::hash_code TypeHash = hash_value(Out.str());
  717. // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
  718. llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
  719. llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
  720. Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
  721. llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
  722. llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
  723. llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
  724. Hash = Builder.CreateTrunc(Hash, IntPtrTy);
  725. // Look the hash up in our cache.
  726. const int CacheSize = 128;
  727. llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
  728. llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
  729. "__ubsan_vptr_type_cache");
  730. llvm::Value *Slot = Builder.CreateAnd(Hash,
  731. llvm::ConstantInt::get(IntPtrTy,
  732. CacheSize-1));
  733. llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
  734. llvm::Value *CacheVal =
  735. Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
  736. getPointerAlign());
  737. // If the hash isn't in the cache, call a runtime handler to perform the
  738. // hard work of checking whether the vptr is for an object of the right
  739. // type. This will either fill in the cache and return, or produce a
  740. // diagnostic.
  741. llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
  742. llvm::Constant *StaticData[] = {
  743. EmitCheckSourceLocation(Loc),
  744. EmitCheckTypeDescriptor(Ty),
  745. CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
  746. llvm::ConstantInt::get(Int8Ty, TCK)
  747. };
  748. llvm::Value *DynamicData[] = { Ptr, Hash };
  749. EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
  750. SanitizerHandler::DynamicTypeCacheMiss, StaticData,
  751. DynamicData);
  752. }
  753. }
  754. if (Done) {
  755. Builder.CreateBr(Done);
  756. EmitBlock(Done);
  757. }
  758. }
  759. /// Determine whether this expression refers to a flexible array member in a
  760. /// struct. We disable array bounds checks for such members.
  761. static bool isFlexibleArrayMemberExpr(const Expr *E) {
  762. // For compatibility with existing code, we treat arrays of length 0 or
  763. // 1 as flexible array members.
  764. const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
  765. if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
  766. if (CAT->getSize().ugt(1))
  767. return false;
  768. } else if (!isa<IncompleteArrayType>(AT))
  769. return false;
  770. E = E->IgnoreParens();
  771. // A flexible array member must be the last member in the class.
  772. if (const auto *ME = dyn_cast<MemberExpr>(E)) {
  773. // FIXME: If the base type of the member expr is not FD->getParent(),
  774. // this should not be treated as a flexible array member access.
  775. if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
  776. RecordDecl::field_iterator FI(
  777. DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
  778. return ++FI == FD->getParent()->field_end();
  779. }
  780. } else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(E)) {
  781. return IRE->getDecl()->getNextIvar() == nullptr;
  782. }
  783. return false;
  784. }
  785. llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
  786. QualType EltTy) {
  787. ASTContext &C = getContext();
  788. uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
  789. if (!EltSize)
  790. return nullptr;
  791. auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
  792. if (!ArrayDeclRef)
  793. return nullptr;
  794. auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
  795. if (!ParamDecl)
  796. return nullptr;
  797. auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
  798. if (!POSAttr)
  799. return nullptr;
  800. // Don't load the size if it's a lower bound.
  801. int POSType = POSAttr->getType();
  802. if (POSType != 0 && POSType != 1)
  803. return nullptr;
  804. // Find the implicit size parameter.
  805. auto PassedSizeIt = SizeArguments.find(ParamDecl);
  806. if (PassedSizeIt == SizeArguments.end())
  807. return nullptr;
  808. const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
  809. assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
  810. Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
  811. llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
  812. C.getSizeType(), E->getExprLoc());
  813. llvm::Value *SizeOfElement =
  814. llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
  815. return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
  816. }
  817. /// If Base is known to point to the start of an array, return the length of
  818. /// that array. Return 0 if the length cannot be determined.
  819. static llvm::Value *getArrayIndexingBound(
  820. CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
  821. // For the vector indexing extension, the bound is the number of elements.
  822. if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
  823. IndexedType = Base->getType();
  824. return CGF.Builder.getInt32(VT->getNumElements());
  825. }
  826. Base = Base->IgnoreParens();
  827. if (const auto *CE = dyn_cast<CastExpr>(Base)) {
  828. if (CE->getCastKind() == CK_ArrayToPointerDecay &&
  829. !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
  830. IndexedType = CE->getSubExpr()->getType();
  831. const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
  832. if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
  833. return CGF.Builder.getInt(CAT->getSize());
  834. else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
  835. return CGF.getVLASize(VAT).NumElts;
  836. // Ignore pass_object_size here. It's not applicable on decayed pointers.
  837. }
  838. }
  839. QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
  840. if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
  841. IndexedType = Base->getType();
  842. return POS;
  843. }
  844. return nullptr;
  845. }
  846. void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
  847. llvm::Value *Index, QualType IndexType,
  848. bool Accessed) {
  849. assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
  850. "should not be called unless adding bounds checks");
  851. SanitizerScope SanScope(this);
  852. QualType IndexedType;
  853. llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
  854. if (!Bound)
  855. return;
  856. bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
  857. llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
  858. llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
  859. llvm::Constant *StaticData[] = {
  860. EmitCheckSourceLocation(E->getExprLoc()),
  861. EmitCheckTypeDescriptor(IndexedType),
  862. EmitCheckTypeDescriptor(IndexType)
  863. };
  864. llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
  865. : Builder.CreateICmpULE(IndexVal, BoundVal);
  866. EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
  867. SanitizerHandler::OutOfBounds, StaticData, Index);
  868. }
  869. CodeGenFunction::ComplexPairTy CodeGenFunction::
  870. EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
  871. bool isInc, bool isPre) {
  872. ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
  873. llvm::Value *NextVal;
  874. if (isa<llvm::IntegerType>(InVal.first->getType())) {
  875. uint64_t AmountVal = isInc ? 1 : -1;
  876. NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
  877. // Add the inc/dec to the real part.
  878. NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
  879. } else {
  880. QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
  881. llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
  882. if (!isInc)
  883. FVal.changeSign();
  884. NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
  885. // Add the inc/dec to the real part.
  886. NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
  887. }
  888. ComplexPairTy IncVal(NextVal, InVal.second);
  889. // Store the updated result through the lvalue.
  890. EmitStoreOfComplex(IncVal, LV, /*init*/ false);
  891. // If this is a postinc, return the value read from memory, otherwise use the
  892. // updated value.
  893. return isPre ? IncVal : InVal;
  894. }
  895. void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
  896. CodeGenFunction *CGF) {
  897. // Bind VLAs in the cast type.
  898. if (CGF && E->getType()->isVariablyModifiedType())
  899. CGF->EmitVariablyModifiedType(E->getType());
  900. if (CGDebugInfo *DI = getModuleDebugInfo())
  901. DI->EmitExplicitCastType(E->getType());
  902. }
  903. //===----------------------------------------------------------------------===//
  904. // LValue Expression Emission
  905. //===----------------------------------------------------------------------===//
  906. /// EmitPointerWithAlignment - Given an expression of pointer type, try to
  907. /// derive a more accurate bound on the alignment of the pointer.
  908. Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
  909. LValueBaseInfo *BaseInfo,
  910. TBAAAccessInfo *TBAAInfo) {
  911. // We allow this with ObjC object pointers because of fragile ABIs.
  912. assert(E->getType()->isPointerType() ||
  913. E->getType()->isObjCObjectPointerType());
  914. E = E->IgnoreParens();
  915. // Casts:
  916. if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
  917. if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
  918. CGM.EmitExplicitCastExprType(ECE, this);
  919. switch (CE->getCastKind()) {
  920. // Non-converting casts (but not C's implicit conversion from void*).
  921. case CK_BitCast:
  922. case CK_NoOp:
  923. case CK_AddressSpaceConversion:
  924. if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
  925. if (PtrTy->getPointeeType()->isVoidType())
  926. break;
  927. LValueBaseInfo InnerBaseInfo;
  928. TBAAAccessInfo InnerTBAAInfo;
  929. Address Addr = EmitPointerWithAlignment(CE->getSubExpr(),
  930. &InnerBaseInfo,
  931. &InnerTBAAInfo);
  932. if (BaseInfo) *BaseInfo = InnerBaseInfo;
  933. if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
  934. if (isa<ExplicitCastExpr>(CE)) {
  935. LValueBaseInfo TargetTypeBaseInfo;
  936. TBAAAccessInfo TargetTypeTBAAInfo;
  937. CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(),
  938. &TargetTypeBaseInfo,
  939. &TargetTypeTBAAInfo);
  940. if (TBAAInfo)
  941. *TBAAInfo = CGM.mergeTBAAInfoForCast(*TBAAInfo,
  942. TargetTypeTBAAInfo);
  943. // If the source l-value is opaque, honor the alignment of the
  944. // casted-to type.
  945. if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
  946. if (BaseInfo)
  947. BaseInfo->mergeForCast(TargetTypeBaseInfo);
  948. Addr = Address(Addr.getPointer(), Align);
  949. }
  950. }
  951. if (SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
  952. CE->getCastKind() == CK_BitCast) {
  953. if (auto PT = E->getType()->getAs<PointerType>())
  954. EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
  955. /*MayBeNull=*/true,
  956. CodeGenFunction::CFITCK_UnrelatedCast,
  957. CE->getBeginLoc());
  958. }
  959. return CE->getCastKind() != CK_AddressSpaceConversion
  960. ? Builder.CreateBitCast(Addr, ConvertType(E->getType()))
  961. : Builder.CreateAddrSpaceCast(Addr,
  962. ConvertType(E->getType()));
  963. }
  964. break;
  965. // Array-to-pointer decay.
  966. case CK_ArrayToPointerDecay:
  967. return EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
  968. // Derived-to-base conversions.
  969. case CK_UncheckedDerivedToBase:
  970. case CK_DerivedToBase: {
  971. // TODO: Support accesses to members of base classes in TBAA. For now, we
  972. // conservatively pretend that the complete object is of the base class
  973. // type.
  974. if (TBAAInfo)
  975. *TBAAInfo = CGM.getTBAAAccessInfo(E->getType());
  976. Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), BaseInfo);
  977. auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
  978. return GetAddressOfBaseClass(Addr, Derived,
  979. CE->path_begin(), CE->path_end(),
  980. ShouldNullCheckClassCastValue(CE),
  981. CE->getExprLoc());
  982. }
  983. // TODO: Is there any reason to treat base-to-derived conversions
  984. // specially?
  985. default:
  986. break;
  987. }
  988. }
  989. // Unary &.
  990. if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
  991. if (UO->getOpcode() == UO_AddrOf) {
  992. LValue LV = EmitLValue(UO->getSubExpr());
  993. if (BaseInfo) *BaseInfo = LV.getBaseInfo();
  994. if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
  995. return LV.getAddress();
  996. }
  997. }
  998. // TODO: conditional operators, comma.
  999. // Otherwise, use the alignment of the type.
  1000. CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), BaseInfo,
  1001. TBAAInfo);
  1002. return Address(EmitScalarExpr(E), Align);
  1003. }
  1004. RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
  1005. if (Ty->isVoidType())
  1006. return RValue::get(nullptr);
  1007. switch (getEvaluationKind(Ty)) {
  1008. case TEK_Complex: {
  1009. llvm::Type *EltTy =
  1010. ConvertType(Ty->castAs<ComplexType>()->getElementType());
  1011. llvm::Value *U = llvm::UndefValue::get(EltTy);
  1012. return RValue::getComplex(std::make_pair(U, U));
  1013. }
  1014. // If this is a use of an undefined aggregate type, the aggregate must have an
  1015. // identifiable address. Just because the contents of the value are undefined
  1016. // doesn't mean that the address can't be taken and compared.
  1017. case TEK_Aggregate: {
  1018. Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
  1019. return RValue::getAggregate(DestPtr);
  1020. }
  1021. case TEK_Scalar:
  1022. return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
  1023. }
  1024. llvm_unreachable("bad evaluation kind");
  1025. }
  1026. RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
  1027. const char *Name) {
  1028. ErrorUnsupported(E, Name);
  1029. return GetUndefRValue(E->getType());
  1030. }
  1031. LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
  1032. const char *Name) {
  1033. ErrorUnsupported(E, Name);
  1034. llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
  1035. return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
  1036. E->getType());
  1037. }
  1038. bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
  1039. const Expr *Base = Obj;
  1040. while (!isa<CXXThisExpr>(Base)) {
  1041. // The result of a dynamic_cast can be null.
  1042. if (isa<CXXDynamicCastExpr>(Base))
  1043. return false;
  1044. if (const auto *CE = dyn_cast<CastExpr>(Base)) {
  1045. Base = CE->getSubExpr();
  1046. } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
  1047. Base = PE->getSubExpr();
  1048. } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
  1049. if (UO->getOpcode() == UO_Extension)
  1050. Base = UO->getSubExpr();
  1051. else
  1052. return false;
  1053. } else {
  1054. return false;
  1055. }
  1056. }
  1057. return true;
  1058. }
  1059. LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
  1060. LValue LV;
  1061. if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
  1062. LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
  1063. else
  1064. LV = EmitLValue(E);
  1065. if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
  1066. SanitizerSet SkippedChecks;
  1067. if (const auto *ME = dyn_cast<MemberExpr>(E)) {
  1068. bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
  1069. if (IsBaseCXXThis)
  1070. SkippedChecks.set(SanitizerKind::Alignment, true);
  1071. if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
  1072. SkippedChecks.set(SanitizerKind::Null, true);
  1073. }
  1074. EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
  1075. E->getType(), LV.getAlignment(), SkippedChecks);
  1076. }
  1077. return LV;
  1078. }
  1079. /// EmitLValue - Emit code to compute a designator that specifies the location
  1080. /// of the expression.
  1081. ///
  1082. /// This can return one of two things: a simple address or a bitfield reference.
  1083. /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
  1084. /// an LLVM pointer type.
  1085. ///
  1086. /// If this returns a bitfield reference, nothing about the pointee type of the
  1087. /// LLVM value is known: For example, it may not be a pointer to an integer.
  1088. ///
  1089. /// If this returns a normal address, and if the lvalue's C type is fixed size,
  1090. /// this method guarantees that the returned pointer type will point to an LLVM
  1091. /// type of the same size of the lvalue's type. If the lvalue has a variable
  1092. /// length type, this is not possible.
  1093. ///
  1094. LValue CodeGenFunction::EmitLValue(const Expr *E) {
  1095. ApplyDebugLocation DL(*this, E);
  1096. switch (E->getStmtClass()) {
  1097. default: return EmitUnsupportedLValue(E, "l-value expression");
  1098. case Expr::ObjCPropertyRefExprClass:
  1099. llvm_unreachable("cannot emit a property reference directly");
  1100. case Expr::ObjCSelectorExprClass:
  1101. return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
  1102. case Expr::ObjCIsaExprClass:
  1103. return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
  1104. case Expr::BinaryOperatorClass:
  1105. return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
  1106. case Expr::CompoundAssignOperatorClass: {
  1107. QualType Ty = E->getType();
  1108. if (const AtomicType *AT = Ty->getAs<AtomicType>())
  1109. Ty = AT->getValueType();
  1110. if (!Ty->isAnyComplexType())
  1111. return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
  1112. return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
  1113. }
  1114. case Expr::CallExprClass:
  1115. case Expr::CXXMemberCallExprClass:
  1116. case Expr::CXXOperatorCallExprClass:
  1117. case Expr::UserDefinedLiteralClass:
  1118. return EmitCallExprLValue(cast<CallExpr>(E));
  1119. case Expr::VAArgExprClass:
  1120. return EmitVAArgExprLValue(cast<VAArgExpr>(E));
  1121. case Expr::DeclRefExprClass:
  1122. return EmitDeclRefLValue(cast<DeclRefExpr>(E));
  1123. case Expr::ConstantExprClass:
  1124. return EmitLValue(cast<ConstantExpr>(E)->getSubExpr());
  1125. case Expr::ParenExprClass:
  1126. return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
  1127. case Expr::GenericSelectionExprClass:
  1128. return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
  1129. case Expr::PredefinedExprClass:
  1130. return EmitPredefinedLValue(cast<PredefinedExpr>(E));
  1131. case Expr::StringLiteralClass:
  1132. return EmitStringLiteralLValue(cast<StringLiteral>(E));
  1133. case Expr::ObjCEncodeExprClass:
  1134. return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
  1135. case Expr::PseudoObjectExprClass:
  1136. return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
  1137. case Expr::InitListExprClass:
  1138. return EmitInitListLValue(cast<InitListExpr>(E));
  1139. case Expr::CXXTemporaryObjectExprClass:
  1140. case Expr::CXXConstructExprClass:
  1141. return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
  1142. case Expr::CXXBindTemporaryExprClass:
  1143. return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
  1144. case Expr::CXXUuidofExprClass:
  1145. return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
  1146. case Expr::LambdaExprClass:
  1147. return EmitAggExprToLValue(E);
  1148. case Expr::ExprWithCleanupsClass: {
  1149. const auto *cleanups = cast<ExprWithCleanups>(E);
  1150. enterFullExpression(cleanups);
  1151. RunCleanupsScope Scope(*this);
  1152. LValue LV = EmitLValue(cleanups->getSubExpr());
  1153. if (LV.isSimple()) {
  1154. // Defend against branches out of gnu statement expressions surrounded by
  1155. // cleanups.
  1156. llvm::Value *V = LV.getPointer();
  1157. Scope.ForceCleanup({&V});
  1158. return LValue::MakeAddr(Address(V, LV.getAlignment()), LV.getType(),
  1159. getContext(), LV.getBaseInfo(), LV.getTBAAInfo());
  1160. }
  1161. // FIXME: Is it possible to create an ExprWithCleanups that produces a
  1162. // bitfield lvalue or some other non-simple lvalue?
