ARM.cpp 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161
  1. //===--- ARM.cpp - Implement ARM target feature support -------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file implements ARM TargetInfo objects.
  10. //
  11. //===----------------------------------------------------------------------===//
  12. #include "ARM.h"
  13. #include "clang/Basic/Builtins.h"
  14. #include "clang/Basic/Diagnostic.h"
  15. #include "clang/Basic/TargetBuiltins.h"
  16. #include "llvm/ADT/StringExtras.h"
  17. #include "llvm/ADT/StringRef.h"
  18. #include "llvm/ADT/StringSwitch.h"
  19. using namespace clang;
  20. using namespace clang::targets;
  21. void ARMTargetInfo::setABIAAPCS() {
  22. IsAAPCS = true;
  23. DoubleAlign = LongLongAlign = LongDoubleAlign = SuitableAlign = 64;
  24. const llvm::Triple &T = getTriple();
  25. bool IsNetBSD = T.isOSNetBSD();
  26. bool IsOpenBSD = T.isOSOpenBSD();
  27. if (!T.isOSWindows() && !IsNetBSD && !IsOpenBSD)
  28. WCharType = UnsignedInt;
  29. UseBitFieldTypeAlignment = true;
  30. ZeroLengthBitfieldBoundary = 0;
  31. // Thumb1 add sp, #imm requires the immediate value be multiple of 4,
  32. // so set preferred for small types to 32.
  33. if (T.isOSBinFormatMachO()) {
  34. resetDataLayout(BigEndian
  35. ? "E-m:o-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64"
  36. : "e-m:o-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64");
  37. } else if (T.isOSWindows()) {
  38. assert(!BigEndian && "Windows on ARM does not support big endian");
  39. resetDataLayout("e"
  40. "-m:w"
  41. "-p:32:32"
  42. "-Fi8"
  43. "-i64:64"
  44. "-v128:64:128"
  45. "-a:0:32"
  46. "-n32"
  47. "-S64");
  48. } else if (T.isOSNaCl()) {
  49. assert(!BigEndian && "NaCl on ARM does not support big endian");
  50. resetDataLayout("e-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S128");
  51. } else {
  52. resetDataLayout(BigEndian
  53. ? "E-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64"
  54. : "e-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64");
  55. }
  56. // FIXME: Enumerated types are variable width in straight AAPCS.
  57. }
  58. void ARMTargetInfo::setABIAPCS(bool IsAAPCS16) {
  59. const llvm::Triple &T = getTriple();
  60. IsAAPCS = false;
  61. if (IsAAPCS16)
  62. DoubleAlign = LongLongAlign = LongDoubleAlign = SuitableAlign = 64;
  63. else
  64. DoubleAlign = LongLongAlign = LongDoubleAlign = SuitableAlign = 32;
  65. WCharType = SignedInt;
  66. // Do not respect the alignment of bit-field types when laying out
  67. // structures. This corresponds to PCC_BITFIELD_TYPE_MATTERS in gcc.
  68. UseBitFieldTypeAlignment = false;
  69. /// gcc forces the alignment to 4 bytes, regardless of the type of the
  70. /// zero length bitfield. This corresponds to EMPTY_FIELD_BOUNDARY in
  71. /// gcc.
  72. ZeroLengthBitfieldBoundary = 32;
  73. if (T.isOSBinFormatMachO() && IsAAPCS16) {
  74. assert(!BigEndian && "AAPCS16 does not support big-endian");
  75. resetDataLayout("e-m:o-p:32:32-Fi8-i64:64-a:0:32-n32-S128");
  76. } else if (T.isOSBinFormatMachO())
  77. resetDataLayout(
  78. BigEndian
  79. ? "E-m:o-p:32:32-Fi8-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32"
  80. : "e-m:o-p:32:32-Fi8-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32");
  81. else
  82. resetDataLayout(
  83. BigEndian
  84. ? "E-m:e-p:32:32-Fi8-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32"
  85. : "e-m:e-p:32:32-Fi8-f64:32:64-v64:32:64-v128:32:128-a:0:32-n32-S32");
  86. // FIXME: Override "preferred align" for double and long long.
  87. }
  88. void ARMTargetInfo::setArchInfo() {
  89. StringRef ArchName = getTriple().getArchName();
  90. ArchISA = llvm::ARM::parseArchISA(ArchName);
  91. CPU = llvm::ARM::getDefaultCPU(ArchName);
  92. llvm::ARM::ArchKind AK = llvm::ARM::parseArch(ArchName);
  93. if (AK != llvm::ARM::ArchKind::INVALID)
  94. ArchKind = AK;
  95. setArchInfo(ArchKind);
  96. }
  97. void ARMTargetInfo::setArchInfo(llvm::ARM::ArchKind Kind) {
  98. StringRef SubArch;
  99. // cache TargetParser info
  100. ArchKind = Kind;
  101. SubArch = llvm::ARM::getSubArch(ArchKind);
  102. ArchProfile = llvm::ARM::parseArchProfile(SubArch);
  103. ArchVersion = llvm::ARM::parseArchVersion(SubArch);
  104. // cache CPU related strings
  105. CPUAttr = getCPUAttr();
  106. CPUProfile = getCPUProfile();
  107. }
  108. void ARMTargetInfo::setAtomic() {
  109. // when triple does not specify a sub arch,
  110. // then we are not using inline atomics
  111. bool ShouldUseInlineAtomic =
  112. (ArchISA == llvm::ARM::ISAKind::ARM && ArchVersion >= 6) ||
  113. (ArchISA == llvm::ARM::ISAKind::THUMB && ArchVersion >= 7);
  114. // Cortex M does not support 8 byte atomics, while general Thumb2 does.
  115. if (ArchProfile == llvm::ARM::ProfileKind::M) {
  116. MaxAtomicPromoteWidth = 32;
  117. if (ShouldUseInlineAtomic)
  118. MaxAtomicInlineWidth = 32;
  119. } else {
  120. MaxAtomicPromoteWidth = 64;
  121. if (ShouldUseInlineAtomic)
  122. MaxAtomicInlineWidth = 64;
  123. }
  124. }
  125. bool ARMTargetInfo::hasMVE() const {
  126. return ArchKind == llvm::ARM::ArchKind::ARMV8_1MMainline && MVE != 0;
  127. }
  128. bool ARMTargetInfo::hasMVEFloat() const {
  129. return hasMVE() && (MVE & MVE_FP);
  130. }
  131. bool ARMTargetInfo::isThumb() const {
  132. return ArchISA == llvm::ARM::ISAKind::THUMB;
  133. }
  134. bool ARMTargetInfo::supportsThumb() const {
  135. return CPUAttr.count('T') || ArchVersion >= 6;
  136. }
  137. bool ARMTargetInfo::supportsThumb2() const {
  138. return CPUAttr.equals("6T2") ||
  139. (ArchVersion >= 7 && !CPUAttr.equals("8M_BASE"));
  140. }
  141. StringRef ARMTargetInfo::getCPUAttr() const {
  142. // For most sub-arches, the build attribute CPU name is enough.
