1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162 |
- //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This contains code to emit Aggregate Expr nodes as LLVM code.
- //
- //===----------------------------------------------------------------------===//
- #include "CodeGenFunction.h"
- #include "CodeGenModule.h"
- #include "CGObjCRuntime.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/DeclCXX.h"
- #include "clang/AST/StmtVisitor.h"
- #include "llvm/Constants.h"
- #include "llvm/Function.h"
- #include "llvm/GlobalVariable.h"
- #include "llvm/Intrinsics.h"
- using namespace clang;
- using namespace CodeGen;
- //===----------------------------------------------------------------------===//
- // Aggregate Expression Emitter
- //===----------------------------------------------------------------------===//
- namespace {
- class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
- CodeGenFunction &CGF;
- CGBuilderTy &Builder;
- AggValueSlot Dest;
- bool IgnoreResult;
- /// We want to use 'dest' as the return slot except under two
- /// conditions:
- /// - The destination slot requires garbage collection, so we
- /// need to use the GC API.
- /// - The destination slot is potentially aliased.
- bool shouldUseDestForReturnSlot() const {
- return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
- }
- ReturnValueSlot getReturnValueSlot() const {
- if (!shouldUseDestForReturnSlot())
- return ReturnValueSlot();
- return ReturnValueSlot(Dest.getAddr(), Dest.isVolatile());
- }
- AggValueSlot EnsureSlot(QualType T) {
- if (!Dest.isIgnored()) return Dest;
- return CGF.CreateAggTemp(T, "agg.tmp.ensured");
- }
- public:
- AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest,
- bool ignore)
- : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
- IgnoreResult(ignore) {
- }
- //===--------------------------------------------------------------------===//
- // Utilities
- //===--------------------------------------------------------------------===//
- /// EmitAggLoadOfLValue - Given an expression with aggregate type that
- /// represents a value lvalue, this method emits the address of the lvalue,
- /// then loads the result into DestPtr.
- void EmitAggLoadOfLValue(const Expr *E);
- /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
- void EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore = false);
- void EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore = false,
- unsigned Alignment = 0);
- void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
- AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
- if (CGF.getLangOptions().getGC() && TypeRequiresGCollection(T))
- return AggValueSlot::NeedsGCBarriers;
- return AggValueSlot::DoesNotNeedGCBarriers;
- }
- bool TypeRequiresGCollection(QualType T);
- //===--------------------------------------------------------------------===//
- // Visitor Methods
- //===--------------------------------------------------------------------===//
- void VisitStmt(Stmt *S) {
- CGF.ErrorUnsupported(S, "aggregate expression");
- }
- void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
- void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
- Visit(GE->getResultExpr());
- }
- void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
- void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
- return Visit(E->getReplacement());
- }
- // l-values.
- void VisitDeclRefExpr(DeclRefExpr *DRE) { EmitAggLoadOfLValue(DRE); }
- void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
- void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
- void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
- void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
- void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
- EmitAggLoadOfLValue(E);
- }
- void VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
- EmitAggLoadOfLValue(E);
- }
- void VisitPredefinedExpr(const PredefinedExpr *E) {
- EmitAggLoadOfLValue(E);
- }
- // Operators.
- void VisitCastExpr(CastExpr *E);
- void VisitCallExpr(const CallExpr *E);
- void VisitStmtExpr(const StmtExpr *E);
- void VisitBinaryOperator(const BinaryOperator *BO);
- void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
- void VisitBinAssign(const BinaryOperator *E);
- void VisitBinComma(const BinaryOperator *E);
- void VisitObjCMessageExpr(ObjCMessageExpr *E);
- void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
- EmitAggLoadOfLValue(E);
- }
- void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
- void VisitChooseExpr(const ChooseExpr *CE);
- void VisitInitListExpr(InitListExpr *E);
- void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
- void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
- Visit(DAE->getExpr());
- }
- void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
- void VisitCXXConstructExpr(const CXXConstructExpr *E);
- void VisitLambdaExpr(LambdaExpr *E);
- void VisitExprWithCleanups(ExprWithCleanups *E);
- void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
- void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
- void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
- void VisitOpaqueValueExpr(OpaqueValueExpr *E);
- void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
- if (E->isGLValue()) {
- LValue LV = CGF.EmitPseudoObjectLValue(E);
- return EmitFinalDestCopy(E, LV);
- }
- CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
- }
- void VisitVAArgExpr(VAArgExpr *E);
- void EmitInitializationToLValue(Expr *E, LValue Address);
- void EmitNullInitializationToLValue(LValue Address);
- // case Expr::ChooseExprClass:
- void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
- void VisitAtomicExpr(AtomicExpr *E) {
- CGF.EmitAtomicExpr(E, EnsureSlot(E->getType()).getAddr());
- }
- };
- } // end anonymous namespace.