  1163. return LV;
  1164. }
  1165. case Expr::CXXDefaultArgExprClass: {
  1166. auto *DAE = cast<CXXDefaultArgExpr>(E);
  1167. CXXDefaultArgExprScope Scope(*this, DAE);
  1168. return EmitLValue(DAE->getExpr());
  1169. }
  1170. case Expr::CXXDefaultInitExprClass: {
  1171. auto *DIE = cast<CXXDefaultInitExpr>(E);
  1172. CXXDefaultInitExprScope Scope(*this, DIE);
  1173. return EmitLValue(DIE->getExpr());
  1174. }
  1175. case Expr::CXXTypeidExprClass:
  1176. return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
  1177. case Expr::ObjCMessageExprClass:
  1178. return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
  1179. case Expr::ObjCIvarRefExprClass:
  1180. return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
  1181. case Expr::StmtExprClass:
  1182. return EmitStmtExprLValue(cast<StmtExpr>(E));
  1183. case Expr::UnaryOperatorClass:
  1184. return EmitUnaryOpLValue(cast<UnaryOperator>(E));
  1185. case Expr::ArraySubscriptExprClass:
  1186. return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
  1187. case Expr::OMPArraySectionExprClass:
  1188. return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
  1189. case Expr::ExtVectorElementExprClass:
  1190. return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
  1191. case Expr::MemberExprClass:
  1192. return EmitMemberExpr(cast<MemberExpr>(E));
  1193. case Expr::CompoundLiteralExprClass:
  1194. return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
  1195. case Expr::ConditionalOperatorClass:
  1196. return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
  1197. case Expr::BinaryConditionalOperatorClass:
  1198. return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
  1199. case Expr::ChooseExprClass:
  1200. return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
  1201. case Expr::OpaqueValueExprClass:
  1202. return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
  1203. case Expr::SubstNonTypeTemplateParmExprClass:
  1204. return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
  1205. case Expr::ImplicitCastExprClass:
  1206. case Expr::CStyleCastExprClass:
  1207. case Expr::CXXFunctionalCastExprClass:
  1208. case Expr::CXXStaticCastExprClass:
  1209. case Expr::CXXDynamicCastExprClass:
  1210. case Expr::CXXReinterpretCastExprClass:
  1211. case Expr::CXXConstCastExprClass:
  1212. case Expr::ObjCBridgedCastExprClass:
  1213. return EmitCastLValue(cast<CastExpr>(E));
  1214. case Expr::MaterializeTemporaryExprClass:
  1215. return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
  1216. case Expr::CoawaitExprClass:
  1217. return EmitCoawaitLValue(cast<CoawaitExpr>(E));
  1218. case Expr::CoyieldExprClass:
  1219. return EmitCoyieldLValue(cast<CoyieldExpr>(E));
  1220. }
  1221. }
  1222. /// Given an object of the given canonical type, can we safely copy a
  1223. /// value out of it based on its initializer?
  1224. static bool isConstantEmittableObjectType(QualType type) {
  1225. assert(type.isCanonical());
  1226. assert(!type->isReferenceType());
  1227. // Must be const-qualified but non-volatile.
  1228. Qualifiers qs = type.getLocalQualifiers();
  1229. if (!qs.hasConst() || qs.hasVolatile()) return false;
  1230. // Otherwise, all object types satisfy this except C++ classes with
  1231. // mutable subobjects or non-trivial copy/destroy behavior.
  1232. if (const auto *RT = dyn_cast<RecordType>(type))
  1233. if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
  1234. if (RD->hasMutableFields() || !RD->isTrivial())
  1235. return false;
  1236. return true;
  1237. }
  1238. /// Can we constant-emit a load of a reference to a variable of the
  1239. /// given type? This is different from predicates like
  1240. /// Decl::isUsableInConstantExpressions because we do want it to apply
  1241. /// in situations that don't necessarily satisfy the language's rules
  1242. /// for this (e.g. C++'s ODR-use rules). For example, we want to able
  1243. /// to do this with const float variables even if those variables
  1244. /// aren't marked 'constexpr'.
  1245. enum ConstantEmissionKind {
  1246. CEK_None,
  1247. CEK_AsReferenceOnly,
  1248. CEK_AsValueOrReference,
  1249. CEK_AsValueOnly
  1250. };
  1251. static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
  1252. type = type.getCanonicalType();
  1253. if (const auto *ref = dyn_cast<ReferenceType>(type)) {
  1254. if (isConstantEmittableObjectType(ref->getPointeeType()))
  1255. return CEK_AsValueOrReference;
  1256. return CEK_AsReferenceOnly;
  1257. }
  1258. if (isConstantEmittableObjectType(type))
  1259. return CEK_AsValueOnly;
  1260. return CEK_None;
  1261. }
  1262. /// Try to emit a reference to the given value without producing it as
  1263. /// an l-value. This is actually more than an optimization: we can't
  1264. /// produce an l-value for variables that we never actually captured
  1265. /// in a block or lambda, which means const int variables or constexpr
  1266. /// literals or similar.
  1267. CodeGenFunction::ConstantEmission
  1268. CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
  1269. ValueDecl *value = refExpr->getDecl();
  1270. // The value needs to be an enum constant or a constant variable.
  1271. ConstantEmissionKind CEK;
  1272. if (isa<ParmVarDecl>(value)) {
  1273. CEK = CEK_None;
  1274. } else if (auto *var = dyn_cast<VarDecl>(value)) {
  1275. CEK = checkVarTypeForConstantEmission(var->getType());
  1276. } else if (isa<EnumConstantDecl>(value)) {
  1277. CEK = CEK_AsValueOnly;
  1278. } else {
  1279. CEK = CEK_None;
  1280. }
  1281. if (CEK == CEK_None) return ConstantEmission();
  1282. Expr::EvalResult result;
  1283. bool resultIsReference;
  1284. QualType resultType;
  1285. // It's best to evaluate all the way as an r-value if that's permitted.
  1286. if (CEK != CEK_AsReferenceOnly &&
  1287. refExpr->EvaluateAsRValue(result, getContext())) {
  1288. resultIsReference = false;
  1289. resultType = refExpr->getType();
  1290. // Otherwise, try to evaluate as an l-value.
  1291. } else if (CEK != CEK_AsValueOnly &&
  1292. refExpr->EvaluateAsLValue(result, getContext())) {
  1293. resultIsReference = true;
  1294. resultType = value->getType();
  1295. // Failure.
  1296. } else {
  1297. return ConstantEmission();
  1298. }
  1299. // In any case, if the initializer has side-effects, abandon ship.
  1300. if (result.HasSideEffects)
  1301. return ConstantEmission();
  1302. // Emit as a constant.
  1303. auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
  1304. result.Val, resultType);
  1305. // Make sure we emit a debug reference to the global variable.
  1306. // This should probably fire even for
  1307. if (isa<VarDecl>(value)) {
  1308. if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
  1309. EmitDeclRefExprDbgValue(refExpr, result.Val);
  1310. } else {
  1311. assert(isa<EnumConstantDecl>(value));
  1312. EmitDeclRefExprDbgValue(refExpr, result.Val);
  1313. }
  1314. // If we emitted a reference constant, we need to dereference that.
  1315. if (resultIsReference)
  1316. return ConstantEmission::forReference(C);
  1317. return ConstantEmission::forValue(C);
  1318. }
  1319. static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
  1320. const MemberExpr *ME) {
  1321. if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
  1322. // Try to emit static variable member expressions as DREs.
  1323. return DeclRefExpr::Create(
  1324. CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
  1325. /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
  1326. ME->getType(), ME->getValueKind());
  1327. }
  1328. return nullptr;
  1329. }
  1330. CodeGenFunction::ConstantEmission
  1331. CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
  1332. if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
  1333. return tryEmitAsConstant(DRE);
  1334. return ConstantEmission();
  1335. }
  1336. llvm::Value *CodeGenFunction::emitScalarConstant(
  1337. const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
  1338. assert(Constant && "not a constant");
  1339. if (Constant.isReference())
  1340. return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
  1341. E->getExprLoc())
  1342. .getScalarVal();
  1343. return Constant.getValue();
  1344. }
  1345. llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
  1346. SourceLocation Loc) {
  1347. return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
  1348. lvalue.getType(), Loc, lvalue.getBaseInfo(),
  1349. lvalue.getTBAAInfo(), lvalue.isNontemporal());
  1350. }
  1351. static bool hasBooleanRepresentation(QualType Ty) {
  1352. if (Ty->isBooleanType())
  1353. return true;
  1354. if (const EnumType *ET = Ty->getAs<EnumType>())
  1355. return ET->getDecl()->getIntegerType()->isBooleanType();
  1356. if (const AtomicType *AT = Ty->getAs<AtomicType>())
  1357. return hasBooleanRepresentation(AT->getValueType());
  1358. return false;
  1359. }
  1360. static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
  1361. llvm::APInt &Min, llvm::APInt &End,
  1362. bool StrictEnums, bool IsBool) {
  1363. const EnumType *ET = Ty->getAs<EnumType>();
  1364. bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
  1365. ET && !ET->getDecl()->isFixed();
  1366. if (!IsBool && !IsRegularCPlusPlusEnum)
  1367. return false;
  1368. if (IsBool) {
  1369. Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
  1370. End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
  1371. } else {
  1372. const EnumDecl *ED = ET->getDecl();
  1373. llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
  1374. unsigned Bitwidth = LTy->getScalarSizeInBits();
  1375. unsigned NumNegativeBits = ED->getNumNegativeBits();
  1376. unsigned NumPositiveBits = ED->getNumPositiveBits();
  1377. if (NumNegativeBits) {
  1378. unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
  1379. assert(NumBits <= Bitwidth);
  1380. End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
  1381. Min = -End;
  1382. } else {
  1383. assert(NumPositiveBits <= Bitwidth);
  1384. End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
  1385. Min = llvm::APInt(Bitwidth, 0);
  1386. }
  1387. }
  1388. return true;
  1389. }
  1390. llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
  1391. llvm::APInt Min, End;
  1392. if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
  1393. hasBooleanRepresentation(Ty)))
  1394. return nullptr;
  1395. llvm::MDBuilder MDHelper(getLLVMContext());
  1396. return MDHelper.createRange(Min, End);
  1397. }
  1398. bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
  1399. SourceLocation Loc) {
  1400. bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
  1401. bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
  1402. if (!HasBoolCheck && !HasEnumCheck)
  1403. return false;
  1404. bool IsBool = hasBooleanRepresentation(Ty) ||
  1405. NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
  1406. bool NeedsBoolCheck = HasBoolCheck && IsBool;
  1407. bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
  1408. if (!NeedsBoolCheck && !NeedsEnumCheck)
  1409. return false;
  1410. // Single-bit booleans don't need to be checked. Special-case this to avoid
  1411. // a bit width mismatch when handling bitfield values. This is handled by
  1412. // EmitFromMemory for the non-bitfield case.
  1413. if (IsBool &&
  1414. cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
  1415. return false;
  1416. llvm::APInt Min, End;
  1417. if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
  1418. return true;
  1419. auto &Ctx = getLLVMContext();
  1420. SanitizerScope SanScope(this);
  1421. llvm::Value *Check;
  1422. --End;
  1423. if (!Min) {
  1424. Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
  1425. } else {
  1426. llvm::Value *Upper =
  1427. Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
  1428. llvm::Value *Lower =
  1429. Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
  1430. Check = Builder.CreateAnd(Upper, Lower);
  1431. }
  1432. llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
  1433. EmitCheckTypeDescriptor(Ty)};
  1434. SanitizerMask Kind =
  1435. NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
  1436. EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
  1437. StaticArgs, EmitCheckValue(Value));
  1438. return true;
  1439. }
  1440. llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
  1441. QualType Ty,
  1442. SourceLocation Loc,
  1443. LValueBaseInfo BaseInfo,
  1444. TBAAAccessInfo TBAAInfo,
  1445. bool isNontemporal) {
  1446. if (!CGM.getCodeGenOpts().PreserveVec3Type) {
  1447. // For better performance, handle vector loads differently.
  1448. if (Ty->isVectorType()) {
  1449. const llvm::Type *EltTy = Addr.getElementType();
  1450. const auto *VTy = cast<llvm::VectorType>(EltTy);
  1451. // Handle vectors of size 3 like size 4 for better performance.
  1452. if (VTy->getNumElements() == 3) {
  1453. // Bitcast to vec4 type.
  1454. llvm::VectorType *vec4Ty =
  1455. llvm::VectorType::get(VTy->getElementType(), 4);
  1456. Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
  1457. // Now load value.
  1458. llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
  1459. // Shuffle vector to get vec3.
  1460. V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
  1461. {0, 1, 2}, "extractVec");
  1462. return EmitFromMemory(V, Ty);
  1463. }
  1464. }
  1465. }
  1466. // Atomic operations have to be done on integral types.
  1467. LValue AtomicLValue =
  1468. LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
  1469. if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
  1470. return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
  1471. }
  1472. llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
  1473. if (isNontemporal) {
  1474. llvm::MDNode *Node = llvm::MDNode::get(
  1475. Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
  1476. Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
  1477. }
  1478. CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
  1479. if (EmitScalarRangeCheck(Load, Ty, Loc)) {
  1480. // In order to prevent the optimizer from throwing away the check, don't
  1481. // attach range metadata to the load.
  1482. } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
  1483. if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
  1484. Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
  1485. return EmitFromMemory(Load, Ty);
  1486. }
  1487. llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
  1488. // Bool has a different representation in memory than in registers.
  1489. if (hasBooleanRepresentation(Ty)) {
  1490. // This should really always be an i1, but sometimes it's already
  1491. // an i8, and it's awkward to track those cases down.
  1492. if (Value->getType()->isIntegerTy(1))
  1493. return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
  1494. assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
  1495. "wrong value rep of bool");
  1496. }
  1497. return Value;
  1498. }
  1499. llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
  1500. // Bool has a different representation in memory than in registers.
  1501. if (hasBooleanRepresentation(Ty)) {
  1502. assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
  1503. "wrong value rep of bool");
  1504. return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
  1505. }
  1506. return Value;
  1507. }
  1508. void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
  1509. bool Volatile, QualType Ty,
  1510. LValueBaseInfo BaseInfo,
  1511. TBAAAccessInfo TBAAInfo,
  1512. bool isInit, bool isNontemporal) {
  1513. if (!CGM.getCodeGenOpts().PreserveVec3Type) {
  1514. // Handle vectors differently to get better performance.
  1515. if (Ty->isVectorType()) {
  1516. llvm::Type *SrcTy = Value->getType();
  1517. auto *VecTy = dyn_cast<llvm::VectorType>(SrcTy);
  1518. // Handle vec3 special.
  1519. if (VecTy && VecTy->getNumElements() == 3) {
  1520. // Our source is a vec3, do a shuffle vector to make it a vec4.
  1521. llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
  1522. Builder.getInt32(2),
  1523. llvm::UndefValue::get(Builder.getInt32Ty())};
  1524. llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
  1525. Value = Builder.CreateShuffleVector(Value, llvm::UndefValue::get(VecTy),
  1526. MaskV, "extractVec");
  1527. SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
  1528. }
  1529. if (Addr.getElementType() != SrcTy) {
  1530. Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
  1531. }
  1532. }
  1533. }
  1534. Value = EmitToMemory(Value, Ty);
  1535. LValue AtomicLValue =
  1536. LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
  1537. if (Ty->isAtomicType() ||
  1538. (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
  1539. EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
  1540. return;
  1541. }
  1542. llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
  1543. if (isNontemporal) {
  1544. llvm::MDNode *Node =
  1545. llvm::MDNode::get(Store->getContext(),
  1546. llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
  1547. Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
  1548. }
  1549. CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
  1550. }
  1551. void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
  1552. bool isInit) {
  1553. EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
  1554. lvalue.getType(), lvalue.getBaseInfo(),
  1555. lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
  1556. }
  1557. /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
  1558. /// method emits the address of the lvalue, then loads the result as an rvalue,
  1559. /// returning the rvalue.
  1560. RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
  1561. if (LV.isObjCWeak()) {
  1562. // load of a __weak object.
  1563. Address AddrWeakObj = LV.getAddress();
  1564. return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
  1565. AddrWeakObj));
  1566. }
  1567. if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
  1568. // In MRC mode, we do a load+autorelease.
  1569. if (!getLangOpts().ObjCAutoRefCount) {
  1570. return RValue::get(EmitARCLoadWeak(LV.getAddress()));
  1571. }
  1572. // In ARC mode, we load retained and then consume the value.
  1573. llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
  1574. Object = EmitObjCConsumeObject(LV.getType(), Object);
  1575. return RValue::get(Object);
  1576. }
  1577. if (LV.isSimple()) {
  1578. assert(!LV.getType()->isFunctionType());
  1579. // Everything needs a load.
  1580. return RValue::get(EmitLoadOfScalar(LV, Loc));
  1581. }
  1582. if (LV.isVectorElt()) {
  1583. llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
  1584. LV.isVolatileQualified());
  1585. return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
  1586. "vecext"));
  1587. }
  1588. // If this is a reference to a subset of the elements of a vector, either
  1589. // shuffle the input or extract/insert them as appropriate.
  1590. if (LV.isExtVectorElt())
  1591. return EmitLoadOfExtVectorElementLValue(LV);
  1592. // Global Register variables always invoke intrinsics
  1593. if (LV.isGlobalReg())
  1594. return EmitLoadOfGlobalRegLValue(LV);
  1595. assert(LV.isBitField() && "Unknown LValue type!");
  1596. return EmitLoadOfBitfieldLValue(LV, Loc);
  1597. }
  1598. RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
  1599. SourceLocation Loc) {
  1600. const CGBitFieldInfo &Info = LV.getBitFieldInfo();
  1601. // Get the output type.
  1602. llvm::Type *ResLTy = ConvertType(LV.getType());
  1603. Address Ptr = LV.getBitFieldAddress();
  1604. llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
  1605. if (Info.IsSigned) {
  1606. assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
  1607. unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
  1608. if (HighBits)
  1609. Val = Builder.CreateShl(Val, HighBits, "bf.shl");
  1610. if (Info.Offset + HighBits)
  1611. Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
  1612. } else {
  1613. if (Info.Offset)
  1614. Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
  1615. if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
  1616. Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
  1617. Info.Size),
  1618. "bf.clear");
  1619. }
  1620. Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
  1621. EmitScalarRangeCheck(Val, LV.getType(), Loc);
  1622. return RValue::get(Val);
  1623. }
  1624. // If this is a reference to a subset of the elements of a vector, create an
  1625. // appropriate shufflevector.
  1626. RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
  1627. llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
  1628. LV.isVolatileQualified());
  1629. const llvm::Constant *Elts = LV.getExtVectorElts();
  1630. // If the result of the expression is a non-vector type, we must be extracting
  1631. // a single element. Just codegen as an extractelement.
