12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132 |
- //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
- //
- // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
- // See https://llvm.org/LICENSE.txt for license information.
- // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the Expr constant evaluator.
- //
- // Constant expression evaluation produces four main results:
- //
- // * A success/failure flag indicating whether constant folding was successful.
- // This is the 'bool' return value used by most of the code in this file. A
- // 'false' return value indicates that constant folding has failed, and any
- // appropriate diagnostic has already been produced.
- //
- // * An evaluated result, valid only if constant folding has not failed.
- //
- // * A flag indicating if evaluation encountered (unevaluated) side-effects.
- // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
- // where it is possible to determine the evaluated result regardless.
- //
- // * A set of notes indicating why the evaluation was not a constant expression
- // (under the C++11 / C++1y rules only, at the moment), or, if folding failed
- // too, why the expression could not be folded.
- //
- // If we are checking for a potential constant expression, failure to constant
- // fold a potential constant sub-expression will be indicated by a 'false'
- // return value (the expression could not be folded) and no diagnostic (the
- // expression is not necessarily non-constant).
- //
- //===----------------------------------------------------------------------===//
- #include <cstring>
- #include <functional>
- #include "Interp/Context.h"
- #include "Interp/Frame.h"
- #include "Interp/State.h"
- #include "clang/AST/APValue.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/ASTDiagnostic.h"
- #include "clang/AST/ASTLambda.h"
- #include "clang/AST/CXXInheritance.h"
- #include "clang/AST/CharUnits.h"
- #include "clang/AST/CurrentSourceLocExprScope.h"
- #include "clang/AST/Expr.h"
- #include "clang/AST/OSLog.h"
- #include "clang/AST/OptionalDiagnostic.h"
- #include "clang/AST/RecordLayout.h"
- #include "clang/AST/StmtVisitor.h"
- #include "clang/AST/TypeLoc.h"
- #include "clang/Basic/Builtins.h"
- #include "clang/Basic/FixedPoint.h"
- #include "clang/Basic/TargetInfo.h"
- #include "llvm/ADT/Optional.h"
- #include "llvm/ADT/SmallBitVector.h"
- #include "llvm/Support/SaveAndRestore.h"
- #include "llvm/Support/raw_ostream.h"
- #define DEBUG_TYPE "exprconstant"
- using namespace clang;
- using llvm::APInt;
- using llvm::APSInt;
- using llvm::APFloat;
- using llvm::Optional;
- static bool IsGlobalLValue(APValue::LValueBase B);
- namespace {
- struct LValue;
- class CallStackFrame;
- class EvalInfo;
- using SourceLocExprScopeGuard =
- CurrentSourceLocExprScope::SourceLocExprScopeGuard;
- static QualType getType(APValue::LValueBase B) {
- if (!B) return QualType();
- if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
- // FIXME: It's unclear where we're supposed to take the type from, and
- // this actually matters for arrays of unknown bound. Eg:
- //
- // extern int arr[]; void f() { extern int arr[3]; };
- // constexpr int *p = &arr[1]; // valid?
- //
- // For now, we take the array bound from the most recent declaration.
- for (auto *Redecl = cast<ValueDecl>(D->getMostRecentDecl()); Redecl;
- Redecl = cast_or_null<ValueDecl>(Redecl->getPreviousDecl())) {
- QualType T = Redecl->getType();
- if (!T->isIncompleteArrayType())
- return T;
- }
- return D->getType();
- }
- if (B.is<TypeInfoLValue>())
- return B.getTypeInfoType();
- const Expr *Base = B.get<const Expr*>();
- // For a materialized temporary, the type of the temporary we materialized
- // may not be the type of the expression.
- if (const MaterializeTemporaryExpr *MTE =
- dyn_cast<MaterializeTemporaryExpr>(Base)) {
- SmallVector<const Expr *, 2> CommaLHSs;
- SmallVector<SubobjectAdjustment, 2> Adjustments;
- const Expr *Temp = MTE->GetTemporaryExpr();
- const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
- Adjustments);
- // Keep any cv-qualifiers from the reference if we generated a temporary
- // for it directly. Otherwise use the type after adjustment.
- if (!Adjustments.empty())
- return Inner->getType();
- }
- return Base->getType();
- }
- /// Get an LValue path entry, which is known to not be an array index, as a
- /// field declaration.
- static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
- return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer());
- }
- /// Get an LValue path entry, which is known to not be an array index, as a
- /// base class declaration.
- static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
- return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer());
- }
- /// Determine whether this LValue path entry for a base class names a virtual
- /// base class.
- static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
- return E.getAsBaseOrMember().getInt();
- }
- /// Given a CallExpr, try to get the alloc_size attribute. May return null.
- static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) {
- const FunctionDecl *Callee = CE->getDirectCallee();
- return Callee ? Callee->getAttr<AllocSizeAttr>() : nullptr;
- }
- /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr.
- /// This will look through a single cast.
- ///
- /// Returns null if we couldn't unwrap a function with alloc_size.
- static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) {
- if (!E->getType()->isPointerType())
- return nullptr;
- E = E->IgnoreParens();
- // If we're doing a variable assignment from e.g. malloc(N), there will
- // probably be a cast of some kind. In exotic cases, we might also see a
- // top-level ExprWithCleanups. Ignore them either way.
- if (const auto *FE = dyn_cast<FullExpr>(E))
- E = FE->getSubExpr()->IgnoreParens();
- if (const auto *Cast = dyn_cast<CastExpr>(E))
- E = Cast->getSubExpr()->IgnoreParens();
- if (const auto *CE = dyn_cast<CallExpr>(E))
- return getAllocSizeAttr(CE) ? CE : nullptr;
- return nullptr;
- }
- /// Determines whether or not the given Base contains a call to a function
- /// with the alloc_size attribute.
- static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) {
- const auto *E = Base.dyn_cast<const Expr *>();
- return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E);
- }
- /// The bound to claim that an array of unknown bound has.
- /// The value in MostDerivedArraySize is undefined in this case. So, set it
- /// to an arbitrary value that's likely to loudly break things if it's used.
- static const uint64_t AssumedSizeForUnsizedArray =
- std::numeric_limits<uint64_t>::max() / 2;
- /// Determines if an LValue with the given LValueBase will have an unsized
- /// array in its designator.
- /// Find the path length and type of the most-derived subobject in the given
- /// path, and find the size of the containing array, if any.
- static unsigned
- findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base,
- ArrayRef<APValue::LValuePathEntry> Path,
- uint64_t &ArraySize, QualType &Type, bool &IsArray,
- bool &FirstEntryIsUnsizedArray) {
- // This only accepts LValueBases from APValues, and APValues don't support
- // arrays that lack size info.
- assert(!isBaseAnAllocSizeCall(Base) &&
- "Unsized arrays shouldn't appear here");
- unsigned MostDerivedLength = 0;
- Type = getType(Base);
- for (unsigned I = 0, N = Path.size(); I != N; ++I) {
- if (Type->isArrayType()) {
- const ArrayType *AT = Ctx.getAsArrayType(Type);
- Type = AT->getElementType();
- MostDerivedLength = I + 1;
- IsArray = true;
- if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
- ArraySize = CAT->getSize().getZExtValue();
- } else {
- assert(I == 0 && "unexpected unsized array designator");
- FirstEntryIsUnsizedArray = true;
- ArraySize = AssumedSizeForUnsizedArray;
- }
- } else if (Type->isAnyComplexType()) {
- const ComplexType *CT = Type->castAs<ComplexType>();
- Type = CT->getElementType();
- ArraySize = 2;
- MostDerivedLength = I + 1;
- IsArray = true;
- } else if (const FieldDecl *FD = getAsField(Path[I])) {
- Type = FD->getType();
- ArraySize = 0;
- MostDerivedLength = I + 1;
- IsArray = false;
- } else {
- // Path[I] describes a base class.
- ArraySize = 0;
- IsArray = false;
- }
- }
- return MostDerivedLength;
- }
- /// A path from a glvalue to a subobject of that glvalue.
- struct SubobjectDesignator {
- /// True if the subobject was named in a manner not supported by C++11. Such
- /// lvalues can still be folded, but they are not core constant expressions
- /// and we cannot perform lvalue-to-rvalue conversions on them.
- unsigned Invalid : 1;
- /// Is this a pointer one past the end of an object?
- unsigned IsOnePastTheEnd : 1;
- /// Indicator of whether the first entry is an unsized array.
- unsigned FirstEntryIsAnUnsizedArray : 1;
- /// Indicator of whether the most-derived object is an array element.
- unsigned MostDerivedIsArrayElement : 1;
- /// The length of the path to the most-derived object of which this is a
- /// subobject.
- unsigned MostDerivedPathLength : 28;
- /// The size of the array of which the most-derived object is an element.
- /// This will always be 0 if the most-derived object is not an array
- /// element. 0 is not an indicator of whether or not the most-derived object
- /// is an array, however, because 0-length arrays are allowed.
- ///
- /// If the current array is an unsized array, the value of this is
- /// undefined.
- uint64_t MostDerivedArraySize;
- /// The type of the most derived object referred to by this address.
- QualType MostDerivedType;
- typedef APValue::LValuePathEntry PathEntry;
- /// The entries on the path from the glvalue to the designated subobject.
- SmallVector<PathEntry, 8> Entries;
- SubobjectDesignator() : Invalid(true) {}
- explicit SubobjectDesignator(QualType T)
- : Invalid(false), IsOnePastTheEnd(false),
- FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
- MostDerivedPathLength(0), MostDerivedArraySize(0),
- MostDerivedType(T) {}
- SubobjectDesignator(ASTContext &Ctx, const APValue &V)
- : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
- FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false),
- MostDerivedPathLength(0), MostDerivedArraySize(0) {
- assert(V.isLValue() && "Non-LValue used to make an LValue designator?");
- if (!Invalid) {
- IsOnePastTheEnd = V.isLValueOnePastTheEnd();
- ArrayRef<PathEntry> VEntries = V.getLValuePath();
- Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
- if (V.getLValueBase()) {
- bool IsArray = false;
- bool FirstIsUnsizedArray = false;
- MostDerivedPathLength = findMostDerivedSubobject(
- Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize,
- MostDerivedType, IsArray, FirstIsUnsizedArray);
- MostDerivedIsArrayElement = IsArray;
- FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
- }
- }
- }
- void truncate(ASTContext &Ctx, APValue::LValueBase Base,
- unsigned NewLength) {
- if (Invalid)
- return;
- assert(Base && "cannot truncate path for null pointer");
- assert(NewLength <= Entries.size() && "not a truncation");
- if (NewLength == Entries.size())
- return;
- Entries.resize(NewLength);
- bool IsArray = false;
- bool FirstIsUnsizedArray = false;
- MostDerivedPathLength = findMostDerivedSubobject(
- Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray,
- FirstIsUnsizedArray);
- MostDerivedIsArrayElement = IsArray;
- FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray;
- }
- void setInvalid() {
- Invalid = true;
- Entries.clear();
- }
- /// Determine whether the most derived subobject is an array without a
- /// known bound.
- bool isMostDerivedAnUnsizedArray() const {
- assert(!Invalid && "Calling this makes no sense on invalid designators");
- return Entries.size() == 1 && FirstEntryIsAnUnsizedArray;
- }
- /// Determine what the most derived array's size is. Results in an assertion
- /// failure if the most derived array lacks a size.
- uint64_t getMostDerivedArraySize() const {
- assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size");
- return MostDerivedArraySize;
- }
- /// Determine whether this is a one-past-the-end pointer.
- bool isOnePastTheEnd() const {
- assert(!Invalid);
- if (IsOnePastTheEnd)
- return true;
- if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement &&
- Entries[MostDerivedPathLength - 1].getAsArrayIndex() ==
- MostDerivedArraySize)
- return true;
- return false;
- }
- /// Get the range of valid index adjustments in the form
- /// {maximum value that can be subtracted from this pointer,
- /// maximum value that can be added to this pointer}
- std::pair<uint64_t, uint64_t> validIndexAdjustments() {
- if (Invalid || isMostDerivedAnUnsizedArray())
- return {0, 0};
- // [expr.add]p4: For the purposes of these operators, a pointer to a
- // nonarray object behaves the same as a pointer to the first element of
- // an array of length one with the type of the object as its element type.
- bool IsArray = MostDerivedPathLength == Entries.size() &&
- MostDerivedIsArrayElement;
- uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
- : (uint64_t)IsOnePastTheEnd;
- uint64_t ArraySize =
- IsArray ? getMostDerivedArraySize() : (uint64_t)1;
- return {ArrayIndex, ArraySize - ArrayIndex};
- }
- /// Check that this refers to a valid subobject.
- bool isValidSubobject() const {
- if (Invalid)
- return false;
- return !isOnePastTheEnd();
- }
- /// Check that this refers to a valid subobject, and if not, produce a
- /// relevant diagnostic and set the designator as invalid.
- bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
- /// Get the type of the designated object.
- QualType getType(ASTContext &Ctx) const {
- assert(!Invalid && "invalid designator has no subobject type");
- return MostDerivedPathLength == Entries.size()
- ? MostDerivedType
- : Ctx.getRecordType(getAsBaseClass(Entries.back()));
- }
- /// Update this designator to refer to the first element within this array.
- void addArrayUnchecked(const ConstantArrayType *CAT) {
- Entries.push_back(PathEntry::ArrayIndex(0));
- // This is a most-derived object.
- MostDerivedType = CAT->getElementType();
- MostDerivedIsArrayElement = true;
- MostDerivedArraySize = CAT->getSize().getZExtValue();
- MostDerivedPathLength = Entries.size();
- }
- /// Update this designator to refer to the first element within the array of
- /// elements of type T. This is an array of unknown size.
- void addUnsizedArrayUnchecked(QualType ElemTy) {
- Entries.push_back(PathEntry::ArrayIndex(0));
- MostDerivedType = ElemTy;
- MostDerivedIsArrayElement = true;
- // The value in MostDerivedArraySize is undefined in this case. So, set it
- // to an arbitrary value that's likely to loudly break things if it's
- // used.
- MostDerivedArraySize = AssumedSizeForUnsizedArray;
- MostDerivedPathLength = Entries.size();
- }
- /// Update this designator to refer to the given base or member of this
- /// object.
- void addDeclUnchecked(const Decl *D, bool Virtual = false) {
- Entries.push_back(APValue::BaseOrMemberType(D, Virtual));
- // If this isn't a base class, it's a new most-derived object.
- if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
- MostDerivedType = FD->getType();
- MostDerivedIsArrayElement = false;
- MostDerivedArraySize = 0;
- MostDerivedPathLength = Entries.size();
- }
- }
- /// Update this designator to refer to the given complex component.
- void addComplexUnchecked(QualType EltTy, bool Imag) {
- Entries.push_back(PathEntry::ArrayIndex(Imag));
- // This is technically a most-derived object, though in practice this
- // is unlikely to matter.
- MostDerivedType = EltTy;
- MostDerivedIsArrayElement = true;
- MostDerivedArraySize = 2;
- MostDerivedPathLength = Entries.size();
- }
- void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E);
- void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E,
- const APSInt &N);
- /// Add N to the address of this subobject.
- void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) {
- if (Invalid || !N) return;
- uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue();
- if (isMostDerivedAnUnsizedArray()) {
- diagnoseUnsizedArrayPointerArithmetic(Info, E);
- // Can't verify -- trust that the user is doing the right thing (or if
- // not, trust that the caller will catch the bad behavior).
- // FIXME: Should we reject if this overflows, at least?
- Entries.back() = PathEntry::ArrayIndex(
- Entries.back().getAsArrayIndex() + TruncatedN);
- return;
- }
- // [expr.add]p4: For the purposes of these operators, a pointer to a
- // nonarray object behaves the same as a pointer to the first element of
- // an array of length one with the type of the object as its element type.
- bool IsArray = MostDerivedPathLength == Entries.size() &&
- MostDerivedIsArrayElement;
- uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex()
- : (uint64_t)IsOnePastTheEnd;
- uint64_t ArraySize =
- IsArray ? getMostDerivedArraySize() : (uint64_t)1;
- if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) {
- // Calculate the actual index in a wide enough type, so we can include
- // it in the note.
- N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65));
- (llvm::APInt&)N += ArrayIndex;
- assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index");
- diagnosePointerArithmetic(Info, E, N);
- setInvalid();
- return;
- }
- ArrayIndex += TruncatedN;
- assert(ArrayIndex <= ArraySize &&
- "bounds check succeeded for out-of-bounds index");
- if (IsArray)
- Entries.back() = PathEntry::ArrayIndex(ArrayIndex);
- else
- IsOnePastTheEnd = (ArrayIndex != 0);
- }
- };
- /// A stack frame in the constexpr call stack.
- class CallStackFrame : public interp::Frame {
- public:
- EvalInfo &Info;
- /// Parent - The caller of this stack frame.
- CallStackFrame *Caller;
- /// Callee - The function which was called.
- const FunctionDecl *Callee;
- /// This - The binding for the this pointer in this call, if any.
- const LValue *This;
- /// Arguments - Parameter bindings for this function call, indexed by
- /// parameters' function scope indices.
- APValue *Arguments;
- /// Source location information about the default argument or default
- /// initializer expression we're evaluating, if any.
- CurrentSourceLocExprScope CurSourceLocExprScope;
- // Note that we intentionally use std::map here so that references to
- // values are stable.
- typedef std::pair<const void *, unsigned> MapKeyTy;
- typedef std::map<MapKeyTy, APValue> MapTy;
- /// Temporaries - Temporary lvalues materialized within this stack frame.
- MapTy Temporaries;
- /// CallLoc - The location of the call expression for this call.
- SourceLocation CallLoc;
- /// Index - The call index of this call.
- unsigned Index;
- /// The stack of integers for tracking version numbers for temporaries.
- SmallVector<unsigned, 2> TempVersionStack = {1};
- unsigned CurTempVersion = TempVersionStack.back();
- unsigned getTempVersion() const { return TempVersionStack.back(); }
- void pushTempVersion() {
- TempVersionStack.push_back(++CurTempVersion);
- }
- void popTempVersion() {
- TempVersionStack.pop_back();
- }
- // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact
- // on the overall stack usage of deeply-recursing constexpr evaluations.
- // (We should cache this map rather than recomputing it repeatedly.)
- // But let's try this and see how it goes; we can look into caching the map
- // as a later change.
- /// LambdaCaptureFields - Mapping from captured variables/this to
- /// corresponding data members in the closure class.
- llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
- FieldDecl *LambdaThisCaptureField;
- CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
- const FunctionDecl *Callee, const LValue *This,
- APValue *Arguments);
- ~CallStackFrame();
- // Return the temporary for Key whose version number is Version.
- APValue *getTemporary(const void *Key, unsigned Version) {
- MapKeyTy KV(Key, Version);
- auto LB = Temporaries.lower_bound(KV);
- if (LB != Temporaries.end() && LB->first == KV)
- return &LB->second;
- // Pair (Key,Version) wasn't found in the map. Check that no elements
- // in the map have 'Key' as their key.
- assert((LB == Temporaries.end() || LB->first.first != Key) &&
- (LB == Temporaries.begin() || std::prev(LB)->first.first != Key) &&
- "Element with key 'Key' found in map");
- return nullptr;
- }
- // Return the current temporary for Key in the map.
- APValue *getCurrentTemporary(const void *Key) {
- auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
- if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
- return &std::prev(UB)->second;
- return nullptr;
- }
- // Return the version number of the current temporary for Key.
- unsigned getCurrentTemporaryVersion(const void *Key) const {
- auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX));
- if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key)
- return std::prev(UB)->first.second;
- return 0;
- }
- APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
- void describe(llvm::raw_ostream &OS) override;
- Frame *getCaller() const override { return Caller; }
- SourceLocation getCallLocation() const override { return CallLoc; }
- const FunctionDecl *getCallee() const override { return Callee; }
- };
- /// Temporarily override 'this'.
- class ThisOverrideRAII {
- public:
- ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
- : Frame(Frame), OldThis(Frame.This) {
- if (Enable)
- Frame.This = NewThis;
- }
- ~ThisOverrideRAII() {
- Frame.This = OldThis;
- }
- private:
- CallStackFrame &Frame;
- const LValue *OldThis;
- };
- /// A cleanup, and a flag indicating whether it is lifetime-extended.
- class Cleanup {
- llvm::PointerIntPair<APValue*, 1, bool> Value;
- public:
- Cleanup(APValue *Val, bool IsLifetimeExtended)
- : Value(Val, IsLifetimeExtended) {}
- bool isLifetimeExtended() const { return Value.getInt(); }
- void endLifetime() {
- *Value.getPointer() = APValue();
- }
- };
- /// A reference to an object whose construction we are currently evaluating.
- struct ObjectUnderConstruction {
- APValue::LValueBase Base;
- ArrayRef<APValue::LValuePathEntry> Path;
- friend bool operator==(const ObjectUnderConstruction &LHS,
- const ObjectUnderConstruction &RHS) {
- return LHS.Base == RHS.Base && LHS.Path == RHS.Path;
- }
- friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) {
- return llvm::hash_combine(Obj.Base, Obj.Path);
- }
- };
- enum class ConstructionPhase { None, Bases, AfterBases };
- }
- namespace llvm {
- template<> struct DenseMapInfo<ObjectUnderConstruction> {
- using Base = DenseMapInfo<APValue::LValueBase>;
- static ObjectUnderConstruction getEmptyKey() {
- return {Base::getEmptyKey(), {}}; }
- static ObjectUnderConstruction getTombstoneKey() {
- return {Base::getTombstoneKey(), {}};
- }
- static unsigned getHashValue(const ObjectUnderConstruction &Object) {
- return hash_value(Object);
- }
- static bool isEqual(const ObjectUnderConstruction &LHS,
- const ObjectUnderConstruction &RHS) {
- return LHS == RHS;
- }
- };
- }
- namespace {
- /// EvalInfo - This is a private struct used by the evaluator to capture
- /// information about a subexpression as it is folded. It retains information
- /// about the AST context, but also maintains information about the folded
- /// expression.
- ///
- /// If an expression could be evaluated, it is still possible it is not a C
- /// "integer constant expression" or constant expression. If not, this struct
- /// captures information about how and why not.
- ///
- /// One bit of information passed *into* the request for constant folding
- /// indicates whether the subexpression is "evaluated" or not according to C
- /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
- /// evaluate the expression regardless of what the RHS is, but C only allows
- /// certain things in certain situations.
- class EvalInfo : public interp::State {
- public:
- ASTContext &Ctx;
- /// EvalStatus - Contains information about the evaluation.
- Expr::EvalStatus &EvalStatus;
- /// CurrentCall - The top of the constexpr call stack.
- CallStackFrame *CurrentCall;
- /// CallStackDepth - The number of calls in the call stack right now.
- unsigned CallStackDepth;
- /// NextCallIndex - The next call index to assign.
- unsigned NextCallIndex;
- /// StepsLeft - The remaining number of evaluation steps we're permitted
- /// to perform. This is essentially a limit for the number of statements
- /// we will evaluate.
- unsigned StepsLeft;
- /// Force the use of the experimental new constant interpreter, bailing out
- /// with an error if a feature is not supported.
- bool ForceNewConstInterp;
- /// Enable the experimental new constant interpreter.
- bool EnableNewConstInterp;
- /// BottomFrame - The frame in which evaluation started. This must be
- /// initialized after CurrentCall and CallStackDepth.
- CallStackFrame BottomFrame;
- /// A stack of values whose lifetimes end at the end of some surrounding
- /// evaluation frame.
- llvm::SmallVector<Cleanup, 16> CleanupStack;
- /// EvaluatingDecl - This is the declaration whose initializer is being
- /// evaluated, if any.
- APValue::LValueBase EvaluatingDecl;
- /// EvaluatingDeclValue - This is the value being constructed for the
- /// declaration whose initializer is being evaluated, if any.
- APValue *EvaluatingDeclValue;
- /// Set of objects that are currently being constructed.
- llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase>
- ObjectsUnderConstruction;
- struct EvaluatingConstructorRAII {
- EvalInfo &EI;
- ObjectUnderConstruction Object;
- bool DidInsert;
- EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object,
- bool HasBases)
- : EI(EI), Object(Object) {
- DidInsert =
- EI.ObjectsUnderConstruction
- .insert({Object, HasBases ? ConstructionPhase::Bases
- : ConstructionPhase::AfterBases})
- .second;
- }
- void finishedConstructingBases() {
- EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases;
- }
- ~EvaluatingConstructorRAII() {
- if (DidInsert) EI.ObjectsUnderConstruction.erase(Object);
- }
- };
- ConstructionPhase
- isEvaluatingConstructor(APValue::LValueBase Base,
- ArrayRef<APValue::LValuePathEntry> Path) {
- return ObjectsUnderConstruction.lookup({Base, Path});
- }
- /// If we're currently speculatively evaluating, the outermost call stack
- /// depth at which we can mutate state, otherwise 0.
- unsigned SpeculativeEvaluationDepth = 0;
- /// The current array initialization index, if we're performing array
- /// initialization.
- uint64_t ArrayInitIndex = -1;
- /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
- /// notes attached to it will also be stored, otherwise they will not be.
- bool HasActiveDiagnostic;
- /// Have we emitted a diagnostic explaining why we couldn't constant
- /// fold (not just why it's not strictly a constant expression)?
- bool HasFoldFailureDiagnostic;
- /// Whether or not we're in a context where the front end requires a
- /// constant value.
- bool InConstantContext;
- enum EvaluationMode {
- /// Evaluate as a constant expression. Stop if we find that the expression
- /// is not a constant expression.
- EM_ConstantExpression,
- /// Evaluate as a potential constant expression. Keep going if we hit a
- /// construct that we can't evaluate yet (because we don't yet know the
- /// value of something) but stop if we hit something that could never be
- /// a constant expression.
- EM_PotentialConstantExpression,
- /// Fold the expression to a constant. Stop if we hit a side-effect that
- /// we can't model.
- EM_ConstantFold,
- /// Evaluate the expression looking for integer overflow and similar
- /// issues. Don't worry about side-effects, and try to visit all
- /// subexpressions.
- EM_EvaluateForOverflow,
- /// Evaluate in any way we know how. Don't worry about side-effects that
- /// can't be modeled.
- EM_IgnoreSideEffects,
- /// Evaluate as a constant expression. Stop if we find that the expression
- /// is not a constant expression. Some expressions can be retried in the
- /// optimizer if we don't constant fold them here, but in an unevaluated
- /// context we try to fold them immediately since the optimizer never
- /// gets a chance to look at it.
- EM_ConstantExpressionUnevaluated,
- /// Evaluate as a potential constant expression. Keep going if we hit a
- /// construct that we can't evaluate yet (because we don't yet know the
- /// value of something) but stop if we hit something that could never be
- /// a constant expression. Some expressions can be retried in the
- /// optimizer if we don't constant fold them here, but in an unevaluated
- /// context we try to fold them immediately since the optimizer never
- /// gets a chance to look at it.
- EM_PotentialConstantExpressionUnevaluated,
- } EvalMode;
- /// Are we checking whether the expression is a potential constant
- /// expression?
- bool checkingPotentialConstantExpression() const override {
- return EvalMode == EM_PotentialConstantExpression ||
- EvalMode == EM_PotentialConstantExpressionUnevaluated;
- }
- /// Are we checking an expression for overflow?
- // FIXME: We should check for any kind of undefined or suspicious behavior
- // in such constructs, not just overflow.
- bool checkingForOverflow() const override {
- return EvalMode == EM_EvaluateForOverflow;
- }
- EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
- : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
- CallStackDepth(0), NextCallIndex(1),
- StepsLeft(getLangOpts().ConstexprStepLimit),
- ForceNewConstInterp(getLangOpts().ForceNewConstInterp),
- EnableNewConstInterp(ForceNewConstInterp ||
- getLangOpts().EnableNewConstInterp),
- BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
- EvaluatingDecl((const ValueDecl *)nullptr),
- EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
- HasFoldFailureDiagnostic(false), InConstantContext(false),
- EvalMode(Mode) {}
- void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
- EvaluatingDecl = Base;
- EvaluatingDeclValue = &Value;
- }
- bool CheckCallLimit(SourceLocation Loc) {
- // Don't perform any constexpr calls (other than the call we're checking)
- // when checking a potential constant expression.
- if (checkingPotentialConstantExpression() && CallStackDepth > 1)
- return false;
- if (NextCallIndex == 0) {
- // NextCallIndex has wrapped around.
- FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
- return false;
- }
- if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
- return true;
- FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
- << getLangOpts().ConstexprCallDepth;
- return false;
- }
- std::pair<CallStackFrame *, unsigned>
- getCallFrameAndDepth(unsigned CallIndex) {
- assert(CallIndex && "no call index in getCallFrameAndDepth");
- // We will eventually hit BottomFrame, which has Index 1, so Frame can't
- // be null in this loop.
- unsigned Depth = CallStackDepth;
- CallStackFrame *Frame = CurrentCall;
- while (Frame->Index > CallIndex) {
- Frame = Frame->Caller;
- --Depth;
- }
- if (Frame->Index == CallIndex)
- return {Frame, Depth};
- return {nullptr, 0};
- }
- bool nextStep(const Stmt *S) {
- if (!StepsLeft) {
- FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded);
- return false;
- }
- --StepsLeft;
- return true;
- }
- private:
- interp::Frame *getCurrentFrame() override { return CurrentCall; }
- const interp::Frame *getBottomFrame() const override { return &BottomFrame; }
- bool hasActiveDiagnostic() override { return HasActiveDiagnostic; }
- void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; }
- void setFoldFailureDiagnostic(bool Flag) override {
- HasFoldFailureDiagnostic = Flag;
- }
- Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; }
- ASTContext &getCtx() const override { return Ctx; }
- // If we have a prior diagnostic, it will be noting that the expression
- // isn't a constant expression. This diagnostic is more important,
- // unless we require this evaluation to produce a constant expression.
- //
- // FIXME: We might want to show both diagnostics to the user in
- // EM_ConstantFold mode.
- bool hasPriorDiagnostic() override {
- if (!EvalStatus.Diag->empty()) {
- switch (EvalMode) {
- case EM_ConstantFold:
- case EM_IgnoreSideEffects:
- case EM_EvaluateForOverflow:
- if (!HasFoldFailureDiagnostic)
- break;
- // We've already failed to fold something. Keep that diagnostic.
- LLVM_FALLTHROUGH;
- case EM_ConstantExpression:
- case EM_PotentialConstantExpression:
- case EM_ConstantExpressionUnevaluated:
- case EM_PotentialConstantExpressionUnevaluated:
- setActiveDiagnostic(false);
- return true;
- }
- }
- return false;
- }
- unsigned getCallStackDepth() override {
- return CallStackDepth;
- }
- public:
- /// Should we continue evaluation after encountering a side-effect that we
- /// couldn't model?
- bool keepEvaluatingAfterSideEffect() {
- switch (EvalMode) {
- case EM_PotentialConstantExpression:
- case EM_PotentialConstantExpressionUnevaluated:
- case EM_EvaluateForOverflow:
- case EM_IgnoreSideEffects:
- return true;
- case EM_ConstantExpression:
- case EM_ConstantExpressionUnevaluated:
- case EM_ConstantFold:
- return false;
- }
- llvm_unreachable("Missed EvalMode case");
- }
- /// Note that we have had a side-effect, and determine whether we should
- /// keep evaluating.
- bool noteSideEffect() {
- EvalStatus.HasSideEffects = true;
- return keepEvaluatingAfterSideEffect();
- }
- /// Should we continue evaluation after encountering undefined behavior?
- bool keepEvaluatingAfterUndefinedBehavior() {
- switch (EvalMode) {
- case EM_EvaluateForOverflow:
- case EM_IgnoreSideEffects:
- case EM_ConstantFold:
- return true;
- case EM_PotentialConstantExpression:
- case EM_PotentialConstantExpressionUnevaluated:
- case EM_ConstantExpression:
- case EM_ConstantExpressionUnevaluated:
- return false;
- }
- llvm_unreachable("Missed EvalMode case");
- }
- /// Note that we hit something that was technically undefined behavior, but
- /// that we can evaluate past it (such as signed overflow or floating-point
- /// division by zero.)
- bool noteUndefinedBehavior() override {
- EvalStatus.HasUndefinedBehavior = true;
- return keepEvaluatingAfterUndefinedBehavior();
- }
- /// Should we continue evaluation as much as possible after encountering a
- /// construct which can't be reduced to a value?
- bool keepEvaluatingAfterFailure() const override {
- if (!StepsLeft)
- return false;
- switch (EvalMode) {
- case EM_PotentialConstantExpression:
- case EM_PotentialConstantExpressionUnevaluated:
- case EM_EvaluateForOverflow:
- return true;
- case EM_ConstantExpression:
- case EM_ConstantExpressionUnevaluated:
- case EM_ConstantFold:
- case EM_IgnoreSideEffects:
- return false;
- }
- llvm_unreachable("Missed EvalMode case");
- }
- /// Notes that we failed to evaluate an expression that other expressions
- /// directly depend on, and determine if we should keep evaluating. This
- /// should only be called if we actually intend to keep evaluating.
- ///
- /// Call noteSideEffect() instead if we may be able to ignore the value that
- /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
- ///
- /// (Foo(), 1) // use noteSideEffect
- /// (Foo() || true) // use noteSideEffect
- /// Foo() + 1 // use noteFailure
- LLVM_NODISCARD bool noteFailure() {
- // Failure when evaluating some expression often means there is some
- // subexpression whose evaluation was skipped. Therefore, (because we
- // don't track whether we skipped an expression when unwinding after an
- // evaluation failure) every evaluation failure that bubbles up from a
- // subexpression implies that a side-effect has potentially happened. We
- // skip setting the HasSideEffects flag to true until we decide to
- // continue evaluating after that point, which happens here.
- bool KeepGoing = keepEvaluatingAfterFailure();
- EvalStatus.HasSideEffects |= KeepGoing;
- return KeepGoing;
- }
- class ArrayInitLoopIndex {
- EvalInfo &Info;
- uint64_t OuterIndex;
- public:
- ArrayInitLoopIndex(EvalInfo &Info)
- : Info(Info), OuterIndex(Info.ArrayInitIndex) {
- Info.ArrayInitIndex = 0;
- }
- ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
- operator uint64_t&() { return Info.ArrayInitIndex; }
- };
- };
- /// Object used to treat all foldable expressions as constant expressions.
- struct FoldConstant {
- EvalInfo &Info;
- bool Enabled;
- bool HadNoPriorDiags;
- EvalInfo::EvaluationMode OldMode;
- explicit FoldConstant(EvalInfo &Info, bool Enabled)
- : Info(Info),
- Enabled(Enabled),
- HadNoPriorDiags(Info.EvalStatus.Diag &&
- Info.EvalStatus.Diag->empty() &&
- !Info.EvalStatus.HasSideEffects),
- OldMode(Info.EvalMode) {
- if (Enabled &&
- (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
- Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
- Info.EvalMode = EvalInfo::EM_ConstantFold;
- }
- void keepDiagnostics() { Enabled = false; }
- ~FoldConstant() {
- if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
- !Info.EvalStatus.HasSideEffects)
- Info.EvalStatus.Diag->clear();
- Info.EvalMode = OldMode;
- }
- };
- /// RAII object used to set the current evaluation mode to ignore
- /// side-effects.
- struct IgnoreSideEffectsRAII {
- EvalInfo &Info;
- EvalInfo::EvaluationMode OldMode;
- explicit IgnoreSideEffectsRAII(EvalInfo &Info)
- : Info(Info), OldMode(Info.EvalMode) {
- if (!Info.checkingPotentialConstantExpression())
- Info.EvalMode = EvalInfo::EM_IgnoreSideEffects;
- }
- ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; }
- };
- /// RAII object used to optionally suppress diagnostics and side-effects from
- /// a speculative evaluation.
- class SpeculativeEvaluationRAII {
- EvalInfo *Info = nullptr;
- Expr::EvalStatus OldStatus;
- unsigned OldSpeculativeEvaluationDepth;
- void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
- Info = Other.Info;
- OldStatus = Other.OldStatus;
- OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth;
- Other.Info = nullptr;
- }
- void maybeRestoreState() {
- if (!Info)
- return;
- Info->EvalStatus = OldStatus;
- Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth;
- }
- public:
- SpeculativeEvaluationRAII() = default;
- SpeculativeEvaluationRAII(
- EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
- : Info(&Info), OldStatus(Info.EvalStatus),
- OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) {
- Info.EvalStatus.Diag = NewDiag;
- Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1;
- }
- SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
- SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
- moveFromAndCancel(std::move(Other));
- }
- SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
- maybeRestoreState();
- moveFromAndCancel(std::move(Other));
- return *this;
- }
- ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
- };
- /// RAII object wrapping a full-expression or block scope, and handling
- /// the ending of the lifetime of temporaries created within it.
- template<bool IsFullExpression>
- class ScopeRAII {
- EvalInfo &Info;
- unsigned OldStackSize;
- public:
- ScopeRAII(EvalInfo &Info)
- : Info(Info), OldStackSize(Info.CleanupStack.size()) {
- // Push a new temporary version. This is needed to distinguish between
- // temporaries created in different iterations of a loop.
- Info.CurrentCall->pushTempVersion();
- }
- ~ScopeRAII() {
- // Body moved to a static method to encourage the compiler to inline away
- // instances of this class.
- cleanup(Info, OldStackSize);
- Info.CurrentCall->popTempVersion();
- }
- private:
- static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
- unsigned NewEnd = OldStackSize;
- for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
- I != N; ++I) {
- if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
- // Full-expression cleanup of a lifetime-extended temporary: nothing
- // to do, just move this cleanup to the right place in the stack.
- std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
- ++NewEnd;
- } else {
- // End the lifetime of the object.
- Info.CleanupStack[I].endLifetime();
- }
- }
- Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
- Info.CleanupStack.end());
- }
- };
- typedef ScopeRAII<false> BlockScopeRAII;
- typedef ScopeRAII<true> FullExpressionRAII;
- }
- bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
- CheckSubobjectKind CSK) {
- if (Invalid)
- return false;
- if (isOnePastTheEnd()) {
- Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
- << CSK;
- setInvalid();
- return false;
- }
- // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there
- // must actually be at least one array element; even a VLA cannot have a
- // bound of zero. And if our index is nonzero, we already had a CCEDiag.
- return true;
- }
- void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info,
- const Expr *E) {
- Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed);
- // Do not set the designator as invalid: we can represent this situation,
- // and correct handling of __builtin_object_size requires us to do so.
- }
- void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
- const Expr *E,
- const APSInt &N) {
- // If we're complaining, we must be able to statically determine the size of
- // the most derived array.
- if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
- Info.CCEDiag(E, diag::note_constexpr_array_index)
- << N << /*array*/ 0
- << static_cast<unsigned>(getMostDerivedArraySize());
- else
- Info.CCEDiag(E, diag::note_constexpr_array_index)
- << N << /*non-array*/ 1;
- setInvalid();
- }
- CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
- const FunctionDecl *Callee, const LValue *This,
- APValue *Arguments)
- : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
- Arguments(Arguments), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
- Info.CurrentCall = this;
- ++Info.CallStackDepth;
- }
- CallStackFrame::~CallStackFrame() {
- assert(Info.CurrentCall == this && "calls retired out of order");
- --Info.CallStackDepth;
- Info.CurrentCall = Caller;
- }
- APValue &CallStackFrame::createTemporary(const void *Key,
- bool IsLifetimeExtended) {
- unsigned Version = Info.CurrentCall->getTempVersion();
- APValue &Result = Temporaries[MapKeyTy(Key, Version)];
- assert(Result.isAbsent() && "temporary created multiple times");
- Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
- return Result;
- }
- static bool isModification(AccessKinds AK) {
- switch (AK) {
- case AK_Read:
- case AK_MemberCall:
- case AK_DynamicCast:
- case AK_TypeId:
- return false;
- case AK_Assign:
- case AK_Increment:
- case AK_Decrement:
- return true;
- }
- llvm_unreachable("unknown access kind");
- }
- /// Is this an access per the C++ definition?
- static bool isFormalAccess(AccessKinds AK) {
- return AK == AK_Read || isModification(AK);
- }
- namespace {
- struct ComplexValue {
- private:
- bool IsInt;
- public:
- APSInt IntReal, IntImag;
- APFloat FloatReal, FloatImag;
- ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
- void makeComplexFloat() { IsInt = false; }
- bool isComplexFloat() const { return !IsInt; }
- APFloat &getComplexFloatReal() { return FloatReal; }
- APFloat &getComplexFloatImag() { return FloatImag; }
- void makeComplexInt() { IsInt = true; }
- bool isComplexInt() const { return IsInt; }
- APSInt &getComplexIntReal() { return IntReal; }
- APSInt &getComplexIntImag() { return IntImag; }
- void moveInto(APValue &v) const {
- if (isComplexFloat())
- v = APValue(FloatReal, FloatImag);
- else
- v = APValue(IntReal, IntImag);
- }
- void setFrom(const APValue &v) {
- assert(v.isComplexFloat() || v.isComplexInt());
- if (v.isComplexFloat()) {
- makeComplexFloat();
- FloatReal = v.getComplexFloatReal();
- FloatImag = v.getComplexFloatImag();
- } else {
- makeComplexInt();
- IntReal = v.getComplexIntReal();
- IntImag = v.getComplexIntImag();
- }
- }
- };
- struct LValue {
- APValue::LValueBase Base;
- CharUnits Offset;
- SubobjectDesignator Designator;
- bool IsNullPtr : 1;
- bool InvalidBase : 1;
- const APValue::LValueBase getLValueBase() const { return Base; }
- CharUnits &getLValueOffset() { return Offset; }
- const CharUnits &getLValueOffset() const { return Offset; }
- SubobjectDesignator &getLValueDesignator() { return Designator; }
- const SubobjectDesignator &getLValueDesignator() const { return Designator;}
- bool isNullPointer() const { return IsNullPtr;}
- unsigned getLValueCallIndex() const { return Base.getCallIndex(); }
- unsigned getLValueVersion() const { return Base.getVersion(); }
- void moveInto(APValue &V) const {
- if (Designator.Invalid)
- V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr);
- else {
- assert(!InvalidBase && "APValues can't handle invalid LValue bases");
- V = APValue(Base, Offset, Designator.Entries,
- Designator.IsOnePastTheEnd, IsNullPtr);
- }
- }
- void setFrom(ASTContext &Ctx, const APValue &V) {
- assert(V.isLValue() && "Setting LValue from a non-LValue?");
- Base = V.getLValueBase();
- Offset = V.getLValueOffset();
- InvalidBase = false;
- Designator = SubobjectDesignator(Ctx, V);
- IsNullPtr = V.isNullPointer();
- }
- void set(APValue::LValueBase B, bool BInvalid = false) {
- #ifndef NDEBUG
- // We only allow a few types of invalid bases. Enforce that here.
- if (BInvalid) {
- const auto *E = B.get<const Expr *>();
- assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) &&
- "Unexpected type of invalid base");
- }
- #endif
- Base = B;
- Offset = CharUnits::fromQuantity(0);
- InvalidBase = BInvalid;
- Designator = SubobjectDesignator(getType(B));
- IsNullPtr = false;
- }
- void setNull(QualType PointerTy, uint64_t TargetVal) {
- Base = (Expr *)nullptr;
- Offset = CharUnits::fromQuantity(TargetVal);
- InvalidBase = false;
- Designator = SubobjectDesignator(PointerTy->getPointeeType());
- IsNullPtr = true;
- }
- void setInvalid(APValue::LValueBase B, unsigned I = 0) {
- set(B, true);
- }
- private:
- // Check that this LValue is not based on a null pointer. If it is, produce
- // a diagnostic and mark the designator as invalid.
- template <typename GenDiagType>
- bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) {
- if (Designator.Invalid)
- return false;
- if (IsNullPtr) {
- GenDiag();
- Designator.setInvalid();
- return false;
- }
- return true;
- }
- public:
- bool checkNullPointer(EvalInfo &Info, const Expr *E,
- CheckSubobjectKind CSK) {
- return checkNullPointerDiagnosingWith([&Info, E, CSK] {
- Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK;
- });
- }
- bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E,
- AccessKinds AK) {
- return checkNullPointerDiagnosingWith([&Info, E, AK] {
- Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
- });
- }
- // Check this LValue refers to an object. If not, set the designator to be
- // invalid and emit a diagnostic.
- bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
- return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
- Designator.checkSubobject(Info, E, CSK);
- }
- void addDecl(EvalInfo &Info, const Expr *E,
- const Decl *D, bool Virtual = false) {
- if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
- Designator.addDeclUnchecked(D, Virtual);
- }
- void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) {
- if (!Designator.Entries.empty()) {
- Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array);
- Designator.setInvalid();
- return;
- }
- if (checkSubobject(Info, E, CSK_ArrayToPointer)) {
- assert(getType(Base)->isPointerType() || getType(Base)->isArrayType());
- Designator.FirstEntryIsAnUnsizedArray = true;
- Designator.addUnsizedArrayUnchecked(ElemTy);
- }
- }
- void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
- if (checkSubobject(Info, E, CSK_ArrayToPointer))
- Designator.addArrayUnchecked(CAT);
- }
- void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
- if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
- Designator.addComplexUnchecked(EltTy, Imag);
- }
- void clearIsNullPointer() {
- IsNullPtr = false;
- }
- void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E,
- const APSInt &Index, CharUnits ElementSize) {
- // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB,
- // but we're not required to diagnose it and it's valid in C++.)
- if (!Index)
- return;
- // Compute the new offset in the appropriate width, wrapping at 64 bits.
- // FIXME: When compiling for a 32-bit target, we should use 32-bit
- // offsets.
- uint64_t Offset64 = Offset.getQuantity();
- uint64_t ElemSize64 = ElementSize.getQuantity();
- uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
- Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64);
- if (checkNullPointer(Info, E, CSK_ArrayIndex))
- Designator.adjustIndex(Info, E, Index);
- clearIsNullPointer();
- }
- void adjustOffset(CharUnits N) {
- Offset += N;
- if (N.getQuantity())
- clearIsNullPointer();
- }
- };
- struct MemberPtr {
- MemberPtr() {}
- explicit MemberPtr(const ValueDecl *Decl) :
- DeclAndIsDerivedMember(Decl, false), Path() {}
- /// The member or (direct or indirect) field referred to by this member
- /// pointer, or 0 if this is a null member pointer.
- const ValueDecl *getDecl() const {
- return DeclAndIsDerivedMember.getPointer();
- }
- /// Is this actually a member of some type derived from the relevant class?
- bool isDerivedMember() const {
- return DeclAndIsDerivedMember.getInt();
- }
- /// Get the class which the declaration actually lives in.
- const CXXRecordDecl *getContainingRecord() const {
- return cast<CXXRecordDecl>(
- DeclAndIsDerivedMember.getPointer()->getDeclContext());
- }
- void moveInto(APValue &V) const {
- V = APValue(getDecl(), isDerivedMember(), Path);
- }
- void setFrom(const APValue &V) {
- assert(V.isMemberPointer());
- DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
- DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
- Path.clear();
- ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
- Path.insert(Path.end(), P.begin(), P.end());
- }
- /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
- /// whether the member is a member of some class derived from the class type
- /// of the member pointer.
- llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
- /// Path - The path of base/derived classes from the member declaration's
- /// class (exclusive) to the class type of the member pointer (inclusive).
- SmallVector<const CXXRecordDecl*, 4> Path;
- /// Perform a cast towards the class of the Decl (either up or down the
- /// hierarchy).
- bool castBack(const CXXRecordDecl *Class) {
- assert(!Path.empty());
- const CXXRecordDecl *Expected;
- if (Path.size() >= 2)
- Expected = Path[Path.size() - 2];
- else
- Expected = getContainingRecord();
- if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
- // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
- // if B does not contain the original member and is not a base or
- // derived class of the class containing the original member, the result
- // of the cast is undefined.
- // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
- // (D::*). We consider that to be a language defect.
- return false;
- }
- Path.pop_back();
- return true;
- }
- /// Perform a base-to-derived member pointer cast.