- //===----------------------------------------------------------------------===//
- // Utilities
- //===----------------------------------------------------------------------===//
- /// EmitAggLoadOfLValue - Given an expression with aggregate type that
- /// represents a value lvalue, this method emits the address of the lvalue,
- /// then loads the result into DestPtr.
- void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
- LValue LV = CGF.EmitLValue(E);
- EmitFinalDestCopy(E, LV);
- }
- /// \brief True if the given aggregate type requires special GC API calls.
- bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
- // Only record types have members that might require garbage collection.
- const RecordType *RecordTy = T->getAs<RecordType>();
- if (!RecordTy) return false;
- // Don't mess with non-trivial C++ types.
- RecordDecl *Record = RecordTy->getDecl();
- if (isa<CXXRecordDecl>(Record) &&
- (!cast<CXXRecordDecl>(Record)->hasTrivialCopyConstructor() ||
- !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
- return false;
- // Check whether the type has an object member.
- return Record->hasObjectMember();
- }
- /// \brief Perform the final move to DestPtr if for some reason
- /// getReturnValueSlot() didn't use it directly.
- ///
- /// The idea is that you do something like this:
- /// RValue Result = EmitSomething(..., getReturnValueSlot());
- /// EmitMoveFromReturnSlot(E, Result);
- ///
- /// If nothing interferes, this will cause the result to be emitted
- /// directly into the return value slot. Otherwise, a final move
- /// will be performed.
- void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue Src) {
- if (shouldUseDestForReturnSlot()) {
- // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
- // The possibility of undef rvalues complicates that a lot,
- // though, so we can't really assert.
- return;
- }
- // Otherwise, do a final copy,
- assert(Dest.getAddr() != Src.getAggregateAddr());
- EmitFinalDestCopy(E, Src, /*Ignore*/ true);
- }
- /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
- void AggExprEmitter::EmitFinalDestCopy(const Expr *E, RValue Src, bool Ignore,
- unsigned Alignment) {
- assert(Src.isAggregate() && "value must be aggregate value!");
- // If Dest is ignored, then we're evaluating an aggregate expression
- // in a context (like an expression statement) that doesn't care
- // about the result. C says that an lvalue-to-rvalue conversion is
- // performed in these cases; C++ says that it is not. In either
- // case, we don't actually need to do anything unless the value is
- // volatile.
- if (Dest.isIgnored()) {
- if (!Src.isVolatileQualified() ||
- CGF.CGM.getLangOptions().CPlusPlus ||
- (IgnoreResult && Ignore))
- return;
- // If the source is volatile, we must read from it; to do that, we need
- // some place to put it.
- Dest = CGF.CreateAggTemp(E->getType(), "agg.tmp");
- }
- if (Dest.requiresGCollection()) {
- CharUnits size = CGF.getContext().getTypeSizeInChars(E->getType());
- llvm::Type *SizeTy = CGF.ConvertType(CGF.getContext().getSizeType());
- llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
- CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
- Dest.getAddr(),
- Src.getAggregateAddr(),
- SizeVal);
- return;
- }
- // If the result of the assignment is used, copy the LHS there also.
- // FIXME: Pass VolatileDest as well. I think we also need to merge volatile
- // from the source as well, as we can't eliminate it if either operand
- // is volatile, unless copy has volatile for both source and destination..
- CGF.EmitAggregateCopy(Dest.getAddr(), Src.getAggregateAddr(), E->getType(),
- Dest.isVolatile()|Src.isVolatileQualified(),
- Alignment);
- }
- /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
- void AggExprEmitter::EmitFinalDestCopy(const Expr *E, LValue Src, bool Ignore) {
- assert(Src.isSimple() && "Can't have aggregate bitfield, vector, etc");
- CharUnits Alignment = std::min(Src.getAlignment(), Dest.getAlignment());
- EmitFinalDestCopy(E, Src.asAggregateRValue(), Ignore, Alignment.getQuantity());
- }
- //===----------------------------------------------------------------------===//
- // Visitor Methods
- //===----------------------------------------------------------------------===//
- void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
- Visit(E->GetTemporaryExpr());
- }
- void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
- EmitFinalDestCopy(e, CGF.getOpaqueLValueMapping(e));
- }
- void
- AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
- if (E->getType().isPODType(CGF.getContext())) {
- // For a POD type, just emit a load of the lvalue + a copy, because our
- // compound literal might alias the destination.
- // FIXME: This is a band-aid; the real problem appears to be in our handling
- // of assignments, where we store directly into the LHS without checking
- // whether anything in the RHS aliases.
