123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 |
- //== RangedConstraintManager.cpp --------------------------------*- C++ -*--==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines RangedConstraintManager, a class that provides a
- // range-based constraint manager interface.
- //
- //===----------------------------------------------------------------------===//
- #include "RangedConstraintManager.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
- namespace clang {
- namespace ento {
- RangedConstraintManager::~RangedConstraintManager() {}
- ProgramStateRef RangedConstraintManager::assumeSym(ProgramStateRef State,
- SymbolRef Sym,
- bool Assumption) {
- // Handle SymbolData.
- if (isa<SymbolData>(Sym)) {
- return assumeSymUnsupported(State, Sym, Assumption);
- // Handle symbolic expression.
- } else if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(Sym)) {
- // We can only simplify expressions whose RHS is an integer.
- BinaryOperator::Opcode op = SIE->getOpcode();
- if (BinaryOperator::isComparisonOp(op) && op != BO_Cmp) {
- if (!Assumption)
- op = BinaryOperator::negateComparisonOp(op);
- return assumeSymRel(State, SIE->getLHS(), op, SIE->getRHS());
- }
- } else if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
- // Translate "a != b" to "(b - a) != 0".
- // We invert the order of the operands as a heuristic for how loop
- // conditions are usually written ("begin != end") as compared to length
- // calculations ("end - begin"). The more correct thing to do would be to
- // canonicalize "a - b" and "b - a", which would allow us to treat
- // "a != b" and "b != a" the same.
- SymbolManager &SymMgr = getSymbolManager();
- BinaryOperator::Opcode Op = SSE->getOpcode();
- assert(BinaryOperator::isComparisonOp(Op));
- // For now, we only support comparing pointers.
- assert(Loc::isLocType(SSE->getLHS()->getType()));
- assert(Loc::isLocType(SSE->getRHS()->getType()));
- QualType DiffTy = SymMgr.getContext().getPointerDiffType();
- SymbolRef Subtraction =
- SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), DiffTy);
- const llvm::APSInt &Zero = getBasicVals().getValue(0, DiffTy);
- Op = BinaryOperator::reverseComparisonOp(Op);
- if (!Assumption)
- Op = BinaryOperator::negateComparisonOp(Op);
- return assumeSymRel(State, Subtraction, Op, Zero);
- }
- // If we get here, there's nothing else we can do but treat the symbol as
- // opaque.
- return assumeSymUnsupported(State, Sym, Assumption);
- }
- ProgramStateRef RangedConstraintManager::assumeSymInclusiveRange(
- ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
- const llvm::APSInt &To, bool InRange) {
- // Get the type used for calculating wraparound.
- BasicValueFactory &BVF = getBasicVals();
- APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
- llvm::APSInt Adjustment = WraparoundType.getZeroValue();
- SymbolRef AdjustedSym = Sym;
- computeAdjustment(AdjustedSym, Adjustment);
- // Convert the right-hand side integer as necessary.
- APSIntType ComparisonType = std::max(WraparoundType, APSIntType(From));
- llvm::APSInt ConvertedFrom = ComparisonType.convert(From);
- llvm::APSInt ConvertedTo = ComparisonType.convert(To);
- // Prefer unsigned comparisons.
- if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
- ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
- Adjustment.setIsSigned(false);
- if (InRange)
- return assumeSymWithinInclusiveRange(State, AdjustedSym, ConvertedFrom,
- ConvertedTo, Adjustment);
- return assumeSymOutsideInclusiveRange(State, AdjustedSym, ConvertedFrom,
- ConvertedTo, Adjustment);
- }
- ProgramStateRef
- RangedConstraintManager::assumeSymUnsupported(ProgramStateRef State,
- SymbolRef Sym, bool Assumption) {
- BasicValueFactory &BVF = getBasicVals();
- QualType T = Sym->getType();
- // Non-integer types are not supported.
- if (!T->isIntegralOrEnumerationType())
- return State;
- // Reverse the operation and add directly to state.
