1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087 |
- // SimpleSValBuilder.cpp - A basic SValBuilder -----------------------*- C++ -*-
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines SimpleSValBuilder, a basic implementation of SValBuilder.
- //
- //===----------------------------------------------------------------------===//
- #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
- using namespace clang;
- using namespace ento;
- namespace {
- class SimpleSValBuilder : public SValBuilder {
- protected:
- SVal dispatchCast(SVal val, QualType castTy) override;
- SVal evalCastFromNonLoc(NonLoc val, QualType castTy) override;
- SVal evalCastFromLoc(Loc val, QualType castTy) override;
- public:
- SimpleSValBuilder(llvm::BumpPtrAllocator &alloc, ASTContext &context,
- ProgramStateManager &stateMgr)
- : SValBuilder(alloc, context, stateMgr) {}
- ~SimpleSValBuilder() override {}
- SVal evalMinus(NonLoc val) override;
- SVal evalComplement(NonLoc val) override;
- SVal evalBinOpNN(ProgramStateRef state, BinaryOperator::Opcode op,
- NonLoc lhs, NonLoc rhs, QualType resultTy) override;
- SVal evalBinOpLL(ProgramStateRef state, BinaryOperator::Opcode op,
- Loc lhs, Loc rhs, QualType resultTy) override;
- SVal evalBinOpLN(ProgramStateRef state, BinaryOperator::Opcode op,
- Loc lhs, NonLoc rhs, QualType resultTy) override;
- /// getKnownValue - evaluates a given SVal. If the SVal has only one possible
- /// (integer) value, that value is returned. Otherwise, returns NULL.
- const llvm::APSInt *getKnownValue(ProgramStateRef state, SVal V) override;
- /// Recursively descends into symbolic expressions and replaces symbols
- /// with their known values (in the sense of the getKnownValue() method).
- SVal simplifySVal(ProgramStateRef State, SVal V) override;
- SVal MakeSymIntVal(const SymExpr *LHS, BinaryOperator::Opcode op,
- const llvm::APSInt &RHS, QualType resultTy);
- };
- } // end anonymous namespace
- SValBuilder *ento::createSimpleSValBuilder(llvm::BumpPtrAllocator &alloc,
- ASTContext &context,
- ProgramStateManager &stateMgr) {
- return new SimpleSValBuilder(alloc, context, stateMgr);
- }
- //===----------------------------------------------------------------------===//
- // Transfer function for Casts.
- //===----------------------------------------------------------------------===//
- SVal SimpleSValBuilder::dispatchCast(SVal Val, QualType CastTy) {
- assert(Val.getAs<Loc>() || Val.getAs<NonLoc>());
- return Val.getAs<Loc>() ? evalCastFromLoc(Val.castAs<Loc>(), CastTy)
- : evalCastFromNonLoc(Val.castAs<NonLoc>(), CastTy);
- }
- SVal SimpleSValBuilder::evalCastFromNonLoc(NonLoc val, QualType castTy) {
- bool isLocType = Loc::isLocType(castTy);
- if (val.getAs<nonloc::PointerToMember>())
- return val;
- if (Optional<nonloc::LocAsInteger> LI = val.getAs<nonloc::LocAsInteger>()) {
- if (isLocType)
- return LI->getLoc();
- // FIXME: Correctly support promotions/truncations.
- unsigned castSize = Context.getIntWidth(castTy);
- if (castSize == LI->getNumBits())
- return val;
- return makeLocAsInteger(LI->getLoc(), castSize);
- }
- if (const SymExpr *se = val.getAsSymbolicExpression()) {
- QualType T = Context.getCanonicalType(se->getType());
- // If types are the same or both are integers, ignore the cast.
- // FIXME: Remove this hack when we support symbolic truncation/extension.
- // HACK: If both castTy and T are integers, ignore the cast. This is
- // not a permanent solution. Eventually we want to precisely handle
- // extension/truncation of symbolic integers. This prevents us from losing
- // precision when we assign 'x = y' and 'y' is symbolic and x and y are
- // different integer types.
- if (haveSameType(T, castTy))
- return val;
- if (!isLocType)
- return makeNonLoc(se, T, castTy);
- return UnknownVal();
- }
- // If value is a non-integer constant, produce unknown.
- if (!val.getAs<nonloc::ConcreteInt>())
- return UnknownVal();
- // Handle casts to a boolean type.
- if (castTy->isBooleanType()) {
- bool b = val.castAs<nonloc::ConcreteInt>().getValue().getBoolValue();
- return makeTruthVal(b, castTy);
- }
- // Only handle casts from integers to integers - if val is an integer constant
- // being cast to a non-integer type, produce unknown.
- if (!isLocType && !castTy->isIntegralOrEnumerationType())
- return UnknownVal();
- llvm::APSInt i = val.castAs<nonloc::ConcreteInt>().getValue();
- BasicVals.getAPSIntType(castTy).apply(i);
- if (isLocType)
- return makeIntLocVal(i);
- else
- return makeIntVal(i);
- }
- SVal SimpleSValBuilder::evalCastFromLoc(Loc val, QualType castTy) {
- // Casts from pointers -> pointers, just return the lval.
- //
- // Casts from pointers -> references, just return the lval. These
- // can be introduced by the frontend for corner cases, e.g
- // casting from va_list* to __builtin_va_list&.
