123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501 |
- //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This is the code that handles AST -> LLVM type lowering.
- //
- //===----------------------------------------------------------------------===//
- #include "CodeGenTypes.h"
- #include "CGCall.h"
- #include "CGRecordLayout.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/DeclObjC.h"
- #include "clang/AST/DeclCXX.h"
- #include "clang/AST/Expr.h"
- #include "clang/AST/RecordLayout.h"
- #include "llvm/DerivedTypes.h"
- #include "llvm/Module.h"
- #include "llvm/Target/TargetData.h"
- using namespace clang;
- using namespace CodeGen;
- CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
- const llvm::TargetData &TD, const ABIInfo &Info)
- : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD),
- TheABIInfo(Info) {
- }
- CodeGenTypes::~CodeGenTypes() {
- for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
- I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
- I != E; ++I)
- delete I->second;
- for (llvm::FoldingSet<CGFunctionInfo>::iterator
- I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
- delete &*I++;
- }
- /// ConvertType - Convert the specified type to its LLVM form.
- const llvm::Type *CodeGenTypes::ConvertType(QualType T) {
- llvm::PATypeHolder Result = ConvertTypeRecursive(T);
- // Any pointers that were converted defered evaluation of their pointee type,
- // creating an opaque type instead. This is in order to avoid problems with
- // circular types. Loop through all these defered pointees, if any, and
- // resolve them now.
- while (!PointersToResolve.empty()) {
- std::pair<QualType, llvm::OpaqueType*> P = PointersToResolve.pop_back_val();
-
- // We can handle bare pointers here because we know that the only pointers
- // to the Opaque type are P.second and from other types. Refining the
- // opqaue type away will invalidate P.second, but we don't mind :).
- const llvm::Type *NT = ConvertTypeForMemRecursive(P.first);
- P.second->refineAbstractTypeTo(NT);
- }
- return Result;
- }
- const llvm::Type *CodeGenTypes::ConvertTypeRecursive(QualType T) {
- T = Context.getCanonicalType(T);
- // See if type is already cached.
- llvm::DenseMap<Type *, llvm::PATypeHolder>::iterator
- I = TypeCache.find(T.getTypePtr());
- // If type is found in map and this is not a definition for a opaque
- // place holder type then use it. Otherwise, convert type T.
- if (I != TypeCache.end())
- return I->second.get();
- const llvm::Type *ResultType = ConvertNewType(T);
- TypeCache.insert(std::make_pair(T.getTypePtr(),
- llvm::PATypeHolder(ResultType)));
- return ResultType;
- }
- const llvm::Type *CodeGenTypes::ConvertTypeForMemRecursive(QualType T) {
- const llvm::Type *ResultType = ConvertTypeRecursive(T);
- if (ResultType->isIntegerTy(1))
- return llvm::IntegerType::get(getLLVMContext(),
- (unsigned)Context.getTypeSize(T));
- // FIXME: Should assert that the llvm type and AST type has the same size.
- return ResultType;
- }
- /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
- /// ConvertType in that it is used to convert to the memory representation for
- /// a type. For example, the scalar representation for _Bool is i1, but the
- /// memory representation is usually i8 or i32, depending on the target.
- const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
- const llvm::Type *R = ConvertType(T);
- // If this is a non-bool type, don't map it.
- if (!R->isIntegerTy(1))
- return R;
- // Otherwise, return an integer of the target-specified size.
- return llvm::IntegerType::get(getLLVMContext(),
- (unsigned)Context.getTypeSize(T));
- }
- // Code to verify a given function type is complete, i.e. the return type
- // and all of the argument types are complete.
- static const TagType *VerifyFuncTypeComplete(const Type* T) {
- const FunctionType *FT = cast<FunctionType>(T);
- if (const TagType* TT = FT->getResultType()->getAs<TagType>())
- if (!TT->getDecl()->isDefinition())
- return TT;
- if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(T))
- for (unsigned i = 0; i < FPT->getNumArgs(); i++)
- if (const TagType* TT = FPT->getArgType(i)->getAs<TagType>())
- if (!TT->getDecl()->isDefinition())
- return TT;
- return 0;
- }
- /// UpdateCompletedType - When we find the full definition for a TagDecl,
- /// replace the 'opaque' type we previously made for it if applicable.
- void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
- const Type *Key = Context.getTagDeclType(TD).getTypePtr();
- llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI =
- TagDeclTypes.find(Key);
- if (TDTI == TagDeclTypes.end()) return;
- // Remember the opaque LLVM type for this tagdecl.