- EmitAggLoadOfLValue(E);
- return;
- }
-
- AggValueSlot Slot = EnsureSlot(E->getType());
- CGF.EmitAggExpr(E->getInitializer(), Slot);
- }
- void AggExprEmitter::VisitCastExpr(CastExpr *E) {
- switch (E->getCastKind()) {
- case CK_Dynamic: {
- assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
- LValue LV = CGF.EmitCheckedLValue(E->getSubExpr());
- // FIXME: Do we also need to handle property references here?
- if (LV.isSimple())
- CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
- else
- CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
-
- if (!Dest.isIgnored())
- CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
- break;
- }
-
- case CK_ToUnion: {
- if (Dest.isIgnored()) break;
- // GCC union extension
- QualType Ty = E->getSubExpr()->getType();
- QualType PtrTy = CGF.getContext().getPointerType(Ty);
- llvm::Value *CastPtr = Builder.CreateBitCast(Dest.getAddr(),
- CGF.ConvertType(PtrTy));
- EmitInitializationToLValue(E->getSubExpr(),
- CGF.MakeAddrLValue(CastPtr, Ty));
- break;
- }
- case CK_DerivedToBase:
- case CK_BaseToDerived:
- case CK_UncheckedDerivedToBase: {
- llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
- "should have been unpacked before we got here");
- }
- case CK_LValueToRValue: // hope for downstream optimization
- case CK_NoOp:
- case CK_AtomicToNonAtomic:
- case CK_NonAtomicToAtomic:
- case CK_UserDefinedConversion:
- case CK_ConstructorConversion:
- assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
- E->getType()) &&
- "Implicit cast types must be compatible");
- Visit(E->getSubExpr());
- break;
-
- case CK_LValueBitCast:
- llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
- case CK_Dependent:
- case CK_BitCast:
- case CK_ArrayToPointerDecay:
- case CK_FunctionToPointerDecay:
- case CK_NullToPointer:
- case CK_NullToMemberPointer:
- case CK_BaseToDerivedMemberPointer:
- case CK_DerivedToBaseMemberPointer:
- case CK_MemberPointerToBoolean:
- case CK_ReinterpretMemberPointer:
- case CK_IntegralToPointer:
- case CK_PointerToIntegral:
- case CK_PointerToBoolean:
- case CK_ToVoid:
- case CK_VectorSplat:
- case CK_IntegralCast:
- case CK_IntegralToBoolean:
- case CK_IntegralToFloating:
- case CK_FloatingToIntegral:
- case CK_FloatingToBoolean:
- case CK_FloatingCast:
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_AnyPointerToBlockPointerCast:
- case CK_ObjCObjectLValueCast:
- case CK_FloatingRealToComplex:
- case CK_FloatingComplexToReal:
- case CK_FloatingComplexToBoolean:
- case CK_FloatingComplexCast:
- case CK_FloatingComplexToIntegralComplex:
- case CK_IntegralRealToComplex:
- case CK_IntegralComplexToReal:
- case CK_IntegralComplexToBoolean:
- case CK_IntegralComplexCast:
- case CK_IntegralComplexToFloatingComplex:
- case CK_ARCProduceObject:
- case CK_ARCConsumeObject:
- case CK_ARCReclaimReturnedObject:
- case CK_ARCExtendBlockObject:
- llvm_unreachable("cast kind invalid for aggregate types");
- }
- }
- void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
- if (E->getCallReturnType()->isReferenceType()) {
- EmitAggLoadOfLValue(E);
- return;
- }
- RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
- EmitMoveFromReturnSlot(E, RV);
- }
- void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
- RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
- EmitMoveFromReturnSlot(E, RV);
- }
- void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
- CGF.EmitIgnoredExpr(E->getLHS());
- Visit(E->getRHS());
- }
- void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
- CodeGenFunction::StmtExprEvaluation eval(CGF);
- CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
- }
- void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
- if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
- VisitPointerToDataMemberBinaryOperator(E);
- else
- CGF.ErrorUnsupported(E, "aggregate binary expression");
- }
- void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
- const BinaryOperator *E) {
- LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
- EmitFinalDestCopy(E, LV);
- }
- void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
- // For an assignment to work, the value on the right has
- // to be compatible with the value on the left.
- assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
- E->getRHS()->getType())
- && "Invalid assignment");
- if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getLHS()))
- if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
- if (VD->hasAttr<BlocksAttr>() &&
- E->getRHS()->HasSideEffects(CGF.getContext())) {
- // When __block variable on LHS, the RHS must be evaluated first
- // as it may change the 'forwarding' field via call to Block_copy.
- LValue RHS = CGF.EmitLValue(E->getRHS());
- LValue LHS = CGF.EmitLValue(E->getLHS());
- Dest = AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
- needsGC(E->getLHS()->getType()),
- AggValueSlot::IsAliased);
- EmitFinalDestCopy(E, RHS, true);
- return;
- }
-
- LValue LHS = CGF.EmitLValue(E->getLHS());
- // Codegen the RHS so that it stores directly into the LHS.