- const llvm::APSInt &Zero = BVF.getValue(0, T);
- if (Assumption)
- return assumeSymNE(State, Sym, Zero, Zero);
- else
- return assumeSymEQ(State, Sym, Zero, Zero);
- }
- ProgramStateRef RangedConstraintManager::assumeSymRel(ProgramStateRef State,
- SymbolRef Sym,
- BinaryOperator::Opcode Op,
- const llvm::APSInt &Int) {
- assert(BinaryOperator::isComparisonOp(Op) &&
- "Non-comparison ops should be rewritten as comparisons to zero.");
- // Simplification: translate an assume of a constraint of the form
- // "(exp comparison_op expr) != 0" to true into an assume of
- // "exp comparison_op expr" to true. (And similarly, an assume of the form
- // "(exp comparison_op expr) == 0" to true into an assume of
- // "exp comparison_op expr" to false.)
- if (Int == 0 && (Op == BO_EQ || Op == BO_NE)) {
- if (const BinarySymExpr *SE = dyn_cast<BinarySymExpr>(Sym))
- if (BinaryOperator::isComparisonOp(SE->getOpcode()))
- return assumeSym(State, Sym, (Op == BO_NE ? true : false));
- }
- // Get the type used for calculating wraparound.
- BasicValueFactory &BVF = getBasicVals();
- APSIntType WraparoundType = BVF.getAPSIntType(Sym->getType());
- // We only handle simple comparisons of the form "$sym == constant"
- // or "($sym+constant1) == constant2".
- // The adjustment is "constant1" in the above expression. It's used to
- // "slide" the solution range around for modular arithmetic. For example,
- // x < 4 has the solution [0, 3]. x+2 < 4 has the solution [0-2, 3-2], which
- // in modular arithmetic is [0, 1] U [UINT_MAX-1, UINT_MAX]. It's up to
- // the subclasses of SimpleConstraintManager to handle the adjustment.
- llvm::APSInt Adjustment = WraparoundType.getZeroValue();
- computeAdjustment(Sym, Adjustment);
- // Convert the right-hand side integer as necessary.
- APSIntType ComparisonType = std::max(WraparoundType, APSIntType(Int));
- llvm::APSInt ConvertedInt = ComparisonType.convert(Int);
- // Prefer unsigned comparisons.
- if (ComparisonType.getBitWidth() == WraparoundType.getBitWidth() &&
- ComparisonType.isUnsigned() && !WraparoundType.isUnsigned())
- Adjustment.setIsSigned(false);
- switch (Op) {
- default:
- llvm_unreachable("invalid operation not caught by assertion above");
- case BO_EQ:
- return assumeSymEQ(State, Sym, ConvertedInt, Adjustment);
- case BO_NE:
- return assumeSymNE(State, Sym, ConvertedInt, Adjustment);
- case BO_GT:
- return assumeSymGT(State, Sym, ConvertedInt, Adjustment);
- case BO_GE:
- return assumeSymGE(State, Sym, ConvertedInt, Adjustment);
- case BO_LT:
- return assumeSymLT(State, Sym, ConvertedInt, Adjustment);
- case BO_LE:
- return assumeSymLE(State, Sym, ConvertedInt, Adjustment);
- } // end switch
- }
- void RangedConstraintManager::computeAdjustment(SymbolRef &Sym,
- llvm::APSInt &Adjustment) {
- // Is it a "($sym+constant1)" expression?
- if (const SymIntExpr *SE = dyn_cast<SymIntExpr>(Sym)) {
- BinaryOperator::Opcode Op = SE->getOpcode();
- if (Op == BO_Add || Op == BO_Sub) {
- Sym = SE->getLHS();
- Adjustment = APSIntType(Adjustment).convert(SE->getRHS());
- // Don't forget to negate the adjustment if it's being subtracted.
- // This should happen /after/ promotion, in case the value being
- // subtracted is, say, CHAR_MIN, and the promoted type is 'int'.
- if (Op == BO_Sub)
- Adjustment = -Adjustment;
- }
- }
- }
- } // end of namespace ento
- } // end of namespace clang
|