123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633 |
- //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // These classes wrap the information about a call or function
- // definition used to handle ABI compliancy.
- //
- //===----------------------------------------------------------------------===//
- #include "TargetInfo.h"
- #include "ABIInfo.h"
- #include "CodeGenFunction.h"
- #include "clang/AST/RecordLayout.h"
- #include "clang/Frontend/CodeGenOptions.h"
- #include "llvm/Type.h"
- #include "llvm/Target/TargetData.h"
- #include "llvm/ADT/Triple.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace clang;
- using namespace CodeGen;
- static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
- llvm::Value *Array,
- llvm::Value *Value,
- unsigned FirstIndex,
- unsigned LastIndex) {
- // Alternatively, we could emit this as a loop in the source.
- for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
- llvm::Value *Cell = Builder.CreateConstInBoundsGEP1_32(Array, I);
- Builder.CreateStore(Value, Cell);
- }
- }
- static bool isAggregateTypeForABI(QualType T) {
- return CodeGenFunction::hasAggregateLLVMType(T) ||
- T->isMemberFunctionPointerType();
- }
- ABIInfo::~ABIInfo() {}
- ASTContext &ABIInfo::getContext() const {
- return CGT.getContext();
- }
- llvm::LLVMContext &ABIInfo::getVMContext() const {
- return CGT.getLLVMContext();
- }
- const llvm::TargetData &ABIInfo::getTargetData() const {
- return CGT.getTargetData();
- }
- void ABIArgInfo::dump() const {
- raw_ostream &OS = llvm::errs();
- OS << "(ABIArgInfo Kind=";
- switch (TheKind) {
- case Direct:
- OS << "Direct Type=";
- if (llvm::Type *Ty = getCoerceToType())
- Ty->print(OS);
- else
- OS << "null";
- break;
- case Extend:
- OS << "Extend";
- break;
- case Ignore:
- OS << "Ignore";
- break;
- case Indirect:
- OS << "Indirect Align=" << getIndirectAlign()
- << " ByVal=" << getIndirectByVal()
- << " Realign=" << getIndirectRealign();
- break;
- case Expand:
- OS << "Expand";
- break;
- }
- OS << ")\n";
- }
- TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; }
- // If someone can figure out a general rule for this, that would be great.
- // It's probably just doomed to be platform-dependent, though.
- unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
- // Verified for:
- // x86-64 FreeBSD, Linux, Darwin
- // x86-32 FreeBSD, Linux, Darwin
- // PowerPC Linux, Darwin
- // ARM Darwin (*not* EABI)
- return 32;
- }
- bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
- const FunctionNoProtoType *fnType) const {
- // The following conventions are known to require this to be false:
- // x86_stdcall
- // MIPS
- // For everything else, we just prefer false unless we opt out.
- return false;
- }
- static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
- /// isEmptyField - Return true iff a the field is "empty", that is it
- /// is an unnamed bit-field or an (array of) empty record(s).
- static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
- bool AllowArrays) {
- if (FD->isUnnamedBitfield())
- return true;
- QualType FT = FD->getType();
- // Constant arrays of empty records count as empty, strip them off.
- // Constant arrays of zero length always count as empty.
- if (AllowArrays)
- while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
- if (AT->getSize() == 0)
- return true;
- FT = AT->getElementType();
- }
- const RecordType *RT = FT->getAs<RecordType>();
- if (!RT)
- return false;
- // C++ record fields are never empty, at least in the Itanium ABI.
- //
- // FIXME: We should use a predicate for whether this behavior is true in the
- // current ABI.
- if (isa<CXXRecordDecl>(RT->getDecl()))
- return false;
- return isEmptyRecord(Context, FT, AllowArrays);
- }
- /// isEmptyRecord - Return true iff a structure contains only empty
- /// fields. Note that a structure with a flexible array member is not
- /// considered empty.
- static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
- const RecordType *RT = T->getAs<RecordType>();
- if (!RT)
- return 0;
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return false;
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
- for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
- e = CXXRD->bases_end(); i != e; ++i)
- if (!isEmptyRecord(Context, i->getType(), true))
- return false;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i)
- if (!isEmptyField(Context, *i, AllowArrays))
- return false;
- return true;
- }
- /// hasNonTrivialDestructorOrCopyConstructor - Determine if a type has either
- /// a non-trivial destructor or a non-trivial copy constructor.
- static bool hasNonTrivialDestructorOrCopyConstructor(const RecordType *RT) {
- const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
- if (!RD)
- return false;
- return !RD->hasTrivialDestructor() || !RD->hasTrivialCopyConstructor();
- }
- /// isRecordWithNonTrivialDestructorOrCopyConstructor - Determine if a type is
- /// a record type with either a non-trivial destructor or a non-trivial copy
- /// constructor.
- static bool isRecordWithNonTrivialDestructorOrCopyConstructor(QualType T) {
- const RecordType *RT = T->getAs<RecordType>();
- if (!RT)
- return false;
- return hasNonTrivialDestructorOrCopyConstructor(RT);
- }
- /// isSingleElementStruct - Determine if a structure is a "single
- /// element struct", i.e. it has exactly one non-empty field or
- /// exactly one field which is itself a single element
- /// struct. Structures with flexible array members are never
- /// considered single element structs.
- ///
- /// \return The field declaration for the single non-empty field, if
- /// it exists.
- static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
- const RecordType *RT = T->getAsStructureType();
- if (!RT)
- return 0;
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return 0;
- const Type *Found = 0;
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
- e = CXXRD->bases_end(); i != e; ++i) {
- // Ignore empty records.
- if (isEmptyRecord(Context, i->getType(), true))
- continue;
- // If we already found an element then this isn't a single-element struct.
- if (Found)
- return 0;
- // If this is non-empty and not a single element struct, the composite
- // cannot be a single element struct.
- Found = isSingleElementStruct(i->getType(), Context);
- if (!Found)
- return 0;
- }
- }
- // Check for single element.
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- const FieldDecl *FD = *i;
- QualType FT = FD->getType();
- // Ignore empty fields.
- if (isEmptyField(Context, FD, true))
- continue;
- // If we already found an element then this isn't a single-element
- // struct.
- if (Found)
- return 0;
- // Treat single element arrays as the element.
- while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
- if (AT->getSize().getZExtValue() != 1)
- break;
- FT = AT->getElementType();
- }
- if (!isAggregateTypeForABI(FT)) {
- Found = FT.getTypePtr();
- } else {
- Found = isSingleElementStruct(FT, Context);
- if (!Found)
- return 0;
- }
- }
- // We don't consider a struct a single-element struct if it has
- // padding beyond the element type.
- if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
- return 0;
- return Found;
- }
- static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
- if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
- !Ty->isAnyComplexType() && !Ty->isEnumeralType() &&
- !Ty->isBlockPointerType())
- return false;
- uint64_t Size = Context.getTypeSize(Ty);
- return Size == 32 || Size == 64;
- }
- /// canExpandIndirectArgument - Test whether an argument type which is to be
- /// passed indirectly (on the stack) would have the equivalent layout if it was
- /// expanded into separate arguments. If so, we prefer to do the latter to avoid
- /// inhibiting optimizations.
- ///
- // FIXME: This predicate is missing many cases, currently it just follows
- // llvm-gcc (checks that all fields are 32-bit or 64-bit primitive types). We
- // should probably make this smarter, or better yet make the LLVM backend
- // capable of handling it.
- static bool canExpandIndirectArgument(QualType Ty, ASTContext &Context) {
- // We can only expand structure types.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT)
- return false;
- // We can only expand (C) structures.
- //
- // FIXME: This needs to be generalized to handle classes as well.
- const RecordDecl *RD = RT->getDecl();
- if (!RD->isStruct() || isa<CXXRecordDecl>(RD))
- return false;
- uint64_t Size = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- const FieldDecl *FD = *i;
- if (!is32Or64BitBasicType(FD->getType(), Context))
- return false;
- // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
- // how to expand them yet, and the predicate for telling if a bitfield still
- // counts as "basic" is more complicated than what we were doing previously.
- if (FD->isBitField())
- return false;
- Size += Context.getTypeSize(FD->getType());
- }
- // Make sure there are not any holes in the struct.
- if (Size != Context.getTypeSize(Ty))
- return false;
- return true;
- }
- namespace {
- /// DefaultABIInfo - The default implementation for ABI specific
- /// details. This implementation provides information which results in
- /// self-consistent and sensible LLVM IR generation, but does not
- /// conform to any particular ABI.
- class DefaultABIInfo : public ABIInfo {
- public:
- DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy) const;
- virtual void computeInfo(CGFunctionInfo &FI) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type);
- }
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
- };
- class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
- : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
- };
- llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- return 0;
- }
- ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
- if (isAggregateTypeForABI(Ty)) {
- // Records with non trivial destructors/constructors should not be passed
- // by value.
- if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- return ABIArgInfo::getIndirect(0);
- }
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- if (isAggregateTypeForABI(RetTy))
- return ABIArgInfo::getIndirect(0);
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- /// UseX86_MMXType - Return true if this is an MMX type that should use the
- /// special x86_mmx type.
- bool UseX86_MMXType(llvm::Type *IRType) {
- // If the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>, use the
- // special x86_mmx type.
- return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
- cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
- IRType->getScalarSizeInBits() != 64;
- }
- static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
- StringRef Constraint,
- llvm::Type* Ty) {
- if ((Constraint == "y" || Constraint == "&y") && Ty->isVectorTy())
- return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
- return Ty;
- }
- //===----------------------------------------------------------------------===//
- // X86-32 ABI Implementation
- //===----------------------------------------------------------------------===//
- /// X86_32ABIInfo - The X86-32 ABI information.
- class X86_32ABIInfo : public ABIInfo {
- static const unsigned MinABIStackAlignInBytes = 4;
- bool IsDarwinVectorABI;
- bool IsSmallStructInRegABI;
- bool IsMMXDisabled;
- bool IsWin32FloatStructABI;
- static bool isRegisterSize(unsigned Size) {
- return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
- }
- static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
- /// getIndirectResult - Give a source type \arg Ty, return a suitable result
- /// such that the argument will be passed in memory.
- ABIArgInfo getIndirectResult(QualType Ty, bool ByVal = true) const;
- /// \brief Return the alignment to use for the given type on the stack.
- unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
- public:
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy) const;
- virtual void computeInfo(CGFunctionInfo &FI) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type);
- }
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
- X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool d, bool p, bool m, bool w)
- : ABIInfo(CGT), IsDarwinVectorABI(d), IsSmallStructInRegABI(p),
- IsMMXDisabled(m), IsWin32FloatStructABI(w) {}
- };
- class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
- bool d, bool p, bool m, bool w)
- :TargetCodeGenInfo(new X86_32ABIInfo(CGT, d, p, m, w)) {}
- void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const;
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
- // Darwin uses different dwarf register numbers for EH.
- if (CGM.isTargetDarwin()) return 5;
- return 4;
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const;
- llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
- StringRef Constraint,
- llvm::Type* Ty) const {
- return X86AdjustInlineAsmType(CGF, Constraint, Ty);
- }
- };
- }
- /// shouldReturnTypeInRegister - Determine if the given type should be
- /// passed in a register (for the Darwin ABI).
- bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
- ASTContext &Context) {
- uint64_t Size = Context.getTypeSize(Ty);
- // Type must be register sized.
- if (!isRegisterSize(Size))
- return false;
- if (Ty->isVectorType()) {
- // 64- and 128- bit vectors inside structures are not returned in
- // registers.
- if (Size == 64 || Size == 128)
- return false;
- return true;
- }
- // If this is a builtin, pointer, enum, complex type, member pointer, or
- // member function pointer it is ok.
- if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
- Ty->isAnyComplexType() || Ty->isEnumeralType() ||
- Ty->isBlockPointerType() || Ty->isMemberPointerType())
- return true;
- // Arrays are treated like records.