  1632. const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
  1633. if (!ExprVT) {
  1634. unsigned InIdx = getAccessedFieldNo(0, Elts);
  1635. llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
  1636. return RValue::get(Builder.CreateExtractElement(Vec, Elt));
  1637. }
  1638. // Always use shuffle vector to try to retain the original program structure
  1639. unsigned NumResultElts = ExprVT->getNumElements();
  1640. SmallVector<llvm::Constant*, 4> Mask;
  1641. for (unsigned i = 0; i != NumResultElts; ++i)
  1642. Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
  1643. llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
  1644. Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
  1645. MaskV);
  1646. return RValue::get(Vec);
  1647. }
  1648. /// Generates lvalue for partial ext_vector access.
  1649. Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
  1650. Address VectorAddress = LV.getExtVectorAddress();
  1651. const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
  1652. QualType EQT = ExprVT->getElementType();
  1653. llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
  1654. Address CastToPointerElement =
  1655. Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
  1656. "conv.ptr.element");
  1657. const llvm::Constant *Elts = LV.getExtVectorElts();
  1658. unsigned ix = getAccessedFieldNo(0, Elts);
  1659. Address VectorBasePtrPlusIx =
  1660. Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
  1661. "vector.elt");
  1662. return VectorBasePtrPlusIx;
  1663. }
  1664. /// Load of global gamed gegisters are always calls to intrinsics.
  1665. RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
  1666. assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
  1667. "Bad type for register variable");
  1668. llvm::MDNode *RegName = cast<llvm::MDNode>(
  1669. cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
  1670. // We accept integer and pointer types only
  1671. llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
  1672. llvm::Type *Ty = OrigTy;
  1673. if (OrigTy->isPointerTy())
  1674. Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
  1675. llvm::Type *Types[] = { Ty };
  1676. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
  1677. llvm::Value *Call = Builder.CreateCall(
  1678. F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
  1679. if (OrigTy->isPointerTy())
  1680. Call = Builder.CreateIntToPtr(Call, OrigTy);
  1681. return RValue::get(Call);
  1682. }
  1683. /// EmitStoreThroughLValue - Store the specified rvalue into the specified
  1684. /// lvalue, where both are guaranteed to the have the same type, and that type
  1685. /// is 'Ty'.
  1686. void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
  1687. bool isInit) {
  1688. if (!Dst.isSimple()) {
  1689. if (Dst.isVectorElt()) {
  1690. // Read/modify/write the vector, inserting the new element.
  1691. llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
  1692. Dst.isVolatileQualified());
  1693. Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
  1694. Dst.getVectorIdx(), "vecins");
  1695. Builder.CreateStore(Vec, Dst.getVectorAddress(),
  1696. Dst.isVolatileQualified());
  1697. return;
  1698. }
  1699. // If this is an update of extended vector elements, insert them as
  1700. // appropriate.
  1701. if (Dst.isExtVectorElt())
  1702. return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
  1703. if (Dst.isGlobalReg())
  1704. return EmitStoreThroughGlobalRegLValue(Src, Dst);
  1705. assert(Dst.isBitField() && "Unknown LValue type");
  1706. return EmitStoreThroughBitfieldLValue(Src, Dst);
  1707. }
  1708. // There's special magic for assigning into an ARC-qualified l-value.
  1709. if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
  1710. switch (Lifetime) {
  1711. case Qualifiers::OCL_None:
  1712. llvm_unreachable("present but none");
  1713. case Qualifiers::OCL_ExplicitNone:
  1714. // nothing special
  1715. break;
  1716. case Qualifiers::OCL_Strong:
  1717. if (isInit) {
  1718. Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
  1719. break;
  1720. }
  1721. EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
  1722. return;
  1723. case Qualifiers::OCL_Weak:
  1724. if (isInit)
  1725. // Initialize and then skip the primitive store.
  1726. EmitARCInitWeak(Dst.getAddress(), Src.getScalarVal());
  1727. else
  1728. EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
  1729. return;
  1730. case Qualifiers::OCL_Autoreleasing:
  1731. Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
  1732. Src.getScalarVal()));
  1733. // fall into the normal path
  1734. break;
  1735. }
  1736. }
  1737. if (Dst.isObjCWeak() && !Dst.isNonGC()) {
  1738. // load of a __weak object.
  1739. Address LvalueDst = Dst.getAddress();
  1740. llvm::Value *src = Src.getScalarVal();
  1741. CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
  1742. return;
  1743. }
  1744. if (Dst.isObjCStrong() && !Dst.isNonGC()) {
  1745. // load of a __strong object.
  1746. Address LvalueDst = Dst.getAddress();
  1747. llvm::Value *src = Src.getScalarVal();
  1748. if (Dst.isObjCIvar()) {
  1749. assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
  1750. llvm::Type *ResultType = IntPtrTy;
  1751. Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
  1752. llvm::Value *RHS = dst.getPointer();
  1753. RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
  1754. llvm::Value *LHS =
  1755. Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
  1756. "sub.ptr.lhs.cast");
  1757. llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
  1758. CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
  1759. BytesBetween);
  1760. } else if (Dst.isGlobalObjCRef()) {
  1761. CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
  1762. Dst.isThreadLocalRef());
  1763. }
  1764. else
  1765. CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
  1766. return;
  1767. }
  1768. assert(Src.isScalar() && "Can't emit an agg store with this method");
  1769. EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
  1770. }
  1771. void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
  1772. llvm::Value **Result) {
  1773. const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
  1774. llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
  1775. Address Ptr = Dst.getBitFieldAddress();
  1776. // Get the source value, truncated to the width of the bit-field.
  1777. llvm::Value *SrcVal = Src.getScalarVal();
  1778. // Cast the source to the storage type and shift it into place.
  1779. SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
  1780. /*IsSigned=*/false);
  1781. llvm::Value *MaskedVal = SrcVal;
  1782. // See if there are other bits in the bitfield's storage we'll need to load
  1783. // and mask together with source before storing.
  1784. if (Info.StorageSize != Info.Size) {
  1785. assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
  1786. llvm::Value *Val =
  1787. Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
  1788. // Mask the source value as needed.
  1789. if (!hasBooleanRepresentation(Dst.getType()))
  1790. SrcVal = Builder.CreateAnd(SrcVal,
  1791. llvm::APInt::getLowBitsSet(Info.StorageSize,
  1792. Info.Size),
  1793. "bf.value");
  1794. MaskedVal = SrcVal;
  1795. if (Info.Offset)
  1796. SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
  1797. // Mask out the original value.
  1798. Val = Builder.CreateAnd(Val,
  1799. ~llvm::APInt::getBitsSet(Info.StorageSize,
  1800. Info.Offset,
  1801. Info.Offset + Info.Size),
  1802. "bf.clear");
  1803. // Or together the unchanged values and the source value.
  1804. SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
  1805. } else {
  1806. assert(Info.Offset == 0);
  1807. }
  1808. // Write the new value back out.
  1809. Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
  1810. // Return the new value of the bit-field, if requested.
  1811. if (Result) {
  1812. llvm::Value *ResultVal = MaskedVal;
  1813. // Sign extend the value if needed.
  1814. if (Info.IsSigned) {
  1815. assert(Info.Size <= Info.StorageSize);
  1816. unsigned HighBits = Info.StorageSize - Info.Size;
  1817. if (HighBits) {
  1818. ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
  1819. ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
  1820. }
  1821. }
  1822. ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
  1823. "bf.result.cast");
  1824. *Result = EmitFromMemory(ResultVal, Dst.getType());
  1825. }
  1826. }
  1827. void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
  1828. LValue Dst) {
  1829. // This access turns into a read/modify/write of the vector. Load the input
  1830. // value now.
  1831. llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
  1832. Dst.isVolatileQualified());
  1833. const llvm::Constant *Elts = Dst.getExtVectorElts();
  1834. llvm::Value *SrcVal = Src.getScalarVal();
  1835. if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
  1836. unsigned NumSrcElts = VTy->getNumElements();
  1837. unsigned NumDstElts = Vec->getType()->getVectorNumElements();
  1838. if (NumDstElts == NumSrcElts) {
  1839. // Use shuffle vector is the src and destination are the same number of
  1840. // elements and restore the vector mask since it is on the side it will be
  1841. // stored.
  1842. SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
  1843. for (unsigned i = 0; i != NumSrcElts; ++i)
  1844. Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
  1845. llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
  1846. Vec = Builder.CreateShuffleVector(SrcVal,
  1847. llvm::UndefValue::get(Vec->getType()),
  1848. MaskV);
  1849. } else if (NumDstElts > NumSrcElts) {
  1850. // Extended the source vector to the same length and then shuffle it
  1851. // into the destination.
  1852. // FIXME: since we're shuffling with undef, can we just use the indices
  1853. // into that? This could be simpler.
  1854. SmallVector<llvm::Constant*, 4> ExtMask;
  1855. for (unsigned i = 0; i != NumSrcElts; ++i)
  1856. ExtMask.push_back(Builder.getInt32(i));
  1857. ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
  1858. llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
  1859. llvm::Value *ExtSrcVal =
  1860. Builder.CreateShuffleVector(SrcVal,
  1861. llvm::UndefValue::get(SrcVal->getType()),
  1862. ExtMaskV);
  1863. // build identity
  1864. SmallVector<llvm::Constant*, 4> Mask;
  1865. for (unsigned i = 0; i != NumDstElts; ++i)
  1866. Mask.push_back(Builder.getInt32(i));
  1867. // When the vector size is odd and .odd or .hi is used, the last element
  1868. // of the Elts constant array will be one past the size of the vector.
  1869. // Ignore the last element here, if it is greater than the mask size.
  1870. if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
  1871. NumSrcElts--;
  1872. // modify when what gets shuffled in
  1873. for (unsigned i = 0; i != NumSrcElts; ++i)
  1874. Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
  1875. llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
  1876. Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
  1877. } else {
  1878. // We should never shorten the vector
  1879. llvm_unreachable("unexpected shorten vector length");
  1880. }
  1881. } else {
  1882. // If the Src is a scalar (not a vector) it must be updating one element.
  1883. unsigned InIdx = getAccessedFieldNo(0, Elts);
  1884. llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
  1885. Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
  1886. }
  1887. Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
  1888. Dst.isVolatileQualified());
  1889. }
  1890. /// Store of global named registers are always calls to intrinsics.
  1891. void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
  1892. assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
  1893. "Bad type for register variable");
  1894. llvm::MDNode *RegName = cast<llvm::MDNode>(
  1895. cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
  1896. assert(RegName && "Register LValue is not metadata");
  1897. // We accept integer and pointer types only
  1898. llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
  1899. llvm::Type *Ty = OrigTy;
  1900. if (OrigTy->isPointerTy())
  1901. Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
  1902. llvm::Type *Types[] = { Ty };
  1903. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
  1904. llvm::Value *Value = Src.getScalarVal();
  1905. if (OrigTy->isPointerTy())
  1906. Value = Builder.CreatePtrToInt(Value, Ty);
  1907. Builder.CreateCall(
  1908. F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
  1909. }
  1910. // setObjCGCLValueClass - sets class of the lvalue for the purpose of
  1911. // generating write-barries API. It is currently a global, ivar,
  1912. // or neither.
  1913. static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
  1914. LValue &LV,
  1915. bool IsMemberAccess=false) {
  1916. if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
  1917. return;
  1918. if (isa<ObjCIvarRefExpr>(E)) {
  1919. QualType ExpTy = E->getType();
  1920. if (IsMemberAccess && ExpTy->isPointerType()) {
  1921. // If ivar is a structure pointer, assigning to field of
  1922. // this struct follows gcc's behavior and makes it a non-ivar
  1923. // writer-barrier conservatively.
  1924. ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
  1925. if (ExpTy->isRecordType()) {
  1926. LV.setObjCIvar(false);
  1927. return;
  1928. }
  1929. }
  1930. LV.setObjCIvar(true);
  1931. auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
  1932. LV.setBaseIvarExp(Exp->getBase());
  1933. LV.setObjCArray(E->getType()->isArrayType());
  1934. return;
  1935. }
  1936. if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
  1937. if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
  1938. if (VD->hasGlobalStorage()) {
  1939. LV.setGlobalObjCRef(true);
  1940. LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
  1941. }
  1942. }
  1943. LV.setObjCArray(E->getType()->isArrayType());
  1944. return;
  1945. }
  1946. if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
  1947. setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
  1948. return;
  1949. }
  1950. if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
  1951. setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
  1952. if (LV.isObjCIvar()) {
  1953. // If cast is to a structure pointer, follow gcc's behavior and make it
  1954. // a non-ivar write-barrier.
  1955. QualType ExpTy = E->getType();
  1956. if (ExpTy->isPointerType())
  1957. ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
  1958. if (ExpTy->isRecordType())
  1959. LV.setObjCIvar(false);
  1960. }
  1961. return;
  1962. }
  1963. if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
  1964. setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
  1965. return;
  1966. }
  1967. if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
  1968. setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
  1969. return;
  1970. }
  1971. if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
  1972. setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
  1973. return;
  1974. }
  1975. if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
  1976. setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
  1977. return;
  1978. }
  1979. if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
  1980. setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
  1981. if (LV.isObjCIvar() && !LV.isObjCArray())
  1982. // Using array syntax to assigning to what an ivar points to is not
  1983. // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
  1984. LV.setObjCIvar(false);
  1985. else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
  1986. // Using array syntax to assigning to what global points to is not
  1987. // same as assigning to the global itself. {id *G;} G[i] = 0;
  1988. LV.setGlobalObjCRef(false);
  1989. return;
  1990. }
  1991. if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
  1992. setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
  1993. // We don't know if member is an 'ivar', but this flag is looked at
  1994. // only in the context of LV.isObjCIvar().
  1995. LV.setObjCArray(E->getType()->isArrayType());
  1996. return;
  1997. }
  1998. }
  1999. static llvm::Value *
  2000. EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
  2001. llvm::Value *V, llvm::Type *IRType,
  2002. StringRef Name = StringRef()) {
  2003. unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
  2004. return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
  2005. }
  2006. static LValue EmitThreadPrivateVarDeclLValue(
  2007. CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
  2008. llvm::Type *RealVarTy, SourceLocation Loc) {
  2009. Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
  2010. Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
  2011. return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
  2012. }
  2013. static Address emitDeclTargetLinkVarDeclLValue(CodeGenFunction &CGF,
  2014. const VarDecl *VD, QualType T) {
  2015. llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
  2016. OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
  2017. if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_To)
  2018. return Address::invalid();
  2019. assert(*Res == OMPDeclareTargetDeclAttr::MT_Link && "Expected link clause");
  2020. QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
  2021. Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetLink(VD);
  2022. return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
  2023. }
  2024. Address
  2025. CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
  2026. LValueBaseInfo *PointeeBaseInfo,
  2027. TBAAAccessInfo *PointeeTBAAInfo) {
  2028. llvm::LoadInst *Load = Builder.CreateLoad(RefLVal.getAddress(),
  2029. RefLVal.isVolatile());
  2030. CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
  2031. CharUnits Align = getNaturalTypeAlignment(RefLVal.getType()->getPointeeType(),
  2032. PointeeBaseInfo, PointeeTBAAInfo,
  2033. /* forPointeeType= */ true);
  2034. return Address(Load, Align);
  2035. }
  2036. LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
  2037. LValueBaseInfo PointeeBaseInfo;
  2038. TBAAAccessInfo PointeeTBAAInfo;
  2039. Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
  2040. &PointeeTBAAInfo);
  2041. return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
  2042. PointeeBaseInfo, PointeeTBAAInfo);
  2043. }
  2044. Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
  2045. const PointerType *PtrTy,
  2046. LValueBaseInfo *BaseInfo,
  2047. TBAAAccessInfo *TBAAInfo) {
  2048. llvm::Value *Addr = Builder.CreateLoad(Ptr);
  2049. return Address(Addr, getNaturalTypeAlignment(PtrTy->getPointeeType(),
  2050. BaseInfo, TBAAInfo,
  2051. /*forPointeeType=*/true));
  2052. }
  2053. LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
  2054. const PointerType *PtrTy) {
  2055. LValueBaseInfo BaseInfo;
  2056. TBAAAccessInfo TBAAInfo;
  2057. Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
  2058. return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
  2059. }
  2060. static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
  2061. const Expr *E, const VarDecl *VD) {
  2062. QualType T = E->getType();
  2063. // If it's thread_local, emit a call to its wrapper function instead.
  2064. if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
  2065. CGF.CGM.getCXXABI().usesThreadWrapperFunction())
  2066. return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
  2067. // Check if the variable is marked as declare target with link clause in
  2068. // device codegen.
  2069. if (CGF.getLangOpts().OpenMPIsDevice) {
  2070. Address Addr = emitDeclTargetLinkVarDeclLValue(CGF, VD, T);
  2071. if (Addr.isValid())
  2072. return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
  2073. }
  2074. llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
  2075. llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
  2076. V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
  2077. CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
  2078. Address Addr(V, Alignment);
  2079. // Emit reference to the private copy of the variable if it is an OpenMP
  2080. // threadprivate variable.
  2081. if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
  2082. VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
  2083. return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
  2084. E->getExprLoc());
  2085. }
  2086. LValue LV = VD->getType()->isReferenceType() ?
  2087. CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
  2088. AlignmentSource::Decl) :
  2089. CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
  2090. setObjCGCLValueClass(CGF.getContext(), E, LV);
  2091. return LV;
  2092. }
  2093. static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
  2094. const FunctionDecl *FD) {
  2095. if (FD->hasAttr<WeakRefAttr>()) {
  2096. ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
  2097. return aliasee.getPointer();
  2098. }
  2099. llvm::Constant *V = CGM.GetAddrOfFunction(FD);
  2100. if (!FD->hasPrototype()) {
  2101. if (const FunctionProtoType *Proto =
  2102. FD->getType()->getAs<FunctionProtoType>()) {
  2103. // Ugly case: for a K&R-style definition, the type of the definition
  2104. // isn't the same as the type of a use. Correct for this with a
  2105. // bitcast.
  2106. QualType NoProtoType =
  2107. CGM.getContext().getFunctionNoProtoType(Proto->getReturnType());
  2108. NoProtoType = CGM.getContext().getPointerType(NoProtoType);
  2109. V = llvm::ConstantExpr::getBitCast(V,
  2110. CGM.getTypes().ConvertType(NoProtoType));
  2111. }
  2112. }
  2113. return V;
  2114. }
  2115. static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
  2116. const Expr *E, const FunctionDecl *FD) {
  2117. llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, FD);
  2118. CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
  2119. return CGF.MakeAddrLValue(V, E->getType(), Alignment,
  2120. AlignmentSource::Decl);
  2121. }
  2122. static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
  2123. llvm::Value *ThisValue) {
  2124. QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
  2125. LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
  2126. return CGF.EmitLValueForField(LV, FD);
  2127. }
  2128. /// Named Registers are named metadata pointing to the register name
  2129. /// which will be read from/written to as an argument to the intrinsic
  2130. /// @llvm.read/write_register.