  143. // For Cortex variants, it's slightly different.
  144. switch (ArchKind) {
  145. default:
  146. return llvm::ARM::getCPUAttr(ArchKind);
  147. case llvm::ARM::ArchKind::ARMV6M:
  148. return "6M";
  149. case llvm::ARM::ArchKind::ARMV7S:
  150. return "7S";
  151. case llvm::ARM::ArchKind::ARMV7A:
  152. return "7A";
  153. case llvm::ARM::ArchKind::ARMV7R:
  154. return "7R";
  155. case llvm::ARM::ArchKind::ARMV7M:
  156. return "7M";
  157. case llvm::ARM::ArchKind::ARMV7EM:
  158. return "7EM";
  159. case llvm::ARM::ArchKind::ARMV7VE:
  160. return "7VE";
  161. case llvm::ARM::ArchKind::ARMV8A:
  162. return "8A";
  163. case llvm::ARM::ArchKind::ARMV8_1A:
  164. return "8_1A";
  165. case llvm::ARM::ArchKind::ARMV8_2A:
  166. return "8_2A";
  167. case llvm::ARM::ArchKind::ARMV8_3A:
  168. return "8_3A";
  169. case llvm::ARM::ArchKind::ARMV8_4A:
  170. return "8_4A";
  171. case llvm::ARM::ArchKind::ARMV8_5A:
  172. return "8_5A";
  173. case llvm::ARM::ArchKind::ARMV8MBaseline:
  174. return "8M_BASE";
  175. case llvm::ARM::ArchKind::ARMV8MMainline:
  176. return "8M_MAIN";
  177. case llvm::ARM::ArchKind::ARMV8R:
  178. return "8R";
  179. case llvm::ARM::ArchKind::ARMV8_1MMainline:
  180. return "8_1M_MAIN";
  181. }
  182. }
  183. StringRef ARMTargetInfo::getCPUProfile() const {
  184. switch (ArchProfile) {
  185. case llvm::ARM::ProfileKind::A:
  186. return "A";
  187. case llvm::ARM::ProfileKind::R:
  188. return "R";
  189. case llvm::ARM::ProfileKind::M:
  190. return "M";
  191. default:
  192. return "";
  193. }
  194. }
  195. ARMTargetInfo::ARMTargetInfo(const llvm::Triple &Triple,
  196. const TargetOptions &Opts)
  197. : TargetInfo(Triple), FPMath(FP_Default), IsAAPCS(true), LDREX(0),
  198. HW_FP(0) {
  199. bool IsOpenBSD = Triple.isOSOpenBSD();
  200. bool IsNetBSD = Triple.isOSNetBSD();
  201. // FIXME: the isOSBinFormatMachO is a workaround for identifying a Darwin-like
  202. // environment where size_t is `unsigned long` rather than `unsigned int`
  203. PtrDiffType = IntPtrType =
  204. (Triple.isOSDarwin() || Triple.isOSBinFormatMachO() || IsOpenBSD ||
  205. IsNetBSD)
  206. ? SignedLong
  207. : SignedInt;
  208. SizeType = (Triple.isOSDarwin() || Triple.isOSBinFormatMachO() || IsOpenBSD ||
  209. IsNetBSD)
  210. ? UnsignedLong
  211. : UnsignedInt;
  212. // ptrdiff_t is inconsistent on Darwin
  213. if ((Triple.isOSDarwin() || Triple.isOSBinFormatMachO()) &&
  214. !Triple.isWatchABI())
  215. PtrDiffType = SignedInt;
  216. // Cache arch related info.
  217. setArchInfo();
  218. // {} in inline assembly are neon specifiers, not assembly variant
  219. // specifiers.
  220. NoAsmVariants = true;
  221. // FIXME: This duplicates code from the driver that sets the -target-abi
  222. // option - this code is used if -target-abi isn't passed and should
  223. // be unified in some way.
  224. if (Triple.isOSBinFormatMachO()) {
  225. // The backend is hardwired to assume AAPCS for M-class processors, ensure
  226. // the frontend matches that.
  227. if (Triple.getEnvironment() == llvm::Triple::EABI ||
  228. Triple.getOS() == llvm::Triple::UnknownOS ||
  229. ArchProfile == llvm::ARM::ProfileKind::M) {
  230. setABI("aapcs");
  231. } else if (Triple.isWatchABI()) {
  232. setABI("aapcs16");
  233. } else {
  234. setABI("apcs-gnu");
  235. }
  236. } else if (Triple.isOSWindows()) {
  237. // FIXME: this is invalid for WindowsCE
  238. setABI("aapcs");
  239. } else {
  240. // Select the default based on the platform.
  241. switch (Triple.getEnvironment()) {
  242. case llvm::Triple::Android:
  243. case llvm::Triple::GNUEABI:
  244. case llvm::Triple::GNUEABIHF:
  245. case llvm::Triple::MuslEABI:
  246. case llvm::Triple::MuslEABIHF:
  247. setABI("aapcs-linux");
  248. break;
  249. case llvm::Triple::EABIHF:
  250. case llvm::Triple::EABI:
  251. setABI("aapcs");
  252. break;
  253. case llvm::Triple::GNU:
  254. setABI("apcs-gnu");
  255. break;
  256. default:
  257. if (IsNetBSD)
  258. setABI("apcs-gnu");
  259. else if (IsOpenBSD)
  260. setABI("aapcs-linux");
  261. else
  262. setABI("aapcs");
  263. break;
  264. }
  265. }
  266. // ARM targets default to using the ARM C++ ABI.
  267. TheCXXABI.set(TargetCXXABI::GenericARM);
  268. // ARM has atomics up to 8 bytes
  269. setAtomic();
  270. // Maximum alignment for ARM NEON data types should be 64-bits (AAPCS)
  271. if (IsAAPCS && (Triple.getEnvironment() != llvm::Triple::Android))
  272. MaxVectorAlign = 64;
  273. // Do force alignment of members that follow zero length bitfields. If
  274. // the alignment of the zero-length bitfield is greater than the member
  275. // that follows it, `bar', `bar' will be aligned as the type of the
  276. // zero length bitfield.