- if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
- return shouldReturnTypeInRegister(AT->getElementType(), Context);
- // Otherwise, it must be a record type.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT) return false;
- // FIXME: Traverse bases here too.
- // Structure types are passed in register if all fields would be
- // passed in a register.
- for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(),
- e = RT->getDecl()->field_end(); i != e; ++i) {
- const FieldDecl *FD = *i;
- // Empty fields are ignored.
- if (isEmptyField(Context, FD, true))
- continue;
- // Check fields recursively.
- if (!shouldReturnTypeInRegister(FD->getType(), Context))
- return false;
- }
- return true;
- }
- ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- if (const VectorType *VT = RetTy->getAs<VectorType>()) {
- // On Darwin, some vectors are returned in registers.
- if (IsDarwinVectorABI) {
- uint64_t Size = getContext().getTypeSize(RetTy);
- // 128-bit vectors are a special case; they are returned in
- // registers and we need to make sure to pick a type the LLVM
- // backend will like.
- if (Size == 128)
- return ABIArgInfo::getDirect(llvm::VectorType::get(
- llvm::Type::getInt64Ty(getVMContext()), 2));
- // Always return in register if it fits in a general purpose
- // register, or if it is 64 bits and has a single element.
- if ((Size == 8 || Size == 16 || Size == 32) ||
- (Size == 64 && VT->getNumElements() == 1))
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
- Size));
- return ABIArgInfo::getIndirect(0);
- }
- return ABIArgInfo::getDirect();
- }
- if (isAggregateTypeForABI(RetTy)) {
- if (const RecordType *RT = RetTy->getAs<RecordType>()) {
- // Structures with either a non-trivial destructor or a non-trivial
- // copy constructor are always indirect.
- if (hasNonTrivialDestructorOrCopyConstructor(RT))
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- // Structures with flexible arrays are always indirect.
- if (RT->getDecl()->hasFlexibleArrayMember())
- return ABIArgInfo::getIndirect(0);
- }
- // If specified, structs and unions are always indirect.
- if (!IsSmallStructInRegABI && !RetTy->isAnyComplexType())
- return ABIArgInfo::getIndirect(0);
- // Small structures which are register sized are generally returned
- // in a register.
- if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, getContext())) {
- uint64_t Size = getContext().getTypeSize(RetTy);
- // As a special-case, if the struct is a "single-element" struct, and
- // the field is of type "float" or "double", return it in a
- // floating-point register. (MSVC does not apply this special case.)
- // We apply a similar transformation for pointer types to improve the
- // quality of the generated IR.
- if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
- if ((!IsWin32FloatStructABI && SeltTy->isRealFloatingType())
- || SeltTy->hasPointerRepresentation())
- return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
- // FIXME: We should be able to narrow this integer in cases with dead
- // padding.
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
- }
- return ABIArgInfo::getIndirect(0);
- }
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) {
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT)
- return 0;
- const RecordDecl *RD = RT->getDecl();
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
- for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
- e = CXXRD->bases_end(); i != e; ++i)
- if (!isRecordWithSSEVectorType(Context, i->getType()))
- return false;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- QualType FT = i->getType();
- if (FT->getAs<VectorType>() && Context.getTypeSize(FT) == 128)
- return true;
- if (isRecordWithSSEVectorType(Context, FT))
- return true;
- }
- return false;
- }
- unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
- unsigned Align) const {
- // Otherwise, if the alignment is less than or equal to the minimum ABI
- // alignment, just use the default; the backend will handle this.
- if (Align <= MinABIStackAlignInBytes)
- return 0; // Use default alignment.
- // On non-Darwin, the stack type alignment is always 4.
- if (!IsDarwinVectorABI) {
- // Set explicit alignment, since we may need to realign the top.
- return MinABIStackAlignInBytes;
- }
- // Otherwise, if the type contains an SSE vector type, the alignment is 16.
- if (Align >= 16 && isRecordWithSSEVectorType(getContext(), Ty))
- return 16;
- return MinABIStackAlignInBytes;
- }
- ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal) const {
- if (!ByVal)
- return ABIArgInfo::getIndirect(0, false);
- // Compute the byval alignment.
- unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
- unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
- if (StackAlign == 0)
- return ABIArgInfo::getIndirect(4);
- // If the stack alignment is less than the type alignment, realign the
- // argument.
- if (StackAlign < TypeAlign)
- return ABIArgInfo::getIndirect(StackAlign, /*ByVal=*/true,
- /*Realign=*/true);
- return ABIArgInfo::getIndirect(StackAlign);
- }
- ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty) const {
- // FIXME: Set alignment on indirect arguments.
- if (isAggregateTypeForABI(Ty)) {
- // Structures with flexible arrays are always indirect.
- if (const RecordType *RT = Ty->getAs<RecordType>()) {
- // Structures with either a non-trivial destructor or a non-trivial
- // copy constructor are always indirect.
- if (hasNonTrivialDestructorOrCopyConstructor(RT))
- return getIndirectResult(Ty, /*ByVal=*/false);
- if (RT->getDecl()->hasFlexibleArrayMember())
- return getIndirectResult(Ty);
- }
- // Ignore empty structs/unions.
- if (isEmptyRecord(getContext(), Ty, true))
- return ABIArgInfo::getIgnore();
- // Expand small (<= 128-bit) record types when we know that the stack layout
- // of those arguments will match the struct. This is important because the
- // LLVM backend isn't smart enough to remove byval, which inhibits many
- // optimizations.
- if (getContext().getTypeSize(Ty) <= 4*32 &&
- canExpandIndirectArgument(Ty, getContext()))
- return ABIArgInfo::getExpand();
- return getIndirectResult(Ty);
- }
- if (const VectorType *VT = Ty->getAs<VectorType>()) {
- // On Darwin, some vectors are passed in memory, we handle this by passing
- // it as an i8/i16/i32/i64.
- if (IsDarwinVectorABI) {
- uint64_t Size = getContext().getTypeSize(Ty);
- if ((Size == 8 || Size == 16 || Size == 32) ||
- (Size == 64 && VT->getNumElements() == 1))
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
- Size));
- }
- llvm::Type *IRType = CGT.ConvertType(Ty);
- if (UseX86_MMXType(IRType)) {
- if (IsMMXDisabled)
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
- 64));
- ABIArgInfo AAI = ABIArgInfo::getDirect(IRType);
- AAI.setCoerceToType(llvm::Type::getX86_MMXTy(getVMContext()));
- return AAI;
- }
- return ABIArgInfo::getDirect();
- }
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- llvm::Type *BPP = CGF.Int8PtrPtrTy;
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
- "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- // Compute if the address needs to be aligned
- unsigned Align = CGF.getContext().getTypeAlignInChars(Ty).getQuantity();
- Align = getTypeStackAlignInBytes(Ty, Align);
- Align = std::max(Align, 4U);
- if (Align > 4) {
- // addr = (addr + align - 1) & -align;
- llvm::Value *Offset =
- llvm::ConstantInt::get(CGF.Int32Ty, Align - 1);
- Addr = CGF.Builder.CreateGEP(Addr, Offset);
- llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(Addr,
- CGF.Int32Ty);
- llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -Align);
- Addr = CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
- Addr->getType(),
- "ap.cur.aligned");
- }
- llvm::Type *PTy =
- llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
- uint64_t Offset =
- llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, Align);
- llvm::Value *NextAddr =
- Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
- return AddrTyped;
- }
- void X86_32TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
- llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &CGM) const {
- if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
- if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
- // Get the LLVM function.
- llvm::Function *Fn = cast<llvm::Function>(GV);
- // Now add the 'alignstack' attribute with a value of 16.
- Fn->addFnAttr(llvm::Attribute::constructStackAlignmentFromInt(16));
- }
- }
- }
- bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
- CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- CodeGen::CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
- // 0-7 are the eight integer registers; the order is different
- // on Darwin (for EH), but the range is the same.
- // 8 is %eip.
- AssignToArrayRange(Builder, Address, Four8, 0, 8);
- if (CGF.CGM.isTargetDarwin()) {
- // 12-16 are st(0..4). Not sure why we stop at 4.
- // These have size 16, which is sizeof(long double) on
- // platforms with 8-byte alignment for that type.
- llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
- AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
- } else {
- // 9 is %eflags, which doesn't get a size on Darwin for some
- // reason.
- Builder.CreateStore(Four8, Builder.CreateConstInBoundsGEP1_32(Address, 9));
- // 11-16 are st(0..5). Not sure why we stop at 5.
- // These have size 12, which is sizeof(long double) on
- // platforms with 4-byte alignment for that type.
- llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
- AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
- }
- return false;
- }
- //===----------------------------------------------------------------------===//
- // X86-64 ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- /// X86_64ABIInfo - The X86_64 ABI information.
- class X86_64ABIInfo : public ABIInfo {
- enum Class {
- Integer = 0,
- SSE,
- SSEUp,
- X87,
- X87Up,
- ComplexX87,
- NoClass,
- Memory
- };
- /// merge - Implement the X86_64 ABI merging algorithm.
- ///
- /// Merge an accumulating classification \arg Accum with a field
- /// classification \arg Field.
- ///
- /// \param Accum - The accumulating classification. This should
- /// always be either NoClass or the result of a previous merge
- /// call. In addition, this should never be Memory (the caller
- /// should just return Memory for the aggregate).
- static Class merge(Class Accum, Class Field);
- /// postMerge - Implement the X86_64 ABI post merging algorithm.
- ///
- /// Post merger cleanup, reduces a malformed Hi and Lo pair to
- /// final MEMORY or SSE classes when necessary.
- ///
- /// \param AggregateSize - The size of the current aggregate in
- /// the classification process.
- ///
- /// \param Lo - The classification for the parts of the type
- /// residing in the low word of the containing object.
- ///
- /// \param Hi - The classification for the parts of the type
- /// residing in the higher words of the containing object.
- ///
- void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
- /// classify - Determine the x86_64 register classes in which the
- /// given type T should be passed.
- ///
- /// \param Lo - The classification for the parts of the type
- /// residing in the low word of the containing object.
- ///
- /// \param Hi - The classification for the parts of the type
- /// residing in the high word of the containing object.
- ///
- /// \param OffsetBase - The bit offset of this type in the
- /// containing object. Some parameters are classified different
- /// depending on whether they straddle an eightbyte boundary.
- ///
- /// If a word is unused its result will be NoClass; if a type should
- /// be passed in Memory then at least the classification of \arg Lo
- /// will be Memory.
- ///
- /// The \arg Lo class will be NoClass iff the argument is ignored.
- ///
- /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
- /// also be ComplexX87.
- void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi) const;
- llvm::Type *GetByteVectorType(QualType Ty) const;
- llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
- unsigned IROffset, QualType SourceTy,
- unsigned SourceOffset) const;
- llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
- unsigned IROffset, QualType SourceTy,
- unsigned SourceOffset) const;
- /// getIndirectResult - Give a source type \arg Ty, return a suitable result
- /// such that the argument will be returned in memory.
- ABIArgInfo getIndirectReturnResult(QualType Ty) const;
- /// getIndirectResult - Give a source type \arg Ty, return a suitable result
- /// such that the argument will be passed in memory.
- ABIArgInfo getIndirectResult(QualType Ty) const;
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType Ty,
- unsigned &neededInt,
- unsigned &neededSSE) const;
- bool IsIllegalVectorType(QualType Ty) const;
- /// The 0.98 ABI revision clarified a lot of ambiguities,
- /// unfortunately in ways that were not always consistent with
- /// certain previous compilers. In particular, platforms which
- /// required strict binary compatibility with older versions of GCC
- /// may need to exempt themselves.