  2131. /// So far, only the name is being passed down, but other options such as
  2132. /// register type, allocation type or even optimization options could be
  2133. /// passed down via the metadata node.
  2134. static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
  2135. SmallString<64> Name("llvm.named.register.");
  2136. AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
  2137. assert(Asm->getLabel().size() < 64-Name.size() &&
  2138. "Register name too big");
  2139. Name.append(Asm->getLabel());
  2140. llvm::NamedMDNode *M =
  2141. CGM.getModule().getOrInsertNamedMetadata(Name);
  2142. if (M->getNumOperands() == 0) {
  2143. llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
  2144. Asm->getLabel());
  2145. llvm::Metadata *Ops[] = {Str};
  2146. M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
  2147. }
  2148. CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
  2149. llvm::Value *Ptr =
  2150. llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
  2151. return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
  2152. }
  2153. LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
  2154. const NamedDecl *ND = E->getDecl();
  2155. QualType T = E->getType();
  2156. if (const auto *VD = dyn_cast<VarDecl>(ND)) {
  2157. // Global Named registers access via intrinsics only
  2158. if (VD->getStorageClass() == SC_Register &&
  2159. VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
  2160. return EmitGlobalNamedRegister(VD, CGM);
  2161. // A DeclRefExpr for a reference initialized by a constant expression can
  2162. // appear without being odr-used. Directly emit the constant initializer.
  2163. const Expr *Init = VD->getAnyInitializer(VD);
  2164. const auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl);
  2165. if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
  2166. VD->isUsableInConstantExpressions(getContext()) &&
  2167. VD->checkInitIsICE() &&
  2168. // Do not emit if it is private OpenMP variable.
  2169. !(E->refersToEnclosingVariableOrCapture() &&
  2170. ((CapturedStmtInfo &&
  2171. (LocalDeclMap.count(VD->getCanonicalDecl()) ||
  2172. CapturedStmtInfo->lookup(VD->getCanonicalDecl()))) ||
  2173. LambdaCaptureFields.lookup(VD->getCanonicalDecl()) ||
  2174. (BD && BD->capturesVariable(VD))))) {
  2175. llvm::Constant *Val =
  2176. ConstantEmitter(*this).emitAbstract(E->getLocation(),
  2177. *VD->evaluateValue(),
  2178. VD->getType());
  2179. assert(Val && "failed to emit reference constant expression");
  2180. // FIXME: Eventually we will want to emit vector element references.
  2181. // Should we be using the alignment of the constant pointer we emitted?
  2182. CharUnits Alignment = getNaturalTypeAlignment(E->getType(),
  2183. /* BaseInfo= */ nullptr,
  2184. /* TBAAInfo= */ nullptr,
  2185. /* forPointeeType= */ true);
  2186. return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
  2187. }
  2188. // Check for captured variables.
  2189. if (E->refersToEnclosingVariableOrCapture()) {
  2190. VD = VD->getCanonicalDecl();
  2191. if (auto *FD = LambdaCaptureFields.lookup(VD))
  2192. return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
  2193. else if (CapturedStmtInfo) {
  2194. auto I = LocalDeclMap.find(VD);
  2195. if (I != LocalDeclMap.end()) {
  2196. if (VD->getType()->isReferenceType())
  2197. return EmitLoadOfReferenceLValue(I->second, VD->getType(),
  2198. AlignmentSource::Decl);
  2199. return MakeAddrLValue(I->second, T);
  2200. }
  2201. LValue CapLVal =
  2202. EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
  2203. CapturedStmtInfo->getContextValue());
  2204. return MakeAddrLValue(
  2205. Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
  2206. CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
  2207. CapLVal.getTBAAInfo());
  2208. }
  2209. assert(isa<BlockDecl>(CurCodeDecl));
  2210. Address addr = GetAddrOfBlockDecl(VD);
  2211. return MakeAddrLValue(addr, T, AlignmentSource::Decl);
  2212. }
  2213. }
  2214. // FIXME: We should be able to assert this for FunctionDecls as well!
  2215. // FIXME: We should be able to assert this for all DeclRefExprs, not just
  2216. // those with a valid source location.
  2217. assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
  2218. !E->getLocation().isValid()) &&
  2219. "Should not use decl without marking it used!");
  2220. if (ND->hasAttr<WeakRefAttr>()) {
  2221. const auto *VD = cast<ValueDecl>(ND);
  2222. ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
  2223. return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
  2224. }
  2225. if (const auto *VD = dyn_cast<VarDecl>(ND)) {
  2226. // Check if this is a global variable.
  2227. if (VD->hasLinkage() || VD->isStaticDataMember())
  2228. return EmitGlobalVarDeclLValue(*this, E, VD);
  2229. Address addr = Address::invalid();
  2230. // The variable should generally be present in the local decl map.
  2231. auto iter = LocalDeclMap.find(VD);
  2232. if (iter != LocalDeclMap.end()) {
  2233. addr = iter->second;
  2234. // Otherwise, it might be static local we haven't emitted yet for
  2235. // some reason; most likely, because it's in an outer function.
  2236. } else if (VD->isStaticLocal()) {
  2237. addr = Address(CGM.getOrCreateStaticVarDecl(
  2238. *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
  2239. getContext().getDeclAlign(VD));
  2240. // No other cases for now.
  2241. } else {
  2242. llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
  2243. }
  2244. // Check for OpenMP threadprivate variables.
  2245. if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
  2246. VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
  2247. return EmitThreadPrivateVarDeclLValue(
  2248. *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
  2249. E->getExprLoc());
  2250. }
  2251. // Drill into block byref variables.
  2252. bool isBlockByref = VD->isEscapingByref();
  2253. if (isBlockByref) {
  2254. addr = emitBlockByrefAddress(addr, VD);
  2255. }
  2256. // Drill into reference types.
  2257. LValue LV = VD->getType()->isReferenceType() ?
  2258. EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
  2259. MakeAddrLValue(addr, T, AlignmentSource::Decl);
  2260. bool isLocalStorage = VD->hasLocalStorage();
  2261. bool NonGCable = isLocalStorage &&
  2262. !VD->getType()->isReferenceType() &&
  2263. !isBlockByref;
  2264. if (NonGCable) {
  2265. LV.getQuals().removeObjCGCAttr();
  2266. LV.setNonGC(true);
  2267. }
  2268. bool isImpreciseLifetime =
  2269. (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
  2270. if (isImpreciseLifetime)
  2271. LV.setARCPreciseLifetime(ARCImpreciseLifetime);
  2272. setObjCGCLValueClass(getContext(), E, LV);
  2273. return LV;
  2274. }
  2275. if (const auto *FD = dyn_cast<FunctionDecl>(ND))
  2276. return EmitFunctionDeclLValue(*this, E, FD);
  2277. // FIXME: While we're emitting a binding from an enclosing scope, all other
  2278. // DeclRefExprs we see should be implicitly treated as if they also refer to
  2279. // an enclosing scope.
  2280. if (const auto *BD = dyn_cast<BindingDecl>(ND))
  2281. return EmitLValue(BD->getBinding());
  2282. llvm_unreachable("Unhandled DeclRefExpr");
  2283. }
  2284. LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
  2285. // __extension__ doesn't affect lvalue-ness.
  2286. if (E->getOpcode() == UO_Extension)
  2287. return EmitLValue(E->getSubExpr());
  2288. QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
  2289. switch (E->getOpcode()) {
  2290. default: llvm_unreachable("Unknown unary operator lvalue!");
  2291. case UO_Deref: {
  2292. QualType T = E->getSubExpr()->getType()->getPointeeType();
  2293. assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
  2294. LValueBaseInfo BaseInfo;
  2295. TBAAAccessInfo TBAAInfo;
  2296. Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
  2297. &TBAAInfo);
  2298. LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
  2299. LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
  2300. // We should not generate __weak write barrier on indirect reference
  2301. // of a pointer to object; as in void foo (__weak id *param); *param = 0;
  2302. // But, we continue to generate __strong write barrier on indirect write
  2303. // into a pointer to object.
  2304. if (getLangOpts().ObjC &&
  2305. getLangOpts().getGC() != LangOptions::NonGC &&
  2306. LV.isObjCWeak())
  2307. LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
  2308. return LV;
  2309. }
  2310. case UO_Real:
  2311. case UO_Imag: {
  2312. LValue LV = EmitLValue(E->getSubExpr());
  2313. assert(LV.isSimple() && "real/imag on non-ordinary l-value");
  2314. // __real is valid on scalars. This is a faster way of testing that.
  2315. // __imag can only produce an rvalue on scalars.
  2316. if (E->getOpcode() == UO_Real &&
  2317. !LV.getAddress().getElementType()->isStructTy()) {
  2318. assert(E->getSubExpr()->getType()->isArithmeticType());
  2319. return LV;
  2320. }
  2321. QualType T = ExprTy->castAs<ComplexType>()->getElementType();
  2322. Address Component =
  2323. (E->getOpcode() == UO_Real
  2324. ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
  2325. : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
  2326. LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
  2327. CGM.getTBAAInfoForSubobject(LV, T));
  2328. ElemLV.getQuals().addQualifiers(LV.getQuals());
  2329. return ElemLV;
  2330. }
  2331. case UO_PreInc:
  2332. case UO_PreDec: {
  2333. LValue LV = EmitLValue(E->getSubExpr());
  2334. bool isInc = E->getOpcode() == UO_PreInc;
  2335. if (E->getType()->isAnyComplexType())
  2336. EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
  2337. else
  2338. EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
  2339. return LV;
  2340. }
  2341. }
  2342. }
  2343. LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
  2344. return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
  2345. E->getType(), AlignmentSource::Decl);
  2346. }
  2347. LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
  2348. return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
  2349. E->getType(), AlignmentSource::Decl);
  2350. }
  2351. LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
  2352. auto SL = E->getFunctionName();
  2353. assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
  2354. StringRef FnName = CurFn->getName();
  2355. if (FnName.startswith("\01"))
  2356. FnName = FnName.substr(1);
  2357. StringRef NameItems[] = {
  2358. PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
  2359. std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
  2360. if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
  2361. std::string Name = SL->getString();
  2362. if (!Name.empty()) {
  2363. unsigned Discriminator =
  2364. CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
  2365. if (Discriminator)
  2366. Name += "_" + Twine(Discriminator + 1).str();
  2367. auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
  2368. return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
  2369. } else {
  2370. auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
  2371. return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
  2372. }
  2373. }
  2374. auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
  2375. return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
  2376. }
  2377. /// Emit a type description suitable for use by a runtime sanitizer library. The
  2378. /// format of a type descriptor is
  2379. ///
  2380. /// \code
  2381. /// { i16 TypeKind, i16 TypeInfo }
  2382. /// \endcode
  2383. ///
  2384. /// followed by an array of i8 containing the type name. TypeKind is 0 for an
  2385. /// integer, 1 for a floating point value, and -1 for anything else.
  2386. llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
  2387. // Only emit each type's descriptor once.
  2388. if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
  2389. return C;
  2390. uint16_t TypeKind = -1;
  2391. uint16_t TypeInfo = 0;
  2392. if (T->isIntegerType()) {
  2393. TypeKind = 0;
  2394. TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
  2395. (T->isSignedIntegerType() ? 1 : 0);
  2396. } else if (T->isFloatingType()) {
  2397. TypeKind = 1;
  2398. TypeInfo = getContext().getTypeSize(T);
  2399. }
  2400. // Format the type name as if for a diagnostic, including quotes and
  2401. // optionally an 'aka'.
  2402. SmallString<32> Buffer;
  2403. CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
  2404. (intptr_t)T.getAsOpaquePtr(),
  2405. StringRef(), StringRef(), None, Buffer,
  2406. None);
  2407. llvm::Constant *Components[] = {
  2408. Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
  2409. llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
  2410. };
  2411. llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
  2412. auto *GV = new llvm::GlobalVariable(
  2413. CGM.getModule(), Descriptor->getType(),
  2414. /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
  2415. GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  2416. CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
  2417. // Remember the descriptor for this type.
  2418. CGM.setTypeDescriptorInMap(T, GV);
  2419. return GV;
  2420. }
  2421. llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
  2422. llvm::Type *TargetTy = IntPtrTy;
  2423. if (V->getType() == TargetTy)
  2424. return V;
  2425. // Floating-point types which fit into intptr_t are bitcast to integers
  2426. // and then passed directly (after zero-extension, if necessary).
  2427. if (V->getType()->isFloatingPointTy()) {
  2428. unsigned Bits = V->getType()->getPrimitiveSizeInBits();
  2429. if (Bits <= TargetTy->getIntegerBitWidth())
  2430. V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
  2431. Bits));
  2432. }
  2433. // Integers which fit in intptr_t are zero-extended and passed directly.
  2434. if (V->getType()->isIntegerTy() &&
  2435. V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
  2436. return Builder.CreateZExt(V, TargetTy);
  2437. // Pointers are passed directly, everything else is passed by address.
  2438. if (!V->getType()->isPointerTy()) {
  2439. Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
  2440. Builder.CreateStore(V, Ptr);
  2441. V = Ptr.getPointer();
  2442. }
  2443. return Builder.CreatePtrToInt(V, TargetTy);
  2444. }
  2445. /// Emit a representation of a SourceLocation for passing to a handler
  2446. /// in a sanitizer runtime library. The format for this data is:
  2447. /// \code
  2448. /// struct SourceLocation {
  2449. /// const char *Filename;
  2450. /// int32_t Line, Column;
  2451. /// };
  2452. /// \endcode
  2453. /// For an invalid SourceLocation, the Filename pointer is null.
  2454. llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
  2455. llvm::Constant *Filename;
  2456. int Line, Column;
  2457. PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
  2458. if (PLoc.isValid()) {
  2459. StringRef FilenameString = PLoc.getFilename();
  2460. int PathComponentsToStrip =
  2461. CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
  2462. if (PathComponentsToStrip < 0) {
  2463. assert(PathComponentsToStrip != INT_MIN);
  2464. int PathComponentsToKeep = -PathComponentsToStrip;
  2465. auto I = llvm::sys::path::rbegin(FilenameString);
  2466. auto E = llvm::sys::path::rend(FilenameString);
  2467. while (I != E && --PathComponentsToKeep)
  2468. ++I;
  2469. FilenameString = FilenameString.substr(I - E);
  2470. } else if (PathComponentsToStrip > 0) {
  2471. auto I = llvm::sys::path::begin(FilenameString);
  2472. auto E = llvm::sys::path::end(FilenameString);
  2473. while (I != E && PathComponentsToStrip--)
  2474. ++I;
  2475. if (I != E)
  2476. FilenameString =
  2477. FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
  2478. else
  2479. FilenameString = llvm::sys::path::filename(FilenameString);
  2480. }
  2481. auto FilenameGV = CGM.GetAddrOfConstantCString(FilenameString, ".src");
  2482. CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
  2483. cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
  2484. Filename = FilenameGV.getPointer();
  2485. Line = PLoc.getLine();
  2486. Column = PLoc.getColumn();
  2487. } else {
  2488. Filename = llvm::Constant::getNullValue(Int8PtrTy);
  2489. Line = Column = 0;
  2490. }
  2491. llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
  2492. Builder.getInt32(Column)};
  2493. return llvm::ConstantStruct::getAnon(Data);
  2494. }
  2495. namespace {
  2496. /// Specify under what conditions this check can be recovered
  2497. enum class CheckRecoverableKind {
  2498. /// Always terminate program execution if this check fails.
  2499. Unrecoverable,
  2500. /// Check supports recovering, runtime has both fatal (noreturn) and
  2501. /// non-fatal handlers for this check.
  2502. Recoverable,
  2503. /// Runtime conditionally aborts, always need to support recovery.
  2504. AlwaysRecoverable
  2505. };
  2506. }
  2507. static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
  2508. assert(Kind.countPopulation() == 1);
  2509. if (Kind == SanitizerKind::Vptr)
  2510. return CheckRecoverableKind::AlwaysRecoverable;
  2511. else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
  2512. return CheckRecoverableKind::Unrecoverable;
  2513. else
  2514. return CheckRecoverableKind::Recoverable;
  2515. }
  2516. namespace {
  2517. struct SanitizerHandlerInfo {
  2518. char const *const Name;
  2519. unsigned Version;
  2520. };
  2521. }
  2522. const SanitizerHandlerInfo SanitizerHandlers[] = {
  2523. #define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
  2524. LIST_SANITIZER_CHECKS
  2525. #undef SANITIZER_CHECK
  2526. };
  2527. static void emitCheckHandlerCall(CodeGenFunction &CGF,
  2528. llvm::FunctionType *FnType,
  2529. ArrayRef<llvm::Value *> FnArgs,
  2530. SanitizerHandler CheckHandler,
  2531. CheckRecoverableKind RecoverKind, bool IsFatal,
  2532. llvm::BasicBlock *ContBB) {
  2533. assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
  2534. Optional<ApplyDebugLocation> DL;
  2535. if (!CGF.Builder.getCurrentDebugLocation()) {
  2536. // Ensure that the call has at least an artificial debug location.