  277. UseZeroLengthBitfieldAlignment = true;
  278. if (Triple.getOS() == llvm::Triple::Linux ||
  279. Triple.getOS() == llvm::Triple::UnknownOS)
  280. this->MCountName = Opts.EABIVersion == llvm::EABI::GNU
  281. ? "\01__gnu_mcount_nc"
  282. : "\01mcount";
  283. SoftFloatABI = llvm::is_contained(Opts.FeaturesAsWritten, "+soft-float-abi");
  284. }
  285. StringRef ARMTargetInfo::getABI() const { return ABI; }
  286. bool ARMTargetInfo::setABI(const std::string &Name) {
  287. ABI = Name;
  288. // The defaults (above) are for AAPCS, check if we need to change them.
  289. //
  290. // FIXME: We need support for -meabi... we could just mangle it into the
  291. // name.
  292. if (Name == "apcs-gnu" || Name == "aapcs16") {
  293. setABIAPCS(Name == "aapcs16");
  294. return true;
  295. }
  296. if (Name == "aapcs" || Name == "aapcs-vfp" || Name == "aapcs-linux") {
  297. setABIAAPCS();
  298. return true;
  299. }
  300. return false;
  301. }
  302. // FIXME: This should be based on Arch attributes, not CPU names.
  303. bool ARMTargetInfo::initFeatureMap(
  304. llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
  305. const std::vector<std::string> &FeaturesVec) const {
  306. std::string ArchFeature;
  307. std::vector<StringRef> TargetFeatures;
  308. llvm::ARM::ArchKind Arch = llvm::ARM::parseArch(getTriple().getArchName());
  309. // Map the base architecture to an appropriate target feature, so we don't
  310. // rely on the target triple.
  311. llvm::ARM::ArchKind CPUArch = llvm::ARM::parseCPUArch(CPU);
  312. if (CPUArch == llvm::ARM::ArchKind::INVALID)
  313. CPUArch = Arch;
  314. if (CPUArch != llvm::ARM::ArchKind::INVALID) {
  315. ArchFeature = ("+" + llvm::ARM::getArchName(CPUArch)).str();
  316. TargetFeatures.push_back(ArchFeature);
  317. }
  318. // get default FPU features
  319. unsigned FPUKind = llvm::ARM::getDefaultFPU(CPU, Arch);
  320. llvm::ARM::getFPUFeatures(FPUKind, TargetFeatures);
  321. // get default Extension features
  322. unsigned Extensions = llvm::ARM::getDefaultExtensions(CPU, Arch);
  323. llvm::ARM::getExtensionFeatures(Extensions, TargetFeatures);
  324. for (auto Feature : TargetFeatures)
  325. if (Feature[0] == '+')
  326. Features[Feature.drop_front(1)] = true;
  327. // Enable or disable thumb-mode explicitly per function to enable mixed
  328. // ARM and Thumb code generation.
  329. if (isThumb())
  330. Features["thumb-mode"] = true;
  331. else
  332. Features["thumb-mode"] = false;
  333. // Convert user-provided arm and thumb GNU target attributes to
  334. // [-|+]thumb-mode target features respectively.
  335. std::vector<std::string> UpdatedFeaturesVec;
  336. for (const auto &Feature : FeaturesVec) {
  337. // Skip soft-float-abi; it's something we only use to initialize a bit of
  338. // class state, and is otherwise unrecognized.
  339. if (Feature == "+soft-float-abi")
  340. continue;
  341. StringRef FixedFeature;
  342. if (Feature == "+arm")
  343. FixedFeature = "-thumb-mode";
  344. else if (Feature == "+thumb")
  345. FixedFeature = "+thumb-mode";
  346. else
  347. FixedFeature = Feature;
  348. UpdatedFeaturesVec.push_back(FixedFeature.str());
  349. }
  350. return TargetInfo::initFeatureMap(Features, Diags, CPU, UpdatedFeaturesVec);
  351. }
  352. bool ARMTargetInfo::handleTargetFeatures(std::vector<std::string> &Features,
  353. DiagnosticsEngine &Diags) {
  354. FPU = 0;
  355. MVE = 0;
  356. CRC = 0;
  357. Crypto = 0;
  358. DSP = 0;
  359. Unaligned = 1;
  360. SoftFloat = false;
  361. // Note that SoftFloatABI is initialized in our constructor.
  362. HWDiv = 0;
  363. DotProd = 0;
  364. HasFloat16 = true;
  365. // This does not diagnose illegal cases like having both
  366. // "+vfpv2" and "+vfpv3" or having "+neon" and "-fp64".