- bool honorsRevision0_98() const {
- return !getContext().getTargetInfo().getTriple().isOSDarwin();
- }
- bool HasAVX;
- public:
- X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, bool hasavx) :
- ABIInfo(CGT), HasAVX(hasavx) {}
- bool isPassedUsingAVXType(QualType type) const {
- unsigned neededInt, neededSSE;
- ABIArgInfo info = classifyArgumentType(type, neededInt, neededSSE);
- if (info.isDirect()) {
- llvm::Type *ty = info.getCoerceToType();
- if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
- return (vectorTy->getBitWidth() > 128);
- }
- return false;
- }
- virtual void computeInfo(CGFunctionInfo &FI) const;
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
- };
- /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
- class WinX86_64ABIInfo : public ABIInfo {
- ABIArgInfo classify(QualType Ty) const;
- public:
- WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
- virtual void computeInfo(CGFunctionInfo &FI) const;
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
- };
- class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool HasAVX)
- : TargetCodeGenInfo(new X86_64ABIInfo(CGT, HasAVX)) {}
- const X86_64ABIInfo &getABIInfo() const {
- return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
- }
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
- return 7;
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
- // 0-15 are the 16 integer registers.
- // 16 is %rip.
- AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
- return false;
- }
- llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
- StringRef Constraint,
- llvm::Type* Ty) const {
- return X86AdjustInlineAsmType(CGF, Constraint, Ty);
- }
- bool isNoProtoCallVariadic(const CallArgList &args,
- const FunctionNoProtoType *fnType) const {
- // The default CC on x86-64 sets %al to the number of SSA
- // registers used, and GCC sets this when calling an unprototyped
- // function, so we override the default behavior. However, don't do
- // that when AVX types are involved: the ABI explicitly states it is
- // undefined, and it doesn't work in practice because of how the ABI
- // defines varargs anyway.
- if (fnType->getCallConv() == CC_Default || fnType->getCallConv() == CC_C) {
- bool HasAVXType = false;
- for (CallArgList::const_iterator
- it = args.begin(), ie = args.end(); it != ie; ++it) {
- if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
- HasAVXType = true;
- break;
- }
- }
- if (!HasAVXType)
- return true;
- }
- return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
- }
- };
- class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
- : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT)) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
- return 7;
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
- // 0-15 are the 16 integer registers.
- // 16 is %rip.
- AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
- return false;
- }
- };
- }
- void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
- Class &Hi) const {
- // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
- //
- // (a) If one of the classes is Memory, the whole argument is passed in
- // memory.
- //
- // (b) If X87UP is not preceded by X87, the whole argument is passed in
- // memory.
- //
- // (c) If the size of the aggregate exceeds two eightbytes and the first
- // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
- // argument is passed in memory. NOTE: This is necessary to keep the
- // ABI working for processors that don't support the __m256 type.
- //
- // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
- //
- // Some of these are enforced by the merging logic. Others can arise
- // only with unions; for example:
- // union { _Complex double; unsigned; }
- //
- // Note that clauses (b) and (c) were added in 0.98.
- //
- if (Hi == Memory)
- Lo = Memory;
- if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
- Lo = Memory;
- if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
- Lo = Memory;
- if (Hi == SSEUp && Lo != SSE)
- Hi = SSE;
- }
- X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
- // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
- // classified recursively so that always two fields are
- // considered. The resulting class is calculated according to
- // the classes of the fields in the eightbyte:
- //
- // (a) If both classes are equal, this is the resulting class.
- //
- // (b) If one of the classes is NO_CLASS, the resulting class is
- // the other class.
- //
- // (c) If one of the classes is MEMORY, the result is the MEMORY
- // class.
- //
- // (d) If one of the classes is INTEGER, the result is the
- // INTEGER.
- //
- // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
- // MEMORY is used as class.
- //
- // (f) Otherwise class SSE is used.
- // Accum should never be memory (we should have returned) or
- // ComplexX87 (because this cannot be passed in a structure).
- assert((Accum != Memory && Accum != ComplexX87) &&
- "Invalid accumulated classification during merge.");
- if (Accum == Field || Field == NoClass)
- return Accum;
- if (Field == Memory)
- return Memory;
- if (Accum == NoClass)
- return Field;
- if (Accum == Integer || Field == Integer)
- return Integer;
- if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
- Accum == X87 || Accum == X87Up)
- return Memory;
- return SSE;
- }
- void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
- Class &Lo, Class &Hi) const {
- // FIXME: This code can be simplified by introducing a simple value class for
- // Class pairs with appropriate constructor methods for the various
- // situations.
- // FIXME: Some of the split computations are wrong; unaligned vectors
- // shouldn't be passed in registers for example, so there is no chance they
- // can straddle an eightbyte. Verify & simplify.
- Lo = Hi = NoClass;
- Class &Current = OffsetBase < 64 ? Lo : Hi;
- Current = Memory;
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
- BuiltinType::Kind k = BT->getKind();
- if (k == BuiltinType::Void) {
- Current = NoClass;
- } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
- Lo = Integer;
- Hi = Integer;
- } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
- Current = Integer;
- } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
- Current = SSE;
- } else if (k == BuiltinType::LongDouble) {
- Lo = X87;
- Hi = X87Up;
- }
- // FIXME: _Decimal32 and _Decimal64 are SSE.
- // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
- return;
- }
- if (const EnumType *ET = Ty->getAs<EnumType>()) {
- // Classify the underlying integer type.
- classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi);
- return;
- }
- if (Ty->hasPointerRepresentation()) {
- Current = Integer;
- return;
- }
- if (Ty->isMemberPointerType()) {
- if (Ty->isMemberFunctionPointerType())
- Lo = Hi = Integer;
- else
- Current = Integer;
- return;
- }
- if (const VectorType *VT = Ty->getAs<VectorType>()) {
- uint64_t Size = getContext().getTypeSize(VT);
- if (Size == 32) {
- // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
- // float> as integer.
- Current = Integer;
- // If this type crosses an eightbyte boundary, it should be
- // split.
- uint64_t EB_Real = (OffsetBase) / 64;
- uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
- if (EB_Real != EB_Imag)
- Hi = Lo;
- } else if (Size == 64) {
- // gcc passes <1 x double> in memory. :(
- if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
- return;
- // gcc passes <1 x long long> as INTEGER.
- if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong) ||
- VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULongLong) ||
- VT->getElementType()->isSpecificBuiltinType(BuiltinType::Long) ||
- VT->getElementType()->isSpecificBuiltinType(BuiltinType::ULong))
- Current = Integer;
- else
- Current = SSE;
- // If this type crosses an eightbyte boundary, it should be
- // split.
- if (OffsetBase && OffsetBase != 64)
- Hi = Lo;
- } else if (Size == 128 || (HasAVX && Size == 256)) {
- // Arguments of 256-bits are split into four eightbyte chunks. The
- // least significant one belongs to class SSE and all the others to class
- // SSEUP. The original Lo and Hi design considers that types can't be
- // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
- // This design isn't correct for 256-bits, but since there're no cases
- // where the upper parts would need to be inspected, avoid adding
- // complexity and just consider Hi to match the 64-256 part.
- Lo = SSE;
- Hi = SSEUp;
- }
- return;
- }
- if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
- QualType ET = getContext().getCanonicalType(CT->getElementType());
- uint64_t Size = getContext().getTypeSize(Ty);
- if (ET->isIntegralOrEnumerationType()) {
- if (Size <= 64)
- Current = Integer;
- else if (Size <= 128)
- Lo = Hi = Integer;
- } else if (ET == getContext().FloatTy)
- Current = SSE;
- else if (ET == getContext().DoubleTy)
- Lo = Hi = SSE;
- else if (ET == getContext().LongDoubleTy)
- Current = ComplexX87;
- // If this complex type crosses an eightbyte boundary then it
- // should be split.
- uint64_t EB_Real = (OffsetBase) / 64;
- uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
- if (Hi == NoClass && EB_Real != EB_Imag)
- Hi = Lo;
- return;
- }
- if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
- // Arrays are treated like structures.
- uint64_t Size = getContext().getTypeSize(Ty);
- // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
- // than four eightbytes, ..., it has class MEMORY.
- if (Size > 256)
- return;
- // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
- // fields, it has class MEMORY.
- //
- // Only need to check alignment of array base.
- if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
- return;
- // Otherwise implement simplified merge. We could be smarter about
- // this, but it isn't worth it and would be harder to verify.
- Current = NoClass;
- uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
- uint64_t ArraySize = AT->getSize().getZExtValue();
- // The only case a 256-bit wide vector could be used is when the array
- // contains a single 256-bit element. Since Lo and Hi logic isn't extended
- // to work for sizes wider than 128, early check and fallback to memory.
- if (Size > 128 && EltSize != 256)
- return;
- for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
- Class FieldLo, FieldHi;
- classify(AT->getElementType(), Offset, FieldLo, FieldHi);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory)
- break;
- }
- postMerge(Size, Lo, Hi);
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
- return;
- }
- if (const RecordType *RT = Ty->getAs<RecordType>()) {
- uint64_t Size = getContext().getTypeSize(Ty);
- // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
- // than four eightbytes, ..., it has class MEMORY.
- if (Size > 256)
- return;
- // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
- // copy constructor or a non-trivial destructor, it is passed by invisible
- // reference.
- if (hasNonTrivialDestructorOrCopyConstructor(RT))
- return;
- const RecordDecl *RD = RT->getDecl();
- // Assume variable sized types are passed in memory.
- if (RD->hasFlexibleArrayMember())
- return;
- const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
- // Reset Lo class, this will be recomputed.
- Current = NoClass;
- // If this is a C++ record, classify the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
- e = CXXRD->bases_end(); i != e; ++i) {
- assert(!i->isVirtual() && !i->getType()->isDependentType() &&
- "Unexpected base class!");
- const CXXRecordDecl *Base =
- cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
- // Classify this field.
- //
- // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
- // single eightbyte, each is classified separately. Each eightbyte gets
- // initialized to class NO_CLASS.
- Class FieldLo, FieldHi;
- uint64_t Offset = OffsetBase + Layout.getBaseClassOffsetInBits(Base);
- classify(i->getType(), Offset, FieldLo, FieldHi);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory)
- break;
- }
- }
- // Classify the fields one at a time, merging the results.
- unsigned idx = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i, ++idx) {
- uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
- bool BitField = i->isBitField();
- // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
- // four eightbytes, or it contains unaligned fields, it has class MEMORY.
- //
- // The only case a 256-bit wide vector could be used is when the struct
- // contains a single 256-bit element. Since Lo and Hi logic isn't extended
- // to work for sizes wider than 128, early check and fallback to memory.
- //
- if (Size > 128 && getContext().getTypeSize(i->getType()) != 256) {
- Lo = Memory;
- return;
- }
- // Note, skip this test for bit-fields, see below.
- if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
- Lo = Memory;
- return;
- }
- // Classify this field.
- //
- // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
- // exceeds a single eightbyte, each is classified
- // separately. Each eightbyte gets initialized to class
- // NO_CLASS.
- Class FieldLo, FieldHi;
- // Bit-fields require special handling, they do not force the
- // structure to be passed in memory even if unaligned, and
- // therefore they can straddle an eightbyte.
- if (BitField) {
- // Ignore padding bit-fields.
- if (i->isUnnamedBitfield())
- continue;
- uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
- uint64_t Size = i->getBitWidthValue(getContext());
- uint64_t EB_Lo = Offset / 64;
- uint64_t EB_Hi = (Offset + Size - 1) / 64;
- FieldLo = FieldHi = NoClass;
- if (EB_Lo) {
- assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
- FieldLo = NoClass;
- FieldHi = Integer;
- } else {
- FieldLo = Integer;
- FieldHi = EB_Hi ? Integer : NoClass;
- }
- } else
- classify(i->getType(), Offset, FieldLo, FieldHi);
- Lo = merge(Lo, FieldLo);
- Hi = merge(Hi, FieldHi);
- if (Lo == Memory || Hi == Memory)
- break;
- }
- postMerge(Size, Lo, Hi);
- }
- }
- ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
- // If this is a scalar LLVM value then assume LLVM will pass it in the right
- // place naturally.