- //
- if (Loc::isLocType(castTy) || castTy->isReferenceType())
- return val;
- // FIXME: Handle transparent unions where a value can be "transparently"
- // lifted into a union type.
- if (castTy->isUnionType())
- return UnknownVal();
- // Casting a Loc to a bool will almost always be true,
- // unless this is a weak function or a symbolic region.
- if (castTy->isBooleanType()) {
- switch (val.getSubKind()) {
- case loc::MemRegionValKind: {
- const MemRegion *R = val.castAs<loc::MemRegionVal>().getRegion();
- if (const FunctionCodeRegion *FTR = dyn_cast<FunctionCodeRegion>(R))
- if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FTR->getDecl()))
- if (FD->isWeak())
- // FIXME: Currently we are using an extent symbol here,
- // because there are no generic region address metadata
- // symbols to use, only content metadata.
- return nonloc::SymbolVal(SymMgr.getExtentSymbol(FTR));
- if (const SymbolicRegion *SymR = R->getSymbolicBase())
- return nonloc::SymbolVal(SymR->getSymbol());
- // FALL-THROUGH
- LLVM_FALLTHROUGH;
- }
- case loc::GotoLabelKind:
- // Labels and non-symbolic memory regions are always true.
- return makeTruthVal(true, castTy);
- }
- }
- if (castTy->isIntegralOrEnumerationType()) {
- unsigned BitWidth = Context.getIntWidth(castTy);
- if (!val.getAs<loc::ConcreteInt>())
- return makeLocAsInteger(val, BitWidth);
- llvm::APSInt i = val.castAs<loc::ConcreteInt>().getValue();
- BasicVals.getAPSIntType(castTy).apply(i);
- return makeIntVal(i);
- }
- // All other cases: return 'UnknownVal'. This includes casting pointers
- // to floats, which is probably badness it itself, but this is a good
- // intermediate solution until we do something better.
- return UnknownVal();
- }
- //===----------------------------------------------------------------------===//
- // Transfer function for unary operators.
- //===----------------------------------------------------------------------===//
- SVal SimpleSValBuilder::evalMinus(NonLoc val) {
- switch (val.getSubKind()) {
- case nonloc::ConcreteIntKind:
- return val.castAs<nonloc::ConcreteInt>().evalMinus(*this);
- default:
- return UnknownVal();
- }
- }
- SVal SimpleSValBuilder::evalComplement(NonLoc X) {
- switch (X.getSubKind()) {
- case nonloc::ConcreteIntKind:
- return X.castAs<nonloc::ConcreteInt>().evalComplement(*this);
- default:
- return UnknownVal();
- }
- }
- //===----------------------------------------------------------------------===//
- // Transfer function for binary operators.
- //===----------------------------------------------------------------------===//
- SVal SimpleSValBuilder::MakeSymIntVal(const SymExpr *LHS,
- BinaryOperator::Opcode op,
- const llvm::APSInt &RHS,
- QualType resultTy) {
- bool isIdempotent = false;
- // Check for a few special cases with known reductions first.
- switch (op) {
- default:
- // We can't reduce this case; just treat it normally.
- break;
- case BO_Mul:
- // a*0 and a*1
- if (RHS == 0)
- return makeIntVal(0, resultTy);
- else if (RHS == 1)
- isIdempotent = true;
- break;
- case BO_Div:
- // a/0 and a/1
- if (RHS == 0)
- // This is also handled elsewhere.
- return UndefinedVal();
- else if (RHS == 1)
- isIdempotent = true;
- break;
- case BO_Rem:
- // a%0 and a%1
- if (RHS == 0)
- // This is also handled elsewhere.
- return UndefinedVal();
- else if (RHS == 1)
- return makeIntVal(0, resultTy);
- break;
- case BO_Add:
- case BO_Sub:
- case BO_Shl:
- case BO_Shr:
- case BO_Xor:
- // a+0, a-0, a<<0, a>>0, a^0
- if (RHS == 0)
- isIdempotent = true;
- break;
- case BO_And:
- // a&0 and a&(~0)
- if (RHS == 0)
- return makeIntVal(0, resultTy);
- else if (RHS.isAllOnesValue())
- isIdempotent = true;
- break;
- case BO_Or:
- // a|0 and a|(~0)
- if (RHS == 0)
- isIdempotent = true;
- else if (RHS.isAllOnesValue()) {
- const llvm::APSInt &Result = BasicVals.Convert(resultTy, RHS);
- return nonloc::ConcreteInt(Result);
- }
- break;
- }
- // Idempotent ops (like a*1) can still change the type of an expression.
- // Wrap the LHS up in a NonLoc again and let evalCastFromNonLoc do the
- // dirty work.
- if (isIdempotent)
- return evalCastFromNonLoc(nonloc::SymbolVal(LHS), resultTy);
- // If we reach this point, the expression cannot be simplified.
- // Make a SymbolVal for the entire expression, after converting the RHS.
- const llvm::APSInt *ConvertedRHS = &RHS;
- if (BinaryOperator::isComparisonOp(op)) {
- // We're looking for a type big enough to compare the symbolic value
- // with the given constant.
- // FIXME: This is an approximation of Sema::UsualArithmeticConversions.