- AggValueSlot LHSSlot =
- AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
- needsGC(E->getLHS()->getType()),
- AggValueSlot::IsAliased);
- CGF.EmitAggExpr(E->getRHS(), LHSSlot, false);
- EmitFinalDestCopy(E, LHS, true);
- }
- void AggExprEmitter::
- VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
- llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
- llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
- llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
- // Bind the common expression if necessary.
- CodeGenFunction::OpaqueValueMapping binding(CGF, E);
- CodeGenFunction::ConditionalEvaluation eval(CGF);
- CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
- // Save whether the destination's lifetime is externally managed.
- bool isExternallyDestructed = Dest.isExternallyDestructed();
- eval.begin(CGF);
- CGF.EmitBlock(LHSBlock);
- Visit(E->getTrueExpr());
- eval.end(CGF);
- assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
- CGF.Builder.CreateBr(ContBlock);
- // If the result of an agg expression is unused, then the emission
- // of the LHS might need to create a destination slot. That's fine
- // with us, and we can safely emit the RHS into the same slot, but
- // we shouldn't claim that it's already being destructed.
- Dest.setExternallyDestructed(isExternallyDestructed);
- eval.begin(CGF);
- CGF.EmitBlock(RHSBlock);
- Visit(E->getFalseExpr());
- eval.end(CGF);
- CGF.EmitBlock(ContBlock);
- }
- void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
- Visit(CE->getChosenSubExpr(CGF.getContext()));
- }
- void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
- llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
- llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
- if (!ArgPtr) {
- CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
- return;
- }
- EmitFinalDestCopy(VE, CGF.MakeAddrLValue(ArgPtr, VE->getType()));
- }
- void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
- // Ensure that we have a slot, but if we already do, remember
- // whether it was externally destructed.
- bool wasExternallyDestructed = Dest.isExternallyDestructed();
- Dest = EnsureSlot(E->getType());
- // We're going to push a destructor if there isn't already one.
- Dest.setExternallyDestructed();
- Visit(E->getSubExpr());
- // Push that destructor we promised.
- if (!wasExternallyDestructed)
- CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddr());
- }
- void
- AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
- AggValueSlot Slot = EnsureSlot(E->getType());
- CGF.EmitCXXConstructExpr(E, Slot);
- }
- void
- AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
- AggValueSlot Slot = EnsureSlot(E->getType());
- CGF.EmitLambdaExpr(E, Slot);
- }
- void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
- CGF.enterFullExpression(E);
- CodeGenFunction::RunCleanupsScope cleanups(CGF);
- Visit(E->getSubExpr());
- }
- void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
- QualType T = E->getType();
- AggValueSlot Slot = EnsureSlot(T);
- EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
- }
- void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
- QualType T = E->getType();
- AggValueSlot Slot = EnsureSlot(T);
- EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddr(), T));
- }
- /// isSimpleZero - If emitting this value will obviously just cause a store of
- /// zero to memory, return true. This can return false if uncertain, so it just
- /// handles simple cases.
- static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
- E = E->IgnoreParens();
- // 0
- if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
- return IL->getValue() == 0;
- // +0.0
- if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
- return FL->getValue().isPosZero();
- // int()
- if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
- CGF.getTypes().isZeroInitializable(E->getType()))
- return true;
- // (int*)0 - Null pointer expressions.
- if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
- return ICE->getCastKind() == CK_NullToPointer;
- // '\0'
- if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
- return CL->getValue() == 0;
-
- // Otherwise, hard case: conservatively return false.
- return false;
- }
- void
- AggExprEmitter::EmitInitializationToLValue(Expr* E, LValue LV) {
- QualType type = LV.getType();
- // FIXME: Ignore result?
- // FIXME: Are initializers affected by volatile?
- if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
- // Storing "i32 0" to a zero'd memory location is a noop.
- } else if (isa<ImplicitValueInitExpr>(E)) {
- EmitNullInitializationToLValue(LV);
- } else if (type->isReferenceType()) {
- RValue RV = CGF.EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0);
- CGF.EmitStoreThroughLValue(RV, LV);
- } else if (type->isAnyComplexType()) {
- CGF.EmitComplexExprIntoAddr(E, LV.getAddress(), false);
- } else if (CGF.hasAggregateLLVMType(type)) {
- CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
- AggValueSlot::IsDestructed,
- AggValueSlot::DoesNotNeedGCBarriers,
- AggValueSlot::IsNotAliased,
- Dest.isZeroed()));
- } else if (LV.isSimple()) {
- CGF.EmitScalarInit(E, /*D=*/0, LV, /*Captured=*/false);
- } else {
- CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
- }
- }
- void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
- QualType type = lv.getType();
- // If the destination slot is already zeroed out before the aggregate is
- // copied into it, we don't have to emit any zeros here.