- if (!isAggregateTypeForABI(Ty)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- return ABIArgInfo::getIndirect(0);
- }
- bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
- if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
- uint64_t Size = getContext().getTypeSize(VecTy);
- unsigned LargestVector = HasAVX ? 256 : 128;
- if (Size <= 64 || Size > LargestVector)
- return true;
- }
- return false;
- }
- ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty) const {
- // If this is a scalar LLVM value then assume LLVM will pass it in the right
- // place naturally.
- if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- // Compute the byval alignment. We specify the alignment of the byval in all
- // cases so that the mid-level optimizer knows the alignment of the byval.
- unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
- return ABIArgInfo::getIndirect(Align);
- }
- /// GetByteVectorType - The ABI specifies that a value should be passed in an
- /// full vector XMM/YMM register. Pick an LLVM IR type that will be passed as a
- /// vector register.
- llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
- llvm::Type *IRType = CGT.ConvertType(Ty);
- // Wrapper structs that just contain vectors are passed just like vectors,
- // strip them off if present.
- llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType);
- while (STy && STy->getNumElements() == 1) {
- IRType = STy->getElementType(0);
- STy = dyn_cast<llvm::StructType>(IRType);
- }
- // If the preferred type is a 16-byte vector, prefer to pass it.
- if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(IRType)){
- llvm::Type *EltTy = VT->getElementType();
- unsigned BitWidth = VT->getBitWidth();
- if ((BitWidth >= 128 && BitWidth <= 256) &&
- (EltTy->isFloatTy() || EltTy->isDoubleTy() ||
- EltTy->isIntegerTy(8) || EltTy->isIntegerTy(16) ||
- EltTy->isIntegerTy(32) || EltTy->isIntegerTy(64) ||
- EltTy->isIntegerTy(128)))
- return VT;
- }
- return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2);
- }
- /// BitsContainNoUserData - Return true if the specified [start,end) bit range
- /// is known to either be off the end of the specified type or being in
- /// alignment padding. The user type specified is known to be at most 128 bits
- /// in size, and have passed through X86_64ABIInfo::classify with a successful
- /// classification that put one of the two halves in the INTEGER class.
- ///
- /// It is conservatively correct to return false.
- static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
- unsigned EndBit, ASTContext &Context) {
- // If the bytes being queried are off the end of the type, there is no user
- // data hiding here. This handles analysis of builtins, vectors and other
- // types that don't contain interesting padding.
- unsigned TySize = (unsigned)Context.getTypeSize(Ty);
- if (TySize <= StartBit)
- return true;
- if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
- unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
- unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
- // Check each element to see if the element overlaps with the queried range.
- for (unsigned i = 0; i != NumElts; ++i) {
- // If the element is after the span we care about, then we're done..
- unsigned EltOffset = i*EltSize;
- if (EltOffset >= EndBit) break;
- unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
- if (!BitsContainNoUserData(AT->getElementType(), EltStart,
- EndBit-EltOffset, Context))
- return false;
- }
- // If it overlaps no elements, then it is safe to process as padding.
- return true;
- }
- if (const RecordType *RT = Ty->getAs<RecordType>()) {
- const RecordDecl *RD = RT->getDecl();
- const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
- // If this is a C++ record, check the bases first.
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- for (CXXRecordDecl::base_class_const_iterator i = CXXRD->bases_begin(),
- e = CXXRD->bases_end(); i != e; ++i) {
- assert(!i->isVirtual() && !i->getType()->isDependentType() &&
- "Unexpected base class!");
- const CXXRecordDecl *Base =
- cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
- // If the base is after the span we care about, ignore it.
- unsigned BaseOffset = (unsigned)Layout.getBaseClassOffsetInBits(Base);
- if (BaseOffset >= EndBit) continue;
- unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
- if (!BitsContainNoUserData(i->getType(), BaseStart,
- EndBit-BaseOffset, Context))
- return false;
- }
- }
- // Verify that no field has data that overlaps the region of interest. Yes
- // this could be sped up a lot by being smarter about queried fields,
- // however we're only looking at structs up to 16 bytes, so we don't care
- // much.
- unsigned idx = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i, ++idx) {
- unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
- // If we found a field after the region we care about, then we're done.
- if (FieldOffset >= EndBit) break;
- unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
- if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
- Context))
- return false;
- }
- // If nothing in this record overlapped the area of interest, then we're
- // clean.
- return true;
- }
- return false;
- }
- /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
- /// float member at the specified offset. For example, {int,{float}} has a
- /// float at offset 4. It is conservatively correct for this routine to return
- /// false.
- static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
- const llvm::TargetData &TD) {
- // Base case if we find a float.
- if (IROffset == 0 && IRType->isFloatTy())
- return true;
- // If this is a struct, recurse into the field at the specified offset.
- if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
- const llvm::StructLayout *SL = TD.getStructLayout(STy);
- unsigned Elt = SL->getElementContainingOffset(IROffset);
- IROffset -= SL->getElementOffset(Elt);
- return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
- }
- // If this is an array, recurse into the field at the specified offset.
- if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
- llvm::Type *EltTy = ATy->getElementType();
- unsigned EltSize = TD.getTypeAllocSize(EltTy);
- IROffset -= IROffset/EltSize*EltSize;
- return ContainsFloatAtOffset(EltTy, IROffset, TD);
- }
- return false;
- }
- /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
- /// low 8 bytes of an XMM register, corresponding to the SSE class.
- llvm::Type *X86_64ABIInfo::
- GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
- QualType SourceTy, unsigned SourceOffset) const {
- // The only three choices we have are either double, <2 x float>, or float. We
- // pass as float if the last 4 bytes is just padding. This happens for
- // structs that contain 3 floats.
- if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
- SourceOffset*8+64, getContext()))
- return llvm::Type::getFloatTy(getVMContext());
- // We want to pass as <2 x float> if the LLVM IR type contains a float at
- // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the
- // case.
- if (ContainsFloatAtOffset(IRType, IROffset, getTargetData()) &&
- ContainsFloatAtOffset(IRType, IROffset+4, getTargetData()))
- return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2);
- return llvm::Type::getDoubleTy(getVMContext());
- }
- /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
- /// an 8-byte GPR. This means that we either have a scalar or we are talking
- /// about the high or low part of an up-to-16-byte struct. This routine picks
- /// the best LLVM IR type to represent this, which may be i64 or may be anything
- /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
- /// etc).
- ///
- /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
- /// the source type. IROffset is an offset in bytes into the LLVM IR type that
- /// the 8-byte value references. PrefType may be null.
- ///
- /// SourceTy is the source level type for the entire argument. SourceOffset is
- /// an offset into this that we're processing (which is always either 0 or 8).
- ///
- llvm::Type *X86_64ABIInfo::
- GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
- QualType SourceTy, unsigned SourceOffset) const {
- // If we're dealing with an un-offset LLVM IR type, then it means that we're
- // returning an 8-byte unit starting with it. See if we can safely use it.
- if (IROffset == 0) {
- // Pointers and int64's always fill the 8-byte unit.
- if (isa<llvm::PointerType>(IRType) || IRType->isIntegerTy(64))
- return IRType;
- // If we have a 1/2/4-byte integer, we can use it only if the rest of the
- // goodness in the source type is just tail padding. This is allowed to
- // kick in for struct {double,int} on the int, but not on
- // struct{double,int,int} because we wouldn't return the second int. We
- // have to do this analysis on the source type because we can't depend on
- // unions being lowered a specific way etc.
- if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
- IRType->isIntegerTy(32)) {
- unsigned BitWidth = cast<llvm::IntegerType>(IRType)->getBitWidth();
- if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
- SourceOffset*8+64, getContext()))
- return IRType;
- }
- }
- if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
- // If this is a struct, recurse into the field at the specified offset.
- const llvm::StructLayout *SL = getTargetData().getStructLayout(STy);
- if (IROffset < SL->getSizeInBytes()) {
- unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
- IROffset -= SL->getElementOffset(FieldIdx);
- return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
- SourceTy, SourceOffset);
- }
- }
- if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
- llvm::Type *EltTy = ATy->getElementType();
- unsigned EltSize = getTargetData().getTypeAllocSize(EltTy);
- unsigned EltOffset = IROffset/EltSize*EltSize;
- return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
- SourceOffset);
- }
- // Okay, we don't have any better idea of what to pass, so we pass this in an
- // integer register that isn't too big to fit the rest of the struct.
- unsigned TySizeInBytes =
- (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
- assert(TySizeInBytes != SourceOffset && "Empty field?");
- // It is always safe to classify this as an integer type up to i64 that
- // isn't larger than the structure.
- return llvm::IntegerType::get(getVMContext(),
- std::min(TySizeInBytes-SourceOffset, 8U)*8);
- }
- /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
- /// be used as elements of a two register pair to pass or return, return a
- /// first class aggregate to represent them. For example, if the low part of
- /// a by-value argument should be passed as i32* and the high part as float,
- /// return {i32*, float}.
- static llvm::Type *
- GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
- const llvm::TargetData &TD) {
- // In order to correctly satisfy the ABI, we need to the high part to start
- // at offset 8. If the high and low parts we inferred are both 4-byte types
- // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
- // the second element at offset 8. Check for this:
- unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
- unsigned HiAlign = TD.getABITypeAlignment(Hi);
- unsigned HiStart = llvm::TargetData::RoundUpAlignment(LoSize, HiAlign);
- assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
- // To handle this, we have to increase the size of the low part so that the
- // second element will start at an 8 byte offset. We can't increase the size
- // of the second element because it might make us access off the end of the
- // struct.
- if (HiStart != 8) {
- // There are only two sorts of types the ABI generation code can produce for
- // the low part of a pair that aren't 8 bytes in size: float or i8/i16/i32.
- // Promote these to a larger type.
- if (Lo->isFloatTy())
- Lo = llvm::Type::getDoubleTy(Lo->getContext());
- else {
- assert(Lo->isIntegerTy() && "Invalid/unknown lo type");
- Lo = llvm::Type::getInt64Ty(Lo->getContext());
- }
- }
- llvm::StructType *Result = llvm::StructType::get(Lo, Hi, NULL);
- // Verify that the second element is at an 8-byte offset.
- assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
- "Invalid x86-64 argument pair!");
- return Result;
- }
- ABIArgInfo X86_64ABIInfo::
- classifyReturnType(QualType RetTy) const {
- // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
- // classification algorithm.
- X86_64ABIInfo::Class Lo, Hi;
- classify(RetTy, 0, Lo, Hi);
- // Check some invariants.
- assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
- llvm::Type *ResType = 0;
- switch (Lo) {
- case NoClass:
- if (Hi == NoClass)
- return ABIArgInfo::getIgnore();
- // If the low part is just padding, it takes no register, leave ResType
- // null.
- assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
- "Unknown missing lo part");
- break;
- case SSEUp:
- case X87Up:
- llvm_unreachable("Invalid classification for lo word.");
- // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
- // hidden argument.
- case Memory:
- return getIndirectReturnResult(RetTy);
- // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
- // available register of the sequence %rax, %rdx is used.
- case Integer:
- ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
- // If we have a sign or zero extended integer, make sure to return Extend
- // so that the parameter gets the right LLVM IR attributes.
- if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- if (RetTy->isIntegralOrEnumerationType() &&
- RetTy->isPromotableIntegerType())
- return ABIArgInfo::getExtend();
- }
- break;
- // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
- // available SSE register of the sequence %xmm0, %xmm1 is used.
- case SSE:
- ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
- break;
- // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
- // returned on the X87 stack in %st0 as 80-bit x87 number.
- case X87:
- ResType = llvm::Type::getX86_FP80Ty(getVMContext());
- break;
- // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
- // part of the value is returned in %st0 and the imaginary part in
- // %st1.
- case ComplexX87:
- assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
- ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
- llvm::Type::getX86_FP80Ty(getVMContext()),
- NULL);
- break;
- }
- llvm::Type *HighPart = 0;
- switch (Hi) {
- // Memory was handled previously and X87 should
- // never occur as a hi class.