- ASTContext &Ctx = getContext();
- QualType SymbolType = LHS->getType();
- uint64_t ValWidth = RHS.getBitWidth();
- uint64_t TypeWidth = Ctx.getTypeSize(SymbolType);
- if (ValWidth < TypeWidth) {
- // If the value is too small, extend it.
- ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
- } else if (ValWidth == TypeWidth) {
- // If the value is signed but the symbol is unsigned, do the comparison
- // in unsigned space. [C99 6.3.1.8]
- // (For the opposite case, the value is already unsigned.)
- if (RHS.isSigned() && !SymbolType->isSignedIntegerOrEnumerationType())
- ConvertedRHS = &BasicVals.Convert(SymbolType, RHS);
- }
- } else
- ConvertedRHS = &BasicVals.Convert(resultTy, RHS);
- return makeNonLoc(LHS, op, *ConvertedRHS, resultTy);
- }
- SVal SimpleSValBuilder::evalBinOpNN(ProgramStateRef state,
- BinaryOperator::Opcode op,
- NonLoc lhs, NonLoc rhs,
- QualType resultTy) {
- NonLoc InputLHS = lhs;
- NonLoc InputRHS = rhs;
- // Handle trivial case where left-side and right-side are the same.
- if (lhs == rhs)
- switch (op) {
- default:
- break;
- case BO_EQ:
- case BO_LE:
- case BO_GE:
- return makeTruthVal(true, resultTy);
- case BO_LT:
- case BO_GT:
- case BO_NE:
- return makeTruthVal(false, resultTy);
- case BO_Xor:
- case BO_Sub:
- if (resultTy->isIntegralOrEnumerationType())
- return makeIntVal(0, resultTy);
- return evalCastFromNonLoc(makeIntVal(0, /*Unsigned=*/false), resultTy);
- case BO_Or:
- case BO_And:
- return evalCastFromNonLoc(lhs, resultTy);
- }
- while (1) {
- switch (lhs.getSubKind()) {
- default:
- return makeSymExprValNN(state, op, lhs, rhs, resultTy);
- case nonloc::PointerToMemberKind: {
- assert(rhs.getSubKind() == nonloc::PointerToMemberKind &&
- "Both SVals should have pointer-to-member-type");
- auto LPTM = lhs.castAs<nonloc::PointerToMember>(),
- RPTM = rhs.castAs<nonloc::PointerToMember>();
- auto LPTMD = LPTM.getPTMData(), RPTMD = RPTM.getPTMData();
- switch (op) {
- case BO_EQ:
- return makeTruthVal(LPTMD == RPTMD, resultTy);
- case BO_NE:
- return makeTruthVal(LPTMD != RPTMD, resultTy);
- default:
- return UnknownVal();
- }
- }
- case nonloc::LocAsIntegerKind: {
- Loc lhsL = lhs.castAs<nonloc::LocAsInteger>().getLoc();
- switch (rhs.getSubKind()) {
- case nonloc::LocAsIntegerKind:
- // FIXME: at the moment the implementation
- // of modeling "pointers as integers" is not complete.
- if (!BinaryOperator::isComparisonOp(op))
- return UnknownVal();
- return evalBinOpLL(state, op, lhsL,
- rhs.castAs<nonloc::LocAsInteger>().getLoc(),
- resultTy);
- case nonloc::ConcreteIntKind: {
- // FIXME: at the moment the implementation
- // of modeling "pointers as integers" is not complete.
- if (!BinaryOperator::isComparisonOp(op))
- return UnknownVal();
- // Transform the integer into a location and compare.
- // FIXME: This only makes sense for comparisons. If we want to, say,
- // add 1 to a LocAsInteger, we'd better unpack the Loc and add to it,
- // then pack it back into a LocAsInteger.
- llvm::APSInt i = rhs.castAs<nonloc::ConcreteInt>().getValue();
- BasicVals.getAPSIntType(Context.VoidPtrTy).apply(i);
- return evalBinOpLL(state, op, lhsL, makeLoc(i), resultTy);
- }
- default:
- switch (op) {
- case BO_EQ:
- return makeTruthVal(false, resultTy);
- case BO_NE:
- return makeTruthVal(true, resultTy);
- default:
- // This case also handles pointer arithmetic.
- return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
- }
- }
- }
- case nonloc::ConcreteIntKind: {
- llvm::APSInt LHSValue = lhs.castAs<nonloc::ConcreteInt>().getValue();
- // If we're dealing with two known constants, just perform the operation.
- if (const llvm::APSInt *KnownRHSValue = getKnownValue(state, rhs)) {
- llvm::APSInt RHSValue = *KnownRHSValue;
- if (BinaryOperator::isComparisonOp(op)) {
- // We're looking for a type big enough to compare the two values.
- // FIXME: This is not correct. char + short will result in a promotion
- // to int. Unfortunately we have lost types by this point.
- APSIntType CompareType = std::max(APSIntType(LHSValue),
- APSIntType(RHSValue));
- CompareType.apply(LHSValue);
- CompareType.apply(RHSValue);
- } else if (!BinaryOperator::isShiftOp(op)) {
- APSIntType IntType = BasicVals.getAPSIntType(resultTy);
- IntType.apply(LHSValue);
- IntType.apply(RHSValue);
- }
- const llvm::APSInt *Result =
- BasicVals.evalAPSInt(op, LHSValue, RHSValue);
- if (!Result)
- return UndefinedVal();
- return nonloc::ConcreteInt(*Result);
- }
- // Swap the left and right sides and flip the operator if doing so
- // allows us to better reason about the expression (this is a form
- // of expression canonicalization).
