123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528 |
- // SValBuilder.cpp - Basic class for all SValBuilder implementations -*- C++ -*-
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines SValBuilder, the base class for all (complete) SValBuilder
- // implementations.
- //
- //===----------------------------------------------------------------------===//
- #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
- #include "clang/AST/DeclCXX.h"
- #include "clang/AST/ExprCXX.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
- using namespace clang;
- using namespace ento;
- //===----------------------------------------------------------------------===//
- // Basic SVal creation.
- //===----------------------------------------------------------------------===//
- void SValBuilder::anchor() { }
- DefinedOrUnknownSVal SValBuilder::makeZeroVal(QualType type) {
- if (Loc::isLocType(type))
- return makeNull();
- if (type->isIntegralOrEnumerationType())
- return makeIntVal(0, type);
- // FIXME: Handle floats.
- // FIXME: Handle structs.
- return UnknownVal();
- }
- NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
- const llvm::APSInt& rhs, QualType type) {
- // The Environment ensures we always get a persistent APSInt in
- // BasicValueFactory, so we don't need to get the APSInt from
- // BasicValueFactory again.
- assert(lhs);
- assert(!Loc::isLocType(type));
- return nonloc::SymbolVal(SymMgr.getSymIntExpr(lhs, op, rhs, type));
- }
- NonLoc SValBuilder::makeNonLoc(const llvm::APSInt& lhs,
- BinaryOperator::Opcode op, const SymExpr *rhs,
- QualType type) {
- assert(rhs);
- assert(!Loc::isLocType(type));
- return nonloc::SymbolVal(SymMgr.getIntSymExpr(lhs, op, rhs, type));
- }
- NonLoc SValBuilder::makeNonLoc(const SymExpr *lhs, BinaryOperator::Opcode op,
- const SymExpr *rhs, QualType type) {
- assert(lhs && rhs);
- assert(!Loc::isLocType(type));
- return nonloc::SymbolVal(SymMgr.getSymSymExpr(lhs, op, rhs, type));
- }
- NonLoc SValBuilder::makeNonLoc(const SymExpr *operand,
- QualType fromTy, QualType toTy) {
- assert(operand);
- assert(!Loc::isLocType(toTy));
- return nonloc::SymbolVal(SymMgr.getCastSymbol(operand, fromTy, toTy));
- }
- SVal SValBuilder::convertToArrayIndex(SVal val) {
- if (val.isUnknownOrUndef())
- return val;
- // Common case: we have an appropriately sized integer.
- if (Optional<nonloc::ConcreteInt> CI = val.getAs<nonloc::ConcreteInt>()) {
- const llvm::APSInt& I = CI->getValue();
- if (I.getBitWidth() == ArrayIndexWidth && I.isSigned())
- return val;
- }
- return evalCastFromNonLoc(val.castAs<NonLoc>(), ArrayIndexTy);
- }
- nonloc::ConcreteInt SValBuilder::makeBoolVal(const CXXBoolLiteralExpr *boolean){
- return makeTruthVal(boolean->getValue());
- }
- DefinedOrUnknownSVal
- SValBuilder::getRegionValueSymbolVal(const TypedValueRegion* region) {
- QualType T = region->getValueType();
- if (!SymbolManager::canSymbolicate(T))
- return UnknownVal();
- SymbolRef sym = SymMgr.getRegionValueSymbol(region);
- if (Loc::isLocType(T))
- return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
- return nonloc::SymbolVal(sym);
- }
- DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *SymbolTag,
- const Expr *Ex,
- const LocationContext *LCtx,
- unsigned Count) {
- QualType T = Ex->getType();
- // Compute the type of the result. If the expression is not an R-value, the
- // result should be a location.
