SemaType.cpp 315 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419
  1. //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file implements type-related semantic analysis.
  10. //
  11. //===----------------------------------------------------------------------===//
  12. #include "TypeLocBuilder.h"
  13. #include "clang/AST/ASTConsumer.h"
  14. #include "clang/AST/ASTContext.h"
  15. #include "clang/AST/ASTMutationListener.h"
  16. #include "clang/AST/ASTStructuralEquivalence.h"
  17. #include "clang/AST/CXXInheritance.h"
  18. #include "clang/AST/DeclObjC.h"
  19. #include "clang/AST/DeclTemplate.h"
  20. #include "clang/AST/Expr.h"
  21. #include "clang/AST/TypeLoc.h"
  22. #include "clang/AST/TypeLocVisitor.h"
  23. #include "clang/Basic/PartialDiagnostic.h"
  24. #include "clang/Basic/TargetInfo.h"
  25. #include "clang/Lex/Preprocessor.h"
  26. #include "clang/Sema/DeclSpec.h"
  27. #include "clang/Sema/DelayedDiagnostic.h"
  28. #include "clang/Sema/Lookup.h"
  29. #include "clang/Sema/ScopeInfo.h"
  30. #include "clang/Sema/SemaInternal.h"
  31. #include "clang/Sema/Template.h"
  32. #include "clang/Sema/TemplateInstCallback.h"
  33. #include "llvm/ADT/SmallPtrSet.h"
  34. #include "llvm/ADT/SmallString.h"
  35. #include "llvm/ADT/StringSwitch.h"
  36. #include "llvm/Support/ErrorHandling.h"
  37. using namespace clang;
  38. enum TypeDiagSelector {
  39. TDS_Function,
  40. TDS_Pointer,
  41. TDS_ObjCObjOrBlock
  42. };
  43. /// isOmittedBlockReturnType - Return true if this declarator is missing a
  44. /// return type because this is a omitted return type on a block literal.
  45. static bool isOmittedBlockReturnType(const Declarator &D) {
  46. if (D.getContext() != DeclaratorContext::BlockLiteralContext ||
  47. D.getDeclSpec().hasTypeSpecifier())
  48. return false;
  49. if (D.getNumTypeObjects() == 0)
  50. return true; // ^{ ... }
  51. if (D.getNumTypeObjects() == 1 &&
  52. D.getTypeObject(0).Kind == DeclaratorChunk::Function)
  53. return true; // ^(int X, float Y) { ... }
  54. return false;
  55. }
  56. /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
  57. /// doesn't apply to the given type.
  58. static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
  59. QualType type) {
  60. TypeDiagSelector WhichType;
  61. bool useExpansionLoc = true;
  62. switch (attr.getKind()) {
  63. case ParsedAttr::AT_ObjCGC:
  64. WhichType = TDS_Pointer;
  65. break;
  66. case ParsedAttr::AT_ObjCOwnership:
  67. WhichType = TDS_ObjCObjOrBlock;
  68. break;
  69. default:
  70. // Assume everything else was a function attribute.
  71. WhichType = TDS_Function;
  72. useExpansionLoc = false;
  73. break;
  74. }
  75. SourceLocation loc = attr.getLoc();
  76. StringRef name = attr.getAttrName()->getName();
  77. // The GC attributes are usually written with macros; special-case them.
  78. IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
  79. : nullptr;
  80. if (useExpansionLoc && loc.isMacroID() && II) {
  81. if (II->isStr("strong")) {
  82. if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
  83. } else if (II->isStr("weak")) {
  84. if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
  85. }
  86. }
  87. S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
  88. << type;
  89. }
  90. // objc_gc applies to Objective-C pointers or, otherwise, to the
  91. // smallest available pointer type (i.e. 'void*' in 'void**').
  92. #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
  93. case ParsedAttr::AT_ObjCGC: \
  94. case ParsedAttr::AT_ObjCOwnership
  95. // Calling convention attributes.
  96. #define CALLING_CONV_ATTRS_CASELIST \
  97. case ParsedAttr::AT_CDecl: \
  98. case ParsedAttr::AT_FastCall: \
  99. case ParsedAttr::AT_StdCall: \
  100. case ParsedAttr::AT_ThisCall: \
  101. case ParsedAttr::AT_RegCall: \
  102. case ParsedAttr::AT_Pascal: \
  103. case ParsedAttr::AT_SwiftCall: \
  104. case ParsedAttr::AT_VectorCall: \
  105. case ParsedAttr::AT_AArch64VectorPcs: \
  106. case ParsedAttr::AT_MSABI: \
  107. case ParsedAttr::AT_SysVABI: \
  108. case ParsedAttr::AT_Pcs: \
  109. case ParsedAttr::AT_IntelOclBicc: \
  110. case ParsedAttr::AT_PreserveMost: \
  111. case ParsedAttr::AT_PreserveAll
  112. // Function type attributes.
  113. #define FUNCTION_TYPE_ATTRS_CASELIST \
  114. case ParsedAttr::AT_NSReturnsRetained: \
  115. case ParsedAttr::AT_NoReturn: \
  116. case ParsedAttr::AT_Regparm: \
  117. case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
  118. case ParsedAttr::AT_AnyX86NoCfCheck: \
  119. CALLING_CONV_ATTRS_CASELIST
  120. // Microsoft-specific type qualifiers.
  121. #define MS_TYPE_ATTRS_CASELIST \
  122. case ParsedAttr::AT_Ptr32: \
  123. case ParsedAttr::AT_Ptr64: \
  124. case ParsedAttr::AT_SPtr: \
  125. case ParsedAttr::AT_UPtr
  126. // Nullability qualifiers.
  127. #define NULLABILITY_TYPE_ATTRS_CASELIST \
  128. case ParsedAttr::AT_TypeNonNull: \
  129. case ParsedAttr::AT_TypeNullable: \
  130. case ParsedAttr::AT_TypeNullUnspecified
  131. namespace {
  132. /// An object which stores processing state for the entire
  133. /// GetTypeForDeclarator process.
  134. class TypeProcessingState {
  135. Sema &sema;
  136. /// The declarator being processed.
  137. Declarator &declarator;
  138. /// The index of the declarator chunk we're currently processing.
  139. /// May be the total number of valid chunks, indicating the
  140. /// DeclSpec.
  141. unsigned chunkIndex;
  142. /// Whether there are non-trivial modifications to the decl spec.
  143. bool trivial;
  144. /// Whether we saved the attributes in the decl spec.
  145. bool hasSavedAttrs;
  146. /// The original set of attributes on the DeclSpec.
  147. SmallVector<ParsedAttr *, 2> savedAttrs;
  148. /// A list of attributes to diagnose the uselessness of when the
  149. /// processing is complete.
  150. SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
  151. /// Attributes corresponding to AttributedTypeLocs that we have not yet
  152. /// populated.
  153. // FIXME: The two-phase mechanism by which we construct Types and fill
  154. // their TypeLocs makes it hard to correctly assign these. We keep the
  155. // attributes in creation order as an attempt to make them line up
  156. // properly.
  157. using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
  158. SmallVector<TypeAttrPair, 8> AttrsForTypes;
  159. bool AttrsForTypesSorted = true;
  160. /// MacroQualifiedTypes mapping to macro expansion locations that will be
  161. /// stored in a MacroQualifiedTypeLoc.
  162. llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
  163. /// Flag to indicate we parsed a noderef attribute. This is used for
  164. /// validating that noderef was used on a pointer or array.
  165. bool parsedNoDeref;
  166. public:
  167. TypeProcessingState(Sema &sema, Declarator &declarator)
  168. : sema(sema), declarator(declarator),
  169. chunkIndex(declarator.getNumTypeObjects()), trivial(true),
  170. hasSavedAttrs(false), parsedNoDeref(false) {}
  171. Sema &getSema() const {
  172. return sema;
  173. }
  174. Declarator &getDeclarator() const {
  175. return declarator;
  176. }
  177. bool isProcessingDeclSpec() const {
  178. return chunkIndex == declarator.getNumTypeObjects();
  179. }
  180. unsigned getCurrentChunkIndex() const {
  181. return chunkIndex;
  182. }
  183. void setCurrentChunkIndex(unsigned idx) {
  184. assert(idx <= declarator.getNumTypeObjects());
  185. chunkIndex = idx;
  186. }
  187. ParsedAttributesView &getCurrentAttributes() const {
  188. if (isProcessingDeclSpec())
  189. return getMutableDeclSpec().getAttributes();
  190. return declarator.getTypeObject(chunkIndex).getAttrs();
  191. }
  192. /// Save the current set of attributes on the DeclSpec.
  193. void saveDeclSpecAttrs() {
  194. // Don't try to save them multiple times.
  195. if (hasSavedAttrs) return;
  196. DeclSpec &spec = getMutableDeclSpec();
  197. for (ParsedAttr &AL : spec.getAttributes())
  198. savedAttrs.push_back(&AL);
  199. trivial &= savedAttrs.empty();
  200. hasSavedAttrs = true;
  201. }
  202. /// Record that we had nowhere to put the given type attribute.
  203. /// We will diagnose such attributes later.
  204. void addIgnoredTypeAttr(ParsedAttr &attr) {
  205. ignoredTypeAttrs.push_back(&attr);
  206. }
  207. /// Diagnose all the ignored type attributes, given that the
  208. /// declarator worked out to the given type.
  209. void diagnoseIgnoredTypeAttrs(QualType type) const {
  210. for (auto *Attr : ignoredTypeAttrs)
  211. diagnoseBadTypeAttribute(getSema(), *Attr, type);
  212. }
  213. /// Get an attributed type for the given attribute, and remember the Attr
  214. /// object so that we can attach it to the AttributedTypeLoc.
  215. QualType getAttributedType(Attr *A, QualType ModifiedType,
  216. QualType EquivType) {
  217. QualType T =
  218. sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
  219. AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
  220. AttrsForTypesSorted = false;
  221. return T;
  222. }
  223. /// Completely replace the \c auto in \p TypeWithAuto by
  224. /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
  225. /// necessary.
  226. QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
  227. QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
  228. if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
  229. // Attributed type still should be an attributed type after replacement.
  230. auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
  231. for (TypeAttrPair &A : AttrsForTypes) {
  232. if (A.first == AttrTy)
  233. A.first = NewAttrTy;
  234. }
  235. AttrsForTypesSorted = false;
  236. }
  237. return T;
  238. }
  239. /// Extract and remove the Attr* for a given attributed type.
  240. const Attr *takeAttrForAttributedType(const AttributedType *AT) {
  241. if (!AttrsForTypesSorted) {
  242. llvm::stable_sort(AttrsForTypes, llvm::less_first());
  243. AttrsForTypesSorted = true;
  244. }
  245. // FIXME: This is quadratic if we have lots of reuses of the same
  246. // attributed type.
  247. for (auto It = std::partition_point(
  248. AttrsForTypes.begin(), AttrsForTypes.end(),
  249. [=](const TypeAttrPair &A) { return A.first < AT; });
  250. It != AttrsForTypes.end() && It->first == AT; ++It) {
  251. if (It->second) {
  252. const Attr *Result = It->second;
  253. It->second = nullptr;
  254. return Result;
  255. }
  256. }
  257. llvm_unreachable("no Attr* for AttributedType*");
  258. }
  259. SourceLocation
  260. getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
  261. auto FoundLoc = LocsForMacros.find(MQT);
  262. assert(FoundLoc != LocsForMacros.end() &&
  263. "Unable to find macro expansion location for MacroQualifedType");
  264. return FoundLoc->second;
  265. }
  266. void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
  267. SourceLocation Loc) {
  268. LocsForMacros[MQT] = Loc;
  269. }
  270. void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
  271. bool didParseNoDeref() const { return parsedNoDeref; }
  272. ~TypeProcessingState() {
  273. if (trivial) return;
  274. restoreDeclSpecAttrs();
  275. }
  276. private:
  277. DeclSpec &getMutableDeclSpec() const {
  278. return const_cast<DeclSpec&>(declarator.getDeclSpec());
  279. }
  280. void restoreDeclSpecAttrs() {
  281. assert(hasSavedAttrs);
  282. getMutableDeclSpec().getAttributes().clearListOnly();
  283. for (ParsedAttr *AL : savedAttrs)
  284. getMutableDeclSpec().getAttributes().addAtEnd(AL);
  285. }
  286. };
  287. } // end anonymous namespace
  288. static void moveAttrFromListToList(ParsedAttr &attr,
  289. ParsedAttributesView &fromList,
  290. ParsedAttributesView &toList) {
  291. fromList.remove(&attr);
  292. toList.addAtEnd(&attr);
  293. }
  294. /// The location of a type attribute.
  295. enum TypeAttrLocation {
  296. /// The attribute is in the decl-specifier-seq.
  297. TAL_DeclSpec,
  298. /// The attribute is part of a DeclaratorChunk.
  299. TAL_DeclChunk,
  300. /// The attribute is immediately after the declaration's name.
  301. TAL_DeclName
  302. };
  303. static void processTypeAttrs(TypeProcessingState &state, QualType &type,
  304. TypeAttrLocation TAL, ParsedAttributesView &attrs);
  305. static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
  306. QualType &type);
  307. static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
  308. ParsedAttr &attr, QualType &type);
  309. static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
  310. QualType &type);
  311. static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
  312. ParsedAttr &attr, QualType &type);
  313. static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
  314. ParsedAttr &attr, QualType &type) {
  315. if (attr.getKind() == ParsedAttr::AT_ObjCGC)
  316. return handleObjCGCTypeAttr(state, attr, type);
  317. assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
  318. return handleObjCOwnershipTypeAttr(state, attr, type);
  319. }
  320. /// Given the index of a declarator chunk, check whether that chunk
  321. /// directly specifies the return type of a function and, if so, find
  322. /// an appropriate place for it.
  323. ///
  324. /// \param i - a notional index which the search will start
  325. /// immediately inside
  326. ///
  327. /// \param onlyBlockPointers Whether we should only look into block
  328. /// pointer types (vs. all pointer types).
  329. static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
  330. unsigned i,
  331. bool onlyBlockPointers) {
  332. assert(i <= declarator.getNumTypeObjects());
  333. DeclaratorChunk *result = nullptr;
  334. // First, look inwards past parens for a function declarator.
  335. for (; i != 0; --i) {
  336. DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
  337. switch (fnChunk.Kind) {
  338. case DeclaratorChunk::Paren:
  339. continue;
  340. // If we find anything except a function, bail out.
  341. case DeclaratorChunk::Pointer:
  342. case DeclaratorChunk::BlockPointer:
  343. case DeclaratorChunk::Array:
  344. case DeclaratorChunk::Reference:
  345. case DeclaratorChunk::MemberPointer:
  346. case DeclaratorChunk::Pipe:
  347. return result;
  348. // If we do find a function declarator, scan inwards from that,
  349. // looking for a (block-)pointer declarator.
