123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589 |
- //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines RangeConstraintManager, a class that tracks simple
- // equality and inequality constraints on symbolic values of ProgramState.
- //
- //===----------------------------------------------------------------------===//
- #include "SimpleConstraintManager.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
- #include "llvm/ADT/FoldingSet.h"
- #include "llvm/ADT/ImmutableSet.h"
- #include "llvm/Support/Debug.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace clang;
- using namespace ento;
- /// A Range represents the closed range [from, to]. The caller must
- /// guarantee that from <= to. Note that Range is immutable, so as not
- /// to subvert RangeSet's immutability.
- namespace {
- class Range : public std::pair<const llvm::APSInt*,
- const llvm::APSInt*> {
- public:
- Range(const llvm::APSInt &from, const llvm::APSInt &to)
- : std::pair<const llvm::APSInt*, const llvm::APSInt*>(&from, &to) {
- assert(from <= to);
- }
- bool Includes(const llvm::APSInt &v) const {
- return *first <= v && v <= *second;
- }
- const llvm::APSInt &From() const {
- return *first;
- }
- const llvm::APSInt &To() const {
- return *second;
- }
- const llvm::APSInt *getConcreteValue() const {
- return &From() == &To() ? &From() : nullptr;
- }
- void Profile(llvm::FoldingSetNodeID &ID) const {
- ID.AddPointer(&From());
- ID.AddPointer(&To());
- }
- };
- class RangeTrait : public llvm::ImutContainerInfo<Range> {
- public:
- // When comparing if one Range is less than another, we should compare
- // the actual APSInt values instead of their pointers. This keeps the order
- // consistent (instead of comparing by pointer values) and can potentially
- // be used to speed up some of the operations in RangeSet.
- static inline bool isLess(key_type_ref lhs, key_type_ref rhs) {
- return *lhs.first < *rhs.first || (!(*rhs.first < *lhs.first) &&
- *lhs.second < *rhs.second);
- }
- };
- /// RangeSet contains a set of ranges. If the set is empty, then
- /// there the value of a symbol is overly constrained and there are no
- /// possible values for that symbol.
- class RangeSet {
- typedef llvm::ImmutableSet<Range, RangeTrait> PrimRangeSet;
- PrimRangeSet ranges; // no need to make const, since it is an
- // ImmutableSet - this allows default operator=
- // to work.
- public:
- typedef PrimRangeSet::Factory Factory;
- typedef PrimRangeSet::iterator iterator;
- RangeSet(PrimRangeSet RS) : ranges(RS) {}
- iterator begin() const { return ranges.begin(); }
- iterator end() const { return ranges.end(); }
- bool isEmpty() const { return ranges.isEmpty(); }
- /// Construct a new RangeSet representing '{ [from, to] }'.
- RangeSet(Factory &F, const llvm::APSInt &from, const llvm::APSInt &to)
- : ranges(F.add(F.getEmptySet(), Range(from, to))) {}
- /// Profile - Generates a hash profile of this RangeSet for use
- /// by FoldingSet.
- void Profile(llvm::FoldingSetNodeID &ID) const { ranges.Profile(ID); }
- /// getConcreteValue - If a symbol is contrained to equal a specific integer
- /// constant then this method returns that value. Otherwise, it returns
- /// NULL.
- const llvm::APSInt* getConcreteValue() const {
- return ranges.isSingleton() ? ranges.begin()->getConcreteValue() : nullptr;
- }
- private:
- void IntersectInRange(BasicValueFactory &BV, Factory &F,
- const llvm::APSInt &Lower,
- const llvm::APSInt &Upper,
- PrimRangeSet &newRanges,
- PrimRangeSet::iterator &i,
- PrimRangeSet::iterator &e) const {
- // There are six cases for each range R in the set:
- // 1. R is entirely before the intersection range.
- // 2. R is entirely after the intersection range.
- // 3. R contains the entire intersection range.
- // 4. R starts before the intersection range and ends in the middle.
- // 5. R starts in the middle of the intersection range and ends after it.
- // 6. R is entirely contained in the intersection range.
- // These correspond to each of the conditions below.