- case Memory:
- case X87:
- llvm_unreachable("Invalid classification for hi word.");
- case ComplexX87: // Previously handled.
- case NoClass:
- break;
- case Integer:
- HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
- if (Lo == NoClass) // Return HighPart at offset 8 in memory.
- return ABIArgInfo::getDirect(HighPart, 8);
- break;
- case SSE:
- HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
- if (Lo == NoClass) // Return HighPart at offset 8 in memory.
- return ABIArgInfo::getDirect(HighPart, 8);
- break;
- // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
- // is passed in the next available eightbyte chunk if the last used
- // vector register.
- //
- // SSEUP should always be preceded by SSE, just widen.
- case SSEUp:
- assert(Lo == SSE && "Unexpected SSEUp classification.");
- ResType = GetByteVectorType(RetTy);
- break;
- // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
- // returned together with the previous X87 value in %st0.
- case X87Up:
- // If X87Up is preceded by X87, we don't need to do
- // anything. However, in some cases with unions it may not be
- // preceded by X87. In such situations we follow gcc and pass the
- // extra bits in an SSE reg.
- if (Lo != X87) {
- HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
- if (Lo == NoClass) // Return HighPart at offset 8 in memory.
- return ABIArgInfo::getDirect(HighPart, 8);
- }
- break;
- }
- // If a high part was specified, merge it together with the low part. It is
- // known to pass in the high eightbyte of the result. We do this by forming a
- // first class struct aggregate with the high and low part: {low, high}
- if (HighPart)
- ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
- return ABIArgInfo::getDirect(ResType);
- }
- ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned &neededInt,
- unsigned &neededSSE) const {
- X86_64ABIInfo::Class Lo, Hi;
- classify(Ty, 0, Lo, Hi);
- // Check some invariants.
- // FIXME: Enforce these by construction.
- assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
- assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
- neededInt = 0;
- neededSSE = 0;
- llvm::Type *ResType = 0;
- switch (Lo) {
- case NoClass:
- if (Hi == NoClass)
- return ABIArgInfo::getIgnore();
- // If the low part is just padding, it takes no register, leave ResType
- // null.
- assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
- "Unknown missing lo part");
- break;
- // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
- // on the stack.
- case Memory:
- // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
- // COMPLEX_X87, it is passed in memory.
- case X87:
- case ComplexX87:
- if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
- ++neededInt;
- return getIndirectResult(Ty);
- case SSEUp:
- case X87Up:
- llvm_unreachable("Invalid classification for lo word.");
- // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
- // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
- // and %r9 is used.
- case Integer:
- ++neededInt;
- // Pick an 8-byte type based on the preferred type.
- ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
- // If we have a sign or zero extended integer, make sure to return Extend
- // so that the parameter gets the right LLVM IR attributes.
- if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- if (Ty->isIntegralOrEnumerationType() &&
- Ty->isPromotableIntegerType())
- return ABIArgInfo::getExtend();
- }
- break;
- // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
- // available SSE register is used, the registers are taken in the
- // order from %xmm0 to %xmm7.
- case SSE: {
- llvm::Type *IRType = CGT.ConvertType(Ty);
- ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
- ++neededSSE;
- break;
- }
- }
- llvm::Type *HighPart = 0;
- switch (Hi) {
- // Memory was handled previously, ComplexX87 and X87 should
- // never occur as hi classes, and X87Up must be preceded by X87,
- // which is passed in memory.
- case Memory:
- case X87:
- case ComplexX87:
- llvm_unreachable("Invalid classification for hi word.");
- case NoClass: break;
- case Integer:
- ++neededInt;
- // Pick an 8-byte type based on the preferred type.
- HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
- if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
- return ABIArgInfo::getDirect(HighPart, 8);
- break;
- // X87Up generally doesn't occur here (long double is passed in
- // memory), except in situations involving unions.
- case X87Up:
- case SSE:
- HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
- if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
- return ABIArgInfo::getDirect(HighPart, 8);
- ++neededSSE;
- break;
- // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
- // eightbyte is passed in the upper half of the last used SSE
- // register. This only happens when 128-bit vectors are passed.
- case SSEUp:
- assert(Lo == SSE && "Unexpected SSEUp classification");
- ResType = GetByteVectorType(Ty);
- break;
- }
- // If a high part was specified, merge it together with the low part. It is
- // known to pass in the high eightbyte of the result. We do this by forming a
- // first class struct aggregate with the high and low part: {low, high}
- if (HighPart)
- ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getTargetData());
- return ABIArgInfo::getDirect(ResType);
- }
- void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- // Keep track of the number of assigned registers.
- unsigned freeIntRegs = 6, freeSSERegs = 8;
- // If the return value is indirect, then the hidden argument is consuming one
- // integer register.
- if (FI.getReturnInfo().isIndirect())
- --freeIntRegs;
- // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
- // get assigned (in left-to-right order) for passing as follows...
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it) {
- unsigned neededInt, neededSSE;
- it->info = classifyArgumentType(it->type, neededInt, neededSSE);
- // AMD64-ABI 3.2.3p3: If there are no registers available for any
- // eightbyte of an argument, the whole argument is passed on the
- // stack. If registers have already been assigned for some
- // eightbytes of such an argument, the assignments get reverted.
- if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
- freeIntRegs -= neededInt;
- freeSSERegs -= neededSSE;
- } else {
- it->info = getIndirectResult(it->type);
- }
- }
- }
- static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
- QualType Ty,
- CodeGenFunction &CGF) {
- llvm::Value *overflow_arg_area_p =
- CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
- llvm::Value *overflow_arg_area =
- CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
- // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
- // byte boundary if alignment needed by type exceeds 8 byte boundary.
- // It isn't stated explicitly in the standard, but in practice we use
- // alignment greater than 16 where necessary.
- uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
- if (Align > 8) {
- // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
- llvm::Value *Offset =
- llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
- overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
- llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
- CGF.Int64Ty);
- llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int64Ty, -(uint64_t)Align);
- overflow_arg_area =
- CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
- overflow_arg_area->getType(),
- "overflow_arg_area.align");
- }
- // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
- llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
- llvm::Value *Res =
- CGF.Builder.CreateBitCast(overflow_arg_area,
- llvm::PointerType::getUnqual(LTy));
- // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
- // l->overflow_arg_area + sizeof(type).
- // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
- // an 8 byte boundary.
- uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
- llvm::Value *Offset =
- llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
- overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
- "overflow_arg_area.next");
- CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
- // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
- return Res;
- }
- llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- // Assume that va_list type is correct; should be pointer to LLVM type:
- // struct {
- // i32 gp_offset;
- // i32 fp_offset;
- // i8* overflow_arg_area;
- // i8* reg_save_area;
- // };
- unsigned neededInt, neededSSE;
- Ty = CGF.getContext().getCanonicalType(Ty);
- ABIArgInfo AI = classifyArgumentType(Ty, neededInt, neededSSE);
- // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
- // in the registers. If not go to step 7.
- if (!neededInt && !neededSSE)
- return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
- // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
- // general purpose registers needed to pass type and num_fp to hold
- // the number of floating point registers needed.
- // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
- // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
- // l->fp_offset > 304 - num_fp * 16 go to step 7.
- //
- // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
- // register save space).
- llvm::Value *InRegs = 0;
- llvm::Value *gp_offset_p = 0, *gp_offset = 0;
- llvm::Value *fp_offset_p = 0, *fp_offset = 0;
- if (neededInt) {
- gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
- gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
- InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
- InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
- }
- if (neededSSE) {
- fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
- fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
- llvm::Value *FitsInFP =
- llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
- FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
- InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
- }
- llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
- llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
- CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
- // Emit code to load the value if it was passed in registers.
- CGF.EmitBlock(InRegBlock);
- // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
- // an offset of l->gp_offset and/or l->fp_offset. This may require
- // copying to a temporary location in case the parameter is passed
- // in different register classes or requires an alignment greater
- // than 8 for general purpose registers and 16 for XMM registers.
- //
- // FIXME: This really results in shameful code when we end up needing to
- // collect arguments from different places; often what should result in a
- // simple assembling of a structure from scattered addresses has many more
- // loads than necessary. Can we clean this up?
- llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
- llvm::Value *RegAddr =
- CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
- "reg_save_area");
- if (neededInt && neededSSE) {
- // FIXME: Cleanup.
- assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
- llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
- llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
- assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
- llvm::Type *TyLo = ST->getElementType(0);
- llvm::Type *TyHi = ST->getElementType(1);
- assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
- "Unexpected ABI info for mixed regs");
- llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
- llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
- llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
- llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
- llvm::Value *RegLoAddr = TyLo->isFloatingPointTy() ? FPAddr : GPAddr;
- llvm::Value *RegHiAddr = TyLo->isFloatingPointTy() ? GPAddr : FPAddr;
- llvm::Value *V =
- CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
- V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
- RegAddr = CGF.Builder.CreateBitCast(Tmp,
- llvm::PointerType::getUnqual(LTy));
- } else if (neededInt) {
- RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
- RegAddr = CGF.Builder.CreateBitCast(RegAddr,
- llvm::PointerType::getUnqual(LTy));
- } else if (neededSSE == 1) {
- RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
- RegAddr = CGF.Builder.CreateBitCast(RegAddr,
- llvm::PointerType::getUnqual(LTy));
- } else {
- assert(neededSSE == 2 && "Invalid number of needed registers!");
- // SSE registers are spaced 16 bytes apart in the register save
- // area, we need to collect the two eightbytes together.
- llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
- llvm::Value *RegAddrHi = CGF.Builder.CreateConstGEP1_32(RegAddrLo, 16);
- llvm::Type *DoubleTy = CGF.DoubleTy;
- llvm::Type *DblPtrTy =
- llvm::PointerType::getUnqual(DoubleTy);
- llvm::StructType *ST = llvm::StructType::get(DoubleTy,
- DoubleTy, NULL);
- llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
- V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
- DblPtrTy));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
- V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
- DblPtrTy));
- CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
- RegAddr = CGF.Builder.CreateBitCast(Tmp,
- llvm::PointerType::getUnqual(LTy));
- }
- // AMD64-ABI 3.5.7p5: Step 5. Set:
- // l->gp_offset = l->gp_offset + num_gp * 8
- // l->fp_offset = l->fp_offset + num_fp * 16.
- if (neededInt) {
- llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
- CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
- gp_offset_p);
- }
- if (neededSSE) {
- llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
- CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
- fp_offset_p);
- }
- CGF.EmitBranch(ContBlock);
- // Emit code to load the value if it was passed in memory.
- CGF.EmitBlock(InMemBlock);
- llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
- // Return the appropriate result.
- CGF.EmitBlock(ContBlock);
- llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), 2,
- "vaarg.addr");
- ResAddr->addIncoming(RegAddr, InRegBlock);
- ResAddr->addIncoming(MemAddr, InMemBlock);
- return ResAddr;
- }
- ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty) const {
- if (Ty->isVoidType())
- return ABIArgInfo::getIgnore();
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- uint64_t Size = getContext().getTypeSize(Ty);
- if (const RecordType *RT = Ty->getAs<RecordType>()) {
- if (hasNonTrivialDestructorOrCopyConstructor(RT) ||
- RT->getDecl()->hasFlexibleArrayMember())
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- // FIXME: mingw-w64-gcc emits 128-bit struct as i128
- if (Size == 128 &&
- getContext().getTargetInfo().getTriple().getOS()
- == llvm::Triple::MinGW32)
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
- Size));
- // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
- // not 1, 2, 4, or 8 bytes, must be passed by reference."