- QualType ExType = Ex->getType();
- if (Ex->isGLValue())
- T = LCtx->getAnalysisDeclContext()->getASTContext().getPointerType(ExType);
- return conjureSymbolVal(SymbolTag, Ex, LCtx, T, Count);
- }
- DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const void *symbolTag,
- const Expr *expr,
- const LocationContext *LCtx,
- QualType type,
- unsigned count) {
- if (!SymbolManager::canSymbolicate(type))
- return UnknownVal();
- SymbolRef sym = SymMgr.conjureSymbol(expr, LCtx, type, count, symbolTag);
- if (Loc::isLocType(type))
- return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
- return nonloc::SymbolVal(sym);
- }
- DefinedOrUnknownSVal SValBuilder::conjureSymbolVal(const Stmt *stmt,
- const LocationContext *LCtx,
- QualType type,
- unsigned visitCount) {
- if (!SymbolManager::canSymbolicate(type))
- return UnknownVal();
- SymbolRef sym = SymMgr.conjureSymbol(stmt, LCtx, type, visitCount);
- if (Loc::isLocType(type))
- return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
- return nonloc::SymbolVal(sym);
- }
- DefinedOrUnknownSVal
- SValBuilder::getConjuredHeapSymbolVal(const Expr *E,
- const LocationContext *LCtx,
- unsigned VisitCount) {
- QualType T = E->getType();
- assert(Loc::isLocType(T));
- assert(SymbolManager::canSymbolicate(T));
- SymbolRef sym = SymMgr.conjureSymbol(E, LCtx, T, VisitCount);
- return loc::MemRegionVal(MemMgr.getSymbolicHeapRegion(sym));
- }
- DefinedSVal SValBuilder::getMetadataSymbolVal(const void *symbolTag,
- const MemRegion *region,
- const Expr *expr, QualType type,
- unsigned count) {
- assert(SymbolManager::canSymbolicate(type) && "Invalid metadata symbol type");
- SymbolRef sym =
- SymMgr.getMetadataSymbol(region, expr, type, count, symbolTag);
- if (Loc::isLocType(type))
- return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
- return nonloc::SymbolVal(sym);
- }
- DefinedOrUnknownSVal
- SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol,
- const TypedValueRegion *region) {
- QualType T = region->getValueType();
- if (!SymbolManager::canSymbolicate(T))
- return UnknownVal();
- SymbolRef sym = SymMgr.getDerivedSymbol(parentSymbol, region);
- if (Loc::isLocType(T))
- return loc::MemRegionVal(MemMgr.getSymbolicRegion(sym));
- return nonloc::SymbolVal(sym);
- }
- DefinedSVal SValBuilder::getFunctionPointer(const FunctionDecl *func) {
- return loc::MemRegionVal(MemMgr.getFunctionTextRegion(func));
- }
- DefinedSVal SValBuilder::getBlockPointer(const BlockDecl *block,
- CanQualType locTy,
- const LocationContext *locContext,
- unsigned blockCount) {
- const BlockTextRegion *BC =
- MemMgr.getBlockTextRegion(block, locTy, locContext->getAnalysisDeclContext());
- const BlockDataRegion *BD = MemMgr.getBlockDataRegion(BC, locContext,
- blockCount);
- return loc::MemRegionVal(BD);
- }
- /// Return a memory region for the 'this' object reference.
- loc::MemRegionVal SValBuilder::getCXXThis(const CXXMethodDecl *D,
- const StackFrameContext *SFC) {
- return loc::MemRegionVal(getRegionManager().
- getCXXThisRegion(D->getThisType(getContext()), SFC));
- }
- /// Return a memory region for the 'this' object reference.
- loc::MemRegionVal SValBuilder::getCXXThis(const CXXRecordDecl *D,
- const StackFrameContext *SFC) {
- const Type *T = D->getTypeForDecl();
- QualType PT = getContext().getPointerType(QualType(T, 0));
- return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT, SFC));
- }
- Optional<SVal> SValBuilder::getConstantVal(const Expr *E) {
- E = E->IgnoreParens();
- switch (E->getStmtClass()) {
- // Handle expressions that we treat differently from the AST's constant
- // evaluator.