- for (/* i = begin(), e = end() */; i != e; ++i) {
- if (i->To() < Lower) {
- continue;
- }
- if (i->From() > Upper) {
- break;
- }
- if (i->Includes(Lower)) {
- if (i->Includes(Upper)) {
- newRanges = F.add(newRanges, Range(BV.getValue(Lower),
- BV.getValue(Upper)));
- break;
- } else
- newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
- } else {
- if (i->Includes(Upper)) {
- newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
- break;
- } else
- newRanges = F.add(newRanges, *i);
- }
- }
- }
- const llvm::APSInt &getMinValue() const {
- assert(!isEmpty());
- return ranges.begin()->From();
- }
- bool pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
- // This function has nine cases, the cartesian product of range-testing
- // both the upper and lower bounds against the symbol's type.
- // Each case requires a different pinning operation.
- // The function returns false if the described range is entirely outside
- // the range of values for the associated symbol.
- APSIntType Type(getMinValue());
- APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
- APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
- switch (LowerTest) {
- case APSIntType::RTR_Below:
- switch (UpperTest) {
- case APSIntType::RTR_Below:
- // The entire range is outside the symbol's set of possible values.
- // If this is a conventionally-ordered range, the state is infeasible.
- if (Lower < Upper)
- return false;
- // However, if the range wraps around, it spans all possible values.
- Lower = Type.getMinValue();
- Upper = Type.getMaxValue();
- break;
- case APSIntType::RTR_Within:
- // The range starts below what's possible but ends within it. Pin.
- Lower = Type.getMinValue();
- Type.apply(Upper);
- break;
- case APSIntType::RTR_Above:
- // The range spans all possible values for the symbol. Pin.
- Lower = Type.getMinValue();
- Upper = Type.getMaxValue();
- break;
- }
- break;
- case APSIntType::RTR_Within:
- switch (UpperTest) {
- case APSIntType::RTR_Below:
- // The range wraps around, but all lower values are not possible.
- Type.apply(Lower);
- Upper = Type.getMaxValue();
- break;
- case APSIntType::RTR_Within:
- // The range may or may not wrap around, but both limits are valid.
- Type.apply(Lower);
- Type.apply(Upper);
- break;
- case APSIntType::RTR_Above:
- // The range starts within what's possible but ends above it. Pin.
- Type.apply(Lower);
- Upper = Type.getMaxValue();
- break;
- }
- break;
- case APSIntType::RTR_Above:
- switch (UpperTest) {
- case APSIntType::RTR_Below:
- // The range wraps but is outside the symbol's set of possible values.
- return false;
- case APSIntType::RTR_Within:
- // The range starts above what's possible but ends within it (wrap).
- Lower = Type.getMinValue();
- Type.apply(Upper);
- break;
- case APSIntType::RTR_Above:
- // The entire range is outside the symbol's set of possible values.
- // If this is a conventionally-ordered range, the state is infeasible.
- if (Lower < Upper)
- return false;
- // However, if the range wraps around, it spans all possible values.
- Lower = Type.getMinValue();
- Upper = Type.getMaxValue();
- break;
- }
- break;
- }
- return true;
- }
- public:
- // Returns a set containing the values in the receiving set, intersected with
- // the closed range [Lower, Upper]. Unlike the Range type, this range uses
- // modular arithmetic, corresponding to the common treatment of C integer
- // overflow. Thus, if the Lower bound is greater than the Upper bound, the
- // range is taken to wrap around. This is equivalent to taking the
- // intersection with the two ranges [Min, Upper] and [Lower, Max],
- // or, alternatively, /removing/ all integers between Upper and Lower.
- RangeSet Intersect(BasicValueFactory &BV, Factory &F,
- llvm::APSInt Lower, llvm::APSInt Upper) const {
- if (!pin(Lower, Upper))
- return F.getEmptySet();
- PrimRangeSet newRanges = F.getEmptySet();
- PrimRangeSet::iterator i = begin(), e = end();
- if (Lower <= Upper)
- IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
- else {
- // The order of the next two statements is important!
- // IntersectInRange() does not reset the iteration state for i and e.
- // Therefore, the lower range most be handled first.
- IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
- IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
- }
- return newRanges;
- }
- void print(raw_ostream &os) const {
- bool isFirst = true;
- os << "{ ";
- for (iterator i = begin(), e = end(); i != e; ++i) {
- if (isFirst)
- isFirst = false;
- else
- os << ", ";
- os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
- << ']';
- }
- os << " }";
- }
- bool operator==(const RangeSet &other) const {
- return ranges == other.ranges;
- }
- };
- } // end anonymous namespace
- REGISTER_TRAIT_WITH_PROGRAMSTATE(ConstraintRange,
- CLANG_ENTO_PROGRAMSTATE_MAP(SymbolRef,
- RangeSet))
- namespace {
- class RangeConstraintManager : public SimpleConstraintManager{
- RangeSet GetRange(ProgramStateRef state, SymbolRef sym);
- public:
- RangeConstraintManager(SubEngine *subengine, SValBuilder &SVB)
- : SimpleConstraintManager(subengine, SVB) {}
- ProgramStateRef assumeSymNE(ProgramStateRef state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) override;
- ProgramStateRef assumeSymEQ(ProgramStateRef state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) override;
- ProgramStateRef assumeSymLT(ProgramStateRef state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) override;
- ProgramStateRef assumeSymGT(ProgramStateRef state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) override;
- ProgramStateRef assumeSymGE(ProgramStateRef state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) override;
- ProgramStateRef assumeSymLE(ProgramStateRef state, SymbolRef sym,
- const llvm::APSInt& Int,
- const llvm::APSInt& Adjustment) override;
- const llvm::APSInt* getSymVal(ProgramStateRef St,
- SymbolRef sym) const override;
- ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
- ProgramStateRef removeDeadBindings(ProgramStateRef St,
- SymbolReaper& SymReaper) override;
- void print(ProgramStateRef St, raw_ostream &Out,
- const char* nl, const char *sep) override;
- private:
- RangeSet::Factory F;
- };
- } // end anonymous namespace
- std::unique_ptr<ConstraintManager>
- ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
- return llvm::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
- }
- const llvm::APSInt* RangeConstraintManager::getSymVal(ProgramStateRef St,
- SymbolRef sym) const {
- const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(sym);
- return T ? T->getConcreteValue() : nullptr;
- }
- ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
- SymbolRef Sym) {
- const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
- // If we don't have any information about this symbol, it's underconstrained.
- if (!Ranges)
- return ConditionTruthVal();
- // If we have a concrete value, see if it's zero.
- if (const llvm::APSInt *Value = Ranges->getConcreteValue())
- return *Value == 0;
- BasicValueFactory &BV = getBasicVals();
- APSIntType IntType = BV.getAPSIntType(Sym->getType());
- llvm::APSInt Zero = IntType.getZeroValue();
- // Check if zero is in the set of possible values.
- if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
- return false;
- // Zero is a possible value, but it is not the /only/ possible value.
- return ConditionTruthVal();
- }
- /// Scan all symbols referenced by the constraints. If the symbol is not alive
- /// as marked in LSymbols, mark it as dead in DSymbols.
- ProgramStateRef
- RangeConstraintManager::removeDeadBindings(ProgramStateRef state,
- SymbolReaper& SymReaper) {
- ConstraintRangeTy CR = state->get<ConstraintRange>();
- ConstraintRangeTy::Factory& CRFactory = state->get_context<ConstraintRange>();
- for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
- SymbolRef sym = I.getKey();
- if (SymReaper.maybeDead(sym))
- CR = CRFactory.remove(CR, sym);
- }
- return state->set<ConstraintRange>(CR);
- }
- RangeSet
- RangeConstraintManager::GetRange(ProgramStateRef state, SymbolRef sym) {
- if (ConstraintRangeTy::data_type* V = state->get<ConstraintRange>(sym))
- return *V;
- // Lazily generate a new RangeSet representing all possible values for the
- // given symbol type.
- BasicValueFactory &BV = getBasicVals();
- QualType T = sym->getType();
- RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
- // Special case: references are known to be non-zero.
- if (T->isReferenceType()) {
- APSIntType IntType = BV.getAPSIntType(T);
- Result = Result.Intersect(BV, F, ++IntType.getZeroValue(),
- --IntType.getZeroValue());
- }
- return Result;
- }
- //===------------------------------------------------------------------------===
- // assumeSymX methods: public interface for RangeConstraintManager.