- if (Size <= 64 &&
- (Size & (Size - 1)) == 0)
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
- Size));
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- }
- if (Ty->isPromotableIntegerType())
- return ABIArgInfo::getExtend();
- return ABIArgInfo::getDirect();
- }
- void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
- QualType RetTy = FI.getReturnType();
- FI.getReturnInfo() = classify(RetTy);
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classify(it->type);
- }
- llvm::Value *WinX86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- llvm::Type *BPP = CGF.Int8PtrPtrTy;
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
- "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- llvm::Type *PTy =
- llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
- uint64_t Offset =
- llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 8);
- llvm::Value *NextAddr =
- Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
- return AddrTyped;
- }
- // PowerPC-32
- namespace {
- class PPC32TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
- public:
- PPC32TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
- // This is recovered from gcc output.
- return 1; // r1 is the dedicated stack pointer
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const;
- };
- }
- bool
- PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- // This is calculated from the LLVM and GCC tables and verified
- // against gcc output. AFAIK all ABIs use the same encoding.
- CodeGen::CGBuilderTy &Builder = CGF.Builder;
- llvm::IntegerType *i8 = CGF.Int8Ty;
- llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
- llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
- llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
- // 0-31: r0-31, the 4-byte general-purpose registers
- AssignToArrayRange(Builder, Address, Four8, 0, 31);
- // 32-63: fp0-31, the 8-byte floating-point registers
- AssignToArrayRange(Builder, Address, Eight8, 32, 63);
- // 64-76 are various 4-byte special-purpose registers:
- // 64: mq
- // 65: lr
- // 66: ctr
- // 67: ap
- // 68-75 cr0-7
- // 76: xer
- AssignToArrayRange(Builder, Address, Four8, 64, 76);
- // 77-108: v0-31, the 16-byte vector registers
- AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
- // 109: vrsave
- // 110: vscr
- // 111: spe_acc
- // 112: spefscr
- // 113: sfp
- AssignToArrayRange(Builder, Address, Four8, 109, 113);
- return false;
- }
- //===----------------------------------------------------------------------===//
- // ARM ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class ARMABIInfo : public ABIInfo {
- public:
- enum ABIKind {
- APCS = 0,
- AAPCS = 1,
- AAPCS_VFP
- };
- private:
- ABIKind Kind;
- public:
- ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) : ABIInfo(CGT), Kind(_Kind) {}
- bool isEABI() const {
- StringRef Env =
- getContext().getTargetInfo().getTriple().getEnvironmentName();
- return (Env == "gnueabi" || Env == "eabi" || Env == "androideabi");
- }
- private:
- ABIKind getABIKind() const { return Kind; }
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy) const;
- virtual void computeInfo(CGFunctionInfo &FI) const;
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
- };
- class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
- :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {}
- const ARMABIInfo &getABIInfo() const {
- return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
- }
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
- return 13;
- }
- StringRef getARCRetainAutoreleasedReturnValueMarker() const {
- return "mov\tr7, r7\t\t@ marker for objc_retainAutoreleaseReturnValue";
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
- // 0-15 are the 16 integer registers.
- AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
- return false;
- }
- unsigned getSizeOfUnwindException() const {
- if (getABIInfo().isEABI()) return 88;
- return TargetCodeGenInfo::getSizeOfUnwindException();
- }
- };
- }
- void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type);
- // Always honor user-specified calling convention.
- if (FI.getCallingConvention() != llvm::CallingConv::C)
- return;
- // Calling convention as default by an ABI.
- llvm::CallingConv::ID DefaultCC;
- if (isEABI())
- DefaultCC = llvm::CallingConv::ARM_AAPCS;
- else
- DefaultCC = llvm::CallingConv::ARM_APCS;
- // If user did not ask for specific calling convention explicitly (e.g. via
- // pcs attribute), set effective calling convention if it's different than ABI
- // default.
- switch (getABIKind()) {
- case APCS:
- if (DefaultCC != llvm::CallingConv::ARM_APCS)
- FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_APCS);
- break;
- case AAPCS:
- if (DefaultCC != llvm::CallingConv::ARM_AAPCS)
- FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS);
- break;
- case AAPCS_VFP:
- if (DefaultCC != llvm::CallingConv::ARM_AAPCS_VFP)
- FI.setEffectiveCallingConvention(llvm::CallingConv::ARM_AAPCS_VFP);
- break;
- }
- }
- /// isHomogeneousAggregate - Return true if a type is an AAPCS-VFP homogeneous
- /// aggregate. If HAMembers is non-null, the number of base elements
- /// contained in the type is returned through it; this is used for the
- /// recursive calls that check aggregate component types.
- static bool isHomogeneousAggregate(QualType Ty, const Type *&Base,
- ASTContext &Context,
- uint64_t *HAMembers = 0) {
- uint64_t Members;
- if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
- if (!isHomogeneousAggregate(AT->getElementType(), Base, Context, &Members))
- return false;
- Members *= AT->getSize().getZExtValue();
- } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
- const RecordDecl *RD = RT->getDecl();
- if (RD->isUnion() || RD->hasFlexibleArrayMember())
- return false;
- if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
- if (!CXXRD->isAggregate())
- return false;
- }
- Members = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- const FieldDecl *FD = *i;
- uint64_t FldMembers;
- if (!isHomogeneousAggregate(FD->getType(), Base, Context, &FldMembers))
- return false;
- Members += FldMembers;
- }
- } else {
- Members = 1;
- if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
- Members = 2;
- Ty = CT->getElementType();
- }
- // Homogeneous aggregates for AAPCS-VFP must have base types of float,
- // double, or 64-bit or 128-bit vectors.
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
- if (BT->getKind() != BuiltinType::Float &&
- BT->getKind() != BuiltinType::Double)
- return false;
- } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
- unsigned VecSize = Context.getTypeSize(VT);
- if (VecSize != 64 && VecSize != 128)
- return false;
- } else {
- return false;
- }
- // The base type must be the same for all members. Vector types of the
- // same total size are treated as being equivalent here.
- const Type *TyPtr = Ty.getTypePtr();
- if (!Base)
- Base = TyPtr;
- if (Base != TyPtr &&
- (!Base->isVectorType() || !TyPtr->isVectorType() ||
- Context.getTypeSize(Base) != Context.getTypeSize(TyPtr)))
- return false;
- }
- // Homogeneous Aggregates can have at most 4 members of the base type.
- if (HAMembers)
- *HAMembers = Members;
- return (Members <= 4);
- }
- ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty) const {
- if (!isAggregateTypeForABI(Ty)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- // Ignore empty records.
- if (isEmptyRecord(getContext(), Ty, true))
- return ABIArgInfo::getIgnore();
- // Structures with either a non-trivial destructor or a non-trivial
- // copy constructor are always indirect.
- if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- if (getABIKind() == ARMABIInfo::AAPCS_VFP) {
- // Homogeneous Aggregates need to be expanded.
- const Type *Base = 0;
- if (isHomogeneousAggregate(Ty, Base, getContext()))
- return ABIArgInfo::getExpand();
- }
- // Otherwise, pass by coercing to a structure of the appropriate size.
- //
- // FIXME: This is kind of nasty... but there isn't much choice because the ARM
- // backend doesn't support byval.
- // FIXME: This doesn't handle alignment > 64 bits.
- llvm::Type* ElemTy;
- unsigned SizeRegs;
- if (getContext().getTypeAlign(Ty) > 32) {
- ElemTy = llvm::Type::getInt64Ty(getVMContext());
- SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
- } else {
- ElemTy = llvm::Type::getInt32Ty(getVMContext());
- SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
- }
- llvm::Type *STy =
- llvm::StructType::get(llvm::ArrayType::get(ElemTy, SizeRegs), NULL);
- return ABIArgInfo::getDirect(STy);
- }
- static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
- llvm::LLVMContext &VMContext) {
- // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
- // is called integer-like if its size is less than or equal to one word, and
- // the offset of each of its addressable sub-fields is zero.
- uint64_t Size = Context.getTypeSize(Ty);
- // Check that the type fits in a word.
- if (Size > 32)
- return false;
- // FIXME: Handle vector types!
- if (Ty->isVectorType())
- return false;
- // Float types are never treated as "integer like".
- if (Ty->isRealFloatingType())
- return false;
- // If this is a builtin or pointer type then it is ok.
- if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
- return true;
- // Small complex integer types are "integer like".
- if (const ComplexType *CT = Ty->getAs<ComplexType>())
- return isIntegerLikeType(CT->getElementType(), Context, VMContext);
- // Single element and zero sized arrays should be allowed, by the definition
- // above, but they are not.
- // Otherwise, it must be a record type.
- const RecordType *RT = Ty->getAs<RecordType>();
- if (!RT) return false;
- // Ignore records with flexible arrays.
- const RecordDecl *RD = RT->getDecl();
- if (RD->hasFlexibleArrayMember())
- return false;
- // Check that all sub-fields are at offset 0, and are themselves "integer
- // like".
- const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
- bool HadField = false;
- unsigned idx = 0;
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i, ++idx) {
- const FieldDecl *FD = *i;
- // Bit-fields are not addressable, we only need to verify they are "integer
- // like". We still have to disallow a subsequent non-bitfield, for example:
- // struct { int : 0; int x }
- // is non-integer like according to gcc.
- if (FD->isBitField()) {
- if (!RD->isUnion())
- HadField = true;
- if (!isIntegerLikeType(FD->getType(), Context, VMContext))
- return false;
- continue;
- }
- // Check if this field is at offset 0.
- if (Layout.getFieldOffset(idx) != 0)
- return false;
- if (!isIntegerLikeType(FD->getType(), Context, VMContext))
- return false;
- // Only allow at most one field in a structure. This doesn't match the
- // wording above, but follows gcc in situations with a field following an
- // empty structure.
- if (!RD->isUnion()) {
- if (HadField)
- return false;
- HadField = true;
- }
- }
- return true;
- }
- ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- // Large vector types should be returned via memory.
- if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
- return ABIArgInfo::getIndirect(0);
- if (!isAggregateTypeForABI(RetTy)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- // Structures with either a non-trivial destructor or a non-trivial
- // copy constructor are always indirect.
- if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- // Are we following APCS?
- if (getABIKind() == APCS) {
- if (isEmptyRecord(getContext(), RetTy, false))
- return ABIArgInfo::getIgnore();
- // Complex types are all returned as packed integers.
- //
- // FIXME: Consider using 2 x vector types if the back end handles them
- // correctly.
- if (RetTy->isAnyComplexType())
- return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
- getContext().getTypeSize(RetTy)));
- // Integer like structures are returned in r0.
- if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
- // Return in the smallest viable integer type.
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (Size <= 8)
- return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
- if (Size <= 16)
- return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- }
- // Otherwise return in memory.
- return ABIArgInfo::getIndirect(0);
- }
- // Otherwise this is an AAPCS variant.
- if (isEmptyRecord(getContext(), RetTy, true))
- return ABIArgInfo::getIgnore();
- // Check for homogeneous aggregates with AAPCS-VFP.
- if (getABIKind() == AAPCS_VFP) {
- const Type *Base = 0;
- if (isHomogeneousAggregate(RetTy, Base, getContext()))
- // Homogeneous Aggregates are returned directly.
- return ABIArgInfo::getDirect();
- }
- // Aggregates <= 4 bytes are returned in r0; other aggregates
- // are returned indirectly.
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (Size <= 32) {
- // Return in the smallest viable integer type.