- bool castToDerived(const CXXRecordDecl *Derived) {
- if (!getDecl())
- return true;
- if (!isDerivedMember()) {
- Path.push_back(Derived);
- return true;
- }
- if (!castBack(Derived))
- return false;
- if (Path.empty())
- DeclAndIsDerivedMember.setInt(false);
- return true;
- }
- /// Perform a derived-to-base member pointer cast.
- bool castToBase(const CXXRecordDecl *Base) {
- if (!getDecl())
- return true;
- if (Path.empty())
- DeclAndIsDerivedMember.setInt(true);
- if (isDerivedMember()) {
- Path.push_back(Base);
- return true;
- }
- return castBack(Base);
- }
- };
- /// Compare two member pointers, which are assumed to be of the same type.
- static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
- if (!LHS.getDecl() || !RHS.getDecl())
- return !LHS.getDecl() && !RHS.getDecl();
- if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
- return false;
- return LHS.Path == RHS.Path;
- }
- }
- static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
- static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
- const LValue &This, const Expr *E,
- bool AllowNonLiteralTypes = false);
- static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
- bool InvalidBaseOK = false);
- static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info,
- bool InvalidBaseOK = false);
- static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
- EvalInfo &Info);
- static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
- static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
- static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
- EvalInfo &Info);
- static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
- static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
- static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
- EvalInfo &Info);
- static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
- /// Evaluate an integer or fixed point expression into an APResult.
- static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
- EvalInfo &Info);
- /// Evaluate only a fixed point expression into an APResult.
- static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
- EvalInfo &Info);
- //===----------------------------------------------------------------------===//
- // Misc utilities
- //===----------------------------------------------------------------------===//
- /// A helper function to create a temporary and set an LValue.
- template <class KeyTy>
- static APValue &createTemporary(const KeyTy *Key, bool IsLifetimeExtended,
- LValue &LV, CallStackFrame &Frame) {
- LV.set({Key, Frame.Info.CurrentCall->Index,
- Frame.Info.CurrentCall->getTempVersion()});
- return Frame.createTemporary(Key, IsLifetimeExtended);
- }
- /// Negate an APSInt in place, converting it to a signed form if necessary, and
- /// preserving its value (by extending by up to one bit as needed).
- static void negateAsSigned(APSInt &Int) {
- if (Int.isUnsigned() || Int.isMinSignedValue()) {
- Int = Int.extend(Int.getBitWidth() + 1);
- Int.setIsSigned(true);
- }
- Int = -Int;
- }
- /// Produce a string describing the given constexpr call.
- void CallStackFrame::describe(raw_ostream &Out) {
- unsigned ArgIndex = 0;
- bool IsMemberCall = isa<CXXMethodDecl>(Callee) &&
- !isa<CXXConstructorDecl>(Callee) &&
- cast<CXXMethodDecl>(Callee)->isInstance();
- if (!IsMemberCall)
- Out << *Callee << '(';
- if (This && IsMemberCall) {
- APValue Val;
- This->moveInto(Val);
- Val.printPretty(Out, Info.Ctx,
- This->Designator.MostDerivedType);
- // FIXME: Add parens around Val if needed.
- Out << "->" << *Callee << '(';
- IsMemberCall = false;
- }
- for (FunctionDecl::param_const_iterator I = Callee->param_begin(),
- E = Callee->param_end(); I != E; ++I, ++ArgIndex) {
- if (ArgIndex > (unsigned)IsMemberCall)
- Out << ", ";
- const ParmVarDecl *Param = *I;
- const APValue &Arg = Arguments[ArgIndex];
- Arg.printPretty(Out, Info.Ctx, Param->getType());
- if (ArgIndex == 0 && IsMemberCall)
- Out << "->" << *Callee << '(';
- }
- Out << ')';
- }
- /// Evaluate an expression to see if it had side-effects, and discard its
- /// result.
- /// \return \c true if the caller should keep evaluating.
- static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
- APValue Scratch;
- if (!Evaluate(Scratch, Info, E))
- // We don't need the value, but we might have skipped a side effect here.
- return Info.noteSideEffect();
- return true;
- }
- /// Should this call expression be treated as a string literal?
- static bool IsStringLiteralCall(const CallExpr *E) {
- unsigned Builtin = E->getBuiltinCallee();
- return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
- Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
- }
- static bool IsGlobalLValue(APValue::LValueBase B) {
- // C++11 [expr.const]p3 An address constant expression is a prvalue core
- // constant expression of pointer type that evaluates to...
- // ... a null pointer value, or a prvalue core constant expression of type
- // std::nullptr_t.
- if (!B) return true;
- if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
- // ... the address of an object with static storage duration,
- if (const VarDecl *VD = dyn_cast<VarDecl>(D))
- return VD->hasGlobalStorage();
- // ... the address of a function,
- return isa<FunctionDecl>(D);
- }
- if (B.is<TypeInfoLValue>())
- return true;
- const Expr *E = B.get<const Expr*>();
- switch (E->getStmtClass()) {
- default:
- return false;
- case Expr::CompoundLiteralExprClass: {
- const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
- return CLE->isFileScope() && CLE->isLValue();
- }
- case Expr::MaterializeTemporaryExprClass:
- // A materialized temporary might have been lifetime-extended to static
- // storage duration.
- return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
- // A string literal has static storage duration.
- case Expr::StringLiteralClass:
- case Expr::PredefinedExprClass:
- case Expr::ObjCStringLiteralClass:
- case Expr::ObjCEncodeExprClass:
- case Expr::CXXUuidofExprClass:
- return true;
- case Expr::ObjCBoxedExprClass:
- return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer();
- case Expr::CallExprClass:
- return IsStringLiteralCall(cast<CallExpr>(E));
- // For GCC compatibility, &&label has static storage duration.
- case Expr::AddrLabelExprClass:
- return true;
- // A Block literal expression may be used as the initialization value for
- // Block variables at global or local static scope.
- case Expr::BlockExprClass:
- return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
- case Expr::ImplicitValueInitExprClass:
- // FIXME:
- // We can never form an lvalue with an implicit value initialization as its
- // base through expression evaluation, so these only appear in one case: the
- // implicit variable declaration we invent when checking whether a constexpr
- // constructor can produce a constant expression. We must assume that such
- // an expression might be a global lvalue.
- return true;
- }
- }
- static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
- return LVal.Base.dyn_cast<const ValueDecl*>();
- }
- static bool IsLiteralLValue(const LValue &Value) {
- if (Value.getLValueCallIndex())
- return false;
- const Expr *E = Value.Base.dyn_cast<const Expr*>();
- return E && !isa<MaterializeTemporaryExpr>(E);
- }
- static bool IsWeakLValue(const LValue &Value) {
- const ValueDecl *Decl = GetLValueBaseDecl(Value);
- return Decl && Decl->isWeak();
- }
- static bool isZeroSized(const LValue &Value) {
- const ValueDecl *Decl = GetLValueBaseDecl(Value);
- if (Decl && isa<VarDecl>(Decl)) {
- QualType Ty = Decl->getType();
- if (Ty->isArrayType())
- return Ty->isIncompleteType() ||
- Decl->getASTContext().getTypeSize(Ty) == 0;
- }
- return false;
- }
- static bool HasSameBase(const LValue &A, const LValue &B) {
- if (!A.getLValueBase())
- return !B.getLValueBase();
- if (!B.getLValueBase())
- return false;
- if (A.getLValueBase().getOpaqueValue() !=
- B.getLValueBase().getOpaqueValue()) {
- const Decl *ADecl = GetLValueBaseDecl(A);
- if (!ADecl)
- return false;
- const Decl *BDecl = GetLValueBaseDecl(B);
- if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
- return false;
- }
- return IsGlobalLValue(A.getLValueBase()) ||
- (A.getLValueCallIndex() == B.getLValueCallIndex() &&
- A.getLValueVersion() == B.getLValueVersion());
- }
- static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
- assert(Base && "no location for a null lvalue");
- const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
- if (VD)
- Info.Note(VD->getLocation(), diag::note_declared_at);
- else if (const Expr *E = Base.dyn_cast<const Expr*>())
- Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here);
- // We have no information to show for a typeid(T) object.
- }
- /// Check that this reference or pointer core constant expression is a valid
- /// value for an address or reference constant expression. Return true if we
- /// can fold this expression, whether or not it's a constant expression.
- static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
- QualType Type, const LValue &LVal,
- Expr::ConstExprUsage Usage) {
- bool IsReferenceType = Type->isReferenceType();
- APValue::LValueBase Base = LVal.getLValueBase();
- const SubobjectDesignator &Designator = LVal.getLValueDesignator();
- // Check that the object is a global. Note that the fake 'this' object we
- // manufacture when checking potential constant expressions is conservatively
- // assumed to be global here.
- if (!IsGlobalLValue(Base)) {
- if (Info.getLangOpts().CPlusPlus11) {
- const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
- Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
- << IsReferenceType << !Designator.Entries.empty()
- << !!VD << VD;
- NoteLValueLocation(Info, Base);
- } else {
- Info.FFDiag(Loc);
- }
- // Don't allow references to temporaries to escape.
- return false;
- }
- assert((Info.checkingPotentialConstantExpression() ||
- LVal.getLValueCallIndex() == 0) &&
- "have call index for global lvalue");
- if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
- if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
- // Check if this is a thread-local variable.
- if (Var->getTLSKind())
- return false;
- // A dllimport variable never acts like a constant.
- if (Usage == Expr::EvaluateForCodeGen && Var->hasAttr<DLLImportAttr>())
- return false;
- }
- if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
- // __declspec(dllimport) must be handled very carefully:
- // We must never initialize an expression with the thunk in C++.
- // Doing otherwise would allow the same id-expression to yield
- // different addresses for the same function in different translation
- // units. However, this means that we must dynamically initialize the
- // expression with the contents of the import address table at runtime.
- //
- // The C language has no notion of ODR; furthermore, it has no notion of
- // dynamic initialization. This means that we are permitted to
- // perform initialization with the address of the thunk.
- if (Info.getLangOpts().CPlusPlus && Usage == Expr::EvaluateForCodeGen &&
- FD->hasAttr<DLLImportAttr>())
- return false;
- }
- }
- // Allow address constant expressions to be past-the-end pointers. This is
- // an extension: the standard requires them to point to an object.
- if (!IsReferenceType)
- return true;
- // A reference constant expression must refer to an object.
- if (!Base) {
- // FIXME: diagnostic
- Info.CCEDiag(Loc);
- return true;
- }
- // Does this refer one past the end of some object?
- if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
- const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
- Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
- << !Designator.Entries.empty() << !!VD << VD;
- NoteLValueLocation(Info, Base);
- }
- return true;
- }
- /// Member pointers are constant expressions unless they point to a
- /// non-virtual dllimport member function.
- static bool CheckMemberPointerConstantExpression(EvalInfo &Info,
- SourceLocation Loc,
- QualType Type,
- const APValue &Value,
- Expr::ConstExprUsage Usage) {
- const ValueDecl *Member = Value.getMemberPointerDecl();
- const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member);
- if (!FD)
- return true;
- return Usage == Expr::EvaluateForMangling || FD->isVirtual() ||
- !FD->hasAttr<DLLImportAttr>();
- }
- /// Check that this core constant expression is of literal type, and if not,
- /// produce an appropriate diagnostic.
- static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
- const LValue *This = nullptr) {
- if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
- return true;
- // C++1y: A constant initializer for an object o [...] may also invoke
- // constexpr constructors for o and its subobjects even if those objects
- // are of non-literal class types.
- //
- // C++11 missed this detail for aggregates, so classes like this:
- // struct foo_t { union { int i; volatile int j; } u; };
- // are not (obviously) initializable like so:
- // __attribute__((__require_constant_initialization__))
- // static const foo_t x = {{0}};
- // because "i" is a subobject with non-literal initialization (due to the
- // volatile member of the union). See:
- // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
- // Therefore, we use the C++1y behavior.
- if (This && Info.EvaluatingDecl == This->getLValueBase())
- return true;
- // Prvalue constant expressions must be of literal types.
- if (Info.getLangOpts().CPlusPlus11)
- Info.FFDiag(E, diag::note_constexpr_nonliteral)
- << E->getType();
- else
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- /// Check that this core constant expression value is a valid value for a
- /// constant expression. If not, report an appropriate diagnostic. Does not
- /// check that the expression is of literal type.
- static bool
- CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, QualType Type,
- const APValue &Value,
- Expr::ConstExprUsage Usage = Expr::EvaluateForCodeGen,
- SourceLocation SubobjectLoc = SourceLocation()) {
- if (!Value.hasValue()) {
- Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
- << true << Type;
- if (SubobjectLoc.isValid())
- Info.Note(SubobjectLoc, diag::note_constexpr_subobject_declared_here);
- return false;
- }
- // We allow _Atomic(T) to be initialized from anything that T can be
- // initialized from.
- if (const AtomicType *AT = Type->getAs<AtomicType>())
- Type = AT->getValueType();
- // Core issue 1454: For a literal constant expression of array or class type,
- // each subobject of its value shall have been initialized by a constant
- // expression.
- if (Value.isArray()) {
- QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
- for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
- if (!CheckConstantExpression(Info, DiagLoc, EltTy,
- Value.getArrayInitializedElt(I), Usage,
- SubobjectLoc))
- return false;
- }
- if (!Value.hasArrayFiller())
- return true;
- return CheckConstantExpression(Info, DiagLoc, EltTy, Value.getArrayFiller(),
- Usage, SubobjectLoc);
- }
- if (Value.isUnion() && Value.getUnionField()) {
- return CheckConstantExpression(Info, DiagLoc,
- Value.getUnionField()->getType(),
- Value.getUnionValue(), Usage,
- Value.getUnionField()->getLocation());
- }
- if (Value.isStruct()) {
- RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
- if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
- unsigned BaseIndex = 0;
- for (const CXXBaseSpecifier &BS : CD->bases()) {
- if (!CheckConstantExpression(Info, DiagLoc, BS.getType(),
- Value.getStructBase(BaseIndex), Usage,
- BS.getBeginLoc()))
- return false;
- ++BaseIndex;
- }
- }
- for (const auto *I : RD->fields()) {
- if (I->isUnnamedBitfield())
- continue;
- if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
- Value.getStructField(I->getFieldIndex()),
- Usage, I->getLocation()))
- return false;
- }
- }
- if (Value.isLValue()) {
- LValue LVal;
- LVal.setFrom(Info.Ctx, Value);
- return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Usage);
- }
- if (Value.isMemberPointer())
- return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Usage);
- // Everything else is fine.
- return true;
- }
- static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
- // A null base expression indicates a null pointer. These are always
- // evaluatable, and they are false unless the offset is zero.
- if (!Value.getLValueBase()) {
- Result = !Value.getLValueOffset().isZero();
- return true;
- }
- // We have a non-null base. These are generally known to be true, but if it's
- // a weak declaration it can be null at runtime.
- Result = true;
- const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
- return !Decl || !Decl->isWeak();
- }
- static bool HandleConversionToBool(const APValue &Val, bool &Result) {
- switch (Val.getKind()) {
- case APValue::None:
- case APValue::Indeterminate:
- return false;
- case APValue::Int:
- Result = Val.getInt().getBoolValue();
- return true;
- case APValue::FixedPoint:
- Result = Val.getFixedPoint().getBoolValue();
- return true;
- case APValue::Float:
- Result = !Val.getFloat().isZero();
- return true;
- case APValue::ComplexInt:
- Result = Val.getComplexIntReal().getBoolValue() ||
- Val.getComplexIntImag().getBoolValue();
- return true;
- case APValue::ComplexFloat:
- Result = !Val.getComplexFloatReal().isZero() ||
- !Val.getComplexFloatImag().isZero();
- return true;
- case APValue::LValue:
- return EvalPointerValueAsBool(Val, Result);
- case APValue::MemberPointer:
- Result = Val.getMemberPointerDecl();
- return true;
- case APValue::Vector:
- case APValue::Array:
- case APValue::Struct:
- case APValue::Union:
- case APValue::AddrLabelDiff:
- return false;
- }
- llvm_unreachable("unknown APValue kind");
- }
- static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
- EvalInfo &Info) {
- assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
- APValue Val;
- if (!Evaluate(Val, Info, E))
- return false;
- return HandleConversionToBool(Val, Result);
- }
- template<typename T>
- static bool HandleOverflow(EvalInfo &Info, const Expr *E,
- const T &SrcValue, QualType DestType) {
- Info.CCEDiag(E, diag::note_constexpr_overflow)
- << SrcValue << DestType;
- return Info.noteUndefinedBehavior();
- }
- static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
- QualType SrcType, const APFloat &Value,
- QualType DestType, APSInt &Result) {
- unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
- // Determine whether we are converting to unsigned or signed.
- bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
- Result = APSInt(DestWidth, !DestSigned);
- bool ignored;
- if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
- & APFloat::opInvalidOp)
- return HandleOverflow(Info, E, Value, DestType);
- return true;
- }
- static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
- QualType SrcType, QualType DestType,
- APFloat &Result) {
- APFloat Value = Result;
- bool ignored;
- Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
- APFloat::rmNearestTiesToEven, &ignored);
- return true;
- }
- static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
- QualType DestType, QualType SrcType,
- const APSInt &Value) {
- unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
- // Figure out if this is a truncate, extend or noop cast.
- // If the input is signed, do a sign extend, noop, or truncate.
- APSInt Result = Value.extOrTrunc(DestWidth);
- Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
- if (DestType->isBooleanType())
- Result = Value.getBoolValue();
- return Result;
- }
- static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
- QualType SrcType, const APSInt &Value,
- QualType DestType, APFloat &Result) {
- Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
- Result.convertFromAPInt(Value, Value.isSigned(),
- APFloat::rmNearestTiesToEven);
- return true;
- }
- static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
- APValue &Value, const FieldDecl *FD) {
- assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
- if (!Value.isInt()) {
- // Trying to store a pointer-cast-to-integer into a bitfield.
- // FIXME: In this case, we should provide the diagnostic for casting
- // a pointer to an integer.
- assert(Value.isLValue() && "integral value neither int nor lvalue?");
- Info.FFDiag(E);
- return false;
- }
- APSInt &Int = Value.getInt();
- unsigned OldBitWidth = Int.getBitWidth();
- unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
- if (NewBitWidth < OldBitWidth)
- Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
- return true;
- }
- static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
- llvm::APInt &Res) {
- APValue SVal;
- if (!Evaluate(SVal, Info, E))
- return false;
- if (SVal.isInt()) {
- Res = SVal.getInt();
- return true;
- }
- if (SVal.isFloat()) {
- Res = SVal.getFloat().bitcastToAPInt();
- return true;
- }
- if (SVal.isVector()) {
- QualType VecTy = E->getType();
- unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
- QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
- unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
- bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
- Res = llvm::APInt::getNullValue(VecSize);
- for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
- APValue &Elt = SVal.getVectorElt(i);
- llvm::APInt EltAsInt;
- if (Elt.isInt()) {
- EltAsInt = Elt.getInt();
- } else if (Elt.isFloat()) {
- EltAsInt = Elt.getFloat().bitcastToAPInt();
- } else {
- // Don't try to handle vectors of anything other than int or float
- // (not sure if it's possible to hit this case).
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- unsigned BaseEltSize = EltAsInt.getBitWidth();
- if (BigEndian)
- Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
- else
- Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
- }
- return true;
- }
- // Give up if the input isn't an int, float, or vector. For example, we
- // reject "(v4i16)(intptr_t)&a".
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- /// Perform the given integer operation, which is known to need at most BitWidth
- /// bits, and check for overflow in the original type (if that type was not an
- /// unsigned type).
- template<typename Operation>
- static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
- const APSInt &LHS, const APSInt &RHS,
- unsigned BitWidth, Operation Op,
- APSInt &Result) {
- if (LHS.isUnsigned()) {
- Result = Op(LHS, RHS);
- return true;
- }
- APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
- Result = Value.trunc(LHS.getBitWidth());
- if (Result.extend(BitWidth) != Value) {
- if (Info.checkingForOverflow())
- Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
- diag::warn_integer_constant_overflow)
- << Result.toString(10) << E->getType();
- else
- return HandleOverflow(Info, E, Value, E->getType());
- }
- return true;
- }
- /// Perform the given binary integer operation.
- static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
- BinaryOperatorKind Opcode, APSInt RHS,
- APSInt &Result) {
- switch (Opcode) {
- default:
- Info.FFDiag(E);
- return false;
- case BO_Mul:
- return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
- std::multiplies<APSInt>(), Result);
- case BO_Add:
- return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
- std::plus<APSInt>(), Result);
- case BO_Sub:
- return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
- std::minus<APSInt>(), Result);
- case BO_And: Result = LHS & RHS; return true;
- case BO_Xor: Result = LHS ^ RHS; return true;
- case BO_Or: Result = LHS | RHS; return true;
- case BO_Div:
- case BO_Rem:
- if (RHS == 0) {
- Info.FFDiag(E, diag::note_expr_divide_by_zero);
- return false;
- }
- Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
- // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
- // this operation and gives the two's complement result.
- if (RHS.isNegative() && RHS.isAllOnesValue() &&
- LHS.isSigned() && LHS.isMinSignedValue())
- return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
- E->getType());
- return true;
- case BO_Shl: {
- if (Info.getLangOpts().OpenCL)
- // OpenCL 6.3j: shift values are effectively % word size of LHS.
- RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
- static_cast<uint64_t>(LHS.getBitWidth() - 1)),
- RHS.isUnsigned());
- else if (RHS.isSigned() && RHS.isNegative()) {
- // During constant-folding, a negative shift is an opposite shift. Such
- // a shift is not a constant expression.
- Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
- RHS = -RHS;
- goto shift_right;
- }
- shift_left:
- // C++11 [expr.shift]p1: Shift width must be less than the bit width of
- // the shifted type.
- unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
- if (SA != RHS) {
- Info.CCEDiag(E, diag::note_constexpr_large_shift)
- << RHS << E->getType() << LHS.getBitWidth();
- } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus2a) {
- // C++11 [expr.shift]p2: A signed left shift must have a non-negative
- // operand, and must not overflow the corresponding unsigned type.
- // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to
- // E1 x 2^E2 module 2^N.
- if (LHS.isNegative())
- Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
- else if (LHS.countLeadingZeros() < SA)
- Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
- }
- Result = LHS << SA;
- return true;
- }
- case BO_Shr: {
- if (Info.getLangOpts().OpenCL)
- // OpenCL 6.3j: shift values are effectively % word size of LHS.
- RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
- static_cast<uint64_t>(LHS.getBitWidth() - 1)),
- RHS.isUnsigned());
- else if (RHS.isSigned() && RHS.isNegative()) {
- // During constant-folding, a negative shift is an opposite shift. Such a
- // shift is not a constant expression.
- Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
- RHS = -RHS;
- goto shift_left;
- }
- shift_right:
- // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
- // shifted type.
- unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
- if (SA != RHS)
- Info.CCEDiag(E, diag::note_constexpr_large_shift)
- << RHS << E->getType() << LHS.getBitWidth();
- Result = LHS >> SA;
- return true;
- }
- case BO_LT: Result = LHS < RHS; return true;
- case BO_GT: Result = LHS > RHS; return true;
- case BO_LE: Result = LHS <= RHS; return true;
- case BO_GE: Result = LHS >= RHS; return true;
- case BO_EQ: Result = LHS == RHS; return true;
- case BO_NE: Result = LHS != RHS; return true;
- case BO_Cmp:
- llvm_unreachable("BO_Cmp should be handled elsewhere");
- }
- }
- /// Perform the given binary floating-point operation, in-place, on LHS.
- static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
- APFloat &LHS, BinaryOperatorKind Opcode,
- const APFloat &RHS) {
- switch (Opcode) {
- default:
- Info.FFDiag(E);
- return false;
- case BO_Mul:
- LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
- break;
- case BO_Add:
- LHS.add(RHS, APFloat::rmNearestTiesToEven);
- break;
- case BO_Sub:
- LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
- break;
- case BO_Div:
- // [expr.mul]p4:
- // If the second operand of / or % is zero the behavior is undefined.
- if (RHS.isZero())
- Info.CCEDiag(E, diag::note_expr_divide_by_zero);
- LHS.divide(RHS, APFloat::rmNearestTiesToEven);
- break;
- }
- // [expr.pre]p4:
- // If during the evaluation of an expression, the result is not
- // mathematically defined [...], the behavior is undefined.
- // FIXME: C++ rules require us to not conform to IEEE 754 here.
- if (LHS.isNaN()) {
- Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
- return Info.noteUndefinedBehavior();
- }
- return true;
- }
- /// Cast an lvalue referring to a base subobject to a derived class, by
- /// truncating the lvalue's path to the given length.
- static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
- const RecordDecl *TruncatedType,
- unsigned TruncatedElements) {
- SubobjectDesignator &D = Result.Designator;
- // Check we actually point to a derived class object.
- if (TruncatedElements == D.Entries.size())
- return true;
- assert(TruncatedElements >= D.MostDerivedPathLength &&
- "not casting to a derived class");
- if (!Result.checkSubobject(Info, E, CSK_Derived))
- return false;
- // Truncate the path to the subobject, and remove any derived-to-base offsets.
- const RecordDecl *RD = TruncatedType;
- for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
- const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
- if (isVirtualBaseClass(D.Entries[I]))
- Result.Offset -= Layout.getVBaseClassOffset(Base);
- else
- Result.Offset -= Layout.getBaseClassOffset(Base);
- RD = Base;
- }
- D.Entries.resize(TruncatedElements);
- return true;
- }
- static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
- const CXXRecordDecl *Derived,
- const CXXRecordDecl *Base,
- const ASTRecordLayout *RL = nullptr) {
- if (!RL) {
- if (Derived->isInvalidDecl()) return false;
- RL = &Info.Ctx.getASTRecordLayout(Derived);
- }
- Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
- Obj.addDecl(Info, E, Base, /*Virtual*/ false);
- return true;
- }
- static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
- const CXXRecordDecl *DerivedDecl,
- const CXXBaseSpecifier *Base) {
- const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
- if (!Base->isVirtual())
- return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
- SubobjectDesignator &D = Obj.Designator;
- if (D.Invalid)
- return false;
- // Extract most-derived object and corresponding type.
- DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
- if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
- return false;
- // Find the virtual base class.
- if (DerivedDecl->isInvalidDecl()) return false;
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
- Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
- Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
- return true;
- }
- static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
- QualType Type, LValue &Result) {
- for (CastExpr::path_const_iterator PathI = E->path_begin(),
- PathE = E->path_end();
- PathI != PathE; ++PathI) {
- if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
- *PathI))
- return false;
- Type = (*PathI)->getType();
- }
- return true;
- }
- /// Cast an lvalue referring to a derived class to a known base subobject.
- static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result,
- const CXXRecordDecl *DerivedRD,
- const CXXRecordDecl *BaseRD) {
- CXXBasePaths Paths(/*FindAmbiguities=*/false,
- /*RecordPaths=*/true, /*DetectVirtual=*/false);
- if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
- llvm_unreachable("Class must be derived from the passed in base class!");
- for (CXXBasePathElement &Elem : Paths.front())
- if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base))
- return false;
- return true;
- }
- /// Update LVal to refer to the given field, which must be a member of the type
- /// currently described by LVal.
- static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
- const FieldDecl *FD,
- const ASTRecordLayout *RL = nullptr) {
- if (!RL) {
- if (FD->getParent()->isInvalidDecl()) return false;
- RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
- }
- unsigned I = FD->getFieldIndex();
- LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
- LVal.addDecl(Info, E, FD);
- return true;
- }
- /// Update LVal to refer to the given indirect field.
- static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
- LValue &LVal,
- const IndirectFieldDecl *IFD) {
- for (const auto *C : IFD->chain())
- if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
- return false;
- return true;
- }
- /// Get the size of the given type in char units.
- static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
- QualType Type, CharUnits &Size) {
- // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
- // extension.
- if (Type->isVoidType() || Type->isFunctionType()) {
- Size = CharUnits::One();
- return true;
- }
- if (Type->isDependentType()) {
- Info.FFDiag(Loc);
- return false;
- }
- if (!Type->isConstantSizeType()) {
- // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
- // FIXME: Better diagnostic.
- Info.FFDiag(Loc);
- return false;
- }
- Size = Info.Ctx.getTypeSizeInChars(Type);
- return true;
- }
- /// Update a pointer value to model pointer arithmetic.
- /// \param Info - Information about the ongoing evaluation.
- /// \param E - The expression being evaluated, for diagnostic purposes.
- /// \param LVal - The pointer value to be updated.
- /// \param EltTy - The pointee type represented by LVal.
- /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
- static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
- LValue &LVal, QualType EltTy,
- APSInt Adjustment) {
- CharUnits SizeOfPointee;
- if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
- return false;
- LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
- return true;
- }
- static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
- LValue &LVal, QualType EltTy,
- int64_t Adjustment) {
- return HandleLValueArrayAdjustment(Info, E, LVal, EltTy,
- APSInt::get(Adjustment));
- }
- /// Update an lvalue to refer to a component of a complex number.
- /// \param Info - Information about the ongoing evaluation.
- /// \param LVal - The lvalue to be updated.
- /// \param EltTy - The complex number's component type.
- /// \param Imag - False for the real component, true for the imaginary.
- static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
- LValue &LVal, QualType EltTy,
- bool Imag) {
- if (Imag) {
- CharUnits SizeOfComponent;
- if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
- return false;
- LVal.Offset += SizeOfComponent;
- }
- LVal.addComplex(Info, E, EltTy, Imag);
- return true;
- }
- /// Try to evaluate the initializer for a variable declaration.
- ///
- /// \param Info Information about the ongoing evaluation.
- /// \param E An expression to be used when printing diagnostics.
- /// \param VD The variable whose initializer should be obtained.
- /// \param Frame The frame in which the variable was created. Must be null
- /// if this variable is not local to the evaluation.
- /// \param Result Filled in with a pointer to the value of the variable.
- static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
- const VarDecl *VD, CallStackFrame *Frame,
- APValue *&Result, const LValue *LVal) {
- // If this is a parameter to an active constexpr function call, perform
- // argument substitution.
- if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
- // Assume arguments of a potential constant expression are unknown
- // constant expressions.
- if (Info.checkingPotentialConstantExpression())
- return false;
- if (!Frame || !Frame->Arguments) {
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
- return true;
- }
- // If this is a local variable, dig out its value.
- if (Frame) {
- Result = LVal ? Frame->getTemporary(VD, LVal->getLValueVersion())
- : Frame->getCurrentTemporary(VD);
- if (!Result) {
- // Assume variables referenced within a lambda's call operator that were
- // not declared within the call operator are captures and during checking
- // of a potential constant expression, assume they are unknown constant
- // expressions.
- assert(isLambdaCallOperator(Frame->Callee) &&
- (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
- "missing value for local variable");
- if (Info.checkingPotentialConstantExpression())
- return false;
- // FIXME: implement capture evaluation during constant expr evaluation.
- Info.FFDiag(E->getBeginLoc(),
- diag::note_unimplemented_constexpr_lambda_feature_ast)
- << "captures not currently allowed";
- return false;
- }
- return true;
- }
- // Dig out the initializer, and use the declaration which it's attached to.
- const Expr *Init = VD->getAnyInitializer(VD);
- if (!Init || Init->isValueDependent()) {
- // If we're checking a potential constant expression, the variable could be
- // initialized later.
- if (!Info.checkingPotentialConstantExpression())
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- // If we're currently evaluating the initializer of this declaration, use that
- // in-flight value.
- if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
- Result = Info.EvaluatingDeclValue;
- return true;
- }
- // Never evaluate the initializer of a weak variable. We can't be sure that
- // this is the definition which will be used.
- if (VD->isWeak()) {
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- // Check that we can fold the initializer. In C++, we will have already done
- // this in the cases where it matters for conformance.
- SmallVector<PartialDiagnosticAt, 8> Notes;
- if (!VD->evaluateValue(Notes)) {
- Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
- Notes.size() + 1) << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- Info.addNotes(Notes);
- return false;
- } else if (!VD->checkInitIsICE()) {
- Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
- Notes.size() + 1) << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- Info.addNotes(Notes);
- }
- Result = VD->getEvaluatedValue();
- return true;
- }
- static bool IsConstNonVolatile(QualType T) {
- Qualifiers Quals = T.getQualifiers();
- return Quals.hasConst() && !Quals.hasVolatile();
- }
- /// Get the base index of the given base class within an APValue representing
- /// the given derived class.
- static unsigned getBaseIndex(const CXXRecordDecl *Derived,
- const CXXRecordDecl *Base) {
- Base = Base->getCanonicalDecl();
- unsigned Index = 0;
- for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
- E = Derived->bases_end(); I != E; ++I, ++Index) {
- if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
- return Index;
- }
- llvm_unreachable("base class missing from derived class's bases list");
- }
- /// Extract the value of a character from a string literal.
- static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
- uint64_t Index) {
- assert(!isa<SourceLocExpr>(Lit) &&
- "SourceLocExpr should have already been converted to a StringLiteral");
- // FIXME: Support MakeStringConstant
- if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) {
- std::string Str;
- Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str);
- assert(Index <= Str.size() && "Index too large");
- return APSInt::getUnsigned(Str.c_str()[Index]);
- }
- if (auto PE = dyn_cast<PredefinedExpr>(Lit))
- Lit = PE->getFunctionName();
- const StringLiteral *S = cast<StringLiteral>(Lit);
- const ConstantArrayType *CAT =
- Info.Ctx.getAsConstantArrayType(S->getType());
- assert(CAT && "string literal isn't an array");
- QualType CharType = CAT->getElementType();
- assert(CharType->isIntegerType() && "unexpected character type");
- APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
- CharType->isUnsignedIntegerType());
- if (Index < S->getLength())
- Value = S->getCodeUnit(Index);
- return Value;
- }
- // Expand a string literal into an array of characters.
- //
- // FIXME: This is inefficient; we should probably introduce something similar
- // to the LLVM ConstantDataArray to make this cheaper.
- static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S,
- APValue &Result) {
- const ConstantArrayType *CAT =
- Info.Ctx.getAsConstantArrayType(S->getType());
- assert(CAT && "string literal isn't an array");
- QualType CharType = CAT->getElementType();
- assert(CharType->isIntegerType() && "unexpected character type");
- unsigned Elts = CAT->getSize().getZExtValue();
- Result = APValue(APValue::UninitArray(),
- std::min(S->getLength(), Elts), Elts);
- APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
- CharType->isUnsignedIntegerType());
- if (Result.hasArrayFiller())
- Result.getArrayFiller() = APValue(Value);
- for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
- Value = S->getCodeUnit(I);
- Result.getArrayInitializedElt(I) = APValue(Value);
- }
- }
- // Expand an array so that it has more than Index filled elements.
- static void expandArray(APValue &Array, unsigned Index) {
- unsigned Size = Array.getArraySize();
- assert(Index < Size);
- // Always at least double the number of elements for which we store a value.
- unsigned OldElts = Array.getArrayInitializedElts();
- unsigned NewElts = std::max(Index+1, OldElts * 2);
- NewElts = std::min(Size, std::max(NewElts, 8u));
- // Copy the data across.
- APValue NewValue(APValue::UninitArray(), NewElts, Size);
- for (unsigned I = 0; I != OldElts; ++I)
- NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
- for (unsigned I = OldElts; I != NewElts; ++I)
- NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
- if (NewValue.hasArrayFiller())
- NewValue.getArrayFiller() = Array.getArrayFiller();
- Array.swap(NewValue);
- }
- /// Determine whether a type would actually be read by an lvalue-to-rvalue
- /// conversion. If it's of class type, we may assume that the copy operation
- /// is trivial. Note that this is never true for a union type with fields
- /// (because the copy always "reads" the active member) and always true for
- /// a non-class type.
- static bool isReadByLvalueToRvalueConversion(QualType T) {
- CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
- if (!RD || (RD->isUnion() && !RD->field_empty()))
- return true;
- if (RD->isEmpty())
- return false;
- for (auto *Field : RD->fields())
- if (isReadByLvalueToRvalueConversion(Field->getType()))
- return true;
- for (auto &BaseSpec : RD->bases())
- if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
- return true;
- return false;
- }
- /// Diagnose an attempt to read from any unreadable field within the specified
- /// type, which might be a class type.
- static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E,
- QualType T) {
- CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
- if (!RD)
- return false;
- if (!RD->hasMutableFields())
- return false;
- for (auto *Field : RD->fields()) {
- // If we're actually going to read this field in some way, then it can't
- // be mutable. If we're in a union, then assigning to a mutable field
- // (even an empty one) can change the active member, so that's not OK.
- // FIXME: Add core issue number for the union case.
- if (Field->isMutable() &&
- (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
- Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1) << Field;
- Info.Note(Field->getLocation(), diag::note_declared_at);
- return true;
- }
- if (diagnoseUnreadableFields(Info, E, Field->getType()))
- return true;
- }
- for (auto &BaseSpec : RD->bases())
- if (diagnoseUnreadableFields(Info, E, BaseSpec.getType()))
- return true;
- // All mutable fields were empty, and thus not actually read.
- return false;
- }
- static bool lifetimeStartedInEvaluation(EvalInfo &Info,
- APValue::LValueBase Base) {
- // A temporary we created.
- if (Base.getCallIndex())
- return true;
- auto *Evaluating = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
- if (!Evaluating)
- return false;
- // The variable whose initializer we're evaluating.
- if (auto *BaseD = Base.dyn_cast<const ValueDecl*>())
- if (declaresSameEntity(Evaluating, BaseD))
- return true;
- // A temporary lifetime-extended by the variable whose initializer we're
- // evaluating.
- if (auto *BaseE = Base.dyn_cast<const Expr *>())
- if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE))
- if (declaresSameEntity(BaseMTE->getExtendingDecl(), Evaluating))
- return true;
- return false;
- }
- namespace {
- /// A handle to a complete object (an object that is not a subobject of
- /// another object).
- struct CompleteObject {
- /// The identity of the object.
- APValue::LValueBase Base;
- /// The value of the complete object.
- APValue *Value;
- /// The type of the complete object.
- QualType Type;
- CompleteObject() : Value(nullptr) {}
- CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type)
- : Base(Base), Value(Value), Type(Type) {}
- bool mayReadMutableMembers(EvalInfo &Info) const {
- // In C++14 onwards, it is permitted to read a mutable member whose
- // lifetime began within the evaluation.
- // FIXME: Should we also allow this in C++11?
- if (!Info.getLangOpts().CPlusPlus14)
- return false;
- return lifetimeStartedInEvaluation(Info, Base);
- }
- explicit operator bool() const { return !Type.isNull(); }
- };
- } // end anonymous namespace
- static QualType getSubobjectType(QualType ObjType, QualType SubobjType,
- bool IsMutable = false) {
- // C++ [basic.type.qualifier]p1:
- // - A const object is an object of type const T or a non-mutable subobject
- // of a const object.
- if (ObjType.isConstQualified() && !IsMutable)
- SubobjType.addConst();
- // - A volatile object is an object of type const T or a subobject of a
- // volatile object.
- if (ObjType.isVolatileQualified())
- SubobjType.addVolatile();
- return SubobjType;
- }
- /// Find the designated sub-object of an rvalue.
- template<typename SubobjectHandler>
- typename SubobjectHandler::result_type
- findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
- const SubobjectDesignator &Sub, SubobjectHandler &handler) {
- if (Sub.Invalid)
- // A diagnostic will have already been produced.
- return handler.failed();
- if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) {
- if (Info.getLangOpts().CPlusPlus11)
- Info.FFDiag(E, Sub.isOnePastTheEnd()
- ? diag::note_constexpr_access_past_end
- : diag::note_constexpr_access_unsized_array)
- << handler.AccessKind;
- else
- Info.FFDiag(E);
- return handler.failed();
- }
- APValue *O = Obj.Value;
- QualType ObjType = Obj.Type;
- const FieldDecl *LastField = nullptr;
- const FieldDecl *VolatileField = nullptr;
- // Walk the designator's path to find the subobject.
- for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
- // Reading an indeterminate value is undefined, but assigning over one is OK.
- if (O->isAbsent() || (O->isIndeterminate() && handler.AccessKind != AK_Assign)) {
- if (!Info.checkingPotentialConstantExpression())
- Info.FFDiag(E, diag::note_constexpr_access_uninit)
- << handler.AccessKind << O->isIndeterminate();
- return handler.failed();
- }
- // C++ [class.ctor]p5:
- // const and volatile semantics are not applied on an object under
- // construction.
- if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) &&
- ObjType->isRecordType() &&
- Info.isEvaluatingConstructor(
- Obj.Base, llvm::makeArrayRef(Sub.Entries.begin(),
- Sub.Entries.begin() + I)) !=
- ConstructionPhase::None) {
- ObjType = Info.Ctx.getCanonicalType(ObjType);
- ObjType.removeLocalConst();
- ObjType.removeLocalVolatile();
- }
- // If this is our last pass, check that the final object type is OK.
- if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) {
- // Accesses to volatile objects are prohibited.
- if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) {
- if (Info.getLangOpts().CPlusPlus) {
- int DiagKind;
- SourceLocation Loc;
- const NamedDecl *Decl = nullptr;
- if (VolatileField) {
- DiagKind = 2;
- Loc = VolatileField->getLocation();
- Decl = VolatileField;
- } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) {
- DiagKind = 1;
- Loc = VD->getLocation();
- Decl = VD;
- } else {
- DiagKind = 0;
- if (auto *E = Obj.Base.dyn_cast<const Expr *>())
- Loc = E->getExprLoc();
- }
- Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
- << handler.AccessKind << DiagKind << Decl;
- Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind;
- } else {
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- }
- return handler.failed();
- }
- // If we are reading an object of class type, there may still be more
- // things we need to check: if there are any mutable subobjects, we
- // cannot perform this read. (This only happens when performing a trivial
- // copy or assignment.)
- if (ObjType->isRecordType() && handler.AccessKind == AK_Read &&
- !Obj.mayReadMutableMembers(Info) &&
- diagnoseUnreadableFields(Info, E, ObjType))
- return handler.failed();
- }
- if (I == N) {
- if (!handler.found(*O, ObjType))
- return false;
- // If we modified a bit-field, truncate it to the right width.
- if (isModification(handler.AccessKind) &&
- LastField && LastField->isBitField() &&
- !truncateBitfieldValue(Info, E, *O, LastField))
- return false;
- return true;
- }
- LastField = nullptr;
- if (ObjType->isArrayType()) {
- // Next subobject is an array element.
- const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
- assert(CAT && "vla in literal type?");
- uint64_t Index = Sub.Entries[I].getAsArrayIndex();
- if (CAT->getSize().ule(Index)) {
- // Note, it should not be possible to form a pointer with a valid
- // designator which points more than one past the end of the array.
- if (Info.getLangOpts().CPlusPlus11)
- Info.FFDiag(E, diag::note_constexpr_access_past_end)
- << handler.AccessKind;
- else
- Info.FFDiag(E);
- return handler.failed();
- }
- ObjType = CAT->getElementType();
- if (O->getArrayInitializedElts() > Index)
- O = &O->getArrayInitializedElt(Index);
- else if (handler.AccessKind != AK_Read) {
- expandArray(*O, Index);
- O = &O->getArrayInitializedElt(Index);
- } else
- O = &O->getArrayFiller();
- } else if (ObjType->isAnyComplexType()) {
- // Next subobject is a complex number.
- uint64_t Index = Sub.Entries[I].getAsArrayIndex();
- if (Index > 1) {
- if (Info.getLangOpts().CPlusPlus11)
- Info.FFDiag(E, diag::note_constexpr_access_past_end)
- << handler.AccessKind;
- else
- Info.FFDiag(E);
- return handler.failed();
- }
- ObjType = getSubobjectType(
- ObjType, ObjType->castAs<ComplexType>()->getElementType());
- assert(I == N - 1 && "extracting subobject of scalar?");
- if (O->isComplexInt()) {
- return handler.found(Index ? O->getComplexIntImag()
- : O->getComplexIntReal(), ObjType);
- } else {
- assert(O->isComplexFloat());
- return handler.found(Index ? O->getComplexFloatImag()
- : O->getComplexFloatReal(), ObjType);
- }
- } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
- if (Field->isMutable() && handler.AccessKind == AK_Read &&
- !Obj.mayReadMutableMembers(Info)) {
- Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1)
- << Field;
- Info.Note(Field->getLocation(), diag::note_declared_at);
- return handler.failed();
- }
- // Next subobject is a class, struct or union field.
- RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
- if (RD->isUnion()) {
- const FieldDecl *UnionField = O->getUnionField();
- if (!UnionField ||
- UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
- Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
- << handler.AccessKind << Field << !UnionField << UnionField;
- return handler.failed();
- }
- O = &O->getUnionValue();
- } else
- O = &O->getStructField(Field->getFieldIndex());
- ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable());
- LastField = Field;
- if (Field->getType().isVolatileQualified())
- VolatileField = Field;
- } else {
- // Next subobject is a base class.
- const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
- const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
- O = &O->getStructBase(getBaseIndex(Derived, Base));
- ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base));
- }
- }
- }
- namespace {
- struct ExtractSubobjectHandler {
- EvalInfo &Info;
- APValue &Result;
- static const AccessKinds AccessKind = AK_Read;
- typedef bool result_type;
- bool failed() { return false; }
- bool found(APValue &Subobj, QualType SubobjType) {
- Result = Subobj;
- return true;
- }
- bool found(APSInt &Value, QualType SubobjType) {
- Result = APValue(Value);
- return true;
- }
- bool found(APFloat &Value, QualType SubobjType) {
- Result = APValue(Value);
- return true;
- }
- };
- } // end anonymous namespace
- const AccessKinds ExtractSubobjectHandler::AccessKind;
- /// Extract the designated sub-object of an rvalue.
- static bool extractSubobject(EvalInfo &Info, const Expr *E,
- const CompleteObject &Obj,
- const SubobjectDesignator &Sub,
- APValue &Result) {
- ExtractSubobjectHandler Handler = { Info, Result };
- return findSubobject(Info, E, Obj, Sub, Handler);
- }
- namespace {
- struct ModifySubobjectHandler {
- EvalInfo &Info;
- APValue &NewVal;
- const Expr *E;
- typedef bool result_type;
- static const AccessKinds AccessKind = AK_Assign;
- bool checkConst(QualType QT) {
- // Assigning to a const object has undefined behavior.
- if (QT.isConstQualified()) {
- Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
- return false;
- }
- return true;
- }
- bool failed() { return false; }
- bool found(APValue &Subobj, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- // We've been given ownership of NewVal, so just swap it in.
- Subobj.swap(NewVal);
- return true;
- }
- bool found(APSInt &Value, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- if (!NewVal.isInt()) {
- // Maybe trying to write a cast pointer value into a complex?
- Info.FFDiag(E);
- return false;
- }
- Value = NewVal.getInt();
- return true;
- }
- bool found(APFloat &Value, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- Value = NewVal.getFloat();
- return true;
- }
- };
- } // end anonymous namespace
- const AccessKinds ModifySubobjectHandler::AccessKind;
- /// Update the designated sub-object of an rvalue to the given value.
- static bool modifySubobject(EvalInfo &Info, const Expr *E,
- const CompleteObject &Obj,
- const SubobjectDesignator &Sub,
- APValue &NewVal) {
- ModifySubobjectHandler Handler = { Info, NewVal, E };
- return findSubobject(Info, E, Obj, Sub, Handler);
- }
- /// Find the position where two subobject designators diverge, or equivalently
- /// the length of the common initial subsequence.
- static unsigned FindDesignatorMismatch(QualType ObjType,
- const SubobjectDesignator &A,
- const SubobjectDesignator &B,
- bool &WasArrayIndex) {
- unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
- for (/**/; I != N; ++I) {
- if (!ObjType.isNull() &&
- (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
- // Next subobject is an array element.
- if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) {
- WasArrayIndex = true;
- return I;
- }
- if (ObjType->isAnyComplexType())
- ObjType = ObjType->castAs<ComplexType>()->getElementType();
- else
- ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
- } else {
- if (A.Entries[I].getAsBaseOrMember() !=
- B.Entries[I].getAsBaseOrMember()) {
- WasArrayIndex = false;
- return I;
- }
- if (const FieldDecl *FD = getAsField(A.Entries[I]))
- // Next subobject is a field.