- llvm::PATypeHolder OpaqueHolder = TDTI->second;
- assert(isa<llvm::OpaqueType>(OpaqueHolder.get()) &&
- "Updating compilation of an already non-opaque type?");
- // Remove it from TagDeclTypes so that it will be regenerated.
- TagDeclTypes.erase(TDTI);
- // Generate the new type.
- const llvm::Type *NT = ConvertTagDeclType(TD);
- // Refine the old opaque type to its new definition.
- cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NT);
- // Since we just completed a tag type, check to see if any function types
- // were completed along with the tag type.
- // FIXME: This is very inefficient; if we track which function types depend
- // on which tag types, though, it should be reasonably efficient.
- llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator i;
- for (i = FunctionTypes.begin(); i != FunctionTypes.end(); ++i) {
- if (const TagType* TT = VerifyFuncTypeComplete(i->first)) {
- // This function type still depends on an incomplete tag type; make sure
- // that tag type has an associated opaque type.
- ConvertTagDeclType(TT->getDecl());
- } else {
- // This function no longer depends on an incomplete tag type; create the
- // function type, and refine the opaque type to the new function type.
- llvm::PATypeHolder OpaqueHolder = i->second;
- const llvm::Type *NFT = ConvertNewType(QualType(i->first, 0));
- cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NFT);
- FunctionTypes.erase(i);
- }
- }
- }
- static const llvm::Type* getTypeForFormat(llvm::LLVMContext &VMContext,
- const llvm::fltSemantics &format) {
- if (&format == &llvm::APFloat::IEEEsingle)
- return llvm::Type::getFloatTy(VMContext);
- if (&format == &llvm::APFloat::IEEEdouble)
- return llvm::Type::getDoubleTy(VMContext);
- if (&format == &llvm::APFloat::IEEEquad)
- return llvm::Type::getFP128Ty(VMContext);
- if (&format == &llvm::APFloat::PPCDoubleDouble)
- return llvm::Type::getPPC_FP128Ty(VMContext);
- if (&format == &llvm::APFloat::x87DoubleExtended)
- return llvm::Type::getX86_FP80Ty(VMContext);
- assert(0 && "Unknown float format!");
- return 0;
- }
- const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
- const clang::Type &Ty = *Context.getCanonicalType(T).getTypePtr();
- switch (Ty.getTypeClass()) {
- #define TYPE(Class, Base)
- #define ABSTRACT_TYPE(Class, Base)
- #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
- #define DEPENDENT_TYPE(Class, Base) case Type::Class:
- #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
- #include "clang/AST/TypeNodes.def"
- assert(false && "Non-canonical or dependent types aren't possible.");
- break;
- case Type::Builtin: {
- switch (cast<BuiltinType>(Ty).getKind()) {
- case BuiltinType::Void:
- case BuiltinType::ObjCId:
- case BuiltinType::ObjCClass:
- case BuiltinType::ObjCSel:
- // LLVM void type can only be used as the result of a function call. Just
- // map to the same as char.
- return llvm::IntegerType::get(getLLVMContext(), 8);
- case BuiltinType::Bool:
- // Note that we always return bool as i1 for use as a scalar type.
- return llvm::Type::getInt1Ty(getLLVMContext());
- case BuiltinType::Char_S:
- case BuiltinType::Char_U:
- case BuiltinType::SChar:
- case BuiltinType::UChar:
- case BuiltinType::Short:
- case BuiltinType::UShort:
- case BuiltinType::Int:
- case BuiltinType::UInt:
- case BuiltinType::Long:
- case BuiltinType::ULong:
- case BuiltinType::LongLong:
- case BuiltinType::ULongLong:
- case BuiltinType::WChar:
- case BuiltinType::Char16:
- case BuiltinType::Char32:
- return llvm::IntegerType::get(getLLVMContext(),
- static_cast<unsigned>(Context.getTypeSize(T)));
- case BuiltinType::Float:
- case BuiltinType::Double:
- case BuiltinType::LongDouble:
- return getTypeForFormat(getLLVMContext(),
- Context.getFloatTypeSemantics(T));
- case BuiltinType::NullPtr: {
- // Model std::nullptr_t as i8*
- const llvm::Type *Ty = llvm::IntegerType::get(getLLVMContext(), 8);
- return llvm::PointerType::getUnqual(Ty);
- }
-
- case BuiltinType::UInt128:
- case BuiltinType::Int128:
- return llvm::IntegerType::get(getLLVMContext(), 128);
-
- case BuiltinType::Overload:
- case BuiltinType::Dependent:
- case BuiltinType::UndeducedAuto:
- assert(0 && "Unexpected builtin type!");
- break;
- }
- assert(0 && "Unknown builtin type!");
- break;
- }
- case Type::Complex: {
- const llvm::Type *EltTy =
- ConvertTypeRecursive(cast<ComplexType>(Ty).getElementType());
- return llvm::StructType::get(TheModule.getContext(), EltTy, EltTy, NULL);
- }
- case Type::LValueReference:
- case Type::RValueReference: {
- const ReferenceType &RTy = cast<ReferenceType>(Ty);
- QualType ETy = RTy.getPointeeType();
- llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext());
- PointersToResolve.push_back(std::make_pair(ETy, PointeeType));
- return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
- }
- case Type::Pointer: {
- const PointerType &PTy = cast<PointerType>(Ty);
- QualType ETy = PTy.getPointeeType();
- llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext());
- PointersToResolve.push_back(std::make_pair(ETy, PointeeType));
- return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
- }
- case Type::VariableArray: {
- const VariableArrayType &A = cast<VariableArrayType>(Ty);
- assert(A.getIndexTypeCVRQualifiers() == 0 &&
- "FIXME: We only handle trivial array types so far!");
- // VLAs resolve to the innermost element type; this matches
- // the return of alloca, and there isn't any obviously better choice.