- //===------------------------------------------------------------------------===/
- // The syntax for ranges below is mathematical, using [x, y] for closed ranges
- // and (x, y) for open ranges. These ranges are modular, corresponding with
- // a common treatment of C integer overflow. This means that these methods
- // do not have to worry about overflow; RangeSet::Intersect can handle such a
- // "wraparound" range.
- // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
- // UINT_MAX, 0, 1, and 2.
- ProgramStateRef
- RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
- return St;
- llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
- llvm::APSInt Upper = Lower;
- --Lower;
- ++Upper;
- // [Int-Adjustment+1, Int-Adjustment-1]
- // Notice that the lower bound is greater than the upper bound.
- RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
- return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
- }
- ProgramStateRef
- RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
- return nullptr;
- // [Int-Adjustment, Int-Adjustment]
- llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
- RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
- return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
- }
- ProgramStateRef
- RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- switch (AdjustmentType.testInRange(Int, true)) {
- case APSIntType::RTR_Below:
- return nullptr;
- case APSIntType::RTR_Within:
- break;
- case APSIntType::RTR_Above:
- return St;
- }
- // Special case for Int == Min. This is always false.
- llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
- llvm::APSInt Min = AdjustmentType.getMinValue();
- if (ComparisonVal == Min)
- return nullptr;
- llvm::APSInt Lower = Min-Adjustment;
- llvm::APSInt Upper = ComparisonVal-Adjustment;
- --Upper;
- RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
- return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
- }
- ProgramStateRef
- RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- switch (AdjustmentType.testInRange(Int, true)) {
- case APSIntType::RTR_Below:
- return St;
- case APSIntType::RTR_Within:
- break;
- case APSIntType::RTR_Above:
- return nullptr;
- }
- // Special case for Int == Max. This is always false.
- llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
- llvm::APSInt Max = AdjustmentType.getMaxValue();
- if (ComparisonVal == Max)
- return nullptr;
- llvm::APSInt Lower = ComparisonVal-Adjustment;
- llvm::APSInt Upper = Max-Adjustment;
- ++Lower;
- RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
- return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
- }
- ProgramStateRef
- RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- switch (AdjustmentType.testInRange(Int, true)) {
- case APSIntType::RTR_Below:
- return St;
- case APSIntType::RTR_Within:
- break;
- case APSIntType::RTR_Above:
- return nullptr;
- }
- // Special case for Int == Min. This is always feasible.
- llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
- llvm::APSInt Min = AdjustmentType.getMinValue();
- if (ComparisonVal == Min)
- return St;
- llvm::APSInt Max = AdjustmentType.getMaxValue();
- llvm::APSInt Lower = ComparisonVal-Adjustment;
- llvm::APSInt Upper = Max-Adjustment;
- RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
- return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
- }
- ProgramStateRef
- RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- switch (AdjustmentType.testInRange(Int, true)) {
- case APSIntType::RTR_Below:
- return nullptr;
- case APSIntType::RTR_Within:
- break;
- case APSIntType::RTR_Above:
- return St;
- }
- // Special case for Int == Max. This is always feasible.
- llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
- llvm::APSInt Max = AdjustmentType.getMaxValue();
- if (ComparisonVal == Max)
- return St;
- llvm::APSInt Min = AdjustmentType.getMinValue();
- llvm::APSInt Lower = Min-Adjustment;
- llvm::APSInt Upper = ComparisonVal-Adjustment;
- RangeSet New = GetRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
- return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
- }
- //===------------------------------------------------------------------------===
- // Pretty-printing.
- //===------------------------------------------------------------------------===/
- void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
- const char* nl, const char *sep) {
- ConstraintRangeTy Ranges = St->get<ConstraintRange>();
- if (Ranges.isEmpty()) {
- Out << nl << sep << "Ranges are empty." << nl;
- return;
- }
- Out << nl << sep << "Ranges of symbol values:";
- for (ConstraintRangeTy::iterator I=Ranges.begin(), E=Ranges.end(); I!=E; ++I){
- Out << nl << ' ' << I.getKey() << " : ";
- I.getData().print(Out);
- }
- Out << nl;
- }
|