- ObjType = FD->getType();
- else
- // Next subobject is a base class.
- ObjType = QualType();
- }
- }
- WasArrayIndex = false;
- return I;
- }
- /// Determine whether the given subobject designators refer to elements of the
- /// same array object.
- static bool AreElementsOfSameArray(QualType ObjType,
- const SubobjectDesignator &A,
- const SubobjectDesignator &B) {
- if (A.Entries.size() != B.Entries.size())
- return false;
- bool IsArray = A.MostDerivedIsArrayElement;
- if (IsArray && A.MostDerivedPathLength != A.Entries.size())
- // A is a subobject of the array element.
- return false;
- // If A (and B) designates an array element, the last entry will be the array
- // index. That doesn't have to match. Otherwise, we're in the 'implicit array
- // of length 1' case, and the entire path must match.
- bool WasArrayIndex;
- unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
- return CommonLength >= A.Entries.size() - IsArray;
- }
- /// Find the complete object to which an LValue refers.
- static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
- AccessKinds AK, const LValue &LVal,
- QualType LValType) {
- if (LVal.InvalidBase) {
- Info.FFDiag(E);
- return CompleteObject();
- }
- if (!LVal.Base) {
- Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
- return CompleteObject();
- }
- CallStackFrame *Frame = nullptr;
- unsigned Depth = 0;
- if (LVal.getLValueCallIndex()) {
- std::tie(Frame, Depth) =
- Info.getCallFrameAndDepth(LVal.getLValueCallIndex());
- if (!Frame) {
- Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
- << AK << LVal.Base.is<const ValueDecl*>();
- NoteLValueLocation(Info, LVal.Base);
- return CompleteObject();
- }
- }
- bool IsAccess = isFormalAccess(AK);
- // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
- // is not a constant expression (even if the object is non-volatile). We also
- // apply this rule to C++98, in order to conform to the expected 'volatile'
- // semantics.
- if (IsAccess && LValType.isVolatileQualified()) {
- if (Info.getLangOpts().CPlusPlus)
- Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
- << AK << LValType;
- else
- Info.FFDiag(E);
- return CompleteObject();
- }
- // Compute value storage location and type of base object.
- APValue *BaseVal = nullptr;
- QualType BaseType = getType(LVal.Base);
- if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
- // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
- // In C++11, constexpr, non-volatile variables initialized with constant
- // expressions are constant expressions too. Inside constexpr functions,
- // parameters are constant expressions even if they're non-const.
- // In C++1y, objects local to a constant expression (those with a Frame) are
- // both readable and writable inside constant expressions.
- // In C, such things can also be folded, although they are not ICEs.
- const VarDecl *VD = dyn_cast<VarDecl>(D);
- if (VD) {
- if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
- VD = VDef;
- }
- if (!VD || VD->isInvalidDecl()) {
- Info.FFDiag(E);
- return CompleteObject();
- }
- // Unless we're looking at a local variable or argument in a constexpr call,
- // the variable we're reading must be const.
- if (!Frame) {
- if (Info.getLangOpts().CPlusPlus14 &&
- declaresSameEntity(
- VD, Info.EvaluatingDecl.dyn_cast<const ValueDecl *>())) {
- // OK, we can read and modify an object if we're in the process of
- // evaluating its initializer, because its lifetime began in this
- // evaluation.
- } else if (isModification(AK)) {
- // All the remaining cases do not permit modification of the object.
- Info.FFDiag(E, diag::note_constexpr_modify_global);
- return CompleteObject();
- } else if (VD->isConstexpr()) {
- // OK, we can read this variable.
- } else if (BaseType->isIntegralOrEnumerationType()) {
- // In OpenCL if a variable is in constant address space it is a const
- // value.
- if (!(BaseType.isConstQualified() ||
- (Info.getLangOpts().OpenCL &&
- BaseType.getAddressSpace() == LangAS::opencl_constant))) {
- if (!IsAccess)
- return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
- if (Info.getLangOpts().CPlusPlus) {
- Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- } else {
- Info.FFDiag(E);
- }
- return CompleteObject();
- }
- } else if (!IsAccess) {
- return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
- } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
- // We support folding of const floating-point types, in order to make
- // static const data members of such types (supported as an extension)
- // more useful.
- if (Info.getLangOpts().CPlusPlus11) {
- Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- } else {
- Info.CCEDiag(E);
- }
- } else if (BaseType.isConstQualified() && VD->hasDefinition(Info.Ctx)) {
- Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr) << VD;
- // Keep evaluating to see what we can do.
- } else {
- // FIXME: Allow folding of values of any literal type in all languages.
- if (Info.checkingPotentialConstantExpression() &&
- VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) {
- // The definition of this variable could be constexpr. We can't
- // access it right now, but may be able to in future.
- } else if (Info.getLangOpts().CPlusPlus11) {
- Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- } else {
- Info.FFDiag(E);
- }
- return CompleteObject();
- }
- }
- if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal, &LVal))
- return CompleteObject();
- } else {
- const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
- if (!Frame) {
- if (const MaterializeTemporaryExpr *MTE =
- dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) {
- assert(MTE->getStorageDuration() == SD_Static &&
- "should have a frame for a non-global materialized temporary");
- // Per C++1y [expr.const]p2:
- // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
- // - a [...] glvalue of integral or enumeration type that refers to
- // a non-volatile const object [...]
- // [...]
- // - a [...] glvalue of literal type that refers to a non-volatile
- // object whose lifetime began within the evaluation of e.
- //
- // C++11 misses the 'began within the evaluation of e' check and
- // instead allows all temporaries, including things like:
- // int &&r = 1;
- // int x = ++r;
- // constexpr int k = r;
- // Therefore we use the C++14 rules in C++11 too.
- const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
- const ValueDecl *ED = MTE->getExtendingDecl();
- if (!(BaseType.isConstQualified() &&
- BaseType->isIntegralOrEnumerationType()) &&
- !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
- if (!IsAccess)
- return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
- Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
- Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
- return CompleteObject();
- }
- BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
- assert(BaseVal && "got reference to unevaluated temporary");
- } else {
- if (!IsAccess)
- return CompleteObject(LVal.getLValueBase(), nullptr, BaseType);
- APValue Val;
- LVal.moveInto(Val);
- Info.FFDiag(E, diag::note_constexpr_access_unreadable_object)
- << AK
- << Val.getAsString(Info.Ctx,
- Info.Ctx.getLValueReferenceType(LValType));
- NoteLValueLocation(Info, LVal.Base);
- return CompleteObject();
- }
- } else {
- BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion());
- assert(BaseVal && "missing value for temporary");
- }
- }
- // In C++14, we can't safely access any mutable state when we might be
- // evaluating after an unmodeled side effect.
- //
- // FIXME: Not all local state is mutable. Allow local constant subobjects
- // to be read here (but take care with 'mutable' fields).
- if ((Frame && Info.getLangOpts().CPlusPlus14 &&
- Info.EvalStatus.HasSideEffects) ||
- (isModification(AK) && Depth < Info.SpeculativeEvaluationDepth))
- return CompleteObject();
- return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType);
- }
- /// Perform an lvalue-to-rvalue conversion on the given glvalue. This
- /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
- /// glvalue referred to by an entity of reference type.
- ///
- /// \param Info - Information about the ongoing evaluation.
- /// \param Conv - The expression for which we are performing the conversion.
- /// Used for diagnostics.
- /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
- /// case of a non-class type).
- /// \param LVal - The glvalue on which we are attempting to perform this action.
- /// \param RVal - The produced value will be placed here.
- static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
- QualType Type,
- const LValue &LVal, APValue &RVal) {
- if (LVal.Designator.Invalid)
- return false;
- // Check for special cases where there is no existing APValue to look at.
- const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
- if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) {
- if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
- // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
- // initializer until now for such expressions. Such an expression can't be
- // an ICE in C, so this only matters for fold.
- if (Type.isVolatileQualified()) {
- Info.FFDiag(Conv);
- return false;
- }
- APValue Lit;
- if (!Evaluate(Lit, Info, CLE->getInitializer()))
- return false;
- CompleteObject LitObj(LVal.Base, &Lit, Base->getType());
- return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
- } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
- // Special-case character extraction so we don't have to construct an
- // APValue for the whole string.
- assert(LVal.Designator.Entries.size() <= 1 &&
- "Can only read characters from string literals");
- if (LVal.Designator.Entries.empty()) {
- // Fail for now for LValue to RValue conversion of an array.
- // (This shouldn't show up in C/C++, but it could be triggered by a
- // weird EvaluateAsRValue call from a tool.)
- Info.FFDiag(Conv);
- return false;
- }
- if (LVal.Designator.isOnePastTheEnd()) {
- if (Info.getLangOpts().CPlusPlus11)
- Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK_Read;
- else
- Info.FFDiag(Conv);
- return false;
- }
- uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex();
- RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex));
- return true;
- }
- }
- CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
- return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
- }
- /// Perform an assignment of Val to LVal. Takes ownership of Val.
- static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
- QualType LValType, APValue &Val) {
- if (LVal.Designator.Invalid)
- return false;
- if (!Info.getLangOpts().CPlusPlus14) {
- Info.FFDiag(E);
- return false;
- }
- CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
- return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
- }
- namespace {
- struct CompoundAssignSubobjectHandler {
- EvalInfo &Info;
- const Expr *E;
- QualType PromotedLHSType;
- BinaryOperatorKind Opcode;
- const APValue &RHS;
- static const AccessKinds AccessKind = AK_Assign;
- typedef bool result_type;
- bool checkConst(QualType QT) {
- // Assigning to a const object has undefined behavior.
- if (QT.isConstQualified()) {
- Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
- return false;
- }
- return true;
- }
- bool failed() { return false; }
- bool found(APValue &Subobj, QualType SubobjType) {
- switch (Subobj.getKind()) {
- case APValue::Int:
- return found(Subobj.getInt(), SubobjType);
- case APValue::Float:
- return found(Subobj.getFloat(), SubobjType);
- case APValue::ComplexInt:
- case APValue::ComplexFloat:
- // FIXME: Implement complex compound assignment.
- Info.FFDiag(E);
- return false;
- case APValue::LValue:
- return foundPointer(Subobj, SubobjType);
- default:
- // FIXME: can this happen?
- Info.FFDiag(E);
- return false;
- }
- }
- bool found(APSInt &Value, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- if (!SubobjType->isIntegerType()) {
- // We don't support compound assignment on integer-cast-to-pointer
- // values.
- Info.FFDiag(E);
- return false;
- }
- if (RHS.isInt()) {
- APSInt LHS =
- HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value);
- if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
- return false;
- Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
- return true;
- } else if (RHS.isFloat()) {
- APFloat FValue(0.0);
- return HandleIntToFloatCast(Info, E, SubobjType, Value, PromotedLHSType,
- FValue) &&
- handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) &&
- HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType,
- Value);
- }
- Info.FFDiag(E);
- return false;
- }
- bool found(APFloat &Value, QualType SubobjType) {
- return checkConst(SubobjType) &&
- HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
- Value) &&
- handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
- HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
- }
- bool foundPointer(APValue &Subobj, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- QualType PointeeType;
- if (const PointerType *PT = SubobjType->getAs<PointerType>())
- PointeeType = PT->getPointeeType();
- if (PointeeType.isNull() || !RHS.isInt() ||
- (Opcode != BO_Add && Opcode != BO_Sub)) {
- Info.FFDiag(E);
- return false;
- }
- APSInt Offset = RHS.getInt();
- if (Opcode == BO_Sub)
- negateAsSigned(Offset);
- LValue LVal;
- LVal.setFrom(Info.Ctx, Subobj);
- if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
- return false;
- LVal.moveInto(Subobj);
- return true;
- }
- };
- } // end anonymous namespace
- const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
- /// Perform a compound assignment of LVal <op>= RVal.
- static bool handleCompoundAssignment(
- EvalInfo &Info, const Expr *E,
- const LValue &LVal, QualType LValType, QualType PromotedLValType,
- BinaryOperatorKind Opcode, const APValue &RVal) {
- if (LVal.Designator.Invalid)
- return false;
- if (!Info.getLangOpts().CPlusPlus14) {
- Info.FFDiag(E);
- return false;
- }
- CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
- CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
- RVal };
- return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
- }
- namespace {
- struct IncDecSubobjectHandler {
- EvalInfo &Info;
- const UnaryOperator *E;
- AccessKinds AccessKind;
- APValue *Old;
- typedef bool result_type;
- bool checkConst(QualType QT) {
- // Assigning to a const object has undefined behavior.
- if (QT.isConstQualified()) {
- Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
- return false;
- }
- return true;
- }
- bool failed() { return false; }
- bool found(APValue &Subobj, QualType SubobjType) {
- // Stash the old value. Also clear Old, so we don't clobber it later
- // if we're post-incrementing a complex.
- if (Old) {
- *Old = Subobj;
- Old = nullptr;
- }
- switch (Subobj.getKind()) {
- case APValue::Int:
- return found(Subobj.getInt(), SubobjType);
- case APValue::Float:
- return found(Subobj.getFloat(), SubobjType);
- case APValue::ComplexInt:
- return found(Subobj.getComplexIntReal(),
- SubobjType->castAs<ComplexType>()->getElementType()
- .withCVRQualifiers(SubobjType.getCVRQualifiers()));
- case APValue::ComplexFloat:
- return found(Subobj.getComplexFloatReal(),
- SubobjType->castAs<ComplexType>()->getElementType()
- .withCVRQualifiers(SubobjType.getCVRQualifiers()));
- case APValue::LValue:
- return foundPointer(Subobj, SubobjType);
- default:
- // FIXME: can this happen?
- Info.FFDiag(E);
- return false;
- }
- }
- bool found(APSInt &Value, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- if (!SubobjType->isIntegerType()) {
- // We don't support increment / decrement on integer-cast-to-pointer
- // values.
- Info.FFDiag(E);
- return false;
- }
- if (Old) *Old = APValue(Value);
- // bool arithmetic promotes to int, and the conversion back to bool
- // doesn't reduce mod 2^n, so special-case it.
- if (SubobjType->isBooleanType()) {
- if (AccessKind == AK_Increment)
- Value = 1;
- else
- Value = !Value;
- return true;
- }
- bool WasNegative = Value.isNegative();
- if (AccessKind == AK_Increment) {
- ++Value;
- if (!WasNegative && Value.isNegative() && E->canOverflow()) {
- APSInt ActualValue(Value, /*IsUnsigned*/true);
- return HandleOverflow(Info, E, ActualValue, SubobjType);
- }
- } else {
- --Value;
- if (WasNegative && !Value.isNegative() && E->canOverflow()) {
- unsigned BitWidth = Value.getBitWidth();
- APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
- ActualValue.setBit(BitWidth);
- return HandleOverflow(Info, E, ActualValue, SubobjType);
- }
- }
- return true;
- }
- bool found(APFloat &Value, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- if (Old) *Old = APValue(Value);
- APFloat One(Value.getSemantics(), 1);
- if (AccessKind == AK_Increment)
- Value.add(One, APFloat::rmNearestTiesToEven);
- else
- Value.subtract(One, APFloat::rmNearestTiesToEven);
- return true;
- }
- bool foundPointer(APValue &Subobj, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- QualType PointeeType;
- if (const PointerType *PT = SubobjType->getAs<PointerType>())
- PointeeType = PT->getPointeeType();
- else {
- Info.FFDiag(E);
- return false;
- }
- LValue LVal;
- LVal.setFrom(Info.Ctx, Subobj);
- if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
- AccessKind == AK_Increment ? 1 : -1))
- return false;
- LVal.moveInto(Subobj);
- return true;
- }
- };
- } // end anonymous namespace
- /// Perform an increment or decrement on LVal.
- static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
- QualType LValType, bool IsIncrement, APValue *Old) {
- if (LVal.Designator.Invalid)
- return false;
- if (!Info.getLangOpts().CPlusPlus14) {
- Info.FFDiag(E);
- return false;
- }
- AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
- CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
- IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old};
- return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
- }
- /// Build an lvalue for the object argument of a member function call.
- static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
- LValue &This) {
- if (Object->getType()->isPointerType())
- return EvaluatePointer(Object, This, Info);
- if (Object->isGLValue())
- return EvaluateLValue(Object, This, Info);
- if (Object->getType()->isLiteralType(Info.Ctx))
- return EvaluateTemporary(Object, This, Info);
- Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
- return false;
- }
- /// HandleMemberPointerAccess - Evaluate a member access operation and build an
- /// lvalue referring to the result.
- ///
- /// \param Info - Information about the ongoing evaluation.
- /// \param LV - An lvalue referring to the base of the member pointer.
- /// \param RHS - The member pointer expression.
- /// \param IncludeMember - Specifies whether the member itself is included in
- /// the resulting LValue subobject designator. This is not possible when
- /// creating a bound member function.
- /// \return The field or method declaration to which the member pointer refers,
- /// or 0 if evaluation fails.
- static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
- QualType LVType,
- LValue &LV,
- const Expr *RHS,
- bool IncludeMember = true) {
- MemberPtr MemPtr;
- if (!EvaluateMemberPointer(RHS, MemPtr, Info))
- return nullptr;
- // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
- // member value, the behavior is undefined.
- if (!MemPtr.getDecl()) {
- // FIXME: Specific diagnostic.
- Info.FFDiag(RHS);
- return nullptr;
- }
- if (MemPtr.isDerivedMember()) {
- // This is a member of some derived class. Truncate LV appropriately.
- // The end of the derived-to-base path for the base object must match the
- // derived-to-base path for the member pointer.
- if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
- LV.Designator.Entries.size()) {
- Info.FFDiag(RHS);
- return nullptr;
- }
- unsigned PathLengthToMember =
- LV.Designator.Entries.size() - MemPtr.Path.size();
- for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
- const CXXRecordDecl *LVDecl = getAsBaseClass(
- LV.Designator.Entries[PathLengthToMember + I]);
- const CXXRecordDecl *MPDecl = MemPtr.Path[I];
- if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
- Info.FFDiag(RHS);
- return nullptr;
- }
- }
- // Truncate the lvalue to the appropriate derived class.
- if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
- PathLengthToMember))
- return nullptr;
- } else if (!MemPtr.Path.empty()) {
- // Extend the LValue path with the member pointer's path.
- LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
- MemPtr.Path.size() + IncludeMember);
- // Walk down to the appropriate base class.
- if (const PointerType *PT = LVType->getAs<PointerType>())
- LVType = PT->getPointeeType();
- const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
- assert(RD && "member pointer access on non-class-type expression");
- // The first class in the path is that of the lvalue.
- for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
- const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
- if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
- return nullptr;
- RD = Base;
- }
- // Finally cast to the class containing the member.
- if (!HandleLValueDirectBase(Info, RHS, LV, RD,
- MemPtr.getContainingRecord()))
- return nullptr;
- }
- // Add the member. Note that we cannot build bound member functions here.
- if (IncludeMember) {
- if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
- if (!HandleLValueMember(Info, RHS, LV, FD))
- return nullptr;
- } else if (const IndirectFieldDecl *IFD =
- dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
- if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
- return nullptr;
- } else {
- llvm_unreachable("can't construct reference to bound member function");
- }
- }
- return MemPtr.getDecl();
- }
- static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
- const BinaryOperator *BO,
- LValue &LV,
- bool IncludeMember = true) {
- assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
- if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
- if (Info.noteFailure()) {
- MemberPtr MemPtr;
- EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
- }
- return nullptr;
- }
- return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
- BO->getRHS(), IncludeMember);
- }
- /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
- /// the provided lvalue, which currently refers to the base object.
- static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
- LValue &Result) {
- SubobjectDesignator &D = Result.Designator;
- if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
- return false;
- QualType TargetQT = E->getType();
- if (const PointerType *PT = TargetQT->getAs<PointerType>())
- TargetQT = PT->getPointeeType();
- // Check this cast lands within the final derived-to-base subobject path.
- if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
- Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
- << D.MostDerivedType << TargetQT;
- return false;
- }
- // Check the type of the final cast. We don't need to check the path,
- // since a cast can only be formed if the path is unique.
- unsigned NewEntriesSize = D.Entries.size() - E->path_size();
- const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
- const CXXRecordDecl *FinalType;
- if (NewEntriesSize == D.MostDerivedPathLength)
- FinalType = D.MostDerivedType->getAsCXXRecordDecl();
- else
- FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
- if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
- Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
- << D.MostDerivedType << TargetQT;
- return false;
- }
- // Truncate the lvalue to the appropriate derived class.
- return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
- }
- namespace {
- enum EvalStmtResult {
- /// Evaluation failed.
- ESR_Failed,
- /// Hit a 'return' statement.
- ESR_Returned,
- /// Evaluation succeeded.
- ESR_Succeeded,
- /// Hit a 'continue' statement.
- ESR_Continue,
- /// Hit a 'break' statement.
- ESR_Break,
- /// Still scanning for 'case' or 'default' statement.
- ESR_CaseNotFound
- };
- }
- static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
- // We don't need to evaluate the initializer for a static local.
- if (!VD->hasLocalStorage())
- return true;
- LValue Result;
- APValue &Val = createTemporary(VD, true, Result, *Info.CurrentCall);
- const Expr *InitE = VD->getInit();
- if (!InitE) {
- Info.FFDiag(VD->getBeginLoc(), diag::note_constexpr_uninitialized)
- << false << VD->getType();
- Val = APValue();
- return false;
- }
- if (InitE->isValueDependent())
- return false;
- if (!EvaluateInPlace(Val, Info, Result, InitE)) {
- // Wipe out any partially-computed value, to allow tracking that this
- // evaluation failed.
- Val = APValue();
- return false;
- }
- return true;
- }
- static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
- bool OK = true;
- if (const VarDecl *VD = dyn_cast<VarDecl>(D))
- OK &= EvaluateVarDecl(Info, VD);
- if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
- for (auto *BD : DD->bindings())
- if (auto *VD = BD->getHoldingVar())
- OK &= EvaluateDecl(Info, VD);
- return OK;
- }
- /// Evaluate a condition (either a variable declaration or an expression).
- static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
- const Expr *Cond, bool &Result) {
- FullExpressionRAII Scope(Info);
- if (CondDecl && !EvaluateDecl(Info, CondDecl))
- return false;
- return EvaluateAsBooleanCondition(Cond, Result, Info);
- }
- namespace {
- /// A location where the result (returned value) of evaluating a
- /// statement should be stored.
- struct StmtResult {
- /// The APValue that should be filled in with the returned value.
- APValue &Value;
- /// The location containing the result, if any (used to support RVO).
- const LValue *Slot;
- };
- struct TempVersionRAII {
- CallStackFrame &Frame;
- TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) {
- Frame.pushTempVersion();
- }
- ~TempVersionRAII() {
- Frame.popTempVersion();
- }
- };
- }
- static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
- const Stmt *S,
- const SwitchCase *SC = nullptr);
- /// Evaluate the body of a loop, and translate the result as appropriate.
- static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
- const Stmt *Body,
- const SwitchCase *Case = nullptr) {
- BlockScopeRAII Scope(Info);
- switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
- case ESR_Break:
- return ESR_Succeeded;
- case ESR_Succeeded:
- case ESR_Continue:
- return ESR_Continue;
- case ESR_Failed:
- case ESR_Returned:
- case ESR_CaseNotFound:
- return ESR;
- }
- llvm_unreachable("Invalid EvalStmtResult!");
- }
- /// Evaluate a switch statement.
- static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
- const SwitchStmt *SS) {
- BlockScopeRAII Scope(Info);
- // Evaluate the switch condition.
- APSInt Value;
- {
- FullExpressionRAII Scope(Info);
- if (const Stmt *Init = SS->getInit()) {
- EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
- if (ESR != ESR_Succeeded)
- return ESR;
- }
- if (SS->getConditionVariable() &&
- !EvaluateDecl(Info, SS->getConditionVariable()))
- return ESR_Failed;
- if (!EvaluateInteger(SS->getCond(), Value, Info))
- return ESR_Failed;
- }
- // Find the switch case corresponding to the value of the condition.
- // FIXME: Cache this lookup.
- const SwitchCase *Found = nullptr;
- for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
- SC = SC->getNextSwitchCase()) {
- if (isa<DefaultStmt>(SC)) {
- Found = SC;
- continue;
- }
- const CaseStmt *CS = cast<CaseStmt>(SC);
- APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
- APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
- : LHS;
- if (LHS <= Value && Value <= RHS) {
- Found = SC;
- break;
- }
- }
- if (!Found)
- return ESR_Succeeded;
- // Search the switch body for the switch case and evaluate it from there.
- switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
- case ESR_Break:
- return ESR_Succeeded;
- case ESR_Succeeded:
- case ESR_Continue:
- case ESR_Failed:
- case ESR_Returned:
- return ESR;
- case ESR_CaseNotFound:
- // This can only happen if the switch case is nested within a statement
- // expression. We have no intention of supporting that.
- Info.FFDiag(Found->getBeginLoc(),
- diag::note_constexpr_stmt_expr_unsupported);
- return ESR_Failed;
- }
- llvm_unreachable("Invalid EvalStmtResult!");
- }
- // Evaluate a statement.
- static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
- const Stmt *S, const SwitchCase *Case) {
- if (!Info.nextStep(S))
- return ESR_Failed;
- // If we're hunting down a 'case' or 'default' label, recurse through
- // substatements until we hit the label.
- if (Case) {
- // FIXME: We don't start the lifetime of objects whose initialization we
- // jump over. However, such objects must be of class type with a trivial
- // default constructor that initialize all subobjects, so must be empty,
- // so this almost never matters.
- switch (S->getStmtClass()) {
- case Stmt::CompoundStmtClass:
- // FIXME: Precompute which substatement of a compound statement we
- // would jump to, and go straight there rather than performing a
- // linear scan each time.
- case Stmt::LabelStmtClass:
- case Stmt::AttributedStmtClass:
- case Stmt::DoStmtClass:
- break;
- case Stmt::CaseStmtClass:
- case Stmt::DefaultStmtClass:
- if (Case == S)
- Case = nullptr;
- break;
- case Stmt::IfStmtClass: {
- // FIXME: Precompute which side of an 'if' we would jump to, and go
- // straight there rather than scanning both sides.
- const IfStmt *IS = cast<IfStmt>(S);
- // Wrap the evaluation in a block scope, in case it's a DeclStmt
- // preceded by our switch label.
- BlockScopeRAII Scope(Info);
- EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
- if (ESR != ESR_CaseNotFound || !IS->getElse())
- return ESR;
- return EvaluateStmt(Result, Info, IS->getElse(), Case);
- }
- case Stmt::WhileStmtClass: {
- EvalStmtResult ESR =
- EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
- if (ESR != ESR_Continue)
- return ESR;
- break;
- }
- case Stmt::ForStmtClass: {
- const ForStmt *FS = cast<ForStmt>(S);
- EvalStmtResult ESR =
- EvaluateLoopBody(Result, Info, FS->getBody(), Case);
- if (ESR != ESR_Continue)
- return ESR;
- if (FS->getInc()) {
- FullExpressionRAII IncScope(Info);
- if (!EvaluateIgnoredValue(Info, FS->getInc()))
- return ESR_Failed;
- }
- break;
- }
- case Stmt::DeclStmtClass:
- // FIXME: If the variable has initialization that can't be jumped over,
- // bail out of any immediately-surrounding compound-statement too.
- default:
- return ESR_CaseNotFound;
- }
- }
- switch (S->getStmtClass()) {
- default:
- if (const Expr *E = dyn_cast<Expr>(S)) {
- // Don't bother evaluating beyond an expression-statement which couldn't
- // be evaluated.
- FullExpressionRAII Scope(Info);
- if (!EvaluateIgnoredValue(Info, E))
- return ESR_Failed;
- return ESR_Succeeded;
- }
- Info.FFDiag(S->getBeginLoc());
- return ESR_Failed;
- case Stmt::NullStmtClass:
- return ESR_Succeeded;
- case Stmt::DeclStmtClass: {
- const DeclStmt *DS = cast<DeclStmt>(S);
- for (const auto *DclIt : DS->decls()) {
- // Each declaration initialization is its own full-expression.
- // FIXME: This isn't quite right; if we're performing aggregate
- // initialization, each braced subexpression is its own full-expression.
- FullExpressionRAII Scope(Info);
- if (!EvaluateDecl(Info, DclIt) && !Info.noteFailure())
- return ESR_Failed;
- }
- return ESR_Succeeded;
- }
- case Stmt::ReturnStmtClass: {
- const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
- FullExpressionRAII Scope(Info);
- if (RetExpr &&
- !(Result.Slot
- ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
- : Evaluate(Result.Value, Info, RetExpr)))
- return ESR_Failed;
- return ESR_Returned;
- }
- case Stmt::CompoundStmtClass: {
- BlockScopeRAII Scope(Info);
- const CompoundStmt *CS = cast<CompoundStmt>(S);
- for (const auto *BI : CS->body()) {
- EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
- if (ESR == ESR_Succeeded)
- Case = nullptr;
- else if (ESR != ESR_CaseNotFound)
- return ESR;
- }
- return Case ? ESR_CaseNotFound : ESR_Succeeded;
- }
- case Stmt::IfStmtClass: {
- const IfStmt *IS = cast<IfStmt>(S);
- // Evaluate the condition, as either a var decl or as an expression.
- BlockScopeRAII Scope(Info);
- if (const Stmt *Init = IS->getInit()) {
- EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
- if (ESR != ESR_Succeeded)
- return ESR;
- }
- bool Cond;
- if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
- return ESR_Failed;
- if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
- EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
- if (ESR != ESR_Succeeded)
- return ESR;
- }
- return ESR_Succeeded;
- }
- case Stmt::WhileStmtClass: {
- const WhileStmt *WS = cast<WhileStmt>(S);
- while (true) {
- BlockScopeRAII Scope(Info);
- bool Continue;
- if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
- Continue))
- return ESR_Failed;
- if (!Continue)
- break;
- EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
- if (ESR != ESR_Continue)
- return ESR;
- }
- return ESR_Succeeded;
- }
- case Stmt::DoStmtClass: {
- const DoStmt *DS = cast<DoStmt>(S);
- bool Continue;
- do {
- EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
- if (ESR != ESR_Continue)
- return ESR;
- Case = nullptr;
- FullExpressionRAII CondScope(Info);
- if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
- return ESR_Failed;
- } while (Continue);
- return ESR_Succeeded;
- }
- case Stmt::ForStmtClass: {
- const ForStmt *FS = cast<ForStmt>(S);
- BlockScopeRAII Scope(Info);
- if (FS->getInit()) {
- EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
- if (ESR != ESR_Succeeded)
- return ESR;
- }
- while (true) {
- BlockScopeRAII Scope(Info);
- bool Continue = true;
- if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
- FS->getCond(), Continue))
- return ESR_Failed;
- if (!Continue)
- break;
- EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
- if (ESR != ESR_Continue)
- return ESR;
- if (FS->getInc()) {
- FullExpressionRAII IncScope(Info);
- if (!EvaluateIgnoredValue(Info, FS->getInc()))
- return ESR_Failed;
- }
- }
- return ESR_Succeeded;
- }
- case Stmt::CXXForRangeStmtClass: {
- const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
- BlockScopeRAII Scope(Info);
- // Evaluate the init-statement if present.
- if (FS->getInit()) {
- EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
- if (ESR != ESR_Succeeded)
- return ESR;
- }
- // Initialize the __range variable.
- EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
- if (ESR != ESR_Succeeded)
- return ESR;
- // Create the __begin and __end iterators.
- ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
- if (ESR != ESR_Succeeded)
- return ESR;
- ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
- if (ESR != ESR_Succeeded)
- return ESR;
- while (true) {
- // Condition: __begin != __end.
- {
- bool Continue = true;
- FullExpressionRAII CondExpr(Info);
- if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
- return ESR_Failed;
- if (!Continue)
- break;
- }
- // User's variable declaration, initialized by *__begin.
- BlockScopeRAII InnerScope(Info);
- ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
- if (ESR != ESR_Succeeded)
- return ESR;
- // Loop body.
- ESR = EvaluateLoopBody(Result, Info, FS->getBody());
- if (ESR != ESR_Continue)
- return ESR;
- // Increment: ++__begin
- if (!EvaluateIgnoredValue(Info, FS->getInc()))
- return ESR_Failed;
- }
- return ESR_Succeeded;
- }
- case Stmt::SwitchStmtClass:
- return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
- case Stmt::ContinueStmtClass:
- return ESR_Continue;
- case Stmt::BreakStmtClass:
- return ESR_Break;
- case Stmt::LabelStmtClass:
- return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
- case Stmt::AttributedStmtClass:
- // As a general principle, C++11 attributes can be ignored without
- // any semantic impact.
- return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
- Case);
- case Stmt::CaseStmtClass:
- case Stmt::DefaultStmtClass:
- return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
- case Stmt::CXXTryStmtClass:
- // Evaluate try blocks by evaluating all sub statements.
- return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case);
- }
- }
- /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
- /// default constructor. If so, we'll fold it whether or not it's marked as
- /// constexpr. If it is marked as constexpr, we will never implicitly define it,
- /// so we need special handling.
- static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
- const CXXConstructorDecl *CD,
- bool IsValueInitialization) {
- if (!CD->isTrivial() || !CD->isDefaultConstructor())
- return false;
- // Value-initialization does not call a trivial default constructor, so such a
- // call is a core constant expression whether or not the constructor is
- // constexpr.
- if (!CD->isConstexpr() && !IsValueInitialization) {
- if (Info.getLangOpts().CPlusPlus11) {
- // FIXME: If DiagDecl is an implicitly-declared special member function,
- // we should be much more explicit about why it's not constexpr.
- Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
- << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
- Info.Note(CD->getLocation(), diag::note_declared_at);
- } else {
- Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
- }
- }
- return true;
- }
- /// CheckConstexprFunction - Check that a function can be called in a constant
- /// expression.
- static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
- const FunctionDecl *Declaration,
- const FunctionDecl *Definition,
- const Stmt *Body) {
- // Potential constant expressions can contain calls to declared, but not yet
- // defined, constexpr functions.
- if (Info.checkingPotentialConstantExpression() && !Definition &&
- Declaration->isConstexpr())
- return false;
- // Bail out if the function declaration itself is invalid. We will
- // have produced a relevant diagnostic while parsing it, so just
- // note the problematic sub-expression.
- if (Declaration->isInvalidDecl()) {
- Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- // DR1872: An instantiated virtual constexpr function can't be called in a
- // constant expression (prior to C++20). We can still constant-fold such a
- // call.
- if (!Info.Ctx.getLangOpts().CPlusPlus2a && isa<CXXMethodDecl>(Declaration) &&
- cast<CXXMethodDecl>(Declaration)->isVirtual())
- Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call);
- if (Definition && Definition->isInvalidDecl()) {
- Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- // Can we evaluate this function call?
- if (Definition && Definition->isConstexpr() && Body)
- return true;
- if (Info.getLangOpts().CPlusPlus11) {
- const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
- // If this function is not constexpr because it is an inherited
- // non-constexpr constructor, diagnose that directly.
- auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
- if (CD && CD->isInheritingConstructor()) {
- auto *Inherited = CD->getInheritedConstructor().getConstructor();
- if (!Inherited->isConstexpr())
- DiagDecl = CD = Inherited;
- }
- // FIXME: If DiagDecl is an implicitly-declared special member function
- // or an inheriting constructor, we should be much more explicit about why
- // it's not constexpr.
- if (CD && CD->isInheritingConstructor())
- Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
- << CD->getInheritedConstructor().getConstructor()->getParent();
- else
- Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
- << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
- Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
- } else {
- Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
- }
- return false;
- }
- namespace {
- struct CheckDynamicTypeHandler {
- AccessKinds AccessKind;
- typedef bool result_type;
- bool failed() { return false; }
- bool found(APValue &Subobj, QualType SubobjType) { return true; }
- bool found(APSInt &Value, QualType SubobjType) { return true; }
- bool found(APFloat &Value, QualType SubobjType) { return true; }
- };
- } // end anonymous namespace
- /// Check that we can access the notional vptr of an object / determine its
- /// dynamic type.
- static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This,
- AccessKinds AK, bool Polymorphic) {
- if (This.Designator.Invalid)
- return false;
- CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType());
- if (!Obj)
- return false;
- if (!Obj.Value) {
- // The object is not usable in constant expressions, so we can't inspect
- // its value to see if it's in-lifetime or what the active union members
- // are. We can still check for a one-past-the-end lvalue.
- if (This.Designator.isOnePastTheEnd() ||
- This.Designator.isMostDerivedAnUnsizedArray()) {
- Info.FFDiag(E, This.Designator.isOnePastTheEnd()
- ? diag::note_constexpr_access_past_end
- : diag::note_constexpr_access_unsized_array)
- << AK;
- return false;
- } else if (Polymorphic) {
- // Conservatively refuse to perform a polymorphic operation if we would
- // not be able to read a notional 'vptr' value.
- APValue Val;
- This.moveInto(Val);
- QualType StarThisType =
- Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx));
- Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type)
- << AK << Val.getAsString(Info.Ctx, StarThisType);
- return false;
- }
- return true;
- }
- CheckDynamicTypeHandler Handler{AK};
- return Obj && findSubobject(Info, E, Obj, This.Designator, Handler);
- }
- /// Check that the pointee of the 'this' pointer in a member function call is
- /// either within its lifetime or in its period of construction or destruction.
- static bool checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E,
- const LValue &This) {
- return checkDynamicType(Info, E, This, AK_MemberCall, false);
- }
- struct DynamicType {
- /// The dynamic class type of the object.
- const CXXRecordDecl *Type;
- /// The corresponding path length in the lvalue.
- unsigned PathLength;
- };
- static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator,
- unsigned PathLength) {
- assert(PathLength >= Designator.MostDerivedPathLength && PathLength <=
- Designator.Entries.size() && "invalid path length");
- return (PathLength == Designator.MostDerivedPathLength)
- ? Designator.MostDerivedType->getAsCXXRecordDecl()
- : getAsBaseClass(Designator.Entries[PathLength - 1]);
- }
- /// Determine the dynamic type of an object.
- static Optional<DynamicType> ComputeDynamicType(EvalInfo &Info, const Expr *E,
- LValue &This, AccessKinds AK) {
- // If we don't have an lvalue denoting an object of class type, there is no
- // meaningful dynamic type. (We consider objects of non-class type to have no
- // dynamic type.)
- if (!checkDynamicType(Info, E, This, AK, true))
- return None;
- // Refuse to compute a dynamic type in the presence of virtual bases. This
- // shouldn't happen other than in constant-folding situations, since literal
- // types can't have virtual bases.
- //
- // Note that consumers of DynamicType assume that the type has no virtual
- // bases, and will need modifications if this restriction is relaxed.
- const CXXRecordDecl *Class =
- This.Designator.MostDerivedType->getAsCXXRecordDecl();
- if (!Class || Class->getNumVBases()) {
- Info.FFDiag(E);
- return None;
- }
- // FIXME: For very deep class hierarchies, it might be beneficial to use a
- // binary search here instead. But the overwhelmingly common case is that
- // we're not in the middle of a constructor, so it probably doesn't matter
- // in practice.
- ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries;
- for (unsigned PathLength = This.Designator.MostDerivedPathLength;
- PathLength <= Path.size(); ++PathLength) {
- switch (Info.isEvaluatingConstructor(This.getLValueBase(),
- Path.slice(0, PathLength))) {
- case ConstructionPhase::Bases:
- // We're constructing a base class. This is not the dynamic type.
- break;
- case ConstructionPhase::None:
- case ConstructionPhase::AfterBases:
- // We've finished constructing the base classes, so this is the dynamic
- // type.
- return DynamicType{getBaseClassType(This.Designator, PathLength),
- PathLength};
- }
- }
- // CWG issue 1517: we're constructing a base class of the object described by
- // 'This', so that object has not yet begun its period of construction and
- // any polymorphic operation on it results in undefined behavior.
- Info.FFDiag(E);
- return None;
- }
- /// Perform virtual dispatch.
- static const CXXMethodDecl *HandleVirtualDispatch(
- EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found,
- llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) {
- Optional<DynamicType> DynType =
- ComputeDynamicType(Info, E, This, AK_MemberCall);
- if (!DynType)
- return nullptr;
- // Find the final overrider. It must be declared in one of the classes on the
- // path from the dynamic type to the static type.
- // FIXME: If we ever allow literal types to have virtual base classes, that
- // won't be true.
- const CXXMethodDecl *Callee = Found;
- unsigned PathLength = DynType->PathLength;
- for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) {
- const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength);
- const CXXMethodDecl *Overrider =
- Found->getCorrespondingMethodDeclaredInClass(Class, false);
- if (Overrider) {
- Callee = Overrider;
- break;
- }
- }
- // C++2a [class.abstract]p6:
- // the effect of making a virtual call to a pure virtual function [...] is
- // undefined
- if (Callee->isPure()) {
- Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee;
- Info.Note(Callee->getLocation(), diag::note_declared_at);
- return nullptr;
- }
- // If necessary, walk the rest of the path to determine the sequence of
- // covariant adjustment steps to apply.
- if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(),
- Found->getReturnType())) {
- CovariantAdjustmentPath.push_back(Callee->getReturnType());
- for (unsigned CovariantPathLength = PathLength + 1;
- CovariantPathLength != This.Designator.Entries.size();
- ++CovariantPathLength) {
- const CXXRecordDecl *NextClass =
- getBaseClassType(This.Designator, CovariantPathLength);
- const CXXMethodDecl *Next =
- Found->getCorrespondingMethodDeclaredInClass(NextClass, false);
- if (Next && !Info.Ctx.hasSameUnqualifiedType(
- Next->getReturnType(), CovariantAdjustmentPath.back()))
- CovariantAdjustmentPath.push_back(Next->getReturnType());
- }
- if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(),
- CovariantAdjustmentPath.back()))
- CovariantAdjustmentPath.push_back(Found->getReturnType());
- }
- // Perform 'this' adjustment.
- if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength))
- return nullptr;
- return Callee;
- }
- /// Perform the adjustment from a value returned by a virtual function to
- /// a value of the statically expected type, which may be a pointer or
- /// reference to a base class of the returned type.
- static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E,
- APValue &Result,
- ArrayRef<QualType> Path) {
- assert(Result.isLValue() &&
- "unexpected kind of APValue for covariant return");
- if (Result.isNullPointer())
- return true;
- LValue LVal;
- LVal.setFrom(Info.Ctx, Result);
- const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl();
- for (unsigned I = 1; I != Path.size(); ++I) {
- const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl();
- assert(OldClass && NewClass && "unexpected kind of covariant return");
- if (OldClass != NewClass &&
- !CastToBaseClass(Info, E, LVal, OldClass, NewClass))
- return false;
- OldClass = NewClass;
- }
- LVal.moveInto(Result);
- return true;
- }
- /// Determine whether \p Base, which is known to be a direct base class of
- /// \p Derived, is a public base class.
- static bool isBaseClassPublic(const CXXRecordDecl *Derived,
- const CXXRecordDecl *Base) {
- for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) {
- auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl();
- if (BaseClass && declaresSameEntity(BaseClass, Base))
- return BaseSpec.getAccessSpecifier() == AS_public;
- }
- llvm_unreachable("Base is not a direct base of Derived");
- }
- /// Apply the given dynamic cast operation on the provided lvalue.
- ///
- /// This implements the hard case of dynamic_cast, requiring a "runtime check"
- /// to find a suitable target subobject.
- static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E,
- LValue &Ptr) {
- // We can't do anything with a non-symbolic pointer value.
- SubobjectDesignator &D = Ptr.Designator;
- if (D.Invalid)
- return false;
- // C++ [expr.dynamic.cast]p6:
- // If v is a null pointer value, the result is a null pointer value.
- if (Ptr.isNullPointer() && !E->isGLValue())
- return true;
- // For all the other cases, we need the pointer to point to an object within
- // its lifetime / period of construction / destruction, and we need to know
- // its dynamic type.
- Optional<DynamicType> DynType =
- ComputeDynamicType(Info, E, Ptr, AK_DynamicCast);
- if (!DynType)
- return false;
- // C++ [expr.dynamic.cast]p7:
- // If T is "pointer to cv void", then the result is a pointer to the most
- // derived object
- if (E->getType()->isVoidPointerType())
- return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength);
- const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl();
- assert(C && "dynamic_cast target is not void pointer nor class");
- CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C));
- auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) {
- // C++ [expr.dynamic.cast]p9:
- if (!E->isGLValue()) {
- // The value of a failed cast to pointer type is the null pointer value
- // of the required result type.
- auto TargetVal = Info.Ctx.getTargetNullPointerValue(E->getType());
- Ptr.setNull(E->getType(), TargetVal);
- return true;
- }
- // A failed cast to reference type throws [...] std::bad_cast.
- unsigned DiagKind;
- if (!Paths && (declaresSameEntity(DynType->Type, C) ||
- DynType->Type->isDerivedFrom(C)))
- DiagKind = 0;
- else if (!Paths || Paths->begin() == Paths->end())
- DiagKind = 1;
- else if (Paths->isAmbiguous(CQT))
- DiagKind = 2;
- else {
- assert(Paths->front().Access != AS_public && "why did the cast fail?");
- DiagKind = 3;
- }
- Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed)
- << DiagKind << Ptr.Designator.getType(Info.Ctx)
- << Info.Ctx.getRecordType(DynType->Type)
- << E->getType().getUnqualifiedType();
- return false;
- };
- // Runtime check, phase 1:
- // Walk from the base subobject towards the derived object looking for the
- // target type.
- for (int PathLength = Ptr.Designator.Entries.size();
- PathLength >= (int)DynType->PathLength; --PathLength) {
- const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength);
- if (declaresSameEntity(Class, C))
- return CastToDerivedClass(Info, E, Ptr, Class, PathLength);
- // We can only walk across public inheritance edges.
- if (PathLength > (int)DynType->PathLength &&
- !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1),
- Class))
- return RuntimeCheckFailed(nullptr);
- }
- // Runtime check, phase 2:
- // Search the dynamic type for an unambiguous public base of type C.
- CXXBasePaths Paths(/*FindAmbiguities=*/true,
- /*RecordPaths=*/true, /*DetectVirtual=*/false);
- if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) &&
- Paths.front().Access == AS_public) {
- // Downcast to the dynamic type...
- if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength))
- return false;
- // ... then upcast to the chosen base class subobject.
- for (CXXBasePathElement &Elem : Paths.front())
- if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base))
- return false;
- return true;
- }
- // Otherwise, the runtime check fails.
- return RuntimeCheckFailed(&Paths);
- }
- namespace {
- struct StartLifetimeOfUnionMemberHandler {
- const FieldDecl *Field;
- static const AccessKinds AccessKind = AK_Assign;
- APValue getDefaultInitValue(QualType SubobjType) {
- if (auto *RD = SubobjType->getAsCXXRecordDecl()) {
- if (RD->isUnion())
- return APValue((const FieldDecl*)nullptr);
- APValue Struct(APValue::UninitStruct(), RD->getNumBases(),
- std::distance(RD->field_begin(), RD->field_end()));
- unsigned Index = 0;
- for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
- End = RD->bases_end(); I != End; ++I, ++Index)
- Struct.getStructBase(Index) = getDefaultInitValue(I->getType());
- for (const auto *I : RD->fields()) {
- if (I->isUnnamedBitfield())
- continue;
- Struct.getStructField(I->getFieldIndex()) =
- getDefaultInitValue(I->getType());
- }
- return Struct;
- }
- if (auto *AT = dyn_cast_or_null<ConstantArrayType>(
- SubobjType->getAsArrayTypeUnsafe())) {
- APValue Array(APValue::UninitArray(), 0, AT->getSize().getZExtValue());
- if (Array.hasArrayFiller())
- Array.getArrayFiller() = getDefaultInitValue(AT->getElementType());
- return Array;
- }
- return APValue::IndeterminateValue();
- }
- typedef bool result_type;
- bool failed() { return false; }
- bool found(APValue &Subobj, QualType SubobjType) {
- // We are supposed to perform no initialization but begin the lifetime of
- // the object. We interpret that as meaning to do what default
- // initialization of the object would do if all constructors involved were
- // trivial:
- // * All base, non-variant member, and array element subobjects' lifetimes
- // begin
- // * No variant members' lifetimes begin
- // * All scalar subobjects whose lifetimes begin have indeterminate values
- assert(SubobjType->isUnionType());
- if (!declaresSameEntity(Subobj.getUnionField(), Field))
- Subobj.setUnion(Field, getDefaultInitValue(Field->getType()));
- return true;
- }
- bool found(APSInt &Value, QualType SubobjType) {
- llvm_unreachable("wrong value kind for union object");
- }
- bool found(APFloat &Value, QualType SubobjType) {
- llvm_unreachable("wrong value kind for union object");
- }
- };
- } // end anonymous namespace
- const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind;
- /// Handle a builtin simple-assignment or a call to a trivial assignment
- /// operator whose left-hand side might involve a union member access. If it
- /// does, implicitly start the lifetime of any accessed union elements per
- /// C++20 [class.union]5.