- if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
- return;
-
- if (!CGF.hasAggregateLLVMType(type)) {
- // For non-aggregates, we can store zero
- llvm::Value *null = llvm::Constant::getNullValue(CGF.ConvertType(type));
- CGF.EmitStoreThroughLValue(RValue::get(null), lv);
- } else {
- // There's a potential optimization opportunity in combining
- // memsets; that would be easy for arrays, but relatively
- // difficult for structures with the current code.
- CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
- }
- }
- void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
- #if 0
- // FIXME: Assess perf here? Figure out what cases are worth optimizing here
- // (Length of globals? Chunks of zeroed-out space?).
- //
- // If we can, prefer a copy from a global; this is a lot less code for long
- // globals, and it's easier for the current optimizers to analyze.
- if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
- llvm::GlobalVariable* GV =
- new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
- llvm::GlobalValue::InternalLinkage, C, "");
- EmitFinalDestCopy(E, CGF.MakeAddrLValue(GV, E->getType()));
- return;
- }
- #endif
- if (E->hadArrayRangeDesignator())
- CGF.ErrorUnsupported(E, "GNU array range designator extension");
- llvm::Value *DestPtr = Dest.getAddr();
- // Handle initialization of an array.
- if (E->getType()->isArrayType()) {
- llvm::PointerType *APType =
- cast<llvm::PointerType>(DestPtr->getType());
- llvm::ArrayType *AType =
- cast<llvm::ArrayType>(APType->getElementType());
- uint64_t NumInitElements = E->getNumInits();
- if (E->getNumInits() > 0) {
- QualType T1 = E->getType();
- QualType T2 = E->getInit(0)->getType();
- if (CGF.getContext().hasSameUnqualifiedType(T1, T2)) {
- EmitAggLoadOfLValue(E->getInit(0));
- return;
- }
- }
- uint64_t NumArrayElements = AType->getNumElements();
- assert(NumInitElements <= NumArrayElements);
- QualType elementType = E->getType().getCanonicalType();
- elementType = CGF.getContext().getQualifiedType(
- cast<ArrayType>(elementType)->getElementType(),
- elementType.getQualifiers() + Dest.getQualifiers());
- // DestPtr is an array*. Construct an elementType* by drilling
- // down a level.
- llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
- llvm::Value *indices[] = { zero, zero };
- llvm::Value *begin =
- Builder.CreateInBoundsGEP(DestPtr, indices, "arrayinit.begin");
- // Exception safety requires us to destroy all the
- // already-constructed members if an initializer throws.
- // For that, we'll need an EH cleanup.
- QualType::DestructionKind dtorKind = elementType.isDestructedType();
- llvm::AllocaInst *endOfInit = 0;
- EHScopeStack::stable_iterator cleanup;
- llvm::Instruction *cleanupDominator = 0;
- if (CGF.needsEHCleanup(dtorKind)) {
- // In principle we could tell the cleanup where we are more
- // directly, but the control flow can get so varied here that it
- // would actually be quite complex. Therefore we go through an
- // alloca.
- endOfInit = CGF.CreateTempAlloca(begin->getType(),
- "arrayinit.endOfInit");
- cleanupDominator = Builder.CreateStore(begin, endOfInit);
- CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
- CGF.getDestroyer(dtorKind));
- cleanup = CGF.EHStack.stable_begin();
- // Otherwise, remember that we didn't need a cleanup.
- } else {
- dtorKind = QualType::DK_none;
- }
- llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
- // The 'current element to initialize'. The invariants on this
- // variable are complicated. Essentially, after each iteration of
- // the loop, it points to the last initialized element, except
- // that it points to the beginning of the array before any
- // elements have been initialized.
- llvm::Value *element = begin;
- // Emit the explicit initializers.
- for (uint64_t i = 0; i != NumInitElements; ++i) {
- // Advance to the next element.
- if (i > 0) {
- element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
- // Tell the cleanup that it needs to destroy up to this
- // element. TODO: some of these stores can be trivially
- // observed to be unnecessary.
- if (endOfInit) Builder.CreateStore(element, endOfInit);
- }
- LValue elementLV = CGF.MakeAddrLValue(element, elementType);
- EmitInitializationToLValue(E->getInit(i), elementLV);
- }
- // Check whether there's a non-trivial array-fill expression.
- // Note that this will be a CXXConstructExpr even if the element
- // type is an array (or array of array, etc.) of class type.