  350. case DeclaratorChunk::Function:
  351. for (--i; i != 0; --i) {
  352. DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
  353. switch (ptrChunk.Kind) {
  354. case DeclaratorChunk::Paren:
  355. case DeclaratorChunk::Array:
  356. case DeclaratorChunk::Function:
  357. case DeclaratorChunk::Reference:
  358. case DeclaratorChunk::Pipe:
  359. continue;
  360. case DeclaratorChunk::MemberPointer:
  361. case DeclaratorChunk::Pointer:
  362. if (onlyBlockPointers)
  363. continue;
  364. LLVM_FALLTHROUGH;
  365. case DeclaratorChunk::BlockPointer:
  366. result = &ptrChunk;
  367. goto continue_outer;
  368. }
  369. llvm_unreachable("bad declarator chunk kind");
  370. }
  371. // If we run out of declarators doing that, we're done.
  372. return result;
  373. }
  374. llvm_unreachable("bad declarator chunk kind");
  375. // Okay, reconsider from our new point.
  376. continue_outer: ;
  377. }
  378. // Ran out of chunks, bail out.
  379. return result;
  380. }
  381. /// Given that an objc_gc attribute was written somewhere on a
  382. /// declaration *other* than on the declarator itself (for which, use
  383. /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
  384. /// didn't apply in whatever position it was written in, try to move
  385. /// it to a more appropriate position.
  386. static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
  387. ParsedAttr &attr, QualType type) {
  388. Declarator &declarator = state.getDeclarator();
  389. // Move it to the outermost normal or block pointer declarator.
  390. for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
  391. DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
  392. switch (chunk.Kind) {
  393. case DeclaratorChunk::Pointer:
  394. case DeclaratorChunk::BlockPointer: {
  395. // But don't move an ARC ownership attribute to the return type
  396. // of a block.
  397. DeclaratorChunk *destChunk = nullptr;
  398. if (state.isProcessingDeclSpec() &&
  399. attr.getKind() == ParsedAttr::AT_ObjCOwnership)
  400. destChunk = maybeMovePastReturnType(declarator, i - 1,
  401. /*onlyBlockPointers=*/true);
  402. if (!destChunk) destChunk = &chunk;
  403. moveAttrFromListToList(attr, state.getCurrentAttributes(),
  404. destChunk->getAttrs());
  405. return;
  406. }
  407. case DeclaratorChunk::Paren:
  408. case DeclaratorChunk::Array:
  409. continue;
  410. // We may be starting at the return type of a block.
  411. case DeclaratorChunk::Function:
  412. if (state.isProcessingDeclSpec() &&
  413. attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
  414. if (DeclaratorChunk *dest = maybeMovePastReturnType(
  415. declarator, i,
  416. /*onlyBlockPointers=*/true)) {
  417. moveAttrFromListToList(attr, state.getCurrentAttributes(),
  418. dest->getAttrs());
  419. return;
  420. }
  421. }
  422. goto error;
  423. // Don't walk through these.
  424. case DeclaratorChunk::Reference:
  425. case DeclaratorChunk::MemberPointer:
  426. case DeclaratorChunk::Pipe:
  427. goto error;
  428. }
  429. }
  430. error:
  431. diagnoseBadTypeAttribute(state.getSema(), attr, type);
  432. }
  433. /// Distribute an objc_gc type attribute that was written on the
  434. /// declarator.
  435. static void distributeObjCPointerTypeAttrFromDeclarator(
  436. TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
  437. Declarator &declarator = state.getDeclarator();
  438. // objc_gc goes on the innermost pointer to something that's not a
  439. // pointer.
  440. unsigned innermost = -1U;
  441. bool considerDeclSpec = true;
  442. for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
  443. DeclaratorChunk &chunk = declarator.getTypeObject(i);
  444. switch (chunk.Kind) {
  445. case DeclaratorChunk::Pointer:
  446. case DeclaratorChunk::BlockPointer:
  447. innermost = i;
  448. continue;
  449. case DeclaratorChunk::Reference:
  450. case DeclaratorChunk::MemberPointer:
  451. case DeclaratorChunk::Paren:
  452. case DeclaratorChunk::Array:
  453. case DeclaratorChunk::Pipe:
  454. continue;
  455. case DeclaratorChunk::Function:
  456. considerDeclSpec = false;
  457. goto done;
  458. }
  459. }
  460. done:
  461. // That might actually be the decl spec if we weren't blocked by
  462. // anything in the declarator.
  463. if (considerDeclSpec) {
  464. if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
  465. // Splice the attribute into the decl spec. Prevents the
  466. // attribute from being applied multiple times and gives
  467. // the source-location-filler something to work with.
  468. state.saveDeclSpecAttrs();
  469. declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
  470. declarator.getAttributes(), &attr);
  471. return;
  472. }
  473. }
  474. // Otherwise, if we found an appropriate chunk, splice the attribute
  475. // into it.
  476. if (innermost != -1U) {
  477. moveAttrFromListToList(attr, declarator.getAttributes(),
  478. declarator.getTypeObject(innermost).getAttrs());
  479. return;
  480. }
  481. // Otherwise, diagnose when we're done building the type.
  482. declarator.getAttributes().remove(&attr);
  483. state.addIgnoredTypeAttr(attr);
  484. }
  485. /// A function type attribute was written somewhere in a declaration
  486. /// *other* than on the declarator itself or in the decl spec. Given
  487. /// that it didn't apply in whatever position it was written in, try
  488. /// to move it to a more appropriate position.
  489. static void distributeFunctionTypeAttr(TypeProcessingState &state,
  490. ParsedAttr &attr, QualType type) {
  491. Declarator &declarator = state.getDeclarator();
  492. // Try to push the attribute from the return type of a function to
  493. // the function itself.
  494. for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
  495. DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
  496. switch (chunk.Kind) {
  497. case DeclaratorChunk::Function:
  498. moveAttrFromListToList(attr, state.getCurrentAttributes(),
  499. chunk.getAttrs());
  500. return;
  501. case DeclaratorChunk::Paren:
  502. case DeclaratorChunk::Pointer:
  503. case DeclaratorChunk::BlockPointer:
  504. case DeclaratorChunk::Array:
  505. case DeclaratorChunk::Reference:
  506. case DeclaratorChunk::MemberPointer:
  507. case DeclaratorChunk::Pipe:
  508. continue;
  509. }
  510. }
  511. diagnoseBadTypeAttribute(state.getSema(), attr, type);
  512. }
  513. /// Try to distribute a function type attribute to the innermost
  514. /// function chunk or type. Returns true if the attribute was
  515. /// distributed, false if no location was found.
  516. static bool distributeFunctionTypeAttrToInnermost(
  517. TypeProcessingState &state, ParsedAttr &attr,
  518. ParsedAttributesView &attrList, QualType &declSpecType) {
  519. Declarator &declarator = state.getDeclarator();
  520. // Put it on the innermost function chunk, if there is one.
  521. for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
  522. DeclaratorChunk &chunk = declarator.getTypeObject(i);
  523. if (chunk.Kind != DeclaratorChunk::Function) continue;
  524. moveAttrFromListToList(attr, attrList, chunk.getAttrs());
  525. return true;
  526. }
  527. return handleFunctionTypeAttr(state, attr, declSpecType);
  528. }
  529. /// A function type attribute was written in the decl spec. Try to
  530. /// apply it somewhere.
  531. static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
  532. ParsedAttr &attr,
  533. QualType &declSpecType) {
  534. state.saveDeclSpecAttrs();
  535. // C++11 attributes before the decl specifiers actually appertain to
  536. // the declarators. Move them straight there. We don't support the
  537. // 'put them wherever you like' semantics we allow for GNU attributes.
  538. if (attr.isCXX11Attribute()) {
  539. moveAttrFromListToList(attr, state.getCurrentAttributes(),
  540. state.getDeclarator().getAttributes());
  541. return;
  542. }
  543. // Try to distribute to the innermost.
  544. if (distributeFunctionTypeAttrToInnermost(
  545. state, attr, state.getCurrentAttributes(), declSpecType))
  546. return;
  547. // If that failed, diagnose the bad attribute when the declarator is
  548. // fully built.
  549. state.addIgnoredTypeAttr(attr);
  550. }
  551. /// A function type attribute was written on the declarator. Try to
  552. /// apply it somewhere.
  553. static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
  554. ParsedAttr &attr,
  555. QualType &declSpecType) {
  556. Declarator &declarator = state.getDeclarator();
  557. // Try to distribute to the innermost.
  558. if (distributeFunctionTypeAttrToInnermost(
  559. state, attr, declarator.getAttributes(), declSpecType))
  560. return;
  561. // If that failed, diagnose the bad attribute when the declarator is
  562. // fully built.
  563. declarator.getAttributes().remove(&attr);
  564. state.addIgnoredTypeAttr(attr);
  565. }
  566. /// Given that there are attributes written on the declarator
  567. /// itself, try to distribute any type attributes to the appropriate
  568. /// declarator chunk.
  569. ///
  570. /// These are attributes like the following:
  571. /// int f ATTR;
  572. /// int (f ATTR)();
  573. /// but not necessarily this:
  574. /// int f() ATTR;
  575. static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
  576. QualType &declSpecType) {
  577. // Collect all the type attributes from the declarator itself.
  578. assert(!state.getDeclarator().getAttributes().empty() &&
  579. "declarator has no attrs!");
  580. // The called functions in this loop actually remove things from the current
  581. // list, so iterating over the existing list isn't possible. Instead, make a
  582. // non-owning copy and iterate over that.
  583. ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
  584. for (ParsedAttr &attr : AttrsCopy) {
  585. // Do not distribute C++11 attributes. They have strict rules for what
  586. // they appertain to.
  587. if (attr.isCXX11Attribute())
  588. continue;
  589. switch (attr.getKind()) {
  590. OBJC_POINTER_TYPE_ATTRS_CASELIST:
  591. distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
  592. break;
  593. FUNCTION_TYPE_ATTRS_CASELIST:
  594. distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
  595. break;
  596. MS_TYPE_ATTRS_CASELIST:
  597. // Microsoft type attributes cannot go after the declarator-id.
  598. continue;
  599. NULLABILITY_TYPE_ATTRS_CASELIST:
  600. // Nullability specifiers cannot go after the declarator-id.
  601. // Objective-C __kindof does not get distributed.
  602. case ParsedAttr::AT_ObjCKindOf:
  603. continue;
  604. default:
  605. break;
  606. }
  607. }
  608. }
  609. /// Add a synthetic '()' to a block-literal declarator if it is
  610. /// required, given the return type.
  611. static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
  612. QualType declSpecType) {
  613. Declarator &declarator = state.getDeclarator();
  614. // First, check whether the declarator would produce a function,
  615. // i.e. whether the innermost semantic chunk is a function.
  616. if (declarator.isFunctionDeclarator()) {
  617. // If so, make that declarator a prototyped declarator.
  618. declarator.getFunctionTypeInfo().hasPrototype = true;
  619. return;
  620. }
  621. // If there are any type objects, the type as written won't name a
  622. // function, regardless of the decl spec type. This is because a
  623. // block signature declarator is always an abstract-declarator, and
  624. // abstract-declarators can't just be parentheses chunks. Therefore
  625. // we need to build a function chunk unless there are no type
  626. // objects and the decl spec type is a function.
  627. if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
  628. return;
  629. // Note that there *are* cases with invalid declarators where
  630. // declarators consist solely of parentheses. In general, these
  631. // occur only in failed efforts to make function declarators, so
  632. // faking up the function chunk is still the right thing to do.
  633. // Otherwise, we need to fake up a function declarator.
  634. SourceLocation loc = declarator.getBeginLoc();
  635. // ...and *prepend* it to the declarator.
  636. SourceLocation NoLoc;
  637. declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
  638. /*HasProto=*/true,
  639. /*IsAmbiguous=*/false,
  640. /*LParenLoc=*/NoLoc,
  641. /*ArgInfo=*/nullptr,
  642. /*NumParams=*/0,
  643. /*EllipsisLoc=*/NoLoc,
  644. /*RParenLoc=*/NoLoc,
  645. /*RefQualifierIsLvalueRef=*/true,
  646. /*RefQualifierLoc=*/NoLoc,
  647. /*MutableLoc=*/NoLoc, EST_None,
  648. /*ESpecRange=*/SourceRange(),
  649. /*Exceptions=*/nullptr,
  650. /*ExceptionRanges=*/nullptr,
  651. /*NumExceptions=*/0,
  652. /*NoexceptExpr=*/nullptr,
  653. /*ExceptionSpecTokens=*/nullptr,
  654. /*DeclsInPrototype=*/None, loc, loc, declarator));
  655. // For consistency, make sure the state still has us as processing
  656. // the decl spec.
  657. assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
  658. state.setCurrentChunkIndex(declarator.getNumTypeObjects());
  659. }
  660. static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
  661. unsigned &TypeQuals,
  662. QualType TypeSoFar,
  663. unsigned RemoveTQs,
  664. unsigned DiagID) {
  665. // If this occurs outside a template instantiation, warn the user about
  666. // it; they probably didn't mean to specify a redundant qualifier.
  667. typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
  668. for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
  669. QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
  670. QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
  671. QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
  672. if (!(RemoveTQs & Qual.first))
  673. continue;
  674. if (!S.inTemplateInstantiation()) {
  675. if (TypeQuals & Qual.first)
  676. S.Diag(Qual.second, DiagID)
  677. << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
  678. << FixItHint::CreateRemoval(Qual.second);
  679. }
  680. TypeQuals &= ~Qual.first;
  681. }
  682. }
  683. /// Return true if this is omitted block return type. Also check type
  684. /// attributes and type qualifiers when returning true.
  685. static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
  686. QualType Result) {
  687. if (!isOmittedBlockReturnType(declarator))
  688. return false;
  689. // Warn if we see type attributes for omitted return type on a block literal.
  690. SmallVector<ParsedAttr *, 2> ToBeRemoved;
  691. for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
  692. if (AL.isInvalid() || !AL.isTypeAttr())
  693. continue;
  694. S.Diag(AL.getLoc(),
  695. diag::warn_block_literal_attributes_on_omitted_return_type)
  696. << AL;
  697. ToBeRemoved.push_back(&AL);
  698. }
  699. // Remove bad attributes from the list.
  700. for (ParsedAttr *AL : ToBeRemoved)
  701. declarator.getMutableDeclSpec().getAttributes().remove(AL);
  702. // Warn if we see type qualifiers for omitted return type on a block literal.
  703. const DeclSpec &DS = declarator.getDeclSpec();
  704. unsigned TypeQuals = DS.getTypeQualifiers();
  705. diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
  706. diag::warn_block_literal_qualifiers_on_omitted_return_type);
  707. declarator.getMutableDeclSpec().ClearTypeQualifiers();
  708. return true;
  709. }
  710. /// Apply Objective-C type arguments to the given type.
  711. static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
  712. ArrayRef<TypeSourceInfo *> typeArgs,
  713. SourceRange typeArgsRange,
  714. bool failOnError = false) {
  715. // We can only apply type arguments to an Objective-C class type.
  716. const auto *objcObjectType = type->getAs<ObjCObjectType>();
  717. if (!objcObjectType || !objcObjectType->getInterface()) {
  718. S.Diag(loc, diag::err_objc_type_args_non_class)
  719. << type
  720. << typeArgsRange;
  721. if (failOnError)
  722. return QualType();
  723. return type;
  724. }
  725. // The class type must be parameterized.