  2537. DL.emplace(CGF, SourceLocation());
  2538. }
  2539. bool NeedsAbortSuffix =
  2540. IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
  2541. bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
  2542. const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
  2543. const StringRef CheckName = CheckInfo.Name;
  2544. std::string FnName = "__ubsan_handle_" + CheckName.str();
  2545. if (CheckInfo.Version && !MinimalRuntime)
  2546. FnName += "_v" + llvm::utostr(CheckInfo.Version);
  2547. if (MinimalRuntime)
  2548. FnName += "_minimal";
  2549. if (NeedsAbortSuffix)
  2550. FnName += "_abort";
  2551. bool MayReturn =
  2552. !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
  2553. llvm::AttrBuilder B;
  2554. if (!MayReturn) {
  2555. B.addAttribute(llvm::Attribute::NoReturn)
  2556. .addAttribute(llvm::Attribute::NoUnwind);
  2557. }
  2558. B.addAttribute(llvm::Attribute::UWTable);
  2559. llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
  2560. FnType, FnName,
  2561. llvm::AttributeList::get(CGF.getLLVMContext(),
  2562. llvm::AttributeList::FunctionIndex, B),
  2563. /*Local=*/true);
  2564. llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
  2565. if (!MayReturn) {
  2566. HandlerCall->setDoesNotReturn();
  2567. CGF.Builder.CreateUnreachable();
  2568. } else {
  2569. CGF.Builder.CreateBr(ContBB);
  2570. }
  2571. }
  2572. void CodeGenFunction::EmitCheck(
  2573. ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
  2574. SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
  2575. ArrayRef<llvm::Value *> DynamicArgs) {
  2576. assert(IsSanitizerScope);
  2577. assert(Checked.size() > 0);
  2578. assert(CheckHandler >= 0 &&
  2579. size_t(CheckHandler) < llvm::array_lengthof(SanitizerHandlers));
  2580. const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
  2581. llvm::Value *FatalCond = nullptr;
  2582. llvm::Value *RecoverableCond = nullptr;
  2583. llvm::Value *TrapCond = nullptr;
  2584. for (int i = 0, n = Checked.size(); i < n; ++i) {
  2585. llvm::Value *Check = Checked[i].first;
  2586. // -fsanitize-trap= overrides -fsanitize-recover=.
  2587. llvm::Value *&Cond =
  2588. CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
  2589. ? TrapCond
  2590. : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
  2591. ? RecoverableCond
  2592. : FatalCond;
  2593. Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
  2594. }
  2595. if (TrapCond)
  2596. EmitTrapCheck(TrapCond);
  2597. if (!FatalCond && !RecoverableCond)
  2598. return;
  2599. llvm::Value *JointCond;
  2600. if (FatalCond && RecoverableCond)
  2601. JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
  2602. else
  2603. JointCond = FatalCond ? FatalCond : RecoverableCond;
  2604. assert(JointCond);
  2605. CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
  2606. assert(SanOpts.has(Checked[0].second));
  2607. #ifndef NDEBUG
  2608. for (int i = 1, n = Checked.size(); i < n; ++i) {
  2609. assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
  2610. "All recoverable kinds in a single check must be same!");
  2611. assert(SanOpts.has(Checked[i].second));
  2612. }
  2613. #endif
  2614. llvm::BasicBlock *Cont = createBasicBlock("cont");
  2615. llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
  2616. llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
  2617. // Give hint that we very much don't expect to execute the handler
  2618. // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
  2619. llvm::MDBuilder MDHelper(getLLVMContext());
  2620. llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
  2621. Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
  2622. EmitBlock(Handlers);
  2623. // Handler functions take an i8* pointing to the (handler-specific) static
  2624. // information block, followed by a sequence of intptr_t arguments
  2625. // representing operand values.
  2626. SmallVector<llvm::Value *, 4> Args;
  2627. SmallVector<llvm::Type *, 4> ArgTypes;
  2628. if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
  2629. Args.reserve(DynamicArgs.size() + 1);
  2630. ArgTypes.reserve(DynamicArgs.size() + 1);
  2631. // Emit handler arguments and create handler function type.
  2632. if (!StaticArgs.empty()) {
  2633. llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
  2634. auto *InfoPtr =
  2635. new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
  2636. llvm::GlobalVariable::PrivateLinkage, Info);
  2637. InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  2638. CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
  2639. Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
  2640. ArgTypes.push_back(Int8PtrTy);
  2641. }
  2642. for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
  2643. Args.push_back(EmitCheckValue(DynamicArgs[i]));
  2644. ArgTypes.push_back(IntPtrTy);
  2645. }
  2646. }
  2647. llvm::FunctionType *FnType =
  2648. llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
  2649. if (!FatalCond || !RecoverableCond) {
  2650. // Simple case: we need to generate a single handler call, either
  2651. // fatal, or non-fatal.
  2652. emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
  2653. (FatalCond != nullptr), Cont);
  2654. } else {
  2655. // Emit two handler calls: first one for set of unrecoverable checks,
  2656. // another one for recoverable.
  2657. llvm::BasicBlock *NonFatalHandlerBB =
  2658. createBasicBlock("non_fatal." + CheckName);
  2659. llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
  2660. Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
  2661. EmitBlock(FatalHandlerBB);
  2662. emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
  2663. NonFatalHandlerBB);
  2664. EmitBlock(NonFatalHandlerBB);
  2665. emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
  2666. Cont);
  2667. }
  2668. EmitBlock(Cont);
  2669. }
  2670. void CodeGenFunction::EmitCfiSlowPathCheck(
  2671. SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
  2672. llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
  2673. llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
  2674. llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
  2675. llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
  2676. llvm::MDBuilder MDHelper(getLLVMContext());
  2677. llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
  2678. BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
  2679. EmitBlock(CheckBB);
  2680. bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
  2681. llvm::CallInst *CheckCall;
  2682. llvm::FunctionCallee SlowPathFn;
  2683. if (WithDiag) {
  2684. llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
  2685. auto *InfoPtr =
  2686. new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
  2687. llvm::GlobalVariable::PrivateLinkage, Info);
  2688. InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
  2689. CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
  2690. SlowPathFn = CGM.getModule().getOrInsertFunction(
  2691. "__cfi_slowpath_diag",
  2692. llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
  2693. false));
  2694. CheckCall = Builder.CreateCall(
  2695. SlowPathFn, {TypeId, Ptr, Builder.CreateBitCast(InfoPtr, Int8PtrTy)});
  2696. } else {
  2697. SlowPathFn = CGM.getModule().getOrInsertFunction(
  2698. "__cfi_slowpath",
  2699. llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
  2700. CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
  2701. }
  2702. CGM.setDSOLocal(
  2703. cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
  2704. CheckCall->setDoesNotThrow();
  2705. EmitBlock(Cont);
  2706. }
  2707. // Emit a stub for __cfi_check function so that the linker knows about this
  2708. // symbol in LTO mode.
  2709. void CodeGenFunction::EmitCfiCheckStub() {
  2710. llvm::Module *M = &CGM.getModule();
  2711. auto &Ctx = M->getContext();
  2712. llvm::Function *F = llvm::Function::Create(
  2713. llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
  2714. llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
  2715. CGM.setDSOLocal(F);
  2716. llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
  2717. // FIXME: consider emitting an intrinsic call like
  2718. // call void @llvm.cfi_check(i64 %0, i8* %1, i8* %2)
  2719. // which can be lowered in CrossDSOCFI pass to the actual contents of
  2720. // __cfi_check. This would allow inlining of __cfi_check calls.
  2721. llvm::CallInst::Create(
  2722. llvm::Intrinsic::getDeclaration(M, llvm::Intrinsic::trap), "", BB);
  2723. llvm::ReturnInst::Create(Ctx, nullptr, BB);
  2724. }
  2725. // This function is basically a switch over the CFI failure kind, which is
  2726. // extracted from CFICheckFailData (1st function argument). Each case is either
  2727. // llvm.trap or a call to one of the two runtime handlers, based on
  2728. // -fsanitize-trap and -fsanitize-recover settings. Default case (invalid
  2729. // failure kind) traps, but this should really never happen. CFICheckFailData
  2730. // can be nullptr if the calling module has -fsanitize-trap behavior for this
  2731. // check kind; in this case __cfi_check_fail traps as well.
  2732. void CodeGenFunction::EmitCfiCheckFail() {
  2733. SanitizerScope SanScope(this);
  2734. FunctionArgList Args;
  2735. ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
  2736. ImplicitParamDecl::Other);
  2737. ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
  2738. ImplicitParamDecl::Other);
  2739. Args.push_back(&ArgData);
  2740. Args.push_back(&ArgAddr);
  2741. const CGFunctionInfo &FI =
  2742. CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
  2743. llvm::Function *F = llvm::Function::Create(
  2744. llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
  2745. llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
  2746. F->setVisibility(llvm::GlobalValue::HiddenVisibility);
  2747. StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
  2748. SourceLocation());
  2749. // This function should not be affected by blacklist. This function does
  2750. // not have a source location, but "src:*" would still apply. Revert any
  2751. // changes to SanOpts made in StartFunction.
  2752. SanOpts = CGM.getLangOpts().Sanitize;
  2753. llvm::Value *Data =
  2754. EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
  2755. CGM.getContext().VoidPtrTy, ArgData.getLocation());
  2756. llvm::Value *Addr =
  2757. EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
  2758. CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
  2759. // Data == nullptr means the calling module has trap behaviour for this check.
  2760. llvm::Value *DataIsNotNullPtr =
  2761. Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
  2762. EmitTrapCheck(DataIsNotNullPtr);
  2763. llvm::StructType *SourceLocationTy =
  2764. llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
  2765. llvm::StructType *CfiCheckFailDataTy =
  2766. llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
  2767. llvm::Value *V = Builder.CreateConstGEP2_32(
  2768. CfiCheckFailDataTy,
  2769. Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
  2770. 0);
  2771. Address CheckKindAddr(V, getIntAlign());
  2772. llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
  2773. llvm::Value *AllVtables = llvm::MetadataAsValue::get(
  2774. CGM.getLLVMContext(),
  2775. llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
  2776. llvm::Value *ValidVtable = Builder.CreateZExt(
  2777. Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
  2778. {Addr, AllVtables}),
  2779. IntPtrTy);
  2780. const std::pair<int, SanitizerMask> CheckKinds[] = {
  2781. {CFITCK_VCall, SanitizerKind::CFIVCall},
  2782. {CFITCK_NVCall, SanitizerKind::CFINVCall},
  2783. {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
  2784. {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
  2785. {CFITCK_ICall, SanitizerKind::CFIICall}};
  2786. SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
  2787. for (auto CheckKindMaskPair : CheckKinds) {
  2788. int Kind = CheckKindMaskPair.first;
  2789. SanitizerMask Mask = CheckKindMaskPair.second;
  2790. llvm::Value *Cond =
  2791. Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
  2792. if (CGM.getLangOpts().Sanitize.has(Mask))
  2793. EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
  2794. {Data, Addr, ValidVtable});
  2795. else
  2796. EmitTrapCheck(Cond);
  2797. }
  2798. FinishFunction();
  2799. // The only reference to this function will be created during LTO link.
  2800. // Make sure it survives until then.
  2801. CGM.addUsedGlobal(F);
  2802. }
  2803. void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
  2804. if (SanOpts.has(SanitizerKind::Unreachable)) {
  2805. SanitizerScope SanScope(this);
  2806. EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
  2807. SanitizerKind::Unreachable),
  2808. SanitizerHandler::BuiltinUnreachable,
  2809. EmitCheckSourceLocation(Loc), None);
  2810. }
  2811. Builder.CreateUnreachable();
  2812. }
  2813. void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
  2814. llvm::BasicBlock *Cont = createBasicBlock("cont");
  2815. // If we're optimizing, collapse all calls to trap down to just one per
  2816. // function to save on code size.
  2817. if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
  2818. TrapBB = createBasicBlock("trap");
  2819. Builder.CreateCondBr(Checked, Cont, TrapBB);
  2820. EmitBlock(TrapBB);
  2821. llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
  2822. TrapCall->setDoesNotReturn();
  2823. TrapCall->setDoesNotThrow();
  2824. Builder.CreateUnreachable();
  2825. } else {
  2826. Builder.CreateCondBr(Checked, Cont, TrapBB);
  2827. }
  2828. EmitBlock(Cont);
  2829. }
  2830. llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
  2831. llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
  2832. if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
  2833. auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
  2834. CGM.getCodeGenOpts().TrapFuncName);
  2835. TrapCall->addAttribute(llvm::AttributeList::FunctionIndex, A);
  2836. }
  2837. return TrapCall;
  2838. }
  2839. Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
  2840. LValueBaseInfo *BaseInfo,
  2841. TBAAAccessInfo *TBAAInfo) {
  2842. assert(E->getType()->isArrayType() &&
  2843. "Array to pointer decay must have array source type!");
  2844. // Expressions of array type can't be bitfields or vector elements.
  2845. LValue LV = EmitLValue(E);
  2846. Address Addr = LV.getAddress();
  2847. // If the array type was an incomplete type, we need to make sure
  2848. // the decay ends up being the right type.
  2849. llvm::Type *NewTy = ConvertType(E->getType());
  2850. Addr = Builder.CreateElementBitCast(Addr, NewTy);
  2851. // Note that VLA pointers are always decayed, so we don't need to do
  2852. // anything here.
  2853. if (!E->getType()->isVariableArrayType()) {
  2854. assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
  2855. "Expected pointer to array");
  2856. Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
  2857. }
  2858. // The result of this decay conversion points to an array element within the
  2859. // base lvalue. However, since TBAA currently does not support representing
  2860. // accesses to elements of member arrays, we conservatively represent accesses
  2861. // to the pointee object as if it had no any base lvalue specified.
  2862. // TODO: Support TBAA for member arrays.
  2863. QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
  2864. if (BaseInfo) *BaseInfo = LV.getBaseInfo();
  2865. if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
  2866. return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
  2867. }
  2868. /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
  2869. /// array to pointer, return the array subexpression.
  2870. static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
  2871. // If this isn't just an array->pointer decay, bail out.
  2872. const auto *CE = dyn_cast<CastExpr>(E);
  2873. if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
  2874. return nullptr;
  2875. // If this is a decay from variable width array, bail out.
  2876. const Expr *SubExpr = CE->getSubExpr();
  2877. if (SubExpr->getType()->isVariableArrayType())
  2878. return nullptr;
  2879. return SubExpr;
  2880. }
  2881. static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
  2882. llvm::Value *ptr,
  2883. ArrayRef<llvm::Value*> indices,
  2884. bool inbounds,
  2885. bool signedIndices,
  2886. SourceLocation loc,
  2887. const llvm::Twine &name = "arrayidx") {
  2888. if (inbounds) {
  2889. return CGF.EmitCheckedInBoundsGEP(ptr, indices, signedIndices,
  2890. CodeGenFunction::NotSubtraction, loc,
  2891. name);
  2892. } else {
  2893. return CGF.Builder.CreateGEP(ptr, indices, name);
  2894. }
  2895. }
  2896. static CharUnits getArrayElementAlign(CharUnits arrayAlign,
  2897. llvm::Value *idx,
  2898. CharUnits eltSize) {
  2899. // If we have a constant index, we can use the exact offset of the
  2900. // element we're accessing.
  2901. if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
  2902. CharUnits offset = constantIdx->getZExtValue() * eltSize;
  2903. return arrayAlign.alignmentAtOffset(offset);
  2904. // Otherwise, use the worst-case alignment for any element.
  2905. } else {
  2906. return arrayAlign.alignmentOfArrayElement(eltSize);
  2907. }
  2908. }
  2909. static QualType getFixedSizeElementType(const ASTContext &ctx,
  2910. const VariableArrayType *vla) {
  2911. QualType eltType;
  2912. do {
  2913. eltType = vla->getElementType();
  2914. } while ((vla = ctx.getAsVariableArrayType(eltType)));
  2915. return eltType;
  2916. }
  2917. static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
  2918. ArrayRef<llvm::Value *> indices,
  2919. QualType eltType, bool inbounds,
  2920. bool signedIndices, SourceLocation loc,
  2921. const llvm::Twine &name = "arrayidx") {
  2922. // All the indices except that last must be zero.
  2923. #ifndef NDEBUG
  2924. for (auto idx : indices.drop_back())
  2925. assert(isa<llvm::ConstantInt>(idx) &&
  2926. cast<llvm::ConstantInt>(idx)->isZero());
  2927. #endif
  2928. // Determine the element size of the statically-sized base. This is
  2929. // the thing that the indices are expressed in terms of.
  2930. if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
  2931. eltType = getFixedSizeElementType(CGF.getContext(), vla);
  2932. }
  2933. // We can use that to compute the best alignment of the element.
  2934. CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
  2935. CharUnits eltAlign =
  2936. getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
  2937. llvm::Value *eltPtr = emitArraySubscriptGEP(
  2938. CGF, addr.getPointer(), indices, inbounds, signedIndices, loc, name);
  2939. return Address(eltPtr, eltAlign);
  2940. }
  2941. LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
  2942. bool Accessed) {
  2943. // The index must always be an integer, which is not an aggregate. Emit it
  2944. // in lexical order (this complexity is, sadly, required by C++17).
  2945. llvm::Value *IdxPre =
  2946. (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
  2947. bool SignedIndices = false;
  2948. auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
  2949. auto *Idx = IdxPre;
  2950. if (E->getLHS() != E->getIdx()) {
  2951. assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
  2952. Idx = EmitScalarExpr(E->getIdx());
  2953. }
  2954. QualType IdxTy = E->getIdx()->getType();
  2955. bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
  2956. SignedIndices |= IdxSigned;
  2957. if (SanOpts.has(SanitizerKind::ArrayBounds))
  2958. EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
  2959. // Extend or truncate the index type to 32 or 64-bits.
  2960. if (Promote && Idx->getType() != IntPtrTy)
  2961. Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
  2962. return Idx;
  2963. };
  2964. IdxPre = nullptr;
  2965. // If the base is a vector type, then we are forming a vector element lvalue
  2966. // with this subscript.
  2967. if (E->getBase()->getType()->isVectorType() &&
  2968. !isa<ExtVectorElementExpr>(E->getBase())) {
  2969. // Emit the vector as an lvalue to get its address.
  2970. LValue LHS = EmitLValue(E->getBase());
  2971. auto *Idx = EmitIdxAfterBase(/*Promote*/false);
  2972. assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
  2973. return LValue::MakeVectorElt(LHS.getAddress(), Idx, E->getBase()->getType(),
  2974. LHS.getBaseInfo(), TBAAAccessInfo());
  2975. }
  2976. // All the other cases basically behave like simple offsetting.
  2977. // Handle the extvector case we ignored above.