- Expr *filler = E->getArrayFiller();
- bool hasTrivialFiller = true;
- if (CXXConstructExpr *cons = dyn_cast_or_null<CXXConstructExpr>(filler)) {
- assert(cons->getConstructor()->isDefaultConstructor());
- hasTrivialFiller = cons->getConstructor()->isTrivial();
- }
- // Any remaining elements need to be zero-initialized, possibly
- // using the filler expression. We can skip this if the we're
- // emitting to zeroed memory.
- if (NumInitElements != NumArrayElements &&
- !(Dest.isZeroed() && hasTrivialFiller &&
- CGF.getTypes().isZeroInitializable(elementType))) {
- // Use an actual loop. This is basically
- // do { *array++ = filler; } while (array != end);
- // Advance to the start of the rest of the array.
- if (NumInitElements) {
- element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
- if (endOfInit) Builder.CreateStore(element, endOfInit);
- }
- // Compute the end of the array.
- llvm::Value *end = Builder.CreateInBoundsGEP(begin,
- llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
- "arrayinit.end");
- llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
- llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
- // Jump into the body.
- CGF.EmitBlock(bodyBB);
- llvm::PHINode *currentElement =
- Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
- currentElement->addIncoming(element, entryBB);
- // Emit the actual filler expression.
- LValue elementLV = CGF.MakeAddrLValue(currentElement, elementType);
- if (filler)
- EmitInitializationToLValue(filler, elementLV);
- else
- EmitNullInitializationToLValue(elementLV);
- // Move on to the next element.
- llvm::Value *nextElement =
- Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
- // Tell the EH cleanup that we finished with the last element.
- if (endOfInit) Builder.CreateStore(nextElement, endOfInit);
- // Leave the loop if we're done.
- llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
- "arrayinit.done");
- llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
- Builder.CreateCondBr(done, endBB, bodyBB);
- currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
- CGF.EmitBlock(endBB);
- }
- // Leave the partial-array cleanup if we entered one.
- if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
- return;
- }
- assert(E->getType()->isRecordType() && "Only support structs/unions here!");
- // Do struct initialization; this code just sets each individual member
- // to the approprate value. This makes bitfield support automatic;
- // the disadvantage is that the generated code is more difficult for
- // the optimizer, especially with bitfields.
- unsigned NumInitElements = E->getNumInits();
- RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
-
- if (record->isUnion()) {
- // Only initialize one field of a union. The field itself is
- // specified by the initializer list.
- if (!E->getInitializedFieldInUnion()) {
- // Empty union; we have nothing to do.
- #ifndef NDEBUG
- // Make sure that it's really an empty and not a failure of
- // semantic analysis.
- for (RecordDecl::field_iterator Field = record->field_begin(),
- FieldEnd = record->field_end();
- Field != FieldEnd; ++Field)
- assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
- #endif
- return;
- }
- // FIXME: volatility
- FieldDecl *Field = E->getInitializedFieldInUnion();
- LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestPtr, Field, 0);
- if (NumInitElements) {
- // Store the initializer into the field
- EmitInitializationToLValue(E->getInit(0), FieldLoc);
- } else {
- // Default-initialize to null.
- EmitNullInitializationToLValue(FieldLoc);
- }
- return;
- }
- // We'll need to enter cleanup scopes in case any of the member
- // initializers throw an exception.
- SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
- llvm::Instruction *cleanupDominator = 0;
- // Here we iterate over the fields; this makes it simpler to both
- // default-initialize fields and skip over unnamed fields.
- unsigned curInitIndex = 0;
- for (RecordDecl::field_iterator field = record->field_begin(),
- fieldEnd = record->field_end();
- field != fieldEnd; ++field) {
- // We're done once we hit the flexible array member.
- if (field->getType()->isIncompleteArrayType())
- break;
- // Always skip anonymous bitfields.
- if (field->isUnnamedBitfield())
- continue;
- // We're done if we reach the end of the explicit initializers, we
- // have a zeroed object, and the rest of the fields are
- // zero-initializable.
- if (curInitIndex == NumInitElements && Dest.isZeroed() &&
- CGF.getTypes().isZeroInitializable(E->getType()))
- break;
-
- // FIXME: volatility
- LValue LV = CGF.EmitLValueForFieldInitialization(DestPtr, *field, 0);
- // We never generate write-barries for initialized fields.
- LV.setNonGC(true);
-
- if (curInitIndex < NumInitElements) {
- // Store the initializer into the field.
- EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
- } else {
- // We're out of initalizers; default-initialize to null
- EmitNullInitializationToLValue(LV);
- }
- // Push a destructor if necessary.
- // FIXME: if we have an array of structures, all explicitly
- // initialized, we can end up pushing a linear number of cleanups.