  726. ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
  727. ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
  728. if (!typeParams) {
  729. S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
  730. << objcClass->getDeclName()
  731. << FixItHint::CreateRemoval(typeArgsRange);
  732. if (failOnError)
  733. return QualType();
  734. return type;
  735. }
  736. // The type must not already be specialized.
  737. if (objcObjectType->isSpecialized()) {
  738. S.Diag(loc, diag::err_objc_type_args_specialized_class)
  739. << type
  740. << FixItHint::CreateRemoval(typeArgsRange);
  741. if (failOnError)
  742. return QualType();
  743. return type;
  744. }
  745. // Check the type arguments.
  746. SmallVector<QualType, 4> finalTypeArgs;
  747. unsigned numTypeParams = typeParams->size();
  748. bool anyPackExpansions = false;
  749. for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
  750. TypeSourceInfo *typeArgInfo = typeArgs[i];
  751. QualType typeArg = typeArgInfo->getType();
  752. // Type arguments cannot have explicit qualifiers or nullability.
  753. // We ignore indirect sources of these, e.g. behind typedefs or
  754. // template arguments.
  755. if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
  756. bool diagnosed = false;
  757. SourceRange rangeToRemove;
  758. if (auto attr = qual.getAs<AttributedTypeLoc>()) {
  759. rangeToRemove = attr.getLocalSourceRange();
  760. if (attr.getTypePtr()->getImmediateNullability()) {
  761. typeArg = attr.getTypePtr()->getModifiedType();
  762. S.Diag(attr.getBeginLoc(),
  763. diag::err_objc_type_arg_explicit_nullability)
  764. << typeArg << FixItHint::CreateRemoval(rangeToRemove);
  765. diagnosed = true;
  766. }
  767. }
  768. if (!diagnosed) {
  769. S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
  770. << typeArg << typeArg.getQualifiers().getAsString()
  771. << FixItHint::CreateRemoval(rangeToRemove);
  772. }
  773. }
  774. // Remove qualifiers even if they're non-local.
  775. typeArg = typeArg.getUnqualifiedType();
  776. finalTypeArgs.push_back(typeArg);
  777. if (typeArg->getAs<PackExpansionType>())
  778. anyPackExpansions = true;
  779. // Find the corresponding type parameter, if there is one.
  780. ObjCTypeParamDecl *typeParam = nullptr;
  781. if (!anyPackExpansions) {
  782. if (i < numTypeParams) {
  783. typeParam = typeParams->begin()[i];
  784. } else {
  785. // Too many arguments.
  786. S.Diag(loc, diag::err_objc_type_args_wrong_arity)
  787. << false
  788. << objcClass->getDeclName()
  789. << (unsigned)typeArgs.size()
  790. << numTypeParams;
  791. S.Diag(objcClass->getLocation(), diag::note_previous_decl)
  792. << objcClass;
  793. if (failOnError)
  794. return QualType();
  795. return type;
  796. }
  797. }
  798. // Objective-C object pointer types must be substitutable for the bounds.
  799. if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
  800. // If we don't have a type parameter to match against, assume
  801. // everything is fine. There was a prior pack expansion that
  802. // means we won't be able to match anything.
  803. if (!typeParam) {
  804. assert(anyPackExpansions && "Too many arguments?");
  805. continue;
  806. }
  807. // Retrieve the bound.
  808. QualType bound = typeParam->getUnderlyingType();
  809. const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
  810. // Determine whether the type argument is substitutable for the bound.
  811. if (typeArgObjC->isObjCIdType()) {
  812. // When the type argument is 'id', the only acceptable type
  813. // parameter bound is 'id'.
  814. if (boundObjC->isObjCIdType())
  815. continue;
  816. } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
  817. // Otherwise, we follow the assignability rules.
  818. continue;
  819. }
  820. // Diagnose the mismatch.
  821. S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
  822. diag::err_objc_type_arg_does_not_match_bound)
  823. << typeArg << bound << typeParam->getDeclName();
  824. S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
  825. << typeParam->getDeclName();
  826. if (failOnError)
  827. return QualType();
  828. return type;
  829. }
  830. // Block pointer types are permitted for unqualified 'id' bounds.
  831. if (typeArg->isBlockPointerType()) {
  832. // If we don't have a type parameter to match against, assume
  833. // everything is fine. There was a prior pack expansion that
  834. // means we won't be able to match anything.
  835. if (!typeParam) {
  836. assert(anyPackExpansions && "Too many arguments?");
  837. continue;
  838. }
  839. // Retrieve the bound.
  840. QualType bound = typeParam->getUnderlyingType();
  841. if (bound->isBlockCompatibleObjCPointerType(S.Context))
  842. continue;
  843. // Diagnose the mismatch.
  844. S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
  845. diag::err_objc_type_arg_does_not_match_bound)
  846. << typeArg << bound << typeParam->getDeclName();
  847. S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
  848. << typeParam->getDeclName();
  849. if (failOnError)
  850. return QualType();
  851. return type;
  852. }
  853. // Dependent types will be checked at instantiation time.
  854. if (typeArg->isDependentType()) {
  855. continue;
  856. }
  857. // Diagnose non-id-compatible type arguments.
  858. S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
  859. diag::err_objc_type_arg_not_id_compatible)
  860. << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
  861. if (failOnError)
  862. return QualType();
  863. return type;
  864. }
  865. // Make sure we didn't have the wrong number of arguments.
  866. if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
  867. S.Diag(loc, diag::err_objc_type_args_wrong_arity)
  868. << (typeArgs.size() < typeParams->size())
  869. << objcClass->getDeclName()
  870. << (unsigned)finalTypeArgs.size()
  871. << (unsigned)numTypeParams;
  872. S.Diag(objcClass->getLocation(), diag::note_previous_decl)
  873. << objcClass;
  874. if (failOnError)
  875. return QualType();
  876. return type;
  877. }
  878. // Success. Form the specialized type.
  879. return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
  880. }
  881. QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
  882. SourceLocation ProtocolLAngleLoc,
  883. ArrayRef<ObjCProtocolDecl *> Protocols,
  884. ArrayRef<SourceLocation> ProtocolLocs,
  885. SourceLocation ProtocolRAngleLoc,
  886. bool FailOnError) {
  887. QualType Result = QualType(Decl->getTypeForDecl(), 0);
  888. if (!Protocols.empty()) {
  889. bool HasError;
  890. Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
  891. HasError);
  892. if (HasError) {
  893. Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
  894. << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
  895. if (FailOnError) Result = QualType();
  896. }
  897. if (FailOnError && Result.isNull())
  898. return QualType();
  899. }
  900. return Result;
  901. }
  902. QualType Sema::BuildObjCObjectType(QualType BaseType,
  903. SourceLocation Loc,
  904. SourceLocation TypeArgsLAngleLoc,
  905. ArrayRef<TypeSourceInfo *> TypeArgs,
  906. SourceLocation TypeArgsRAngleLoc,
  907. SourceLocation ProtocolLAngleLoc,
  908. ArrayRef<ObjCProtocolDecl *> Protocols,
  909. ArrayRef<SourceLocation> ProtocolLocs,
  910. SourceLocation ProtocolRAngleLoc,
  911. bool FailOnError) {
  912. QualType Result = BaseType;
  913. if (!TypeArgs.empty()) {
  914. Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
  915. SourceRange(TypeArgsLAngleLoc,
  916. TypeArgsRAngleLoc),
  917. FailOnError);
  918. if (FailOnError && Result.isNull())
  919. return QualType();
  920. }
  921. if (!Protocols.empty()) {
  922. bool HasError;
  923. Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
  924. HasError);
  925. if (HasError) {
  926. Diag(Loc, diag::err_invalid_protocol_qualifiers)
  927. << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
  928. if (FailOnError) Result = QualType();
  929. }
  930. if (FailOnError && Result.isNull())
  931. return QualType();
  932. }
  933. return Result;
  934. }
  935. TypeResult Sema::actOnObjCProtocolQualifierType(
  936. SourceLocation lAngleLoc,
  937. ArrayRef<Decl *> protocols,
  938. ArrayRef<SourceLocation> protocolLocs,
  939. SourceLocation rAngleLoc) {
  940. // Form id<protocol-list>.
  941. QualType Result = Context.getObjCObjectType(
  942. Context.ObjCBuiltinIdTy, { },
  943. llvm::makeArrayRef(
  944. (ObjCProtocolDecl * const *)protocols.data(),
  945. protocols.size()),
  946. false);
  947. Result = Context.getObjCObjectPointerType(Result);
  948. TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
  949. TypeLoc ResultTL = ResultTInfo->getTypeLoc();
  950. auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
  951. ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
  952. auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
  953. .castAs<ObjCObjectTypeLoc>();
  954. ObjCObjectTL.setHasBaseTypeAsWritten(false);
  955. ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
  956. // No type arguments.
  957. ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
  958. ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
  959. // Fill in protocol qualifiers.
  960. ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
  961. ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
  962. for (unsigned i = 0, n = protocols.size(); i != n; ++i)
  963. ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
  964. // We're done. Return the completed type to the parser.
  965. return CreateParsedType(Result, ResultTInfo);
  966. }
  967. TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
  968. Scope *S,
  969. SourceLocation Loc,
  970. ParsedType BaseType,
  971. SourceLocation TypeArgsLAngleLoc,
  972. ArrayRef<ParsedType> TypeArgs,
  973. SourceLocation TypeArgsRAngleLoc,
  974. SourceLocation ProtocolLAngleLoc,
  975. ArrayRef<Decl *> Protocols,
  976. ArrayRef<SourceLocation> ProtocolLocs,
  977. SourceLocation ProtocolRAngleLoc) {
  978. TypeSourceInfo *BaseTypeInfo = nullptr;
  979. QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
  980. if (T.isNull())
  981. return true;
  982. // Handle missing type-source info.
  983. if (!BaseTypeInfo)
  984. BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
  985. // Extract type arguments.
  986. SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
  987. for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
  988. TypeSourceInfo *TypeArgInfo = nullptr;
  989. QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
  990. if (TypeArg.isNull()) {
  991. ActualTypeArgInfos.clear();
  992. break;
  993. }
  994. assert(TypeArgInfo && "No type source info?");
  995. ActualTypeArgInfos.push_back(TypeArgInfo);
  996. }
  997. // Build the object type.
  998. QualType Result = BuildObjCObjectType(
  999. T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
  1000. TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
  1001. ProtocolLAngleLoc,
  1002. llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
  1003. Protocols.size()),
  1004. ProtocolLocs, ProtocolRAngleLoc,
  1005. /*FailOnError=*/false);
  1006. if (Result == T)
  1007. return BaseType;
  1008. // Create source information for this type.
  1009. TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
  1010. TypeLoc ResultTL = ResultTInfo->getTypeLoc();
  1011. // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
  1012. // object pointer type. Fill in source information for it.
  1013. if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
  1014. // The '*' is implicit.
  1015. ObjCObjectPointerTL.setStarLoc(SourceLocation());
  1016. ResultTL = ObjCObjectPointerTL.getPointeeLoc();
  1017. }
  1018. if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
  1019. // Protocol qualifier information.
  1020. if (OTPTL.getNumProtocols() > 0) {
  1021. assert(OTPTL.getNumProtocols() == Protocols.size());
  1022. OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
  1023. OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
  1024. for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
  1025. OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
  1026. }
  1027. // We're done. Return the completed type to the parser.
  1028. return CreateParsedType(Result, ResultTInfo);
  1029. }
  1030. auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
  1031. // Type argument information.
  1032. if (ObjCObjectTL.getNumTypeArgs() > 0) {
  1033. assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
  1034. ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
  1035. ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
  1036. for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
  1037. ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
  1038. } else {
  1039. ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
  1040. ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
  1041. }
  1042. // Protocol qualifier information.
  1043. if (ObjCObjectTL.getNumProtocols() > 0) {
  1044. assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
  1045. ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
  1046. ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
  1047. for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
  1048. ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
  1049. } else {
  1050. ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
  1051. ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
  1052. }
  1053. // Base type.
  1054. ObjCObjectTL.setHasBaseTypeAsWritten(true);
  1055. if (ObjCObjectTL.getType() == T)
  1056. ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
  1057. else
  1058. ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
  1059. // We're done. Return the completed type to the parser.
  1060. return CreateParsedType(Result, ResultTInfo);
  1061. }
  1062. static OpenCLAccessAttr::Spelling
  1063. getImageAccess(const ParsedAttributesView &Attrs) {
  1064. for (const ParsedAttr &AL : Attrs)
  1065. if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
  1066. return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
  1067. return OpenCLAccessAttr::Keyword_read_only;
  1068. }
  1069. /// Convert the specified declspec to the appropriate type
  1070. /// object.
  1071. /// \param state Specifies the declarator containing the declaration specifier
  1072. /// to be converted, along with other associated processing state.
  1073. /// \returns The type described by the declaration specifiers. This function
  1074. /// never returns null.
  1075. static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
  1076. // FIXME: Should move the logic from DeclSpec::Finish to here for validity
  1077. // checking.
  1078. Sema &S = state.getSema();
  1079. Declarator &declarator = state.getDeclarator();
  1080. DeclSpec &DS = declarator.getMutableDeclSpec();
  1081. SourceLocation DeclLoc = declarator.getIdentifierLoc();
  1082. if (DeclLoc.isInvalid())
  1083. DeclLoc = DS.getBeginLoc();
  1084. ASTContext &Context = S.Context;
  1085. QualType Result;
  1086. switch (DS.getTypeSpecType()) {
  1087. case DeclSpec::TST_void:
  1088. Result = Context.VoidTy;
  1089. break;
  1090. case DeclSpec::TST_char:
  1091. if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
  1092. Result = Context.CharTy;
  1093. else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
  1094. Result = Context.SignedCharTy;
  1095. else {
  1096. assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
  1097. "Unknown TSS value");
  1098. Result = Context.UnsignedCharTy;
  1099. }
  1100. break;
  1101. case DeclSpec::TST_wchar:
  1102. if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
  1103. Result = Context.WCharTy;
  1104. else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
  1105. S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
  1106. << DS.getSpecifierName(DS.getTypeSpecType(),
  1107. Context.getPrintingPolicy());
  1108. Result = Context.getSignedWCharType();
  1109. } else {
  1110. assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
  1111. "Unknown TSS value");
  1112. S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
  1113. << DS.getSpecifierName(DS.getTypeSpecType(),
  1114. Context.getPrintingPolicy());
  1115. Result = Context.getUnsignedWCharType();
  1116. }
  1117. break;
  1118. case DeclSpec::TST_char8:
  1119. assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
  1120. "Unknown TSS value");
  1121. Result = Context.Char8Ty;
  1122. break;
  1123. case DeclSpec::TST_char16:
  1124. assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
  1125. "Unknown TSS value");
  1126. Result = Context.Char16Ty;
  1127. break;
  1128. case DeclSpec::TST_char32:
  1129. assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
  1130. "Unknown TSS value");
  1131. Result = Context.Char32Ty;
  1132. break;
  1133. case DeclSpec::TST_unspecified:
  1134. // If this is a missing declspec in a block literal return context, then it
  1135. // is inferred from the return statements inside the block.