- if (Size <= 8)
- return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
- if (Size <= 16)
- return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- }
- return ABIArgInfo::getIndirect(0);
- }
- llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- llvm::Type *BP = CGF.Int8PtrTy;
- llvm::Type *BPP = CGF.Int8PtrPtrTy;
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- // Handle address alignment for type alignment > 32 bits
- uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
- if (TyAlign > 4) {
- assert((TyAlign & (TyAlign - 1)) == 0 &&
- "Alignment is not power of 2!");
- llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
- AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
- AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
- Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
- }
- llvm::Type *PTy =
- llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
- uint64_t Offset =
- llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
- llvm::Value *NextAddr =
- Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
- return AddrTyped;
- }
- //===----------------------------------------------------------------------===//
- // PTX ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class PTXABIInfo : public ABIInfo {
- public:
- PTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType Ty) const;
- virtual void computeInfo(CGFunctionInfo &FI) const;
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CFG) const;
- };
- class PTXTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- PTXTargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new PTXABIInfo(CGT)) {}
-
- virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const;
- };
- ABIArgInfo PTXABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- if (isAggregateTypeForABI(RetTy))
- return ABIArgInfo::getIndirect(0);
- return ABIArgInfo::getDirect();
- }
- ABIArgInfo PTXABIInfo::classifyArgumentType(QualType Ty) const {
- if (isAggregateTypeForABI(Ty))
- return ABIArgInfo::getIndirect(0);
- return ABIArgInfo::getDirect();
- }
- void PTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type);
- // Always honor user-specified calling convention.
- if (FI.getCallingConvention() != llvm::CallingConv::C)
- return;
- // Calling convention as default by an ABI.
- llvm::CallingConv::ID DefaultCC;
- const LangOptions &LangOpts = getContext().getLangOptions();
- if (LangOpts.OpenCL || LangOpts.CUDA) {
- // If we are in OpenCL or CUDA mode, then default to device functions
- DefaultCC = llvm::CallingConv::PTX_Device;
- } else {
- // If we are in standard C/C++ mode, use the triple to decide on the default
- StringRef Env =
- getContext().getTargetInfo().getTriple().getEnvironmentName();
- if (Env == "device")
- DefaultCC = llvm::CallingConv::PTX_Device;
- else
- DefaultCC = llvm::CallingConv::PTX_Kernel;
- }
- FI.setEffectiveCallingConvention(DefaultCC);
-
- }
- llvm::Value *PTXABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CFG) const {
- llvm_unreachable("PTX does not support varargs");
- }
- void PTXTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
- llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const{
- const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
- if (!FD) return;
- llvm::Function *F = cast<llvm::Function>(GV);
- // Perform special handling in OpenCL mode
- if (M.getLangOptions().OpenCL) {
- // Use OpenCL function attributes to set proper calling conventions
- // By default, all functions are device functions
- if (FD->hasAttr<OpenCLKernelAttr>()) {
- // OpenCL __kernel functions get a kernel calling convention
- F->setCallingConv(llvm::CallingConv::PTX_Kernel);
- // And kernel functions are not subject to inlining
- F->addFnAttr(llvm::Attribute::NoInline);
- }
- }
- // Perform special handling in CUDA mode.
- if (M.getLangOptions().CUDA) {
- // CUDA __global__ functions get a kernel calling convention. Since
- // __global__ functions cannot be called from the device, we do not
- // need to set the noinline attribute.
- if (FD->getAttr<CUDAGlobalAttr>())
- F->setCallingConv(llvm::CallingConv::PTX_Kernel);
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // MBlaze ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class MBlazeABIInfo : public ABIInfo {
- public:
- MBlazeABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
- bool isPromotableIntegerType(QualType Ty) const;
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy) const;
- virtual void computeInfo(CGFunctionInfo &FI) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type);
- }
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
- };
- class MBlazeTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- MBlazeTargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new MBlazeABIInfo(CGT)) {}
- void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const;
- };
- }
- bool MBlazeABIInfo::isPromotableIntegerType(QualType Ty) const {
- // MBlaze ABI requires all 8 and 16 bit quantities to be extended.
- if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
- switch (BT->getKind()) {
- case BuiltinType::Bool:
- case BuiltinType::Char_S:
- case BuiltinType::Char_U:
- case BuiltinType::SChar:
- case BuiltinType::UChar:
- case BuiltinType::Short:
- case BuiltinType::UShort:
- return true;
- default:
- return false;
- }
- return false;
- }
- llvm::Value *MBlazeABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- // FIXME: Implement
- return 0;
- }
- ABIArgInfo MBlazeABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- if (isAggregateTypeForABI(RetTy))
- return ABIArgInfo::getIndirect(0);
- return (isPromotableIntegerType(RetTy) ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- ABIArgInfo MBlazeABIInfo::classifyArgumentType(QualType Ty) const {
- if (isAggregateTypeForABI(Ty))
- return ABIArgInfo::getIndirect(0);
- return (isPromotableIntegerType(Ty) ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- void MBlazeTargetCodeGenInfo::SetTargetAttributes(const Decl *D,
- llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M)
- const {
- const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
- if (!FD) return;
- llvm::CallingConv::ID CC = llvm::CallingConv::C;
- if (FD->hasAttr<MBlazeInterruptHandlerAttr>())
- CC = llvm::CallingConv::MBLAZE_INTR;
- else if (FD->hasAttr<MBlazeSaveVolatilesAttr>())
- CC = llvm::CallingConv::MBLAZE_SVOL;
- if (CC != llvm::CallingConv::C) {
- // Handle 'interrupt_handler' attribute:
- llvm::Function *F = cast<llvm::Function>(GV);
- // Step 1: Set ISR calling convention.
- F->setCallingConv(CC);
- // Step 2: Add attributes goodness.
- F->addFnAttr(llvm::Attribute::NoInline);
- }
- // Step 3: Emit _interrupt_handler alias.
- if (CC == llvm::CallingConv::MBLAZE_INTR)
- new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
- "_interrupt_handler", GV, &M.getModule());
- }
- //===----------------------------------------------------------------------===//
- // MSP430 ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
- : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {}
- void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const;
- };
- }
- void MSP430TargetCodeGenInfo::SetTargetAttributes(const Decl *D,
- llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const {
- if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
- if (const MSP430InterruptAttr *attr = FD->getAttr<MSP430InterruptAttr>()) {
- // Handle 'interrupt' attribute:
- llvm::Function *F = cast<llvm::Function>(GV);
- // Step 1: Set ISR calling convention.
- F->setCallingConv(llvm::CallingConv::MSP430_INTR);
- // Step 2: Add attributes goodness.
- F->addFnAttr(llvm::Attribute::NoInline);
- // Step 3: Emit ISR vector alias.
- unsigned Num = attr->getNumber() + 0xffe0;
- new llvm::GlobalAlias(GV->getType(), llvm::Function::ExternalLinkage,
- "vector_" + Twine::utohexstr(Num),
- GV, &M.getModule());
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // MIPS ABI Implementation. This works for both little-endian and
- // big-endian variants.
- //===----------------------------------------------------------------------===//
- namespace {
- class MipsABIInfo : public ABIInfo {
- bool IsO32;
- unsigned MinABIStackAlignInBytes;
- llvm::Type* HandleAggregates(QualType Ty) const;
- llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
- llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
- public:
- MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
- ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8) {}
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
- virtual void computeInfo(CGFunctionInfo &FI) const;
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
- };
- class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
- unsigned SizeOfUnwindException;
- public:
- MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
- : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)),
- SizeOfUnwindException(IsO32 ? 24 : 32) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const {
- return 29;
- }
- bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const;
- unsigned getSizeOfUnwindException() const {
- return SizeOfUnwindException;
- }
- };
- }
- // In N32/64, an aligned double precision floating point field is passed in
- // a register.
- llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty) const {
- if (IsO32)
- return 0;
- if (Ty->isComplexType())
- return CGT.ConvertType(Ty);
- const RecordType *RT = Ty->getAs<RecordType>();
- // Unions are passed in integer registers.
- if (!RT || !RT->isStructureOrClassType())
- return 0;
- const RecordDecl *RD = RT->getDecl();
- const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
- uint64_t StructSize = getContext().getTypeSize(Ty);
- assert(!(StructSize % 8) && "Size of structure must be multiple of 8.");
-
- uint64_t LastOffset = 0;
- unsigned idx = 0;
- llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
- SmallVector<llvm::Type*, 8> ArgList;
- // Iterate over fields in the struct/class and check if there are any aligned
- // double fields.
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i, ++idx) {
- const QualType Ty = (*i)->getType();
- const BuiltinType *BT = Ty->getAs<BuiltinType>();
- if (!BT || BT->getKind() != BuiltinType::Double)
- continue;
- uint64_t Offset = Layout.getFieldOffset(idx);
- if (Offset % 64) // Ignore doubles that are not aligned.
- continue;
- // Add ((Offset - LastOffset) / 64) args of type i64.
- for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
- ArgList.push_back(I64);
- // Add double type.
- ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
- LastOffset = Offset + 64;
- }
- // This struct/class doesn't have an aligned double field.
- if (!LastOffset)
- return 0;
- // Add ((StructSize - LastOffset) / 64) args of type i64.
- for (unsigned N = (StructSize - LastOffset) / 64; N; --N)
- ArgList.push_back(I64);
- // If the size of the remainder is not zero, add one more integer type to
- // ArgList.
- unsigned R = (StructSize - LastOffset) % 64;
- if (R)
- ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
- return llvm::StructType::get(getVMContext(), ArgList);
- }
- llvm::Type *MipsABIInfo::getPaddingType(uint64_t Align, uint64_t Offset) const {
- // Padding is inserted only for N32/64.
- if (IsO32)
- return 0;
- assert(Align <= 16 && "Alignment larger than 16 not handled.");
- return (Align == 16 && Offset & 0xf) ?
- llvm::IntegerType::get(getVMContext(), 64) : 0;
- }
- ABIArgInfo
- MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
- uint64_t OrigOffset = Offset;
- uint64_t TySize =
- llvm::RoundUpToAlignment(getContext().getTypeSize(Ty), 64) / 8;
- uint64_t Align = getContext().getTypeAlign(Ty) / 8;
- Offset = llvm::RoundUpToAlignment(Offset, std::max(Align, (uint64_t)8));
- Offset += TySize;
- if (isAggregateTypeForABI(Ty)) {
- // Ignore empty aggregates.
- if (TySize == 0)
- return ABIArgInfo::getIgnore();
- // Records with non trivial destructors/constructors should not be passed
- // by value.
- if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty)) {
- Offset = OrigOffset + 8;
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- }
- // If we have reached here, aggregates are passed either indirectly via a
- // byval pointer or directly by coercing to another structure type. In the
- // latter case, padding is inserted if the offset of the aggregate is
- // unaligned.
- llvm::Type *ResType = HandleAggregates(Ty);
- if (!ResType)
- return ABIArgInfo::getIndirect(0);
- return ABIArgInfo::getDirect(ResType, 0, getPaddingType(Align, OrigOffset));
- }
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- if (Ty->isPromotableIntegerType())
- return ABIArgInfo::getExtend();
- return ABIArgInfo::getDirect(0, 0, getPaddingType(Align, OrigOffset));
- }
- llvm::Type*
- MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
- const RecordType *RT = RetTy->getAs<RecordType>();
- SmallVector<llvm::Type*, 2> RTList;
- if (RT && RT->isStructureOrClassType()) {
- const RecordDecl *RD = RT->getDecl();
- const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
- unsigned FieldCnt = Layout.getFieldCount();
- // N32/64 returns struct/classes in floating point registers if the
- // following conditions are met:
- // 1. The size of the struct/class is no larger than 128-bit.
- // 2. The struct/class has one or two fields all of which are floating
- // point types.
- // 3. The offset of the first field is zero (this follows what gcc does).
- //
- // Any other composite results are returned in integer registers.
- //
- if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
- RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
- for (; b != e; ++b) {
- const BuiltinType *BT = (*b)->getType()->getAs<BuiltinType>();
- if (!BT || !BT->isFloatingPoint())
- break;
- RTList.push_back(CGT.ConvertType((*b)->getType()));
- }
- if (b == e)
- return llvm::StructType::get(getVMContext(), RTList,
- RD->hasAttr<PackedAttr>());
- RTList.clear();
- }
- }
- RTList.push_back(llvm::IntegerType::get(getVMContext(),
- std::min(Size, (uint64_t)64)));
- if (Size > 64)
- RTList.push_back(llvm::IntegerType::get(getVMContext(), Size - 64));
- return llvm::StructType::get(getVMContext(), RTList);
- }
- ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (RetTy->isVoidType() || Size == 0)
- return ABIArgInfo::getIgnore();
- if (isAggregateTypeForABI(RetTy)) {
- if (Size <= 128) {
- if (RetTy->isAnyComplexType())
- return ABIArgInfo::getDirect();
- if (!IsO32 && !isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
- return ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
- }
- return ABIArgInfo::getIndirect(0);
- }
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
- ABIArgInfo &RetInfo = FI.getReturnInfo();
- RetInfo = classifyReturnType(FI.getReturnType());
- // Check if a pointer to an aggregate is passed as a hidden argument.