- static bool HandleUnionActiveMemberChange(EvalInfo &Info, const Expr *LHSExpr,
- const LValue &LHS) {
- if (LHS.InvalidBase || LHS.Designator.Invalid)
- return false;
- llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths;
- // C++ [class.union]p5:
- // define the set S(E) of subexpressions of E as follows:
- unsigned PathLength = LHS.Designator.Entries.size();
- for (const Expr *E = LHSExpr; E != nullptr;) {
- // -- If E is of the form A.B, S(E) contains the elements of S(A)...
- if (auto *ME = dyn_cast<MemberExpr>(E)) {
- auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
- if (!FD)
- break;
- // ... and also contains A.B if B names a union member
- if (FD->getParent()->isUnion())
- UnionPathLengths.push_back({PathLength - 1, FD});
- E = ME->getBase();
- --PathLength;
- assert(declaresSameEntity(FD,
- LHS.Designator.Entries[PathLength]
- .getAsBaseOrMember().getPointer()));
- // -- If E is of the form A[B] and is interpreted as a built-in array
- // subscripting operator, S(E) is [S(the array operand, if any)].
- } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
- // Step over an ArrayToPointerDecay implicit cast.
- auto *Base = ASE->getBase()->IgnoreImplicit();
- if (!Base->getType()->isArrayType())
- break;
- E = Base;
- --PathLength;
- } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) {
- // Step over a derived-to-base conversion.
- E = ICE->getSubExpr();
- if (ICE->getCastKind() == CK_NoOp)
- continue;
- if (ICE->getCastKind() != CK_DerivedToBase &&
- ICE->getCastKind() != CK_UncheckedDerivedToBase)
- break;
- // Walk path backwards as we walk up from the base to the derived class.
- for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) {
- --PathLength;
- (void)Elt;
- assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(),
- LHS.Designator.Entries[PathLength]
- .getAsBaseOrMember().getPointer()));
- }
- // -- Otherwise, S(E) is empty.
- } else {
- break;
- }
- }
- // Common case: no unions' lifetimes are started.
- if (UnionPathLengths.empty())
- return true;
- // if modification of X [would access an inactive union member], an object
- // of the type of X is implicitly created
- CompleteObject Obj =
- findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType());
- if (!Obj)
- return false;
- for (std::pair<unsigned, const FieldDecl *> LengthAndField :
- llvm::reverse(UnionPathLengths)) {
- // Form a designator for the union object.
- SubobjectDesignator D = LHS.Designator;
- D.truncate(Info.Ctx, LHS.Base, LengthAndField.first);
- StartLifetimeOfUnionMemberHandler StartLifetime{LengthAndField.second};
- if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime))
- return false;
- }
- return true;
- }
- /// Determine if a class has any fields that might need to be copied by a
- /// trivial copy or move operation.
- static bool hasFields(const CXXRecordDecl *RD) {
- if (!RD || RD->isEmpty())
- return false;
- for (auto *FD : RD->fields()) {
- if (FD->isUnnamedBitfield())
- continue;
- return true;
- }
- for (auto &Base : RD->bases())
- if (hasFields(Base.getType()->getAsCXXRecordDecl()))
- return true;
- return false;
- }
- namespace {
- typedef SmallVector<APValue, 8> ArgVector;
- }
- /// EvaluateArgs - Evaluate the arguments to a function call.
- static bool EvaluateArgs(ArrayRef<const Expr *> Args, ArgVector &ArgValues,
- EvalInfo &Info, const FunctionDecl *Callee) {
- bool Success = true;
- llvm::SmallBitVector ForbiddenNullArgs;
- if (Callee->hasAttr<NonNullAttr>()) {
- ForbiddenNullArgs.resize(Args.size());
- for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) {
- if (!Attr->args_size()) {
- ForbiddenNullArgs.set();
- break;
- } else
- for (auto Idx : Attr->args()) {
- unsigned ASTIdx = Idx.getASTIndex();
- if (ASTIdx >= Args.size())
- continue;
- ForbiddenNullArgs[ASTIdx] = 1;
- }
- }
- }
- for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
- I != E; ++I) {
- if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
- // If we're checking for a potential constant expression, evaluate all
- // initializers even if some of them fail.
- if (!Info.noteFailure())
- return false;
- Success = false;
- } else if (!ForbiddenNullArgs.empty() &&
- ForbiddenNullArgs[I - Args.begin()] &&
- ArgValues[I - Args.begin()].isNullPointer()) {
- Info.CCEDiag(*I, diag::note_non_null_attribute_failed);
- if (!Info.noteFailure())
- return false;
- Success = false;
- }
- }
- return Success;
- }
- /// Evaluate a function call.
- static bool HandleFunctionCall(SourceLocation CallLoc,
- const FunctionDecl *Callee, const LValue *This,
- ArrayRef<const Expr*> Args, const Stmt *Body,
- EvalInfo &Info, APValue &Result,
- const LValue *ResultSlot) {
- ArgVector ArgValues(Args.size());
- if (!EvaluateArgs(Args, ArgValues, Info, Callee))
- return false;
- if (!Info.CheckCallLimit(CallLoc))
- return false;
- CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
- // For a trivial copy or move assignment, perform an APValue copy. This is
- // essential for unions, where the operations performed by the assignment
- // operator cannot be represented as statements.
- //
- // Skip this for non-union classes with no fields; in that case, the defaulted
- // copy/move does not actually read the object.
- const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
- if (MD && MD->isDefaulted() &&
- (MD->getParent()->isUnion() ||
- (MD->isTrivial() && hasFields(MD->getParent())))) {
- assert(This &&
- (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
- LValue RHS;
- RHS.setFrom(Info.Ctx, ArgValues[0]);
- APValue RHSValue;
- if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
- RHS, RHSValue))
- return false;
- if (Info.getLangOpts().CPlusPlus2a && MD->isTrivial() &&
- !HandleUnionActiveMemberChange(Info, Args[0], *This))
- return false;
- if (!handleAssignment(Info, Args[0], *This, MD->getThisType(),
- RHSValue))
- return false;
- This->moveInto(Result);
- return true;
- } else if (MD && isLambdaCallOperator(MD)) {
- // We're in a lambda; determine the lambda capture field maps unless we're
- // just constexpr checking a lambda's call operator. constexpr checking is
- // done before the captures have been added to the closure object (unless
- // we're inferring constexpr-ness), so we don't have access to them in this
- // case. But since we don't need the captures to constexpr check, we can
- // just ignore them.
- if (!Info.checkingPotentialConstantExpression())
- MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields,
- Frame.LambdaThisCaptureField);
- }
- StmtResult Ret = {Result, ResultSlot};
- EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
- if (ESR == ESR_Succeeded) {
- if (Callee->getReturnType()->isVoidType())
- return true;
- Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return);
- }
- return ESR == ESR_Returned;
- }
- /// Evaluate a constructor call.
- static bool HandleConstructorCall(const Expr *E, const LValue &This,
- APValue *ArgValues,
- const CXXConstructorDecl *Definition,
- EvalInfo &Info, APValue &Result) {
- SourceLocation CallLoc = E->getExprLoc();
- if (!Info.CheckCallLimit(CallLoc))
- return false;
- const CXXRecordDecl *RD = Definition->getParent();
- if (RD->getNumVBases()) {
- Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
- return false;
- }
- EvalInfo::EvaluatingConstructorRAII EvalObj(
- Info,
- ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
- RD->getNumBases());
- CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues);
- // FIXME: Creating an APValue just to hold a nonexistent return value is
- // wasteful.
- APValue RetVal;
- StmtResult Ret = {RetVal, nullptr};
- // If it's a delegating constructor, delegate.
- if (Definition->isDelegatingConstructor()) {
- CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
- {
- FullExpressionRAII InitScope(Info);
- if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
- return false;
- }
- return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
- }
- // For a trivial copy or move constructor, perform an APValue copy. This is
- // essential for unions (or classes with anonymous union members), where the
- // operations performed by the constructor cannot be represented by
- // ctor-initializers.
- //
- // Skip this for empty non-union classes; we should not perform an
- // lvalue-to-rvalue conversion on them because their copy constructor does not
- // actually read them.
- if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
- (Definition->getParent()->isUnion() ||
- (Definition->isTrivial() && hasFields(Definition->getParent())))) {
- LValue RHS;
- RHS.setFrom(Info.Ctx, ArgValues[0]);
- return handleLValueToRValueConversion(
- Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(),
- RHS, Result);
- }
- // Reserve space for the struct members.
- if (!RD->isUnion() && !Result.hasValue())
- Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
- std::distance(RD->field_begin(), RD->field_end()));
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
- // A scope for temporaries lifetime-extended by reference members.
- BlockScopeRAII LifetimeExtendedScope(Info);
- bool Success = true;
- unsigned BasesSeen = 0;
- #ifndef NDEBUG
- CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
- #endif
- for (const auto *I : Definition->inits()) {
- LValue Subobject = This;
- LValue SubobjectParent = This;
- APValue *Value = &Result;
- // Determine the subobject to initialize.
- FieldDecl *FD = nullptr;
- if (I->isBaseInitializer()) {
- QualType BaseType(I->getBaseClass(), 0);
- #ifndef NDEBUG
- // Non-virtual base classes are initialized in the order in the class
- // definition. We have already checked for virtual base classes.
- assert(!BaseIt->isVirtual() && "virtual base for literal type");
- assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
- "base class initializers not in expected order");
- ++BaseIt;
- #endif
- if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
- BaseType->getAsCXXRecordDecl(), &Layout))
- return false;
- Value = &Result.getStructBase(BasesSeen++);
- } else if ((FD = I->getMember())) {
- if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
- return false;
- if (RD->isUnion()) {
- Result = APValue(FD);
- Value = &Result.getUnionValue();
- } else {
- Value = &Result.getStructField(FD->getFieldIndex());
- }
- } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
- // Walk the indirect field decl's chain to find the object to initialize,
- // and make sure we've initialized every step along it.
- auto IndirectFieldChain = IFD->chain();
- for (auto *C : IndirectFieldChain) {
- FD = cast<FieldDecl>(C);
- CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
- // Switch the union field if it differs. This happens if we had
- // preceding zero-initialization, and we're now initializing a union
- // subobject other than the first.
- // FIXME: In this case, the values of the other subobjects are
- // specified, since zero-initialization sets all padding bits to zero.
- if (!Value->hasValue() ||
- (Value->isUnion() && Value->getUnionField() != FD)) {
- if (CD->isUnion())
- *Value = APValue(FD);
- else
- *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
- std::distance(CD->field_begin(), CD->field_end()));
- }
- // Store Subobject as its parent before updating it for the last element
- // in the chain.
- if (C == IndirectFieldChain.back())
- SubobjectParent = Subobject;
- if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
- return false;
- if (CD->isUnion())
- Value = &Value->getUnionValue();
- else
- Value = &Value->getStructField(FD->getFieldIndex());
- }
- } else {
- llvm_unreachable("unknown base initializer kind");
- }
- // Need to override This for implicit field initializers as in this case
- // This refers to innermost anonymous struct/union containing initializer,
- // not to currently constructed class.
- const Expr *Init = I->getInit();
- ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent,
- isa<CXXDefaultInitExpr>(Init));
- FullExpressionRAII InitScope(Info);
- if (!EvaluateInPlace(*Value, Info, Subobject, Init) ||
- (FD && FD->isBitField() &&
- !truncateBitfieldValue(Info, Init, *Value, FD))) {
- // If we're checking for a potential constant expression, evaluate all
- // initializers even if some of them fail.
- if (!Info.noteFailure())
- return false;
- Success = false;
- }
- // This is the point at which the dynamic type of the object becomes this
- // class type.
- if (I->isBaseInitializer() && BasesSeen == RD->getNumBases())
- EvalObj.finishedConstructingBases();
- }
- return Success &&
- EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
- }
- static bool HandleConstructorCall(const Expr *E, const LValue &This,
- ArrayRef<const Expr*> Args,
- const CXXConstructorDecl *Definition,
- EvalInfo &Info, APValue &Result) {
- ArgVector ArgValues(Args.size());
- if (!EvaluateArgs(Args, ArgValues, Info, Definition))
- return false;
- return HandleConstructorCall(E, This, ArgValues.data(), Definition,
- Info, Result);
- }
- //===----------------------------------------------------------------------===//
- // Generic Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class BitCastBuffer {
- // FIXME: We're going to need bit-level granularity when we support
- // bit-fields.
- // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but
- // we don't support a host or target where that is the case. Still, we should
- // use a more generic type in case we ever do.
- SmallVector<Optional<unsigned char>, 32> Bytes;
- static_assert(std::numeric_limits<unsigned char>::digits >= 8,
- "Need at least 8 bit unsigned char");
- bool TargetIsLittleEndian;
- public:
- BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian)
- : Bytes(Width.getQuantity()),
- TargetIsLittleEndian(TargetIsLittleEndian) {}
- LLVM_NODISCARD
- bool readObject(CharUnits Offset, CharUnits Width,
- SmallVectorImpl<unsigned char> &Output) const {
- for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) {
- // If a byte of an integer is uninitialized, then the whole integer is
- // uninitalized.
- if (!Bytes[I.getQuantity()])
- return false;
- Output.push_back(*Bytes[I.getQuantity()]);
- }
- if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
- std::reverse(Output.begin(), Output.end());
- return true;
- }
- void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) {
- if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian)
- std::reverse(Input.begin(), Input.end());
- size_t Index = 0;
- for (unsigned char Byte : Input) {
- assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?");
- Bytes[Offset.getQuantity() + Index] = Byte;
- ++Index;
- }
- }
- size_t size() { return Bytes.size(); }
- };
- /// Traverse an APValue to produce an BitCastBuffer, emulating how the current
- /// target would represent the value at runtime.
- class APValueToBufferConverter {
- EvalInfo &Info;
- BitCastBuffer Buffer;
- const CastExpr *BCE;
- APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth,
- const CastExpr *BCE)
- : Info(Info),
- Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()),
- BCE(BCE) {}
- bool visit(const APValue &Val, QualType Ty) {
- return visit(Val, Ty, CharUnits::fromQuantity(0));
- }
- // Write out Val with type Ty into Buffer starting at Offset.
- bool visit(const APValue &Val, QualType Ty, CharUnits Offset) {
- assert((size_t)Offset.getQuantity() <= Buffer.size());
- // As a special case, nullptr_t has an indeterminate value.
- if (Ty->isNullPtrType())
- return true;
- // Dig through Src to find the byte at SrcOffset.
- switch (Val.getKind()) {
- case APValue::Indeterminate:
- case APValue::None:
- return true;
- case APValue::Int:
- return visitInt(Val.getInt(), Ty, Offset);
- case APValue::Float:
- return visitFloat(Val.getFloat(), Ty, Offset);
- case APValue::Array:
- return visitArray(Val, Ty, Offset);
- case APValue::Struct:
- return visitRecord(Val, Ty, Offset);
- case APValue::ComplexInt:
- case APValue::ComplexFloat:
- case APValue::Vector:
- case APValue::FixedPoint:
- // FIXME: We should support these.
- case APValue::Union:
- case APValue::MemberPointer:
- case APValue::AddrLabelDiff: {
- Info.FFDiag(BCE->getBeginLoc(),
- diag::note_constexpr_bit_cast_unsupported_type)
- << Ty;
- return false;
- }
- case APValue::LValue:
- llvm_unreachable("LValue subobject in bit_cast?");
- }
- llvm_unreachable("Unhandled APValue::ValueKind");
- }
- bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) {
- const RecordDecl *RD = Ty->getAsRecordDecl();
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
- // Visit the base classes.
- if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
- const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
- CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
- if (!visitRecord(Val.getStructBase(I), BS.getType(),
- Layout.getBaseClassOffset(BaseDecl) + Offset))
- return false;
- }
- }
- // Visit the fields.
- unsigned FieldIdx = 0;
- for (FieldDecl *FD : RD->fields()) {
- if (FD->isBitField()) {
- Info.FFDiag(BCE->getBeginLoc(),
- diag::note_constexpr_bit_cast_unsupported_bitfield);
- return false;
- }
- uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
- assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 &&
- "only bit-fields can have sub-char alignment");
- CharUnits FieldOffset =
- Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset;
- QualType FieldTy = FD->getType();
- if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset))
- return false;
- ++FieldIdx;
- }
- return true;
- }
- bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) {
- const auto *CAT =
- dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe());
- if (!CAT)
- return false;
- CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType());
- unsigned NumInitializedElts = Val.getArrayInitializedElts();
- unsigned ArraySize = Val.getArraySize();
- // First, initialize the initialized elements.
- for (unsigned I = 0; I != NumInitializedElts; ++I) {
- const APValue &SubObj = Val.getArrayInitializedElt(I);
- if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth))
- return false;
- }
- // Next, initialize the rest of the array using the filler.
- if (Val.hasArrayFiller()) {
- const APValue &Filler = Val.getArrayFiller();
- for (unsigned I = NumInitializedElts; I != ArraySize; ++I) {
- if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth))
- return false;
- }
- }
- return true;
- }
- bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) {
- CharUnits Width = Info.Ctx.getTypeSizeInChars(Ty);
- SmallVector<unsigned char, 8> Bytes(Width.getQuantity());
- llvm::StoreIntToMemory(Val, &*Bytes.begin(), Width.getQuantity());
- Buffer.writeObject(Offset, Bytes);
- return true;
- }
- bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) {
- APSInt AsInt(Val.bitcastToAPInt());
- return visitInt(AsInt, Ty, Offset);
- }
- public:
- static Optional<BitCastBuffer> convert(EvalInfo &Info, const APValue &Src,
- const CastExpr *BCE) {
- CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType());
- APValueToBufferConverter Converter(Info, DstSize, BCE);
- if (!Converter.visit(Src, BCE->getSubExpr()->getType()))
- return None;
- return Converter.Buffer;
- }
- };
- /// Write an BitCastBuffer into an APValue.
- class BufferToAPValueConverter {
- EvalInfo &Info;
- const BitCastBuffer &Buffer;
- const CastExpr *BCE;
- BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer,
- const CastExpr *BCE)
- : Info(Info), Buffer(Buffer), BCE(BCE) {}
- // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast
- // with an invalid type, so anything left is a deficiency on our part (FIXME).
- // Ideally this will be unreachable.
- llvm::NoneType unsupportedType(QualType Ty) {
- Info.FFDiag(BCE->getBeginLoc(),
- diag::note_constexpr_bit_cast_unsupported_type)
- << Ty;
- return None;
- }
- Optional<APValue> visit(const BuiltinType *T, CharUnits Offset,
- const EnumType *EnumSugar = nullptr) {
- if (T->isNullPtrType()) {
- uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0));
- return APValue((Expr *)nullptr,
- /*Offset=*/CharUnits::fromQuantity(NullValue),
- APValue::NoLValuePath{}, /*IsNullPtr=*/true);
- }
- CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T);
- SmallVector<uint8_t, 8> Bytes;
- if (!Buffer.readObject(Offset, SizeOf, Bytes)) {
- // If this is std::byte or unsigned char, then its okay to store an
- // indeterminate value.
- bool IsStdByte = EnumSugar && EnumSugar->isStdByteType();
- bool IsUChar =
- !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) ||
- T->isSpecificBuiltinType(BuiltinType::Char_U));
- if (!IsStdByte && !IsUChar) {
- QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0);
- Info.FFDiag(BCE->getExprLoc(),
- diag::note_constexpr_bit_cast_indet_dest)
- << DisplayType << Info.Ctx.getLangOpts().CharIsSigned;
- return None;
- }
- return APValue::IndeterminateValue();
- }
- APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true);
- llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size());
- if (T->isIntegralOrEnumerationType()) {
- Val.setIsSigned(T->isSignedIntegerOrEnumerationType());
- return APValue(Val);
- }
- if (T->isRealFloatingType()) {
- const llvm::fltSemantics &Semantics =
- Info.Ctx.getFloatTypeSemantics(QualType(T, 0));
- return APValue(APFloat(Semantics, Val));
- }
- return unsupportedType(QualType(T, 0));
- }
- Optional<APValue> visit(const RecordType *RTy, CharUnits Offset) {
- const RecordDecl *RD = RTy->getAsRecordDecl();
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
- unsigned NumBases = 0;
- if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
- NumBases = CXXRD->getNumBases();
- APValue ResultVal(APValue::UninitStruct(), NumBases,
- std::distance(RD->field_begin(), RD->field_end()));
- // Visit the base classes.
- if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) {
- const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I];
- CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
- if (BaseDecl->isEmpty() ||
- Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero())
- continue;
- Optional<APValue> SubObj = visitType(
- BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset);
- if (!SubObj)
- return None;
- ResultVal.getStructBase(I) = *SubObj;
- }
- }
- // Visit the fields.
- unsigned FieldIdx = 0;
- for (FieldDecl *FD : RD->fields()) {
- // FIXME: We don't currently support bit-fields. A lot of the logic for
- // this is in CodeGen, so we need to factor it around.
- if (FD->isBitField()) {
- Info.FFDiag(BCE->getBeginLoc(),
- diag::note_constexpr_bit_cast_unsupported_bitfield);
- return None;
- }
- uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx);
- assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0);
- CharUnits FieldOffset =
- CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) +
- Offset;
- QualType FieldTy = FD->getType();
- Optional<APValue> SubObj = visitType(FieldTy, FieldOffset);
- if (!SubObj)
- return None;
- ResultVal.getStructField(FieldIdx) = *SubObj;
- ++FieldIdx;
- }
- return ResultVal;
- }
- Optional<APValue> visit(const EnumType *Ty, CharUnits Offset) {
- QualType RepresentationType = Ty->getDecl()->getIntegerType();
- assert(!RepresentationType.isNull() &&
- "enum forward decl should be caught by Sema");
- const BuiltinType *AsBuiltin =
- RepresentationType.getCanonicalType()->getAs<BuiltinType>();
- assert(AsBuiltin && "non-integral enum underlying type?");
- // Recurse into the underlying type. Treat std::byte transparently as
- // unsigned char.
- return visit(AsBuiltin, Offset, /*EnumTy=*/Ty);
- }
- Optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) {
- size_t Size = Ty->getSize().getLimitedValue();
- CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType());
- APValue ArrayValue(APValue::UninitArray(), Size, Size);
- for (size_t I = 0; I != Size; ++I) {
- Optional<APValue> ElementValue =
- visitType(Ty->getElementType(), Offset + I * ElementWidth);
- if (!ElementValue)
- return None;
- ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue);
- }
- return ArrayValue;
- }
- Optional<APValue> visit(const Type *Ty, CharUnits Offset) {
- return unsupportedType(QualType(Ty, 0));
- }
- Optional<APValue> visitType(QualType Ty, CharUnits Offset) {
- QualType Can = Ty.getCanonicalType();
- switch (Can->getTypeClass()) {
- #define TYPE(Class, Base) \
- case Type::Class: \
- return visit(cast<Class##Type>(Can.getTypePtr()), Offset);
- #define ABSTRACT_TYPE(Class, Base)
- #define NON_CANONICAL_TYPE(Class, Base) \
- case Type::Class: \
- llvm_unreachable("non-canonical type should be impossible!");
- #define DEPENDENT_TYPE(Class, Base) \
- case Type::Class: \
- llvm_unreachable( \
- "dependent types aren't supported in the constant evaluator!");
- #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \
- case Type::Class: \
- llvm_unreachable("either dependent or not canonical!");
- #include "clang/AST/TypeNodes.def"
- }
- llvm_unreachable("Unhandled Type::TypeClass");
- }
- public:
- // Pull out a full value of type DstType.
- static Optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer,
- const CastExpr *BCE) {
- BufferToAPValueConverter Converter(Info, Buffer, BCE);
- return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0));
- }
- };
- static bool checkBitCastConstexprEligibilityType(SourceLocation Loc,
- QualType Ty, EvalInfo *Info,
- const ASTContext &Ctx,
- bool CheckingDest) {
- Ty = Ty.getCanonicalType();
- auto diag = [&](int Reason) {
- if (Info)
- Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type)
- << CheckingDest << (Reason == 4) << Reason;
- return false;
- };
- auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) {
- if (Info)
- Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype)
- << NoteTy << Construct << Ty;
- return false;
- };
- if (Ty->isUnionType())
- return diag(0);
- if (Ty->isPointerType())
- return diag(1);
- if (Ty->isMemberPointerType())
- return diag(2);
- if (Ty.isVolatileQualified())
- return diag(3);
- if (RecordDecl *Record = Ty->getAsRecordDecl()) {
- if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) {
- for (CXXBaseSpecifier &BS : CXXRD->bases())
- if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx,
- CheckingDest))
- return note(1, BS.getType(), BS.getBeginLoc());
- }
- for (FieldDecl *FD : Record->fields()) {
- if (FD->getType()->isReferenceType())
- return diag(4);
- if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx,
- CheckingDest))
- return note(0, FD->getType(), FD->getBeginLoc());
- }
- }
- if (Ty->isArrayType() &&
- !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty),
- Info, Ctx, CheckingDest))
- return false;
- return true;
- }
- static bool checkBitCastConstexprEligibility(EvalInfo *Info,
- const ASTContext &Ctx,
- const CastExpr *BCE) {
- bool DestOK = checkBitCastConstexprEligibilityType(
- BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true);
- bool SourceOK = DestOK && checkBitCastConstexprEligibilityType(
- BCE->getBeginLoc(),
- BCE->getSubExpr()->getType(), Info, Ctx, false);
- return SourceOK;
- }
- static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue,
- APValue &SourceValue,
- const CastExpr *BCE) {
- assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 &&
- "no host or target supports non 8-bit chars");
- assert(SourceValue.isLValue() &&
- "LValueToRValueBitcast requires an lvalue operand!");
- if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE))
- return false;
- LValue SourceLValue;
- APValue SourceRValue;
- SourceLValue.setFrom(Info.Ctx, SourceValue);
- if (!handleLValueToRValueConversion(Info, BCE,
- BCE->getSubExpr()->getType().withConst(),
- SourceLValue, SourceRValue))
- return false;
- // Read out SourceValue into a char buffer.
- Optional<BitCastBuffer> Buffer =
- APValueToBufferConverter::convert(Info, SourceRValue, BCE);
- if (!Buffer)
- return false;
- // Write out the buffer into a new APValue.
- Optional<APValue> MaybeDestValue =
- BufferToAPValueConverter::convert(Info, *Buffer, BCE);
- if (!MaybeDestValue)
- return false;
- DestValue = std::move(*MaybeDestValue);
- return true;
- }
- template <class Derived>
- class ExprEvaluatorBase
- : public ConstStmtVisitor<Derived, bool> {
- private:
- Derived &getDerived() { return static_cast<Derived&>(*this); }
- bool DerivedSuccess(const APValue &V, const Expr *E) {
- return getDerived().Success(V, E);
- }
- bool DerivedZeroInitialization(const Expr *E) {
- return getDerived().ZeroInitialization(E);
- }
- // Check whether a conditional operator with a non-constant condition is a
- // potential constant expression. If neither arm is a potential constant
- // expression, then the conditional operator is not either.
- template<typename ConditionalOperator>
- void CheckPotentialConstantConditional(const ConditionalOperator *E) {
- assert(Info.checkingPotentialConstantExpression());
- // Speculatively evaluate both arms.
- SmallVector<PartialDiagnosticAt, 8> Diag;
- {
- SpeculativeEvaluationRAII Speculate(Info, &Diag);
- StmtVisitorTy::Visit(E->getFalseExpr());
- if (Diag.empty())
- return;
- }
- {
- SpeculativeEvaluationRAII Speculate(Info, &Diag);
- Diag.clear();
- StmtVisitorTy::Visit(E->getTrueExpr());
- if (Diag.empty())
- return;
- }
- Error(E, diag::note_constexpr_conditional_never_const);
- }
- template<typename ConditionalOperator>
- bool HandleConditionalOperator(const ConditionalOperator *E) {
- bool BoolResult;
- if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
- if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) {
- CheckPotentialConstantConditional(E);
- return false;
- }
- if (Info.noteFailure()) {
- StmtVisitorTy::Visit(E->getTrueExpr());
- StmtVisitorTy::Visit(E->getFalseExpr());
- }
- return false;
- }
- Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
- return StmtVisitorTy::Visit(EvalExpr);
- }
- protected:
- EvalInfo &Info;
- typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
- typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
- OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
- return Info.CCEDiag(E, D);
- }
- bool ZeroInitialization(const Expr *E) { return Error(E); }
- public:
- ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
- EvalInfo &getEvalInfo() { return Info; }
- /// Report an evaluation error. This should only be called when an error is
- /// first discovered. When propagating an error, just return false.
- bool Error(const Expr *E, diag::kind D) {
- Info.FFDiag(E, D);
- return false;
- }
- bool Error(const Expr *E) {
- return Error(E, diag::note_invalid_subexpr_in_const_expr);
- }
- bool VisitStmt(const Stmt *) {
- llvm_unreachable("Expression evaluator should not be called on stmts");
- }
- bool VisitExpr(const Expr *E) {
- return Error(E);
- }
- bool VisitConstantExpr(const ConstantExpr *E)
- { return StmtVisitorTy::Visit(E->getSubExpr()); }
- bool VisitParenExpr(const ParenExpr *E)
- { return StmtVisitorTy::Visit(E->getSubExpr()); }
- bool VisitUnaryExtension(const UnaryOperator *E)
- { return StmtVisitorTy::Visit(E->getSubExpr()); }
- bool VisitUnaryPlus(const UnaryOperator *E)
- { return StmtVisitorTy::Visit(E->getSubExpr()); }
- bool VisitChooseExpr(const ChooseExpr *E)
- { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
- bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
- { return StmtVisitorTy::Visit(E->getResultExpr()); }
- bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
- { return StmtVisitorTy::Visit(E->getReplacement()); }
- bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
- TempVersionRAII RAII(*Info.CurrentCall);
- SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
- return StmtVisitorTy::Visit(E->getExpr());
- }
- bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
- TempVersionRAII RAII(*Info.CurrentCall);
- // The initializer may not have been parsed yet, or might be erroneous.
- if (!E->getExpr())
- return Error(E);
- SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope);
- return StmtVisitorTy::Visit(E->getExpr());
- }
- // We cannot create any objects for which cleanups are required, so there is
- // nothing to do here; all cleanups must come from unevaluated subexpressions.
- bool VisitExprWithCleanups(const ExprWithCleanups *E)
- { return StmtVisitorTy::Visit(E->getSubExpr()); }
- bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
- CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
- return static_cast<Derived*>(this)->VisitCastExpr(E);
- }
- bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
- if (!Info.Ctx.getLangOpts().CPlusPlus2a)
- CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
- return static_cast<Derived*>(this)->VisitCastExpr(E);
- }
- bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) {
- return static_cast<Derived*>(this)->VisitCastExpr(E);
- }
- bool VisitBinaryOperator(const BinaryOperator *E) {
- switch (E->getOpcode()) {
- default:
- return Error(E);
- case BO_Comma:
- VisitIgnoredValue(E->getLHS());
- return StmtVisitorTy::Visit(E->getRHS());
- case BO_PtrMemD:
- case BO_PtrMemI: {
- LValue Obj;
- if (!HandleMemberPointerAccess(Info, E, Obj))
- return false;
- APValue Result;
- if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
- return false;
- return DerivedSuccess(Result, E);
- }
- }
- }
- bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
- // Evaluate and cache the common expression. We treat it as a temporary,
- // even though it's not quite the same thing.
- if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
- Info, E->getCommon()))
- return false;
- return HandleConditionalOperator(E);
- }
- bool VisitConditionalOperator(const ConditionalOperator *E) {
- bool IsBcpCall = false;
- // If the condition (ignoring parens) is a __builtin_constant_p call,
- // the result is a constant expression if it can be folded without
- // side-effects. This is an important GNU extension. See GCC PR38377
- // for discussion.
- if (const CallExpr *CallCE =
- dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
- if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
- IsBcpCall = true;
- // Always assume __builtin_constant_p(...) ? ... : ... is a potential
- // constant expression; we can't check whether it's potentially foldable.
- if (Info.checkingPotentialConstantExpression() && IsBcpCall)
- return false;
- FoldConstant Fold(Info, IsBcpCall);
- if (!HandleConditionalOperator(E)) {
- Fold.keepDiagnostics();
- return false;
- }
- return true;
- }
- bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
- if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E))
- return DerivedSuccess(*Value, E);
- const Expr *Source = E->getSourceExpr();
- if (!Source)
- return Error(E);
- if (Source == E) { // sanity checking.
- assert(0 && "OpaqueValueExpr recursively refers to itself");
- return Error(E);
- }
- return StmtVisitorTy::Visit(Source);
- }
- bool VisitCallExpr(const CallExpr *E) {
- APValue Result;
- if (!handleCallExpr(E, Result, nullptr))
- return false;
- return DerivedSuccess(Result, E);
- }
- bool handleCallExpr(const CallExpr *E, APValue &Result,
- const LValue *ResultSlot) {
- const Expr *Callee = E->getCallee()->IgnoreParens();
- QualType CalleeType = Callee->getType();
- const FunctionDecl *FD = nullptr;
- LValue *This = nullptr, ThisVal;
- auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
- bool HasQualifier = false;
- // Extract function decl and 'this' pointer from the callee.
- if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
- const CXXMethodDecl *Member = nullptr;
- if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
- // Explicit bound member calls, such as x.f() or p->g();
- if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
- return false;
- Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
- if (!Member)
- return Error(Callee);
- This = &ThisVal;
- HasQualifier = ME->hasQualifier();
- } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
- // Indirect bound member calls ('.*' or '->*').
- Member = dyn_cast_or_null<CXXMethodDecl>(
- HandleMemberPointerAccess(Info, BE, ThisVal, false));
- if (!Member)
- return Error(Callee);
- This = &ThisVal;
- } else
- return Error(Callee);
- FD = Member;
- } else if (CalleeType->isFunctionPointerType()) {
- LValue Call;
- if (!EvaluatePointer(Callee, Call, Info))
- return false;
- if (!Call.getLValueOffset().isZero())
- return Error(Callee);
- FD = dyn_cast_or_null<FunctionDecl>(
- Call.getLValueBase().dyn_cast<const ValueDecl*>());
- if (!FD)
- return Error(Callee);
- // Don't call function pointers which have been cast to some other type.
- // Per DR (no number yet), the caller and callee can differ in noexcept.
- if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
- CalleeType->getPointeeType(), FD->getType())) {
- return Error(E);
- }
- // Overloaded operator calls to member functions are represented as normal
- // calls with '*this' as the first argument.
- const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
- if (MD && !MD->isStatic()) {
- // FIXME: When selecting an implicit conversion for an overloaded
- // operator delete, we sometimes try to evaluate calls to conversion
- // operators without a 'this' parameter!
- if (Args.empty())
- return Error(E);
- if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
- return false;
- This = &ThisVal;
- Args = Args.slice(1);
- } else if (MD && MD->isLambdaStaticInvoker()) {
- // Map the static invoker for the lambda back to the call operator.
- // Conveniently, we don't have to slice out the 'this' argument (as is
- // being done for the non-static case), since a static member function
- // doesn't have an implicit argument passed in.
- const CXXRecordDecl *ClosureClass = MD->getParent();
- assert(
- ClosureClass->captures_begin() == ClosureClass->captures_end() &&
- "Number of captures must be zero for conversion to function-ptr");
- const CXXMethodDecl *LambdaCallOp =
- ClosureClass->getLambdaCallOperator();
- // Set 'FD', the function that will be called below, to the call
- // operator. If the closure object represents a generic lambda, find
- // the corresponding specialization of the call operator.
- if (ClosureClass->isGenericLambda()) {
- assert(MD->isFunctionTemplateSpecialization() &&
- "A generic lambda's static-invoker function must be a "
- "template specialization");
- const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
- FunctionTemplateDecl *CallOpTemplate =
- LambdaCallOp->getDescribedFunctionTemplate();
- void *InsertPos = nullptr;
- FunctionDecl *CorrespondingCallOpSpecialization =
- CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
- assert(CorrespondingCallOpSpecialization &&
- "We must always have a function call operator specialization "
- "that corresponds to our static invoker specialization");
- FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
- } else
- FD = LambdaCallOp;
- }
- } else
- return Error(E);
- SmallVector<QualType, 4> CovariantAdjustmentPath;
- if (This) {
- auto *NamedMember = dyn_cast<CXXMethodDecl>(FD);
- if (NamedMember && NamedMember->isVirtual() && !HasQualifier) {
- // Perform virtual dispatch, if necessary.
- FD = HandleVirtualDispatch(Info, E, *This, NamedMember,
- CovariantAdjustmentPath);
- if (!FD)
- return false;
- } else {
- // Check that the 'this' pointer points to an object of the right type.
- if (!checkNonVirtualMemberCallThisPointer(Info, E, *This))
- return false;
- }
- }
- const FunctionDecl *Definition = nullptr;
- Stmt *Body = FD->getBody(Definition);
- if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
- !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
- Result, ResultSlot))
- return false;
- if (!CovariantAdjustmentPath.empty() &&
- !HandleCovariantReturnAdjustment(Info, E, Result,
- CovariantAdjustmentPath))
- return false;
- return true;
- }
- bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
- return StmtVisitorTy::Visit(E->getInitializer());
- }
- bool VisitInitListExpr(const InitListExpr *E) {
- if (E->getNumInits() == 0)
- return DerivedZeroInitialization(E);
- if (E->getNumInits() == 1)
- return StmtVisitorTy::Visit(E->getInit(0));
- return Error(E);
- }
- bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
- return DerivedZeroInitialization(E);
- }
- bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
- return DerivedZeroInitialization(E);
- }
- bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
- return DerivedZeroInitialization(E);
- }
- /// A member expression where the object is a prvalue is itself a prvalue.
- bool VisitMemberExpr(const MemberExpr *E) {
- assert(!Info.Ctx.getLangOpts().CPlusPlus11 &&
- "missing temporary materialization conversion");
- assert(!E->isArrow() && "missing call to bound member function?");
- APValue Val;
- if (!Evaluate(Val, Info, E->getBase()))
- return false;
- QualType BaseTy = E->getBase()->getType();
- const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
- if (!FD) return Error(E);
- assert(!FD->getType()->isReferenceType() && "prvalue reference?");
- assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
- FD->getParent()->getCanonicalDecl() && "record / field mismatch");
- // Note: there is no lvalue base here. But this case should only ever
- // happen in C or in C++98, where we cannot be evaluating a constexpr
- // constructor, which is the only case the base matters.
- CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy);
- SubobjectDesignator Designator(BaseTy);
- Designator.addDeclUnchecked(FD);
- APValue Result;
- return extractSubobject(Info, E, Obj, Designator, Result) &&
- DerivedSuccess(Result, E);
- }
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- break;
- case CK_AtomicToNonAtomic: {
- APValue AtomicVal;
- // This does not need to be done in place even for class/array types:
- // atomic-to-non-atomic conversion implies copying the object
- // representation.
- if (!Evaluate(AtomicVal, Info, E->getSubExpr()))
- return false;
- return DerivedSuccess(AtomicVal, E);
- }
- case CK_NoOp:
- case CK_UserDefinedConversion:
- return StmtVisitorTy::Visit(E->getSubExpr());
- case CK_LValueToRValue: {
- LValue LVal;
- if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
- return false;
- APValue RVal;
- // Note, we use the subexpression's type in order to retain cv-qualifiers.
- if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
- LVal, RVal))
- return false;
- return DerivedSuccess(RVal, E);
- }
- case CK_LValueToRValueBitCast: {
- APValue DestValue, SourceValue;
- if (!Evaluate(SourceValue, Info, E->getSubExpr()))
- return false;
- if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E))
- return false;
- return DerivedSuccess(DestValue, E);
- }
- }
- return Error(E);
- }
- bool VisitUnaryPostInc(const UnaryOperator *UO) {
- return VisitUnaryPostIncDec(UO);
- }
- bool VisitUnaryPostDec(const UnaryOperator *UO) {
- return VisitUnaryPostIncDec(UO);
- }
- bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
- if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
- return Error(UO);
- LValue LVal;
- if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
- return false;
- APValue RVal;
- if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
- UO->isIncrementOp(), &RVal))
- return false;
- return DerivedSuccess(RVal, UO);
- }
- bool VisitStmtExpr(const StmtExpr *E) {
- // We will have checked the full-expressions inside the statement expression
- // when they were completed, and don't need to check them again now.
- if (Info.checkingForOverflow())
- return Error(E);
- BlockScopeRAII Scope(Info);
- const CompoundStmt *CS = E->getSubStmt();
- if (CS->body_empty())
- return true;
- for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
- BE = CS->body_end();
- /**/; ++BI) {
- if (BI + 1 == BE) {
- const Expr *FinalExpr = dyn_cast<Expr>(*BI);
- if (!FinalExpr) {
- Info.FFDiag((*BI)->getBeginLoc(),
- diag::note_constexpr_stmt_expr_unsupported);
- return false;
- }
- return this->Visit(FinalExpr);
- }
- APValue ReturnValue;
- StmtResult Result = { ReturnValue, nullptr };
- EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
- if (ESR != ESR_Succeeded) {
- // FIXME: If the statement-expression terminated due to 'return',
- // 'break', or 'continue', it would be nice to propagate that to
- // the outer statement evaluation rather than bailing out.
- if (ESR != ESR_Failed)
- Info.FFDiag((*BI)->getBeginLoc(),
- diag::note_constexpr_stmt_expr_unsupported);
- return false;
- }
- }
- llvm_unreachable("Return from function from the loop above.");
- }
- /// Visit a value which is evaluated, but whose value is ignored.
- void VisitIgnoredValue(const Expr *E) {
- EvaluateIgnoredValue(Info, E);
- }
- /// Potentially visit a MemberExpr's base expression.
- void VisitIgnoredBaseExpression(const Expr *E) {
- // While MSVC doesn't evaluate the base expression, it does diagnose the
- // presence of side-effecting behavior.
- if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
- return;
- VisitIgnoredValue(E);
- }
- };
- } // namespace
- //===----------------------------------------------------------------------===//
- // Common base class for lvalue and temporary evaluation.
- //===----------------------------------------------------------------------===//
- namespace {
- template<class Derived>
- class LValueExprEvaluatorBase
- : public ExprEvaluatorBase<Derived> {
- protected:
- LValue &Result;
- bool InvalidBaseOK;
- typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
- typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
- bool Success(APValue::LValueBase B) {
- Result.set(B);
- return true;
- }
- bool evaluatePointer(const Expr *E, LValue &Result) {
- return EvaluatePointer(E, Result, this->Info, InvalidBaseOK);
- }
- public:
- LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK)
- : ExprEvaluatorBaseTy(Info), Result(Result),
- InvalidBaseOK(InvalidBaseOK) {}
- bool Success(const APValue &V, const Expr *E) {
- Result.setFrom(this->Info.Ctx, V);
- return true;
- }
- bool VisitMemberExpr(const MemberExpr *E) {
- // Handle non-static data members.
- QualType BaseTy;
- bool EvalOK;
- if (E->isArrow()) {
- EvalOK = evaluatePointer(E->getBase(), Result);
- BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
- } else if (E->getBase()->isRValue()) {
- assert(E->getBase()->getType()->isRecordType());
- EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
- BaseTy = E->getBase()->getType();
- } else {
- EvalOK = this->Visit(E->getBase());
- BaseTy = E->getBase()->getType();
- }
- if (!EvalOK) {
- if (!InvalidBaseOK)
- return false;
- Result.setInvalid(E);
- return true;
- }
- const ValueDecl *MD = E->getMemberDecl();
- if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
- assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
- FD->getParent()->getCanonicalDecl() && "record / field mismatch");
- (void)BaseTy;
- if (!HandleLValueMember(this->Info, E, Result, FD))
- return false;
- } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
- if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
- return false;
- } else
- return this->Error(E);
- if (MD->getType()->isReferenceType()) {
- APValue RefValue;
- if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
- RefValue))
- return false;
- return Success(RefValue, E);
- }
- return true;
- }
- bool VisitBinaryOperator(const BinaryOperator *E) {
- switch (E->getOpcode()) {
- default:
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- case BO_PtrMemD:
- case BO_PtrMemI:
- return HandleMemberPointerAccess(this->Info, E, Result);
- }
- }
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase:
- if (!this->Visit(E->getSubExpr()))
- return false;
- // Now figure out the necessary offset to add to the base LV to get from
- // the derived class to the base class.
- return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
- Result);
- }
- }
- };
- }
- //===----------------------------------------------------------------------===//
- // LValue Evaluation
- //
- // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
- // function designators (in C), decl references to void objects (in C), and
- // temporaries (if building with -Wno-address-of-temporary).
- //
- // LValue evaluation produces values comprising a base expression of one of the
- // following types:
- // - Declarations
- // * VarDecl
- // * FunctionDecl
- // - Literals
- // * CompoundLiteralExpr in C (and in global scope in C++)
- // * StringLiteral
- // * PredefinedExpr
- // * ObjCStringLiteralExpr
- // * ObjCEncodeExpr
- // * AddrLabelExpr
- // * BlockExpr
- // * CallExpr for a MakeStringConstant builtin
- // - typeid(T) expressions, as TypeInfoLValues
- // - Locals and temporaries
- // * MaterializeTemporaryExpr
- // * Any Expr, with a CallIndex indicating the function in which the temporary
- // was evaluated, for cases where the MaterializeTemporaryExpr is missing
- // from the AST (FIXME).
- // * A MaterializeTemporaryExpr that has static storage duration, with no
- // CallIndex, for a lifetime-extended temporary.
- // plus an offset in bytes.
- //===----------------------------------------------------------------------===//
- namespace {
- class LValueExprEvaluator
- : public LValueExprEvaluatorBase<LValueExprEvaluator> {
- public:
- LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) :
- LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {}
- bool VisitVarDecl(const Expr *E, const VarDecl *VD);
- bool VisitUnaryPreIncDec(const UnaryOperator *UO);
- bool VisitDeclRefExpr(const DeclRefExpr *E);
- bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
- bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
- bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
- bool VisitMemberExpr(const MemberExpr *E);
- bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
- bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
- bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
- bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
- bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
- bool VisitUnaryDeref(const UnaryOperator *E);
- bool VisitUnaryReal(const UnaryOperator *E);
- bool VisitUnaryImag(const UnaryOperator *E);
- bool VisitUnaryPreInc(const UnaryOperator *UO) {
- return VisitUnaryPreIncDec(UO);
- }
- bool VisitUnaryPreDec(const UnaryOperator *UO) {
- return VisitUnaryPreIncDec(UO);
- }
- bool VisitBinAssign(const BinaryOperator *BO);
- bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_LValueBitCast:
- this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
- if (!Visit(E->getSubExpr()))
- return false;
- Result.Designator.setInvalid();
- return true;
- case CK_BaseToDerived:
- if (!Visit(E->getSubExpr()))
- return false;
- return HandleBaseToDerivedCast(Info, E, Result);
- case CK_Dynamic:
- if (!Visit(E->getSubExpr()))
- return false;
- return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
- }
- }
- };
- } // end anonymous namespace
- /// Evaluate an expression as an lvalue. This can be legitimately called on
- /// expressions which are not glvalues, in three cases:
- /// * function designators in C, and
- /// * "extern void" objects
- /// * @selector() expressions in Objective-C
- static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info,
- bool InvalidBaseOK) {
- assert(E->isGLValue() || E->getType()->isFunctionType() ||
- E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
- return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
- }
- bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
- if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
- return Success(FD);
- if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
- return VisitVarDecl(E, VD);
- if (const BindingDecl *BD = dyn_cast<BindingDecl>(E->getDecl()))
- return Visit(BD->getBinding());
- return Error(E);
- }
- bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
- // If we are within a lambda's call operator, check whether the 'VD' referred
- // to within 'E' actually represents a lambda-capture that maps to a
- // data-member/field within the closure object, and if so, evaluate to the
- // field or what the field refers to.