- // While we're at it, catch some special cases for non-commutative ops.
- switch (op) {
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- op = BinaryOperator::reverseComparisonOp(op);
- // FALL-THROUGH
- case BO_EQ:
- case BO_NE:
- case BO_Add:
- case BO_Mul:
- case BO_And:
- case BO_Xor:
- case BO_Or:
- std::swap(lhs, rhs);
- continue;
- case BO_Shr:
- // (~0)>>a
- if (LHSValue.isAllOnesValue() && LHSValue.isSigned())
- return evalCastFromNonLoc(lhs, resultTy);
- // FALL-THROUGH
- case BO_Shl:
- // 0<<a and 0>>a
- if (LHSValue == 0)
- return evalCastFromNonLoc(lhs, resultTy);
- return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
- default:
- return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
- }
- }
- case nonloc::SymbolValKind: {
- // We only handle LHS as simple symbols or SymIntExprs.
- SymbolRef Sym = lhs.castAs<nonloc::SymbolVal>().getSymbol();
- // LHS is a symbolic expression.
- if (const SymIntExpr *symIntExpr = dyn_cast<SymIntExpr>(Sym)) {
- // Is this a logical not? (!x is represented as x == 0.)
- if (op == BO_EQ && rhs.isZeroConstant()) {
- // We know how to negate certain expressions. Simplify them here.
- BinaryOperator::Opcode opc = symIntExpr->getOpcode();
- switch (opc) {
- default:
- // We don't know how to negate this operation.
- // Just handle it as if it were a normal comparison to 0.
- break;
- case BO_LAnd:
- case BO_LOr:
- llvm_unreachable("Logical operators handled by branching logic.");
- case BO_Assign:
- case BO_MulAssign:
- case BO_DivAssign:
- case BO_RemAssign:
- case BO_AddAssign:
- case BO_SubAssign:
- case BO_ShlAssign:
- case BO_ShrAssign:
- case BO_AndAssign:
- case BO_XorAssign:
- case BO_OrAssign:
- case BO_Comma:
- llvm_unreachable("'=' and ',' operators handled by ExprEngine.");
- case BO_PtrMemD:
- case BO_PtrMemI:
- llvm_unreachable("Pointer arithmetic not handled here.");
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- case BO_EQ:
- case BO_NE:
- assert(resultTy->isBooleanType() ||
- resultTy == getConditionType());
- assert(symIntExpr->getType()->isBooleanType() ||
- getContext().hasSameUnqualifiedType(symIntExpr->getType(),
- getConditionType()));
- // Negate the comparison and make a value.
- opc = BinaryOperator::negateComparisonOp(opc);
- return makeNonLoc(symIntExpr->getLHS(), opc,
- symIntExpr->getRHS(), resultTy);
- }
- }
- // For now, only handle expressions whose RHS is a constant.
- if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs)) {
- // If both the LHS and the current expression are additive,
- // fold their constants and try again.
- if (BinaryOperator::isAdditiveOp(op)) {
- BinaryOperator::Opcode lop = symIntExpr->getOpcode();
- if (BinaryOperator::isAdditiveOp(lop)) {
- // Convert the two constants to a common type, then combine them.
- // resultTy may not be the best type to convert to, but it's
- // probably the best choice in expressions with mixed type
- // (such as x+1U+2LL). The rules for implicit conversions should
- // choose a reasonable type to preserve the expression, and will
- // at least match how the value is going to be used.
- APSIntType IntType = BasicVals.getAPSIntType(resultTy);
- const llvm::APSInt &first = IntType.convert(symIntExpr->getRHS());
- const llvm::APSInt &second = IntType.convert(*RHSValue);
- const llvm::APSInt *newRHS;
- if (lop == op)
- newRHS = BasicVals.evalAPSInt(BO_Add, first, second);
- else
- newRHS = BasicVals.evalAPSInt(BO_Sub, first, second);
- assert(newRHS && "Invalid operation despite common type!");
- rhs = nonloc::ConcreteInt(*newRHS);
- lhs = nonloc::SymbolVal(symIntExpr->getLHS());
- op = lop;
- continue;
- }
- }
- // Otherwise, make a SymIntExpr out of the expression.
- return MakeSymIntVal(symIntExpr, op, *RHSValue, resultTy);
- }
- }
- // Does the symbolic expression simplify to a constant?
- // If so, "fold" the constant by setting 'lhs' to a ConcreteInt
- // and try again.
- SVal simplifiedLhs = simplifySVal(state, lhs);
- if (simplifiedLhs != lhs)
- if (auto simplifiedLhsAsNonLoc = simplifiedLhs.getAs<NonLoc>()) {
- lhs = *simplifiedLhsAsNonLoc;
- continue;
- }
- // Is the RHS a constant?
- if (const llvm::APSInt *RHSValue = getKnownValue(state, rhs))
- return MakeSymIntVal(Sym, op, *RHSValue, resultTy);
- // Give up -- this is not a symbolic expression we can handle.