- bool pushedCleanup = false;
- if (QualType::DestructionKind dtorKind
- = field->getType().isDestructedType()) {
- assert(LV.isSimple());
- if (CGF.needsEHCleanup(dtorKind)) {
- if (!cleanupDominator)
- cleanupDominator = CGF.Builder.CreateUnreachable(); // placeholder
- CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
- CGF.getDestroyer(dtorKind), false);
- cleanups.push_back(CGF.EHStack.stable_begin());
- pushedCleanup = true;
- }
- }
-
- // If the GEP didn't get used because of a dead zero init or something
- // else, clean it up for -O0 builds and general tidiness.
- if (!pushedCleanup && LV.isSimple())
- if (llvm::GetElementPtrInst *GEP =
- dyn_cast<llvm::GetElementPtrInst>(LV.getAddress()))
- if (GEP->use_empty())
- GEP->eraseFromParent();
- }
- // Deactivate all the partial cleanups in reverse order, which
- // generally means popping them.
- for (unsigned i = cleanups.size(); i != 0; --i)
- CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
- // Destroy the placeholder if we made one.
- if (cleanupDominator)
- cleanupDominator->eraseFromParent();
- }
- //===----------------------------------------------------------------------===//
- // Entry Points into this File
- //===----------------------------------------------------------------------===//
- /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
- /// non-zero bytes that will be stored when outputting the initializer for the
- /// specified initializer expression.
- static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
- E = E->IgnoreParens();
- // 0 and 0.0 won't require any non-zero stores!
- if (isSimpleZero(E, CGF)) return CharUnits::Zero();
- // If this is an initlist expr, sum up the size of sizes of the (present)
- // elements. If this is something weird, assume the whole thing is non-zero.
- const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
- if (ILE == 0 || !CGF.getTypes().isZeroInitializable(ILE->getType()))
- return CGF.getContext().getTypeSizeInChars(E->getType());
-
- // InitListExprs for structs have to be handled carefully. If there are
- // reference members, we need to consider the size of the reference, not the
- // referencee. InitListExprs for unions and arrays can't have references.
- if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
- if (!RT->isUnionType()) {
- RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
- CharUnits NumNonZeroBytes = CharUnits::Zero();
-
- unsigned ILEElement = 0;
- for (RecordDecl::field_iterator Field = SD->field_begin(),
- FieldEnd = SD->field_end(); Field != FieldEnd; ++Field) {
- // We're done once we hit the flexible array member or run out of
- // InitListExpr elements.
- if (Field->getType()->isIncompleteArrayType() ||
- ILEElement == ILE->getNumInits())
- break;
- if (Field->isUnnamedBitfield())
- continue;
- const Expr *E = ILE->getInit(ILEElement++);
-
- // Reference values are always non-null and have the width of a pointer.
- if (Field->getType()->isReferenceType())
- NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
- CGF.getContext().getTargetInfo().getPointerWidth(0));
- else
- NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
- }
-
- return NumNonZeroBytes;
- }
- }
-
-
- CharUnits NumNonZeroBytes = CharUnits::Zero();
- for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
- NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
- return NumNonZeroBytes;
- }
- /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
- /// zeros in it, emit a memset and avoid storing the individual zeros.
- ///
- static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
- CodeGenFunction &CGF) {
- // If the slot is already known to be zeroed, nothing to do. Don't mess with
- // volatile stores.
- if (Slot.isZeroed() || Slot.isVolatile() || Slot.getAddr() == 0) return;
- // C++ objects with a user-declared constructor don't need zero'ing.
- if (CGF.getContext().getLangOptions().CPlusPlus)
- if (const RecordType *RT = CGF.getContext()
- .getBaseElementType(E->getType())->getAs<RecordType>()) {
- const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
- if (RD->hasUserDeclaredConstructor())
- return;
- }
- // If the type is 16-bytes or smaller, prefer individual stores over memset.
- std::pair<CharUnits, CharUnits> TypeInfo =
- CGF.getContext().getTypeInfoInChars(E->getType());
- if (TypeInfo.first <= CharUnits::fromQuantity(16))
- return;
- // Check to see if over 3/4 of the initializer are known to be zero. If so,
- // we prefer to emit memset + individual stores for the rest.
- CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
- if (NumNonZeroBytes*4 > TypeInfo.first)
- return;
-
- // Okay, it seems like a good idea to use an initial memset, emit the call.
- llvm::Constant *SizeVal = CGF.Builder.getInt64(TypeInfo.first.getQuantity());
- CharUnits Align = TypeInfo.second;
- llvm::Value *Loc = Slot.getAddr();
-
- Loc = CGF.Builder.CreateBitCast(Loc, CGF.Int8PtrTy);
- CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal,
- Align.getQuantity(), false);
-
- // Tell the AggExprEmitter that the slot is known zero.
- Slot.setZeroed();
- }
- /// EmitAggExpr - Emit the computation of the specified expression of aggregate
- /// type. The result is computed into DestPtr. Note that if DestPtr is null,
- /// the value of the aggregate expression is not needed. If VolatileDest is
- /// true, DestPtr cannot be 0.