  367. for (const auto &Feature : Features) {
  368. if (Feature == "+soft-float") {
  369. SoftFloat = true;
  370. } else if (Feature == "+vfp2sp" || Feature == "+vfp2d16sp" ||
  371. Feature == "+vfp2" || Feature == "+vfp2d16") {
  372. FPU |= VFP2FPU;
  373. HW_FP |= HW_FP_SP;
  374. if (Feature == "+vfp2" || Feature == "+vfp2d16")
  375. HW_FP |= HW_FP_DP;
  376. } else if (Feature == "+vfp3sp" || Feature == "+vfp3d16sp" ||
  377. Feature == "+vfp3" || Feature == "+vfp3d16") {
  378. FPU |= VFP3FPU;
  379. HW_FP |= HW_FP_SP;
  380. if (Feature == "+vfp3" || Feature == "+vfp3d16")
  381. HW_FP |= HW_FP_DP;
  382. } else if (Feature == "+vfp4sp" || Feature == "+vfp4d16sp" ||
  383. Feature == "+vfp4" || Feature == "+vfp4d16") {
  384. FPU |= VFP4FPU;
  385. HW_FP |= HW_FP_SP | HW_FP_HP;
  386. if (Feature == "+vfp4" || Feature == "+vfp4d16")
  387. HW_FP |= HW_FP_DP;
  388. } else if (Feature == "+fp-armv8sp" || Feature == "+fp-armv8d16sp" ||
  389. Feature == "+fp-armv8" || Feature == "+fp-armv8d16") {
  390. FPU |= FPARMV8;
  391. HW_FP |= HW_FP_SP | HW_FP_HP;
  392. if (Feature == "+fp-armv8" || Feature == "+fp-armv8d16")
  393. HW_FP |= HW_FP_DP;
  394. } else if (Feature == "+neon") {
  395. FPU |= NeonFPU;
  396. HW_FP |= HW_FP_SP;
  397. } else if (Feature == "+hwdiv") {
  398. HWDiv |= HWDivThumb;
  399. } else if (Feature == "+hwdiv-arm") {
  400. HWDiv |= HWDivARM;
  401. } else if (Feature == "+crc") {
  402. CRC = 1;
  403. } else if (Feature == "+crypto") {
  404. Crypto = 1;
  405. } else if (Feature == "+dsp") {
  406. DSP = 1;
  407. } else if (Feature == "+fp64") {
  408. HW_FP |= HW_FP_DP;
  409. } else if (Feature == "+8msecext") {
  410. if (CPUProfile != "M" || ArchVersion != 8) {
  411. Diags.Report(diag::err_target_unsupported_mcmse) << CPU;
  412. return false;
  413. }
  414. } else if (Feature == "+strict-align") {
  415. Unaligned = 0;
  416. } else if (Feature == "+fp16") {
  417. HW_FP |= HW_FP_HP;
  418. } else if (Feature == "+fullfp16") {
  419. HasLegalHalfType = true;
  420. } else if (Feature == "+dotprod") {
  421. DotProd = true;
  422. } else if (Feature == "+mve") {
  423. DSP = 1;
  424. MVE |= MVE_INT;
  425. } else if (Feature == "+mve.fp") {
  426. DSP = 1;
  427. HasLegalHalfType = true;
  428. FPU |= FPARMV8;
  429. MVE |= MVE_INT | MVE_FP;
  430. HW_FP |= HW_FP_SP | HW_FP_HP;
  431. }
  432. }
  433. switch (ArchVersion) {
  434. case 6:
  435. if (ArchProfile == llvm::ARM::ProfileKind::M)
  436. LDREX = 0;
  437. else if (ArchKind == llvm::ARM::ArchKind::ARMV6K)
  438. LDREX = LDREX_D | LDREX_W | LDREX_H | LDREX_B;
  439. else
  440. LDREX = LDREX_W;
  441. break;
  442. case 7:
  443. if (ArchProfile == llvm::ARM::ProfileKind::M)
  444. LDREX = LDREX_W | LDREX_H | LDREX_B;
  445. else
  446. LDREX = LDREX_D | LDREX_W | LDREX_H | LDREX_B;
  447. break;
  448. case 8:
  449. LDREX = LDREX_D | LDREX_W | LDREX_H | LDREX_B;
  450. }
  451. if (!(FPU & NeonFPU) && FPMath == FP_Neon) {
  452. Diags.Report(diag::err_target_unsupported_fpmath) << "neon";
  453. return false;
  454. }
  455. if (FPMath == FP_Neon)
  456. Features.push_back("+neonfp");
  457. else if (FPMath == FP_VFP)
  458. Features.push_back("-neonfp");
  459. return true;
  460. }
  461. bool ARMTargetInfo::hasFeature(StringRef Feature) const {
  462. return llvm::StringSwitch<bool>(Feature)
  463. .Case("arm", true)
  464. .Case("aarch32", true)
  465. .Case("softfloat", SoftFloat)
  466. .Case("thumb", isThumb())
  467. .Case("neon", (FPU & NeonFPU) && !SoftFloat)
  468. .Case("vfp", FPU && !SoftFloat)
  469. .Case("hwdiv", HWDiv & HWDivThumb)
  470. .Case("hwdiv-arm", HWDiv & HWDivARM)
  471. .Case("mve", hasMVE())
  472. .Default(false);
  473. }
  474. bool ARMTargetInfo::isValidCPUName(StringRef Name) const {
  475. return Name == "generic" ||
  476. llvm::ARM::parseCPUArch(Name) != llvm::ARM::ArchKind::INVALID;
  477. }
  478. void ARMTargetInfo::fillValidCPUList(SmallVectorImpl<StringRef> &Values) const {
  479. llvm::ARM::fillValidCPUArchList(Values);
  480. }
  481. bool ARMTargetInfo::setCPU(const std::string &Name) {
  482. if (Name != "generic")
  483. setArchInfo(llvm::ARM::parseCPUArch(Name));
  484. if (ArchKind == llvm::ARM::ArchKind::INVALID)
  485. return false;
  486. setAtomic();
  487. CPU = Name;
  488. return true;
  489. }
  490. bool ARMTargetInfo::setFPMath(StringRef Name) {
  491. if (Name == "neon") {
  492. FPMath = FP_Neon;
  493. return true;
  494. } else if (Name == "vfp" || Name == "vfp2" || Name == "vfp3" ||
  495. Name == "vfp4") {
  496. FPMath = FP_VFP;
  497. return true;
  498. }
  499. return false;
  500. }
  501. void ARMTargetInfo::getTargetDefinesARMV81A(const LangOptions &Opts,
  502. MacroBuilder &Builder) const {
  503. Builder.defineMacro("__ARM_FEATURE_QRDMX", "1");
  504. }
  505. void ARMTargetInfo::getTargetDefinesARMV82A(const LangOptions &Opts,
  506. MacroBuilder &Builder) const {
  507. // Also include the ARMv8.1-A defines
  508. getTargetDefinesARMV81A(Opts, Builder);
  509. }
  510. void ARMTargetInfo::getTargetDefines(const LangOptions &Opts,
  511. MacroBuilder &Builder) const {
  512. // Target identification.
  513. Builder.defineMacro("__arm");
  514. Builder.defineMacro("__arm__");
  515. // For bare-metal none-eabi.
  516. if (getTriple().getOS() == llvm::Triple::UnknownOS &&
  517. (getTriple().getEnvironment() == llvm::Triple::EABI ||
  518. getTriple().getEnvironment() == llvm::Triple::EABIHF))
  519. Builder.defineMacro("__ELF__");
  520. // Target properties.
  521. Builder.defineMacro("__REGISTER_PREFIX__", "");
  522. // Unfortunately, __ARM_ARCH_7K__ is now more of an ABI descriptor. The CPU
  523. // happens to be Cortex-A7 though, so it should still get __ARM_ARCH_7A__.