  1136. // The declspec is always missing in a lambda expr context; it is either
  1137. // specified with a trailing return type or inferred.
  1138. if (S.getLangOpts().CPlusPlus14 &&
  1139. declarator.getContext() == DeclaratorContext::LambdaExprContext) {
  1140. // In C++1y, a lambda's implicit return type is 'auto'.
  1141. Result = Context.getAutoDeductType();
  1142. break;
  1143. } else if (declarator.getContext() ==
  1144. DeclaratorContext::LambdaExprContext ||
  1145. checkOmittedBlockReturnType(S, declarator,
  1146. Context.DependentTy)) {
  1147. Result = Context.DependentTy;
  1148. break;
  1149. }
  1150. // Unspecified typespec defaults to int in C90. However, the C90 grammar
  1151. // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
  1152. // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
  1153. // Note that the one exception to this is function definitions, which are
  1154. // allowed to be completely missing a declspec. This is handled in the
  1155. // parser already though by it pretending to have seen an 'int' in this
  1156. // case.
  1157. if (S.getLangOpts().ImplicitInt) {
  1158. // In C89 mode, we only warn if there is a completely missing declspec
  1159. // when one is not allowed.
  1160. if (DS.isEmpty()) {
  1161. S.Diag(DeclLoc, diag::ext_missing_declspec)
  1162. << DS.getSourceRange()
  1163. << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
  1164. }
  1165. } else if (!DS.hasTypeSpecifier()) {
  1166. // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
  1167. // "At least one type specifier shall be given in the declaration
  1168. // specifiers in each declaration, and in the specifier-qualifier list in
  1169. // each struct declaration and type name."
  1170. if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) {
  1171. S.Diag(DeclLoc, diag::err_missing_type_specifier)
  1172. << DS.getSourceRange();
  1173. // When this occurs in C++ code, often something is very broken with the
  1174. // value being declared, poison it as invalid so we don't get chains of
  1175. // errors.
  1176. declarator.setInvalidType(true);
  1177. } else if ((S.getLangOpts().OpenCLVersion >= 200 ||
  1178. S.getLangOpts().OpenCLCPlusPlus) &&
  1179. DS.isTypeSpecPipe()) {
  1180. S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
  1181. << DS.getSourceRange();
  1182. declarator.setInvalidType(true);
  1183. } else {
  1184. S.Diag(DeclLoc, diag::ext_missing_type_specifier)
  1185. << DS.getSourceRange();
  1186. }
  1187. }
  1188. LLVM_FALLTHROUGH;
  1189. case DeclSpec::TST_int: {
  1190. if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
  1191. switch (DS.getTypeSpecWidth()) {
  1192. case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
  1193. case DeclSpec::TSW_short: Result = Context.ShortTy; break;
  1194. case DeclSpec::TSW_long: Result = Context.LongTy; break;
  1195. case DeclSpec::TSW_longlong:
  1196. Result = Context.LongLongTy;
  1197. // 'long long' is a C99 or C++11 feature.
  1198. if (!S.getLangOpts().C99) {
  1199. if (S.getLangOpts().CPlusPlus)
  1200. S.Diag(DS.getTypeSpecWidthLoc(),
  1201. S.getLangOpts().CPlusPlus11 ?
  1202. diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
  1203. else
  1204. S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
  1205. }
  1206. break;
  1207. }
  1208. } else {
  1209. switch (DS.getTypeSpecWidth()) {
  1210. case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
  1211. case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
  1212. case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
  1213. case DeclSpec::TSW_longlong:
  1214. Result = Context.UnsignedLongLongTy;
  1215. // 'long long' is a C99 or C++11 feature.
  1216. if (!S.getLangOpts().C99) {
  1217. if (S.getLangOpts().CPlusPlus)
  1218. S.Diag(DS.getTypeSpecWidthLoc(),
  1219. S.getLangOpts().CPlusPlus11 ?
  1220. diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
  1221. else
  1222. S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
  1223. }
  1224. break;
  1225. }
  1226. }
  1227. break;
  1228. }
  1229. case DeclSpec::TST_accum: {
  1230. switch (DS.getTypeSpecWidth()) {
  1231. case DeclSpec::TSW_short:
  1232. Result = Context.ShortAccumTy;
  1233. break;
  1234. case DeclSpec::TSW_unspecified:
  1235. Result = Context.AccumTy;
  1236. break;
  1237. case DeclSpec::TSW_long:
  1238. Result = Context.LongAccumTy;
  1239. break;
  1240. case DeclSpec::TSW_longlong:
  1241. llvm_unreachable("Unable to specify long long as _Accum width");
  1242. }
  1243. if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
  1244. Result = Context.getCorrespondingUnsignedType(Result);
  1245. if (DS.isTypeSpecSat())
  1246. Result = Context.getCorrespondingSaturatedType(Result);
  1247. break;
  1248. }
  1249. case DeclSpec::TST_fract: {
  1250. switch (DS.getTypeSpecWidth()) {
  1251. case DeclSpec::TSW_short:
  1252. Result = Context.ShortFractTy;
  1253. break;
  1254. case DeclSpec::TSW_unspecified:
  1255. Result = Context.FractTy;
  1256. break;
  1257. case DeclSpec::TSW_long:
  1258. Result = Context.LongFractTy;
  1259. break;
  1260. case DeclSpec::TSW_longlong:
  1261. llvm_unreachable("Unable to specify long long as _Fract width");
  1262. }
  1263. if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
  1264. Result = Context.getCorrespondingUnsignedType(Result);
  1265. if (DS.isTypeSpecSat())
  1266. Result = Context.getCorrespondingSaturatedType(Result);
  1267. break;
  1268. }
  1269. case DeclSpec::TST_int128:
  1270. if (!S.Context.getTargetInfo().hasInt128Type() &&
  1271. !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
  1272. S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
  1273. << "__int128";
  1274. if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
  1275. Result = Context.UnsignedInt128Ty;
  1276. else
  1277. Result = Context.Int128Ty;
  1278. break;
  1279. case DeclSpec::TST_float16:
  1280. // CUDA host and device may have different _Float16 support, therefore
  1281. // do not diagnose _Float16 usage to avoid false alarm.
  1282. // ToDo: more precise diagnostics for CUDA.
  1283. if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
  1284. !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
  1285. S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
  1286. << "_Float16";
  1287. Result = Context.Float16Ty;
  1288. break;
  1289. case DeclSpec::TST_half: Result = Context.HalfTy; break;
  1290. case DeclSpec::TST_float: Result = Context.FloatTy; break;
  1291. case DeclSpec::TST_double:
  1292. if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
  1293. Result = Context.LongDoubleTy;
  1294. else
  1295. Result = Context.DoubleTy;
  1296. break;
  1297. case DeclSpec::TST_float128:
  1298. if (!S.Context.getTargetInfo().hasFloat128Type() &&
  1299. !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
  1300. S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
  1301. << "__float128";
  1302. Result = Context.Float128Ty;
  1303. break;
  1304. case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
  1305. break;
  1306. case DeclSpec::TST_decimal32: // _Decimal32
  1307. case DeclSpec::TST_decimal64: // _Decimal64
  1308. case DeclSpec::TST_decimal128: // _Decimal128
  1309. S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
  1310. Result = Context.IntTy;
  1311. declarator.setInvalidType(true);
  1312. break;
  1313. case DeclSpec::TST_class:
  1314. case DeclSpec::TST_enum:
  1315. case DeclSpec::TST_union:
  1316. case DeclSpec::TST_struct:
  1317. case DeclSpec::TST_interface: {
  1318. TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
  1319. if (!D) {
  1320. // This can happen in C++ with ambiguous lookups.
  1321. Result = Context.IntTy;
  1322. declarator.setInvalidType(true);
  1323. break;
  1324. }
  1325. // If the type is deprecated or unavailable, diagnose it.
  1326. S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
  1327. assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
  1328. DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
  1329. // TypeQuals handled by caller.
  1330. Result = Context.getTypeDeclType(D);
  1331. // In both C and C++, make an ElaboratedType.
  1332. ElaboratedTypeKeyword Keyword
  1333. = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
  1334. Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
  1335. DS.isTypeSpecOwned() ? D : nullptr);
  1336. break;
  1337. }
  1338. case DeclSpec::TST_typename: {
  1339. assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
  1340. DS.getTypeSpecSign() == 0 &&
  1341. "Can't handle qualifiers on typedef names yet!");
  1342. Result = S.GetTypeFromParser(DS.getRepAsType());
  1343. if (Result.isNull()) {
  1344. declarator.setInvalidType(true);
  1345. }
  1346. // TypeQuals handled by caller.
  1347. break;
  1348. }
  1349. case DeclSpec::TST_typeofType:
  1350. // FIXME: Preserve type source info.
  1351. Result = S.GetTypeFromParser(DS.getRepAsType());
  1352. assert(!Result.isNull() && "Didn't get a type for typeof?");
  1353. if (!Result->isDependentType())
  1354. if (const TagType *TT = Result->getAs<TagType>())
  1355. S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
  1356. // TypeQuals handled by caller.
  1357. Result = Context.getTypeOfType(Result);
  1358. break;
  1359. case DeclSpec::TST_typeofExpr: {
  1360. Expr *E = DS.getRepAsExpr();
  1361. assert(E && "Didn't get an expression for typeof?");
  1362. // TypeQuals handled by caller.
  1363. Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
  1364. if (Result.isNull()) {
  1365. Result = Context.IntTy;
  1366. declarator.setInvalidType(true);
  1367. }
  1368. break;
  1369. }
  1370. case DeclSpec::TST_decltype: {
  1371. Expr *E = DS.getRepAsExpr();
  1372. assert(E && "Didn't get an expression for decltype?");
  1373. // TypeQuals handled by caller.
  1374. Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
  1375. if (Result.isNull()) {
  1376. Result = Context.IntTy;
  1377. declarator.setInvalidType(true);
  1378. }
  1379. break;
  1380. }
  1381. case DeclSpec::TST_underlyingType:
  1382. Result = S.GetTypeFromParser(DS.getRepAsType());
  1383. assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
  1384. Result = S.BuildUnaryTransformType(Result,
  1385. UnaryTransformType::EnumUnderlyingType,
  1386. DS.getTypeSpecTypeLoc());
  1387. if (Result.isNull()) {
  1388. Result = Context.IntTy;
  1389. declarator.setInvalidType(true);
  1390. }
  1391. break;
  1392. case DeclSpec::TST_auto:
  1393. Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false);
  1394. break;
  1395. case DeclSpec::TST_auto_type:
  1396. Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
  1397. break;
  1398. case DeclSpec::TST_decltype_auto:
  1399. Result = Context.getAutoType(QualType(), AutoTypeKeyword::DecltypeAuto,
  1400. /*IsDependent*/ false);
  1401. break;
  1402. case DeclSpec::TST_unknown_anytype:
  1403. Result = Context.UnknownAnyTy;
  1404. break;
  1405. case DeclSpec::TST_atomic:
  1406. Result = S.GetTypeFromParser(DS.getRepAsType());
  1407. assert(!Result.isNull() && "Didn't get a type for _Atomic?");
  1408. Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
  1409. if (Result.isNull()) {
  1410. Result = Context.IntTy;
  1411. declarator.setInvalidType(true);
  1412. }
  1413. break;
  1414. #define GENERIC_IMAGE_TYPE(ImgType, Id) \
  1415. case DeclSpec::TST_##ImgType##_t: \
  1416. switch (getImageAccess(DS.getAttributes())) { \
  1417. case OpenCLAccessAttr::Keyword_write_only: \
  1418. Result = Context.Id##WOTy; \
  1419. break; \
  1420. case OpenCLAccessAttr::Keyword_read_write: \
  1421. Result = Context.Id##RWTy; \
  1422. break; \
  1423. case OpenCLAccessAttr::Keyword_read_only: \
  1424. Result = Context.Id##ROTy; \
  1425. break; \
  1426. case OpenCLAccessAttr::SpellingNotCalculated: \
  1427. llvm_unreachable("Spelling not yet calculated"); \
  1428. } \
  1429. break;
  1430. #include "clang/Basic/OpenCLImageTypes.def"
  1431. case DeclSpec::TST_error:
  1432. Result = Context.IntTy;
  1433. declarator.setInvalidType(true);
  1434. break;
  1435. }
  1436. if (S.getLangOpts().OpenCL &&
  1437. S.checkOpenCLDisabledTypeDeclSpec(DS, Result))
  1438. declarator.setInvalidType(true);
  1439. bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
  1440. DS.getTypeSpecType() == DeclSpec::TST_fract;
  1441. // Only fixed point types can be saturated
  1442. if (DS.isTypeSpecSat() && !IsFixedPointType)
  1443. S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
  1444. << DS.getSpecifierName(DS.getTypeSpecType(),
  1445. Context.getPrintingPolicy());
  1446. // Handle complex types.
  1447. if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
  1448. if (S.getLangOpts().Freestanding)
  1449. S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
  1450. Result = Context.getComplexType(Result);
  1451. } else if (DS.isTypeAltiVecVector()) {
  1452. unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
  1453. assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
  1454. VectorType::VectorKind VecKind = VectorType::AltiVecVector;
  1455. if (DS.isTypeAltiVecPixel())
  1456. VecKind = VectorType::AltiVecPixel;
  1457. else if (DS.isTypeAltiVecBool())
  1458. VecKind = VectorType::AltiVecBool;
  1459. Result = Context.getVectorType(Result, 128/typeSize, VecKind);
  1460. }
  1461. // FIXME: Imaginary.
  1462. if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
  1463. S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
  1464. // Before we process any type attributes, synthesize a block literal
  1465. // function declarator if necessary.
  1466. if (declarator.getContext() == DeclaratorContext::BlockLiteralContext)
  1467. maybeSynthesizeBlockSignature(state, Result);
  1468. // Apply any type attributes from the decl spec. This may cause the
  1469. // list of type attributes to be temporarily saved while the type
  1470. // attributes are pushed around.
  1471. // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
  1472. if (!DS.isTypeSpecPipe())
  1473. processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
  1474. // Apply const/volatile/restrict qualifiers to T.
  1475. if (unsigned TypeQuals = DS.getTypeQualifiers()) {
  1476. // Warn about CV qualifiers on function types.
  1477. // C99 6.7.3p8:
  1478. // If the specification of a function type includes any type qualifiers,
  1479. // the behavior is undefined.
  1480. // C++11 [dcl.fct]p7:
  1481. // The effect of a cv-qualifier-seq in a function declarator is not the
  1482. // same as adding cv-qualification on top of the function type. In the
  1483. // latter case, the cv-qualifiers are ignored.
  1484. if (TypeQuals && Result->isFunctionType()) {
  1485. diagnoseAndRemoveTypeQualifiers(
  1486. S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
  1487. S.getLangOpts().CPlusPlus
  1488. ? diag::warn_typecheck_function_qualifiers_ignored
  1489. : diag::warn_typecheck_function_qualifiers_unspecified);
  1490. // No diagnostic for 'restrict' or '_Atomic' applied to a
  1491. // function type; we'll diagnose those later, in BuildQualifiedType.