- uint64_t Offset = RetInfo.isIndirect() ? 8 : 0;
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type, Offset);
- }
- llvm::Value* MipsABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- llvm::Type *BP = CGF.Int8PtrTy;
- llvm::Type *BPP = CGF.Int8PtrPtrTy;
-
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- int64_t TypeAlign = getContext().getTypeAlign(Ty) / 8;
- llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped;
- unsigned PtrWidth = getContext().getTargetInfo().getPointerWidth(0);
- llvm::IntegerType *IntTy = (PtrWidth == 32) ? CGF.Int32Ty : CGF.Int64Ty;
- if (TypeAlign > MinABIStackAlignInBytes) {
- llvm::Value *AddrAsInt = CGF.Builder.CreatePtrToInt(Addr, IntTy);
- llvm::Value *Inc = llvm::ConstantInt::get(IntTy, TypeAlign - 1);
- llvm::Value *Mask = llvm::ConstantInt::get(IntTy, -TypeAlign);
- llvm::Value *Add = CGF.Builder.CreateAdd(AddrAsInt, Inc);
- llvm::Value *And = CGF.Builder.CreateAnd(Add, Mask);
- AddrTyped = CGF.Builder.CreateIntToPtr(And, PTy);
- }
- else
- AddrTyped = Builder.CreateBitCast(Addr, PTy);
- llvm::Value *AlignedAddr = Builder.CreateBitCast(AddrTyped, BP);
- TypeAlign = std::max((unsigned)TypeAlign, MinABIStackAlignInBytes);
- uint64_t Offset =
- llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, TypeAlign);
- llvm::Value *NextAddr =
- Builder.CreateGEP(AlignedAddr, llvm::ConstantInt::get(IntTy, Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
-
- return AddrTyped;
- }
- bool
- MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
- llvm::Value *Address) const {
- // This information comes from gcc's implementation, which seems to
- // as canonical as it gets.
- // Everything on MIPS is 4 bytes. Double-precision FP registers
- // are aliased to pairs of single-precision FP registers.
- llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
- // 0-31 are the general purpose registers, $0 - $31.
- // 32-63 are the floating-point registers, $f0 - $f31.
- // 64 and 65 are the multiply/divide registers, $hi and $lo.
- // 66 is the (notional, I think) register for signal-handler return.
- AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
- // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
- // They are one bit wide and ignored here.
- // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
- // (coprocessor 1 is the FP unit)
- // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
- // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
- // 176-181 are the DSP accumulator registers.
- AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
- return false;
- }
- //===----------------------------------------------------------------------===//
- // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
- // Currently subclassed only to implement custom OpenCL C function attribute
- // handling.
- //===----------------------------------------------------------------------===//
- namespace {
- class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
- public:
- TCETargetCodeGenInfo(CodeGenTypes &CGT)
- : DefaultTargetCodeGenInfo(CGT) {}
- virtual void SetTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const;
- };
- void TCETargetCodeGenInfo::SetTargetAttributes(const Decl *D,
- llvm::GlobalValue *GV,
- CodeGen::CodeGenModule &M) const {
- const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
- if (!FD) return;
- llvm::Function *F = cast<llvm::Function>(GV);
-
- if (M.getLangOptions().OpenCL) {
- if (FD->hasAttr<OpenCLKernelAttr>()) {
- // OpenCL C Kernel functions are not subject to inlining
- F->addFnAttr(llvm::Attribute::NoInline);
-
- if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) {
- // Convert the reqd_work_group_size() attributes to metadata.
- llvm::LLVMContext &Context = F->getContext();
- llvm::NamedMDNode *OpenCLMetadata =
- M.getModule().getOrInsertNamedMetadata("opencl.kernel_wg_size_info");
- SmallVector<llvm::Value*, 5> Operands;
- Operands.push_back(F);
- Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
- llvm::APInt(32,
- FD->getAttr<ReqdWorkGroupSizeAttr>()->getXDim())));
- Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
- llvm::APInt(32,
- FD->getAttr<ReqdWorkGroupSizeAttr>()->getYDim())));
- Operands.push_back(llvm::Constant::getIntegerValue(M.Int32Ty,
- llvm::APInt(32,
- FD->getAttr<ReqdWorkGroupSizeAttr>()->getZDim())));
- // Add a boolean constant operand for "required" (true) or "hint" (false)
- // for implementing the work_group_size_hint attr later. Currently
- // always true as the hint is not yet implemented.
- Operands.push_back(llvm::ConstantInt::getTrue(Context));
- OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
- }
- }
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // Hexagon ABI Implementation
- //===----------------------------------------------------------------------===//
- namespace {
- class HexagonABIInfo : public ABIInfo {
- public:
- HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
- private:
- ABIArgInfo classifyReturnType(QualType RetTy) const;
- ABIArgInfo classifyArgumentType(QualType RetTy) const;
- virtual void computeInfo(CGFunctionInfo &FI) const;
- virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const;
- };
- class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
- public:
- HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
- :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {}
- int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
- return 29;
- }
- };
- }
- void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
- FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
- for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
- it != ie; ++it)
- it->info = classifyArgumentType(it->type);
- }
- ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const {
- if (!isAggregateTypeForABI(Ty)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = Ty->getAs<EnumType>())
- Ty = EnumTy->getDecl()->getIntegerType();
- return (Ty->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- // Ignore empty records.
- if (isEmptyRecord(getContext(), Ty, true))
- return ABIArgInfo::getIgnore();
- // Structures with either a non-trivial destructor or a non-trivial
- // copy constructor are always indirect.
- if (isRecordWithNonTrivialDestructorOrCopyConstructor(Ty))
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- uint64_t Size = getContext().getTypeSize(Ty);
- if (Size > 64)
- return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
- // Pass in the smallest viable integer type.
- else if (Size > 32)
- return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
- else if (Size > 16)
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- else if (Size > 8)
- return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
- else
- return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
- }
- ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
- if (RetTy->isVoidType())
- return ABIArgInfo::getIgnore();
- // Large vector types should be returned via memory.
- if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64)
- return ABIArgInfo::getIndirect(0);
- if (!isAggregateTypeForABI(RetTy)) {
- // Treat an enum type as its underlying type.
- if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
- RetTy = EnumTy->getDecl()->getIntegerType();
- return (RetTy->isPromotableIntegerType() ?
- ABIArgInfo::getExtend() : ABIArgInfo::getDirect());
- }
- // Structures with either a non-trivial destructor or a non-trivial
- // copy constructor are always indirect.
- if (isRecordWithNonTrivialDestructorOrCopyConstructor(RetTy))
- return ABIArgInfo::getIndirect(0, /*ByVal=*/false);
- if (isEmptyRecord(getContext(), RetTy, true))
- return ABIArgInfo::getIgnore();
- // Aggregates <= 8 bytes are returned in r0; other aggregates
- // are returned indirectly.
- uint64_t Size = getContext().getTypeSize(RetTy);
- if (Size <= 64) {
- // Return in the smallest viable integer type.
- if (Size <= 8)
- return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
- if (Size <= 16)
- return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
- if (Size <= 32)
- return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
- return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext()));
- }
- return ABIArgInfo::getIndirect(0, /*ByVal=*/true);
- }
- llvm::Value *HexagonABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
- CodeGenFunction &CGF) const {
- // FIXME: Need to handle alignment
- llvm::Type *BPP = CGF.Int8PtrPtrTy;
- CGBuilderTy &Builder = CGF.Builder;
- llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
- "ap");
- llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
- llvm::Type *PTy =
- llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
- llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
- uint64_t Offset =
- llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
- llvm::Value *NextAddr =
- Builder.CreateGEP(Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
- "ap.next");
- Builder.CreateStore(NextAddr, VAListAddrAsBPP);
- return AddrTyped;
- }
- const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
- if (TheTargetCodeGenInfo)
- return *TheTargetCodeGenInfo;
- const llvm::Triple &Triple = getContext().getTargetInfo().getTriple();
- switch (Triple.getArch()) {
- default:
- return *(TheTargetCodeGenInfo = new DefaultTargetCodeGenInfo(Types));
- case llvm::Triple::mips:
- case llvm::Triple::mipsel:
- return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, true));
- case llvm::Triple::mips64:
- case llvm::Triple::mips64el:
- return *(TheTargetCodeGenInfo = new MIPSTargetCodeGenInfo(Types, false));
- case llvm::Triple::arm:
- case llvm::Triple::thumb:
- {
- ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
- if (strcmp(getContext().getTargetInfo().getABI(), "apcs-gnu") == 0)
- Kind = ARMABIInfo::APCS;
- else if (CodeGenOpts.FloatABI == "hard")
- Kind = ARMABIInfo::AAPCS_VFP;
- return *(TheTargetCodeGenInfo = new ARMTargetCodeGenInfo(Types, Kind));
- }
- case llvm::Triple::ppc:
- return *(TheTargetCodeGenInfo = new PPC32TargetCodeGenInfo(Types));
- case llvm::Triple::ptx32:
- case llvm::Triple::ptx64:
- return *(TheTargetCodeGenInfo = new PTXTargetCodeGenInfo(Types));
- case llvm::Triple::mblaze:
- return *(TheTargetCodeGenInfo = new MBlazeTargetCodeGenInfo(Types));
- case llvm::Triple::msp430:
- return *(TheTargetCodeGenInfo = new MSP430TargetCodeGenInfo(Types));
- case llvm::Triple::tce:
- return *(TheTargetCodeGenInfo = new TCETargetCodeGenInfo(Types));
- case llvm::Triple::x86: {
- bool DisableMMX = strcmp(getContext().getTargetInfo().getABI(), "no-mmx") == 0;
- if (Triple.isOSDarwin())
- return *(TheTargetCodeGenInfo =
- new X86_32TargetCodeGenInfo(
- Types, true, true, DisableMMX, false));
- switch (Triple.getOS()) {
- case llvm::Triple::Cygwin:
- case llvm::Triple::MinGW32:
- case llvm::Triple::AuroraUX:
- case llvm::Triple::DragonFly:
- case llvm::Triple::FreeBSD:
- case llvm::Triple::OpenBSD:
- return *(TheTargetCodeGenInfo =
- new X86_32TargetCodeGenInfo(
- Types, false, true, DisableMMX, false));
- case llvm::Triple::Win32:
- return *(TheTargetCodeGenInfo =
- new X86_32TargetCodeGenInfo(
- Types, false, true, DisableMMX, true));
- default:
- return *(TheTargetCodeGenInfo =
- new X86_32TargetCodeGenInfo(
- Types, false, false, DisableMMX, false));
- }
- }
- case llvm::Triple::x86_64: {
- bool HasAVX = strcmp(getContext().getTargetInfo().getABI(), "avx") == 0;
- switch (Triple.getOS()) {
- case llvm::Triple::Win32:
- case llvm::Triple::MinGW32:
- case llvm::Triple::Cygwin:
- return *(TheTargetCodeGenInfo = new WinX86_64TargetCodeGenInfo(Types));
- default:
- return *(TheTargetCodeGenInfo = new X86_64TargetCodeGenInfo(Types,
- HasAVX));
- }
- }
- case llvm::Triple::hexagon:
- return *(TheTargetCodeGenInfo = new HexagonTargetCodeGenInfo(Types));
- }
- }
|