- case Stmt::AddrLabelExprClass:
- return makeLoc(cast<AddrLabelExpr>(E));
- case Stmt::CXXScalarValueInitExprClass:
- case Stmt::ImplicitValueInitExprClass:
- return makeZeroVal(E->getType());
- case Stmt::ObjCStringLiteralClass: {
- const ObjCStringLiteral *SL = cast<ObjCStringLiteral>(E);
- return makeLoc(getRegionManager().getObjCStringRegion(SL));
- }
- case Stmt::StringLiteralClass: {
- const StringLiteral *SL = cast<StringLiteral>(E);
- return makeLoc(getRegionManager().getStringRegion(SL));
- }
- // Fast-path some expressions to avoid the overhead of going through the AST's
- // constant evaluator
- case Stmt::CharacterLiteralClass: {
- const CharacterLiteral *C = cast<CharacterLiteral>(E);
- return makeIntVal(C->getValue(), C->getType());
- }
- case Stmt::CXXBoolLiteralExprClass:
- return makeBoolVal(cast<CXXBoolLiteralExpr>(E));
- case Stmt::IntegerLiteralClass:
- return makeIntVal(cast<IntegerLiteral>(E));
- case Stmt::ObjCBoolLiteralExprClass:
- return makeBoolVal(cast<ObjCBoolLiteralExpr>(E));
- case Stmt::CXXNullPtrLiteralExprClass:
- return makeNull();
- case Stmt::ImplicitCastExprClass: {
- const CastExpr *CE = cast<CastExpr>(E);
- if (CE->getCastKind() == CK_ArrayToPointerDecay) {
- Optional<SVal> ArrayVal = getConstantVal(CE->getSubExpr());
- if (!ArrayVal)
- return None;
- return evalCast(*ArrayVal, CE->getType(), CE->getSubExpr()->getType());
- }
- // FALLTHROUGH
- }
- // If we don't have a special case, fall back to the AST's constant evaluator.
- default: {
- // Don't try to come up with a value for materialized temporaries.
- if (E->isGLValue())
- return None;
- ASTContext &Ctx = getContext();
- llvm::APSInt Result;
- if (E->EvaluateAsInt(Result, Ctx))
- return makeIntVal(Result);
- if (Loc::isLocType(E->getType()))
- if (E->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
- return makeNull();
- return None;
- }
- }
- }
- //===----------------------------------------------------------------------===//
- SVal SValBuilder::makeSymExprValNN(ProgramStateRef State,
- BinaryOperator::Opcode Op,
- NonLoc LHS, NonLoc RHS,
- QualType ResultTy) {
- if (!State->isTainted(RHS) && !State->isTainted(LHS))
- return UnknownVal();
- const SymExpr *symLHS = LHS.getAsSymExpr();
- const SymExpr *symRHS = RHS.getAsSymExpr();
- // TODO: When the Max Complexity is reached, we should conjure a symbol
- // instead of generating an Unknown value and propagate the taint info to it.