  1492. }
  1493. // C++11 [dcl.ref]p1:
  1494. // Cv-qualified references are ill-formed except when the
  1495. // cv-qualifiers are introduced through the use of a typedef-name
  1496. // or decltype-specifier, in which case the cv-qualifiers are ignored.
  1497. //
  1498. // There don't appear to be any other contexts in which a cv-qualified
  1499. // reference type could be formed, so the 'ill-formed' clause here appears
  1500. // to never happen.
  1501. if (TypeQuals && Result->isReferenceType()) {
  1502. diagnoseAndRemoveTypeQualifiers(
  1503. S, DS, TypeQuals, Result,
  1504. DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
  1505. diag::warn_typecheck_reference_qualifiers);
  1506. }
  1507. // C90 6.5.3 constraints: "The same type qualifier shall not appear more
  1508. // than once in the same specifier-list or qualifier-list, either directly
  1509. // or via one or more typedefs."
  1510. if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
  1511. && TypeQuals & Result.getCVRQualifiers()) {
  1512. if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
  1513. S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
  1514. << "const";
  1515. }
  1516. if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
  1517. S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
  1518. << "volatile";
  1519. }
  1520. // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
  1521. // produce a warning in this case.
  1522. }
  1523. QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
  1524. // If adding qualifiers fails, just use the unqualified type.
  1525. if (Qualified.isNull())
  1526. declarator.setInvalidType(true);
  1527. else
  1528. Result = Qualified;
  1529. }
  1530. assert(!Result.isNull() && "This function should not return a null type");
  1531. return Result;
  1532. }
  1533. static std::string getPrintableNameForEntity(DeclarationName Entity) {
  1534. if (Entity)
  1535. return Entity.getAsString();
  1536. return "type name";
  1537. }
  1538. QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
  1539. Qualifiers Qs, const DeclSpec *DS) {
  1540. if (T.isNull())
  1541. return QualType();
  1542. // Ignore any attempt to form a cv-qualified reference.
  1543. if (T->isReferenceType()) {
  1544. Qs.removeConst();
  1545. Qs.removeVolatile();
  1546. }
  1547. // Enforce C99 6.7.3p2: "Types other than pointer types derived from
  1548. // object or incomplete types shall not be restrict-qualified."
  1549. if (Qs.hasRestrict()) {
  1550. unsigned DiagID = 0;
  1551. QualType ProblemTy;
  1552. if (T->isAnyPointerType() || T->isReferenceType() ||
  1553. T->isMemberPointerType()) {
  1554. QualType EltTy;
  1555. if (T->isObjCObjectPointerType())
  1556. EltTy = T;
  1557. else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
  1558. EltTy = PTy->getPointeeType();
  1559. else
  1560. EltTy = T->getPointeeType();
  1561. // If we have a pointer or reference, the pointee must have an object
  1562. // incomplete type.
  1563. if (!EltTy->isIncompleteOrObjectType()) {
  1564. DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
  1565. ProblemTy = EltTy;
  1566. }
  1567. } else if (!T->isDependentType()) {
  1568. DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
  1569. ProblemTy = T;
  1570. }
  1571. if (DiagID) {
  1572. Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
  1573. Qs.removeRestrict();
  1574. }
  1575. }
  1576. return Context.getQualifiedType(T, Qs);
  1577. }
  1578. QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
  1579. unsigned CVRAU, const DeclSpec *DS) {
  1580. if (T.isNull())
  1581. return QualType();
  1582. // Ignore any attempt to form a cv-qualified reference.
  1583. if (T->isReferenceType())
  1584. CVRAU &=
  1585. ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
  1586. // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
  1587. // TQ_unaligned;
  1588. unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
  1589. // C11 6.7.3/5:
  1590. // If the same qualifier appears more than once in the same
  1591. // specifier-qualifier-list, either directly or via one or more typedefs,
  1592. // the behavior is the same as if it appeared only once.
  1593. //
  1594. // It's not specified what happens when the _Atomic qualifier is applied to
  1595. // a type specified with the _Atomic specifier, but we assume that this
  1596. // should be treated as if the _Atomic qualifier appeared multiple times.
  1597. if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
  1598. // C11 6.7.3/5:
  1599. // If other qualifiers appear along with the _Atomic qualifier in a
  1600. // specifier-qualifier-list, the resulting type is the so-qualified
  1601. // atomic type.
  1602. //
  1603. // Don't need to worry about array types here, since _Atomic can't be
  1604. // applied to such types.
  1605. SplitQualType Split = T.getSplitUnqualifiedType();
  1606. T = BuildAtomicType(QualType(Split.Ty, 0),
  1607. DS ? DS->getAtomicSpecLoc() : Loc);
  1608. if (T.isNull())
  1609. return T;
  1610. Split.Quals.addCVRQualifiers(CVR);
  1611. return BuildQualifiedType(T, Loc, Split.Quals);
  1612. }
  1613. Qualifiers Q = Qualifiers::fromCVRMask(CVR);
  1614. Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
  1615. return BuildQualifiedType(T, Loc, Q, DS);
  1616. }
  1617. /// Build a paren type including \p T.
  1618. QualType Sema::BuildParenType(QualType T) {
  1619. return Context.getParenType(T);
  1620. }
  1621. /// Given that we're building a pointer or reference to the given
  1622. static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
  1623. SourceLocation loc,
  1624. bool isReference) {
  1625. // Bail out if retention is unrequired or already specified.
  1626. if (!type->isObjCLifetimeType() ||
  1627. type.getObjCLifetime() != Qualifiers::OCL_None)
  1628. return type;
  1629. Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
  1630. // If the object type is const-qualified, we can safely use
  1631. // __unsafe_unretained. This is safe (because there are no read
  1632. // barriers), and it'll be safe to coerce anything but __weak* to
  1633. // the resulting type.
  1634. if (type.isConstQualified()) {
  1635. implicitLifetime = Qualifiers::OCL_ExplicitNone;
  1636. // Otherwise, check whether the static type does not require
  1637. // retaining. This currently only triggers for Class (possibly
  1638. // protocol-qualifed, and arrays thereof).
  1639. } else if (type->isObjCARCImplicitlyUnretainedType()) {
  1640. implicitLifetime = Qualifiers::OCL_ExplicitNone;
  1641. // If we are in an unevaluated context, like sizeof, skip adding a
  1642. // qualification.
  1643. } else if (S.isUnevaluatedContext()) {
  1644. return type;
  1645. // If that failed, give an error and recover using __strong. __strong
  1646. // is the option most likely to prevent spurious second-order diagnostics,
  1647. // like when binding a reference to a field.
  1648. } else {
  1649. // These types can show up in private ivars in system headers, so
  1650. // we need this to not be an error in those cases. Instead we
  1651. // want to delay.
  1652. if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
  1653. S.DelayedDiagnostics.add(
  1654. sema::DelayedDiagnostic::makeForbiddenType(loc,
  1655. diag::err_arc_indirect_no_ownership, type, isReference));
  1656. } else {
  1657. S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
  1658. }
  1659. implicitLifetime = Qualifiers::OCL_Strong;
  1660. }
  1661. assert(implicitLifetime && "didn't infer any lifetime!");
  1662. Qualifiers qs;
  1663. qs.addObjCLifetime(implicitLifetime);
  1664. return S.Context.getQualifiedType(type, qs);
  1665. }
  1666. static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
  1667. std::string Quals = FnTy->getMethodQuals().getAsString();
  1668. switch (FnTy->getRefQualifier()) {
  1669. case RQ_None:
  1670. break;
  1671. case RQ_LValue:
  1672. if (!Quals.empty())
  1673. Quals += ' ';
  1674. Quals += '&';
  1675. break;
  1676. case RQ_RValue:
  1677. if (!Quals.empty())
  1678. Quals += ' ';
  1679. Quals += "&&";
  1680. break;
  1681. }
  1682. return Quals;
  1683. }
  1684. namespace {
  1685. /// Kinds of declarator that cannot contain a qualified function type.
  1686. ///
  1687. /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
  1688. /// a function type with a cv-qualifier or a ref-qualifier can only appear
  1689. /// at the topmost level of a type.
  1690. ///
  1691. /// Parens and member pointers are permitted. We don't diagnose array and
  1692. /// function declarators, because they don't allow function types at all.
  1693. ///
  1694. /// The values of this enum are used in diagnostics.
  1695. enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
  1696. } // end anonymous namespace
  1697. /// Check whether the type T is a qualified function type, and if it is,
  1698. /// diagnose that it cannot be contained within the given kind of declarator.
  1699. static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
  1700. QualifiedFunctionKind QFK) {
  1701. // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
  1702. const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
  1703. if (!FPT || (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
  1704. return false;
  1705. S.Diag(Loc, diag::err_compound_qualified_function_type)
  1706. << QFK << isa<FunctionType>(T.IgnoreParens()) << T
  1707. << getFunctionQualifiersAsString(FPT);
  1708. return true;
  1709. }
  1710. /// Build a pointer type.
  1711. ///
  1712. /// \param T The type to which we'll be building a pointer.
  1713. ///
  1714. /// \param Loc The location of the entity whose type involves this
  1715. /// pointer type or, if there is no such entity, the location of the
  1716. /// type that will have pointer type.
  1717. ///
  1718. /// \param Entity The name of the entity that involves the pointer
  1719. /// type, if known.
  1720. ///
  1721. /// \returns A suitable pointer type, if there are no
  1722. /// errors. Otherwise, returns a NULL type.
  1723. QualType Sema::BuildPointerType(QualType T,
  1724. SourceLocation Loc, DeclarationName Entity) {
  1725. if (T->isReferenceType()) {
  1726. // C++ 8.3.2p4: There shall be no ... pointers to references ...
  1727. Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
  1728. << getPrintableNameForEntity(Entity) << T;
  1729. return QualType();
  1730. }
  1731. if (T->isFunctionType() && getLangOpts().OpenCL) {
  1732. Diag(Loc, diag::err_opencl_function_pointer);
  1733. return QualType();
  1734. }
  1735. if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
  1736. return QualType();
  1737. assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
  1738. // In ARC, it is forbidden to build pointers to unqualified pointers.
  1739. if (getLangOpts().ObjCAutoRefCount)
  1740. T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
  1741. // Build the pointer type.
  1742. return Context.getPointerType(T);
  1743. }
  1744. /// Build a reference type.
  1745. ///
  1746. /// \param T The type to which we'll be building a reference.
  1747. ///
  1748. /// \param Loc The location of the entity whose type involves this
  1749. /// reference type or, if there is no such entity, the location of the
  1750. /// type that will have reference type.
  1751. ///
  1752. /// \param Entity The name of the entity that involves the reference
  1753. /// type, if known.
  1754. ///
  1755. /// \returns A suitable reference type, if there are no
  1756. /// errors. Otherwise, returns a NULL type.
  1757. QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
  1758. SourceLocation Loc,
  1759. DeclarationName Entity) {
  1760. assert(Context.getCanonicalType(T) != Context.OverloadTy &&
  1761. "Unresolved overloaded function type");
  1762. // C++0x [dcl.ref]p6:
  1763. // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
  1764. // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
  1765. // type T, an attempt to create the type "lvalue reference to cv TR" creates
  1766. // the type "lvalue reference to T", while an attempt to create the type
  1767. // "rvalue reference to cv TR" creates the type TR.
  1768. bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
  1769. // C++ [dcl.ref]p4: There shall be no references to references.
  1770. //
  1771. // According to C++ DR 106, references to references are only
  1772. // diagnosed when they are written directly (e.g., "int & &"),
  1773. // but not when they happen via a typedef:
  1774. //
  1775. // typedef int& intref;
  1776. // typedef intref& intref2;
  1777. //
  1778. // Parser::ParseDeclaratorInternal diagnoses the case where
  1779. // references are written directly; here, we handle the
  1780. // collapsing of references-to-references as described in C++0x.
  1781. // DR 106 and 540 introduce reference-collapsing into C++98/03.
  1782. // C++ [dcl.ref]p1:
  1783. // A declarator that specifies the type "reference to cv void"
  1784. // is ill-formed.
  1785. if (T->isVoidType()) {
  1786. Diag(Loc, diag::err_reference_to_void);
  1787. return QualType();
  1788. }
  1789. if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
  1790. return QualType();
  1791. // In ARC, it is forbidden to build references to unqualified pointers.
  1792. if (getLangOpts().ObjCAutoRefCount)
  1793. T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
  1794. // Handle restrict on references.
  1795. if (LValueRef)
  1796. return Context.getLValueReferenceType(T, SpelledAsLValue);
  1797. return Context.getRValueReferenceType(T);
  1798. }
  1799. /// Build a Read-only Pipe type.
  1800. ///
  1801. /// \param T The type to which we'll be building a Pipe.
  1802. ///
  1803. /// \param Loc We do not use it for now.
  1804. ///
  1805. /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
  1806. /// NULL type.
  1807. QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
  1808. return Context.getReadPipeType(T);
  1809. }
  1810. /// Build a Write-only Pipe type.
  1811. ///
  1812. /// \param T The type to which we'll be building a Pipe.
  1813. ///
  1814. /// \param Loc We do not use it for now.
  1815. ///
  1816. /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
  1817. /// NULL type.
  1818. QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
  1819. return Context.getWritePipeType(T);
  1820. }
  1821. /// Check whether the specified array size makes the array type a VLA. If so,
  1822. /// return true, if not, return the size of the array in SizeVal.
  1823. static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
  1824. // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
  1825. // (like gnu99, but not c99) accept any evaluatable value as an extension.
  1826. class VLADiagnoser : public Sema::VerifyICEDiagnoser {
  1827. public:
  1828. VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
  1829. void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
  1830. }
  1831. void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
  1832. S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
  1833. }
  1834. } Diagnoser;
  1835. return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
  1836. S.LangOpts.GNUMode ||
  1837. S.LangOpts.OpenCL).isInvalid();
  1838. }
  1839. /// Build an array type.
  1840. ///
  1841. /// \param T The type of each element in the array.
  1842. ///
  1843. /// \param ASM C99 array size modifier (e.g., '*', 'static').
  1844. ///
  1845. /// \param ArraySize Expression describing the size of the array.
  1846. ///
  1847. /// \param Brackets The range from the opening '[' to the closing ']'.
  1848. ///
  1849. /// \param Entity The name of the entity that involves the array
  1850. /// type, if known.
  1851. ///
  1852. /// \returns A suitable array type, if there are no errors. Otherwise,
  1853. /// returns a NULL type.
  1854. QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
  1855. Expr *ArraySize, unsigned Quals,
  1856. SourceRange Brackets, DeclarationName Entity) {
  1857. SourceLocation Loc = Brackets.getBegin();
  1858. if (getLangOpts().CPlusPlus) {
  1859. // C++ [dcl.array]p1:
  1860. // T is called the array element type; this type shall not be a reference
  1861. // type, the (possibly cv-qualified) type void, a function type or an
  1862. // abstract class type.