- return makeSymExprValNN(state, op, InputLHS, InputRHS, resultTy);
- }
- }
- }
- }
- static SVal evalBinOpFieldRegionFieldRegion(const FieldRegion *LeftFR,
- const FieldRegion *RightFR,
- BinaryOperator::Opcode op,
- QualType resultTy,
- SimpleSValBuilder &SVB) {
- // Only comparisons are meaningful here!
- if (!BinaryOperator::isComparisonOp(op))
- return UnknownVal();
- // Next, see if the two FRs have the same super-region.
- // FIXME: This doesn't handle casts yet, and simply stripping the casts
- // doesn't help.
- if (LeftFR->getSuperRegion() != RightFR->getSuperRegion())
- return UnknownVal();
- const FieldDecl *LeftFD = LeftFR->getDecl();
- const FieldDecl *RightFD = RightFR->getDecl();
- const RecordDecl *RD = LeftFD->getParent();
- // Make sure the two FRs are from the same kind of record. Just in case!
- // FIXME: This is probably where inheritance would be a problem.
- if (RD != RightFD->getParent())
- return UnknownVal();
- // We know for sure that the two fields are not the same, since that
- // would have given us the same SVal.
- if (op == BO_EQ)
- return SVB.makeTruthVal(false, resultTy);
- if (op == BO_NE)
- return SVB.makeTruthVal(true, resultTy);
- // Iterate through the fields and see which one comes first.
- // [C99 6.7.2.1.13] "Within a structure object, the non-bit-field
- // members and the units in which bit-fields reside have addresses that
- // increase in the order in which they are declared."
- bool leftFirst = (op == BO_LT || op == BO_LE);
- for (const auto *I : RD->fields()) {
- if (I == LeftFD)
- return SVB.makeTruthVal(leftFirst, resultTy);
- if (I == RightFD)
- return SVB.makeTruthVal(!leftFirst, resultTy);
- }
- llvm_unreachable("Fields not found in parent record's definition");
- }
- // FIXME: all this logic will change if/when we have MemRegion::getLocation().
- SVal SimpleSValBuilder::evalBinOpLL(ProgramStateRef state,
- BinaryOperator::Opcode op,
- Loc lhs, Loc rhs,
- QualType resultTy) {
- // Only comparisons and subtractions are valid operations on two pointers.
- // See [C99 6.5.5 through 6.5.14] or [C++0x 5.6 through 5.15].
- // However, if a pointer is casted to an integer, evalBinOpNN may end up
- // calling this function with another operation (PR7527). We don't attempt to
- // model this for now, but it could be useful, particularly when the
- // "location" is actually an integer value that's been passed through a void*.
- if (!(BinaryOperator::isComparisonOp(op) || op == BO_Sub))
- return UnknownVal();
- // Special cases for when both sides are identical.
- if (lhs == rhs) {
- switch (op) {
- default:
- llvm_unreachable("Unimplemented operation for two identical values");
- case BO_Sub:
- return makeZeroVal(resultTy);
- case BO_EQ:
- case BO_LE:
- case BO_GE:
- return makeTruthVal(true, resultTy);
- case BO_NE:
- case BO_LT:
- case BO_GT:
- return makeTruthVal(false, resultTy);
- }
- }
- switch (lhs.getSubKind()) {
- default:
- llvm_unreachable("Ordering not implemented for this Loc.");
- case loc::GotoLabelKind:
- // The only thing we know about labels is that they're non-null.
- if (rhs.isZeroConstant()) {
- switch (op) {
- default:
- break;
- case BO_Sub:
- return evalCastFromLoc(lhs, resultTy);
- case BO_EQ:
- case BO_LE:
- case BO_LT:
- return makeTruthVal(false, resultTy);
- case BO_NE:
- case BO_GT:
- case BO_GE:
- return makeTruthVal(true, resultTy);
- }
- }
- // There may be two labels for the same location, and a function region may
- // have the same address as a label at the start of the function (depending
- // on the ABI).
- // FIXME: we can probably do a comparison against other MemRegions, though.
- // FIXME: is there a way to tell if two labels refer to the same location?
- return UnknownVal();
- case loc::ConcreteIntKind: {
- // If one of the operands is a symbol and the other is a constant,
- // build an expression for use by the constraint manager.
- if (SymbolRef rSym = rhs.getAsLocSymbol()) {
- // We can only build expressions with symbols on the left,
- // so we need a reversible operator.
- if (!BinaryOperator::isComparisonOp(op) || op == BO_Cmp)
- return UnknownVal();
- const llvm::APSInt &lVal = lhs.castAs<loc::ConcreteInt>().getValue();
- op = BinaryOperator::reverseComparisonOp(op);
- return makeNonLoc(rSym, op, lVal, resultTy);
- }
- // If both operands are constants, just perform the operation.
- if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
- SVal ResultVal =
- lhs.castAs<loc::ConcreteInt>().evalBinOp(BasicVals, op, *rInt);
- if (Optional<NonLoc> Result = ResultVal.getAs<NonLoc>())
- return evalCastFromNonLoc(*Result, resultTy);
- assert(!ResultVal.getAs<Loc>() && "Loc-Loc ops should not produce Locs");
- return UnknownVal();
- }
- // Special case comparisons against NULL.
- // This must come after the test if the RHS is a symbol, which is used to
- // build constraints. The address of any non-symbolic region is guaranteed
- // to be non-NULL, as is any label.