- return ConvertTypeForMemRecursive(A.getElementType());
- }
- case Type::IncompleteArray: {
- const IncompleteArrayType &A = cast<IncompleteArrayType>(Ty);
- assert(A.getIndexTypeCVRQualifiers() == 0 &&
- "FIXME: We only handle trivial array types so far!");
- // int X[] -> [0 x int]
- return llvm::ArrayType::get(ConvertTypeForMemRecursive(A.getElementType()), 0);
- }
- case Type::ConstantArray: {
- const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
- const llvm::Type *EltTy = ConvertTypeForMemRecursive(A.getElementType());
- return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue());
- }
- case Type::ExtVector:
- case Type::Vector: {
- const VectorType &VT = cast<VectorType>(Ty);
- return llvm::VectorType::get(ConvertTypeRecursive(VT.getElementType()),
- VT.getNumElements());
- }
- case Type::FunctionNoProto:
- case Type::FunctionProto: {
- // First, check whether we can build the full function type.
- if (const TagType* TT = VerifyFuncTypeComplete(&Ty)) {
- // This function's type depends on an incomplete tag type; make sure
- // we have an opaque type corresponding to the tag type.
- ConvertTagDeclType(TT->getDecl());
- // Create an opaque type for this function type, save it, and return it.
- llvm::Type *ResultType = llvm::OpaqueType::get(getLLVMContext());
- FunctionTypes.insert(std::make_pair(&Ty, ResultType));
- return ResultType;
- }
- // The function type can be built; call the appropriate routines to
- // build it.
- if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(&Ty))
- return GetFunctionType(getFunctionInfo(
- CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT,0))),
- FPT->isVariadic());
- const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(&Ty);
- return GetFunctionType(getFunctionInfo(
- CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT,0))),
- true);
- }
- case Type::ObjCObject:
- return ConvertTypeRecursive(cast<ObjCObjectType>(Ty).getBaseType());
- case Type::ObjCInterface: {
- // Objective-C interfaces are always opaque (outside of the
- // runtime, which can do whatever it likes); we never refine
- // these.
- const llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(&Ty)];
- if (!T)
- T = llvm::OpaqueType::get(getLLVMContext());
- return T;
- }
- case Type::ObjCObjectPointer: {
- // Protocol qualifications do not influence the LLVM type, we just return a
- // pointer to the underlying interface type. We don't need to worry about
- // recursive conversion.
- const llvm::Type *T =
- ConvertTypeRecursive(cast<ObjCObjectPointerType>(Ty).getPointeeType());
- return llvm::PointerType::getUnqual(T);
- }
- case Type::Record:
- case Type::Enum: {
- const TagDecl *TD = cast<TagType>(Ty).getDecl();
- const llvm::Type *Res = ConvertTagDeclType(TD);
- std::string TypeName(TD->getKindName());
- TypeName += '.';
- // Name the codegen type after the typedef name
- // if there is no tag type name available
- if (TD->getIdentifier())
- // FIXME: We should not have to check for a null decl context here.
- // Right now we do it because the implicit Obj-C decls don't have one.
- TypeName += TD->getDeclContext() ? TD->getQualifiedNameAsString() :
- TD->getNameAsString();
- else if (const TypedefType *TdT = dyn_cast<TypedefType>(T))
- // FIXME: We should not have to check for a null decl context here.
- // Right now we do it because the implicit Obj-C decls don't have one.
- TypeName += TdT->getDecl()->getDeclContext() ?