  1863. //
  1864. // C++ [dcl.array]p3:
  1865. // When several "array of" specifications are adjacent, [...] only the
  1866. // first of the constant expressions that specify the bounds of the arrays
  1867. // may be omitted.
  1868. //
  1869. // Note: function types are handled in the common path with C.
  1870. if (T->isReferenceType()) {
  1871. Diag(Loc, diag::err_illegal_decl_array_of_references)
  1872. << getPrintableNameForEntity(Entity) << T;
  1873. return QualType();
  1874. }
  1875. if (T->isVoidType() || T->isIncompleteArrayType()) {
  1876. Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
  1877. return QualType();
  1878. }
  1879. if (RequireNonAbstractType(Brackets.getBegin(), T,
  1880. diag::err_array_of_abstract_type))
  1881. return QualType();
  1882. // Mentioning a member pointer type for an array type causes us to lock in
  1883. // an inheritance model, even if it's inside an unused typedef.
  1884. if (Context.getTargetInfo().getCXXABI().isMicrosoft())
  1885. if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
  1886. if (!MPTy->getClass()->isDependentType())
  1887. (void)isCompleteType(Loc, T);
  1888. } else {
  1889. // C99 6.7.5.2p1: If the element type is an incomplete or function type,
  1890. // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
  1891. if (RequireCompleteType(Loc, T,
  1892. diag::err_illegal_decl_array_incomplete_type))
  1893. return QualType();
  1894. }
  1895. if (T->isFunctionType()) {
  1896. Diag(Loc, diag::err_illegal_decl_array_of_functions)
  1897. << getPrintableNameForEntity(Entity) << T;
  1898. return QualType();
  1899. }
  1900. if (const RecordType *EltTy = T->getAs<RecordType>()) {
  1901. // If the element type is a struct or union that contains a variadic
  1902. // array, accept it as a GNU extension: C99 6.7.2.1p2.
  1903. if (EltTy->getDecl()->hasFlexibleArrayMember())
  1904. Diag(Loc, diag::ext_flexible_array_in_array) << T;
  1905. } else if (T->isObjCObjectType()) {
  1906. Diag(Loc, diag::err_objc_array_of_interfaces) << T;
  1907. return QualType();
  1908. }
  1909. // Do placeholder conversions on the array size expression.
  1910. if (ArraySize && ArraySize->hasPlaceholderType()) {
  1911. ExprResult Result = CheckPlaceholderExpr(ArraySize);
  1912. if (Result.isInvalid()) return QualType();
  1913. ArraySize = Result.get();
  1914. }
  1915. // Do lvalue-to-rvalue conversions on the array size expression.
  1916. if (ArraySize && !ArraySize->isRValue()) {
  1917. ExprResult Result = DefaultLvalueConversion(ArraySize);
  1918. if (Result.isInvalid())
  1919. return QualType();
  1920. ArraySize = Result.get();
  1921. }
  1922. // C99 6.7.5.2p1: The size expression shall have integer type.
  1923. // C++11 allows contextual conversions to such types.
  1924. if (!getLangOpts().CPlusPlus11 &&
  1925. ArraySize && !ArraySize->isTypeDependent() &&
  1926. !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
  1927. Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
  1928. << ArraySize->getType() << ArraySize->getSourceRange();
  1929. return QualType();
  1930. }
  1931. llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
  1932. if (!ArraySize) {
  1933. if (ASM == ArrayType::Star)
  1934. T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
  1935. else
  1936. T = Context.getIncompleteArrayType(T, ASM, Quals);
  1937. } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
  1938. T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
  1939. } else if ((!T->isDependentType() && !T->isIncompleteType() &&
  1940. !T->isConstantSizeType()) ||
  1941. isArraySizeVLA(*this, ArraySize, ConstVal)) {
  1942. // Even in C++11, don't allow contextual conversions in the array bound
  1943. // of a VLA.
  1944. if (getLangOpts().CPlusPlus11 &&
  1945. !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
  1946. Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
  1947. << ArraySize->getType() << ArraySize->getSourceRange();
  1948. return QualType();
  1949. }
  1950. // C99: an array with an element type that has a non-constant-size is a VLA.
  1951. // C99: an array with a non-ICE size is a VLA. We accept any expression
  1952. // that we can fold to a non-zero positive value as an extension.
  1953. T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
  1954. } else {
  1955. // C99 6.7.5.2p1: If the expression is a constant expression, it shall
  1956. // have a value greater than zero.
  1957. if (ConstVal.isSigned() && ConstVal.isNegative()) {
  1958. if (Entity)
  1959. Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
  1960. << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
  1961. else
  1962. Diag(ArraySize->getBeginLoc(), diag::err_typecheck_negative_array_size)
  1963. << ArraySize->getSourceRange();
  1964. return QualType();
  1965. }
  1966. if (ConstVal == 0) {
  1967. // GCC accepts zero sized static arrays. We allow them when
  1968. // we're not in a SFINAE context.
  1969. Diag(ArraySize->getBeginLoc(), isSFINAEContext()
  1970. ? diag::err_typecheck_zero_array_size
  1971. : diag::ext_typecheck_zero_array_size)
  1972. << ArraySize->getSourceRange();
  1973. if (ASM == ArrayType::Static) {
  1974. Diag(ArraySize->getBeginLoc(),
  1975. diag::warn_typecheck_zero_static_array_size)
  1976. << ArraySize->getSourceRange();
  1977. ASM = ArrayType::Normal;
  1978. }
  1979. } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
  1980. !T->isIncompleteType() && !T->isUndeducedType()) {
  1981. // Is the array too large?
  1982. unsigned ActiveSizeBits
  1983. = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
  1984. if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
  1985. Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
  1986. << ConstVal.toString(10) << ArraySize->getSourceRange();
  1987. return QualType();
  1988. }
  1989. }
  1990. T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
  1991. }
  1992. // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
  1993. if (getLangOpts().OpenCL && T->isVariableArrayType()) {
  1994. Diag(Loc, diag::err_opencl_vla);
  1995. return QualType();
  1996. }
  1997. if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
  1998. // CUDA device code and some other targets don't support VLAs.
  1999. targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
  2000. ? diag::err_cuda_vla
  2001. : diag::err_vla_unsupported)
  2002. << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
  2003. ? CurrentCUDATarget()
  2004. : CFT_InvalidTarget);
  2005. }
  2006. // If this is not C99, extwarn about VLA's and C99 array size modifiers.
  2007. if (!getLangOpts().C99) {
  2008. if (T->isVariableArrayType()) {
  2009. // Prohibit the use of VLAs during template argument deduction.
  2010. if (isSFINAEContext()) {
  2011. Diag(Loc, diag::err_vla_in_sfinae);
  2012. return QualType();
  2013. }
  2014. // Just extwarn about VLAs.
  2015. else
  2016. Diag(Loc, diag::ext_vla);
  2017. } else if (ASM != ArrayType::Normal || Quals != 0)
  2018. Diag(Loc,
  2019. getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
  2020. : diag::ext_c99_array_usage) << ASM;
  2021. }
  2022. if (T->isVariableArrayType()) {
  2023. // Warn about VLAs for -Wvla.
  2024. Diag(Loc, diag::warn_vla_used);
  2025. }
  2026. // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
  2027. // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
  2028. // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
  2029. if (getLangOpts().OpenCL) {
  2030. const QualType ArrType = Context.getBaseElementType(T);
  2031. if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
  2032. ArrType->isSamplerT() || ArrType->isImageType()) {
  2033. Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
  2034. return QualType();
  2035. }
  2036. }
  2037. return T;
  2038. }
  2039. QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
  2040. SourceLocation AttrLoc) {
  2041. // The base type must be integer (not Boolean or enumeration) or float, and
  2042. // can't already be a vector.
  2043. if (!CurType->isDependentType() &&
  2044. (!CurType->isBuiltinType() || CurType->isBooleanType() ||
  2045. (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) {
  2046. Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
  2047. return QualType();
  2048. }
  2049. if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
  2050. return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
  2051. VectorType::GenericVector);
  2052. llvm::APSInt VecSize(32);
  2053. if (!SizeExpr->isIntegerConstantExpr(VecSize, Context)) {
  2054. Diag(AttrLoc, diag::err_attribute_argument_type)
  2055. << "vector_size" << AANT_ArgumentIntegerConstant
  2056. << SizeExpr->getSourceRange();
  2057. return QualType();
  2058. }
  2059. if (CurType->isDependentType())
  2060. return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
  2061. VectorType::GenericVector);
  2062. unsigned VectorSize = static_cast<unsigned>(VecSize.getZExtValue() * 8);
  2063. unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
  2064. if (VectorSize == 0) {
  2065. Diag(AttrLoc, diag::err_attribute_zero_size) << SizeExpr->getSourceRange();
  2066. return QualType();
  2067. }
  2068. // vecSize is specified in bytes - convert to bits.
  2069. if (VectorSize % TypeSize) {
  2070. Diag(AttrLoc, diag::err_attribute_invalid_size)
  2071. << SizeExpr->getSourceRange();
  2072. return QualType();
  2073. }
  2074. if (VectorType::isVectorSizeTooLarge(VectorSize / TypeSize)) {
  2075. Diag(AttrLoc, diag::err_attribute_size_too_large)
  2076. << SizeExpr->getSourceRange();
  2077. return QualType();
  2078. }
  2079. return Context.getVectorType(CurType, VectorSize / TypeSize,
  2080. VectorType::GenericVector);
  2081. }
  2082. /// Build an ext-vector type.
  2083. ///
  2084. /// Run the required checks for the extended vector type.
  2085. QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
  2086. SourceLocation AttrLoc) {
  2087. // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
  2088. // in conjunction with complex types (pointers, arrays, functions, etc.).
  2089. //
  2090. // Additionally, OpenCL prohibits vectors of booleans (they're considered a
  2091. // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
  2092. // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
  2093. // of bool aren't allowed.
  2094. if ((!T->isDependentType() && !T->isIntegerType() &&
  2095. !T->isRealFloatingType()) ||
  2096. T->isBooleanType()) {
  2097. Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
  2098. return QualType();
  2099. }
  2100. if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
  2101. llvm::APSInt vecSize(32);
  2102. if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
  2103. Diag(AttrLoc, diag::err_attribute_argument_type)
  2104. << "ext_vector_type" << AANT_ArgumentIntegerConstant
  2105. << ArraySize->getSourceRange();
  2106. return QualType();
  2107. }
  2108. // Unlike gcc's vector_size attribute, the size is specified as the
  2109. // number of elements, not the number of bytes.
  2110. unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
  2111. if (vectorSize == 0) {
  2112. Diag(AttrLoc, diag::err_attribute_zero_size)
  2113. << ArraySize->getSourceRange();
  2114. return QualType();
  2115. }
  2116. if (VectorType::isVectorSizeTooLarge(vectorSize)) {
  2117. Diag(AttrLoc, diag::err_attribute_size_too_large)
  2118. << ArraySize->getSourceRange();
  2119. return QualType();
  2120. }
  2121. return Context.getExtVectorType(T, vectorSize);
  2122. }
  2123. return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
  2124. }
  2125. bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
  2126. if (T->isArrayType() || T->isFunctionType()) {
  2127. Diag(Loc, diag::err_func_returning_array_function)
  2128. << T->isFunctionType() << T;
  2129. return true;
  2130. }
  2131. // Functions cannot return half FP.
  2132. if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
  2133. Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
  2134. FixItHint::CreateInsertion(Loc, "*");
  2135. return true;
  2136. }
  2137. // Methods cannot return interface types. All ObjC objects are
  2138. // passed by reference.
  2139. if (T->isObjCObjectType()) {
  2140. Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
  2141. << 0 << T << FixItHint::CreateInsertion(Loc, "*");
  2142. return true;
  2143. }
  2144. if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
  2145. T.hasNonTrivialToPrimitiveCopyCUnion())
  2146. checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
  2147. NTCUK_Destruct|NTCUK_Copy);
  2148. return false;
  2149. }
  2150. /// Check the extended parameter information. Most of the necessary
  2151. /// checking should occur when applying the parameter attribute; the
  2152. /// only other checks required are positional restrictions.
  2153. static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
  2154. const FunctionProtoType::ExtProtoInfo &EPI,
  2155. llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
  2156. assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
  2157. bool hasCheckedSwiftCall = false;
  2158. auto checkForSwiftCC = [&](unsigned paramIndex) {
  2159. // Only do this once.
  2160. if (hasCheckedSwiftCall) return;
  2161. hasCheckedSwiftCall = true;
  2162. if (EPI.ExtInfo.getCC() == CC_Swift) return;
  2163. S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
  2164. << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI());
  2165. };
  2166. for (size_t paramIndex = 0, numParams = paramTypes.size();
  2167. paramIndex != numParams; ++paramIndex) {
  2168. switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
  2169. // Nothing interesting to check for orindary-ABI parameters.
  2170. case ParameterABI::Ordinary:
  2171. continue;
  2172. // swift_indirect_result parameters must be a prefix of the function
  2173. // arguments.
  2174. case ParameterABI::SwiftIndirectResult:
  2175. checkForSwiftCC(paramIndex);
  2176. if (paramIndex != 0 &&
  2177. EPI.ExtParameterInfos[paramIndex - 1].getABI()
  2178. != ParameterABI::SwiftIndirectResult) {
  2179. S.Diag(getParamLoc(paramIndex),
  2180. diag::err_swift_indirect_result_not_first);
  2181. }
  2182. continue;
  2183. case ParameterABI::SwiftContext:
  2184. checkForSwiftCC(paramIndex);
  2185. continue;
  2186. // swift_error parameters must be preceded by a swift_context parameter.
  2187. case ParameterABI::SwiftErrorResult:
  2188. checkForSwiftCC(paramIndex);
  2189. if (paramIndex == 0 ||
  2190. EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
  2191. ParameterABI::SwiftContext) {
  2192. S.Diag(getParamLoc(paramIndex),
  2193. diag::err_swift_error_result_not_after_swift_context);
  2194. }
  2195. continue;
  2196. }
  2197. llvm_unreachable("bad ABI kind");
  2198. }
  2199. }
  2200. QualType Sema::BuildFunctionType(QualType T,
  2201. MutableArrayRef<QualType> ParamTypes,
  2202. SourceLocation Loc, DeclarationName Entity,
  2203. const FunctionProtoType::ExtProtoInfo &EPI) {
  2204. bool Invalid = false;
  2205. Invalid |= CheckFunctionReturnType(T, Loc);
  2206. for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
  2207. // FIXME: Loc is too inprecise here, should use proper locations for args.
  2208. QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
  2209. if (ParamType->isVoidType()) {
  2210. Diag(Loc, diag::err_param_with_void_type);
  2211. Invalid = true;
  2212. } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
  2213. // Disallow half FP arguments.
  2214. Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
  2215. FixItHint::CreateInsertion(Loc, "*");
  2216. Invalid = true;
  2217. }
  2218. ParamTypes[Idx] = ParamType;
  2219. }
  2220. if (EPI.ExtParameterInfos) {
  2221. checkExtParameterInfos(*this, ParamTypes, EPI,
  2222. [=](unsigned i) { return Loc; });
  2223. }
  2224. if (EPI.ExtInfo.getProducesResult()) {
  2225. // This is just a warning, so we can't fail to build if we see it.