  2978. if (isa<ExtVectorElementExpr>(E->getBase())) {
  2979. LValue LV = EmitLValue(E->getBase());
  2980. auto *Idx = EmitIdxAfterBase(/*Promote*/true);
  2981. Address Addr = EmitExtVectorElementLValue(LV);
  2982. QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
  2983. Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
  2984. SignedIndices, E->getExprLoc());
  2985. return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
  2986. CGM.getTBAAInfoForSubobject(LV, EltType));
  2987. }
  2988. LValueBaseInfo EltBaseInfo;
  2989. TBAAAccessInfo EltTBAAInfo;
  2990. Address Addr = Address::invalid();
  2991. if (const VariableArrayType *vla =
  2992. getContext().getAsVariableArrayType(E->getType())) {
  2993. // The base must be a pointer, which is not an aggregate. Emit
  2994. // it. It needs to be emitted first in case it's what captures
  2995. // the VLA bounds.
  2996. Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
  2997. auto *Idx = EmitIdxAfterBase(/*Promote*/true);
  2998. // The element count here is the total number of non-VLA elements.
  2999. llvm::Value *numElements = getVLASize(vla).NumElts;
  3000. // Effectively, the multiply by the VLA size is part of the GEP.
  3001. // GEP indexes are signed, and scaling an index isn't permitted to
  3002. // signed-overflow, so we use the same semantics for our explicit
  3003. // multiply. We suppress this if overflow is not undefined behavior.
  3004. if (getLangOpts().isSignedOverflowDefined()) {
  3005. Idx = Builder.CreateMul(Idx, numElements);
  3006. } else {
  3007. Idx = Builder.CreateNSWMul(Idx, numElements);
  3008. }
  3009. Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
  3010. !getLangOpts().isSignedOverflowDefined(),
  3011. SignedIndices, E->getExprLoc());
  3012. } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
  3013. // Indexing over an interface, as in "NSString *P; P[4];"
  3014. // Emit the base pointer.
  3015. Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
  3016. auto *Idx = EmitIdxAfterBase(/*Promote*/true);
  3017. CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
  3018. llvm::Value *InterfaceSizeVal =
  3019. llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
  3020. llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
  3021. // We don't necessarily build correct LLVM struct types for ObjC
  3022. // interfaces, so we can't rely on GEP to do this scaling
  3023. // correctly, so we need to cast to i8*. FIXME: is this actually
  3024. // true? A lot of other things in the fragile ABI would break...
  3025. llvm::Type *OrigBaseTy = Addr.getType();
  3026. Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
  3027. // Do the GEP.
  3028. CharUnits EltAlign =
  3029. getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
  3030. llvm::Value *EltPtr =
  3031. emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false,
  3032. SignedIndices, E->getExprLoc());
  3033. Addr = Address(EltPtr, EltAlign);
  3034. // Cast back.
  3035. Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
  3036. } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
  3037. // If this is A[i] where A is an array, the frontend will have decayed the
  3038. // base to be a ArrayToPointerDecay implicit cast. While correct, it is
  3039. // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
  3040. // "gep x, i" here. Emit one "gep A, 0, i".
  3041. assert(Array->getType()->isArrayType() &&
  3042. "Array to pointer decay must have array source type!");
  3043. LValue ArrayLV;
  3044. // For simple multidimensional array indexing, set the 'accessed' flag for
  3045. // better bounds-checking of the base expression.
  3046. if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
  3047. ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
  3048. else
  3049. ArrayLV = EmitLValue(Array);
  3050. auto *Idx = EmitIdxAfterBase(/*Promote*/true);
  3051. // Propagate the alignment from the array itself to the result.
  3052. Addr = emitArraySubscriptGEP(
  3053. *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
  3054. E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
  3055. E->getExprLoc());
  3056. EltBaseInfo = ArrayLV.getBaseInfo();
  3057. EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
  3058. } else {
  3059. // The base must be a pointer; emit it with an estimate of its alignment.
  3060. Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
  3061. auto *Idx = EmitIdxAfterBase(/*Promote*/true);
  3062. Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
  3063. !getLangOpts().isSignedOverflowDefined(),
  3064. SignedIndices, E->getExprLoc());
  3065. }
  3066. LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
  3067. if (getLangOpts().ObjC &&
  3068. getLangOpts().getGC() != LangOptions::NonGC) {
  3069. LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
  3070. setObjCGCLValueClass(getContext(), E, LV);
  3071. }
  3072. return LV;
  3073. }
  3074. static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
  3075. LValueBaseInfo &BaseInfo,
  3076. TBAAAccessInfo &TBAAInfo,
  3077. QualType BaseTy, QualType ElTy,
  3078. bool IsLowerBound) {
  3079. LValue BaseLVal;
  3080. if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
  3081. BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
  3082. if (BaseTy->isArrayType()) {
  3083. Address Addr = BaseLVal.getAddress();
  3084. BaseInfo = BaseLVal.getBaseInfo();
  3085. // If the array type was an incomplete type, we need to make sure
  3086. // the decay ends up being the right type.
  3087. llvm::Type *NewTy = CGF.ConvertType(BaseTy);
  3088. Addr = CGF.Builder.CreateElementBitCast(Addr, NewTy);
  3089. // Note that VLA pointers are always decayed, so we don't need to do
  3090. // anything here.
  3091. if (!BaseTy->isVariableArrayType()) {
  3092. assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
  3093. "Expected pointer to array");
  3094. Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
  3095. }
  3096. return CGF.Builder.CreateElementBitCast(Addr,
  3097. CGF.ConvertTypeForMem(ElTy));
  3098. }
  3099. LValueBaseInfo TypeBaseInfo;
  3100. TBAAAccessInfo TypeTBAAInfo;
  3101. CharUnits Align = CGF.getNaturalTypeAlignment(ElTy, &TypeBaseInfo,
  3102. &TypeTBAAInfo);
  3103. BaseInfo.mergeForCast(TypeBaseInfo);
  3104. TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
  3105. return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress()), Align);
  3106. }
  3107. return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
  3108. }
  3109. LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
  3110. bool IsLowerBound) {
  3111. QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
  3112. QualType ResultExprTy;
  3113. if (auto *AT = getContext().getAsArrayType(BaseTy))
  3114. ResultExprTy = AT->getElementType();
  3115. else
  3116. ResultExprTy = BaseTy->getPointeeType();
  3117. llvm::Value *Idx = nullptr;
  3118. if (IsLowerBound || E->getColonLoc().isInvalid()) {
  3119. // Requesting lower bound or upper bound, but without provided length and
  3120. // without ':' symbol for the default length -> length = 1.
  3121. // Idx = LowerBound ?: 0;
  3122. if (auto *LowerBound = E->getLowerBound()) {
  3123. Idx = Builder.CreateIntCast(
  3124. EmitScalarExpr(LowerBound), IntPtrTy,
  3125. LowerBound->getType()->hasSignedIntegerRepresentation());
  3126. } else
  3127. Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
  3128. } else {
  3129. // Try to emit length or lower bound as constant. If this is possible, 1
  3130. // is subtracted from constant length or lower bound. Otherwise, emit LLVM
  3131. // IR (LB + Len) - 1.
  3132. auto &C = CGM.getContext();
  3133. auto *Length = E->getLength();
  3134. llvm::APSInt ConstLength;
  3135. if (Length) {
  3136. // Idx = LowerBound + Length - 1;
  3137. if (Length->isIntegerConstantExpr(ConstLength, C)) {
  3138. ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
  3139. Length = nullptr;
  3140. }
  3141. auto *LowerBound = E->getLowerBound();
  3142. llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
  3143. if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
  3144. ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
  3145. LowerBound = nullptr;
  3146. }
  3147. if (!Length)
  3148. --ConstLength;
  3149. else if (!LowerBound)
  3150. --ConstLowerBound;
  3151. if (Length || LowerBound) {
  3152. auto *LowerBoundVal =
  3153. LowerBound
  3154. ? Builder.CreateIntCast(
  3155. EmitScalarExpr(LowerBound), IntPtrTy,
  3156. LowerBound->getType()->hasSignedIntegerRepresentation())
  3157. : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
  3158. auto *LengthVal =
  3159. Length
  3160. ? Builder.CreateIntCast(
  3161. EmitScalarExpr(Length), IntPtrTy,
  3162. Length->getType()->hasSignedIntegerRepresentation())
  3163. : llvm::ConstantInt::get(IntPtrTy, ConstLength);
  3164. Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
  3165. /*HasNUW=*/false,
  3166. !getLangOpts().isSignedOverflowDefined());
  3167. if (Length && LowerBound) {
  3168. Idx = Builder.CreateSub(
  3169. Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
  3170. /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
  3171. }
  3172. } else
  3173. Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
  3174. } else {
  3175. // Idx = ArraySize - 1;
  3176. QualType ArrayTy = BaseTy->isPointerType()
  3177. ? E->getBase()->IgnoreParenImpCasts()->getType()
  3178. : BaseTy;
  3179. if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
  3180. Length = VAT->getSizeExpr();
  3181. if (Length->isIntegerConstantExpr(ConstLength, C))
  3182. Length = nullptr;
  3183. } else {
  3184. auto *CAT = C.getAsConstantArrayType(ArrayTy);
  3185. ConstLength = CAT->getSize();
  3186. }
  3187. if (Length) {
  3188. auto *LengthVal = Builder.CreateIntCast(
  3189. EmitScalarExpr(Length), IntPtrTy,
  3190. Length->getType()->hasSignedIntegerRepresentation());
  3191. Idx = Builder.CreateSub(
  3192. LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
  3193. /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
  3194. } else {
  3195. ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
  3196. --ConstLength;
  3197. Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
  3198. }
  3199. }
  3200. }
  3201. assert(Idx);
  3202. Address EltPtr = Address::invalid();
  3203. LValueBaseInfo BaseInfo;
  3204. TBAAAccessInfo TBAAInfo;
  3205. if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
  3206. // The base must be a pointer, which is not an aggregate. Emit
  3207. // it. It needs to be emitted first in case it's what captures
  3208. // the VLA bounds.
  3209. Address Base =
  3210. emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
  3211. BaseTy, VLA->getElementType(), IsLowerBound);
  3212. // The element count here is the total number of non-VLA elements.
  3213. llvm::Value *NumElements = getVLASize(VLA).NumElts;
  3214. // Effectively, the multiply by the VLA size is part of the GEP.
  3215. // GEP indexes are signed, and scaling an index isn't permitted to
  3216. // signed-overflow, so we use the same semantics for our explicit
  3217. // multiply. We suppress this if overflow is not undefined behavior.
  3218. if (getLangOpts().isSignedOverflowDefined())
  3219. Idx = Builder.CreateMul(Idx, NumElements);
  3220. else
  3221. Idx = Builder.CreateNSWMul(Idx, NumElements);
  3222. EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
  3223. !getLangOpts().isSignedOverflowDefined(),
  3224. /*SignedIndices=*/false, E->getExprLoc());
  3225. } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
  3226. // If this is A[i] where A is an array, the frontend will have decayed the
  3227. // base to be a ArrayToPointerDecay implicit cast. While correct, it is
  3228. // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
  3229. // "gep x, i" here. Emit one "gep A, 0, i".
  3230. assert(Array->getType()->isArrayType() &&
  3231. "Array to pointer decay must have array source type!");
  3232. LValue ArrayLV;
  3233. // For simple multidimensional array indexing, set the 'accessed' flag for
  3234. // better bounds-checking of the base expression.
  3235. if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
  3236. ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
  3237. else
  3238. ArrayLV = EmitLValue(Array);
  3239. // Propagate the alignment from the array itself to the result.
  3240. EltPtr = emitArraySubscriptGEP(
  3241. *this, ArrayLV.getAddress(), {CGM.getSize(CharUnits::Zero()), Idx},
  3242. ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
  3243. /*SignedIndices=*/false, E->getExprLoc());
  3244. BaseInfo = ArrayLV.getBaseInfo();
  3245. TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
  3246. } else {
  3247. Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
  3248. TBAAInfo, BaseTy, ResultExprTy,
  3249. IsLowerBound);
  3250. EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
  3251. !getLangOpts().isSignedOverflowDefined(),
  3252. /*SignedIndices=*/false, E->getExprLoc());
  3253. }
  3254. return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
  3255. }
  3256. LValue CodeGenFunction::
  3257. EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
  3258. // Emit the base vector as an l-value.
  3259. LValue Base;
  3260. // ExtVectorElementExpr's base can either be a vector or pointer to vector.
  3261. if (E->isArrow()) {
  3262. // If it is a pointer to a vector, emit the address and form an lvalue with
  3263. // it.
  3264. LValueBaseInfo BaseInfo;
  3265. TBAAAccessInfo TBAAInfo;
  3266. Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
  3267. const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
  3268. Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
  3269. Base.getQuals().removeObjCGCAttr();
  3270. } else if (E->getBase()->isGLValue()) {
  3271. // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
  3272. // emit the base as an lvalue.
  3273. assert(E->getBase()->getType()->isVectorType());
  3274. Base = EmitLValue(E->getBase());
  3275. } else {
  3276. // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
  3277. assert(E->getBase()->getType()->isVectorType() &&
  3278. "Result must be a vector");
  3279. llvm::Value *Vec = EmitScalarExpr(E->getBase());
  3280. // Store the vector to memory (because LValue wants an address).
  3281. Address VecMem = CreateMemTemp(E->getBase()->getType());
  3282. Builder.CreateStore(Vec, VecMem);
  3283. Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
  3284. AlignmentSource::Decl);
  3285. }
  3286. QualType type =
  3287. E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
  3288. // Encode the element access list into a vector of unsigned indices.
  3289. SmallVector<uint32_t, 4> Indices;
  3290. E->getEncodedElementAccess(Indices);
  3291. if (Base.isSimple()) {
  3292. llvm::Constant *CV =
  3293. llvm::ConstantDataVector::get(getLLVMContext(), Indices);
  3294. return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
  3295. Base.getBaseInfo(), TBAAAccessInfo());
  3296. }
  3297. assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
  3298. llvm::Constant *BaseElts = Base.getExtVectorElts();
  3299. SmallVector<llvm::Constant *, 4> CElts;
  3300. for (unsigned i = 0, e = Indices.size(); i != e; ++i)
  3301. CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
  3302. llvm::Constant *CV = llvm::ConstantVector::get(CElts);
  3303. return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
  3304. Base.getBaseInfo(), TBAAAccessInfo());
  3305. }
  3306. LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
  3307. if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
  3308. EmitIgnoredExpr(E->getBase());
  3309. return EmitDeclRefLValue(DRE);
  3310. }
  3311. Expr *BaseExpr = E->getBase();
  3312. // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
  3313. LValue BaseLV;
  3314. if (E->isArrow()) {
  3315. LValueBaseInfo BaseInfo;
  3316. TBAAAccessInfo TBAAInfo;
  3317. Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
  3318. QualType PtrTy = BaseExpr->getType()->getPointeeType();
  3319. SanitizerSet SkippedChecks;
  3320. bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
  3321. if (IsBaseCXXThis)
  3322. SkippedChecks.set(SanitizerKind::Alignment, true);
  3323. if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
  3324. SkippedChecks.set(SanitizerKind::Null, true);
  3325. EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
  3326. /*Alignment=*/CharUnits::Zero(), SkippedChecks);
  3327. BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
  3328. } else
  3329. BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
  3330. NamedDecl *ND = E->getMemberDecl();
  3331. if (auto *Field = dyn_cast<FieldDecl>(ND)) {
  3332. LValue LV = EmitLValueForField(BaseLV, Field);
  3333. setObjCGCLValueClass(getContext(), E, LV);
  3334. return LV;
  3335. }
  3336. if (const auto *FD = dyn_cast<FunctionDecl>(ND))
  3337. return EmitFunctionDeclLValue(*this, E, FD);
  3338. llvm_unreachable("Unhandled member declaration!");
  3339. }
  3340. /// Given that we are currently emitting a lambda, emit an l-value for
  3341. /// one of its members.
  3342. LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
  3343. assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
  3344. assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
  3345. QualType LambdaTagType =
  3346. getContext().getTagDeclType(Field->getParent());
  3347. LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
  3348. return EmitLValueForField(LambdaLV, Field);
  3349. }
  3350. /// Drill down to the storage of a field without walking into
  3351. /// reference types.
  3352. ///
  3353. /// The resulting address doesn't necessarily have the right type.
  3354. static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
  3355. const FieldDecl *field) {
  3356. const RecordDecl *rec = field->getParent();
  3357. unsigned idx =
  3358. CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
  3359. return CGF.Builder.CreateStructGEP(base, idx, field->getName());
  3360. }
  3361. static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
  3362. const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
  3363. if (!RD)
  3364. return false;
  3365. if (RD->isDynamicClass())
  3366. return true;
  3367. for (const auto &Base : RD->bases())
  3368. if (hasAnyVptr(Base.getType(), Context))
  3369. return true;
  3370. for (const FieldDecl *Field : RD->fields())
  3371. if (hasAnyVptr(Field->getType(), Context))
  3372. return true;
  3373. return false;
  3374. }
  3375. LValue CodeGenFunction::EmitLValueForField(LValue base,
  3376. const FieldDecl *field) {
  3377. LValueBaseInfo BaseInfo = base.getBaseInfo();
  3378. if (field->isBitField()) {
  3379. const CGRecordLayout &RL =
  3380. CGM.getTypes().getCGRecordLayout(field->getParent());
  3381. const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
  3382. Address Addr = base.getAddress();
  3383. unsigned Idx = RL.getLLVMFieldNo(field);
  3384. if (Idx != 0)
  3385. // For structs, we GEP to the field that the record layout suggests.
  3386. Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
  3387. // Get the access type.
  3388. llvm::Type *FieldIntTy =
  3389. llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
  3390. if (Addr.getElementType() != FieldIntTy)
  3391. Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
  3392. QualType fieldType =
  3393. field->getType().withCVRQualifiers(base.getVRQualifiers());
  3394. // TODO: Support TBAA for bit fields.
  3395. LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
  3396. return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
  3397. TBAAAccessInfo());
  3398. }
  3399. // Fields of may-alias structures are may-alias themselves.
  3400. // FIXME: this should get propagated down through anonymous structs
  3401. // and unions.
  3402. QualType FieldType = field->getType();
  3403. const RecordDecl *rec = field->getParent();
  3404. AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
  3405. LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
  3406. TBAAAccessInfo FieldTBAAInfo;
  3407. if (base.getTBAAInfo().isMayAlias() ||
  3408. rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
  3409. FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
  3410. } else if (rec->isUnion()) {
  3411. // TODO: Support TBAA for unions.
  3412. FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
  3413. } else {
  3414. // If no base type been assigned for the base access, then try to generate
  3415. // one for this base lvalue.