- ///
- /// \param IsInitializer - true if this evaluation is initializing an
- /// object whose lifetime is already being managed.
- void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot,
- bool IgnoreResult) {
- assert(E && hasAggregateLLVMType(E->getType()) &&
- "Invalid aggregate expression to emit");
- assert((Slot.getAddr() != 0 || Slot.isIgnored()) &&
- "slot has bits but no address");
- // Optimize the slot if possible.
- CheckAggExprForMemSetUse(Slot, E, *this);
-
- AggExprEmitter(*this, Slot, IgnoreResult).Visit(const_cast<Expr*>(E));
- }
- LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
- assert(hasAggregateLLVMType(E->getType()) && "Invalid argument!");
- llvm::Value *Temp = CreateMemTemp(E->getType());
- LValue LV = MakeAddrLValue(Temp, E->getType());
- EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
- AggValueSlot::DoesNotNeedGCBarriers,
- AggValueSlot::IsNotAliased));
- return LV;
- }
- void CodeGenFunction::EmitAggregateCopy(llvm::Value *DestPtr,
- llvm::Value *SrcPtr, QualType Ty,
- bool isVolatile, unsigned Alignment) {
- assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
- if (getContext().getLangOptions().CPlusPlus) {
- if (const RecordType *RT = Ty->getAs<RecordType>()) {
- CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
- assert((Record->hasTrivialCopyConstructor() ||
- Record->hasTrivialCopyAssignment() ||
- Record->hasTrivialMoveConstructor() ||
- Record->hasTrivialMoveAssignment()) &&
- "Trying to aggregate-copy a type without a trivial copy "
- "constructor or assignment operator");
- // Ignore empty classes in C++.
- if (Record->isEmpty())
- return;
- }
- }
-
- // Aggregate assignment turns into llvm.memcpy. This is almost valid per
- // C99 6.5.16.1p3, which states "If the value being stored in an object is
- // read from another object that overlaps in anyway the storage of the first
- // object, then the overlap shall be exact and the two objects shall have
- // qualified or unqualified versions of a compatible type."
- //
- // memcpy is not defined if the source and destination pointers are exactly
- // equal, but other compilers do this optimization, and almost every memcpy
- // implementation handles this case safely. If there is a libc that does not
- // safely handle this, we can add a target hook.
- // Get size and alignment info for this aggregate.
- std::pair<CharUnits, CharUnits> TypeInfo =
- getContext().getTypeInfoInChars(Ty);
- if (!Alignment)
- Alignment = TypeInfo.second.getQuantity();
- // FIXME: Handle variable sized types.
- // FIXME: If we have a volatile struct, the optimizer can remove what might
- // appear to be `extra' memory ops:
- //
- // volatile struct { int i; } a, b;
- //
- // int main() {
- // a = b;
- // a = b;
- // }
- //
- // we need to use a different call here. We use isVolatile to indicate when
- // either the source or the destination is volatile.
- llvm::PointerType *DPT = cast<llvm::PointerType>(DestPtr->getType());
- llvm::Type *DBP =
- llvm::Type::getInt8PtrTy(getLLVMContext(), DPT->getAddressSpace());
- DestPtr = Builder.CreateBitCast(DestPtr, DBP);
- llvm::PointerType *SPT = cast<llvm::PointerType>(SrcPtr->getType());
- llvm::Type *SBP =
- llvm::Type::getInt8PtrTy(getLLVMContext(), SPT->getAddressSpace());
- SrcPtr = Builder.CreateBitCast(SrcPtr, SBP);
- // Don't do any of the memmove_collectable tests if GC isn't set.
- if (CGM.getLangOptions().getGC() == LangOptions::NonGC) {
- // fall through
- } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
- RecordDecl *Record = RecordTy->getDecl();
- if (Record->hasObjectMember()) {
- CharUnits size = TypeInfo.first;
- llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
- llvm::Value *SizeVal = llvm::ConstantInt::get(SizeTy, size.getQuantity());
- CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
- SizeVal);
- return;
- }
- } else if (Ty->isArrayType()) {
- QualType BaseType = getContext().getBaseElementType(Ty);
- if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
- if (RecordTy->getDecl()->hasObjectMember()) {
- CharUnits size = TypeInfo.first;
- llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
- llvm::Value *SizeVal =
- llvm::ConstantInt::get(SizeTy, size.getQuantity());
- CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
- SizeVal);
- return;
- }
- }
- }
-
- Builder.CreateMemCpy(DestPtr, SrcPtr,
- llvm::ConstantInt::get(IntPtrTy,
- TypeInfo.first.getQuantity()),
- Alignment, isVolatile);
- }
|