- if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) &&
- isa<DeclRefExpr>(E) &&
- cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) {
- // We don't always have a complete capture-map when checking or inferring if
- // the function call operator meets the requirements of a constexpr function
- // - but we don't need to evaluate the captures to determine constexprness
- // (dcl.constexpr C++17).
- if (Info.checkingPotentialConstantExpression())
- return false;
- if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) {
- // Start with 'Result' referring to the complete closure object...
- Result = *Info.CurrentCall->This;
- // ... then update it to refer to the field of the closure object
- // that represents the capture.
- if (!HandleLValueMember(Info, E, Result, FD))
- return false;
- // And if the field is of reference type, update 'Result' to refer to what
- // the field refers to.
- if (FD->getType()->isReferenceType()) {
- APValue RVal;
- if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result,
- RVal))
- return false;
- Result.setFrom(Info.Ctx, RVal);
- }
- return true;
- }
- }
- CallStackFrame *Frame = nullptr;
- if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) {
- // Only if a local variable was declared in the function currently being
- // evaluated, do we expect to be able to find its value in the current
- // frame. (Otherwise it was likely declared in an enclosing context and
- // could either have a valid evaluatable value (for e.g. a constexpr
- // variable) or be ill-formed (and trigger an appropriate evaluation
- // diagnostic)).
- if (Info.CurrentCall->Callee &&
- Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
- Frame = Info.CurrentCall;
- }
- }
- if (!VD->getType()->isReferenceType()) {
- if (Frame) {
- Result.set({VD, Frame->Index,
- Info.CurrentCall->getCurrentTemporaryVersion(VD)});
- return true;
- }
- return Success(VD);
- }
- APValue *V;
- if (!evaluateVarDeclInit(Info, E, VD, Frame, V, nullptr))
- return false;
- if (!V->hasValue()) {
- // FIXME: Is it possible for V to be indeterminate here? If so, we should
- // adjust the diagnostic to say that.
- if (!Info.checkingPotentialConstantExpression())
- Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
- return false;
- }
- return Success(*V, E);
- }
- bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
- const MaterializeTemporaryExpr *E) {
- // Walk through the expression to find the materialized temporary itself.
- SmallVector<const Expr *, 2> CommaLHSs;
- SmallVector<SubobjectAdjustment, 2> Adjustments;
- const Expr *Inner = E->GetTemporaryExpr()->
- skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
- // If we passed any comma operators, evaluate their LHSs.
- for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
- if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
- return false;
- // A materialized temporary with static storage duration can appear within the
- // result of a constant expression evaluation, so we need to preserve its
- // value for use outside this evaluation.
- APValue *Value;
- if (E->getStorageDuration() == SD_Static) {
- Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
- *Value = APValue();
- Result.set(E);
- } else {
- Value = &createTemporary(E, E->getStorageDuration() == SD_Automatic, Result,
- *Info.CurrentCall);
- }
- QualType Type = Inner->getType();
- // Materialize the temporary itself.
- if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
- (E->getStorageDuration() == SD_Static &&
- !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
- *Value = APValue();
- return false;
- }
- // Adjust our lvalue to refer to the desired subobject.
- for (unsigned I = Adjustments.size(); I != 0; /**/) {
- --I;
- switch (Adjustments[I].Kind) {
- case SubobjectAdjustment::DerivedToBaseAdjustment:
- if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
- Type, Result))
- return false;
- Type = Adjustments[I].DerivedToBase.BasePath->getType();
- break;
- case SubobjectAdjustment::FieldAdjustment:
- if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
- return false;
- Type = Adjustments[I].Field->getType();
- break;
- case SubobjectAdjustment::MemberPointerAdjustment:
- if (!HandleMemberPointerAccess(this->Info, Type, Result,
- Adjustments[I].Ptr.RHS))
- return false;
- Type = Adjustments[I].Ptr.MPT->getPointeeType();
- break;
- }
- }
- return true;
- }
- bool
- LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
- assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
- "lvalue compound literal in c++?");
- // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
- // only see this when folding in C, so there's no standard to follow here.
- return Success(E);
- }
- bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
- TypeInfoLValue TypeInfo;
- if (!E->isPotentiallyEvaluated()) {
- if (E->isTypeOperand())
- TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr());
- else
- TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr());
- } else {
- if (!Info.Ctx.getLangOpts().CPlusPlus2a) {
- Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
- << E->getExprOperand()->getType()
- << E->getExprOperand()->getSourceRange();
- }
- if (!Visit(E->getExprOperand()))
- return false;
- Optional<DynamicType> DynType =
- ComputeDynamicType(Info, E, Result, AK_TypeId);
- if (!DynType)
- return false;
- TypeInfo =
- TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr());
- }
- return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType()));
- }
- bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
- return Success(E);
- }
- bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
- // Handle static data members.
- if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
- VisitIgnoredBaseExpression(E->getBase());
- return VisitVarDecl(E, VD);
- }
- // Handle static member functions.
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
- if (MD->isStatic()) {
- VisitIgnoredBaseExpression(E->getBase());
- return Success(MD);
- }
- }
- // Handle non-static data members.
- return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
- }
- bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
- // FIXME: Deal with vectors as array subscript bases.
- if (E->getBase()->getType()->isVectorType())
- return Error(E);
- bool Success = true;
- if (!evaluatePointer(E->getBase(), Result)) {
- if (!Info.noteFailure())
- return false;
- Success = false;
- }
- APSInt Index;
- if (!EvaluateInteger(E->getIdx(), Index, Info))
- return false;
- return Success &&
- HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index);
- }
- bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
- return evaluatePointer(E->getSubExpr(), Result);
- }
- bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
- if (!Visit(E->getSubExpr()))
- return false;
- // __real is a no-op on scalar lvalues.
- if (E->getSubExpr()->getType()->isAnyComplexType())
- HandleLValueComplexElement(Info, E, Result, E->getType(), false);
- return true;
- }
- bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
- assert(E->getSubExpr()->getType()->isAnyComplexType() &&
- "lvalue __imag__ on scalar?");
- if (!Visit(E->getSubExpr()))
- return false;
- HandleLValueComplexElement(Info, E, Result, E->getType(), true);
- return true;
- }
- bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
- if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
- return Error(UO);
- if (!this->Visit(UO->getSubExpr()))
- return false;
- return handleIncDec(
- this->Info, UO, Result, UO->getSubExpr()->getType(),
- UO->isIncrementOp(), nullptr);
- }
- bool LValueExprEvaluator::VisitCompoundAssignOperator(
- const CompoundAssignOperator *CAO) {
- if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
- return Error(CAO);
- APValue RHS;
- // The overall lvalue result is the result of evaluating the LHS.
- if (!this->Visit(CAO->getLHS())) {
- if (Info.noteFailure())
- Evaluate(RHS, this->Info, CAO->getRHS());
- return false;
- }
- if (!Evaluate(RHS, this->Info, CAO->getRHS()))
- return false;
- return handleCompoundAssignment(
- this->Info, CAO,
- Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
- CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
- }
- bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
- if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
- return Error(E);
- APValue NewVal;
- if (!this->Visit(E->getLHS())) {
- if (Info.noteFailure())
- Evaluate(NewVal, this->Info, E->getRHS());
- return false;
- }
- if (!Evaluate(NewVal, this->Info, E->getRHS()))
- return false;
- if (Info.getLangOpts().CPlusPlus2a &&
- !HandleUnionActiveMemberChange(Info, E->getLHS(), Result))
- return false;
- return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
- NewVal);
- }
- //===----------------------------------------------------------------------===//
- // Pointer Evaluation
- //===----------------------------------------------------------------------===//
- /// Attempts to compute the number of bytes available at the pointer
- /// returned by a function with the alloc_size attribute. Returns true if we
- /// were successful. Places an unsigned number into `Result`.
- ///
- /// This expects the given CallExpr to be a call to a function with an
- /// alloc_size attribute.
- static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
- const CallExpr *Call,
- llvm::APInt &Result) {
- const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call);
- assert(AllocSize && AllocSize->getElemSizeParam().isValid());
- unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex();
- unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType());
- if (Call->getNumArgs() <= SizeArgNo)
- return false;
- auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) {
- Expr::EvalResult ExprResult;
- if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects))
- return false;
- Into = ExprResult.Val.getInt();
- if (Into.isNegative() || !Into.isIntN(BitsInSizeT))
- return false;
- Into = Into.zextOrSelf(BitsInSizeT);
- return true;
- };
- APSInt SizeOfElem;
- if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem))
- return false;
- if (!AllocSize->getNumElemsParam().isValid()) {
- Result = std::move(SizeOfElem);
- return true;
- }
- APSInt NumberOfElems;
- unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex();
- if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems))
- return false;
- bool Overflow;
- llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow);
- if (Overflow)
- return false;
- Result = std::move(BytesAvailable);
- return true;
- }
- /// Convenience function. LVal's base must be a call to an alloc_size
- /// function.
- static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx,
- const LValue &LVal,
- llvm::APInt &Result) {
- assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
- "Can't get the size of a non alloc_size function");
- const auto *Base = LVal.getLValueBase().get<const Expr *>();
- const CallExpr *CE = tryUnwrapAllocSizeCall(Base);
- return getBytesReturnedByAllocSizeCall(Ctx, CE, Result);
- }
- /// Attempts to evaluate the given LValueBase as the result of a call to
- /// a function with the alloc_size attribute. If it was possible to do so, this
- /// function will return true, make Result's Base point to said function call,
- /// and mark Result's Base as invalid.
- static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base,
- LValue &Result) {
- if (Base.isNull())
- return false;
- // Because we do no form of static analysis, we only support const variables.
- //
- // Additionally, we can't support parameters, nor can we support static
- // variables (in the latter case, use-before-assign isn't UB; in the former,
- // we have no clue what they'll be assigned to).
- const auto *VD =
- dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>());
- if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified())
- return false;
- const Expr *Init = VD->getAnyInitializer();
- if (!Init)
- return false;
- const Expr *E = Init->IgnoreParens();
- if (!tryUnwrapAllocSizeCall(E))
- return false;
- // Store E instead of E unwrapped so that the type of the LValue's base is
- // what the user wanted.
- Result.setInvalid(E);
- QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType();
- Result.addUnsizedArray(Info, E, Pointee);
- return true;
- }
- namespace {
- class PointerExprEvaluator
- : public ExprEvaluatorBase<PointerExprEvaluator> {
- LValue &Result;
- bool InvalidBaseOK;
- bool Success(const Expr *E) {
- Result.set(E);
- return true;
- }
- bool evaluateLValue(const Expr *E, LValue &Result) {
- return EvaluateLValue(E, Result, Info, InvalidBaseOK);
- }
- bool evaluatePointer(const Expr *E, LValue &Result) {
- return EvaluatePointer(E, Result, Info, InvalidBaseOK);
- }
- bool visitNonBuiltinCallExpr(const CallExpr *E);
- public:
- PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK)
- : ExprEvaluatorBaseTy(info), Result(Result),
- InvalidBaseOK(InvalidBaseOK) {}
- bool Success(const APValue &V, const Expr *E) {
- Result.setFrom(Info.Ctx, V);
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- auto TargetVal = Info.Ctx.getTargetNullPointerValue(E->getType());
- Result.setNull(E->getType(), TargetVal);
- return true;
- }
- bool VisitBinaryOperator(const BinaryOperator *E);
- bool VisitCastExpr(const CastExpr* E);
- bool VisitUnaryAddrOf(const UnaryOperator *E);
- bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
- { return Success(E); }
- bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
- if (E->isExpressibleAsConstantInitializer())
- return Success(E);
- if (Info.noteFailure())
- EvaluateIgnoredValue(Info, E->getSubExpr());
- return Error(E);
- }
- bool VisitAddrLabelExpr(const AddrLabelExpr *E)
- { return Success(E); }
- bool VisitCallExpr(const CallExpr *E);
- bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
- bool VisitBlockExpr(const BlockExpr *E) {
- if (!E->getBlockDecl()->hasCaptures())
- return Success(E);
- return Error(E);
- }
- bool VisitCXXThisExpr(const CXXThisExpr *E) {
- // Can't look at 'this' when checking a potential constant expression.
- if (Info.checkingPotentialConstantExpression())
- return false;
- if (!Info.CurrentCall->This) {
- if (Info.getLangOpts().CPlusPlus11)
- Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
- else
- Info.FFDiag(E);
- return false;
- }
- Result = *Info.CurrentCall->This;
- // If we are inside a lambda's call operator, the 'this' expression refers
- // to the enclosing '*this' object (either by value or reference) which is
- // either copied into the closure object's field that represents the '*this'
- // or refers to '*this'.
- if (isLambdaCallOperator(Info.CurrentCall->Callee)) {
- // Update 'Result' to refer to the data member/field of the closure object
- // that represents the '*this' capture.
- if (!HandleLValueMember(Info, E, Result,
- Info.CurrentCall->LambdaThisCaptureField))
- return false;
- // If we captured '*this' by reference, replace the field with its referent.
- if (Info.CurrentCall->LambdaThisCaptureField->getType()
- ->isPointerType()) {
- APValue RVal;
- if (!handleLValueToRValueConversion(Info, E, E->getType(), Result,
- RVal))
- return false;
- Result.setFrom(Info.Ctx, RVal);
- }
- }
- return true;
- }
- bool VisitSourceLocExpr(const SourceLocExpr *E) {
- assert(E->isStringType() && "SourceLocExpr isn't a pointer type?");
- APValue LValResult = E->EvaluateInContext(
- Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
- Result.setFrom(Info.Ctx, LValResult);
- return true;
- }
- // FIXME: Missing: @protocol, @selector
- };
- } // end anonymous namespace
- static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info,
- bool InvalidBaseOK) {
- assert(E->isRValue() && E->getType()->hasPointerRepresentation());
- return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E);
- }
- bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
- if (E->getOpcode() != BO_Add &&
- E->getOpcode() != BO_Sub)
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- const Expr *PExp = E->getLHS();
- const Expr *IExp = E->getRHS();
- if (IExp->getType()->isPointerType())
- std::swap(PExp, IExp);
- bool EvalPtrOK = evaluatePointer(PExp, Result);
- if (!EvalPtrOK && !Info.noteFailure())
- return false;
- llvm::APSInt Offset;
- if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
- return false;
- if (E->getOpcode() == BO_Sub)
- negateAsSigned(Offset);
- QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
- return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset);
- }
- bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
- return evaluateLValue(E->getSubExpr(), Result);
- }
- bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
- const Expr *SubExpr = E->getSubExpr();
- switch (E->getCastKind()) {
- default:
- break;
- case CK_BitCast:
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_AnyPointerToBlockPointerCast:
- case CK_AddressSpaceConversion:
- if (!Visit(SubExpr))
- return false;
- // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
- // permitted in constant expressions in C++11. Bitcasts from cv void* are
- // also static_casts, but we disallow them as a resolution to DR1312.
- if (!E->getType()->isVoidPointerType()) {
- Result.Designator.setInvalid();
- if (SubExpr->getType()->isVoidPointerType())
- CCEDiag(E, diag::note_constexpr_invalid_cast)
- << 3 << SubExpr->getType();
- else
- CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
- }
- if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
- ZeroInitialization(E);
- return true;
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase:
- if (!evaluatePointer(E->getSubExpr(), Result))
- return false;
- if (!Result.Base && Result.Offset.isZero())
- return true;
- // Now figure out the necessary offset to add to the base LV to get from
- // the derived class to the base class.
- return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
- castAs<PointerType>()->getPointeeType(),
- Result);
- case CK_BaseToDerived:
- if (!Visit(E->getSubExpr()))
- return false;
- if (!Result.Base && Result.Offset.isZero())
- return true;
- return HandleBaseToDerivedCast(Info, E, Result);
- case CK_Dynamic:
- if (!Visit(E->getSubExpr()))
- return false;
- return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result);
- case CK_NullToPointer:
- VisitIgnoredValue(E->getSubExpr());
- return ZeroInitialization(E);
- case CK_IntegralToPointer: {
- CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
- APValue Value;
- if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
- break;
- if (Value.isInt()) {
- unsigned Size = Info.Ctx.getTypeSize(E->getType());
- uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
- Result.Base = (Expr*)nullptr;
- Result.InvalidBase = false;
- Result.Offset = CharUnits::fromQuantity(N);
- Result.Designator.setInvalid();
- Result.IsNullPtr = false;
- return true;
- } else {
- // Cast is of an lvalue, no need to change value.
- Result.setFrom(Info.Ctx, Value);
- return true;
- }
- }
- case CK_ArrayToPointerDecay: {
- if (SubExpr->isGLValue()) {
- if (!evaluateLValue(SubExpr, Result))
- return false;
- } else {
- APValue &Value = createTemporary(SubExpr, false, Result,
- *Info.CurrentCall);
- if (!EvaluateInPlace(Value, Info, Result, SubExpr))
- return false;
- }
- // The result is a pointer to the first element of the array.
- auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType());
- if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
- Result.addArray(Info, E, CAT);
- else
- Result.addUnsizedArray(Info, E, AT->getElementType());
- return true;
- }
- case CK_FunctionToPointerDecay:
- return evaluateLValue(SubExpr, Result);
- case CK_LValueToRValue: {
- LValue LVal;
- if (!evaluateLValue(E->getSubExpr(), LVal))
- return false;
- APValue RVal;
- // Note, we use the subexpression's type in order to retain cv-qualifiers.
- if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
- LVal, RVal))
- return InvalidBaseOK &&
- evaluateLValueAsAllocSize(Info, LVal.Base, Result);
- return Success(RVal, E);
- }
- }
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- }
- static CharUnits GetAlignOfType(EvalInfo &Info, QualType T,
- UnaryExprOrTypeTrait ExprKind) {
- // C++ [expr.alignof]p3:
- // When alignof is applied to a reference type, the result is the
- // alignment of the referenced type.
- if (const ReferenceType *Ref = T->getAs<ReferenceType>())
- T = Ref->getPointeeType();
- if (T.getQualifiers().hasUnaligned())
- return CharUnits::One();
- const bool AlignOfReturnsPreferred =
- Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
- // __alignof is defined to return the preferred alignment.
- // Before 8, clang returned the preferred alignment for alignof and _Alignof
- // as well.
- if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
- return Info.Ctx.toCharUnitsFromBits(
- Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
- // alignof and _Alignof are defined to return the ABI alignment.
- else if (ExprKind == UETT_AlignOf)
- return Info.Ctx.getTypeAlignInChars(T.getTypePtr());
- else
- llvm_unreachable("GetAlignOfType on a non-alignment ExprKind");
- }
- static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E,
- UnaryExprOrTypeTrait ExprKind) {
- E = E->IgnoreParens();
- // The kinds of expressions that we have special-case logic here for
- // should be kept up to date with the special checks for those
- // expressions in Sema.
- // alignof decl is always accepted, even if it doesn't make sense: we default
- // to 1 in those cases.
- if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
- return Info.Ctx.getDeclAlign(DRE->getDecl(),
- /*RefAsPointee*/true);
- if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
- return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
- /*RefAsPointee*/true);
- return GetAlignOfType(Info, E->getType(), ExprKind);
- }
- // To be clear: this happily visits unsupported builtins. Better name welcomed.
- bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) {
- if (ExprEvaluatorBaseTy::VisitCallExpr(E))
- return true;
- if (!(InvalidBaseOK && getAllocSizeAttr(E)))
- return false;
- Result.setInvalid(E);
- QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType();
- Result.addUnsizedArray(Info, E, PointeeTy);
- return true;
- }
- bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
- if (IsStringLiteralCall(E))
- return Success(E);
- if (unsigned BuiltinOp = E->getBuiltinCallee())
- return VisitBuiltinCallExpr(E, BuiltinOp);
- return visitNonBuiltinCallExpr(E);
- }
- bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
- unsigned BuiltinOp) {
- switch (BuiltinOp) {
- case Builtin::BI__builtin_addressof:
- return evaluateLValue(E->getArg(0), Result);
- case Builtin::BI__builtin_assume_aligned: {
- // We need to be very careful here because: if the pointer does not have the
- // asserted alignment, then the behavior is undefined, and undefined
- // behavior is non-constant.
- if (!evaluatePointer(E->getArg(0), Result))
- return false;
- LValue OffsetResult(Result);
- APSInt Alignment;
- if (!EvaluateInteger(E->getArg(1), Alignment, Info))
- return false;
- CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue());
- if (E->getNumArgs() > 2) {
- APSInt Offset;
- if (!EvaluateInteger(E->getArg(2), Offset, Info))
- return false;
- int64_t AdditionalOffset = -Offset.getZExtValue();
- OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
- }
- // If there is a base object, then it must have the correct alignment.
- if (OffsetResult.Base) {
- CharUnits BaseAlignment;
- if (const ValueDecl *VD =
- OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
- BaseAlignment = Info.Ctx.getDeclAlign(VD);
- } else if (const Expr *E = OffsetResult.Base.dyn_cast<const Expr *>()) {
- BaseAlignment = GetAlignOfExpr(Info, E, UETT_AlignOf);
- } else {
- BaseAlignment = GetAlignOfType(
- Info, OffsetResult.Base.getTypeInfoType(), UETT_AlignOf);
- }
- if (BaseAlignment < Align) {
- Result.Designator.setInvalid();
- // FIXME: Add support to Diagnostic for long / long long.
- CCEDiag(E->getArg(0),
- diag::note_constexpr_baa_insufficient_alignment) << 0
- << (unsigned)BaseAlignment.getQuantity()
- << (unsigned)Align.getQuantity();
- return false;
- }
- }
- // The offset must also have the correct alignment.
- if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
- Result.Designator.setInvalid();
- (OffsetResult.Base
- ? CCEDiag(E->getArg(0),
- diag::note_constexpr_baa_insufficient_alignment) << 1
- : CCEDiag(E->getArg(0),
- diag::note_constexpr_baa_value_insufficient_alignment))
- << (int)OffsetResult.Offset.getQuantity()
- << (unsigned)Align.getQuantity();
- return false;
- }
- return true;
- }
- case Builtin::BI__builtin_launder:
- return evaluatePointer(E->getArg(0), Result);
- case Builtin::BIstrchr:
- case Builtin::BIwcschr:
- case Builtin::BImemchr:
- case Builtin::BIwmemchr:
- if (Info.getLangOpts().CPlusPlus11)
- Info.CCEDiag(E, diag::note_constexpr_invalid_function)
- << /*isConstexpr*/0 << /*isConstructor*/0
- << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
- else
- Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
- LLVM_FALLTHROUGH;
- case Builtin::BI__builtin_strchr:
- case Builtin::BI__builtin_wcschr:
- case Builtin::BI__builtin_memchr:
- case Builtin::BI__builtin_char_memchr:
- case Builtin::BI__builtin_wmemchr: {
- if (!Visit(E->getArg(0)))
- return false;
- APSInt Desired;
- if (!EvaluateInteger(E->getArg(1), Desired, Info))
- return false;
- uint64_t MaxLength = uint64_t(-1);
- if (BuiltinOp != Builtin::BIstrchr &&
- BuiltinOp != Builtin::BIwcschr &&
- BuiltinOp != Builtin::BI__builtin_strchr &&
- BuiltinOp != Builtin::BI__builtin_wcschr) {
- APSInt N;
- if (!EvaluateInteger(E->getArg(2), N, Info))
- return false;
- MaxLength = N.getExtValue();
- }
- // We cannot find the value if there are no candidates to match against.
- if (MaxLength == 0u)
- return ZeroInitialization(E);
- if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
- Result.Designator.Invalid)
- return false;
- QualType CharTy = Result.Designator.getType(Info.Ctx);
- bool IsRawByte = BuiltinOp == Builtin::BImemchr ||
- BuiltinOp == Builtin::BI__builtin_memchr;
- assert(IsRawByte ||
- Info.Ctx.hasSameUnqualifiedType(
- CharTy, E->getArg(0)->getType()->getPointeeType()));
- // Pointers to const void may point to objects of incomplete type.
- if (IsRawByte && CharTy->isIncompleteType()) {
- Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy;
- return false;
- }
- // Give up on byte-oriented matching against multibyte elements.
- // FIXME: We can compare the bytes in the correct order.
- if (IsRawByte && Info.Ctx.getTypeSizeInChars(CharTy) != CharUnits::One())
- return false;
- // Figure out what value we're actually looking for (after converting to
- // the corresponding unsigned type if necessary).
- uint64_t DesiredVal;
- bool StopAtNull = false;
- switch (BuiltinOp) {
- case Builtin::BIstrchr:
- case Builtin::BI__builtin_strchr:
- // strchr compares directly to the passed integer, and therefore
- // always fails if given an int that is not a char.
- if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
- E->getArg(1)->getType(),
- Desired),
- Desired))
- return ZeroInitialization(E);
- StopAtNull = true;
- LLVM_FALLTHROUGH;
- case Builtin::BImemchr:
- case Builtin::BI__builtin_memchr:
- case Builtin::BI__builtin_char_memchr:
- // memchr compares by converting both sides to unsigned char. That's also
- // correct for strchr if we get this far (to cope with plain char being
- // unsigned in the strchr case).
- DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
- break;
- case Builtin::BIwcschr:
- case Builtin::BI__builtin_wcschr:
- StopAtNull = true;
- LLVM_FALLTHROUGH;
- case Builtin::BIwmemchr:
- case Builtin::BI__builtin_wmemchr:
- // wcschr and wmemchr are given a wchar_t to look for. Just use it.
- DesiredVal = Desired.getZExtValue();
- break;
- }
- for (; MaxLength; --MaxLength) {
- APValue Char;
- if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
- !Char.isInt())
- return false;
- if (Char.getInt().getZExtValue() == DesiredVal)
- return true;
- if (StopAtNull && !Char.getInt())
- break;
- if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
- return false;
- }
- // Not found: return nullptr.
- return ZeroInitialization(E);
- }
- case Builtin::BImemcpy:
- case Builtin::BImemmove:
- case Builtin::BIwmemcpy:
- case Builtin::BIwmemmove:
- if (Info.getLangOpts().CPlusPlus11)
- Info.CCEDiag(E, diag::note_constexpr_invalid_function)
- << /*isConstexpr*/0 << /*isConstructor*/0
- << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
- else
- Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
- LLVM_FALLTHROUGH;
- case Builtin::BI__builtin_memcpy:
- case Builtin::BI__builtin_memmove:
- case Builtin::BI__builtin_wmemcpy:
- case Builtin::BI__builtin_wmemmove: {
- bool WChar = BuiltinOp == Builtin::BIwmemcpy ||
- BuiltinOp == Builtin::BIwmemmove ||
- BuiltinOp == Builtin::BI__builtin_wmemcpy ||
- BuiltinOp == Builtin::BI__builtin_wmemmove;
- bool Move = BuiltinOp == Builtin::BImemmove ||
- BuiltinOp == Builtin::BIwmemmove ||
- BuiltinOp == Builtin::BI__builtin_memmove ||
- BuiltinOp == Builtin::BI__builtin_wmemmove;
- // The result of mem* is the first argument.
- if (!Visit(E->getArg(0)))
- return false;
- LValue Dest = Result;
- LValue Src;
- if (!EvaluatePointer(E->getArg(1), Src, Info))
- return false;
- APSInt N;
- if (!EvaluateInteger(E->getArg(2), N, Info))
- return false;
- assert(!N.isSigned() && "memcpy and friends take an unsigned size");
- // If the size is zero, we treat this as always being a valid no-op.
- // (Even if one of the src and dest pointers is null.)
- if (!N)
- return true;
- // Otherwise, if either of the operands is null, we can't proceed. Don't
- // try to determine the type of the copied objects, because there aren't
- // any.
- if (!Src.Base || !Dest.Base) {
- APValue Val;
- (!Src.Base ? Src : Dest).moveInto(Val);
- Info.FFDiag(E, diag::note_constexpr_memcpy_null)
- << Move << WChar << !!Src.Base
- << Val.getAsString(Info.Ctx, E->getArg(0)->getType());
- return false;
- }
- if (Src.Designator.Invalid || Dest.Designator.Invalid)
- return false;
- // We require that Src and Dest are both pointers to arrays of
- // trivially-copyable type. (For the wide version, the designator will be
- // invalid if the designated object is not a wchar_t.)
- QualType T = Dest.Designator.getType(Info.Ctx);
- QualType SrcT = Src.Designator.getType(Info.Ctx);
- if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) {
- Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T;
- return false;
- }
- if (T->isIncompleteType()) {
- Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T;
- return false;
- }
- if (!T.isTriviallyCopyableType(Info.Ctx)) {
- Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T;
- return false;
- }
- // Figure out how many T's we're copying.
- uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity();
- if (!WChar) {
- uint64_t Remainder;
- llvm::APInt OrigN = N;
- llvm::APInt::udivrem(OrigN, TSize, N, Remainder);
- if (Remainder) {
- Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
- << Move << WChar << 0 << T << OrigN.toString(10, /*Signed*/false)
- << (unsigned)TSize;
- return false;
- }
- }
- // Check that the copying will remain within the arrays, just so that we
- // can give a more meaningful diagnostic. This implicitly also checks that
- // N fits into 64 bits.
- uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second;
- uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second;
- if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) {
- Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported)
- << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T
- << N.toString(10, /*Signed*/false);
- return false;
- }
- uint64_t NElems = N.getZExtValue();
- uint64_t NBytes = NElems * TSize;
- // Check for overlap.
- int Direction = 1;
- if (HasSameBase(Src, Dest)) {
- uint64_t SrcOffset = Src.getLValueOffset().getQuantity();
- uint64_t DestOffset = Dest.getLValueOffset().getQuantity();
- if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) {
- // Dest is inside the source region.
- if (!Move) {
- Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
- return false;
- }
- // For memmove and friends, copy backwards.
- if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) ||
- !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1))
- return false;
- Direction = -1;
- } else if (!Move && SrcOffset >= DestOffset &&
- SrcOffset - DestOffset < NBytes) {
- // Src is inside the destination region for memcpy: invalid.
- Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar;
- return false;
- }
- }
- while (true) {
- APValue Val;
- if (!handleLValueToRValueConversion(Info, E, T, Src, Val) ||
- !handleAssignment(Info, E, Dest, T, Val))
- return false;
- // Do not iterate past the last element; if we're copying backwards, that
- // might take us off the start of the array.
- if (--NElems == 0)
- return true;
- if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) ||
- !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction))
- return false;
- }
- }
- default:
- return visitNonBuiltinCallExpr(E);
- }
- }
- //===----------------------------------------------------------------------===//
- // Member Pointer Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class MemberPointerExprEvaluator
- : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
- MemberPtr &Result;
- bool Success(const ValueDecl *D) {
- Result = MemberPtr(D);
- return true;
- }
- public:
- MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
- : ExprEvaluatorBaseTy(Info), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- Result.setFrom(V);
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- return Success((const ValueDecl*)nullptr);
- }
- bool VisitCastExpr(const CastExpr *E);
- bool VisitUnaryAddrOf(const UnaryOperator *E);
- };
- } // end anonymous namespace
- static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
- EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isMemberPointerType());
- return MemberPointerExprEvaluator(Info, Result).Visit(E);
- }
- bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_NullToMemberPointer:
- VisitIgnoredValue(E->getSubExpr());
- return ZeroInitialization(E);
- case CK_BaseToDerivedMemberPointer: {
- if (!Visit(E->getSubExpr()))
- return false;
- if (E->path_empty())
- return true;
- // Base-to-derived member pointer casts store the path in derived-to-base
- // order, so iterate backwards. The CXXBaseSpecifier also provides us with
- // the wrong end of the derived->base arc, so stagger the path by one class.
- typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
- for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
- PathI != PathE; ++PathI) {
- assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
- const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
- if (!Result.castToDerived(Derived))
- return Error(E);
- }
- const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
- if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
- return Error(E);
- return true;
- }
- case CK_DerivedToBaseMemberPointer:
- if (!Visit(E->getSubExpr()))
- return false;
- for (CastExpr::path_const_iterator PathI = E->path_begin(),
- PathE = E->path_end(); PathI != PathE; ++PathI) {
- assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
- const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
- if (!Result.castToBase(Base))
- return Error(E);
- }
- return true;
- }
- }
- bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
- // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
- // member can be formed.
- return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
- }
- //===----------------------------------------------------------------------===//
- // Record Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class RecordExprEvaluator
- : public ExprEvaluatorBase<RecordExprEvaluator> {
- const LValue &This;
- APValue &Result;
- public:
- RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
- : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- Result = V;
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- return ZeroInitialization(E, E->getType());
- }
- bool ZeroInitialization(const Expr *E, QualType T);
- bool VisitCallExpr(const CallExpr *E) {
- return handleCallExpr(E, Result, &This);
- }
- bool VisitCastExpr(const CastExpr *E);
- bool VisitInitListExpr(const InitListExpr *E);
- bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
- return VisitCXXConstructExpr(E, E->getType());
- }
- bool VisitLambdaExpr(const LambdaExpr *E);
- bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
- bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
- bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
- bool VisitBinCmp(const BinaryOperator *E);
- };
- }
- /// Perform zero-initialization on an object of non-union class type.
- /// C++11 [dcl.init]p5:
- /// To zero-initialize an object or reference of type T means:
- /// [...]
- /// -- if T is a (possibly cv-qualified) non-union class type,
- /// each non-static data member and each base-class subobject is
- /// zero-initialized
- static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
- const RecordDecl *RD,
- const LValue &This, APValue &Result) {
- assert(!RD->isUnion() && "Expected non-union class type");
- const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
- Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
- std::distance(RD->field_begin(), RD->field_end()));
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
- if (CD) {
- unsigned Index = 0;
- for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
- End = CD->bases_end(); I != End; ++I, ++Index) {
- const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
- LValue Subobject = This;
- if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
- return false;
- if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
- Result.getStructBase(Index)))
- return false;
- }
- }
- for (const auto *I : RD->fields()) {
- // -- if T is a reference type, no initialization is performed.
- if (I->getType()->isReferenceType())
- continue;
- LValue Subobject = This;
- if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
- return false;
- ImplicitValueInitExpr VIE(I->getType());
- if (!EvaluateInPlace(
- Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
- return false;
- }
- return true;
- }
- bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
- const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
- if (RD->isInvalidDecl()) return false;
- if (RD->isUnion()) {
- // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
- // object's first non-static named data member is zero-initialized
- RecordDecl::field_iterator I = RD->field_begin();
- if (I == RD->field_end()) {
- Result = APValue((const FieldDecl*)nullptr);
- return true;
- }
- LValue Subobject = This;
- if (!HandleLValueMember(Info, E, Subobject, *I))
- return false;
- Result = APValue(*I);
- ImplicitValueInitExpr VIE(I->getType());
- return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
- }
- if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
- Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
- return false;
- }
- return HandleClassZeroInitialization(Info, E, RD, This, Result);
- }
- bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_ConstructorConversion:
- return Visit(E->getSubExpr());
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase: {
- APValue DerivedObject;
- if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
- return false;
- if (!DerivedObject.isStruct())
- return Error(E->getSubExpr());
- // Derived-to-base rvalue conversion: just slice off the derived part.
- APValue *Value = &DerivedObject;
- const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
- for (CastExpr::path_const_iterator PathI = E->path_begin(),
- PathE = E->path_end(); PathI != PathE; ++PathI) {
- assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
- const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
- Value = &Value->getStructBase(getBaseIndex(RD, Base));
- RD = Base;
- }
- Result = *Value;
- return true;
- }
- }
- }
- bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
- if (E->isTransparent())
- return Visit(E->getInit(0));
- const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
- auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
- EvalInfo::EvaluatingConstructorRAII EvalObj(
- Info,
- ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries},
- CXXRD && CXXRD->getNumBases());
- if (RD->isUnion()) {
- const FieldDecl *Field = E->getInitializedFieldInUnion();
- Result = APValue(Field);
- if (!Field)
- return true;
- // If the initializer list for a union does not contain any elements, the
- // first element of the union is value-initialized.
- // FIXME: The element should be initialized from an initializer list.
- // Is this difference ever observable for initializer lists which
- // we don't build?
- ImplicitValueInitExpr VIE(Field->getType());
- const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
- LValue Subobject = This;
- if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
- return false;
- // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
- ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
- isa<CXXDefaultInitExpr>(InitExpr));
- return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
- }
- if (!Result.hasValue())
- Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
- std::distance(RD->field_begin(), RD->field_end()));
- unsigned ElementNo = 0;
- bool Success = true;
- // Initialize base classes.
- if (CXXRD && CXXRD->getNumBases()) {
- for (const auto &Base : CXXRD->bases()) {
- assert(ElementNo < E->getNumInits() && "missing init for base class");
- const Expr *Init = E->getInit(ElementNo);
- LValue Subobject = This;
- if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
- return false;
- APValue &FieldVal = Result.getStructBase(ElementNo);
- if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
- if (!Info.noteFailure())
- return false;
- Success = false;
- }
- ++ElementNo;
- }
- EvalObj.finishedConstructingBases();
- }
- // Initialize members.
- for (const auto *Field : RD->fields()) {
- // Anonymous bit-fields are not considered members of the class for
- // purposes of aggregate initialization.
- if (Field->isUnnamedBitfield())
- continue;
- LValue Subobject = This;
- bool HaveInit = ElementNo < E->getNumInits();
- // FIXME: Diagnostics here should point to the end of the initializer
- // list, not the start.
- if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
- Subobject, Field, &Layout))
- return false;
- // Perform an implicit value-initialization for members beyond the end of
- // the initializer list.
- ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
- const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
- // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
- ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
- isa<CXXDefaultInitExpr>(Init));
- APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
- if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
- (Field->isBitField() && !truncateBitfieldValue(Info, Init,
- FieldVal, Field))) {
- if (!Info.noteFailure())
- return false;
- Success = false;
- }
- }
- return Success;
- }
- bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
- QualType T) {
- // Note that E's type is not necessarily the type of our class here; we might
- // be initializing an array element instead.
- const CXXConstructorDecl *FD = E->getConstructor();
- if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
- bool ZeroInit = E->requiresZeroInitialization();
- if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
- // If we've already performed zero-initialization, we're already done.
- if (Result.hasValue())
- return true;
- // We can get here in two different ways:
- // 1) We're performing value-initialization, and should zero-initialize
- // the object, or
- // 2) We're performing default-initialization of an object with a trivial
- // constexpr default constructor, in which case we should start the
- // lifetimes of all the base subobjects (there can be no data member
- // subobjects in this case) per [basic.life]p1.
- // Either way, ZeroInitialization is appropriate.
- return ZeroInitialization(E, T);
- }
- const FunctionDecl *Definition = nullptr;
- auto Body = FD->getBody(Definition);
- if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
- return false;
- // Avoid materializing a temporary for an elidable copy/move constructor.
- if (E->isElidable() && !ZeroInit)
- if (const MaterializeTemporaryExpr *ME
- = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
- return Visit(ME->GetTemporaryExpr());
- if (ZeroInit && !ZeroInitialization(E, T))
- return false;
- auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
- return HandleConstructorCall(E, This, Args,
- cast<CXXConstructorDecl>(Definition), Info,
- Result);
- }
- bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
- const CXXInheritedCtorInitExpr *E) {
- if (!Info.CurrentCall) {
- assert(Info.checkingPotentialConstantExpression());
- return false;
- }
- const CXXConstructorDecl *FD = E->getConstructor();
- if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
- return false;
- const FunctionDecl *Definition = nullptr;
- auto Body = FD->getBody(Definition);
- if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
- return false;
- return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
- cast<CXXConstructorDecl>(Definition), Info,
- Result);
- }
- bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
- const CXXStdInitializerListExpr *E) {
- const ConstantArrayType *ArrayType =
- Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
- LValue Array;
- if (!EvaluateLValue(E->getSubExpr(), Array, Info))
- return false;
- // Get a pointer to the first element of the array.
- Array.addArray(Info, E, ArrayType);
- // FIXME: Perform the checks on the field types in SemaInit.
- RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
- RecordDecl::field_iterator Field = Record->field_begin();
- if (Field == Record->field_end())
- return Error(E);
- // Start pointer.
- if (!Field->getType()->isPointerType() ||
- !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
- ArrayType->getElementType()))
- return Error(E);
- // FIXME: What if the initializer_list type has base classes, etc?
- Result = APValue(APValue::UninitStruct(), 0, 2);
- Array.moveInto(Result.getStructField(0));
- if (++Field == Record->field_end())
- return Error(E);
- if (Field->getType()->isPointerType() &&
- Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
- ArrayType->getElementType())) {
- // End pointer.
- if (!HandleLValueArrayAdjustment(Info, E, Array,
- ArrayType->getElementType(),
- ArrayType->getSize().getZExtValue()))
- return false;
- Array.moveInto(Result.getStructField(1));
- } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
- // Length.
- Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
- else
- return Error(E);
- if (++Field != Record->field_end())
- return Error(E);
- return true;
- }
- bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) {
- const CXXRecordDecl *ClosureClass = E->getLambdaClass();
- if (ClosureClass->isInvalidDecl()) return false;
- if (Info.checkingPotentialConstantExpression()) return true;
- const size_t NumFields =
- std::distance(ClosureClass->field_begin(), ClosureClass->field_end());
- assert(NumFields == (size_t)std::distance(E->capture_init_begin(),
- E->capture_init_end()) &&
- "The number of lambda capture initializers should equal the number of "
- "fields within the closure type");
- Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields);
- // Iterate through all the lambda's closure object's fields and initialize
- // them.
- auto *CaptureInitIt = E->capture_init_begin();
- const LambdaCapture *CaptureIt = ClosureClass->captures_begin();
- bool Success = true;
- for (const auto *Field : ClosureClass->fields()) {
- assert(CaptureInitIt != E->capture_init_end());
- // Get the initializer for this field
- Expr *const CurFieldInit = *CaptureInitIt++;
- // If there is no initializer, either this is a VLA or an error has
- // occurred.
- if (!CurFieldInit)
- return Error(E);
- APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
- if (!EvaluateInPlace(FieldVal, Info, This, CurFieldInit)) {
- if (!Info.keepEvaluatingAfterFailure())
- return false;
- Success = false;
- }
- ++CaptureIt;
- }
- return Success;
- }
- static bool EvaluateRecord(const Expr *E, const LValue &This,
- APValue &Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isRecordType() &&
- "can't evaluate expression as a record rvalue");
- return RecordExprEvaluator(Info, This, Result).Visit(E);
- }
- //===----------------------------------------------------------------------===//
- // Temporary Evaluation
- //
- // Temporaries are represented in the AST as rvalues, but generally behave like
- // lvalues. The full-object of which the temporary is a subobject is implicitly
- // materialized so that a reference can bind to it.
- //===----------------------------------------------------------------------===//
- namespace {
- class TemporaryExprEvaluator
- : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
- public:
- TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
- LValueExprEvaluatorBaseTy(Info, Result, false) {}
- /// Visit an expression which constructs the value of this temporary.
- bool VisitConstructExpr(const Expr *E) {
- APValue &Value = createTemporary(E, false, Result, *Info.CurrentCall);
- return EvaluateInPlace(Value, Info, Result, E);
- }
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_ConstructorConversion:
- return VisitConstructExpr(E->getSubExpr());
- }
- }
- bool VisitInitListExpr(const InitListExpr *E) {
- return VisitConstructExpr(E);
- }
- bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
- return VisitConstructExpr(E);
- }
- bool VisitCallExpr(const CallExpr *E) {
- return VisitConstructExpr(E);
- }
- bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
- return VisitConstructExpr(E);
- }
- bool VisitLambdaExpr(const LambdaExpr *E) {
- return VisitConstructExpr(E);
- }
- };
- } // end anonymous namespace
- /// Evaluate an expression of record type as a temporary.
- static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isRecordType());
- return TemporaryExprEvaluator(Info, Result).Visit(E);
- }
- //===----------------------------------------------------------------------===//
- // Vector Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class VectorExprEvaluator
- : public ExprEvaluatorBase<VectorExprEvaluator> {
- APValue &Result;
- public:
- VectorExprEvaluator(EvalInfo &info, APValue &Result)
- : ExprEvaluatorBaseTy(info), Result(Result) {}
- bool Success(ArrayRef<APValue> V, const Expr *E) {
- assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
- // FIXME: remove this APValue copy.
- Result = APValue(V.data(), V.size());
- return true;
- }
- bool Success(const APValue &V, const Expr *E) {
- assert(V.isVector());
- Result = V;
- return true;
- }
- bool ZeroInitialization(const Expr *E);
- bool VisitUnaryReal(const UnaryOperator *E)
- { return Visit(E->getSubExpr()); }
- bool VisitCastExpr(const CastExpr* E);
- bool VisitInitListExpr(const InitListExpr *E);
- bool VisitUnaryImag(const UnaryOperator *E);
- // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
- // binary comparisons, binary and/or/xor,
- // shufflevector, ExtVectorElementExpr
- };
- } // end anonymous namespace
- static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
- return VectorExprEvaluator(Info, Result).Visit(E);
- }
- bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
- const VectorType *VTy = E->getType()->castAs<VectorType>();
- unsigned NElts = VTy->getNumElements();
- const Expr *SE = E->getSubExpr();
- QualType SETy = SE->getType();
- switch (E->getCastKind()) {
- case CK_VectorSplat: {
- APValue Val = APValue();
- if (SETy->isIntegerType()) {
- APSInt IntResult;
- if (!EvaluateInteger(SE, IntResult, Info))
- return false;
- Val = APValue(std::move(IntResult));
- } else if (SETy->isRealFloatingType()) {
- APFloat FloatResult(0.0);
- if (!EvaluateFloat(SE, FloatResult, Info))
- return false;
- Val = APValue(std::move(FloatResult));
- } else {
- return Error(E);
- }
- // Splat and create vector APValue.
- SmallVector<APValue, 4> Elts(NElts, Val);
- return Success(Elts, E);
- }
- case CK_BitCast: {
- // Evaluate the operand into an APInt we can extract from.
- llvm::APInt SValInt;
- if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
- return false;
- // Extract the elements
- QualType EltTy = VTy->getElementType();
- unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
- bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
- SmallVector<APValue, 4> Elts;
- if (EltTy->isRealFloatingType()) {
- const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
- unsigned FloatEltSize = EltSize;
- if (&Sem == &APFloat::x87DoubleExtended())
- FloatEltSize = 80;
- for (unsigned i = 0; i < NElts; i++) {
- llvm::APInt Elt;
- if (BigEndian)
- Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
- else
- Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
- Elts.push_back(APValue(APFloat(Sem, Elt)));
- }
- } else if (EltTy->isIntegerType()) {
- for (unsigned i = 0; i < NElts; i++) {
- llvm::APInt Elt;
- if (BigEndian)
- Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
- else
- Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
- Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
- }
- } else {
- return Error(E);
- }
- return Success(Elts, E);
- }
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- }
- }
- bool
- VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
- const VectorType *VT = E->getType()->castAs<VectorType>();
- unsigned NumInits = E->getNumInits();
- unsigned NumElements = VT->getNumElements();
- QualType EltTy = VT->getElementType();
- SmallVector<APValue, 4> Elements;
- // The number of initializers can be less than the number of
- // vector elements. For OpenCL, this can be due to nested vector
- // initialization. For GCC compatibility, missing trailing elements
- // should be initialized with zeroes.