- assert(rhs.getAs<loc::MemRegionVal>() || rhs.getAs<loc::GotoLabel>());
- if (lhs.isZeroConstant()) {
- switch (op) {
- default:
- break;
- case BO_EQ:
- case BO_GT:
- case BO_GE:
- return makeTruthVal(false, resultTy);
- case BO_NE:
- case BO_LT:
- case BO_LE:
- return makeTruthVal(true, resultTy);
- }
- }
- // Comparing an arbitrary integer to a region or label address is
- // completely unknowable.
- return UnknownVal();
- }
- case loc::MemRegionValKind: {
- if (Optional<loc::ConcreteInt> rInt = rhs.getAs<loc::ConcreteInt>()) {
- // If one of the operands is a symbol and the other is a constant,
- // build an expression for use by the constraint manager.
- if (SymbolRef lSym = lhs.getAsLocSymbol(true)) {
- if (BinaryOperator::isComparisonOp(op))
- return MakeSymIntVal(lSym, op, rInt->getValue(), resultTy);
- return UnknownVal();
- }
- // Special case comparisons to NULL.
- // This must come after the test if the LHS is a symbol, which is used to
- // build constraints. The address of any non-symbolic region is guaranteed
- // to be non-NULL.
- if (rInt->isZeroConstant()) {
- if (op == BO_Sub)
- return evalCastFromLoc(lhs, resultTy);
- if (BinaryOperator::isComparisonOp(op)) {
- QualType boolType = getContext().BoolTy;
- NonLoc l = evalCastFromLoc(lhs, boolType).castAs<NonLoc>();
- NonLoc r = makeTruthVal(false, boolType).castAs<NonLoc>();
- return evalBinOpNN(state, op, l, r, resultTy);
- }
- }
- // Comparing a region to an arbitrary integer is completely unknowable.
- return UnknownVal();
- }
- // Get both values as regions, if possible.
- const MemRegion *LeftMR = lhs.getAsRegion();
- assert(LeftMR && "MemRegionValKind SVal doesn't have a region!");
- const MemRegion *RightMR = rhs.getAsRegion();
- if (!RightMR)
- // The RHS is probably a label, which in theory could address a region.
- // FIXME: we can probably make a more useful statement about non-code
- // regions, though.
- return UnknownVal();
- const MemRegion *LeftBase = LeftMR->getBaseRegion();
- const MemRegion *RightBase = RightMR->getBaseRegion();
- const MemSpaceRegion *LeftMS = LeftBase->getMemorySpace();
- const MemSpaceRegion *RightMS = RightBase->getMemorySpace();
- const MemSpaceRegion *UnknownMS = MemMgr.getUnknownRegion();
- // If the two regions are from different known memory spaces they cannot be
- // equal. Also, assume that no symbolic region (whose memory space is
- // unknown) is on the stack.
- if (LeftMS != RightMS &&
- ((LeftMS != UnknownMS && RightMS != UnknownMS) ||
- (isa<StackSpaceRegion>(LeftMS) || isa<StackSpaceRegion>(RightMS)))) {
- switch (op) {
- default:
- return UnknownVal();
- case BO_EQ:
- return makeTruthVal(false, resultTy);
- case BO_NE:
- return makeTruthVal(true, resultTy);
- }
- }
- // If both values wrap regions, see if they're from different base regions.
- // Note, heap base symbolic regions are assumed to not alias with
- // each other; for example, we assume that malloc returns different address
- // on each invocation.
- // FIXME: ObjC object pointers always reside on the heap, but currently
- // we treat their memory space as unknown, because symbolic pointers
- // to ObjC objects may alias. There should be a way to construct
- // possibly-aliasing heap-based regions. For instance, MacOSXApiChecker
- // guesses memory space for ObjC object pointers manually instead of
- // relying on us.
- if (LeftBase != RightBase &&
- ((!isa<SymbolicRegion>(LeftBase) && !isa<SymbolicRegion>(RightBase)) ||
- (isa<HeapSpaceRegion>(LeftMS) || isa<HeapSpaceRegion>(RightMS))) ){
- switch (op) {
- default:
- return UnknownVal();
- case BO_EQ:
- return makeTruthVal(false, resultTy);
- case BO_NE:
- return makeTruthVal(true, resultTy);
- }
- }
- // Handle special cases for when both regions are element regions.
- const ElementRegion *RightER = dyn_cast<ElementRegion>(RightMR);
- const ElementRegion *LeftER = dyn_cast<ElementRegion>(LeftMR);
- if (RightER && LeftER) {
- // Next, see if the two ERs have the same super-region and matching types.
- // FIXME: This should do something useful even if the types don't match,
- // though if both indexes are constant the RegionRawOffset path will
- // give the correct answer.
- if (LeftER->getSuperRegion() == RightER->getSuperRegion() &&
- LeftER->getElementType() == RightER->getElementType()) {
- // Get the left index and cast it to the correct type.
- // If the index is unknown or undefined, bail out here.
- SVal LeftIndexVal = LeftER->getIndex();
- Optional<NonLoc> LeftIndex = LeftIndexVal.getAs<NonLoc>();
- if (!LeftIndex)
- return UnknownVal();
- LeftIndexVal = evalCastFromNonLoc(*LeftIndex, ArrayIndexTy);
- LeftIndex = LeftIndexVal.getAs<NonLoc>();
- if (!LeftIndex)
- return UnknownVal();
- // Do the same for the right index.