  2226. checkNSReturnsRetainedReturnType(Loc, T);
  2227. }
  2228. if (Invalid)
  2229. return QualType();
  2230. return Context.getFunctionType(T, ParamTypes, EPI);
  2231. }
  2232. /// Build a member pointer type \c T Class::*.
  2233. ///
  2234. /// \param T the type to which the member pointer refers.
  2235. /// \param Class the class type into which the member pointer points.
  2236. /// \param Loc the location where this type begins
  2237. /// \param Entity the name of the entity that will have this member pointer type
  2238. ///
  2239. /// \returns a member pointer type, if successful, or a NULL type if there was
  2240. /// an error.
  2241. QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
  2242. SourceLocation Loc,
  2243. DeclarationName Entity) {
  2244. // Verify that we're not building a pointer to pointer to function with
  2245. // exception specification.
  2246. if (CheckDistantExceptionSpec(T)) {
  2247. Diag(Loc, diag::err_distant_exception_spec);
  2248. return QualType();
  2249. }
  2250. // C++ 8.3.3p3: A pointer to member shall not point to ... a member
  2251. // with reference type, or "cv void."
  2252. if (T->isReferenceType()) {
  2253. Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
  2254. << getPrintableNameForEntity(Entity) << T;
  2255. return QualType();
  2256. }
  2257. if (T->isVoidType()) {
  2258. Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
  2259. << getPrintableNameForEntity(Entity);
  2260. return QualType();
  2261. }
  2262. if (!Class->isDependentType() && !Class->isRecordType()) {
  2263. Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
  2264. return QualType();
  2265. }
  2266. // Adjust the default free function calling convention to the default method
  2267. // calling convention.
  2268. bool IsCtorOrDtor =
  2269. (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
  2270. (Entity.getNameKind() == DeclarationName::CXXDestructorName);
  2271. if (T->isFunctionType())
  2272. adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
  2273. return Context.getMemberPointerType(T, Class.getTypePtr());
  2274. }
  2275. /// Build a block pointer type.
  2276. ///
  2277. /// \param T The type to which we'll be building a block pointer.
  2278. ///
  2279. /// \param Loc The source location, used for diagnostics.
  2280. ///
  2281. /// \param Entity The name of the entity that involves the block pointer
  2282. /// type, if known.
  2283. ///
  2284. /// \returns A suitable block pointer type, if there are no
  2285. /// errors. Otherwise, returns a NULL type.
  2286. QualType Sema::BuildBlockPointerType(QualType T,
  2287. SourceLocation Loc,
  2288. DeclarationName Entity) {
  2289. if (!T->isFunctionType()) {
  2290. Diag(Loc, diag::err_nonfunction_block_type);
  2291. return QualType();
  2292. }
  2293. if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
  2294. return QualType();
  2295. return Context.getBlockPointerType(T);
  2296. }
  2297. QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
  2298. QualType QT = Ty.get();
  2299. if (QT.isNull()) {
  2300. if (TInfo) *TInfo = nullptr;
  2301. return QualType();
  2302. }
  2303. TypeSourceInfo *DI = nullptr;
  2304. if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
  2305. QT = LIT->getType();
  2306. DI = LIT->getTypeSourceInfo();
  2307. }
  2308. if (TInfo) *TInfo = DI;
  2309. return QT;
  2310. }
  2311. static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
  2312. Qualifiers::ObjCLifetime ownership,
  2313. unsigned chunkIndex);
  2314. /// Given that this is the declaration of a parameter under ARC,
  2315. /// attempt to infer attributes and such for pointer-to-whatever
  2316. /// types.
  2317. static void inferARCWriteback(TypeProcessingState &state,
  2318. QualType &declSpecType) {
  2319. Sema &S = state.getSema();
  2320. Declarator &declarator = state.getDeclarator();
  2321. // TODO: should we care about decl qualifiers?
  2322. // Check whether the declarator has the expected form. We walk
  2323. // from the inside out in order to make the block logic work.
  2324. unsigned outermostPointerIndex = 0;
  2325. bool isBlockPointer = false;
  2326. unsigned numPointers = 0;
  2327. for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
  2328. unsigned chunkIndex = i;
  2329. DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
  2330. switch (chunk.Kind) {
  2331. case DeclaratorChunk::Paren:
  2332. // Ignore parens.
  2333. break;
  2334. case DeclaratorChunk::Reference:
  2335. case DeclaratorChunk::Pointer:
  2336. // Count the number of pointers. Treat references
  2337. // interchangeably as pointers; if they're mis-ordered, normal
  2338. // type building will discover that.
  2339. outermostPointerIndex = chunkIndex;
  2340. numPointers++;
  2341. break;
  2342. case DeclaratorChunk::BlockPointer:
  2343. // If we have a pointer to block pointer, that's an acceptable
  2344. // indirect reference; anything else is not an application of
  2345. // the rules.
  2346. if (numPointers != 1) return;
  2347. numPointers++;
  2348. outermostPointerIndex = chunkIndex;
  2349. isBlockPointer = true;
  2350. // We don't care about pointer structure in return values here.
  2351. goto done;
  2352. case DeclaratorChunk::Array: // suppress if written (id[])?
  2353. case DeclaratorChunk::Function:
  2354. case DeclaratorChunk::MemberPointer:
  2355. case DeclaratorChunk::Pipe:
  2356. return;
  2357. }
  2358. }
  2359. done:
  2360. // If we have *one* pointer, then we want to throw the qualifier on
  2361. // the declaration-specifiers, which means that it needs to be a
  2362. // retainable object type.
  2363. if (numPointers == 1) {
  2364. // If it's not a retainable object type, the rule doesn't apply.
  2365. if (!declSpecType->isObjCRetainableType()) return;
  2366. // If it already has lifetime, don't do anything.
  2367. if (declSpecType.getObjCLifetime()) return;
  2368. // Otherwise, modify the type in-place.
  2369. Qualifiers qs;
  2370. if (declSpecType->isObjCARCImplicitlyUnretainedType())
  2371. qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
  2372. else
  2373. qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
  2374. declSpecType = S.Context.getQualifiedType(declSpecType, qs);
  2375. // If we have *two* pointers, then we want to throw the qualifier on
  2376. // the outermost pointer.
  2377. } else if (numPointers == 2) {
  2378. // If we don't have a block pointer, we need to check whether the
  2379. // declaration-specifiers gave us something that will turn into a
  2380. // retainable object pointer after we slap the first pointer on it.
  2381. if (!isBlockPointer && !declSpecType->isObjCObjectType())
  2382. return;
  2383. // Look for an explicit lifetime attribute there.
  2384. DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
  2385. if (chunk.Kind != DeclaratorChunk::Pointer &&
  2386. chunk.Kind != DeclaratorChunk::BlockPointer)
  2387. return;
  2388. for (const ParsedAttr &AL : chunk.getAttrs())
  2389. if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
  2390. return;
  2391. transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
  2392. outermostPointerIndex);
  2393. // Any other number of pointers/references does not trigger the rule.
  2394. } else return;
  2395. // TODO: mark whether we did this inference?
  2396. }
  2397. void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
  2398. SourceLocation FallbackLoc,
  2399. SourceLocation ConstQualLoc,
  2400. SourceLocation VolatileQualLoc,
  2401. SourceLocation RestrictQualLoc,
  2402. SourceLocation AtomicQualLoc,
  2403. SourceLocation UnalignedQualLoc) {
  2404. if (!Quals)
  2405. return;
  2406. struct Qual {
  2407. const char *Name;
  2408. unsigned Mask;
  2409. SourceLocation Loc;
  2410. } const QualKinds[5] = {
  2411. { "const", DeclSpec::TQ_const, ConstQualLoc },
  2412. { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
  2413. { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
  2414. { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
  2415. { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
  2416. };
  2417. SmallString<32> QualStr;
  2418. unsigned NumQuals = 0;
  2419. SourceLocation Loc;
  2420. FixItHint FixIts[5];
  2421. // Build a string naming the redundant qualifiers.
  2422. for (auto &E : QualKinds) {
  2423. if (Quals & E.Mask) {
  2424. if (!QualStr.empty()) QualStr += ' ';
  2425. QualStr += E.Name;
  2426. // If we have a location for the qualifier, offer a fixit.
  2427. SourceLocation QualLoc = E.Loc;
  2428. if (QualLoc.isValid()) {
  2429. FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
  2430. if (Loc.isInvalid() ||
  2431. getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
  2432. Loc = QualLoc;
  2433. }
  2434. ++NumQuals;
  2435. }
  2436. }
  2437. Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
  2438. << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
  2439. }
  2440. // Diagnose pointless type qualifiers on the return type of a function.
  2441. static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
  2442. Declarator &D,
  2443. unsigned FunctionChunkIndex) {
  2444. if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
  2445. // FIXME: TypeSourceInfo doesn't preserve location information for
  2446. // qualifiers.
  2447. S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
  2448. RetTy.getLocalCVRQualifiers(),
  2449. D.getIdentifierLoc());
  2450. return;
  2451. }
  2452. for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
  2453. End = D.getNumTypeObjects();
  2454. OuterChunkIndex != End; ++OuterChunkIndex) {
  2455. DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
  2456. switch (OuterChunk.Kind) {
  2457. case DeclaratorChunk::Paren:
  2458. continue;
  2459. case DeclaratorChunk::Pointer: {
  2460. DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
  2461. S.diagnoseIgnoredQualifiers(
  2462. diag::warn_qual_return_type,
  2463. PTI.TypeQuals,
  2464. SourceLocation(),
  2465. SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
  2466. SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
  2467. SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
  2468. SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc),
  2469. SourceLocation::getFromRawEncoding(PTI.UnalignedQualLoc));
  2470. return;
  2471. }
  2472. case DeclaratorChunk::Function:
  2473. case DeclaratorChunk::BlockPointer:
  2474. case DeclaratorChunk::Reference:
  2475. case DeclaratorChunk::Array:
  2476. case DeclaratorChunk::MemberPointer:
  2477. case DeclaratorChunk::Pipe:
  2478. // FIXME: We can't currently provide an accurate source location and a
  2479. // fix-it hint for these.
  2480. unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
  2481. S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
  2482. RetTy.getCVRQualifiers() | AtomicQual,
  2483. D.getIdentifierLoc());
  2484. return;
  2485. }
  2486. llvm_unreachable("unknown declarator chunk kind");
  2487. }
  2488. // If the qualifiers come from a conversion function type, don't diagnose
  2489. // them -- they're not necessarily redundant, since such a conversion
  2490. // operator can be explicitly called as "x.operator const int()".
  2491. if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
  2492. return;
  2493. // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
  2494. // which are present there.
  2495. S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
  2496. D.getDeclSpec().getTypeQualifiers(),
  2497. D.getIdentifierLoc(),
  2498. D.getDeclSpec().getConstSpecLoc(),
  2499. D.getDeclSpec().getVolatileSpecLoc(),
  2500. D.getDeclSpec().getRestrictSpecLoc(),
  2501. D.getDeclSpec().getAtomicSpecLoc(),
  2502. D.getDeclSpec().getUnalignedSpecLoc());
  2503. }
  2504. static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
  2505. TypeSourceInfo *&ReturnTypeInfo) {
  2506. Sema &SemaRef = state.getSema();
  2507. Declarator &D = state.getDeclarator();
  2508. QualType T;
  2509. ReturnTypeInfo = nullptr;
  2510. // The TagDecl owned by the DeclSpec.
  2511. TagDecl *OwnedTagDecl = nullptr;
  2512. switch (D.getName().getKind()) {
  2513. case UnqualifiedIdKind::IK_ImplicitSelfParam:
  2514. case UnqualifiedIdKind::IK_OperatorFunctionId:
  2515. case UnqualifiedIdKind::IK_Identifier:
  2516. case UnqualifiedIdKind::IK_LiteralOperatorId:
  2517. case UnqualifiedIdKind::IK_TemplateId:
  2518. T = ConvertDeclSpecToType(state);
  2519. if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
  2520. OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
  2521. // Owned declaration is embedded in declarator.
  2522. OwnedTagDecl->setEmbeddedInDeclarator(true);
  2523. }
  2524. break;
  2525. case UnqualifiedIdKind::IK_ConstructorName:
  2526. case UnqualifiedIdKind::IK_ConstructorTemplateId:
  2527. case UnqualifiedIdKind::IK_DestructorName:
  2528. // Constructors and destructors don't have return types. Use
  2529. // "void" instead.
  2530. T = SemaRef.Context.VoidTy;
  2531. processTypeAttrs(state, T, TAL_DeclSpec,
  2532. D.getMutableDeclSpec().getAttributes());
  2533. break;
  2534. case UnqualifiedIdKind::IK_DeductionGuideName:
  2535. // Deduction guides have a trailing return type and no type in their
  2536. // decl-specifier sequence. Use a placeholder return type for now.
  2537. T = SemaRef.Context.DependentTy;
  2538. break;
  2539. case UnqualifiedIdKind::IK_ConversionFunctionId:
  2540. // The result type of a conversion function is the type that it
  2541. // converts to.
  2542. T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
  2543. &ReturnTypeInfo);
  2544. break;
  2545. }
  2546. if (!D.getAttributes().empty())
  2547. distributeTypeAttrsFromDeclarator(state, T);
  2548. // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
  2549. if (DeducedType *Deduced = T->getContainedDeducedType()) {
  2550. AutoType *Auto = dyn_cast<AutoType>(Deduced);
  2551. int Error = -1;
  2552. // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
  2553. // class template argument deduction)?
  2554. bool IsCXXAutoType =
  2555. (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
  2556. bool IsDeducedReturnType = false;
  2557. switch (D.getContext()) {
  2558. case DeclaratorContext::LambdaExprContext:
  2559. // Declared return type of a lambda-declarator is implicit and is always
  2560. // 'auto'.
  2561. break;
  2562. case DeclaratorContext::ObjCParameterContext:
  2563. case DeclaratorContext::ObjCResultContext:
  2564. case DeclaratorContext::PrototypeContext:
  2565. Error = 0;
  2566. break;
  2567. case DeclaratorContext::LambdaExprParameterContext:
  2568. // In C++14, generic lambdas allow 'auto' in their parameters.
  2569. if (!SemaRef.getLangOpts().CPlusPlus14 ||
  2570. !Auto || Auto->getKeyword() != AutoTypeKeyword::Auto)
  2571. Error = 16;
  2572. else {
  2573. // If auto is mentioned in a lambda parameter context, convert it to a
  2574. // template parameter type.
  2575. sema::LambdaScopeInfo *LSI = SemaRef.getCurLambda();
  2576. assert(LSI && "No LambdaScopeInfo on the stack!");
  2577. const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
  2578. const unsigned AutoParameterPosition = LSI->TemplateParams.size();
  2579. const bool IsParameterPack = D.hasEllipsis();
  2580. // Create the TemplateTypeParmDecl here to retrieve the corresponding
  2581. // template parameter type. Template parameters are temporarily added
  2582. // to the TU until the associated TemplateDecl is created.