- unsigned CountInits = 0, CountElts = 0;
- while (CountElts < NumElements) {
- // Handle nested vector initialization.
- if (CountInits < NumInits
- && E->getInit(CountInits)->getType()->isVectorType()) {
- APValue v;
- if (!EvaluateVector(E->getInit(CountInits), v, Info))
- return Error(E);
- unsigned vlen = v.getVectorLength();
- for (unsigned j = 0; j < vlen; j++)
- Elements.push_back(v.getVectorElt(j));
- CountElts += vlen;
- } else if (EltTy->isIntegerType()) {
- llvm::APSInt sInt(32);
- if (CountInits < NumInits) {
- if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
- return false;
- } else // trailing integer zero.
- sInt = Info.Ctx.MakeIntValue(0, EltTy);
- Elements.push_back(APValue(sInt));
- CountElts++;
- } else {
- llvm::APFloat f(0.0);
- if (CountInits < NumInits) {
- if (!EvaluateFloat(E->getInit(CountInits), f, Info))
- return false;
- } else // trailing float zero.
- f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
- Elements.push_back(APValue(f));
- CountElts++;
- }
- CountInits++;
- }
- return Success(Elements, E);
- }
- bool
- VectorExprEvaluator::ZeroInitialization(const Expr *E) {
- const VectorType *VT = E->getType()->getAs<VectorType>();
- QualType EltTy = VT->getElementType();
- APValue ZeroElement;
- if (EltTy->isIntegerType())
- ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
- else
- ZeroElement =
- APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
- SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
- return Success(Elements, E);
- }
- bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
- VisitIgnoredValue(E->getSubExpr());
- return ZeroInitialization(E);
- }
- //===----------------------------------------------------------------------===//
- // Array Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class ArrayExprEvaluator
- : public ExprEvaluatorBase<ArrayExprEvaluator> {
- const LValue &This;
- APValue &Result;
- public:
- ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
- : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- assert(V.isArray() && "expected array");
- Result = V;
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- const ConstantArrayType *CAT =
- Info.Ctx.getAsConstantArrayType(E->getType());
- if (!CAT)
- return Error(E);
- Result = APValue(APValue::UninitArray(), 0,
- CAT->getSize().getZExtValue());
- if (!Result.hasArrayFiller()) return true;
- // Zero-initialize all elements.
- LValue Subobject = This;
- Subobject.addArray(Info, E, CAT);
- ImplicitValueInitExpr VIE(CAT->getElementType());
- return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
- }
- bool VisitCallExpr(const CallExpr *E) {
- return handleCallExpr(E, Result, &This);
- }
- bool VisitInitListExpr(const InitListExpr *E);
- bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
- bool VisitCXXConstructExpr(const CXXConstructExpr *E);
- bool VisitCXXConstructExpr(const CXXConstructExpr *E,
- const LValue &Subobject,
- APValue *Value, QualType Type);
- bool VisitStringLiteral(const StringLiteral *E) {
- expandStringLiteral(Info, E, Result);
- return true;
- }
- };
- } // end anonymous namespace
- static bool EvaluateArray(const Expr *E, const LValue &This,
- APValue &Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
- return ArrayExprEvaluator(Info, This, Result).Visit(E);
- }
- // Return true iff the given array filler may depend on the element index.
- static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) {
- // For now, just whitelist non-class value-initialization and initialization
- // lists comprised of them.
- if (isa<ImplicitValueInitExpr>(FillerExpr))
- return false;
- if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) {
- for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) {
- if (MaybeElementDependentArrayFiller(ILE->getInit(I)))
- return true;
- }
- return false;
- }
- return true;
- }
- bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
- const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
- if (!CAT)
- return Error(E);
- // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
- // an appropriately-typed string literal enclosed in braces.
- if (E->isStringLiteralInit())
- return Visit(E->getInit(0));
- bool Success = true;
- assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
- "zero-initialized array shouldn't have any initialized elts");
- APValue Filler;
- if (Result.isArray() && Result.hasArrayFiller())
- Filler = Result.getArrayFiller();
- unsigned NumEltsToInit = E->getNumInits();
- unsigned NumElts = CAT->getSize().getZExtValue();
- const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
- // If the initializer might depend on the array index, run it for each
- // array element.
- if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(FillerExpr))
- NumEltsToInit = NumElts;
- LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: "
- << NumEltsToInit << ".\n");
- Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
- // If the array was previously zero-initialized, preserve the
- // zero-initialized values.
- if (Filler.hasValue()) {
- for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
- Result.getArrayInitializedElt(I) = Filler;
- if (Result.hasArrayFiller())
- Result.getArrayFiller() = Filler;
- }
- LValue Subobject = This;
- Subobject.addArray(Info, E, CAT);
- for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
- const Expr *Init =
- Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
- if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
- Info, Subobject, Init) ||
- !HandleLValueArrayAdjustment(Info, Init, Subobject,
- CAT->getElementType(), 1)) {
- if (!Info.noteFailure())
- return false;
- Success = false;
- }
- }
- if (!Result.hasArrayFiller())
- return Success;
- // If we get here, we have a trivial filler, which we can just evaluate
- // once and splat over the rest of the array elements.
- assert(FillerExpr && "no array filler for incomplete init list");
- return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
- FillerExpr) && Success;
- }
- bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
- if (E->getCommonExpr() &&
- !Evaluate(Info.CurrentCall->createTemporary(E->getCommonExpr(), false),
- Info, E->getCommonExpr()->getSourceExpr()))
- return false;
- auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
- uint64_t Elements = CAT->getSize().getZExtValue();
- Result = APValue(APValue::UninitArray(), Elements, Elements);
- LValue Subobject = This;
- Subobject.addArray(Info, E, CAT);
- bool Success = true;
- for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
- if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
- Info, Subobject, E->getSubExpr()) ||
- !HandleLValueArrayAdjustment(Info, E, Subobject,
- CAT->getElementType(), 1)) {
- if (!Info.noteFailure())
- return false;
- Success = false;
- }
- }
- return Success;
- }
- bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
- return VisitCXXConstructExpr(E, This, &Result, E->getType());
- }
- bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
- const LValue &Subobject,
- APValue *Value,
- QualType Type) {
- bool HadZeroInit = Value->hasValue();
- if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
- unsigned N = CAT->getSize().getZExtValue();
- // Preserve the array filler if we had prior zero-initialization.
- APValue Filler =
- HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
- : APValue();
- *Value = APValue(APValue::UninitArray(), N, N);
- if (HadZeroInit)
- for (unsigned I = 0; I != N; ++I)
- Value->getArrayInitializedElt(I) = Filler;
- // Initialize the elements.
- LValue ArrayElt = Subobject;
- ArrayElt.addArray(Info, E, CAT);
- for (unsigned I = 0; I != N; ++I)
- if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
- CAT->getElementType()) ||
- !HandleLValueArrayAdjustment(Info, E, ArrayElt,
- CAT->getElementType(), 1))
- return false;
- return true;
- }
- if (!Type->isRecordType())
- return Error(E);
- return RecordExprEvaluator(Info, Subobject, *Value)
- .VisitCXXConstructExpr(E, Type);
- }
- //===----------------------------------------------------------------------===//
- // Integer Evaluation
- //
- // As a GNU extension, we support casting pointers to sufficiently-wide integer
- // types and back in constant folding. Integer values are thus represented
- // either as an integer-valued APValue, or as an lvalue-valued APValue.
- //===----------------------------------------------------------------------===//
- namespace {
- class IntExprEvaluator
- : public ExprEvaluatorBase<IntExprEvaluator> {
- APValue &Result;
- public:
- IntExprEvaluator(EvalInfo &info, APValue &result)
- : ExprEvaluatorBaseTy(info), Result(result) {}
- bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
- assert(E->getType()->isIntegralOrEnumerationType() &&
- "Invalid evaluation result.");
- assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
- "Invalid evaluation result.");
- assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
- "Invalid evaluation result.");
- Result = APValue(SI);
- return true;
- }
- bool Success(const llvm::APSInt &SI, const Expr *E) {
- return Success(SI, E, Result);
- }
- bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
- assert(E->getType()->isIntegralOrEnumerationType() &&
- "Invalid evaluation result.");
- assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
- "Invalid evaluation result.");
- Result = APValue(APSInt(I));
- Result.getInt().setIsUnsigned(
- E->getType()->isUnsignedIntegerOrEnumerationType());
- return true;
- }
- bool Success(const llvm::APInt &I, const Expr *E) {
- return Success(I, E, Result);
- }
- bool Success(uint64_t Value, const Expr *E, APValue &Result) {
- assert(E->getType()->isIntegralOrEnumerationType() &&
- "Invalid evaluation result.");
- Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
- return true;
- }
- bool Success(uint64_t Value, const Expr *E) {
- return Success(Value, E, Result);
- }
- bool Success(CharUnits Size, const Expr *E) {
- return Success(Size.getQuantity(), E);
- }
- bool Success(const APValue &V, const Expr *E) {
- if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) {
- Result = V;
- return true;
- }
- return Success(V.getInt(), E);
- }
- bool ZeroInitialization(const Expr *E) { return Success(0, E); }
- //===--------------------------------------------------------------------===//
- // Visitor Methods
- //===--------------------------------------------------------------------===//
- bool VisitConstantExpr(const ConstantExpr *E);
- bool VisitIntegerLiteral(const IntegerLiteral *E) {
- return Success(E->getValue(), E);
- }
- bool VisitCharacterLiteral(const CharacterLiteral *E) {
- return Success(E->getValue(), E);
- }
- bool CheckReferencedDecl(const Expr *E, const Decl *D);
- bool VisitDeclRefExpr(const DeclRefExpr *E) {
- if (CheckReferencedDecl(E, E->getDecl()))
- return true;
- return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
- }
- bool VisitMemberExpr(const MemberExpr *E) {
- if (CheckReferencedDecl(E, E->getMemberDecl())) {
- VisitIgnoredBaseExpression(E->getBase());
- return true;
- }
- return ExprEvaluatorBaseTy::VisitMemberExpr(E);
- }
- bool VisitCallExpr(const CallExpr *E);
- bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
- bool VisitBinaryOperator(const BinaryOperator *E);
- bool VisitOffsetOfExpr(const OffsetOfExpr *E);
- bool VisitUnaryOperator(const UnaryOperator *E);
- bool VisitCastExpr(const CastExpr* E);
- bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
- bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
- return Success(E->getValue(), E);
- }
- bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
- return Success(E->getValue(), E);
- }
- bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
- if (Info.ArrayInitIndex == uint64_t(-1)) {
- // We were asked to evaluate this subexpression independent of the
- // enclosing ArrayInitLoopExpr. We can't do that.
- Info.FFDiag(E);
- return false;
- }
- return Success(Info.ArrayInitIndex, E);
- }
- // Note, GNU defines __null as an integer, not a pointer.
- bool VisitGNUNullExpr(const GNUNullExpr *E) {
- return ZeroInitialization(E);
- }
- bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
- return Success(E->getValue(), E);
- }
- bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
- return Success(E->getValue(), E);
- }
- bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
- return Success(E->getValue(), E);
- }
- bool VisitUnaryReal(const UnaryOperator *E);
- bool VisitUnaryImag(const UnaryOperator *E);
- bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
- bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
- bool VisitSourceLocExpr(const SourceLocExpr *E);
- // FIXME: Missing: array subscript of vector, member of vector
- };
- class FixedPointExprEvaluator
- : public ExprEvaluatorBase<FixedPointExprEvaluator> {
- APValue &Result;
- public:
- FixedPointExprEvaluator(EvalInfo &info, APValue &result)
- : ExprEvaluatorBaseTy(info), Result(result) {}
- bool Success(const llvm::APInt &I, const Expr *E) {
- return Success(
- APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E);
- }
- bool Success(uint64_t Value, const Expr *E) {
- return Success(
- APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E);
- }
- bool Success(const APValue &V, const Expr *E) {
- return Success(V.getFixedPoint(), E);
- }
- bool Success(const APFixedPoint &V, const Expr *E) {
- assert(E->getType()->isFixedPointType() && "Invalid evaluation result.");
- assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) &&
- "Invalid evaluation result.");
- Result = APValue(V);
- return true;
- }
- //===--------------------------------------------------------------------===//
- // Visitor Methods
- //===--------------------------------------------------------------------===//
- bool VisitFixedPointLiteral(const FixedPointLiteral *E) {
- return Success(E->getValue(), E);
- }
- bool VisitCastExpr(const CastExpr *E);
- bool VisitUnaryOperator(const UnaryOperator *E);
- bool VisitBinaryOperator(const BinaryOperator *E);
- };
- } // end anonymous namespace
- /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
- /// produce either the integer value or a pointer.
- ///
- /// GCC has a heinous extension which folds casts between pointer types and
- /// pointer-sized integral types. We support this by allowing the evaluation of
- /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
- /// Some simple arithmetic on such values is supported (they are treated much
- /// like char*).
- static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
- EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
- return IntExprEvaluator(Info, Result).Visit(E);
- }
- static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
- APValue Val;
- if (!EvaluateIntegerOrLValue(E, Val, Info))
- return false;
- if (!Val.isInt()) {
- // FIXME: It would be better to produce the diagnostic for casting
- // a pointer to an integer.
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- Result = Val.getInt();
- return true;
- }
- bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) {
- APValue Evaluated = E->EvaluateInContext(
- Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr());
- return Success(Evaluated, E);
- }
- static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result,
- EvalInfo &Info) {
- if (E->getType()->isFixedPointType()) {
- APValue Val;
- if (!FixedPointExprEvaluator(Info, Val).Visit(E))
- return false;
- if (!Val.isFixedPoint())
- return false;
- Result = Val.getFixedPoint();
- return true;
- }
- return false;
- }
- static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result,
- EvalInfo &Info) {
- if (E->getType()->isIntegerType()) {
- auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType());
- APSInt Val;
- if (!EvaluateInteger(E, Val, Info))
- return false;
- Result = APFixedPoint(Val, FXSema);
- return true;
- } else if (E->getType()->isFixedPointType()) {
- return EvaluateFixedPoint(E, Result, Info);
- }
- return false;
- }
- /// Check whether the given declaration can be directly converted to an integral
- /// rvalue. If not, no diagnostic is produced; there are other things we can
- /// try.
- bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
- // Enums are integer constant exprs.
- if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
- // Check for signedness/width mismatches between E type and ECD value.
- bool SameSign = (ECD->getInitVal().isSigned()
- == E->getType()->isSignedIntegerOrEnumerationType());
- bool SameWidth = (ECD->getInitVal().getBitWidth()
- == Info.Ctx.getIntWidth(E->getType()));
- if (SameSign && SameWidth)
- return Success(ECD->getInitVal(), E);
- else {
- // Get rid of mismatch (otherwise Success assertions will fail)
- // by computing a new value matching the type of E.
- llvm::APSInt Val = ECD->getInitVal();
- if (!SameSign)
- Val.setIsSigned(!ECD->getInitVal().isSigned());
- if (!SameWidth)
- Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
- return Success(Val, E);
- }
- }
- return false;
- }
- /// Values returned by __builtin_classify_type, chosen to match the values
- /// produced by GCC's builtin.
- enum class GCCTypeClass {
- None = -1,
- Void = 0,
- Integer = 1,
- // GCC reserves 2 for character types, but instead classifies them as
- // integers.
- Enum = 3,
- Bool = 4,
- Pointer = 5,
- // GCC reserves 6 for references, but appears to never use it (because
- // expressions never have reference type, presumably).
- PointerToDataMember = 7,
- RealFloat = 8,
- Complex = 9,
- // GCC reserves 10 for functions, but does not use it since GCC version 6 due
- // to decay to pointer. (Prior to version 6 it was only used in C++ mode).
- // GCC claims to reserve 11 for pointers to member functions, but *actually*
- // uses 12 for that purpose, same as for a class or struct. Maybe it
- // internally implements a pointer to member as a struct? Who knows.
- PointerToMemberFunction = 12, // Not a bug, see above.
- ClassOrStruct = 12,
- Union = 13,
- // GCC reserves 14 for arrays, but does not use it since GCC version 6 due to
- // decay to pointer. (Prior to version 6 it was only used in C++ mode).
- // GCC reserves 15 for strings, but actually uses 5 (pointer) for string
- // literals.
- };
- /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
- /// as GCC.
- static GCCTypeClass
- EvaluateBuiltinClassifyType(QualType T, const LangOptions &LangOpts) {
- assert(!T->isDependentType() && "unexpected dependent type");
- QualType CanTy = T.getCanonicalType();
- const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
- switch (CanTy->getTypeClass()) {
- #define TYPE(ID, BASE)
- #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
- #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
- #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
- #include "clang/AST/TypeNodes.def"
- case Type::Auto:
- case Type::DeducedTemplateSpecialization:
- llvm_unreachable("unexpected non-canonical or dependent type");
- case Type::Builtin:
- switch (BT->getKind()) {
- #define BUILTIN_TYPE(ID, SINGLETON_ID)
- #define SIGNED_TYPE(ID, SINGLETON_ID) \
- case BuiltinType::ID: return GCCTypeClass::Integer;
- #define FLOATING_TYPE(ID, SINGLETON_ID) \
- case BuiltinType::ID: return GCCTypeClass::RealFloat;
- #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \
- case BuiltinType::ID: break;
- #include "clang/AST/BuiltinTypes.def"
- case BuiltinType::Void:
- return GCCTypeClass::Void;
- case BuiltinType::Bool:
- return GCCTypeClass::Bool;
- case BuiltinType::Char_U:
- case BuiltinType::UChar:
- case BuiltinType::WChar_U:
- case BuiltinType::Char8:
- case BuiltinType::Char16:
- case BuiltinType::Char32:
- case BuiltinType::UShort:
- case BuiltinType::UInt:
- case BuiltinType::ULong:
- case BuiltinType::ULongLong:
- case BuiltinType::UInt128:
- return GCCTypeClass::Integer;
- case BuiltinType::UShortAccum:
- case BuiltinType::UAccum:
- case BuiltinType::ULongAccum:
- case BuiltinType::UShortFract:
- case BuiltinType::UFract:
- case BuiltinType::ULongFract:
- case BuiltinType::SatUShortAccum:
- case BuiltinType::SatUAccum:
- case BuiltinType::SatULongAccum:
- case BuiltinType::SatUShortFract:
- case BuiltinType::SatUFract:
- case BuiltinType::SatULongFract:
- return GCCTypeClass::None;
- case BuiltinType::NullPtr:
- case BuiltinType::ObjCId:
- case BuiltinType::ObjCClass:
- case BuiltinType::ObjCSel:
- #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
- case BuiltinType::Id:
- #include "clang/Basic/OpenCLImageTypes.def"
- #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
- case BuiltinType::Id:
- #include "clang/Basic/OpenCLExtensionTypes.def"
- case BuiltinType::OCLSampler:
- case BuiltinType::OCLEvent:
- case BuiltinType::OCLClkEvent:
- case BuiltinType::OCLQueue:
- case BuiltinType::OCLReserveID:
- #define SVE_TYPE(Name, Id, SingletonId) \
- case BuiltinType::Id:
- #include "clang/Basic/AArch64SVEACLETypes.def"
- return GCCTypeClass::None;
- case BuiltinType::Dependent:
- llvm_unreachable("unexpected dependent type");
- };
- llvm_unreachable("unexpected placeholder type");
- case Type::Enum:
- return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer;
- case Type::Pointer:
- case Type::ConstantArray:
- case Type::VariableArray:
- case Type::IncompleteArray:
- case Type::FunctionNoProto:
- case Type::FunctionProto:
- return GCCTypeClass::Pointer;
- case Type::MemberPointer:
- return CanTy->isMemberDataPointerType()
- ? GCCTypeClass::PointerToDataMember
- : GCCTypeClass::PointerToMemberFunction;
- case Type::Complex:
- return GCCTypeClass::Complex;
- case Type::Record:
- return CanTy->isUnionType() ? GCCTypeClass::Union
- : GCCTypeClass::ClassOrStruct;
- case Type::Atomic:
- // GCC classifies _Atomic T the same as T.
- return EvaluateBuiltinClassifyType(
- CanTy->castAs<AtomicType>()->getValueType(), LangOpts);
- case Type::BlockPointer:
- case Type::Vector:
- case Type::ExtVector:
- case Type::ObjCObject:
- case Type::ObjCInterface:
- case Type::ObjCObjectPointer:
- case Type::Pipe:
- // GCC classifies vectors as None. We follow its lead and classify all
- // other types that don't fit into the regular classification the same way.
- return GCCTypeClass::None;
- case Type::LValueReference:
- case Type::RValueReference:
- llvm_unreachable("invalid type for expression");
- }
- llvm_unreachable("unexpected type class");
- }
- /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
- /// as GCC.
- static GCCTypeClass
- EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) {
- // If no argument was supplied, default to None. This isn't
- // ideal, however it is what gcc does.
- if (E->getNumArgs() == 0)
- return GCCTypeClass::None;
- // FIXME: Bizarrely, GCC treats a call with more than one argument as not
- // being an ICE, but still folds it to a constant using the type of the first
- // argument.
- return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts);
- }
- /// EvaluateBuiltinConstantPForLValue - Determine the result of
- /// __builtin_constant_p when applied to the given pointer.
- ///
- /// A pointer is only "constant" if it is null (or a pointer cast to integer)
- /// or it points to the first character of a string literal.
- static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) {
- APValue::LValueBase Base = LV.getLValueBase();
- if (Base.isNull()) {
- // A null base is acceptable.
- return true;
- } else if (const Expr *E = Base.dyn_cast<const Expr *>()) {
- if (!isa<StringLiteral>(E))
- return false;
- return LV.getLValueOffset().isZero();
- } else if (Base.is<TypeInfoLValue>()) {
- // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to
- // evaluate to true.
- return true;
- } else {
- // Any other base is not constant enough for GCC.
- return false;
- }
- }
- /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
- /// GCC as we can manage.
- static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) {
- // This evaluation is not permitted to have side-effects, so evaluate it in
- // a speculative evaluation context.
- SpeculativeEvaluationRAII SpeculativeEval(Info);
- // Constant-folding is always enabled for the operand of __builtin_constant_p
- // (even when the enclosing evaluation context otherwise requires a strict
- // language-specific constant expression).
- FoldConstant Fold(Info, true);
- QualType ArgType = Arg->getType();
- // __builtin_constant_p always has one operand. The rules which gcc follows
- // are not precisely documented, but are as follows:
- //
- // - If the operand is of integral, floating, complex or enumeration type,
- // and can be folded to a known value of that type, it returns 1.
- // - If the operand can be folded to a pointer to the first character
- // of a string literal (or such a pointer cast to an integral type)
- // or to a null pointer or an integer cast to a pointer, it returns 1.
- //
- // Otherwise, it returns 0.
- //
- // FIXME: GCC also intends to return 1 for literals of aggregate types, but
- // its support for this did not work prior to GCC 9 and is not yet well
- // understood.
- if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() ||
- ArgType->isAnyComplexType() || ArgType->isPointerType() ||
- ArgType->isNullPtrType()) {
- APValue V;
- if (!::EvaluateAsRValue(Info, Arg, V)) {
- Fold.keepDiagnostics();
- return false;
- }
- // For a pointer (possibly cast to integer), there are special rules.
- if (V.getKind() == APValue::LValue)
- return EvaluateBuiltinConstantPForLValue(V);
- // Otherwise, any constant value is good enough.
- return V.hasValue();
- }
- // Anything else isn't considered to be sufficiently constant.
- return false;
- }
- /// Retrieves the "underlying object type" of the given expression,
- /// as used by __builtin_object_size.
- static QualType getObjectType(APValue::LValueBase B) {
- if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
- if (const VarDecl *VD = dyn_cast<VarDecl>(D))
- return VD->getType();
- } else if (const Expr *E = B.get<const Expr*>()) {
- if (isa<CompoundLiteralExpr>(E))
- return E->getType();
- } else if (B.is<TypeInfoLValue>()) {
- return B.getTypeInfoType();
- }
- return QualType();
- }
- /// A more selective version of E->IgnoreParenCasts for
- /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
- /// to change the type of E.
- /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
- ///
- /// Always returns an RValue with a pointer representation.
- static const Expr *ignorePointerCastsAndParens(const Expr *E) {
- assert(E->isRValue() && E->getType()->hasPointerRepresentation());
- auto *NoParens = E->IgnoreParens();
- auto *Cast = dyn_cast<CastExpr>(NoParens);
- if (Cast == nullptr)
- return NoParens;
- // We only conservatively allow a few kinds of casts, because this code is
- // inherently a simple solution that seeks to support the common case.
- auto CastKind = Cast->getCastKind();
- if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
- CastKind != CK_AddressSpaceConversion)
- return NoParens;
- auto *SubExpr = Cast->getSubExpr();
- if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
- return NoParens;
- return ignorePointerCastsAndParens(SubExpr);
- }
- /// Checks to see if the given LValue's Designator is at the end of the LValue's
- /// record layout. e.g.
- /// struct { struct { int a, b; } fst, snd; } obj;
- /// obj.fst // no
- /// obj.snd // yes
- /// obj.fst.a // no
- /// obj.fst.b // no
- /// obj.snd.a // no
- /// obj.snd.b // yes
- ///
- /// Please note: this function is specialized for how __builtin_object_size
- /// views "objects".
- ///
- /// If this encounters an invalid RecordDecl or otherwise cannot determine the
- /// correct result, it will always return true.
- static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
- assert(!LVal.Designator.Invalid);
- auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
- const RecordDecl *Parent = FD->getParent();
- Invalid = Parent->isInvalidDecl();
- if (Invalid || Parent->isUnion())
- return true;
- const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
- return FD->getFieldIndex() + 1 == Layout.getFieldCount();
- };
- auto &Base = LVal.getLValueBase();
- if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
- if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
- bool Invalid;
- if (!IsLastOrInvalidFieldDecl(FD, Invalid))
- return Invalid;
- } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
- for (auto *FD : IFD->chain()) {
- bool Invalid;
- if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
- return Invalid;
- }
- }
- }
- unsigned I = 0;
- QualType BaseType = getType(Base);
- if (LVal.Designator.FirstEntryIsAnUnsizedArray) {
- // If we don't know the array bound, conservatively assume we're looking at
- // the final array element.
- ++I;
- if (BaseType->isIncompleteArrayType())
- BaseType = Ctx.getAsArrayType(BaseType)->getElementType();
- else
- BaseType = BaseType->castAs<PointerType>()->getPointeeType();
- }
- for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) {
- const auto &Entry = LVal.Designator.Entries[I];
- if (BaseType->isArrayType()) {
- // Because __builtin_object_size treats arrays as objects, we can ignore
- // the index iff this is the last array in the Designator.
- if (I + 1 == E)
- return true;
- const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
- uint64_t Index = Entry.getAsArrayIndex();
- if (Index + 1 != CAT->getSize())
- return false;
- BaseType = CAT->getElementType();
- } else if (BaseType->isAnyComplexType()) {
- const auto *CT = BaseType->castAs<ComplexType>();
- uint64_t Index = Entry.getAsArrayIndex();
- if (Index != 1)
- return false;
- BaseType = CT->getElementType();
- } else if (auto *FD = getAsField(Entry)) {
- bool Invalid;
- if (!IsLastOrInvalidFieldDecl(FD, Invalid))
- return Invalid;
- BaseType = FD->getType();
- } else {
- assert(getAsBaseClass(Entry) && "Expecting cast to a base class");
- return false;
- }
- }
- return true;
- }
- /// Tests to see if the LValue has a user-specified designator (that isn't
- /// necessarily valid). Note that this always returns 'true' if the LValue has
- /// an unsized array as its first designator entry, because there's currently no
- /// way to tell if the user typed *foo or foo[0].
- static bool refersToCompleteObject(const LValue &LVal) {
- if (LVal.Designator.Invalid)
- return false;
- if (!LVal.Designator.Entries.empty())
- return LVal.Designator.isMostDerivedAnUnsizedArray();
- if (!LVal.InvalidBase)
- return true;
- // If `E` is a MemberExpr, then the first part of the designator is hiding in
- // the LValueBase.
- const auto *E = LVal.Base.dyn_cast<const Expr *>();
- return !E || !isa<MemberExpr>(E);
- }
- /// Attempts to detect a user writing into a piece of memory that's impossible
- /// to figure out the size of by just using types.
- static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) {
- const SubobjectDesignator &Designator = LVal.Designator;
- // Notes:
- // - Users can only write off of the end when we have an invalid base. Invalid
- // bases imply we don't know where the memory came from.
- // - We used to be a bit more aggressive here; we'd only be conservative if
- // the array at the end was flexible, or if it had 0 or 1 elements. This
- // broke some common standard library extensions (PR30346), but was
- // otherwise seemingly fine. It may be useful to reintroduce this behavior
- // with some sort of whitelist. OTOH, it seems that GCC is always
- // conservative with the last element in structs (if it's an array), so our
- // current behavior is more compatible than a whitelisting approach would
- // be.
- return LVal.InvalidBase &&
- Designator.Entries.size() == Designator.MostDerivedPathLength &&
- Designator.MostDerivedIsArrayElement &&
- isDesignatorAtObjectEnd(Ctx, LVal);
- }
- /// Converts the given APInt to CharUnits, assuming the APInt is unsigned.
- /// Fails if the conversion would cause loss of precision.
- static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int,
- CharUnits &Result) {
- auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max();
- if (Int.ugt(CharUnitsMax))
- return false;
- Result = CharUnits::fromQuantity(Int.getZExtValue());
- return true;
- }
- /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will
- /// determine how many bytes exist from the beginning of the object to either
- /// the end of the current subobject, or the end of the object itself, depending
- /// on what the LValue looks like + the value of Type.
- ///
- /// If this returns false, the value of Result is undefined.
- static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc,
- unsigned Type, const LValue &LVal,
- CharUnits &EndOffset) {
- bool DetermineForCompleteObject = refersToCompleteObject(LVal);
- auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) {
- if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType())
- return false;
- return HandleSizeof(Info, ExprLoc, Ty, Result);
- };
- // We want to evaluate the size of the entire object. This is a valid fallback
- // for when Type=1 and the designator is invalid, because we're asked for an
- // upper-bound.
- if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) {
- // Type=3 wants a lower bound, so we can't fall back to this.
- if (Type == 3 && !DetermineForCompleteObject)
- return false;
- llvm::APInt APEndOffset;
- if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
- getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
- return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
- if (LVal.InvalidBase)
- return false;
- QualType BaseTy = getObjectType(LVal.getLValueBase());
- return CheckedHandleSizeof(BaseTy, EndOffset);
- }
- // We want to evaluate the size of a subobject.
- const SubobjectDesignator &Designator = LVal.Designator;
- // The following is a moderately common idiom in C:
- //
- // struct Foo { int a; char c[1]; };
- // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
- // strcpy(&F->c[0], Bar);
- //
- // In order to not break too much legacy code, we need to support it.
- if (isUserWritingOffTheEnd(Info.Ctx, LVal)) {
- // If we can resolve this to an alloc_size call, we can hand that back,
- // because we know for certain how many bytes there are to write to.
- llvm::APInt APEndOffset;
- if (isBaseAnAllocSizeCall(LVal.getLValueBase()) &&
- getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset))
- return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset);
- // If we cannot determine the size of the initial allocation, then we can't
- // given an accurate upper-bound. However, we are still able to give
- // conservative lower-bounds for Type=3.
- if (Type == 1)
- return false;
- }
- CharUnits BytesPerElem;
- if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem))
- return false;
- // According to the GCC documentation, we want the size of the subobject
- // denoted by the pointer. But that's not quite right -- what we actually
- // want is the size of the immediately-enclosing array, if there is one.
- int64_t ElemsRemaining;
- if (Designator.MostDerivedIsArrayElement &&
- Designator.Entries.size() == Designator.MostDerivedPathLength) {
- uint64_t ArraySize = Designator.getMostDerivedArraySize();
- uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex();
- ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex;
- } else {
- ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1;
- }
- EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining;
- return true;
- }
- /// Tries to evaluate the __builtin_object_size for @p E. If successful,
- /// returns true and stores the result in @p Size.
- ///
- /// If @p WasError is non-null, this will report whether the failure to evaluate
- /// is to be treated as an Error in IntExprEvaluator.
- static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
- EvalInfo &Info, uint64_t &Size) {
- // Determine the denoted object.
- LValue LVal;
- {
- // The operand of __builtin_object_size is never evaluated for side-effects.
- // If there are any, but we can determine the pointed-to object anyway, then
- // ignore the side-effects.
- SpeculativeEvaluationRAII SpeculativeEval(Info);
- IgnoreSideEffectsRAII Fold(Info);
- if (E->isGLValue()) {
- // It's possible for us to be given GLValues if we're called via
- // Expr::tryEvaluateObjectSize.
- APValue RVal;
- if (!EvaluateAsRValue(Info, E, RVal))
- return false;
- LVal.setFrom(Info.Ctx, RVal);
- } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info,
- /*InvalidBaseOK=*/true))
- return false;
- }
- // If we point to before the start of the object, there are no accessible
- // bytes.
- if (LVal.getLValueOffset().isNegative()) {
- Size = 0;
- return true;
- }
- CharUnits EndOffset;
- if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset))
- return false;
- // If we've fallen outside of the end offset, just pretend there's nothing to
- // write to/read from.
- if (EndOffset <= LVal.getLValueOffset())
- Size = 0;
- else
- Size = (EndOffset - LVal.getLValueOffset()).getQuantity();
- return true;
- }
- bool IntExprEvaluator::VisitConstantExpr(const ConstantExpr *E) {
- llvm::SaveAndRestore<bool> InConstantContext(Info.InConstantContext, true);
- if (E->getResultAPValueKind() != APValue::None)
- return Success(E->getAPValueResult(), E);
- return ExprEvaluatorBaseTy::VisitConstantExpr(E);
- }
- bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
- if (unsigned BuiltinOp = E->getBuiltinCallee())
- return VisitBuiltinCallExpr(E, BuiltinOp);
- return ExprEvaluatorBaseTy::VisitCallExpr(E);
- }
- bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
- unsigned BuiltinOp) {
- switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
- default:
- return ExprEvaluatorBaseTy::VisitCallExpr(E);
- case Builtin::BI__builtin_dynamic_object_size:
- case Builtin::BI__builtin_object_size: {
- // The type was checked when we built the expression.
- unsigned Type =
- E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
- assert(Type <= 3 && "unexpected type");
- uint64_t Size;
- if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size))
- return Success(Size, E);
- if (E->getArg(0)->HasSideEffects(Info.Ctx))
- return Success((Type & 2) ? 0 : -1, E);
- // Expression had no side effects, but we couldn't statically determine the
- // size of the referenced object.
- switch (Info.EvalMode) {
- case EvalInfo::EM_ConstantExpression:
- case EvalInfo::EM_PotentialConstantExpression:
- case EvalInfo::EM_ConstantFold:
- case EvalInfo::EM_EvaluateForOverflow:
- case EvalInfo::EM_IgnoreSideEffects:
- // Leave it to IR generation.
- return Error(E);
- case EvalInfo::EM_ConstantExpressionUnevaluated:
- case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
- // Reduce it to a constant now.
- return Success((Type & 2) ? 0 : -1, E);
- }
- llvm_unreachable("unexpected EvalMode");
- }
- case Builtin::BI__builtin_os_log_format_buffer_size: {
- analyze_os_log::OSLogBufferLayout Layout;
- analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout);
- return Success(Layout.size().getQuantity(), E);
- }
- case Builtin::BI__builtin_bswap16:
- case Builtin::BI__builtin_bswap32:
- case Builtin::BI__builtin_bswap64: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- return Success(Val.byteSwap(), E);
- }
- case Builtin::BI__builtin_classify_type:
- return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
- case Builtin::BI__builtin_clrsb:
- case Builtin::BI__builtin_clrsbl:
- case Builtin::BI__builtin_clrsbll: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- return Success(Val.getBitWidth() - Val.getMinSignedBits(), E);
- }
- case Builtin::BI__builtin_clz:
- case Builtin::BI__builtin_clzl:
- case Builtin::BI__builtin_clzll:
- case Builtin::BI__builtin_clzs: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- if (!Val)
- return Error(E);
- return Success(Val.countLeadingZeros(), E);
- }
- case Builtin::BI__builtin_constant_p: {
- const Expr *Arg = E->getArg(0);
- if (EvaluateBuiltinConstantP(Info, Arg))
- return Success(true, E);
- if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) {
- // Outside a constant context, eagerly evaluate to false in the presence
- // of side-effects in order to avoid -Wunsequenced false-positives in
- // a branch on __builtin_constant_p(expr).
- return Success(false, E);
- }
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- case Builtin::BI__builtin_is_constant_evaluated:
- return Success(Info.InConstantContext, E);
- case Builtin::BI__builtin_ctz:
- case Builtin::BI__builtin_ctzl:
- case Builtin::BI__builtin_ctzll:
- case Builtin::BI__builtin_ctzs: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- if (!Val)
- return Error(E);
- return Success(Val.countTrailingZeros(), E);
- }
- case Builtin::BI__builtin_eh_return_data_regno: {
- int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
- Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
- return Success(Operand, E);
- }
- case Builtin::BI__builtin_expect:
- return Visit(E->getArg(0));
- case Builtin::BI__builtin_ffs:
- case Builtin::BI__builtin_ffsl:
- case Builtin::BI__builtin_ffsll: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- unsigned N = Val.countTrailingZeros();
- return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
- }
- case Builtin::BI__builtin_fpclassify: {
- APFloat Val(0.0);
- if (!EvaluateFloat(E->getArg(5), Val, Info))
- return false;
- unsigned Arg;
- switch (Val.getCategory()) {
- case APFloat::fcNaN: Arg = 0; break;
- case APFloat::fcInfinity: Arg = 1; break;
- case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
- case APFloat::fcZero: Arg = 4; break;
- }
- return Visit(E->getArg(Arg));
- }
- case Builtin::BI__builtin_isinf_sign: {
- APFloat Val(0.0);
- return EvaluateFloat(E->getArg(0), Val, Info) &&
- Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
- }
- case Builtin::BI__builtin_isinf: {
- APFloat Val(0.0);
- return EvaluateFloat(E->getArg(0), Val, Info) &&
- Success(Val.isInfinity() ? 1 : 0, E);
- }
- case Builtin::BI__builtin_isfinite: {
- APFloat Val(0.0);
- return EvaluateFloat(E->getArg(0), Val, Info) &&
- Success(Val.isFinite() ? 1 : 0, E);
- }
- case Builtin::BI__builtin_isnan: {
- APFloat Val(0.0);
- return EvaluateFloat(E->getArg(0), Val, Info) &&
- Success(Val.isNaN() ? 1 : 0, E);
- }
- case Builtin::BI__builtin_isnormal: {
- APFloat Val(0.0);
- return EvaluateFloat(E->getArg(0), Val, Info) &&
- Success(Val.isNormal() ? 1 : 0, E);
- }
- case Builtin::BI__builtin_parity:
- case Builtin::BI__builtin_parityl:
- case Builtin::BI__builtin_parityll: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- return Success(Val.countPopulation() % 2, E);
- }
- case Builtin::BI__builtin_popcount:
- case Builtin::BI__builtin_popcountl:
- case Builtin::BI__builtin_popcountll: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- return Success(Val.countPopulation(), E);
- }
- case Builtin::BIstrlen:
- case Builtin::BIwcslen:
- // A call to strlen is not a constant expression.
- if (Info.getLangOpts().CPlusPlus11)
- Info.CCEDiag(E, diag::note_constexpr_invalid_function)
- << /*isConstexpr*/0 << /*isConstructor*/0
- << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
- else
- Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
- LLVM_FALLTHROUGH;
- case Builtin::BI__builtin_strlen:
- case Builtin::BI__builtin_wcslen: {
- // As an extension, we support __builtin_strlen() as a constant expression,
- // and support folding strlen() to a constant.
- LValue String;
- if (!EvaluatePointer(E->getArg(0), String, Info))
- return false;
- QualType CharTy = E->getArg(0)->getType()->getPointeeType();
- // Fast path: if it's a string literal, search the string value.
- if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
- String.getLValueBase().dyn_cast<const Expr *>())) {
- // The string literal may have embedded null characters. Find the first
- // one and truncate there.
- StringRef Str = S->getBytes();
- int64_t Off = String.Offset.getQuantity();
- if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
- S->getCharByteWidth() == 1 &&
- // FIXME: Add fast-path for wchar_t too.
- Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
- Str = Str.substr(Off);
- StringRef::size_type Pos = Str.find(0);
- if (Pos != StringRef::npos)
- Str = Str.substr(0, Pos);
- return Success(Str.size(), E);
- }
- // Fall through to slow path to issue appropriate diagnostic.
- }
- // Slow path: scan the bytes of the string looking for the terminating 0.
- for (uint64_t Strlen = 0; /**/; ++Strlen) {
- APValue Char;
- if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
- !Char.isInt())
- return false;
- if (!Char.getInt())
- return Success(Strlen, E);
- if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
- return false;
- }
- }
- case Builtin::BIstrcmp:
- case Builtin::BIwcscmp:
- case Builtin::BIstrncmp:
- case Builtin::BIwcsncmp:
- case Builtin::BImemcmp:
- case Builtin::BIbcmp:
- case Builtin::BIwmemcmp:
- // A call to strlen is not a constant expression.
- if (Info.getLangOpts().CPlusPlus11)
- Info.CCEDiag(E, diag::note_constexpr_invalid_function)
- << /*isConstexpr*/0 << /*isConstructor*/0
- << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
- else
- Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
- LLVM_FALLTHROUGH;
- case Builtin::BI__builtin_strcmp:
- case Builtin::BI__builtin_wcscmp:
- case Builtin::BI__builtin_strncmp:
- case Builtin::BI__builtin_wcsncmp:
- case Builtin::BI__builtin_memcmp:
- case Builtin::BI__builtin_bcmp:
- case Builtin::BI__builtin_wmemcmp: {
- LValue String1, String2;
- if (!EvaluatePointer(E->getArg(0), String1, Info) ||
- !EvaluatePointer(E->getArg(1), String2, Info))
- return false;
- uint64_t MaxLength = uint64_t(-1);
- if (BuiltinOp != Builtin::BIstrcmp &&
- BuiltinOp != Builtin::BIwcscmp &&
- BuiltinOp != Builtin::BI__builtin_strcmp &&
- BuiltinOp != Builtin::BI__builtin_wcscmp) {
- APSInt N;
- if (!EvaluateInteger(E->getArg(2), N, Info))
- return false;
- MaxLength = N.getExtValue();
- }
- // Empty substrings compare equal by definition.
- if (MaxLength == 0u)
- return Success(0, E);
- if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
- !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) ||
- String1.Designator.Invalid || String2.Designator.Invalid)
- return false;
- QualType CharTy1 = String1.Designator.getType(Info.Ctx);
- QualType CharTy2 = String2.Designator.getType(Info.Ctx);
- bool IsRawByte = BuiltinOp == Builtin::BImemcmp ||
- BuiltinOp == Builtin::BIbcmp ||
- BuiltinOp == Builtin::BI__builtin_memcmp ||
- BuiltinOp == Builtin::BI__builtin_bcmp;
- assert(IsRawByte ||
- (Info.Ctx.hasSameUnqualifiedType(
- CharTy1, E->getArg(0)->getType()->getPointeeType()) &&
- Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2)));
- const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) {
- return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) &&
- handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) &&
- Char1.isInt() && Char2.isInt();
- };
- const auto &AdvanceElems = [&] {
- return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) &&
- HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1);
- };
- if (IsRawByte) {
- uint64_t BytesRemaining = MaxLength;
- // Pointers to const void may point to objects of incomplete type.
- if (CharTy1->isIncompleteType()) {
- Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy1;
- return false;
- }
- if (CharTy2->isIncompleteType()) {
- Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy2;
- return false;
- }
- uint64_t CharTy1Width{Info.Ctx.getTypeSize(CharTy1)};
- CharUnits CharTy1Size = Info.Ctx.toCharUnitsFromBits(CharTy1Width);
- // Give up on comparing between elements with disparate widths.
- if (CharTy1Size != Info.Ctx.getTypeSizeInChars(CharTy2))
- return false;
- uint64_t BytesPerElement = CharTy1Size.getQuantity();
- assert(BytesRemaining && "BytesRemaining should not be zero: the "
- "following loop considers at least one element");
- while (true) {
- APValue Char1, Char2;
- if (!ReadCurElems(Char1, Char2))
- return false;
- // We have compatible in-memory widths, but a possible type and
- // (for `bool`) internal representation mismatch.
- // Assuming two's complement representation, including 0 for `false` and
- // 1 for `true`, we can check an appropriate number of elements for
- // equality even if they are not byte-sized.
- APSInt Char1InMem = Char1.getInt().extOrTrunc(CharTy1Width);
- APSInt Char2InMem = Char2.getInt().extOrTrunc(CharTy1Width);
- if (Char1InMem.ne(Char2InMem)) {
- // If the elements are byte-sized, then we can produce a three-way
- // comparison result in a straightforward manner.
- if (BytesPerElement == 1u) {
- // memcmp always compares unsigned chars.
- return Success(Char1InMem.ult(Char2InMem) ? -1 : 1, E);
- }
- // The result is byte-order sensitive, and we have multibyte elements.
- // FIXME: We can compare the remaining bytes in the correct order.
- return false;
- }
- if (!AdvanceElems())
- return false;
- if (BytesRemaining <= BytesPerElement)
- break;
- BytesRemaining -= BytesPerElement;
- }
- // Enough elements are equal to account for the memcmp limit.
- return Success(0, E);
- }
- bool StopAtNull =
- (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp &&
- BuiltinOp != Builtin::BIwmemcmp &&
- BuiltinOp != Builtin::BI__builtin_memcmp &&
- BuiltinOp != Builtin::BI__builtin_bcmp &&
- BuiltinOp != Builtin::BI__builtin_wmemcmp);
- bool IsWide = BuiltinOp == Builtin::BIwcscmp ||
- BuiltinOp == Builtin::BIwcsncmp ||
- BuiltinOp == Builtin::BIwmemcmp ||
- BuiltinOp == Builtin::BI__builtin_wcscmp ||
- BuiltinOp == Builtin::BI__builtin_wcsncmp ||
- BuiltinOp == Builtin::BI__builtin_wmemcmp;
- for (; MaxLength; --MaxLength) {
- APValue Char1, Char2;
- if (!ReadCurElems(Char1, Char2))
- return false;
- if (Char1.getInt() != Char2.getInt()) {
- if (IsWide) // wmemcmp compares with wchar_t signedness.
- return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
- // memcmp always compares unsigned chars.
- return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E);
- }
- if (StopAtNull && !Char1.getInt())
- return Success(0, E);
- assert(!(StopAtNull && !Char2.getInt()));
- if (!AdvanceElems())
- return false;
- }
- // We hit the strncmp / memcmp limit.
- return Success(0, E);
- }
- case Builtin::BI__atomic_always_lock_free:
- case Builtin::BI__atomic_is_lock_free:
- case Builtin::BI__c11_atomic_is_lock_free: {
- APSInt SizeVal;
- if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
- return false;
- // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
- // of two less than the maximum inline atomic width, we know it is
- // lock-free. If the size isn't a power of two, or greater than the
- // maximum alignment where we promote atomics, we know it is not lock-free
- // (at least not in the sense of atomic_is_lock_free). Otherwise,
- // the answer can only be determined at runtime; for example, 16-byte
- // atomics have lock-free implementations on some, but not all,
- // x86-64 processors.
- // Check power-of-two.
- CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
- if (Size.isPowerOfTwo()) {
- // Check against inlining width.
- unsigned InlineWidthBits =
- Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
- if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
- if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
- Size == CharUnits::One() ||
- E->getArg(1)->isNullPointerConstant(Info.Ctx,
- Expr::NPC_NeverValueDependent))
- // OK, we will inline appropriately-aligned operations of this size,
- // and _Atomic(T) is appropriately-aligned.