- SVal RightIndexVal = RightER->getIndex();
- Optional<NonLoc> RightIndex = RightIndexVal.getAs<NonLoc>();
- if (!RightIndex)
- return UnknownVal();
- RightIndexVal = evalCastFromNonLoc(*RightIndex, ArrayIndexTy);
- RightIndex = RightIndexVal.getAs<NonLoc>();
- if (!RightIndex)
- return UnknownVal();
- // Actually perform the operation.
- // evalBinOpNN expects the two indexes to already be the right type.
- return evalBinOpNN(state, op, *LeftIndex, *RightIndex, resultTy);
- }
- }
- // Special handling of the FieldRegions, even with symbolic offsets.
- const FieldRegion *RightFR = dyn_cast<FieldRegion>(RightMR);
- const FieldRegion *LeftFR = dyn_cast<FieldRegion>(LeftMR);
- if (RightFR && LeftFR) {
- SVal R = evalBinOpFieldRegionFieldRegion(LeftFR, RightFR, op, resultTy,
- *this);
- if (!R.isUnknown())
- return R;
- }
- // Compare the regions using the raw offsets.
- RegionOffset LeftOffset = LeftMR->getAsOffset();
- RegionOffset RightOffset = RightMR->getAsOffset();
- if (LeftOffset.getRegion() != nullptr &&
- LeftOffset.getRegion() == RightOffset.getRegion() &&
- !LeftOffset.hasSymbolicOffset() && !RightOffset.hasSymbolicOffset()) {
- int64_t left = LeftOffset.getOffset();
- int64_t right = RightOffset.getOffset();
- switch (op) {
- default:
- return UnknownVal();
- case BO_LT:
- return makeTruthVal(left < right, resultTy);
- case BO_GT:
- return makeTruthVal(left > right, resultTy);
- case BO_LE:
- return makeTruthVal(left <= right, resultTy);
- case BO_GE:
- return makeTruthVal(left >= right, resultTy);
- case BO_EQ:
- return makeTruthVal(left == right, resultTy);
- case BO_NE:
- return makeTruthVal(left != right, resultTy);
- }
- }
- // At this point we're not going to get a good answer, but we can try
- // conjuring an expression instead.
- SymbolRef LHSSym = lhs.getAsLocSymbol();
- SymbolRef RHSSym = rhs.getAsLocSymbol();
- if (LHSSym && RHSSym)
- return makeNonLoc(LHSSym, op, RHSSym, resultTy);
- // If we get here, we have no way of comparing the regions.
- return UnknownVal();
- }
- }
- }
- SVal SimpleSValBuilder::evalBinOpLN(ProgramStateRef state,
- BinaryOperator::Opcode op,
- Loc lhs, NonLoc rhs, QualType resultTy) {
- if (op >= BO_PtrMemD && op <= BO_PtrMemI) {
- if (auto PTMSV = rhs.getAs<nonloc::PointerToMember>()) {
- if (PTMSV->isNullMemberPointer())
- return UndefinedVal();
- if (const FieldDecl *FD = PTMSV->getDeclAs<FieldDecl>()) {
- SVal Result = lhs;
- for (const auto &I : *PTMSV)
- Result = StateMgr.getStoreManager().evalDerivedToBase(
- Result, I->getType(),I->isVirtual());
- return state->getLValue(FD, Result);
- }
- }
- return rhs;
- }
- assert(!BinaryOperator::isComparisonOp(op) &&
- "arguments to comparison ops must be of the same type");
- // Special case: rhs is a zero constant.
- if (rhs.isZeroConstant())
- return lhs;
- // Perserve the null pointer so that it can be found by the DerefChecker.
- if (lhs.isZeroConstant())
- return lhs;
- // We are dealing with pointer arithmetic.
- // Handle pointer arithmetic on constant values.
- if (Optional<nonloc::ConcreteInt> rhsInt = rhs.getAs<nonloc::ConcreteInt>()) {
- if (Optional<loc::ConcreteInt> lhsInt = lhs.getAs<loc::ConcreteInt>()) {
- const llvm::APSInt &leftI = lhsInt->getValue();
- assert(leftI.isUnsigned());
- llvm::APSInt rightI(rhsInt->getValue(), /* isUnsigned */ true);
- // Convert the bitwidth of rightI. This should deal with overflow
- // since we are dealing with concrete values.
- rightI = rightI.extOrTrunc(leftI.getBitWidth());
- // Offset the increment by the pointer size.
- llvm::APSInt Multiplicand(rightI.getBitWidth(), /* isUnsigned */ true);
- QualType pointeeType = resultTy->getPointeeType();
- Multiplicand = getContext().getTypeSizeInChars(pointeeType).getQuantity();
- rightI *= Multiplicand;
- // Compute the adjusted pointer.
- switch (op) {
- case BO_Add:
- rightI = leftI + rightI;
- break;
- case BO_Sub:
- rightI = leftI - rightI;
- break;
- default:
- llvm_unreachable("Invalid pointer arithmetic operation");
- }
- return loc::ConcreteInt(getBasicValueFactory().getValue(rightI));
- }
- }
- // Handle cases where 'lhs' is a region.