- const unsigned MaxComp = 10000; // 100000 28X
- if (symLHS && symRHS &&
- (symLHS->computeComplexity() + symRHS->computeComplexity()) < MaxComp)
- return makeNonLoc(symLHS, Op, symRHS, ResultTy);
- if (symLHS && symLHS->computeComplexity() < MaxComp)
- if (Optional<nonloc::ConcreteInt> rInt = RHS.getAs<nonloc::ConcreteInt>())
- return makeNonLoc(symLHS, Op, rInt->getValue(), ResultTy);
- if (symRHS && symRHS->computeComplexity() < MaxComp)
- if (Optional<nonloc::ConcreteInt> lInt = LHS.getAs<nonloc::ConcreteInt>())
- return makeNonLoc(lInt->getValue(), Op, symRHS, ResultTy);
- return UnknownVal();
- }
- SVal SValBuilder::evalBinOp(ProgramStateRef state, BinaryOperator::Opcode op,
- SVal lhs, SVal rhs, QualType type) {
- if (lhs.isUndef() || rhs.isUndef())
- return UndefinedVal();
- if (lhs.isUnknown() || rhs.isUnknown())
- return UnknownVal();
- if (Optional<Loc> LV = lhs.getAs<Loc>()) {
- if (Optional<Loc> RV = rhs.getAs<Loc>())
- return evalBinOpLL(state, op, *LV, *RV, type);
- return evalBinOpLN(state, op, *LV, rhs.castAs<NonLoc>(), type);
- }
- if (Optional<Loc> RV = rhs.getAs<Loc>()) {
- // Support pointer arithmetic where the addend is on the left
- // and the pointer on the right.
- assert(op == BO_Add);
- // Commute the operands.
- return evalBinOpLN(state, op, *RV, lhs.castAs<NonLoc>(), type);
- }
- return evalBinOpNN(state, op, lhs.castAs<NonLoc>(), rhs.castAs<NonLoc>(),
- type);
- }
- DefinedOrUnknownSVal SValBuilder::evalEQ(ProgramStateRef state,
- DefinedOrUnknownSVal lhs,
- DefinedOrUnknownSVal rhs) {
- return evalBinOp(state, BO_EQ, lhs, rhs, getConditionType())
- .castAs<DefinedOrUnknownSVal>();
- }
- /// Recursively check if the pointer types are equal modulo const, volatile,
- /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
- /// Assumes the input types are canonical.
- static bool shouldBeModeledWithNoOp(ASTContext &Context, QualType ToTy,
- QualType FromTy) {
- while (Context.UnwrapSimilarPointerTypes(ToTy, FromTy)) {
- Qualifiers Quals1, Quals2;
- ToTy = Context.getUnqualifiedArrayType(ToTy, Quals1);
- FromTy = Context.getUnqualifiedArrayType(FromTy, Quals2);
- // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
- // spaces) are identical.
- Quals1.removeCVRQualifiers();
- Quals2.removeCVRQualifiers();
- if (Quals1 != Quals2)
- return false;
- }
- // If we are casting to void, the 'From' value can be used to represent the
- // 'To' value.
- if (ToTy->isVoidType())
- return true;
- if (ToTy != FromTy)
- return false;
- return true;
- }
- // FIXME: should rewrite according to the cast kind.
- SVal SValBuilder::evalCast(SVal val, QualType castTy, QualType originalTy) {
- castTy = Context.getCanonicalType(castTy);
- originalTy = Context.getCanonicalType(originalTy);
- if (val.isUnknownOrUndef() || castTy == originalTy)
- return val;
- if (castTy->isBooleanType()) {
- if (val.isUnknownOrUndef())
- return val;
- if (val.isConstant())
- return makeTruthVal(!val.isZeroConstant(), castTy);
- if (!Loc::isLocType(originalTy) &&
- !originalTy->isIntegralOrEnumerationType() &&
- !originalTy->isMemberPointerType())
- return UnknownVal();
- if (SymbolRef Sym = val.getAsSymbol(true)) {
- BasicValueFactory &BVF = getBasicValueFactory();
- // FIXME: If we had a state here, we could see if the symbol is known to
- // be zero, but we don't.
- return makeNonLoc(Sym, BO_NE, BVF.getValue(0, Sym->getType()), castTy);
- }
- // Loc values are not always true, they could be weakly linked functions.
- if (Optional<Loc> L = val.getAs<Loc>())
- return evalCastFromLoc(*L, castTy);
- Loc L = val.castAs<nonloc::LocAsInteger>().getLoc();
- return evalCastFromLoc(L, castTy);
- }
- // For const casts, casts to void, just propagate the value.