- return Success(1, E);
- QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
- castAs<PointerType>()->getPointeeType();
- if (!PointeeType->isIncompleteType() &&
- Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
- // OK, we will inline operations on this object.
- return Success(1, E);
- }
- }
- }
- return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
- Success(0, E) : Error(E);
- }
- case Builtin::BIomp_is_initial_device:
- // We can decide statically which value the runtime would return if called.
- return Success(Info.getLangOpts().OpenMPIsDevice ? 0 : 1, E);
- case Builtin::BI__builtin_add_overflow:
- case Builtin::BI__builtin_sub_overflow:
- case Builtin::BI__builtin_mul_overflow:
- case Builtin::BI__builtin_sadd_overflow:
- case Builtin::BI__builtin_uadd_overflow:
- case Builtin::BI__builtin_uaddl_overflow:
- case Builtin::BI__builtin_uaddll_overflow:
- case Builtin::BI__builtin_usub_overflow:
- case Builtin::BI__builtin_usubl_overflow:
- case Builtin::BI__builtin_usubll_overflow:
- case Builtin::BI__builtin_umul_overflow:
- case Builtin::BI__builtin_umull_overflow:
- case Builtin::BI__builtin_umulll_overflow:
- case Builtin::BI__builtin_saddl_overflow:
- case Builtin::BI__builtin_saddll_overflow:
- case Builtin::BI__builtin_ssub_overflow:
- case Builtin::BI__builtin_ssubl_overflow:
- case Builtin::BI__builtin_ssubll_overflow:
- case Builtin::BI__builtin_smul_overflow:
- case Builtin::BI__builtin_smull_overflow:
- case Builtin::BI__builtin_smulll_overflow: {
- LValue ResultLValue;
- APSInt LHS, RHS;
- QualType ResultType = E->getArg(2)->getType()->getPointeeType();
- if (!EvaluateInteger(E->getArg(0), LHS, Info) ||
- !EvaluateInteger(E->getArg(1), RHS, Info) ||
- !EvaluatePointer(E->getArg(2), ResultLValue, Info))
- return false;
- APSInt Result;
- bool DidOverflow = false;
- // If the types don't have to match, enlarge all 3 to the largest of them.
- if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
- BuiltinOp == Builtin::BI__builtin_sub_overflow ||
- BuiltinOp == Builtin::BI__builtin_mul_overflow) {
- bool IsSigned = LHS.isSigned() || RHS.isSigned() ||
- ResultType->isSignedIntegerOrEnumerationType();
- bool AllSigned = LHS.isSigned() && RHS.isSigned() &&
- ResultType->isSignedIntegerOrEnumerationType();
- uint64_t LHSSize = LHS.getBitWidth();
- uint64_t RHSSize = RHS.getBitWidth();
- uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType);
- uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize);
- // Add an additional bit if the signedness isn't uniformly agreed to. We
- // could do this ONLY if there is a signed and an unsigned that both have
- // MaxBits, but the code to check that is pretty nasty. The issue will be
- // caught in the shrink-to-result later anyway.
- if (IsSigned && !AllSigned)
- ++MaxBits;
- LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned);
- RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned);
- Result = APSInt(MaxBits, !IsSigned);
- }
- // Find largest int.
- switch (BuiltinOp) {
- default:
- llvm_unreachable("Invalid value for BuiltinOp");
- case Builtin::BI__builtin_add_overflow:
- case Builtin::BI__builtin_sadd_overflow:
- case Builtin::BI__builtin_saddl_overflow:
- case Builtin::BI__builtin_saddll_overflow:
- case Builtin::BI__builtin_uadd_overflow:
- case Builtin::BI__builtin_uaddl_overflow:
- case Builtin::BI__builtin_uaddll_overflow:
- Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow)
- : LHS.uadd_ov(RHS, DidOverflow);
- break;
- case Builtin::BI__builtin_sub_overflow:
- case Builtin::BI__builtin_ssub_overflow:
- case Builtin::BI__builtin_ssubl_overflow:
- case Builtin::BI__builtin_ssubll_overflow:
- case Builtin::BI__builtin_usub_overflow:
- case Builtin::BI__builtin_usubl_overflow:
- case Builtin::BI__builtin_usubll_overflow:
- Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow)
- : LHS.usub_ov(RHS, DidOverflow);
- break;
- case Builtin::BI__builtin_mul_overflow:
- case Builtin::BI__builtin_smul_overflow:
- case Builtin::BI__builtin_smull_overflow:
- case Builtin::BI__builtin_smulll_overflow:
- case Builtin::BI__builtin_umul_overflow:
- case Builtin::BI__builtin_umull_overflow:
- case Builtin::BI__builtin_umulll_overflow:
- Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow)
- : LHS.umul_ov(RHS, DidOverflow);
- break;
- }
- // In the case where multiple sizes are allowed, truncate and see if
- // the values are the same.
- if (BuiltinOp == Builtin::BI__builtin_add_overflow ||
- BuiltinOp == Builtin::BI__builtin_sub_overflow ||
- BuiltinOp == Builtin::BI__builtin_mul_overflow) {
- // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead,
- // since it will give us the behavior of a TruncOrSelf in the case where
- // its parameter <= its size. We previously set Result to be at least the
- // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth
- // will work exactly like TruncOrSelf.
- APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType));
- Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType());
- if (!APSInt::isSameValue(Temp, Result))
- DidOverflow = true;
- Result = Temp;
- }
- APValue APV{Result};
- if (!handleAssignment(Info, E, ResultLValue, ResultType, APV))
- return false;
- return Success(DidOverflow, E);
- }
- }
- }
- /// Determine whether this is a pointer past the end of the complete
- /// object referred to by the lvalue.
- static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
- const LValue &LV) {
- // A null pointer can be viewed as being "past the end" but we don't
- // choose to look at it that way here.
- if (!LV.getLValueBase())
- return false;
- // If the designator is valid and refers to a subobject, we're not pointing
- // past the end.
- if (!LV.getLValueDesignator().Invalid &&
- !LV.getLValueDesignator().isOnePastTheEnd())
- return false;
- // A pointer to an incomplete type might be past-the-end if the type's size is
- // zero. We cannot tell because the type is incomplete.
- QualType Ty = getType(LV.getLValueBase());
- if (Ty->isIncompleteType())
- return true;
- // We're a past-the-end pointer if we point to the byte after the object,
- // no matter what our type or path is.
- auto Size = Ctx.getTypeSizeInChars(Ty);
- return LV.getLValueOffset() == Size;
- }
- namespace {
- /// Data recursive integer evaluator of certain binary operators.
- ///
- /// We use a data recursive algorithm for binary operators so that we are able
- /// to handle extreme cases of chained binary operators without causing stack
- /// overflow.
- class DataRecursiveIntBinOpEvaluator {
- struct EvalResult {
- APValue Val;
- bool Failed;
- EvalResult() : Failed(false) { }
- void swap(EvalResult &RHS) {
- Val.swap(RHS.Val);
- Failed = RHS.Failed;
- RHS.Failed = false;
- }
- };
- struct Job {
- const Expr *E;
- EvalResult LHSResult; // meaningful only for binary operator expression.
- enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
- Job() = default;
- Job(Job &&) = default;
- void startSpeculativeEval(EvalInfo &Info) {
- SpecEvalRAII = SpeculativeEvaluationRAII(Info);
- }
- private:
- SpeculativeEvaluationRAII SpecEvalRAII;
- };
- SmallVector<Job, 16> Queue;
- IntExprEvaluator &IntEval;
- EvalInfo &Info;
- APValue &FinalResult;
- public:
- DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
- : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
- /// True if \param E is a binary operator that we are going to handle
- /// data recursively.
- /// We handle binary operators that are comma, logical, or that have operands
- /// with integral or enumeration type.
- static bool shouldEnqueue(const BinaryOperator *E) {
- return E->getOpcode() == BO_Comma || E->isLogicalOp() ||
- (E->isRValue() && E->getType()->isIntegralOrEnumerationType() &&
- E->getLHS()->getType()->isIntegralOrEnumerationType() &&
- E->getRHS()->getType()->isIntegralOrEnumerationType());
- }
- bool Traverse(const BinaryOperator *E) {
- enqueue(E);
- EvalResult PrevResult;
- while (!Queue.empty())
- process(PrevResult);
- if (PrevResult.Failed) return false;
- FinalResult.swap(PrevResult.Val);
- return true;
- }
- private:
- bool Success(uint64_t Value, const Expr *E, APValue &Result) {
- return IntEval.Success(Value, E, Result);
- }
- bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
- return IntEval.Success(Value, E, Result);
- }
- bool Error(const Expr *E) {
- return IntEval.Error(E);
- }
- bool Error(const Expr *E, diag::kind D) {
- return IntEval.Error(E, D);
- }
- OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
- return Info.CCEDiag(E, D);
- }
- // Returns true if visiting the RHS is necessary, false otherwise.
- bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
- bool &SuppressRHSDiags);
- bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
- const BinaryOperator *E, APValue &Result);
- void EvaluateExpr(const Expr *E, EvalResult &Result) {
- Result.Failed = !Evaluate(Result.Val, Info, E);
- if (Result.Failed)
- Result.Val = APValue();
- }
- void process(EvalResult &Result);
- void enqueue(const Expr *E) {
- E = E->IgnoreParens();
- Queue.resize(Queue.size()+1);
- Queue.back().E = E;
- Queue.back().Kind = Job::AnyExprKind;
- }
- };
- }
- bool DataRecursiveIntBinOpEvaluator::
- VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
- bool &SuppressRHSDiags) {
- if (E->getOpcode() == BO_Comma) {
- // Ignore LHS but note if we could not evaluate it.
- if (LHSResult.Failed)
- return Info.noteSideEffect();
- return true;
- }
- if (E->isLogicalOp()) {
- bool LHSAsBool;
- if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
- // We were able to evaluate the LHS, see if we can get away with not
- // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
- if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
- Success(LHSAsBool, E, LHSResult.Val);
- return false; // Ignore RHS
- }
- } else {
- LHSResult.Failed = true;
- // Since we weren't able to evaluate the left hand side, it
- // might have had side effects.
- if (!Info.noteSideEffect())
- return false;
- // We can't evaluate the LHS; however, sometimes the result
- // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
- // Don't ignore RHS and suppress diagnostics from this arm.
- SuppressRHSDiags = true;
- }
- return true;
- }
- assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
- E->getRHS()->getType()->isIntegralOrEnumerationType());
- if (LHSResult.Failed && !Info.noteFailure())
- return false; // Ignore RHS;
- return true;
- }
- static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index,
- bool IsSub) {
- // Compute the new offset in the appropriate width, wrapping at 64 bits.
- // FIXME: When compiling for a 32-bit target, we should use 32-bit
- // offsets.
- assert(!LVal.hasLValuePath() && "have designator for integer lvalue");
- CharUnits &Offset = LVal.getLValueOffset();
- uint64_t Offset64 = Offset.getQuantity();
- uint64_t Index64 = Index.extOrTrunc(64).getZExtValue();
- Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64
- : Offset64 + Index64);
- }
- bool DataRecursiveIntBinOpEvaluator::
- VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
- const BinaryOperator *E, APValue &Result) {
- if (E->getOpcode() == BO_Comma) {
- if (RHSResult.Failed)
- return false;
- Result = RHSResult.Val;
- return true;
- }
- if (E->isLogicalOp()) {
- bool lhsResult, rhsResult;
- bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
- bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
- if (LHSIsOK) {
- if (RHSIsOK) {
- if (E->getOpcode() == BO_LOr)
- return Success(lhsResult || rhsResult, E, Result);
- else
- return Success(lhsResult && rhsResult, E, Result);
- }
- } else {
- if (RHSIsOK) {
- // We can't evaluate the LHS; however, sometimes the result
- // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
- if (rhsResult == (E->getOpcode() == BO_LOr))
- return Success(rhsResult, E, Result);
- }
- }
- return false;
- }
- assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
- E->getRHS()->getType()->isIntegralOrEnumerationType());
- if (LHSResult.Failed || RHSResult.Failed)
- return false;
- const APValue &LHSVal = LHSResult.Val;
- const APValue &RHSVal = RHSResult.Val;
- // Handle cases like (unsigned long)&a + 4.
- if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
- Result = LHSVal;
- addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub);
- return true;
- }
- // Handle cases like 4 + (unsigned long)&a
- if (E->getOpcode() == BO_Add &&
- RHSVal.isLValue() && LHSVal.isInt()) {
- Result = RHSVal;
- addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false);
- return true;
- }
- if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
- // Handle (intptr_t)&&A - (intptr_t)&&B.
- if (!LHSVal.getLValueOffset().isZero() ||
- !RHSVal.getLValueOffset().isZero())
- return false;
- const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
- const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
- if (!LHSExpr || !RHSExpr)
- return false;
- const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
- const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
- if (!LHSAddrExpr || !RHSAddrExpr)
- return false;
- // Make sure both labels come from the same function.
- if (LHSAddrExpr->getLabel()->getDeclContext() !=
- RHSAddrExpr->getLabel()->getDeclContext())
- return false;
- Result = APValue(LHSAddrExpr, RHSAddrExpr);
- return true;
- }
- // All the remaining cases expect both operands to be an integer
- if (!LHSVal.isInt() || !RHSVal.isInt())
- return Error(E);
- // Set up the width and signedness manually, in case it can't be deduced
- // from the operation we're performing.
- // FIXME: Don't do this in the cases where we can deduce it.
- APSInt Value(Info.Ctx.getIntWidth(E->getType()),
- E->getType()->isUnsignedIntegerOrEnumerationType());
- if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
- RHSVal.getInt(), Value))
- return false;
- return Success(Value, E, Result);
- }
- void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
- Job &job = Queue.back();
- switch (job.Kind) {
- case Job::AnyExprKind: {
- if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
- if (shouldEnqueue(Bop)) {
- job.Kind = Job::BinOpKind;
- enqueue(Bop->getLHS());
- return;
- }
- }
- EvaluateExpr(job.E, Result);
- Queue.pop_back();
- return;
- }
- case Job::BinOpKind: {
- const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
- bool SuppressRHSDiags = false;
- if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
- Queue.pop_back();
- return;
- }
- if (SuppressRHSDiags)
- job.startSpeculativeEval(Info);
- job.LHSResult.swap(Result);
- job.Kind = Job::BinOpVisitedLHSKind;
- enqueue(Bop->getRHS());
- return;
- }
- case Job::BinOpVisitedLHSKind: {
- const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
- EvalResult RHS;
- RHS.swap(Result);
- Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
- Queue.pop_back();
- return;
- }
- }
- llvm_unreachable("Invalid Job::Kind!");
- }
- namespace {
- /// Used when we determine that we should fail, but can keep evaluating prior to
- /// noting that we had a failure.
- class DelayedNoteFailureRAII {
- EvalInfo &Info;
- bool NoteFailure;
- public:
- DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true)
- : Info(Info), NoteFailure(NoteFailure) {}
- ~DelayedNoteFailureRAII() {
- if (NoteFailure) {
- bool ContinueAfterFailure = Info.noteFailure();
- (void)ContinueAfterFailure;
- assert(ContinueAfterFailure &&
- "Shouldn't have kept evaluating on failure.");
- }
- }
- };
- }
- template <class SuccessCB, class AfterCB>
- static bool
- EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E,
- SuccessCB &&Success, AfterCB &&DoAfter) {
- assert(E->isComparisonOp() && "expected comparison operator");
- assert((E->getOpcode() == BO_Cmp ||
- E->getType()->isIntegralOrEnumerationType()) &&
- "unsupported binary expression evaluation");
- auto Error = [&](const Expr *E) {
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- };
- using CCR = ComparisonCategoryResult;
- bool IsRelational = E->isRelationalOp();
- bool IsEquality = E->isEqualityOp();
- if (E->getOpcode() == BO_Cmp) {
- const ComparisonCategoryInfo &CmpInfo =
- Info.Ctx.CompCategories.getInfoForType(E->getType());
- IsRelational = CmpInfo.isOrdered();
- IsEquality = CmpInfo.isEquality();
- }
- QualType LHSTy = E->getLHS()->getType();
- QualType RHSTy = E->getRHS()->getType();
- if (LHSTy->isIntegralOrEnumerationType() &&
- RHSTy->isIntegralOrEnumerationType()) {
- APSInt LHS, RHS;
- bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info);
- if (!LHSOK && !Info.noteFailure())
- return false;
- if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK)
- return false;
- if (LHS < RHS)
- return Success(CCR::Less, E);
- if (LHS > RHS)
- return Success(CCR::Greater, E);
- return Success(CCR::Equal, E);
- }
- if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) {
- APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy));
- APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy));
- bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info);
- if (!LHSOK && !Info.noteFailure())
- return false;
- if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK)
- return false;
- if (LHSFX < RHSFX)
- return Success(CCR::Less, E);
- if (LHSFX > RHSFX)
- return Success(CCR::Greater, E);
- return Success(CCR::Equal, E);
- }
- if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
- ComplexValue LHS, RHS;
- bool LHSOK;
- if (E->isAssignmentOp()) {
- LValue LV;
- EvaluateLValue(E->getLHS(), LV, Info);
- LHSOK = false;
- } else if (LHSTy->isRealFloatingType()) {
- LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
- if (LHSOK) {
- LHS.makeComplexFloat();
- LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
- }
- } else {
- LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
- }
- if (!LHSOK && !Info.noteFailure())
- return false;
- if (E->getRHS()->getType()->isRealFloatingType()) {
- if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
- return false;
- RHS.makeComplexFloat();
- RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
- } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
- return false;
- if (LHS.isComplexFloat()) {
- APFloat::cmpResult CR_r =
- LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
- APFloat::cmpResult CR_i =
- LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
- bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual;
- return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E);
- } else {
- assert(IsEquality && "invalid complex comparison");
- bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
- LHS.getComplexIntImag() == RHS.getComplexIntImag();
- return Success(IsEqual ? CCR::Equal : CCR::Nonequal, E);
- }
- }
- if (LHSTy->isRealFloatingType() &&
- RHSTy->isRealFloatingType()) {
- APFloat RHS(0.0), LHS(0.0);
- bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
- if (!LHSOK && !Info.noteFailure())
- return false;
- if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
- return false;
- assert(E->isComparisonOp() && "Invalid binary operator!");
- auto GetCmpRes = [&]() {
- switch (LHS.compare(RHS)) {
- case APFloat::cmpEqual:
- return CCR::Equal;
- case APFloat::cmpLessThan:
- return CCR::Less;
- case APFloat::cmpGreaterThan:
- return CCR::Greater;
- case APFloat::cmpUnordered:
- return CCR::Unordered;
- }
- llvm_unreachable("Unrecognised APFloat::cmpResult enum");
- };
- return Success(GetCmpRes(), E);
- }
- if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
- LValue LHSValue, RHSValue;
- bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
- if (!LHSOK && !Info.noteFailure())
- return false;
- if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
- return false;
- // Reject differing bases from the normal codepath; we special-case
- // comparisons to null.
- if (!HasSameBase(LHSValue, RHSValue)) {
- // Inequalities and subtractions between unrelated pointers have
- // unspecified or undefined behavior.
- if (!IsEquality)
- return Error(E);
- // A constant address may compare equal to the address of a symbol.
- // The one exception is that address of an object cannot compare equal
- // to a null pointer constant.
- if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
- (!RHSValue.Base && !RHSValue.Offset.isZero()))
- return Error(E);
- // It's implementation-defined whether distinct literals will have
- // distinct addresses. In clang, the result of such a comparison is
- // unspecified, so it is not a constant expression. However, we do know
- // that the address of a literal will be non-null.
- if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
- LHSValue.Base && RHSValue.Base)
- return Error(E);
- // We can't tell whether weak symbols will end up pointing to the same
- // object.
- if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
- return Error(E);
- // We can't compare the address of the start of one object with the
- // past-the-end address of another object, per C++ DR1652.
- if ((LHSValue.Base && LHSValue.Offset.isZero() &&
- isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
- (RHSValue.Base && RHSValue.Offset.isZero() &&
- isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
- return Error(E);
- // We can't tell whether an object is at the same address as another
- // zero sized object.
- if ((RHSValue.Base && isZeroSized(LHSValue)) ||
- (LHSValue.Base && isZeroSized(RHSValue)))
- return Error(E);
- return Success(CCR::Nonequal, E);
- }
- const CharUnits &LHSOffset = LHSValue.getLValueOffset();
- const CharUnits &RHSOffset = RHSValue.getLValueOffset();
- SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
- SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
- // C++11 [expr.rel]p3:
- // Pointers to void (after pointer conversions) can be compared, with a
- // result defined as follows: If both pointers represent the same
- // address or are both the null pointer value, the result is true if the
- // operator is <= or >= and false otherwise; otherwise the result is
- // unspecified.
- // We interpret this as applying to pointers to *cv* void.
- if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational)
- Info.CCEDiag(E, diag::note_constexpr_void_comparison);
- // C++11 [expr.rel]p2:
- // - If two pointers point to non-static data members of the same object,
- // or to subobjects or array elements fo such members, recursively, the
- // pointer to the later declared member compares greater provided the
- // two members have the same access control and provided their class is
- // not a union.
- // [...]
- // - Otherwise pointer comparisons are unspecified.
- if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) {
- bool WasArrayIndex;
- unsigned Mismatch = FindDesignatorMismatch(
- getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex);
- // At the point where the designators diverge, the comparison has a
- // specified value if:
- // - we are comparing array indices
- // - we are comparing fields of a union, or fields with the same access
- // Otherwise, the result is unspecified and thus the comparison is not a
- // constant expression.
- if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
- Mismatch < RHSDesignator.Entries.size()) {
- const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
- const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
- if (!LF && !RF)
- Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
- else if (!LF)
- Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
- << getAsBaseClass(LHSDesignator.Entries[Mismatch])
- << RF->getParent() << RF;
- else if (!RF)
- Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
- << getAsBaseClass(RHSDesignator.Entries[Mismatch])
- << LF->getParent() << LF;
- else if (!LF->getParent()->isUnion() &&
- LF->getAccess() != RF->getAccess())
- Info.CCEDiag(E,
- diag::note_constexpr_pointer_comparison_differing_access)
- << LF << LF->getAccess() << RF << RF->getAccess()
- << LF->getParent();
- }
- }
- // The comparison here must be unsigned, and performed with the same
- // width as the pointer.
- unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
- uint64_t CompareLHS = LHSOffset.getQuantity();
- uint64_t CompareRHS = RHSOffset.getQuantity();
- assert(PtrSize <= 64 && "Unexpected pointer width");
- uint64_t Mask = ~0ULL >> (64 - PtrSize);
- CompareLHS &= Mask;
- CompareRHS &= Mask;
- // If there is a base and this is a relational operator, we can only
- // compare pointers within the object in question; otherwise, the result
- // depends on where the object is located in memory.
- if (!LHSValue.Base.isNull() && IsRelational) {
- QualType BaseTy = getType(LHSValue.Base);
- if (BaseTy->isIncompleteType())
- return Error(E);
- CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
- uint64_t OffsetLimit = Size.getQuantity();
- if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
- return Error(E);
- }
- if (CompareLHS < CompareRHS)
- return Success(CCR::Less, E);
- if (CompareLHS > CompareRHS)
- return Success(CCR::Greater, E);
- return Success(CCR::Equal, E);
- }
- if (LHSTy->isMemberPointerType()) {
- assert(IsEquality && "unexpected member pointer operation");
- assert(RHSTy->isMemberPointerType() && "invalid comparison");
- MemberPtr LHSValue, RHSValue;
- bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
- if (!LHSOK && !Info.noteFailure())
- return false;
- if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
- return false;
- // C++11 [expr.eq]p2:
- // If both operands are null, they compare equal. Otherwise if only one is
- // null, they compare unequal.
- if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
- bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
- return Success(Equal ? CCR::Equal : CCR::Nonequal, E);
- }
- // Otherwise if either is a pointer to a virtual member function, the
- // result is unspecified.
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
- if (MD->isVirtual())
- Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
- if (MD->isVirtual())
- Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
- // Otherwise they compare equal if and only if they would refer to the
- // same member of the same most derived object or the same subobject if
- // they were dereferenced with a hypothetical object of the associated
- // class type.
- bool Equal = LHSValue == RHSValue;
- return Success(Equal ? CCR::Equal : CCR::Nonequal, E);
- }
- if (LHSTy->isNullPtrType()) {
- assert(E->isComparisonOp() && "unexpected nullptr operation");
- assert(RHSTy->isNullPtrType() && "missing pointer conversion");
- // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
- // are compared, the result is true of the operator is <=, >= or ==, and
- // false otherwise.
- return Success(CCR::Equal, E);
- }
- return DoAfter();
- }
- bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) {
- if (!CheckLiteralType(Info, E))
- return false;
- auto OnSuccess = [&](ComparisonCategoryResult ResKind,
- const BinaryOperator *E) {
- // Evaluation succeeded. Lookup the information for the comparison category
- // type and fetch the VarDecl for the result.
- const ComparisonCategoryInfo &CmpInfo =
- Info.Ctx.CompCategories.getInfoForType(E->getType());
- const VarDecl *VD =
- CmpInfo.getValueInfo(CmpInfo.makeWeakResult(ResKind))->VD;
- // Check and evaluate the result as a constant expression.
- LValue LV;
- LV.set(VD);
- if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
- return false;
- return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
- };
- return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
- return ExprEvaluatorBaseTy::VisitBinCmp(E);
- });
- }
- bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
- // We don't call noteFailure immediately because the assignment happens after
- // we evaluate LHS and RHS.
- if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
- return Error(E);
- DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp());
- if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
- return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
- assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() ||
- !E->getRHS()->getType()->isIntegralOrEnumerationType()) &&
- "DataRecursiveIntBinOpEvaluator should have handled integral types");
- if (E->isComparisonOp()) {
- // Evaluate builtin binary comparisons by evaluating them as C++2a three-way
- // comparisons and then translating the result.
- auto OnSuccess = [&](ComparisonCategoryResult ResKind,
- const BinaryOperator *E) {
- using CCR = ComparisonCategoryResult;
- bool IsEqual = ResKind == CCR::Equal,
- IsLess = ResKind == CCR::Less,
- IsGreater = ResKind == CCR::Greater;
- auto Op = E->getOpcode();
- switch (Op) {
- default:
- llvm_unreachable("unsupported binary operator");
- case BO_EQ:
- case BO_NE:
- return Success(IsEqual == (Op == BO_EQ), E);
- case BO_LT: return Success(IsLess, E);
- case BO_GT: return Success(IsGreater, E);
- case BO_LE: return Success(IsEqual || IsLess, E);
- case BO_GE: return Success(IsEqual || IsGreater, E);
- }
- };
- return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() {
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- });
- }
- QualType LHSTy = E->getLHS()->getType();
- QualType RHSTy = E->getRHS()->getType();
- if (LHSTy->isPointerType() && RHSTy->isPointerType() &&
- E->getOpcode() == BO_Sub) {
- LValue LHSValue, RHSValue;
- bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
- if (!LHSOK && !Info.noteFailure())
- return false;
- if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
- return false;
- // Reject differing bases from the normal codepath; we special-case
- // comparisons to null.
- if (!HasSameBase(LHSValue, RHSValue)) {
- // Handle &&A - &&B.
- if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
- return Error(E);
- const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>();
- const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>();
- if (!LHSExpr || !RHSExpr)
- return Error(E);
- const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
- const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
- if (!LHSAddrExpr || !RHSAddrExpr)
- return Error(E);
- // Make sure both labels come from the same function.
- if (LHSAddrExpr->getLabel()->getDeclContext() !=
- RHSAddrExpr->getLabel()->getDeclContext())
- return Error(E);
- return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
- }
- const CharUnits &LHSOffset = LHSValue.getLValueOffset();
- const CharUnits &RHSOffset = RHSValue.getLValueOffset();
- SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
- SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
- // C++11 [expr.add]p6:
- // Unless both pointers point to elements of the same array object, or
- // one past the last element of the array object, the behavior is
- // undefined.
- if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
- !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator,
- RHSDesignator))
- Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
- QualType Type = E->getLHS()->getType();
- QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
- CharUnits ElementSize;
- if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
- return false;
- // As an extension, a type may have zero size (empty struct or union in
- // C, array of zero length). Pointer subtraction in such cases has
- // undefined behavior, so is not constant.
- if (ElementSize.isZero()) {
- Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
- << ElementType;
- return false;
- }
- // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
- // and produce incorrect results when it overflows. Such behavior
- // appears to be non-conforming, but is common, so perhaps we should
- // assume the standard intended for such cases to be undefined behavior
- // and check for them.
- // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
- // overflow in the final conversion to ptrdiff_t.
- APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
- APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
- APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true),
- false);
- APSInt TrueResult = (LHS - RHS) / ElemSize;
- APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
- if (Result.extend(65) != TrueResult &&
- !HandleOverflow(Info, E, TrueResult, E->getType()))
- return false;
- return Success(Result, E);
- }
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- }
- /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
- /// a result as the expression's type.
- bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
- const UnaryExprOrTypeTraitExpr *E) {
- switch(E->getKind()) {
- case UETT_PreferredAlignOf:
- case UETT_AlignOf: {
- if (E->isArgumentType())
- return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()),
- E);
- else
- return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()),
- E);
- }
- case UETT_VecStep: {
- QualType Ty = E->getTypeOfArgument();
- if (Ty->isVectorType()) {
- unsigned n = Ty->castAs<VectorType>()->getNumElements();
- // The vec_step built-in functions that take a 3-component
- // vector return 4. (OpenCL 1.1 spec 6.11.12)
- if (n == 3)
- n = 4;
- return Success(n, E);
- } else
- return Success(1, E);
- }
- case UETT_SizeOf: {
- QualType SrcTy = E->getTypeOfArgument();
- // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
- // the result is the size of the referenced type."
- if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
- SrcTy = Ref->getPointeeType();
- CharUnits Sizeof;
- if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
- return false;
- return Success(Sizeof, E);
- }
- case UETT_OpenMPRequiredSimdAlign:
- assert(E->isArgumentType());
- return Success(
- Info.Ctx.toCharUnitsFromBits(
- Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
- .getQuantity(),
- E);
- }
- llvm_unreachable("unknown expr/type trait");
- }
- bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
- CharUnits Result;
- unsigned n = OOE->getNumComponents();
- if (n == 0)
- return Error(OOE);
- QualType CurrentType = OOE->getTypeSourceInfo()->getType();
- for (unsigned i = 0; i != n; ++i) {
- OffsetOfNode ON = OOE->getComponent(i);
- switch (ON.getKind()) {
- case OffsetOfNode::Array: {
- const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
- APSInt IdxResult;
- if (!EvaluateInteger(Idx, IdxResult, Info))
- return false;
- const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
- if (!AT)
- return Error(OOE);
- CurrentType = AT->getElementType();
- CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
- Result += IdxResult.getSExtValue() * ElementSize;
- break;
- }
- case OffsetOfNode::Field: {
- FieldDecl *MemberDecl = ON.getField();
- const RecordType *RT = CurrentType->getAs<RecordType>();
- if (!RT)
- return Error(OOE);
- RecordDecl *RD = RT->getDecl();
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
- unsigned i = MemberDecl->getFieldIndex();
- assert(i < RL.getFieldCount() && "offsetof field in wrong type");
- Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
- CurrentType = MemberDecl->getType().getNonReferenceType();
- break;
- }
- case OffsetOfNode::Identifier:
- llvm_unreachable("dependent __builtin_offsetof");
- case OffsetOfNode::Base: {
- CXXBaseSpecifier *BaseSpec = ON.getBase();
- if (BaseSpec->isVirtual())
- return Error(OOE);
- // Find the layout of the class whose base we are looking into.
- const RecordType *RT = CurrentType->getAs<RecordType>();
- if (!RT)
- return Error(OOE);
- RecordDecl *RD = RT->getDecl();
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
- // Find the base class itself.
- CurrentType = BaseSpec->getType();
- const RecordType *BaseRT = CurrentType->getAs<RecordType>();
- if (!BaseRT)
- return Error(OOE);
- // Add the offset to the base.
- Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
- break;
- }
- }
- }
- return Success(Result, OOE);
- }
- bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
- switch (E->getOpcode()) {
- default:
- // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
- // See C99 6.6p3.
- return Error(E);
- case UO_Extension:
- // FIXME: Should extension allow i-c-e extension expressions in its scope?
- // If so, we could clear the diagnostic ID.
- return Visit(E->getSubExpr());
- case UO_Plus:
- // The result is just the value.
- return Visit(E->getSubExpr());
- case UO_Minus: {
- if (!Visit(E->getSubExpr()))
- return false;
- if (!Result.isInt()) return Error(E);
- const APSInt &Value = Result.getInt();
- if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow() &&
- !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
- E->getType()))
- return false;
- return Success(-Value, E);
- }
- case UO_Not: {
- if (!Visit(E->getSubExpr()))
- return false;
- if (!Result.isInt()) return Error(E);
- return Success(~Result.getInt(), E);
- }
- case UO_LNot: {
- bool bres;
- if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
- return false;
- return Success(!bres, E);
- }
- }
- }
- /// HandleCast - This is used to evaluate implicit or explicit casts where the
- /// result type is integer.
- bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
- const Expr *SubExpr = E->getSubExpr();
- QualType DestType = E->getType();
- QualType SrcType = SubExpr->getType();
- switch (E->getCastKind()) {
- case CK_BaseToDerived:
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase:
- case CK_Dynamic:
- case CK_ToUnion:
- case CK_ArrayToPointerDecay:
- case CK_FunctionToPointerDecay:
- case CK_NullToPointer:
- case CK_NullToMemberPointer:
- case CK_BaseToDerivedMemberPointer:
- case CK_DerivedToBaseMemberPointer:
- case CK_ReinterpretMemberPointer:
- case CK_ConstructorConversion:
- case CK_IntegralToPointer:
- case CK_ToVoid:
- case CK_VectorSplat:
- case CK_IntegralToFloating:
- case CK_FloatingCast:
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_AnyPointerToBlockPointerCast:
- case CK_ObjCObjectLValueCast:
- case CK_FloatingRealToComplex:
- case CK_FloatingComplexToReal:
- case CK_FloatingComplexCast:
- case CK_FloatingComplexToIntegralComplex:
- case CK_IntegralRealToComplex:
- case CK_IntegralComplexCast:
- case CK_IntegralComplexToFloatingComplex:
- case CK_BuiltinFnToFnPtr:
- case CK_ZeroToOCLOpaqueType:
- case CK_NonAtomicToAtomic:
- case CK_AddressSpaceConversion:
- case CK_IntToOCLSampler:
- case CK_FixedPointCast:
- case CK_IntegralToFixedPoint:
- llvm_unreachable("invalid cast kind for integral value");
- case CK_BitCast:
- case CK_Dependent:
- case CK_LValueBitCast:
- case CK_ARCProduceObject:
- case CK_ARCConsumeObject:
- case CK_ARCReclaimReturnedObject:
- case CK_ARCExtendBlockObject:
- case CK_CopyAndAutoreleaseBlockObject:
- return Error(E);
- case CK_UserDefinedConversion:
- case CK_LValueToRValue:
- case CK_AtomicToNonAtomic:
- case CK_NoOp:
- case CK_LValueToRValueBitCast:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_MemberPointerToBoolean:
- case CK_PointerToBoolean:
- case CK_IntegralToBoolean:
- case CK_FloatingToBoolean:
- case CK_BooleanToSignedIntegral:
- case CK_FloatingComplexToBoolean:
- case CK_IntegralComplexToBoolean: {
- bool BoolResult;
- if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
- return false;
- uint64_t IntResult = BoolResult;
- if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
- IntResult = (uint64_t)-1;
- return Success(IntResult, E);
- }
- case CK_FixedPointToIntegral: {
- APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType));
- if (!EvaluateFixedPoint(SubExpr, Src, Info))
- return false;
- bool Overflowed;
- llvm::APSInt Result = Src.convertToInt(
- Info.Ctx.getIntWidth(DestType),
- DestType->isSignedIntegerOrEnumerationType(), &Overflowed);
- if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
- return false;
- return Success(Result, E);
- }
- case CK_FixedPointToBoolean: {
- // Unsigned padding does not affect this.
- APValue Val;
- if (!Evaluate(Val, Info, SubExpr))
- return false;
- return Success(Val.getFixedPoint().getBoolValue(), E);
- }
- case CK_IntegralCast: {
- if (!Visit(SubExpr))
- return false;
- if (!Result.isInt()) {
- // Allow casts of address-of-label differences if they are no-ops
- // or narrowing. (The narrowing case isn't actually guaranteed to
- // be constant-evaluatable except in some narrow cases which are hard
- // to detect here. We let it through on the assumption the user knows
- // what they are doing.)
- if (Result.isAddrLabelDiff())
- return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
- // Only allow casts of lvalues if they are lossless.
- return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
- }
- return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
- Result.getInt()), E);
- }
- case CK_PointerToIntegral: {
- CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
- LValue LV;
- if (!EvaluatePointer(SubExpr, LV, Info))
- return false;
- if (LV.getLValueBase()) {
- // Only allow based lvalue casts if they are lossless.
- // FIXME: Allow a larger integer size than the pointer size, and allow
- // narrowing back down to pointer width in subsequent integral casts.
- // FIXME: Check integer type's active bits, not its type size.
- if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
- return Error(E);
- LV.Designator.setInvalid();
- LV.moveInto(Result);
- return true;
- }
- APSInt AsInt;
- APValue V;
- LV.moveInto(V);
- if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx))
- llvm_unreachable("Can't cast this!");
- return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
- }
- case CK_IntegralComplexToReal: {
- ComplexValue C;
- if (!EvaluateComplex(SubExpr, C, Info))
- return false;
- return Success(C.getComplexIntReal(), E);
- }
- case CK_FloatingToIntegral: {
- APFloat F(0.0);
- if (!EvaluateFloat(SubExpr, F, Info))
- return false;
- APSInt Value;
- if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
- return false;
- return Success(Value, E);
- }
- }
- llvm_unreachable("unknown cast resulting in integral value");
- }
- bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
- if (E->getSubExpr()->getType()->isAnyComplexType()) {
- ComplexValue LV;
- if (!EvaluateComplex(E->getSubExpr(), LV, Info))
- return false;
- if (!LV.isComplexInt())
- return Error(E);
- return Success(LV.getComplexIntReal(), E);
- }
- return Visit(E->getSubExpr());
- }
- bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
- if (E->getSubExpr()->getType()->isComplexIntegerType()) {
- ComplexValue LV;
- if (!EvaluateComplex(E->getSubExpr(), LV, Info))
- return false;
- if (!LV.isComplexInt())
- return Error(E);
- return Success(LV.getComplexIntImag(), E);
- }
- VisitIgnoredValue(E->getSubExpr());
- return Success(0, E);
- }
- bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
- return Success(E->getPackLength(), E);
- }
- bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
- return Success(E->getValue(), E);
- }
- bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
- switch (E->getOpcode()) {
- default:
- // Invalid unary operators
- return Error(E);
- case UO_Plus:
- // The result is just the value.
- return Visit(E->getSubExpr());
- case UO_Minus: {
- if (!Visit(E->getSubExpr())) return false;
- if (!Result.isFixedPoint())
- return Error(E);
- bool Overflowed;
- APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed);
- if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType()))
- return false;
- return Success(Negated, E);
- }
- case UO_LNot: {
- bool bres;
- if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
- return false;
- return Success(!bres, E);
- }
- }
- }
- bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) {
- const Expr *SubExpr = E->getSubExpr();
- QualType DestType = E->getType();
- assert(DestType->isFixedPointType() &&
- "Expected destination type to be a fixed point type");
- auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType);
- switch (E->getCastKind()) {
- case CK_FixedPointCast: {
- APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType()));
- if (!EvaluateFixedPoint(SubExpr, Src, Info))
- return false;
- bool Overflowed;
- APFixedPoint Result = Src.convert(DestFXSema, &Overflowed);
- if (Overflowed && !HandleOverflow(Info, E, Result, DestType))
- return false;
- return Success(Result, E);
- }
- case CK_IntegralToFixedPoint: {
- APSInt Src;
- if (!EvaluateInteger(SubExpr, Src, Info))
- return false;
- bool Overflowed;
- APFixedPoint IntResult = APFixedPoint::getFromIntValue(
- Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed);
- if (Overflowed && !HandleOverflow(Info, E, IntResult, DestType))
- return false;
- return Success(IntResult, E);
- }
- case CK_NoOp:
- case CK_LValueToRValue:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- default:
- return Error(E);
- }
- }
- bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
- const Expr *LHS = E->getLHS();
- const Expr *RHS = E->getRHS();
- FixedPointSemantics ResultFXSema =
- Info.Ctx.getFixedPointSemantics(E->getType());
- APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType()));
- if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info))
- return false;
- APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType()));
- if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info))
- return false;
- switch (E->getOpcode()) {
- case BO_Add: {
- bool AddOverflow, ConversionOverflow;
- APFixedPoint Result = LHSFX.add(RHSFX, &AddOverflow)
- .convert(ResultFXSema, &ConversionOverflow);
- if ((AddOverflow || ConversionOverflow) &&
- !HandleOverflow(Info, E, Result, E->getType()))
- return false;
- return Success(Result, E);
- }
- default:
- return false;
- }
- llvm_unreachable("Should've exited before this");
- }
- //===----------------------------------------------------------------------===//
- // Float Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class FloatExprEvaluator
- : public ExprEvaluatorBase<FloatExprEvaluator> {
- APFloat &Result;
- public:
- FloatExprEvaluator(EvalInfo &info, APFloat &result)
- : ExprEvaluatorBaseTy(info), Result(result) {}
- bool Success(const APValue &V, const Expr *e) {
- Result = V.getFloat();
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
- return true;
- }
- bool VisitCallExpr(const CallExpr *E);
- bool VisitUnaryOperator(const UnaryOperator *E);
- bool VisitBinaryOperator(const BinaryOperator *E);
- bool VisitFloatingLiteral(const FloatingLiteral *E);
- bool VisitCastExpr(const CastExpr *E);
- bool VisitUnaryReal(const UnaryOperator *E);
- bool VisitUnaryImag(const UnaryOperator *E);
- // FIXME: Missing: array subscript of vector, member of vector
- };
- } // end anonymous namespace
- static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isRealFloatingType());
- return FloatExprEvaluator(Info, Result).Visit(E);
- }
- static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
- QualType ResultTy,
- const Expr *Arg,
- bool SNaN,
- llvm::APFloat &Result) {
- const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
- if (!S) return false;
- const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
- llvm::APInt fill;
- // Treat empty strings as if they were zero.
- if (S->getString().empty())
- fill = llvm::APInt(32, 0);
- else if (S->getString().getAsInteger(0, fill))
- return false;
- if (Context.getTargetInfo().isNan2008()) {
- if (SNaN)
- Result = llvm::APFloat::getSNaN(Sem, false, &fill);
- else
- Result = llvm::APFloat::getQNaN(Sem, false, &fill);
- } else {
- // Prior to IEEE 754-2008, architectures were allowed to choose whether
- // the first bit of their significand was set for qNaN or sNaN. MIPS chose
- // a different encoding to what became a standard in 2008, and for pre-
- // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
- // sNaN. This is now known as "legacy NaN" encoding.
- if (SNaN)
- Result = llvm::APFloat::getQNaN(Sem, false, &fill);
- else
- Result = llvm::APFloat::getSNaN(Sem, false, &fill);
- }
- return true;
- }
- bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
- switch (E->getBuiltinCallee()) {
- default:
- return ExprEvaluatorBaseTy::VisitCallExpr(E);
- case Builtin::BI__builtin_huge_val:
- case Builtin::BI__builtin_huge_valf:
- case Builtin::BI__builtin_huge_vall:
- case Builtin::BI__builtin_huge_valf128:
- case Builtin::BI__builtin_inf:
- case Builtin::BI__builtin_inff:
- case Builtin::BI__builtin_infl:
- case Builtin::BI__builtin_inff128: {
- const llvm::fltSemantics &Sem =
- Info.Ctx.getFloatTypeSemantics(E->getType());
- Result = llvm::APFloat::getInf(Sem);
- return true;
- }
- case Builtin::BI__builtin_nans:
- case Builtin::BI__builtin_nansf:
- case Builtin::BI__builtin_nansl:
- case Builtin::BI__builtin_nansf128:
- if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
- true, Result))
- return Error(E);
- return true;
- case Builtin::BI__builtin_nan:
- case Builtin::BI__builtin_nanf:
- case Builtin::BI__builtin_nanl:
- case Builtin::BI__builtin_nanf128:
- // If this is __builtin_nan() turn this into a nan, otherwise we
- // can't constant fold it.