  524. if (getTriple().isWatchABI())
  525. Builder.defineMacro("__ARM_ARCH_7K__", "2");
  526. if (!CPUAttr.empty())
  527. Builder.defineMacro("__ARM_ARCH_" + CPUAttr + "__");
  528. // ACLE 6.4.1 ARM/Thumb instruction set architecture
  529. // __ARM_ARCH is defined as an integer value indicating the current ARM ISA
  530. Builder.defineMacro("__ARM_ARCH", Twine(ArchVersion));
  531. if (ArchVersion >= 8) {
  532. // ACLE 6.5.7 Crypto Extension
  533. if (Crypto)
  534. Builder.defineMacro("__ARM_FEATURE_CRYPTO", "1");
  535. // ACLE 6.5.8 CRC32 Extension
  536. if (CRC)
  537. Builder.defineMacro("__ARM_FEATURE_CRC32", "1");
  538. // ACLE 6.5.10 Numeric Maximum and Minimum
  539. Builder.defineMacro("__ARM_FEATURE_NUMERIC_MAXMIN", "1");
  540. // ACLE 6.5.9 Directed Rounding
  541. Builder.defineMacro("__ARM_FEATURE_DIRECTED_ROUNDING", "1");
  542. }
  543. // __ARM_ARCH_ISA_ARM is defined to 1 if the core supports the ARM ISA. It
  544. // is not defined for the M-profile.
  545. // NOTE that the default profile is assumed to be 'A'
  546. if (CPUProfile.empty() || ArchProfile != llvm::ARM::ProfileKind::M)
  547. Builder.defineMacro("__ARM_ARCH_ISA_ARM", "1");
  548. // __ARM_ARCH_ISA_THUMB is defined to 1 if the core supports the original
  549. // Thumb ISA (including v6-M and v8-M Baseline). It is set to 2 if the
  550. // core supports the Thumb-2 ISA as found in the v6T2 architecture and all
  551. // v7 and v8 architectures excluding v8-M Baseline.
  552. if (supportsThumb2())
  553. Builder.defineMacro("__ARM_ARCH_ISA_THUMB", "2");
  554. else if (supportsThumb())
  555. Builder.defineMacro("__ARM_ARCH_ISA_THUMB", "1");
  556. // __ARM_32BIT_STATE is defined to 1 if code is being generated for a 32-bit
  557. // instruction set such as ARM or Thumb.
  558. Builder.defineMacro("__ARM_32BIT_STATE", "1");
  559. // ACLE 6.4.2 Architectural Profile (A, R, M or pre-Cortex)
  560. // __ARM_ARCH_PROFILE is defined as 'A', 'R', 'M' or 'S', or unset.
  561. if (!CPUProfile.empty())
  562. Builder.defineMacro("__ARM_ARCH_PROFILE", "'" + CPUProfile + "'");
  563. // ACLE 6.4.3 Unaligned access supported in hardware
  564. if (Unaligned)
  565. Builder.defineMacro("__ARM_FEATURE_UNALIGNED", "1");
  566. // ACLE 6.4.4 LDREX/STREX
  567. if (LDREX)
  568. Builder.defineMacro("__ARM_FEATURE_LDREX", "0x" + Twine::utohexstr(LDREX));
  569. // ACLE 6.4.5 CLZ
  570. if (ArchVersion == 5 || (ArchVersion == 6 && CPUProfile != "M") ||
  571. ArchVersion > 6)
  572. Builder.defineMacro("__ARM_FEATURE_CLZ", "1");
  573. // ACLE 6.5.1 Hardware Floating Point
  574. if (HW_FP)
  575. Builder.defineMacro("__ARM_FP", "0x" + Twine::utohexstr(HW_FP));
  576. // ACLE predefines.
  577. Builder.defineMacro("__ARM_ACLE", "200");
  578. // FP16 support (we currently only support IEEE format).
  579. Builder.defineMacro("__ARM_FP16_FORMAT_IEEE", "1");
  580. Builder.defineMacro("__ARM_FP16_ARGS", "1");
  581. // ACLE 6.5.3 Fused multiply-accumulate (FMA)
  582. if (ArchVersion >= 7 && (FPU & VFP4FPU))
  583. Builder.defineMacro("__ARM_FEATURE_FMA", "1");
  584. // Subtarget options.
  585. // FIXME: It's more complicated than this and we don't really support
  586. // interworking.
  587. // Windows on ARM does not "support" interworking
  588. if (5 <= ArchVersion && ArchVersion <= 8 && !getTriple().isOSWindows())
  589. Builder.defineMacro("__THUMB_INTERWORK__");
  590. if (ABI == "aapcs" || ABI == "aapcs-linux" || ABI == "aapcs-vfp") {
  591. // Embedded targets on Darwin follow AAPCS, but not EABI.
  592. // Windows on ARM follows AAPCS VFP, but does not conform to EABI.
  593. if (!getTriple().isOSBinFormatMachO() && !getTriple().isOSWindows())
  594. Builder.defineMacro("__ARM_EABI__");
  595. Builder.defineMacro("__ARM_PCS", "1");
  596. }
  597. if ((!SoftFloat && !SoftFloatABI) || ABI == "aapcs-vfp" || ABI == "aapcs16")
  598. Builder.defineMacro("__ARM_PCS_VFP", "1");
  599. if (SoftFloat)
  600. Builder.defineMacro("__SOFTFP__");
  601. // ACLE position independent code macros.
  602. if (Opts.ROPI)
  603. Builder.defineMacro("__ARM_ROPI", "1");
  604. if (Opts.RWPI)
  605. Builder.defineMacro("__ARM_RWPI", "1");
  606. if (ArchKind == llvm::ARM::ArchKind::XSCALE)
  607. Builder.defineMacro("__XSCALE__");
  608. if (isThumb()) {
  609. Builder.defineMacro("__THUMBEL__");
  610. Builder.defineMacro("__thumb__");
  611. if (supportsThumb2())
  612. Builder.defineMacro("__thumb2__");
  613. }
  614. // ACLE 6.4.9 32-bit SIMD instructions
  615. if ((CPUProfile != "M" && ArchVersion >= 6) || (CPUProfile == "M" && DSP))
  616. Builder.defineMacro("__ARM_FEATURE_SIMD32", "1");
  617. // ACLE 6.4.10 Hardware Integer Divide
  618. if (((HWDiv & HWDivThumb) && isThumb()) ||
  619. ((HWDiv & HWDivARM) && !isThumb())) {
  620. Builder.defineMacro("__ARM_FEATURE_IDIV", "1");
  621. Builder.defineMacro("__ARM_ARCH_EXT_IDIV__", "1");
  622. }
  623. // Note, this is always on in gcc, even though it doesn't make sense.