- if (const MemRegion *region = lhs.getAsRegion()) {
- rhs = convertToArrayIndex(rhs).castAs<NonLoc>();
- SVal index = UnknownVal();
- const SubRegion *superR = nullptr;
- // We need to know the type of the pointer in order to add an integer to it.
- // Depending on the type, different amount of bytes is added.
- QualType elementType;
- if (const ElementRegion *elemReg = dyn_cast<ElementRegion>(region)) {
- assert(op == BO_Add || op == BO_Sub);
- index = evalBinOpNN(state, op, elemReg->getIndex(), rhs,
- getArrayIndexType());
- superR = cast<SubRegion>(elemReg->getSuperRegion());
- elementType = elemReg->getElementType();
- }
- else if (isa<SubRegion>(region)) {
- assert(op == BO_Add || op == BO_Sub);
- index = (op == BO_Add) ? rhs : evalMinus(rhs);
- superR = cast<SubRegion>(region);
- // TODO: Is this actually reliable? Maybe improving our MemRegion
- // hierarchy to provide typed regions for all non-void pointers would be
- // better. For instance, we cannot extend this towards LocAsInteger
- // operations, where result type of the expression is integer.
- if (resultTy->isAnyPointerType())
- elementType = resultTy->getPointeeType();
- }
- if (Optional<NonLoc> indexV = index.getAs<NonLoc>()) {
- return loc::MemRegionVal(MemMgr.getElementRegion(elementType, *indexV,
- superR, getContext()));
- }
- }
- return UnknownVal();
- }
- const llvm::APSInt *SimpleSValBuilder::getKnownValue(ProgramStateRef state,
- SVal V) {
- if (V.isUnknownOrUndef())
- return nullptr;
- if (Optional<loc::ConcreteInt> X = V.getAs<loc::ConcreteInt>())
- return &X->getValue();
- if (Optional<nonloc::ConcreteInt> X = V.getAs<nonloc::ConcreteInt>())
- return &X->getValue();
- if (SymbolRef Sym = V.getAsSymbol())
- return state->getConstraintManager().getSymVal(state, Sym);
- // FIXME: Add support for SymExprs.
- return nullptr;
- }
- SVal SimpleSValBuilder::simplifySVal(ProgramStateRef State, SVal V) {
- // For now, this function tries to constant-fold symbols inside a
- // nonloc::SymbolVal, and does nothing else. More simplifications should
- // be possible, such as constant-folding an index in an ElementRegion.
- class Simplifier : public FullSValVisitor<Simplifier, SVal> {
- ProgramStateRef State;
- SValBuilder &SVB;
- public:
- Simplifier(ProgramStateRef State)
- : State(State), SVB(State->getStateManager().getSValBuilder()) {}
- SVal VisitSymbolData(const SymbolData *S) {
- if (const llvm::APSInt *I =
- SVB.getKnownValue(State, nonloc::SymbolVal(S)))
- return Loc::isLocType(S->getType()) ? (SVal)SVB.makeIntLocVal(*I)
- : (SVal)SVB.makeIntVal(*I);
- return Loc::isLocType(S->getType()) ? (SVal)SVB.makeLoc(S)
- : nonloc::SymbolVal(S);
- }
- // TODO: Support SymbolCast. Support IntSymExpr when/if we actually
- // start producing them.
- SVal VisitSymIntExpr(const SymIntExpr *S) {
- SVal LHS = Visit(S->getLHS());
- SVal RHS;
- // By looking at the APSInt in the right-hand side of S, we cannot
- // figure out if it should be treated as a Loc or as a NonLoc.
- // So make our guess by recalling that we cannot multiply pointers
- // or compare a pointer to an integer.
- if (Loc::isLocType(S->getLHS()->getType()) &&
- BinaryOperator::isComparisonOp(S->getOpcode())) {
- // The usual conversion of $sym to &SymRegion{$sym}, as they have
- // the same meaning for Loc-type symbols, but the latter form
- // is preferred in SVal computations for being Loc itself.
- if (SymbolRef Sym = LHS.getAsSymbol()) {
- assert(Loc::isLocType(Sym->getType()));
- LHS = SVB.makeLoc(Sym);
- }
- RHS = SVB.makeIntLocVal(S->getRHS());
- } else {
- RHS = SVB.makeIntVal(S->getRHS());
- }
- return SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType());
- }
- SVal VisitSymSymExpr(const SymSymExpr *S) {
- SVal LHS = Visit(S->getLHS());
- SVal RHS = Visit(S->getRHS());
- return SVB.evalBinOp(State, S->getOpcode(), LHS, RHS, S->getType());
- }
- SVal VisitSymExpr(SymbolRef S) { return nonloc::SymbolVal(S); }
- SVal VisitMemRegion(const MemRegion *R) { return loc::MemRegionVal(R); }
- SVal VisitNonLocSymbolVal(nonloc::SymbolVal V) {
- // Simplification is much more costly than computing complexity.
- // For high complexity, it may be not worth it.
- if (V.getSymbol()->computeComplexity() > 100)
- return V;
- return Visit(V.getSymbol());
- }
- SVal VisitSVal(SVal V) { return V; }
- };
- return Simplifier(State).Visit(V);
- }
|