  3416. FieldTBAAInfo = base.getTBAAInfo();
  3417. if (!FieldTBAAInfo.BaseType) {
  3418. FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
  3419. assert(!FieldTBAAInfo.Offset &&
  3420. "Nonzero offset for an access with no base type!");
  3421. }
  3422. // Adjust offset to be relative to the base type.
  3423. const ASTRecordLayout &Layout =
  3424. getContext().getASTRecordLayout(field->getParent());
  3425. unsigned CharWidth = getContext().getCharWidth();
  3426. if (FieldTBAAInfo.BaseType)
  3427. FieldTBAAInfo.Offset +=
  3428. Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
  3429. // Update the final access type and size.
  3430. FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
  3431. FieldTBAAInfo.Size =
  3432. getContext().getTypeSizeInChars(FieldType).getQuantity();
  3433. }
  3434. Address addr = base.getAddress();
  3435. if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
  3436. if (CGM.getCodeGenOpts().StrictVTablePointers &&
  3437. ClassDef->isDynamicClass()) {
  3438. // Getting to any field of dynamic object requires stripping dynamic
  3439. // information provided by invariant.group. This is because accessing
  3440. // fields may leak the real address of dynamic object, which could result
  3441. // in miscompilation when leaked pointer would be compared.
  3442. auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
  3443. addr = Address(stripped, addr.getAlignment());
  3444. }
  3445. }
  3446. unsigned RecordCVR = base.getVRQualifiers();
  3447. if (rec->isUnion()) {
  3448. // For unions, there is no pointer adjustment.
  3449. assert(!FieldType->isReferenceType() && "union has reference member");
  3450. if (CGM.getCodeGenOpts().StrictVTablePointers &&
  3451. hasAnyVptr(FieldType, getContext()))
  3452. // Because unions can easily skip invariant.barriers, we need to add
  3453. // a barrier every time CXXRecord field with vptr is referenced.
  3454. addr = Address(Builder.CreateLaunderInvariantGroup(addr.getPointer()),
  3455. addr.getAlignment());
  3456. } else {
  3457. // For structs, we GEP to the field that the record layout suggests.
  3458. addr = emitAddrOfFieldStorage(*this, addr, field);
  3459. // If this is a reference field, load the reference right now.
  3460. if (FieldType->isReferenceType()) {
  3461. LValue RefLVal = MakeAddrLValue(addr, FieldType, FieldBaseInfo,
  3462. FieldTBAAInfo);
  3463. if (RecordCVR & Qualifiers::Volatile)
  3464. RefLVal.getQuals().addVolatile();
  3465. addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
  3466. // Qualifiers on the struct don't apply to the referencee.
  3467. RecordCVR = 0;
  3468. FieldType = FieldType->getPointeeType();
  3469. }
  3470. }
  3471. // Make sure that the address is pointing to the right type. This is critical
  3472. // for both unions and structs. A union needs a bitcast, a struct element
  3473. // will need a bitcast if the LLVM type laid out doesn't match the desired
  3474. // type.
  3475. addr = Builder.CreateElementBitCast(
  3476. addr, CGM.getTypes().ConvertTypeForMem(FieldType), field->getName());
  3477. if (field->hasAttr<AnnotateAttr>())
  3478. addr = EmitFieldAnnotations(field, addr);
  3479. LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
  3480. LV.getQuals().addCVRQualifiers(RecordCVR);
  3481. // __weak attribute on a field is ignored.
  3482. if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
  3483. LV.getQuals().removeObjCGCAttr();
  3484. return LV;
  3485. }
  3486. LValue
  3487. CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
  3488. const FieldDecl *Field) {
  3489. QualType FieldType = Field->getType();
  3490. if (!FieldType->isReferenceType())
  3491. return EmitLValueForField(Base, Field);
  3492. Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
  3493. // Make sure that the address is pointing to the right type.
  3494. llvm::Type *llvmType = ConvertTypeForMem(FieldType);
  3495. V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
  3496. // TODO: Generate TBAA information that describes this access as a structure
  3497. // member access and not just an access to an object of the field's type. This
  3498. // should be similar to what we do in EmitLValueForField().
  3499. LValueBaseInfo BaseInfo = Base.getBaseInfo();
  3500. AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
  3501. LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
  3502. return MakeAddrLValue(V, FieldType, FieldBaseInfo,
  3503. CGM.getTBAAInfoForSubobject(Base, FieldType));
  3504. }
  3505. LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
  3506. if (E->isFileScope()) {
  3507. ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
  3508. return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
  3509. }
  3510. if (E->getType()->isVariablyModifiedType())
  3511. // make sure to emit the VLA size.
  3512. EmitVariablyModifiedType(E->getType());
  3513. Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
  3514. const Expr *InitExpr = E->getInitializer();
  3515. LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
  3516. EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
  3517. /*Init*/ true);
  3518. return Result;
  3519. }
  3520. LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
  3521. if (!E->isGLValue())
  3522. // Initializing an aggregate temporary in C++11: T{...}.
  3523. return EmitAggExprToLValue(E);
  3524. // An lvalue initializer list must be initializing a reference.
  3525. assert(E->isTransparent() && "non-transparent glvalue init list");
  3526. return EmitLValue(E->getInit(0));
  3527. }
  3528. /// Emit the operand of a glvalue conditional operator. This is either a glvalue
  3529. /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
  3530. /// LValue is returned and the current block has been terminated.
  3531. static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
  3532. const Expr *Operand) {
  3533. if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
  3534. CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
  3535. return None;
  3536. }
  3537. return CGF.EmitLValue(Operand);
  3538. }
  3539. LValue CodeGenFunction::
  3540. EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
  3541. if (!expr->isGLValue()) {
  3542. // ?: here should be an aggregate.
  3543. assert(hasAggregateEvaluationKind(expr->getType()) &&
  3544. "Unexpected conditional operator!");
  3545. return EmitAggExprToLValue(expr);
  3546. }
  3547. OpaqueValueMapping binding(*this, expr);
  3548. const Expr *condExpr = expr->getCond();
  3549. bool CondExprBool;
  3550. if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
  3551. const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
  3552. if (!CondExprBool) std::swap(live, dead);
  3553. if (!ContainsLabel(dead)) {
  3554. // If the true case is live, we need to track its region.
  3555. if (CondExprBool)
  3556. incrementProfileCounter(expr);
  3557. return EmitLValue(live);
  3558. }
  3559. }
  3560. llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
  3561. llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
  3562. llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
  3563. ConditionalEvaluation eval(*this);
  3564. EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
  3565. // Any temporaries created here are conditional.
  3566. EmitBlock(lhsBlock);
  3567. incrementProfileCounter(expr);
  3568. eval.begin(*this);
  3569. Optional<LValue> lhs =
  3570. EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
  3571. eval.end(*this);
  3572. if (lhs && !lhs->isSimple())
  3573. return EmitUnsupportedLValue(expr, "conditional operator");
  3574. lhsBlock = Builder.GetInsertBlock();
  3575. if (lhs)
  3576. Builder.CreateBr(contBlock);
  3577. // Any temporaries created here are conditional.
  3578. EmitBlock(rhsBlock);
  3579. eval.begin(*this);
  3580. Optional<LValue> rhs =
  3581. EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
  3582. eval.end(*this);
  3583. if (rhs && !rhs->isSimple())
  3584. return EmitUnsupportedLValue(expr, "conditional operator");
  3585. rhsBlock = Builder.GetInsertBlock();
  3586. EmitBlock(contBlock);
  3587. if (lhs && rhs) {
  3588. llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
  3589. 2, "cond-lvalue");
  3590. phi->addIncoming(lhs->getPointer(), lhsBlock);
  3591. phi->addIncoming(rhs->getPointer(), rhsBlock);
  3592. Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
  3593. AlignmentSource alignSource =
  3594. std::max(lhs->getBaseInfo().getAlignmentSource(),
  3595. rhs->getBaseInfo().getAlignmentSource());
  3596. TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
  3597. lhs->getTBAAInfo(), rhs->getTBAAInfo());
  3598. return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
  3599. TBAAInfo);
  3600. } else {
  3601. assert((lhs || rhs) &&
  3602. "both operands of glvalue conditional are throw-expressions?");
  3603. return lhs ? *lhs : *rhs;
  3604. }
  3605. }
  3606. /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
  3607. /// type. If the cast is to a reference, we can have the usual lvalue result,
  3608. /// otherwise if a cast is needed by the code generator in an lvalue context,
  3609. /// then it must mean that we need the address of an aggregate in order to
  3610. /// access one of its members. This can happen for all the reasons that casts
  3611. /// are permitted with aggregate result, including noop aggregate casts, and
  3612. /// cast from scalar to union.
  3613. LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
  3614. switch (E->getCastKind()) {
  3615. case CK_ToVoid:
  3616. case CK_BitCast:
  3617. case CK_ArrayToPointerDecay:
  3618. case CK_FunctionToPointerDecay:
  3619. case CK_NullToMemberPointer:
  3620. case CK_NullToPointer:
  3621. case CK_IntegralToPointer:
  3622. case CK_PointerToIntegral:
  3623. case CK_PointerToBoolean:
  3624. case CK_VectorSplat:
  3625. case CK_IntegralCast:
  3626. case CK_BooleanToSignedIntegral:
  3627. case CK_IntegralToBoolean:
  3628. case CK_IntegralToFloating:
  3629. case CK_FloatingToIntegral:
  3630. case CK_FloatingToBoolean:
  3631. case CK_FloatingCast:
  3632. case CK_FloatingRealToComplex:
  3633. case CK_FloatingComplexToReal:
  3634. case CK_FloatingComplexToBoolean:
  3635. case CK_FloatingComplexCast:
  3636. case CK_FloatingComplexToIntegralComplex:
  3637. case CK_IntegralRealToComplex:
  3638. case CK_IntegralComplexToReal:
  3639. case CK_IntegralComplexToBoolean:
  3640. case CK_IntegralComplexCast:
  3641. case CK_IntegralComplexToFloatingComplex:
  3642. case CK_DerivedToBaseMemberPointer:
  3643. case CK_BaseToDerivedMemberPointer:
  3644. case CK_MemberPointerToBoolean:
  3645. case CK_ReinterpretMemberPointer:
  3646. case CK_AnyPointerToBlockPointerCast:
  3647. case CK_ARCProduceObject:
  3648. case CK_ARCConsumeObject:
  3649. case CK_ARCReclaimReturnedObject:
  3650. case CK_ARCExtendBlockObject:
  3651. case CK_CopyAndAutoreleaseBlockObject:
  3652. case CK_IntToOCLSampler:
  3653. case CK_FixedPointCast:
  3654. case CK_FixedPointToBoolean:
  3655. case CK_FixedPointToIntegral:
  3656. case CK_IntegralToFixedPoint:
  3657. return EmitUnsupportedLValue(E, "unexpected cast lvalue");
  3658. case CK_Dependent:
  3659. llvm_unreachable("dependent cast kind in IR gen!");
  3660. case CK_BuiltinFnToFnPtr:
  3661. llvm_unreachable("builtin functions are handled elsewhere");
  3662. // These are never l-values; just use the aggregate emission code.
  3663. case CK_NonAtomicToAtomic:
  3664. case CK_AtomicToNonAtomic:
  3665. return EmitAggExprToLValue(E);
  3666. case CK_Dynamic: {
  3667. LValue LV = EmitLValue(E->getSubExpr());
  3668. Address V = LV.getAddress();
  3669. const auto *DCE = cast<CXXDynamicCastExpr>(E);
  3670. return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
  3671. }
  3672. case CK_ConstructorConversion:
  3673. case CK_UserDefinedConversion:
  3674. case CK_CPointerToObjCPointerCast:
  3675. case CK_BlockPointerToObjCPointerCast:
  3676. case CK_NoOp:
  3677. case CK_LValueToRValue:
  3678. return EmitLValue(E->getSubExpr());
  3679. case CK_UncheckedDerivedToBase:
  3680. case CK_DerivedToBase: {
  3681. const RecordType *DerivedClassTy =
  3682. E->getSubExpr()->getType()->getAs<RecordType>();
  3683. auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
  3684. LValue LV = EmitLValue(E->getSubExpr());
  3685. Address This = LV.getAddress();
  3686. // Perform the derived-to-base conversion
  3687. Address Base = GetAddressOfBaseClass(
  3688. This, DerivedClassDecl, E->path_begin(), E->path_end(),
  3689. /*NullCheckValue=*/false, E->getExprLoc());
  3690. // TODO: Support accesses to members of base classes in TBAA. For now, we
  3691. // conservatively pretend that the complete object is of the base class
  3692. // type.
  3693. return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
  3694. CGM.getTBAAInfoForSubobject(LV, E->getType()));
  3695. }
  3696. case CK_ToUnion:
  3697. return EmitAggExprToLValue(E);
  3698. case CK_BaseToDerived: {
  3699. const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
  3700. auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
  3701. LValue LV = EmitLValue(E->getSubExpr());
  3702. // Perform the base-to-derived conversion
  3703. Address Derived =
  3704. GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
  3705. E->path_begin(), E->path_end(),
  3706. /*NullCheckValue=*/false);
  3707. // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
  3708. // performed and the object is not of the derived type.
  3709. if (sanitizePerformTypeCheck())
  3710. EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
  3711. Derived.getPointer(), E->getType());
  3712. if (SanOpts.has(SanitizerKind::CFIDerivedCast))
  3713. EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
  3714. /*MayBeNull=*/false, CFITCK_DerivedCast,
  3715. E->getBeginLoc());
  3716. return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
  3717. CGM.getTBAAInfoForSubobject(LV, E->getType()));
  3718. }
  3719. case CK_LValueBitCast: {
  3720. // This must be a reinterpret_cast (or c-style equivalent).
  3721. const auto *CE = cast<ExplicitCastExpr>(E);
  3722. CGM.EmitExplicitCastExprType(CE, this);
  3723. LValue LV = EmitLValue(E->getSubExpr());
  3724. Address V = Builder.CreateBitCast(LV.getAddress(),
  3725. ConvertType(CE->getTypeAsWritten()));
  3726. if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
  3727. EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
  3728. /*MayBeNull=*/false, CFITCK_UnrelatedCast,
  3729. E->getBeginLoc());
  3730. return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
  3731. CGM.getTBAAInfoForSubobject(LV, E->getType()));
  3732. }
  3733. case CK_AddressSpaceConversion: {
  3734. LValue LV = EmitLValue(E->getSubExpr());
  3735. QualType DestTy = getContext().getPointerType(E->getType());
  3736. llvm::Value *V = getTargetHooks().performAddrSpaceCast(
  3737. *this, LV.getPointer(), E->getSubExpr()->getType().getAddressSpace(),
  3738. E->getType().getAddressSpace(), ConvertType(DestTy));
  3739. return MakeAddrLValue(Address(V, LV.getAddress().getAlignment()),
  3740. E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
  3741. }
  3742. case CK_ObjCObjectLValueCast: {
  3743. LValue LV = EmitLValue(E->getSubExpr());
  3744. Address V = Builder.CreateElementBitCast(LV.getAddress(),
  3745. ConvertType(E->getType()));
  3746. return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
  3747. CGM.getTBAAInfoForSubobject(LV, E->getType()));
  3748. }
  3749. case CK_ZeroToOCLOpaqueType:
  3750. llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
  3751. }
  3752. llvm_unreachable("Unhandled lvalue cast kind?");
  3753. }
  3754. LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
  3755. assert(OpaqueValueMappingData::shouldBindAsLValue(e));
  3756. return getOrCreateOpaqueLValueMapping(e);
  3757. }
  3758. LValue
  3759. CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
  3760. assert(OpaqueValueMapping::shouldBindAsLValue(e));
  3761. llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
  3762. it = OpaqueLValues.find(e);
  3763. if (it != OpaqueLValues.end())
  3764. return it->second;
  3765. assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
  3766. return EmitLValue(e->getSourceExpr());
  3767. }
  3768. RValue
  3769. CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
  3770. assert(!OpaqueValueMapping::shouldBindAsLValue(e));
  3771. llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
  3772. it = OpaqueRValues.find(e);
  3773. if (it != OpaqueRValues.end())
  3774. return it->second;
  3775. assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
  3776. return EmitAnyExpr(e->getSourceExpr());
  3777. }
  3778. RValue CodeGenFunction::EmitRValueForField(LValue LV,
  3779. const FieldDecl *FD,
  3780. SourceLocation Loc) {
  3781. QualType FT = FD->getType();
  3782. LValue FieldLV = EmitLValueForField(LV, FD);
  3783. switch (getEvaluationKind(FT)) {
  3784. case TEK_Complex:
  3785. return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
  3786. case TEK_Aggregate:
  3787. return FieldLV.asAggregateRValue();
  3788. case TEK_Scalar:
  3789. // This routine is used to load fields one-by-one to perform a copy, so
  3790. // don't load reference fields.
  3791. if (FD->getType()->isReferenceType())
  3792. return RValue::get(FieldLV.getPointer());
  3793. return EmitLoadOfLValue(FieldLV, Loc);
  3794. }
  3795. llvm_unreachable("bad evaluation kind");
  3796. }
  3797. //===--------------------------------------------------------------------===//
  3798. // Expression Emission
  3799. //===--------------------------------------------------------------------===//
  3800. RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
  3801. ReturnValueSlot ReturnValue) {
  3802. // Builtins never have block type.
  3803. if (E->getCallee()->getType()->isBlockPointerType())
  3804. return EmitBlockCallExpr(E, ReturnValue);
  3805. if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
  3806. return EmitCXXMemberCallExpr(CE, ReturnValue);
  3807. if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
  3808. return EmitCUDAKernelCallExpr(CE, ReturnValue);
  3809. if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
  3810. if (const CXXMethodDecl *MD =
  3811. dyn_cast_or_null<CXXMethodDecl>(CE->getCalleeDecl()))
  3812. return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
  3813. CGCallee callee = EmitCallee(E->getCallee());
  3814. if (callee.isBuiltin()) {
  3815. return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
  3816. E, ReturnValue);
  3817. }
  3818. if (callee.isPseudoDestructor()) {
  3819. return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
  3820. }
  3821. return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
  3822. }
  3823. /// Emit a CallExpr without considering whether it might be a subclass.