  624. Builder.defineMacro("__APCS_32__");
  625. if (FPUModeIsVFP((FPUMode)FPU)) {
  626. Builder.defineMacro("__VFP_FP__");
  627. if (FPU & VFP2FPU)
  628. Builder.defineMacro("__ARM_VFPV2__");
  629. if (FPU & VFP3FPU)
  630. Builder.defineMacro("__ARM_VFPV3__");
  631. if (FPU & VFP4FPU)
  632. Builder.defineMacro("__ARM_VFPV4__");
  633. if (FPU & FPARMV8)
  634. Builder.defineMacro("__ARM_FPV5__");
  635. }
  636. // This only gets set when Neon instructions are actually available, unlike
  637. // the VFP define, hence the soft float and arch check. This is subtly
  638. // different from gcc, we follow the intent which was that it should be set
  639. // when Neon instructions are actually available.
  640. if ((FPU & NeonFPU) && !SoftFloat && ArchVersion >= 7) {
  641. Builder.defineMacro("__ARM_NEON", "1");
  642. Builder.defineMacro("__ARM_NEON__");
  643. // current AArch32 NEON implementations do not support double-precision
  644. // floating-point even when it is present in VFP.
  645. Builder.defineMacro("__ARM_NEON_FP",
  646. "0x" + Twine::utohexstr(HW_FP & ~HW_FP_DP));
  647. }
  648. if (hasMVE()) {
  649. Builder.defineMacro("__ARM_FEATURE_MVE", hasMVEFloat() ? "3" : "1");
  650. }
  651. Builder.defineMacro("__ARM_SIZEOF_WCHAR_T",
  652. Twine(Opts.WCharSize ? Opts.WCharSize : 4));
  653. Builder.defineMacro("__ARM_SIZEOF_MINIMAL_ENUM", Opts.ShortEnums ? "1" : "4");
  654. // CMSE
  655. if (ArchVersion == 8 && ArchProfile == llvm::ARM::ProfileKind::M)
  656. Builder.defineMacro("__ARM_FEATURE_CMSE", Opts.Cmse ? "3" : "1");
  657. if (ArchVersion >= 6 && CPUAttr != "6M" && CPUAttr != "8M_BASE") {
  658. Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
  659. Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
  660. Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
  661. Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
  662. }
  663. // ACLE 6.4.7 DSP instructions
  664. if (DSP) {
  665. Builder.defineMacro("__ARM_FEATURE_DSP", "1");
  666. }
  667. // ACLE 6.4.8 Saturation instructions
  668. bool SAT = false;
  669. if ((ArchVersion == 6 && CPUProfile != "M") || ArchVersion > 6) {
  670. Builder.defineMacro("__ARM_FEATURE_SAT", "1");
  671. SAT = true;
  672. }
  673. // ACLE 6.4.6 Q (saturation) flag
  674. if (DSP || SAT)
  675. Builder.defineMacro("__ARM_FEATURE_QBIT", "1");
  676. if (Opts.UnsafeFPMath)
  677. Builder.defineMacro("__ARM_FP_FAST", "1");
  678. // Armv8.2-A FP16 vector intrinsic
  679. if ((FPU & NeonFPU) && HasLegalHalfType)
  680. Builder.defineMacro("__ARM_FEATURE_FP16_VECTOR_ARITHMETIC", "1");
  681. // Armv8.2-A FP16 scalar intrinsics
  682. if (HasLegalHalfType)
  683. Builder.defineMacro("__ARM_FEATURE_FP16_SCALAR_ARITHMETIC", "1");
  684. // Armv8.2-A dot product intrinsics
  685. if (DotProd)
  686. Builder.defineMacro("__ARM_FEATURE_DOTPROD", "1");
  687. switch (ArchKind) {
  688. default:
  689. break;
  690. case llvm::ARM::ArchKind::ARMV8_1A:
  691. getTargetDefinesARMV81A(Opts, Builder);
  692. break;
  693. case llvm::ARM::ArchKind::ARMV8_2A:
  694. getTargetDefinesARMV82A(Opts, Builder);
  695. break;
  696. }
  697. }
  698. const Builtin::Info ARMTargetInfo::BuiltinInfo[] = {
  699. #define BUILTIN(ID, TYPE, ATTRS) \
  700. {#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, nullptr},
  701. #define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) \
  702. {#ID, TYPE, ATTRS, HEADER, ALL_LANGUAGES, nullptr},
  703. #include "clang/Basic/BuiltinsNEON.def"
  704. #define BUILTIN(ID, TYPE, ATTRS) \
  705. {#ID, TYPE, ATTRS, nullptr, ALL_LANGUAGES, nullptr},
  706. #define LANGBUILTIN(ID, TYPE, ATTRS, LANG) \
  707. {#ID, TYPE, ATTRS, nullptr, LANG, nullptr},
  708. #define LIBBUILTIN(ID, TYPE, ATTRS, HEADER) \
  709. {#ID, TYPE, ATTRS, HEADER, ALL_LANGUAGES, nullptr},
  710. #define TARGET_HEADER_BUILTIN(ID, TYPE, ATTRS, HEADER, LANGS, FEATURE) \
  711. {#ID, TYPE, ATTRS, HEADER, LANGS, FEATURE},
  712. #include "clang/Basic/BuiltinsARM.def"
  713. };
  714. ArrayRef<Builtin::Info> ARMTargetInfo::getTargetBuiltins() const {
  715. return llvm::makeArrayRef(BuiltinInfo, clang::ARM::LastTSBuiltin -
  716. Builtin::FirstTSBuiltin);
  717. }
  718. bool ARMTargetInfo::isCLZForZeroUndef() const { return false; }
  719. TargetInfo::BuiltinVaListKind ARMTargetInfo::getBuiltinVaListKind() const {
  720. return IsAAPCS
  721. ? AAPCSABIBuiltinVaList
  722. : (getTriple().isWatchABI() ? TargetInfo::CharPtrBuiltinVaList
  723. : TargetInfo::VoidPtrBuiltinVaList);
  724. }
  725. const char *const ARMTargetInfo::GCCRegNames[] = {
  726. // Integer registers
  727. "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11",
  728. "r12", "sp", "lr", "pc",
  729. // Float registers
  730. "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9", "s10", "s11",
  731. "s12", "s13", "s14", "s15", "s16", "s17", "s18", "s19", "s20", "s21", "s22",
  732. "s23", "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
  733. // Double registers
  734. "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", "d8", "d9", "d10", "d11",
  735. "d12", "d13", "d14", "d15", "d16", "d17", "d18", "d19", "d20", "d21", "d22",
  736. "d23", "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
  737. // Quad registers
  738. "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", "q8", "q9", "q10", "q11",
  739. "q12", "q13", "q14", "q15"};
  740. ArrayRef<const char *> ARMTargetInfo::getGCCRegNames() const {
  741. return llvm::makeArrayRef(GCCRegNames);
  742. }
  743. const TargetInfo::GCCRegAlias ARMTargetInfo::GCCRegAliases[] = {
  744. {{"a1"}, "r0"}, {{"a2"}, "r1"}, {{"a3"}, "r2"}, {{"a4"}, "r3"},
  745. {{"v1"}, "r4"}, {{"v2"}, "r5"}, {{"v3"}, "r6"}, {{"v4"}, "r7"},
  746. {{"v5"}, "r8"}, {{"v6", "rfp"}, "r9"}, {{"sl"}, "r10"}, {{"fp"}, "r11"},
  747. {{"ip"}, "r12"}, {{"r13"}, "sp"}, {{"r14"}, "lr"}, {{"r15"}, "pc"},
  748. // The S, D and Q registers overlap, but aren't really aliases; we
  749. // don't want to substitute one of these for a different-sized one.