- if (!castTy->isVariableArrayType() && !originalTy->isVariableArrayType())
- if (shouldBeModeledWithNoOp(Context, Context.getPointerType(castTy),
- Context.getPointerType(originalTy)))
- return val;
- // Check for casts from pointers to integers.
- if (castTy->isIntegralOrEnumerationType() && Loc::isLocType(originalTy))
- return evalCastFromLoc(val.castAs<Loc>(), castTy);
- // Check for casts from integers to pointers.
- if (Loc::isLocType(castTy) && originalTy->isIntegralOrEnumerationType()) {
- if (Optional<nonloc::LocAsInteger> LV = val.getAs<nonloc::LocAsInteger>()) {
- if (const MemRegion *R = LV->getLoc().getAsRegion()) {
- StoreManager &storeMgr = StateMgr.getStoreManager();
- R = storeMgr.castRegion(R, castTy);
- return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
- }
- return LV->getLoc();
- }
- return dispatchCast(val, castTy);
- }
- // Just pass through function and block pointers.
- if (originalTy->isBlockPointerType() || originalTy->isFunctionPointerType()) {
- assert(Loc::isLocType(castTy));
- return val;
- }
- // Check for casts from array type to another type.
- if (const ArrayType *arrayT =
- dyn_cast<ArrayType>(originalTy.getCanonicalType())) {
- // We will always decay to a pointer.
- QualType elemTy = arrayT->getElementType();
- val = StateMgr.ArrayToPointer(val.castAs<Loc>(), elemTy);
- // Are we casting from an array to a pointer? If so just pass on
- // the decayed value.
- if (castTy->isPointerType() || castTy->isReferenceType())
- return val;
- // Are we casting from an array to an integer? If so, cast the decayed
- // pointer value to an integer.
- assert(castTy->isIntegralOrEnumerationType());
- // FIXME: Keep these here for now in case we decide soon that we
- // need the original decayed type.
- // QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
- // QualType pointerTy = C.getPointerType(elemTy);
- return evalCastFromLoc(val.castAs<Loc>(), castTy);
- }
- // Check for casts from a region to a specific type.
- if (const MemRegion *R = val.getAsRegion()) {
- // Handle other casts of locations to integers.
- if (castTy->isIntegralOrEnumerationType())
- return evalCastFromLoc(loc::MemRegionVal(R), castTy);
- // FIXME: We should handle the case where we strip off view layers to get
- // to a desugared type.
- if (!Loc::isLocType(castTy)) {
- // FIXME: There can be gross cases where one casts the result of a function
- // (that returns a pointer) to some other value that happens to fit
- // within that pointer value. We currently have no good way to
- // model such operations. When this happens, the underlying operation
- // is that the caller is reasoning about bits. Conceptually we are
- // layering a "view" of a location on top of those bits. Perhaps
- // we need to be more lazy about mutual possible views, even on an
- // SVal? This may be necessary for bit-level reasoning as well.
- return UnknownVal();
- }
- // We get a symbolic function pointer for a dereference of a function
- // pointer, but it is of function type. Example:
- // struct FPRec {
- // void (*my_func)(int * x);
- // };
- //
- // int bar(int x);
- //
- // int f1_a(struct FPRec* foo) {
- // int x;
- // (*foo->my_func)(&x);
- // return bar(x)+1; // no-warning
- // }
- assert(Loc::isLocType(originalTy) || originalTy->isFunctionType() ||
- originalTy->isBlockPointerType() || castTy->isReferenceType());
- StoreManager &storeMgr = StateMgr.getStoreManager();
- // Delegate to store manager to get the result of casting a region to a
- // different type. If the MemRegion* returned is NULL, this expression
- // Evaluates to UnknownVal.
- R = storeMgr.castRegion(R, castTy);
- return R ? SVal(loc::MemRegionVal(R)) : UnknownVal();
- }
- return dispatchCast(val, castTy);
- }
|