  3824. RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
  3825. ReturnValueSlot ReturnValue) {
  3826. CGCallee Callee = EmitCallee(E->getCallee());
  3827. return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
  3828. }
  3829. static CGCallee EmitDirectCallee(CodeGenFunction &CGF, const FunctionDecl *FD) {
  3830. if (auto builtinID = FD->getBuiltinID()) {
  3831. return CGCallee::forBuiltin(builtinID, FD);
  3832. }
  3833. llvm::Constant *calleePtr = EmitFunctionDeclPointer(CGF.CGM, FD);
  3834. return CGCallee::forDirect(calleePtr, GlobalDecl(FD));
  3835. }
  3836. CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
  3837. E = E->IgnoreParens();
  3838. // Look through function-to-pointer decay.
  3839. if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
  3840. if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
  3841. ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
  3842. return EmitCallee(ICE->getSubExpr());
  3843. }
  3844. // Resolve direct calls.
  3845. } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
  3846. if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
  3847. return EmitDirectCallee(*this, FD);
  3848. }
  3849. } else if (auto ME = dyn_cast<MemberExpr>(E)) {
  3850. if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
  3851. EmitIgnoredExpr(ME->getBase());
  3852. return EmitDirectCallee(*this, FD);
  3853. }
  3854. // Look through template substitutions.
  3855. } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
  3856. return EmitCallee(NTTP->getReplacement());
  3857. // Treat pseudo-destructor calls differently.
  3858. } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
  3859. return CGCallee::forPseudoDestructor(PDE);
  3860. }
  3861. // Otherwise, we have an indirect reference.
  3862. llvm::Value *calleePtr;
  3863. QualType functionType;
  3864. if (auto ptrType = E->getType()->getAs<PointerType>()) {
  3865. calleePtr = EmitScalarExpr(E);
  3866. functionType = ptrType->getPointeeType();
  3867. } else {
  3868. functionType = E->getType();
  3869. calleePtr = EmitLValue(E).getPointer();
  3870. }
  3871. assert(functionType->isFunctionType());
  3872. GlobalDecl GD;
  3873. if (const auto *VD =
  3874. dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
  3875. GD = GlobalDecl(VD);
  3876. CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
  3877. CGCallee callee(calleeInfo, calleePtr);
  3878. return callee;
  3879. }
  3880. LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
  3881. // Comma expressions just emit their LHS then their RHS as an l-value.
  3882. if (E->getOpcode() == BO_Comma) {
  3883. EmitIgnoredExpr(E->getLHS());
  3884. EnsureInsertPoint();
  3885. return EmitLValue(E->getRHS());
  3886. }
  3887. if (E->getOpcode() == BO_PtrMemD ||
  3888. E->getOpcode() == BO_PtrMemI)
  3889. return EmitPointerToDataMemberBinaryExpr(E);
  3890. assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
  3891. // Note that in all of these cases, __block variables need the RHS
  3892. // evaluated first just in case the variable gets moved by the RHS.
  3893. switch (getEvaluationKind(E->getType())) {
  3894. case TEK_Scalar: {
  3895. switch (E->getLHS()->getType().getObjCLifetime()) {
  3896. case Qualifiers::OCL_Strong:
  3897. return EmitARCStoreStrong(E, /*ignored*/ false).first;
  3898. case Qualifiers::OCL_Autoreleasing:
  3899. return EmitARCStoreAutoreleasing(E).first;
  3900. // No reason to do any of these differently.
  3901. case Qualifiers::OCL_None:
  3902. case Qualifiers::OCL_ExplicitNone:
  3903. case Qualifiers::OCL_Weak:
  3904. break;
  3905. }
  3906. RValue RV = EmitAnyExpr(E->getRHS());
  3907. LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
  3908. if (RV.isScalar())
  3909. EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
  3910. EmitStoreThroughLValue(RV, LV);
  3911. return LV;
  3912. }
  3913. case TEK_Complex:
  3914. return EmitComplexAssignmentLValue(E);
  3915. case TEK_Aggregate:
  3916. return EmitAggExprToLValue(E);
  3917. }
  3918. llvm_unreachable("bad evaluation kind");
  3919. }
  3920. LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
  3921. RValue RV = EmitCallExpr(E);
  3922. if (!RV.isScalar())
  3923. return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
  3924. AlignmentSource::Decl);
  3925. assert(E->getCallReturnType(getContext())->isReferenceType() &&
  3926. "Can't have a scalar return unless the return type is a "
  3927. "reference type!");
  3928. return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
  3929. }
  3930. LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
  3931. // FIXME: This shouldn't require another copy.
  3932. return EmitAggExprToLValue(E);
  3933. }
  3934. LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
  3935. assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
  3936. && "binding l-value to type which needs a temporary");
  3937. AggValueSlot Slot = CreateAggTemp(E->getType());
  3938. EmitCXXConstructExpr(E, Slot);
  3939. return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
  3940. }
  3941. LValue
  3942. CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
  3943. return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
  3944. }
  3945. Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
  3946. return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
  3947. ConvertType(E->getType()));
  3948. }
  3949. LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
  3950. return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
  3951. AlignmentSource::Decl);
  3952. }
  3953. LValue
  3954. CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
  3955. AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
  3956. Slot.setExternallyDestructed();
  3957. EmitAggExpr(E->getSubExpr(), Slot);
  3958. EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
  3959. return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
  3960. }
  3961. LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
  3962. RValue RV = EmitObjCMessageExpr(E);
  3963. if (!RV.isScalar())
  3964. return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
  3965. AlignmentSource::Decl);
  3966. assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
  3967. "Can't have a scalar return unless the return type is a "
  3968. "reference type!");
  3969. return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
  3970. }
  3971. LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
  3972. Address V =
  3973. CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
  3974. return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
  3975. }
  3976. llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
  3977. const ObjCIvarDecl *Ivar) {
  3978. return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
  3979. }
  3980. LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
  3981. llvm::Value *BaseValue,
  3982. const ObjCIvarDecl *Ivar,
  3983. unsigned CVRQualifiers) {
  3984. return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
  3985. Ivar, CVRQualifiers);
  3986. }
  3987. LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
  3988. // FIXME: A lot of the code below could be shared with EmitMemberExpr.
  3989. llvm::Value *BaseValue = nullptr;
  3990. const Expr *BaseExpr = E->getBase();
  3991. Qualifiers BaseQuals;
  3992. QualType ObjectTy;
  3993. if (E->isArrow()) {
  3994. BaseValue = EmitScalarExpr(BaseExpr);
  3995. ObjectTy = BaseExpr->getType()->getPointeeType();
  3996. BaseQuals = ObjectTy.getQualifiers();
  3997. } else {
  3998. LValue BaseLV = EmitLValue(BaseExpr);
  3999. BaseValue = BaseLV.getPointer();
  4000. ObjectTy = BaseExpr->getType();
  4001. BaseQuals = ObjectTy.getQualifiers();
  4002. }
  4003. LValue LV =
  4004. EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
  4005. BaseQuals.getCVRQualifiers());
  4006. setObjCGCLValueClass(getContext(), E, LV);
  4007. return LV;
  4008. }
  4009. LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
  4010. // Can only get l-value for message expression returning aggregate type
  4011. RValue RV = EmitAnyExprToTemp(E);
  4012. return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
  4013. AlignmentSource::Decl);
  4014. }
  4015. RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
  4016. const CallExpr *E, ReturnValueSlot ReturnValue,
  4017. llvm::Value *Chain) {
  4018. // Get the actual function type. The callee type will always be a pointer to
  4019. // function type or a block pointer type.
  4020. assert(CalleeType->isFunctionPointerType() &&
  4021. "Call must have function pointer type!");
  4022. const Decl *TargetDecl =
  4023. OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
  4024. if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
  4025. // We can only guarantee that a function is called from the correct
  4026. // context/function based on the appropriate target attributes,
  4027. // so only check in the case where we have both always_inline and target
  4028. // since otherwise we could be making a conditional call after a check for
  4029. // the proper cpu features (and it won't cause code generation issues due to
  4030. // function based code generation).
  4031. if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
  4032. TargetDecl->hasAttr<TargetAttr>())
  4033. checkTargetFeatures(E, FD);
  4034. CalleeType = getContext().getCanonicalType(CalleeType);
  4035. auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
  4036. CGCallee Callee = OrigCallee;
  4037. if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
  4038. (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
  4039. if (llvm::Constant *PrefixSig =
  4040. CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
  4041. SanitizerScope SanScope(this);
  4042. // Remove any (C++17) exception specifications, to allow calling e.g. a
  4043. // noexcept function through a non-noexcept pointer.
  4044. auto ProtoTy =
  4045. getContext().getFunctionTypeWithExceptionSpec(PointeeType, EST_None);
  4046. llvm::Constant *FTRTTIConst =
  4047. CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true);
  4048. llvm::Type *PrefixStructTyElems[] = {PrefixSig->getType(), Int32Ty};
  4049. llvm::StructType *PrefixStructTy = llvm::StructType::get(
  4050. CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
  4051. llvm::Value *CalleePtr = Callee.getFunctionPointer();
  4052. llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
  4053. CalleePtr, llvm::PointerType::getUnqual(PrefixStructTy));
  4054. llvm::Value *CalleeSigPtr =
  4055. Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
  4056. llvm::Value *CalleeSig =
  4057. Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
  4058. llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
  4059. llvm::BasicBlock *Cont = createBasicBlock("cont");
  4060. llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
  4061. Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
  4062. EmitBlock(TypeCheck);
  4063. llvm::Value *CalleeRTTIPtr =
  4064. Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
  4065. llvm::Value *CalleeRTTIEncoded =
  4066. Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
  4067. llvm::Value *CalleeRTTI =
  4068. DecodeAddrUsedInPrologue(CalleePtr, CalleeRTTIEncoded);
  4069. llvm::Value *CalleeRTTIMatch =
  4070. Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
  4071. llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
  4072. EmitCheckTypeDescriptor(CalleeType)};
  4073. EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
  4074. SanitizerHandler::FunctionTypeMismatch, StaticData,
  4075. {CalleePtr, CalleeRTTI, FTRTTIConst});
  4076. Builder.CreateBr(Cont);
  4077. EmitBlock(Cont);
  4078. }
  4079. }
  4080. const auto *FnType = cast<FunctionType>(PointeeType);
  4081. // If we are checking indirect calls and this call is indirect, check that the
  4082. // function pointer is a member of the bit set for the function type.
  4083. if (SanOpts.has(SanitizerKind::CFIICall) &&
  4084. (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
  4085. SanitizerScope SanScope(this);
  4086. EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
  4087. llvm::Metadata *MD;
  4088. if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
  4089. MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
  4090. else
  4091. MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
  4092. llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
  4093. llvm::Value *CalleePtr = Callee.getFunctionPointer();
  4094. llvm::Value *CastedCallee = Builder.CreateBitCast(CalleePtr, Int8PtrTy);
  4095. llvm::Value *TypeTest = Builder.CreateCall(
  4096. CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedCallee, TypeId});
  4097. auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
  4098. llvm::Constant *StaticData[] = {
  4099. llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
  4100. EmitCheckSourceLocation(E->getBeginLoc()),
  4101. EmitCheckTypeDescriptor(QualType(FnType, 0)),
  4102. };
  4103. if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
  4104. EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
  4105. CastedCallee, StaticData);
  4106. } else {
  4107. EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
  4108. SanitizerHandler::CFICheckFail, StaticData,
  4109. {CastedCallee, llvm::UndefValue::get(IntPtrTy)});
  4110. }
  4111. }
  4112. CallArgList Args;
  4113. if (Chain)
  4114. Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
  4115. CGM.getContext().VoidPtrTy);
  4116. // C++17 requires that we evaluate arguments to a call using assignment syntax
  4117. // right-to-left, and that we evaluate arguments to certain other operators
  4118. // left-to-right. Note that we allow this to override the order dictated by
  4119. // the calling convention on the MS ABI, which means that parameter
  4120. // destruction order is not necessarily reverse construction order.
  4121. // FIXME: Revisit this based on C++ committee response to unimplementability.
  4122. EvaluationOrder Order = EvaluationOrder::Default;
  4123. if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
  4124. if (OCE->isAssignmentOp())
  4125. Order = EvaluationOrder::ForceRightToLeft;
  4126. else {
  4127. switch (OCE->getOperator()) {
  4128. case OO_LessLess:
  4129. case OO_GreaterGreater:
  4130. case OO_AmpAmp:
  4131. case OO_PipePipe:
  4132. case OO_Comma:
  4133. case OO_ArrowStar:
  4134. Order = EvaluationOrder::ForceLeftToRight;
  4135. break;
  4136. default:
  4137. break;
  4138. }
  4139. }
  4140. }
  4141. EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
  4142. E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
  4143. const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
  4144. Args, FnType, /*isChainCall=*/Chain);
  4145. // C99 6.5.2.2p6:
  4146. // If the expression that denotes the called function has a type
  4147. // that does not include a prototype, [the default argument
  4148. // promotions are performed]. If the number of arguments does not
  4149. // equal the number of parameters, the behavior is undefined. If
  4150. // the function is defined with a type that includes a prototype,
  4151. // and either the prototype ends with an ellipsis (, ...) or the
  4152. // types of the arguments after promotion are not compatible with
  4153. // the types of the parameters, the behavior is undefined. If the
  4154. // function is defined with a type that does not include a
  4155. // prototype, and the types of the arguments after promotion are
  4156. // not compatible with those of the parameters after promotion,
  4157. // the behavior is undefined [except in some trivial cases].
  4158. // That is, in the general case, we should assume that a call
  4159. // through an unprototyped function type works like a *non-variadic*
  4160. // call. The way we make this work is to cast to the exact type
  4161. // of the promoted arguments.
  4162. //
  4163. // Chain calls use this same code path to add the invisible chain parameter
  4164. // to the function type.
  4165. if (isa<FunctionNoProtoType>(FnType) || Chain) {
  4166. llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
  4167. CalleeTy = CalleeTy->getPointerTo();
  4168. llvm::Value *CalleePtr = Callee.getFunctionPointer();
  4169. CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
  4170. Callee.setFunctionPointer(CalleePtr);
  4171. }
  4172. return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr, E->getExprLoc());
  4173. }
  4174. LValue CodeGenFunction::
  4175. EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
  4176. Address BaseAddr = Address::invalid();
  4177. if (E->getOpcode() == BO_PtrMemI) {
  4178. BaseAddr = EmitPointerWithAlignment(E->getLHS());
  4179. } else {
  4180. BaseAddr = EmitLValue(E->getLHS()).getAddress();
  4181. }
  4182. llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
  4183. const MemberPointerType *MPT
  4184. = E->getRHS()->getType()->getAs<MemberPointerType>();
  4185. LValueBaseInfo BaseInfo;
  4186. TBAAAccessInfo TBAAInfo;
  4187. Address MemberAddr =
  4188. EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
  4189. &TBAAInfo);
  4190. return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
  4191. }
  4192. /// Given the address of a temporary variable, produce an r-value of
  4193. /// its type.
  4194. RValue CodeGenFunction::convertTempToRValue(Address addr,
  4195. QualType type,
  4196. SourceLocation loc) {
  4197. LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
  4198. switch (getEvaluationKind(type)) {
  4199. case TEK_Complex:
  4200. return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
  4201. case TEK_Aggregate:
  4202. return lvalue.asAggregateRValue();
  4203. case TEK_Scalar:
  4204. return RValue::get(EmitLoadOfScalar(lvalue, loc));
  4205. }
  4206. llvm_unreachable("bad evaluation kind");
  4207. }
  4208. void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
  4209. assert(Val->getType()->isFPOrFPVectorTy());
  4210. if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
  4211. return;
  4212. llvm::MDBuilder MDHelper(getLLVMContext());
  4213. llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
  4214. cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
  4215. }
  4216. namespace {
  4217. struct LValueOrRValue {
  4218. LValue LV;
  4219. RValue RV;
  4220. };
  4221. }
  4222. static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
  4223. const PseudoObjectExpr *E,
  4224. bool forLValue,
  4225. AggValueSlot slot) {
  4226. SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
  4227. // Find the result expression, if any.
  4228. const Expr *resultExpr = E->getResultExpr();
  4229. LValueOrRValue result;
  4230. for (PseudoObjectExpr::const_semantics_iterator
  4231. i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
  4232. const Expr *semantic = *i;
  4233. // If this semantic expression is an opaque value, bind it
  4234. // to the result of its source expression.
  4235. if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
  4236. // Skip unique OVEs.
  4237. if (ov->isUnique()) {
  4238. assert(ov != resultExpr &&
  4239. "A unique OVE cannot be used as the result expression");
  4240. continue;
  4241. }
  4242. // If this is the result expression, we may need to evaluate
  4243. // directly into the slot.
  4244. typedef CodeGenFunction::OpaqueValueMappingData OVMA;
  4245. OVMA opaqueData;
  4246. if (ov == resultExpr && ov->isRValue() && !forLValue &&
  4247. CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
  4248. CGF.EmitAggExpr(ov->getSourceExpr(), slot);
  4249. LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
  4250. AlignmentSource::Decl);
  4251. opaqueData = OVMA::bind(CGF, ov, LV);
  4252. result.RV = slot.asRValue();
  4253. // Otherwise, emit as normal.
  4254. } else {
  4255. opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
  4256. // If this is the result, also evaluate the result now.
  4257. if (ov == resultExpr) {
  4258. if (forLValue)
  4259. result.LV = CGF.EmitLValue(ov);
  4260. else
  4261. result.RV = CGF.EmitAnyExpr(ov, slot);
  4262. }
  4263. }
  4264. opaques.push_back(opaqueData);
  4265. // Otherwise, if the expression is the result, evaluate it
  4266. // and remember the result.
  4267. } else if (semantic == resultExpr) {
  4268. if (forLValue)
  4269. result.LV = CGF.EmitLValue(semantic);
  4270. else
  4271. result.RV = CGF.EmitAnyExpr(semantic, slot);
  4272. // Otherwise, evaluate the expression in an ignored context.
  4273. } else {
  4274. CGF.EmitIgnoredExpr(semantic);
  4275. }
  4276. }
  4277. // Unbind all the opaques now.
  4278. for (unsigned i = 0, e = opaques.size(); i != e; ++i)
  4279. opaques[i].unbind(CGF);
  4280. return result;
  4281. }
  4282. RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
  4283. AggValueSlot slot) {
  4284. return emitPseudoObjectExpr(*this, E, false, slot).RV;
  4285. }
  4286. LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
  4287. return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
  4288. }