  750. };
  751. ArrayRef<TargetInfo::GCCRegAlias> ARMTargetInfo::getGCCRegAliases() const {
  752. return llvm::makeArrayRef(GCCRegAliases);
  753. }
  754. bool ARMTargetInfo::validateAsmConstraint(
  755. const char *&Name, TargetInfo::ConstraintInfo &Info) const {
  756. switch (*Name) {
  757. default:
  758. break;
  759. case 'l': // r0-r7
  760. case 'h': // r8-r15
  761. case 't': // VFP Floating point register single precision
  762. case 'w': // VFP Floating point register double precision
  763. Info.setAllowsRegister();
  764. return true;
  765. case 'I':
  766. case 'J':
  767. case 'K':
  768. case 'L':
  769. case 'M':
  770. // FIXME
  771. return true;
  772. case 'Q': // A memory address that is a single base register.
  773. Info.setAllowsMemory();
  774. return true;
  775. case 'U': // a memory reference...
  776. switch (Name[1]) {
  777. case 'q': // ...ARMV4 ldrsb
  778. case 'v': // ...VFP load/store (reg+constant offset)
  779. case 'y': // ...iWMMXt load/store
  780. case 't': // address valid for load/store opaque types wider
  781. // than 128-bits
  782. case 'n': // valid address for Neon doubleword vector load/store
  783. case 'm': // valid address for Neon element and structure load/store
  784. case 's': // valid address for non-offset loads/stores of quad-word
  785. // values in four ARM registers
  786. Info.setAllowsMemory();
  787. Name++;
  788. return true;
  789. }
  790. }
  791. return false;
  792. }
  793. std::string ARMTargetInfo::convertConstraint(const char *&Constraint) const {
  794. std::string R;
  795. switch (*Constraint) {
  796. case 'U': // Two-character constraint; add "^" hint for later parsing.
  797. R = std::string("^") + std::string(Constraint, 2);
  798. Constraint++;
  799. break;
  800. case 'p': // 'p' should be translated to 'r' by default.
  801. R = std::string("r");
  802. break;
  803. default:
  804. return std::string(1, *Constraint);
  805. }
  806. return R;
  807. }
  808. bool ARMTargetInfo::validateConstraintModifier(
  809. StringRef Constraint, char Modifier, unsigned Size,
  810. std::string &SuggestedModifier) const {
  811. bool isOutput = (Constraint[0] == '=');
  812. bool isInOut = (Constraint[0] == '+');
  813. // Strip off constraint modifiers.
  814. while (Constraint[0] == '=' || Constraint[0] == '+' || Constraint[0] == '&')
  815. Constraint = Constraint.substr(1);
  816. switch (Constraint[0]) {
  817. default:
  818. break;
  819. case 'r': {
  820. switch (Modifier) {
  821. default:
  822. return (isInOut || isOutput || Size <= 64);
  823. case 'q':
  824. // A register of size 32 cannot fit a vector type.
  825. return false;
  826. }
  827. }
  828. }
  829. return true;
  830. }
  831. const char *ARMTargetInfo::getClobbers() const {
  832. // FIXME: Is this really right?
  833. return "";
  834. }
  835. TargetInfo::CallingConvCheckResult
  836. ARMTargetInfo::checkCallingConvention(CallingConv CC) const {
  837. switch (CC) {
  838. case CC_AAPCS:
  839. case CC_AAPCS_VFP:
  840. case CC_Swift:
  841. case CC_OpenCLKernel:
  842. return CCCR_OK;
  843. default:
  844. return CCCR_Warning;
  845. }
  846. }
  847. int ARMTargetInfo::getEHDataRegisterNumber(unsigned RegNo) const {
  848. if (RegNo == 0)
  849. return 0;
  850. if (RegNo == 1)
  851. return 1;
  852. return -1;
  853. }
  854. bool ARMTargetInfo::hasSjLjLowering() const { return true; }
  855. ARMleTargetInfo::ARMleTargetInfo(const llvm::Triple &Triple,
  856. const TargetOptions &Opts)
  857. : ARMTargetInfo(Triple, Opts) {}
  858. void ARMleTargetInfo::getTargetDefines(const LangOptions &Opts,
  859. MacroBuilder &Builder) const {
  860. Builder.defineMacro("__ARMEL__");
  861. ARMTargetInfo::getTargetDefines(Opts, Builder);
  862. }
  863. ARMbeTargetInfo::ARMbeTargetInfo(const llvm::Triple &Triple,
  864. const TargetOptions &Opts)
  865. : ARMTargetInfo(Triple, Opts) {}
  866. void ARMbeTargetInfo::getTargetDefines(const LangOptions &Opts,
  867. MacroBuilder &Builder) const {
  868. Builder.defineMacro("__ARMEB__");
  869. Builder.defineMacro("__ARM_BIG_ENDIAN");
  870. ARMTargetInfo::getTargetDefines(Opts, Builder);
  871. }
  872. WindowsARMTargetInfo::WindowsARMTargetInfo(const llvm::Triple &Triple,
  873. const TargetOptions &Opts)
  874. : WindowsTargetInfo<ARMleTargetInfo>(Triple, Opts), Triple(Triple) {
  875. }
  876. void WindowsARMTargetInfo::getVisualStudioDefines(const LangOptions &Opts,
  877. MacroBuilder &Builder) const {
  878. WindowsTargetInfo<ARMleTargetInfo>::getVisualStudioDefines(Opts, Builder);
  879. // FIXME: this is invalid for WindowsCE
  880. Builder.defineMacro("_M_ARM_NT", "1");
  881. Builder.defineMacro("_M_ARMT", "_M_ARM");
  882. Builder.defineMacro("_M_THUMB", "_M_ARM");
  883. assert((Triple.getArch() == llvm::Triple::arm ||