- TdT->getDecl()->getQualifiedNameAsString() :
- TdT->getDecl()->getNameAsString();
- else
- TypeName += "anon";
- TheModule.addTypeName(TypeName, Res);
- return Res;
- }
- case Type::BlockPointer: {
- const QualType FTy = cast<BlockPointerType>(Ty).getPointeeType();
- llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext());
- PointersToResolve.push_back(std::make_pair(FTy, PointeeType));
- return llvm::PointerType::get(PointeeType, FTy.getAddressSpace());
- }
- case Type::MemberPointer: {
- // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
- // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
- // If we ever want to support other ABIs this needs to be abstracted.
- QualType ETy = cast<MemberPointerType>(Ty).getPointeeType();
- const llvm::Type *PtrDiffTy =
- ConvertTypeRecursive(Context.getPointerDiffType());
- if (ETy->isFunctionType())
- return llvm::StructType::get(TheModule.getContext(), PtrDiffTy, PtrDiffTy,
- NULL);
- return PtrDiffTy;
- }
- }
- // FIXME: implement.
- return llvm::OpaqueType::get(getLLVMContext());
- }
- /// ConvertTagDeclType - Lay out a tagged decl type like struct or union or
- /// enum.
- const llvm::Type *CodeGenTypes::ConvertTagDeclType(const TagDecl *TD) {
- // TagDecl's are not necessarily unique, instead use the (clang)
- // type connected to the decl.
- const Type *Key =
- Context.getTagDeclType(TD).getTypePtr();
- llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI =
- TagDeclTypes.find(Key);
- // If we've already compiled this tag type, use the previous definition.
- if (TDTI != TagDeclTypes.end())
- return TDTI->second;
- // If this is still a forward declaration, just define an opaque
- // type to use for this tagged decl.
- if (!TD->isDefinition()) {
- llvm::Type *ResultType = llvm::OpaqueType::get(getLLVMContext());
- TagDeclTypes.insert(std::make_pair(Key, ResultType));
- return ResultType;
- }
- // Okay, this is a definition of a type. Compile the implementation now.
- if (TD->isEnum()) // Don't bother storing enums in TagDeclTypes.
- return ConvertTypeRecursive(cast<EnumDecl>(TD)->getIntegerType());
- // This decl could well be recursive. In this case, insert an opaque
- // definition of this type, which the recursive uses will get. We will then
- // refine this opaque version later.
- // Create new OpaqueType now for later use in case this is a recursive
- // type. This will later be refined to the actual type.
- llvm::PATypeHolder ResultHolder = llvm::OpaqueType::get(getLLVMContext());
- TagDeclTypes.insert(std::make_pair(Key, ResultHolder));
- const RecordDecl *RD = cast<const RecordDecl>(TD);
- // Force conversion of non-virtual base classes recursively.
- if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
- for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
- e = RD->bases_end(); i != e; ++i) {
- if (!i->isVirtual()) {
- const CXXRecordDecl *Base =
- cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
- ConvertTagDeclType(Base);
- }
- }
- }
- // Layout fields.
- CGRecordLayout *Layout = ComputeRecordLayout(RD);
- CGRecordLayouts[Key] = Layout;
- const llvm::Type *ResultType = Layout->getLLVMType();
- // Refine our Opaque type to ResultType. This can invalidate ResultType, so
- // make sure to read the result out of the holder.
- cast<llvm::OpaqueType>(ResultHolder.get())
- ->refineAbstractTypeTo(ResultType);
- return ResultHolder.get();
- }
- /// getCGRecordLayout - Return record layout info for the given llvm::Type.
- const CGRecordLayout &
- CodeGenTypes::getCGRecordLayout(const RecordDecl *TD) const {
- const Type *Key = Context.getTagDeclType(TD).getTypePtr();
- const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
- assert(Layout && "Unable to find record layout information for type");
- return *Layout;
- }
- bool CodeGenTypes::ContainsPointerToDataMember(QualType T) {
- // No need to check for member pointers when not compiling C++.
- if (!Context.getLangOptions().CPlusPlus)
- return false;
-
- T = Context.getBaseElementType(T);
-
- if (const RecordType *RT = T->getAs<RecordType>()) {
- const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
-
- return ContainsPointerToDataMember(RD);
- }
-
- if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
- return !MPT->getPointeeType()->isFunctionType();
-
- return false;
- }
- bool CodeGenTypes::ContainsPointerToDataMember(const CXXRecordDecl *RD) {
-
- // FIXME: It would be better if there was a way to explicitly compute the
- // record layout instead of converting to a type.
- ConvertTagDeclType(RD);
-
- const CGRecordLayout &Layout = getCGRecordLayout(RD);
- return Layout.containsPointerToDataMember();
- }
|