- if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
- false, Result))
- return Error(E);
- return true;
- case Builtin::BI__builtin_fabs:
- case Builtin::BI__builtin_fabsf:
- case Builtin::BI__builtin_fabsl:
- case Builtin::BI__builtin_fabsf128:
- if (!EvaluateFloat(E->getArg(0), Result, Info))
- return false;
- if (Result.isNegative())
- Result.changeSign();
- return true;
- // FIXME: Builtin::BI__builtin_powi
- // FIXME: Builtin::BI__builtin_powif
- // FIXME: Builtin::BI__builtin_powil
- case Builtin::BI__builtin_copysign:
- case Builtin::BI__builtin_copysignf:
- case Builtin::BI__builtin_copysignl:
- case Builtin::BI__builtin_copysignf128: {
- APFloat RHS(0.);
- if (!EvaluateFloat(E->getArg(0), Result, Info) ||
- !EvaluateFloat(E->getArg(1), RHS, Info))
- return false;
- Result.copySign(RHS);
- return true;
- }
- }
- }
- bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
- if (E->getSubExpr()->getType()->isAnyComplexType()) {
- ComplexValue CV;
- if (!EvaluateComplex(E->getSubExpr(), CV, Info))
- return false;
- Result = CV.FloatReal;
- return true;
- }
- return Visit(E->getSubExpr());
- }
- bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
- if (E->getSubExpr()->getType()->isAnyComplexType()) {
- ComplexValue CV;
- if (!EvaluateComplex(E->getSubExpr(), CV, Info))
- return false;
- Result = CV.FloatImag;
- return true;
- }
- VisitIgnoredValue(E->getSubExpr());
- const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
- Result = llvm::APFloat::getZero(Sem);
- return true;
- }
- bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
- switch (E->getOpcode()) {
- default: return Error(E);
- case UO_Plus:
- return EvaluateFloat(E->getSubExpr(), Result, Info);
- case UO_Minus:
- if (!EvaluateFloat(E->getSubExpr(), Result, Info))
- return false;
- Result.changeSign();
- return true;
- }
- }
- bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
- if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- APFloat RHS(0.0);
- bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
- if (!LHSOK && !Info.noteFailure())
- return false;
- return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
- handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
- }
- bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
- Result = E->getValue();
- return true;
- }
- bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
- const Expr* SubExpr = E->getSubExpr();
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_IntegralToFloating: {
- APSInt IntResult;
- return EvaluateInteger(SubExpr, IntResult, Info) &&
- HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
- E->getType(), Result);
- }
- case CK_FloatingCast: {
- if (!Visit(SubExpr))
- return false;
- return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
- Result);
- }
- case CK_FloatingComplexToReal: {
- ComplexValue V;
- if (!EvaluateComplex(SubExpr, V, Info))
- return false;
- Result = V.getComplexFloatReal();
- return true;
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // Complex Evaluation (for float and integer)
- //===----------------------------------------------------------------------===//
- namespace {
- class ComplexExprEvaluator
- : public ExprEvaluatorBase<ComplexExprEvaluator> {
- ComplexValue &Result;
- public:
- ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
- : ExprEvaluatorBaseTy(info), Result(Result) {}
- bool Success(const APValue &V, const Expr *e) {
- Result.setFrom(V);
- return true;
- }
- bool ZeroInitialization(const Expr *E);
- //===--------------------------------------------------------------------===//
- // Visitor Methods
- //===--------------------------------------------------------------------===//
- bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
- bool VisitCastExpr(const CastExpr *E);
- bool VisitBinaryOperator(const BinaryOperator *E);
- bool VisitUnaryOperator(const UnaryOperator *E);
- bool VisitInitListExpr(const InitListExpr *E);
- };
- } // end anonymous namespace
- static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
- EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isAnyComplexType());
- return ComplexExprEvaluator(Info, Result).Visit(E);
- }
- bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
- QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
- if (ElemTy->isRealFloatingType()) {
- Result.makeComplexFloat();
- APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
- Result.FloatReal = Zero;
- Result.FloatImag = Zero;
- } else {
- Result.makeComplexInt();
- APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
- Result.IntReal = Zero;
- Result.IntImag = Zero;
- }
- return true;
- }
- bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
- const Expr* SubExpr = E->getSubExpr();
- if (SubExpr->getType()->isRealFloatingType()) {
- Result.makeComplexFloat();
- APFloat &Imag = Result.FloatImag;
- if (!EvaluateFloat(SubExpr, Imag, Info))
- return false;
- Result.FloatReal = APFloat(Imag.getSemantics());
- return true;
- } else {
- assert(SubExpr->getType()->isIntegerType() &&
- "Unexpected imaginary literal.");
- Result.makeComplexInt();
- APSInt &Imag = Result.IntImag;
- if (!EvaluateInteger(SubExpr, Imag, Info))
- return false;
- Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
- return true;
- }
- }
- bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- case CK_BitCast:
- case CK_BaseToDerived:
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase:
- case CK_Dynamic:
- case CK_ToUnion:
- case CK_ArrayToPointerDecay:
- case CK_FunctionToPointerDecay:
- case CK_NullToPointer:
- case CK_NullToMemberPointer:
- case CK_BaseToDerivedMemberPointer:
- case CK_DerivedToBaseMemberPointer:
- case CK_MemberPointerToBoolean:
- case CK_ReinterpretMemberPointer:
- case CK_ConstructorConversion:
- case CK_IntegralToPointer:
- case CK_PointerToIntegral:
- case CK_PointerToBoolean:
- case CK_ToVoid:
- case CK_VectorSplat:
- case CK_IntegralCast:
- case CK_BooleanToSignedIntegral:
- case CK_IntegralToBoolean:
- case CK_IntegralToFloating:
- case CK_FloatingToIntegral:
- case CK_FloatingToBoolean:
- case CK_FloatingCast:
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_AnyPointerToBlockPointerCast:
- case CK_ObjCObjectLValueCast:
- case CK_FloatingComplexToReal:
- case CK_FloatingComplexToBoolean:
- case CK_IntegralComplexToReal:
- case CK_IntegralComplexToBoolean:
- case CK_ARCProduceObject:
- case CK_ARCConsumeObject:
- case CK_ARCReclaimReturnedObject:
- case CK_ARCExtendBlockObject:
- case CK_CopyAndAutoreleaseBlockObject:
- case CK_BuiltinFnToFnPtr:
- case CK_ZeroToOCLOpaqueType:
- case CK_NonAtomicToAtomic:
- case CK_AddressSpaceConversion:
- case CK_IntToOCLSampler:
- case CK_FixedPointCast:
- case CK_FixedPointToBoolean:
- case CK_FixedPointToIntegral:
- case CK_IntegralToFixedPoint:
- llvm_unreachable("invalid cast kind for complex value");
- case CK_LValueToRValue:
- case CK_AtomicToNonAtomic:
- case CK_NoOp:
- case CK_LValueToRValueBitCast:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_Dependent:
- case CK_LValueBitCast:
- case CK_UserDefinedConversion:
- return Error(E);
- case CK_FloatingRealToComplex: {
- APFloat &Real = Result.FloatReal;
- if (!EvaluateFloat(E->getSubExpr(), Real, Info))
- return false;
- Result.makeComplexFloat();
- Result.FloatImag = APFloat(Real.getSemantics());
- return true;
- }
- case CK_FloatingComplexCast: {
- if (!Visit(E->getSubExpr()))
- return false;
- QualType To = E->getType()->getAs<ComplexType>()->getElementType();
- QualType From
- = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
- return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
- HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
- }
- case CK_FloatingComplexToIntegralComplex: {
- if (!Visit(E->getSubExpr()))
- return false;
- QualType To = E->getType()->getAs<ComplexType>()->getElementType();
- QualType From
- = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
- Result.makeComplexInt();
- return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
- To, Result.IntReal) &&
- HandleFloatToIntCast(Info, E, From, Result.FloatImag,
- To, Result.IntImag);
- }
- case CK_IntegralRealToComplex: {
- APSInt &Real = Result.IntReal;
- if (!EvaluateInteger(E->getSubExpr(), Real, Info))
- return false;
- Result.makeComplexInt();
- Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
- return true;
- }
- case CK_IntegralComplexCast: {
- if (!Visit(E->getSubExpr()))
- return false;
- QualType To = E->getType()->getAs<ComplexType>()->getElementType();
- QualType From
- = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
- Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
- Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
- return true;
- }
- case CK_IntegralComplexToFloatingComplex: {
- if (!Visit(E->getSubExpr()))
- return false;
- QualType To = E->getType()->castAs<ComplexType>()->getElementType();
- QualType From
- = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
- Result.makeComplexFloat();
- return HandleIntToFloatCast(Info, E, From, Result.IntReal,
- To, Result.FloatReal) &&
- HandleIntToFloatCast(Info, E, From, Result.IntImag,
- To, Result.FloatImag);
- }
- }
- llvm_unreachable("unknown cast resulting in complex value");
- }
- bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
- if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- // Track whether the LHS or RHS is real at the type system level. When this is
- // the case we can simplify our evaluation strategy.
- bool LHSReal = false, RHSReal = false;
- bool LHSOK;
- if (E->getLHS()->getType()->isRealFloatingType()) {
- LHSReal = true;
- APFloat &Real = Result.FloatReal;
- LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
- if (LHSOK) {
- Result.makeComplexFloat();
- Result.FloatImag = APFloat(Real.getSemantics());
- }
- } else {
- LHSOK = Visit(E->getLHS());
- }
- if (!LHSOK && !Info.noteFailure())
- return false;
- ComplexValue RHS;
- if (E->getRHS()->getType()->isRealFloatingType()) {
- RHSReal = true;
- APFloat &Real = RHS.FloatReal;
- if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
- return false;
- RHS.makeComplexFloat();
- RHS.FloatImag = APFloat(Real.getSemantics());
- } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
- return false;
- assert(!(LHSReal && RHSReal) &&
- "Cannot have both operands of a complex operation be real.");
- switch (E->getOpcode()) {
- default: return Error(E);
- case BO_Add:
- if (Result.isComplexFloat()) {
- Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
- APFloat::rmNearestTiesToEven);
- if (LHSReal)
- Result.getComplexFloatImag() = RHS.getComplexFloatImag();
- else if (!RHSReal)
- Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
- APFloat::rmNearestTiesToEven);
- } else {
- Result.getComplexIntReal() += RHS.getComplexIntReal();
- Result.getComplexIntImag() += RHS.getComplexIntImag();
- }
- break;
- case BO_Sub:
- if (Result.isComplexFloat()) {
- Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
- APFloat::rmNearestTiesToEven);
- if (LHSReal) {
- Result.getComplexFloatImag() = RHS.getComplexFloatImag();
- Result.getComplexFloatImag().changeSign();
- } else if (!RHSReal) {
- Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
- APFloat::rmNearestTiesToEven);
- }
- } else {
- Result.getComplexIntReal() -= RHS.getComplexIntReal();
- Result.getComplexIntImag() -= RHS.getComplexIntImag();
- }
- break;
- case BO_Mul:
- if (Result.isComplexFloat()) {
- // This is an implementation of complex multiplication according to the
- // constraints laid out in C11 Annex G. The implementation uses the
- // following naming scheme:
- // (a + ib) * (c + id)
- ComplexValue LHS = Result;
- APFloat &A = LHS.getComplexFloatReal();
- APFloat &B = LHS.getComplexFloatImag();
- APFloat &C = RHS.getComplexFloatReal();
- APFloat &D = RHS.getComplexFloatImag();
- APFloat &ResR = Result.getComplexFloatReal();
- APFloat &ResI = Result.getComplexFloatImag();
- if (LHSReal) {
- assert(!RHSReal && "Cannot have two real operands for a complex op!");
- ResR = A * C;
- ResI = A * D;
- } else if (RHSReal) {
- ResR = C * A;
- ResI = C * B;
- } else {
- // In the fully general case, we need to handle NaNs and infinities
- // robustly.
- APFloat AC = A * C;
- APFloat BD = B * D;
- APFloat AD = A * D;
- APFloat BC = B * C;
- ResR = AC - BD;
- ResI = AD + BC;
- if (ResR.isNaN() && ResI.isNaN()) {
- bool Recalc = false;
- if (A.isInfinity() || B.isInfinity()) {
- A = APFloat::copySign(
- APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
- B = APFloat::copySign(
- APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
- if (C.isNaN())
- C = APFloat::copySign(APFloat(C.getSemantics()), C);
- if (D.isNaN())
- D = APFloat::copySign(APFloat(D.getSemantics()), D);
- Recalc = true;
- }
- if (C.isInfinity() || D.isInfinity()) {
- C = APFloat::copySign(
- APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
- D = APFloat::copySign(
- APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
- if (A.isNaN())
- A = APFloat::copySign(APFloat(A.getSemantics()), A);
- if (B.isNaN())
- B = APFloat::copySign(APFloat(B.getSemantics()), B);
- Recalc = true;
- }
- if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
- AD.isInfinity() || BC.isInfinity())) {
- if (A.isNaN())
- A = APFloat::copySign(APFloat(A.getSemantics()), A);
- if (B.isNaN())
- B = APFloat::copySign(APFloat(B.getSemantics()), B);
- if (C.isNaN())
- C = APFloat::copySign(APFloat(C.getSemantics()), C);
- if (D.isNaN())
- D = APFloat::copySign(APFloat(D.getSemantics()), D);
- Recalc = true;
- }
- if (Recalc) {
- ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
- ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
- }
- }
- }
- } else {
- ComplexValue LHS = Result;
- Result.getComplexIntReal() =
- (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
- LHS.getComplexIntImag() * RHS.getComplexIntImag());
- Result.getComplexIntImag() =
- (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
- LHS.getComplexIntImag() * RHS.getComplexIntReal());
- }
- break;
- case BO_Div:
- if (Result.isComplexFloat()) {
- // This is an implementation of complex division according to the
- // constraints laid out in C11 Annex G. The implementation uses the
- // following naming scheme:
- // (a + ib) / (c + id)
- ComplexValue LHS = Result;
- APFloat &A = LHS.getComplexFloatReal();
- APFloat &B = LHS.getComplexFloatImag();
- APFloat &C = RHS.getComplexFloatReal();
- APFloat &D = RHS.getComplexFloatImag();
- APFloat &ResR = Result.getComplexFloatReal();
- APFloat &ResI = Result.getComplexFloatImag();
- if (RHSReal) {
- ResR = A / C;
- ResI = B / C;
- } else {
- if (LHSReal) {
- // No real optimizations we can do here, stub out with zero.
- B = APFloat::getZero(A.getSemantics());
- }
- int DenomLogB = 0;
- APFloat MaxCD = maxnum(abs(C), abs(D));
- if (MaxCD.isFinite()) {
- DenomLogB = ilogb(MaxCD);
- C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
- D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
- }
- APFloat Denom = C * C + D * D;
- ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
- APFloat::rmNearestTiesToEven);
- ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
- APFloat::rmNearestTiesToEven);
- if (ResR.isNaN() && ResI.isNaN()) {
- if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
- ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
- ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
- } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
- D.isFinite()) {
- A = APFloat::copySign(
- APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
- B = APFloat::copySign(
- APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
- ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
- ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
- } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
- C = APFloat::copySign(
- APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
- D = APFloat::copySign(
- APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
- ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
- ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
- }
- }
- }
- } else {
- if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
- return Error(E, diag::note_expr_divide_by_zero);
- ComplexValue LHS = Result;
- APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
- RHS.getComplexIntImag() * RHS.getComplexIntImag();
- Result.getComplexIntReal() =
- (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
- LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
- Result.getComplexIntImag() =
- (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
- LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
- }
- break;
- }
- return true;
- }
- bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
- // Get the operand value into 'Result'.
- if (!Visit(E->getSubExpr()))
- return false;
- switch (E->getOpcode()) {
- default:
- return Error(E);
- case UO_Extension:
- return true;
- case UO_Plus:
- // The result is always just the subexpr.
- return true;
- case UO_Minus:
- if (Result.isComplexFloat()) {
- Result.getComplexFloatReal().changeSign();
- Result.getComplexFloatImag().changeSign();
- }
- else {
- Result.getComplexIntReal() = -Result.getComplexIntReal();
- Result.getComplexIntImag() = -Result.getComplexIntImag();
- }
- return true;
- case UO_Not:
- if (Result.isComplexFloat())
- Result.getComplexFloatImag().changeSign();
- else
- Result.getComplexIntImag() = -Result.getComplexIntImag();
- return true;
- }
- }
- bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
- if (E->getNumInits() == 2) {
- if (E->getType()->isComplexType()) {
- Result.makeComplexFloat();
- if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
- return false;
- if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
- return false;
- } else {
- Result.makeComplexInt();
- if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
- return false;
- if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
- return false;
- }
- return true;
- }
- return ExprEvaluatorBaseTy::VisitInitListExpr(E);
- }
- //===----------------------------------------------------------------------===//
- // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
- // implicit conversion.
- //===----------------------------------------------------------------------===//
- namespace {
- class AtomicExprEvaluator :
- public ExprEvaluatorBase<AtomicExprEvaluator> {
- const LValue *This;
- APValue &Result;
- public:
- AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result)
- : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- Result = V;
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- ImplicitValueInitExpr VIE(
- E->getType()->castAs<AtomicType>()->getValueType());
- // For atomic-qualified class (and array) types in C++, initialize the
- // _Atomic-wrapped subobject directly, in-place.
- return This ? EvaluateInPlace(Result, Info, *This, &VIE)
- : Evaluate(Result, Info, &VIE);
- }
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_NonAtomicToAtomic:
- return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr())
- : Evaluate(Result, Info, E->getSubExpr());
- }
- }
- };
- } // end anonymous namespace
- static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result,
- EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isAtomicType());
- return AtomicExprEvaluator(Info, This, Result).Visit(E);
- }
- //===----------------------------------------------------------------------===//
- // Void expression evaluation, primarily for a cast to void on the LHS of a
- // comma operator
- //===----------------------------------------------------------------------===//
- namespace {
- class VoidExprEvaluator
- : public ExprEvaluatorBase<VoidExprEvaluator> {
- public:
- VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
- bool Success(const APValue &V, const Expr *e) { return true; }
- bool ZeroInitialization(const Expr *E) { return true; }
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_ToVoid:
- VisitIgnoredValue(E->getSubExpr());
- return true;
- }
- }
- bool VisitCallExpr(const CallExpr *E) {
- switch (E->getBuiltinCallee()) {
- default:
- return ExprEvaluatorBaseTy::VisitCallExpr(E);
- case Builtin::BI__assume:
- case Builtin::BI__builtin_assume:
- // The argument is not evaluated!
- return true;
- }
- }
- };
- } // end anonymous namespace
- static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isVoidType());
- return VoidExprEvaluator(Info).Visit(E);
- }
- //===----------------------------------------------------------------------===//
- // Top level Expr::EvaluateAsRValue method.
- //===----------------------------------------------------------------------===//
- static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
- // In C, function designators are not lvalues, but we evaluate them as if they
- // are.
- QualType T = E->getType();
- if (E->isGLValue() || T->isFunctionType()) {
- LValue LV;
- if (!EvaluateLValue(E, LV, Info))
- return false;
- LV.moveInto(Result);
- } else if (T->isVectorType()) {
- if (!EvaluateVector(E, Result, Info))
- return false;
- } else if (T->isIntegralOrEnumerationType()) {
- if (!IntExprEvaluator(Info, Result).Visit(E))
- return false;
- } else if (T->hasPointerRepresentation()) {
- LValue LV;
- if (!EvaluatePointer(E, LV, Info))
- return false;
- LV.moveInto(Result);
- } else if (T->isRealFloatingType()) {
- llvm::APFloat F(0.0);
- if (!EvaluateFloat(E, F, Info))
- return false;
- Result = APValue(F);
- } else if (T->isAnyComplexType()) {
- ComplexValue C;
- if (!EvaluateComplex(E, C, Info))
- return false;
- C.moveInto(Result);
- } else if (T->isFixedPointType()) {
- if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false;
- } else if (T->isMemberPointerType()) {
- MemberPtr P;
- if (!EvaluateMemberPointer(E, P, Info))
- return false;
- P.moveInto(Result);
- return true;
- } else if (T->isArrayType()) {
- LValue LV;
- APValue &Value = createTemporary(E, false, LV, *Info.CurrentCall);
- if (!EvaluateArray(E, LV, Value, Info))
- return false;
- Result = Value;
- } else if (T->isRecordType()) {
- LValue LV;
- APValue &Value = createTemporary(E, false, LV, *Info.CurrentCall);
- if (!EvaluateRecord(E, LV, Value, Info))
- return false;
- Result = Value;
- } else if (T->isVoidType()) {
- if (!Info.getLangOpts().CPlusPlus11)
- Info.CCEDiag(E, diag::note_constexpr_nonliteral)
- << E->getType();
- if (!EvaluateVoid(E, Info))
- return false;
- } else if (T->isAtomicType()) {
- QualType Unqual = T.getAtomicUnqualifiedType();
- if (Unqual->isArrayType() || Unqual->isRecordType()) {
- LValue LV;
- APValue &Value = createTemporary(E, false, LV, *Info.CurrentCall);
- if (!EvaluateAtomic(E, &LV, Value, Info))
- return false;
- } else {
- if (!EvaluateAtomic(E, nullptr, Result, Info))
- return false;
- }
- } else if (Info.getLangOpts().CPlusPlus11) {
- Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
- return false;
- } else {
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- return true;
- }
- /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
- /// cases, the in-place evaluation is essential, since later initializers for
- /// an object can indirectly refer to subobjects which were initialized earlier.
- static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
- const Expr *E, bool AllowNonLiteralTypes) {
- assert(!E->isValueDependent());
- if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
- return false;
- if (E->isRValue()) {
- // Evaluate arrays and record types in-place, so that later initializers can
- // refer to earlier-initialized members of the object.
- QualType T = E->getType();
- if (T->isArrayType())
- return EvaluateArray(E, This, Result, Info);
- else if (T->isRecordType())
- return EvaluateRecord(E, This, Result, Info);
- else if (T->isAtomicType()) {
- QualType Unqual = T.getAtomicUnqualifiedType();
- if (Unqual->isArrayType() || Unqual->isRecordType())
- return EvaluateAtomic(E, &This, Result, Info);
- }
- }
- // For any other type, in-place evaluation is unimportant.
- return Evaluate(Result, Info, E);
- }
- /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
- /// lvalue-to-rvalue cast if it is an lvalue.
- static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
- if (Info.EnableNewConstInterp) {
- auto &InterpCtx = Info.Ctx.getInterpContext();
- switch (InterpCtx.evaluateAsRValue(Info, E, Result)) {
- case interp::InterpResult::Success:
- return true;
- case interp::InterpResult::Fail:
- return false;
- case interp::InterpResult::Bail:
- break;
- }
- }
- if (E->getType().isNull())
- return false;
- if (!CheckLiteralType(Info, E))
- return false;
- if (!::Evaluate(Result, Info, E))
- return false;
- if (E->isGLValue()) {
- LValue LV;
- LV.setFrom(Info.Ctx, Result);
- if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
- return false;
- }
- // Check this core constant expression is a constant expression.
- return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
- }
- static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
- const ASTContext &Ctx, bool &IsConst) {
- // Fast-path evaluations of integer literals, since we sometimes see files
- // containing vast quantities of these.
- if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
- Result.Val = APValue(APSInt(L->getValue(),
- L->getType()->isUnsignedIntegerType()));
- IsConst = true;
- return true;
- }
- // This case should be rare, but we need to check it before we check on
- // the type below.
- if (Exp->getType().isNull()) {
- IsConst = false;
- return true;
- }
- // FIXME: Evaluating values of large array and record types can cause
- // performance problems. Only do so in C++11 for now.
- if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
- Exp->getType()->isRecordType()) &&
- !Ctx.getLangOpts().CPlusPlus11) {
- IsConst = false;
- return true;
- }
- return false;
- }
- static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
- Expr::SideEffectsKind SEK) {
- return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
- (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
- }
- static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result,
- const ASTContext &Ctx, EvalInfo &Info) {
- bool IsConst;
- if (FastEvaluateAsRValue(E, Result, Ctx, IsConst))
- return IsConst;
- return EvaluateAsRValue(Info, E, Result.Val);
- }
- static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult,
- const ASTContext &Ctx,
- Expr::SideEffectsKind AllowSideEffects,
- EvalInfo &Info) {
- if (!E->getType()->isIntegralOrEnumerationType())
- return false;
- if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) ||
- !ExprResult.Val.isInt() ||
- hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
- return false;
- return true;
- }
- static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult,
- const ASTContext &Ctx,
- Expr::SideEffectsKind AllowSideEffects,
- EvalInfo &Info) {
- if (!E->getType()->isFixedPointType())
- return false;
- if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info))
- return false;
- if (!ExprResult.Val.isFixedPoint() ||
- hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
- return false;
- return true;
- }
- /// EvaluateAsRValue - Return true if this is a constant which we can fold using
- /// any crazy technique (that has nothing to do with language standards) that
- /// we want to. If this function returns true, it returns the folded constant
- /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
- /// will be applied to the result.
- bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx,
- bool InConstantContext) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
- Info.InConstantContext = InConstantContext;
- return ::EvaluateAsRValue(this, Result, Ctx, Info);
- }
- bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx,
- bool InConstantContext) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- EvalResult Scratch;
- return EvaluateAsRValue(Scratch, Ctx, InConstantContext) &&
- HandleConversionToBool(Scratch.Val, Result);
- }
- bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx,
- SideEffectsKind AllowSideEffects,
- bool InConstantContext) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
- Info.InConstantContext = InConstantContext;
- return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info);
- }
- bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx,
- SideEffectsKind AllowSideEffects,
- bool InConstantContext) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
- Info.InConstantContext = InConstantContext;
- return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info);
- }
- bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
- SideEffectsKind AllowSideEffects,
- bool InConstantContext) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- if (!getType()->isRealFloatingType())
- return false;
- EvalResult ExprResult;
- if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) ||
- !ExprResult.Val.isFloat() ||
- hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
- return false;
- Result = ExprResult.Val.getFloat();
- return true;
- }
- bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx,
- bool InConstantContext) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
- Info.InConstantContext = InConstantContext;
- LValue LV;
- if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
- !CheckLValueConstantExpression(Info, getExprLoc(),
- Ctx.getLValueReferenceType(getType()), LV,
- Expr::EvaluateForCodeGen))
- return false;
- LV.moveInto(Result.Val);
- return true;
- }
- bool Expr::EvaluateAsConstantExpr(EvalResult &Result, ConstExprUsage Usage,
- const ASTContext &Ctx) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression;
- EvalInfo Info(Ctx, Result, EM);
- Info.InConstantContext = true;
- if (!::Evaluate(Result.Val, Info, this))
- return false;
- return CheckConstantExpression(Info, getExprLoc(), getType(), Result.Val,
- Usage);
- }
- bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
- const VarDecl *VD,
- SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- // FIXME: Evaluating initializers for large array and record types can cause
- // performance problems. Only do so in C++11 for now.
- if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
- !Ctx.getLangOpts().CPlusPlus11)
- return false;
- Expr::EvalStatus EStatus;
- EStatus.Diag = &Notes;
- EvalInfo Info(Ctx, EStatus, VD->isConstexpr()
- ? EvalInfo::EM_ConstantExpression
- : EvalInfo::EM_ConstantFold);
- Info.setEvaluatingDecl(VD, Value);
- Info.InConstantContext = true;
- SourceLocation DeclLoc = VD->getLocation();
- QualType DeclTy = VD->getType();
- if (Info.EnableNewConstInterp) {
- auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext();
- switch (InterpCtx.evaluateAsInitializer(Info, VD, Value)) {
- case interp::InterpResult::Fail:
- // Bail out if an error was encountered.
- return false;
- case interp::InterpResult::Success:
- // Evaluation succeeded and value was set.
- return CheckConstantExpression(Info, DeclLoc, DeclTy, Value);
- case interp::InterpResult::Bail:
- // Evaluate the value again for the tree evaluator to use.
- break;
- }
- }
- LValue LVal;
- LVal.set(VD);
- // C++11 [basic.start.init]p2:
- // Variables with static storage duration or thread storage duration shall be
- // zero-initialized before any other initialization takes place.
- // This behavior is not present in C.
- if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
- !DeclTy->isReferenceType()) {
- ImplicitValueInitExpr VIE(DeclTy);
- if (!EvaluateInPlace(Value, Info, LVal, &VIE,
- /*AllowNonLiteralTypes=*/true))
- return false;
- }
- if (!EvaluateInPlace(Value, Info, LVal, this,
- /*AllowNonLiteralTypes=*/true) ||
- EStatus.HasSideEffects)
- return false;
- return CheckConstantExpression(Info, DeclLoc, DeclTy, Value);
- }
- /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
- /// constant folded, but discard the result.
- bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- EvalResult Result;
- return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) &&
- !hasUnacceptableSideEffect(Result, SEK);
- }
- APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
- SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- EvalResult EVResult;
- EVResult.Diag = Diag;
- EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects);
- Info.InConstantContext = true;
- bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info);
- (void)Result;
- assert(Result && "Could not evaluate expression");
- assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
- return EVResult.Val.getInt();
- }
- APSInt Expr::EvaluateKnownConstIntCheckOverflow(
- const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- EvalResult EVResult;
- EVResult.Diag = Diag;
- EvalInfo Info(Ctx, EVResult, EvalInfo::EM_EvaluateForOverflow);
- Info.InConstantContext = true;
- bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val);
- (void)Result;
- assert(Result && "Could not evaluate expression");
- assert(EVResult.Val.isInt() && "Expression did not evaluate to integer");
- return EVResult.Val.getInt();
- }
- void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- bool IsConst;
- EvalResult EVResult;
- if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) {
- EvalInfo Info(Ctx, EVResult, EvalInfo::EM_EvaluateForOverflow);
- (void)::EvaluateAsRValue(Info, this, EVResult.Val);
- }
- }
- bool Expr::EvalResult::isGlobalLValue() const {
- assert(Val.isLValue());
- return IsGlobalLValue(Val.getLValueBase());
- }
- /// isIntegerConstantExpr - this recursive routine will test if an expression is
- /// an integer constant expression.
- /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
- /// comma, etc
- // CheckICE - This function does the fundamental ICE checking: the returned
- // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
- // and a (possibly null) SourceLocation indicating the location of the problem.
- //
- // Note that to reduce code duplication, this helper does no evaluation
- // itself; the caller checks whether the expression is evaluatable, and
- // in the rare cases where CheckICE actually cares about the evaluated
- // value, it calls into Evaluate.
- namespace {
- enum ICEKind {
- /// This expression is an ICE.
- IK_ICE,
- /// This expression is not an ICE, but if it isn't evaluated, it's
- /// a legal subexpression for an ICE. This return value is used to handle
- /// the comma operator in C99 mode, and non-constant subexpressions.
- IK_ICEIfUnevaluated,
- /// This expression is not an ICE, and is not a legal subexpression for one.
- IK_NotICE
- };
- struct ICEDiag {
- ICEKind Kind;
- SourceLocation Loc;
- ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
- };
- }
- static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
- static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
- static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
- Expr::EvalResult EVResult;
- Expr::EvalStatus Status;
- EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
- Info.InConstantContext = true;
- if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects ||
- !EVResult.Val.isInt())
- return ICEDiag(IK_NotICE, E->getBeginLoc());
- return NoDiag();
- }
- static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
- assert(!E->isValueDependent() && "Should not see value dependent exprs!");
- if (!E->getType()->isIntegralOrEnumerationType())
- return ICEDiag(IK_NotICE, E->getBeginLoc());
- switch (E->getStmtClass()) {
- #define ABSTRACT_STMT(Node)
- #define STMT(Node, Base) case Expr::Node##Class:
- #define EXPR(Node, Base)
- #include "clang/AST/StmtNodes.inc"
- case Expr::PredefinedExprClass:
- case Expr::FloatingLiteralClass:
- case Expr::ImaginaryLiteralClass:
- case Expr::StringLiteralClass:
- case Expr::ArraySubscriptExprClass:
- case Expr::OMPArraySectionExprClass:
- case Expr::MemberExprClass:
- case Expr::CompoundAssignOperatorClass:
- case Expr::CompoundLiteralExprClass:
- case Expr::ExtVectorElementExprClass:
- case Expr::DesignatedInitExprClass:
- case Expr::ArrayInitLoopExprClass:
- case Expr::ArrayInitIndexExprClass:
- case Expr::NoInitExprClass:
- case Expr::DesignatedInitUpdateExprClass:
- case Expr::ImplicitValueInitExprClass:
- case Expr::ParenListExprClass:
- case Expr::VAArgExprClass:
- case Expr::AddrLabelExprClass:
- case Expr::StmtExprClass:
- case Expr::CXXMemberCallExprClass:
- case Expr::CUDAKernelCallExprClass:
- case Expr::CXXDynamicCastExprClass:
- case Expr::CXXTypeidExprClass:
- case Expr::CXXUuidofExprClass:
- case Expr::MSPropertyRefExprClass:
- case Expr::MSPropertySubscriptExprClass:
- case Expr::CXXNullPtrLiteralExprClass:
- case Expr::UserDefinedLiteralClass:
- case Expr::CXXThisExprClass:
- case Expr::CXXThrowExprClass:
- case Expr::CXXNewExprClass:
- case Expr::CXXDeleteExprClass:
- case Expr::CXXPseudoDestructorExprClass:
- case Expr::UnresolvedLookupExprClass:
- case Expr::TypoExprClass:
- case Expr::DependentScopeDeclRefExprClass:
- case Expr::CXXConstructExprClass:
- case Expr::CXXInheritedCtorInitExprClass:
- case Expr::CXXStdInitializerListExprClass:
- case Expr::CXXBindTemporaryExprClass:
- case Expr::ExprWithCleanupsClass:
- case Expr::CXXTemporaryObjectExprClass:
- case Expr::CXXUnresolvedConstructExprClass:
- case Expr::CXXDependentScopeMemberExprClass:
- case Expr::UnresolvedMemberExprClass:
- case Expr::ObjCStringLiteralClass:
- case Expr::ObjCBoxedExprClass:
- case Expr::ObjCArrayLiteralClass:
- case Expr::ObjCDictionaryLiteralClass:
- case Expr::ObjCEncodeExprClass:
- case Expr::ObjCMessageExprClass:
- case Expr::ObjCSelectorExprClass:
- case Expr::ObjCProtocolExprClass:
- case Expr::ObjCIvarRefExprClass:
- case Expr::ObjCPropertyRefExprClass:
- case Expr::ObjCSubscriptRefExprClass:
- case Expr::ObjCIsaExprClass:
- case Expr::ObjCAvailabilityCheckExprClass:
- case Expr::ShuffleVectorExprClass:
- case Expr::ConvertVectorExprClass:
- case Expr::BlockExprClass:
- case Expr::NoStmtClass:
- case Expr::OpaqueValueExprClass:
- case Expr::PackExpansionExprClass:
- case Expr::SubstNonTypeTemplateParmPackExprClass:
- case Expr::FunctionParmPackExprClass:
- case Expr::AsTypeExprClass:
- case Expr::ObjCIndirectCopyRestoreExprClass:
- case Expr::MaterializeTemporaryExprClass:
- case Expr::PseudoObjectExprClass:
- case Expr::AtomicExprClass:
- case Expr::LambdaExprClass:
- case Expr::CXXFoldExprClass:
- case Expr::CoawaitExprClass:
- case Expr::DependentCoawaitExprClass:
- case Expr::CoyieldExprClass:
- return ICEDiag(IK_NotICE, E->getBeginLoc());
- case Expr::InitListExprClass: {
- // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
- // form "T x = { a };" is equivalent to "T x = a;".
- // Unless we're initializing a reference, T is a scalar as it is known to be
- // of integral or enumeration type.
- if (E->isRValue())
- if (cast<InitListExpr>(E)->getNumInits() == 1)
- return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
- return ICEDiag(IK_NotICE, E->getBeginLoc());
- }
- case Expr::SizeOfPackExprClass:
- case Expr::GNUNullExprClass:
- case Expr::SourceLocExprClass:
- return NoDiag();
- case Expr::SubstNonTypeTemplateParmExprClass:
- return
- CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
- case Expr::ConstantExprClass:
- return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx);
- case Expr::ParenExprClass:
- return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
- case Expr::GenericSelectionExprClass:
- return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
- case Expr::IntegerLiteralClass:
- case Expr::FixedPointLiteralClass:
- case Expr::CharacterLiteralClass:
- case Expr::ObjCBoolLiteralExprClass:
- case Expr::CXXBoolLiteralExprClass:
- case Expr::CXXScalarValueInitExprClass:
- case Expr::TypeTraitExprClass:
- case Expr::ArrayTypeTraitExprClass:
- case Expr::ExpressionTraitExprClass:
- case Expr::CXXNoexceptExprClass:
- return NoDiag();
- case Expr::CallExprClass:
- case Expr::CXXOperatorCallExprClass: {
- // C99 6.6/3 allows function calls within unevaluated subexpressions of
- // constant expressions, but they can never be ICEs because an ICE cannot
- // contain an operand of (pointer to) function type.
- const CallExpr *CE = cast<CallExpr>(E);
- if (CE->getBuiltinCallee())
- return CheckEvalInICE(E, Ctx);
- return ICEDiag(IK_NotICE, E->getBeginLoc());
- }
- case Expr::DeclRefExprClass: {
- if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
- return NoDiag();
- const ValueDecl *D = cast<DeclRefExpr>(E)->getDecl();
- if (Ctx.getLangOpts().CPlusPlus &&
- D && IsConstNonVolatile(D->getType())) {
- // Parameter variables are never constants. Without this check,
- // getAnyInitializer() can find a default argument, which leads
- // to chaos.
- if (isa<ParmVarDecl>(D))
- return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
- // C++ 7.1.5.1p2
- // A variable of non-volatile const-qualified integral or enumeration
- // type initialized by an ICE can be used in ICEs.
- if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
- if (!Dcl->getType()->isIntegralOrEnumerationType())
- return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
- const VarDecl *VD;
- // Look for a declaration of this variable that has an initializer, and
- // check whether it is an ICE.
- if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
- return NoDiag();
- else
- return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
- }
- }
- return ICEDiag(IK_NotICE, E->getBeginLoc());
- }
- case Expr::UnaryOperatorClass: {
- const UnaryOperator *Exp = cast<UnaryOperator>(E);
- switch (Exp->getOpcode()) {
- case UO_PostInc:
- case UO_PostDec:
- case UO_PreInc:
- case UO_PreDec:
- case UO_AddrOf:
- case UO_Deref:
- case UO_Coawait:
- // C99 6.6/3 allows increment and decrement within unevaluated
- // subexpressions of constant expressions, but they can never be ICEs
- // because an ICE cannot contain an lvalue operand.
- return ICEDiag(IK_NotICE, E->getBeginLoc());
- case UO_Extension:
- case UO_LNot:
- case UO_Plus:
- case UO_Minus:
- case UO_Not:
- case UO_Real:
- case UO_Imag:
- return CheckICE(Exp->getSubExpr(), Ctx);
- }
- llvm_unreachable("invalid unary operator class");
- }
- case Expr::OffsetOfExprClass: {
- // Note that per C99, offsetof must be an ICE. And AFAIK, using
- // EvaluateAsRValue matches the proposed gcc behavior for cases like
- // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
- // compliance: we should warn earlier for offsetof expressions with
- // array subscripts that aren't ICEs, and if the array subscripts
- // are ICEs, the value of the offsetof must be an integer constant.
- return CheckEvalInICE(E, Ctx);
- }
- case Expr::UnaryExprOrTypeTraitExprClass: {
- const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
- if ((Exp->getKind() == UETT_SizeOf) &&
- Exp->getTypeOfArgument()->isVariableArrayType())
- return ICEDiag(IK_NotICE, E->getBeginLoc());
- return NoDiag();
- }
- case Expr::BinaryOperatorClass: {
- const BinaryOperator *Exp = cast<BinaryOperator>(E);
- switch (Exp->getOpcode()) {
- case BO_PtrMemD:
- case BO_PtrMemI:
- case BO_Assign:
- case BO_MulAssign:
- case BO_DivAssign:
- case BO_RemAssign:
- case BO_AddAssign:
- case BO_SubAssign:
- case BO_ShlAssign:
- case BO_ShrAssign:
- case BO_AndAssign:
- case BO_XorAssign:
- case BO_OrAssign:
- // C99 6.6/3 allows assignments within unevaluated subexpressions of
- // constant expressions, but they can never be ICEs because an ICE cannot
- // contain an lvalue operand.
- return ICEDiag(IK_NotICE, E->getBeginLoc());
- case BO_Mul:
- case BO_Div:
- case BO_Rem:
- case BO_Add:
- case BO_Sub:
- case BO_Shl:
- case BO_Shr:
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- case BO_EQ:
- case BO_NE:
- case BO_And:
- case BO_Xor:
- case BO_Or:
- case BO_Comma:
- case BO_Cmp: {
- ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
- ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
- if (Exp->getOpcode() == BO_Div ||
- Exp->getOpcode() == BO_Rem) {
- // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
- // we don't evaluate one.
- if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
- llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
- if (REval == 0)
- return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
- if (REval.isSigned() && REval.isAllOnesValue()) {
- llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
- if (LEval.isMinSignedValue())
- return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
- }
- }
- }
- if (Exp->getOpcode() == BO_Comma) {
- if (Ctx.getLangOpts().C99) {
- // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
- // if it isn't evaluated.
- if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
- return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc());
- } else {
- // In both C89 and C++, commas in ICEs are illegal.
- return ICEDiag(IK_NotICE, E->getBeginLoc());
- }
- }
- return Worst(LHSResult, RHSResult);
- }
- case BO_LAnd:
- case BO_LOr: {
- ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
- ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
- if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
- // Rare case where the RHS has a comma "side-effect"; we need
- // to actually check the condition to see whether the side
- // with the comma is evaluated.
- if ((Exp->getOpcode() == BO_LAnd) !=
- (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
- return RHSResult;
- return NoDiag();
- }
- return Worst(LHSResult, RHSResult);
- }
- }
- llvm_unreachable("invalid binary operator kind");
- }
- case Expr::ImplicitCastExprClass:
- case Expr::CStyleCastExprClass:
- case Expr::CXXFunctionalCastExprClass:
- case Expr::CXXStaticCastExprClass:
- case Expr::CXXReinterpretCastExprClass:
- case Expr::CXXConstCastExprClass:
- case Expr::ObjCBridgedCastExprClass: {
- const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
- if (isa<ExplicitCastExpr>(E)) {
- if (const FloatingLiteral *FL
- = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
- unsigned DestWidth = Ctx.getIntWidth(E->getType());
- bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
- APSInt IgnoredVal(DestWidth, !DestSigned);
- bool Ignored;
- // If the value does not fit in the destination type, the behavior is
- // undefined, so we are not required to treat it as a constant
- // expression.
- if (FL->getValue().convertToInteger(IgnoredVal,
- llvm::APFloat::rmTowardZero,
- &Ignored) & APFloat::opInvalidOp)
- return ICEDiag(IK_NotICE, E->getBeginLoc());
- return NoDiag();
- }
- }
- switch (cast<CastExpr>(E)->getCastKind()) {
- case CK_LValueToRValue:
- case CK_AtomicToNonAtomic:
- case CK_NonAtomicToAtomic:
- case CK_NoOp:
- case CK_IntegralToBoolean:
- case CK_IntegralCast:
- return CheckICE(SubExpr, Ctx);
- default:
- return ICEDiag(IK_NotICE, E->getBeginLoc());
- }
- }
- case Expr::BinaryConditionalOperatorClass: {
- const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
- ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
- if (CommonResult.Kind == IK_NotICE) return CommonResult;
- ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
- if (FalseResult.Kind == IK_NotICE) return FalseResult;
- if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
- if (FalseResult.Kind == IK_ICEIfUnevaluated &&
- Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
- return FalseResult;
- }
- case Expr::ConditionalOperatorClass: {
- const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
- // If the condition (ignoring parens) is a __builtin_constant_p call,
- // then only the true side is actually considered in an integer constant
- // expression, and it is fully evaluated. This is an important GNU
- // extension. See GCC PR38377 for discussion.
- if (const CallExpr *CallCE
- = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
- if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
- return CheckEvalInICE(E, Ctx);
- ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
- if (CondResult.Kind == IK_NotICE)
- return CondResult;
- ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
- ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
- if (TrueResult.Kind == IK_NotICE)
- return TrueResult;
- if (FalseResult.Kind == IK_NotICE)
- return FalseResult;
- if (CondResult.Kind == IK_ICEIfUnevaluated)
- return CondResult;
- if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
- return NoDiag();
- // Rare case where the diagnostics depend on which side is evaluated
- // Note that if we get here, CondResult is 0, and at least one of
- // TrueResult and FalseResult is non-zero.
- if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
- return FalseResult;
- return TrueResult;
- }
- case Expr::CXXDefaultArgExprClass:
- return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
- case Expr::CXXDefaultInitExprClass:
- return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
- case Expr::ChooseExprClass: {
- return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
- }
- case Expr::BuiltinBitCastExprClass: {
- if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E)))
- return ICEDiag(IK_NotICE, E->getBeginLoc());
- return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx);
- }
- }
- llvm_unreachable("Invalid StmtClass!");
- }
- /// Evaluate an expression as a C++11 integral constant expression.
- static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
- const Expr *E,
- llvm::APSInt *Value,
- SourceLocation *Loc) {
- if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
- if (Loc) *Loc = E->getExprLoc();
- return false;
- }
- APValue Result;
- if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
- return false;
- if (!Result.isInt()) {
- if (Loc) *Loc = E->getExprLoc();
- return false;
- }
- if (Value) *Value = Result.getInt();
- return true;
- }
- bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
- SourceLocation *Loc) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- if (Ctx.getLangOpts().CPlusPlus11)
- return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
- ICEDiag D = CheckICE(this, Ctx);
- if (D.Kind != IK_ICE) {
- if (Loc) *Loc = D.Loc;
- return false;
- }
- return true;
- }
- bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
- SourceLocation *Loc, bool isEvaluated) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- if (Ctx.getLangOpts().CPlusPlus11)
- return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
- if (!isIntegerConstantExpr(Ctx, Loc))
- return false;
- // The only possible side-effects here are due to UB discovered in the
- // evaluation (for instance, INT_MAX + 1). In such a case, we are still
- // required to treat the expression as an ICE, so we produce the folded
- // value.
- EvalResult ExprResult;
- Expr::EvalStatus Status;
- EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects);
- Info.InConstantContext = true;
- if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info))
- llvm_unreachable("ICE cannot be evaluated!");
- Value = ExprResult.Val.getInt();
- return true;
- }
- bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- return CheckICE(this, Ctx).Kind == IK_ICE;
- }
- bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
- SourceLocation *Loc) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- // We support this checking in C++98 mode in order to diagnose compatibility
- // issues.
- assert(Ctx.getLangOpts().CPlusPlus);
- // Build evaluation settings.
- Expr::EvalStatus Status;
- SmallVector<PartialDiagnosticAt, 8> Diags;
- Status.Diag = &Diags;
- EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
- APValue Scratch;
- bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
- if (!Diags.empty()) {
- IsConstExpr = false;
- if (Loc) *Loc = Diags[0].first;
- } else if (!IsConstExpr) {
- // FIXME: This shouldn't happen.
- if (Loc) *Loc = getExprLoc();
- }
- return IsConstExpr;
- }
- bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
- const FunctionDecl *Callee,
- ArrayRef<const Expr*> Args,
- const Expr *This) const {
- assert(!isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- Expr::EvalStatus Status;
- EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
- Info.InConstantContext = true;
- LValue ThisVal;
- const LValue *ThisPtr = nullptr;
- if (This) {
- #ifndef NDEBUG
- auto *MD = dyn_cast<CXXMethodDecl>(Callee);
- assert(MD && "Don't provide `this` for non-methods.");
- assert(!MD->isStatic() && "Don't provide `this` for static methods.");
- #endif
- if (EvaluateObjectArgument(Info, This, ThisVal))
- ThisPtr = &ThisVal;
- if (Info.EvalStatus.HasSideEffects)
- return false;
- }
- ArgVector ArgValues(Args.size());
- for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
- I != E; ++I) {
- if ((*I)->isValueDependent() ||
- !Evaluate(ArgValues[I - Args.begin()], Info, *I))
- // If evaluation fails, throw away the argument entirely.
- ArgValues[I - Args.begin()] = APValue();
- if (Info.EvalStatus.HasSideEffects)
- return false;
- }
- // Build fake call to Callee.
- CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr,
- ArgValues.data());
- return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
- }
- bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
- SmallVectorImpl<
- PartialDiagnosticAt> &Diags) {
- // FIXME: It would be useful to check constexpr function templates, but at the
- // moment the constant expression evaluator cannot cope with the non-rigorous
- // ASTs which we build for dependent expressions.
- if (FD->isDependentContext())
- return true;
- Expr::EvalStatus Status;
- Status.Diag = &Diags;
- EvalInfo Info(FD->getASTContext(), Status,
- EvalInfo::EM_PotentialConstantExpression);
- Info.InConstantContext = true;
- // The constexpr VM attempts to compile all methods to bytecode here.
- if (Info.EnableNewConstInterp) {
- auto &InterpCtx = Info.Ctx.getInterpContext();
- switch (InterpCtx.isPotentialConstantExpr(Info, FD)) {
- case interp::InterpResult::Success:
- case interp::InterpResult::Fail:
- return Diags.empty();
- case interp::InterpResult::Bail:
- break;
- }
- }
- const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
- const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
- // Fabricate an arbitrary expression on the stack and pretend that it
- // is a temporary being used as the 'this' pointer.
- LValue This;
- ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
- This.set({&VIE, Info.CurrentCall->Index});
- ArrayRef<const Expr*> Args;
- APValue Scratch;
- if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
- // Evaluate the call as a constant initializer, to allow the construction
- // of objects of non-literal types.
- Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
- HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
- } else {
- SourceLocation Loc = FD->getLocation();
- HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
- Args, FD->getBody(), Info, Scratch, nullptr);
- }
- return Diags.empty();
- }
- bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
- const FunctionDecl *FD,
- SmallVectorImpl<
- PartialDiagnosticAt> &Diags) {
- assert(!E->isValueDependent() &&
- "Expression evaluator can't be called on a dependent expression.");
- Expr::EvalStatus Status;
- Status.Diag = &Diags;
- EvalInfo Info(FD->getASTContext(), Status,
- EvalInfo::EM_PotentialConstantExpressionUnevaluated);
- Info.InConstantContext = true;
- // Fabricate a call stack frame to give the arguments a plausible cover story.
- ArrayRef<const Expr*> Args;
- ArgVector ArgValues(0);
- bool Success = EvaluateArgs(Args, ArgValues, Info, FD);
- (void)Success;
- assert(Success &&
- "Failed to set up arguments for potential constant evaluation");
- CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
- APValue ResultScratch;
- Evaluate(ResultScratch, Info, E);
- return Diags.empty();
- }
- bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
- unsigned Type) const {
- if (!getType()->isPointerType())
- return false;
- Expr::EvalStatus Status;
- EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
- return tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
- }
|