  884. Triple.getArch() == llvm::Triple::thumb) &&
  885. "invalid architecture for Windows ARM target info");
  886. unsigned Offset = Triple.getArch() == llvm::Triple::arm ? 4 : 6;
  887. Builder.defineMacro("_M_ARM", Triple.getArchName().substr(Offset));
  888. // TODO map the complete set of values
  889. // 31: VFPv3 40: VFPv4
  890. Builder.defineMacro("_M_ARM_FP", "31");
  891. }
  892. TargetInfo::BuiltinVaListKind
  893. WindowsARMTargetInfo::getBuiltinVaListKind() const {
  894. return TargetInfo::CharPtrBuiltinVaList;
  895. }
  896. TargetInfo::CallingConvCheckResult
  897. WindowsARMTargetInfo::checkCallingConvention(CallingConv CC) const {
  898. switch (CC) {
  899. case CC_X86StdCall:
  900. case CC_X86ThisCall:
  901. case CC_X86FastCall:
  902. case CC_X86VectorCall:
  903. return CCCR_Ignore;
  904. case CC_C:
  905. case CC_OpenCLKernel:
  906. case CC_PreserveMost:
  907. case CC_PreserveAll:
  908. case CC_Swift:
  909. return CCCR_OK;
  910. default:
  911. return CCCR_Warning;
  912. }
  913. }
  914. // Windows ARM + Itanium C++ ABI Target
  915. ItaniumWindowsARMleTargetInfo::ItaniumWindowsARMleTargetInfo(
  916. const llvm::Triple &Triple, const TargetOptions &Opts)
  917. : WindowsARMTargetInfo(Triple, Opts) {
  918. TheCXXABI.set(TargetCXXABI::GenericARM);
  919. }
  920. void ItaniumWindowsARMleTargetInfo::getTargetDefines(
  921. const LangOptions &Opts, MacroBuilder &Builder) const {
  922. WindowsARMTargetInfo::getTargetDefines(Opts, Builder);
  923. if (Opts.MSVCCompat)
  924. WindowsARMTargetInfo::getVisualStudioDefines(Opts, Builder);
  925. }
  926. // Windows ARM, MS (C++) ABI
  927. MicrosoftARMleTargetInfo::MicrosoftARMleTargetInfo(const llvm::Triple &Triple,
  928. const TargetOptions &Opts)
  929. : WindowsARMTargetInfo(Triple, Opts) {
  930. TheCXXABI.set(TargetCXXABI::Microsoft);
  931. }
  932. void MicrosoftARMleTargetInfo::getTargetDefines(const LangOptions &Opts,
  933. MacroBuilder &Builder) const {
  934. WindowsARMTargetInfo::getTargetDefines(Opts, Builder);
  935. WindowsARMTargetInfo::getVisualStudioDefines(Opts, Builder);
  936. }
  937. MinGWARMTargetInfo::MinGWARMTargetInfo(const llvm::Triple &Triple,
  938. const TargetOptions &Opts)
  939. : WindowsARMTargetInfo(Triple, Opts) {
  940. TheCXXABI.set(TargetCXXABI::GenericARM);
  941. }
  942. void MinGWARMTargetInfo::getTargetDefines(const LangOptions &Opts,
  943. MacroBuilder &Builder) const {
  944. WindowsARMTargetInfo::getTargetDefines(Opts, Builder);
  945. Builder.defineMacro("_ARM_");
  946. }
  947. CygwinARMTargetInfo::CygwinARMTargetInfo(const llvm::Triple &Triple,
  948. const TargetOptions &Opts)
  949. : ARMleTargetInfo(Triple, Opts) {
  950. this->WCharType = TargetInfo::UnsignedShort;
  951. TLSSupported = false;
  952. DoubleAlign = LongLongAlign = 64;
  953. resetDataLayout("e-m:e-p:32:32-Fi8-i64:64-v128:64:128-a:0:32-n32-S64");
  954. }
  955. void CygwinARMTargetInfo::getTargetDefines(const LangOptions &Opts,
  956. MacroBuilder &Builder) const {
  957. ARMleTargetInfo::getTargetDefines(Opts, Builder);
  958. Builder.defineMacro("_ARM_");
  959. Builder.defineMacro("__CYGWIN__");
  960. Builder.defineMacro("__CYGWIN32__");
  961. DefineStd(Builder, "unix", Opts);
  962. if (Opts.CPlusPlus)
  963. Builder.defineMacro("_GNU_SOURCE");
  964. }
  965. DarwinARMTargetInfo::DarwinARMTargetInfo(const llvm::Triple &Triple,
  966. const TargetOptions &Opts)
  967. : DarwinTargetInfo<ARMleTargetInfo>(Triple, Opts) {
  968. HasAlignMac68kSupport = true;
  969. // iOS always has 64-bit atomic instructions.
  970. // FIXME: This should be based off of the target features in
  971. // ARMleTargetInfo.
  972. MaxAtomicInlineWidth = 64;
  973. if (Triple.isWatchABI()) {
  974. // Darwin on iOS uses a variant of the ARM C++ ABI.
  975. TheCXXABI.set(TargetCXXABI::WatchOS);
  976. // BOOL should be a real boolean on the new ABI
  977. UseSignedCharForObjCBool = false;
  978. } else
  979. TheCXXABI.set(TargetCXXABI::iOS);
  980. }
  981. void DarwinARMTargetInfo::getOSDefines(const LangOptions &Opts,
  982. const llvm::Triple &Triple,
  983. MacroBuilder &Builder) const {
  984. getDarwinDefines(Builder, Opts, Triple, PlatformName, PlatformMinVersion);
  985. }
  986. RenderScript32TargetInfo::RenderScript32TargetInfo(const llvm::Triple &Triple,
  987. const TargetOptions &Opts)
  988. : ARMleTargetInfo(llvm::Triple("armv7", Triple.getVendorName(),
  989. Triple.getOSName(),
  990. Triple.getEnvironmentName()),
  991. Opts) {
  992. IsRenderScriptTarget = true;
  993. LongWidth = LongAlign = 64;
  994. }
  995. void RenderScript32TargetInfo::getTargetDefines(const LangOptions &Opts,
  996. MacroBuilder &Builder) const {
  997. Builder.defineMacro("__RENDERSCRIPT__");
  998. ARMleTargetInfo::getTargetDefines(Opts, Builder);
  999. }