  2583. TemplateTypeParmDecl *CorrespondingTemplateParam =
  2584. TemplateTypeParmDecl::Create(
  2585. SemaRef.Context, SemaRef.Context.getTranslationUnitDecl(),
  2586. /*KeyLoc*/ SourceLocation(), /*NameLoc*/ D.getBeginLoc(),
  2587. TemplateParameterDepth, AutoParameterPosition,
  2588. /*Identifier*/ nullptr, false, IsParameterPack);
  2589. CorrespondingTemplateParam->setImplicit();
  2590. LSI->TemplateParams.push_back(CorrespondingTemplateParam);
  2591. // Replace the 'auto' in the function parameter with this invented
  2592. // template type parameter.
  2593. // FIXME: Retain some type sugar to indicate that this was written
  2594. // as 'auto'.
  2595. T = state.ReplaceAutoType(
  2596. T, QualType(CorrespondingTemplateParam->getTypeForDecl(), 0));
  2597. }
  2598. break;
  2599. case DeclaratorContext::MemberContext: {
  2600. if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
  2601. D.isFunctionDeclarator())
  2602. break;
  2603. bool Cxx = SemaRef.getLangOpts().CPlusPlus;
  2604. switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
  2605. case TTK_Enum: llvm_unreachable("unhandled tag kind");
  2606. case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
  2607. case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
  2608. case TTK_Class: Error = 5; /* Class member */ break;
  2609. case TTK_Interface: Error = 6; /* Interface member */ break;
  2610. }
  2611. if (D.getDeclSpec().isFriendSpecified())
  2612. Error = 20; // Friend type
  2613. break;
  2614. }
  2615. case DeclaratorContext::CXXCatchContext:
  2616. case DeclaratorContext::ObjCCatchContext:
  2617. Error = 7; // Exception declaration
  2618. break;
  2619. case DeclaratorContext::TemplateParamContext:
  2620. if (isa<DeducedTemplateSpecializationType>(Deduced))
  2621. Error = 19; // Template parameter
  2622. else if (!SemaRef.getLangOpts().CPlusPlus17)
  2623. Error = 8; // Template parameter (until C++17)
  2624. break;
  2625. case DeclaratorContext::BlockLiteralContext:
  2626. Error = 9; // Block literal
  2627. break;
  2628. case DeclaratorContext::TemplateArgContext:
  2629. // Within a template argument list, a deduced template specialization
  2630. // type will be reinterpreted as a template template argument.
  2631. if (isa<DeducedTemplateSpecializationType>(Deduced) &&
  2632. !D.getNumTypeObjects() &&
  2633. D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
  2634. break;
  2635. LLVM_FALLTHROUGH;
  2636. case DeclaratorContext::TemplateTypeArgContext:
  2637. Error = 10; // Template type argument
  2638. break;
  2639. case DeclaratorContext::AliasDeclContext:
  2640. case DeclaratorContext::AliasTemplateContext:
  2641. Error = 12; // Type alias
  2642. break;
  2643. case DeclaratorContext::TrailingReturnContext:
  2644. case DeclaratorContext::TrailingReturnVarContext:
  2645. if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
  2646. Error = 13; // Function return type
  2647. IsDeducedReturnType = true;
  2648. break;
  2649. case DeclaratorContext::ConversionIdContext:
  2650. if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
  2651. Error = 14; // conversion-type-id
  2652. IsDeducedReturnType = true;
  2653. break;
  2654. case DeclaratorContext::FunctionalCastContext:
  2655. if (isa<DeducedTemplateSpecializationType>(Deduced))
  2656. break;
  2657. LLVM_FALLTHROUGH;
  2658. case DeclaratorContext::TypeNameContext:
  2659. Error = 15; // Generic
  2660. break;
  2661. case DeclaratorContext::FileContext:
  2662. case DeclaratorContext::BlockContext:
  2663. case DeclaratorContext::ForContext:
  2664. case DeclaratorContext::InitStmtContext:
  2665. case DeclaratorContext::ConditionContext:
  2666. // FIXME: P0091R3 (erroneously) does not permit class template argument
  2667. // deduction in conditions, for-init-statements, and other declarations
  2668. // that are not simple-declarations.
  2669. break;
  2670. case DeclaratorContext::CXXNewContext:
  2671. // FIXME: P0091R3 does not permit class template argument deduction here,
  2672. // but we follow GCC and allow it anyway.
  2673. if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
  2674. Error = 17; // 'new' type
  2675. break;
  2676. case DeclaratorContext::KNRTypeListContext:
  2677. Error = 18; // K&R function parameter
  2678. break;
  2679. }
  2680. if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
  2681. Error = 11;
  2682. // In Objective-C it is an error to use 'auto' on a function declarator
  2683. // (and everywhere for '__auto_type').
  2684. if (D.isFunctionDeclarator() &&
  2685. (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
  2686. Error = 13;
  2687. bool HaveTrailing = false;
  2688. // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
  2689. // contains a trailing return type. That is only legal at the outermost
  2690. // level. Check all declarator chunks (outermost first) anyway, to give
  2691. // better diagnostics.
  2692. // We don't support '__auto_type' with trailing return types.
  2693. // FIXME: Should we only do this for 'auto' and not 'decltype(auto)'?
  2694. if (SemaRef.getLangOpts().CPlusPlus11 && IsCXXAutoType &&
  2695. D.hasTrailingReturnType()) {
  2696. HaveTrailing = true;
  2697. Error = -1;
  2698. }
  2699. SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
  2700. if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
  2701. AutoRange = D.getName().getSourceRange();
  2702. if (Error != -1) {
  2703. unsigned Kind;
  2704. if (Auto) {
  2705. switch (Auto->getKeyword()) {
  2706. case AutoTypeKeyword::Auto: Kind = 0; break;
  2707. case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
  2708. case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
  2709. }
  2710. } else {
  2711. assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
  2712. "unknown auto type");
  2713. Kind = 3;
  2714. }
  2715. auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
  2716. TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
  2717. SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
  2718. << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
  2719. << QualType(Deduced, 0) << AutoRange;
  2720. if (auto *TD = TN.getAsTemplateDecl())
  2721. SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
  2722. T = SemaRef.Context.IntTy;
  2723. D.setInvalidType(true);
  2724. } else if (!HaveTrailing &&
  2725. D.getContext() != DeclaratorContext::LambdaExprContext) {
  2726. // If there was a trailing return type, we already got
  2727. // warn_cxx98_compat_trailing_return_type in the parser.
  2728. SemaRef.Diag(AutoRange.getBegin(),
  2729. D.getContext() ==
  2730. DeclaratorContext::LambdaExprParameterContext
  2731. ? diag::warn_cxx11_compat_generic_lambda
  2732. : IsDeducedReturnType
  2733. ? diag::warn_cxx11_compat_deduced_return_type
  2734. : diag::warn_cxx98_compat_auto_type_specifier)
  2735. << AutoRange;
  2736. }
  2737. }
  2738. if (SemaRef.getLangOpts().CPlusPlus &&
  2739. OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
  2740. // Check the contexts where C++ forbids the declaration of a new class
  2741. // or enumeration in a type-specifier-seq.
  2742. unsigned DiagID = 0;
  2743. switch (D.getContext()) {
  2744. case DeclaratorContext::TrailingReturnContext:
  2745. case DeclaratorContext::TrailingReturnVarContext:
  2746. // Class and enumeration definitions are syntactically not allowed in
  2747. // trailing return types.
  2748. llvm_unreachable("parser should not have allowed this");
  2749. break;
  2750. case DeclaratorContext::FileContext:
  2751. case DeclaratorContext::MemberContext:
  2752. case DeclaratorContext::BlockContext:
  2753. case DeclaratorContext::ForContext:
  2754. case DeclaratorContext::InitStmtContext:
  2755. case DeclaratorContext::BlockLiteralContext:
  2756. case DeclaratorContext::LambdaExprContext:
  2757. // C++11 [dcl.type]p3:
  2758. // A type-specifier-seq shall not define a class or enumeration unless
  2759. // it appears in the type-id of an alias-declaration (7.1.3) that is not
  2760. // the declaration of a template-declaration.
  2761. case DeclaratorContext::AliasDeclContext:
  2762. break;
  2763. case DeclaratorContext::AliasTemplateContext:
  2764. DiagID = diag::err_type_defined_in_alias_template;
  2765. break;
  2766. case DeclaratorContext::TypeNameContext:
  2767. case DeclaratorContext::FunctionalCastContext:
  2768. case DeclaratorContext::ConversionIdContext:
  2769. case DeclaratorContext::TemplateParamContext:
  2770. case DeclaratorContext::CXXNewContext:
  2771. case DeclaratorContext::CXXCatchContext:
  2772. case DeclaratorContext::ObjCCatchContext:
  2773. case DeclaratorContext::TemplateArgContext:
  2774. case DeclaratorContext::TemplateTypeArgContext:
  2775. DiagID = diag::err_type_defined_in_type_specifier;
  2776. break;
  2777. case DeclaratorContext::PrototypeContext:
  2778. case DeclaratorContext::LambdaExprParameterContext:
  2779. case DeclaratorContext::ObjCParameterContext:
  2780. case DeclaratorContext::ObjCResultContext:
  2781. case DeclaratorContext::KNRTypeListContext:
  2782. // C++ [dcl.fct]p6:
  2783. // Types shall not be defined in return or parameter types.
  2784. DiagID = diag::err_type_defined_in_param_type;
  2785. break;
  2786. case DeclaratorContext::ConditionContext:
  2787. // C++ 6.4p2:
  2788. // The type-specifier-seq shall not contain typedef and shall not declare
  2789. // a new class or enumeration.
  2790. DiagID = diag::err_type_defined_in_condition;
  2791. break;
  2792. }
  2793. if (DiagID != 0) {
  2794. SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
  2795. << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
  2796. D.setInvalidType(true);
  2797. }
  2798. }
  2799. assert(!T.isNull() && "This function should not return a null type");
  2800. return T;
  2801. }
  2802. /// Produce an appropriate diagnostic for an ambiguity between a function
  2803. /// declarator and a C++ direct-initializer.
  2804. static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
  2805. DeclaratorChunk &DeclType, QualType RT) {
  2806. const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
  2807. assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
  2808. // If the return type is void there is no ambiguity.
  2809. if (RT->isVoidType())
  2810. return;
  2811. // An initializer for a non-class type can have at most one argument.
  2812. if (!RT->isRecordType() && FTI.NumParams > 1)
  2813. return;
  2814. // An initializer for a reference must have exactly one argument.
  2815. if (RT->isReferenceType() && FTI.NumParams != 1)
  2816. return;
  2817. // Only warn if this declarator is declaring a function at block scope, and
  2818. // doesn't have a storage class (such as 'extern') specified.
  2819. if (!D.isFunctionDeclarator() ||
  2820. D.getFunctionDefinitionKind() != FDK_Declaration ||
  2821. !S.CurContext->isFunctionOrMethod() ||
  2822. D.getDeclSpec().getStorageClassSpec()
  2823. != DeclSpec::SCS_unspecified)
  2824. return;
  2825. // Inside a condition, a direct initializer is not permitted. We allow one to
  2826. // be parsed in order to give better diagnostics in condition parsing.
  2827. if (D.getContext() == DeclaratorContext::ConditionContext)
  2828. return;
  2829. SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
  2830. S.Diag(DeclType.Loc,
  2831. FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
  2832. : diag::warn_empty_parens_are_function_decl)
  2833. << ParenRange;
  2834. // If the declaration looks like:
  2835. // T var1,
  2836. // f();
  2837. // and name lookup finds a function named 'f', then the ',' was
  2838. // probably intended to be a ';'.
  2839. if (!D.isFirstDeclarator() && D.getIdentifier()) {
  2840. FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
  2841. FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
  2842. if (Comma.getFileID() != Name.getFileID() ||
  2843. Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
  2844. LookupResult Result(S, D.getIdentifier(), SourceLocation(),
  2845. Sema::LookupOrdinaryName);
  2846. if (S.LookupName(Result, S.getCurScope()))
  2847. S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
  2848. << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
  2849. << D.getIdentifier();
  2850. Result.suppressDiagnostics();
  2851. }
  2852. }
  2853. if (FTI.NumParams > 0) {
  2854. // For a declaration with parameters, eg. "T var(T());", suggest adding
  2855. // parens around the first parameter to turn the declaration into a
  2856. // variable declaration.
  2857. SourceRange Range = FTI.Params[0].Param->getSourceRange();
  2858. SourceLocation B = Range.getBegin();
  2859. SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
  2860. // FIXME: Maybe we should suggest adding braces instead of parens
  2861. // in C++11 for classes that don't have an initializer_list constructor.
  2862. S.Diag(B, diag::note_additional_parens_for_variable_declaration)
  2863. << FixItHint::CreateInsertion(B, "(")
  2864. << FixItHint::CreateInsertion(E, ")");
  2865. } else {
  2866. // For a declaration without parameters, eg. "T var();", suggest replacing
  2867. // the parens with an initializer to turn the declaration into a variable
  2868. // declaration.
  2869. const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
  2870. // Empty parens mean value-initialization, and no parens mean
  2871. // default initialization. These are equivalent if the default
  2872. // constructor is user-provided or if zero-initialization is a
  2873. // no-op.
  2874. if (RD && RD->hasDefinition() &&
  2875. (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
  2876. S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
  2877. << FixItHint::CreateRemoval(ParenRange);
  2878. else {
  2879. std::string Init =
  2880. S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
  2881. if (Init.empty() && S.LangOpts.CPlusPlus11)
  2882. Init = "{}";
  2883. if (!Init.empty())
  2884. S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
  2885. << FixItHint::CreateReplacement(ParenRange, Init);
  2886. }
  2887. }
  2888. }
  2889. /// Produce an appropriate diagnostic for a declarator with top-level
  2890. /// parentheses.
  2891. static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
  2892. DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
  2893. assert(Paren.Kind == DeclaratorChunk::Paren &&
  2894. "do not have redundant top-level parentheses");
  2895. // This is a syntactic check; we're not interested in cases that arise
  2896. // during template instantiation.
  2897. if (S.inTemplateInstantiation())
  2898. return;
  2899. // Check whether this could be intended to be a construction of a temporary
  2900. // object in C++ via a function-style cast.
  2901. bool CouldBeTemporaryObject =
  2902. S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
  2903. !D.isInvalidType() && D.getIdentifier() &&
  2904. D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
  2905. (T->isRecordType() || T->isDependentType()) &&
  2906. D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
  2907. bool StartsWithDeclaratorId = true;
  2908. for (auto &C : D.type_objects()) {
  2909. switch (C.Kind) {
  2910. case DeclaratorChunk::Paren:
  2911. if (&C == &Paren)
  2912. continue;
  2913. LLVM_FALLTHROUGH;
  2914. case DeclaratorChunk::Pointer:
  2915. StartsWithDeclaratorId = false;
  2916. continue;
  2917. case DeclaratorChunk::Array:
  2918. if (!C.Arr.NumElts)
  2919. CouldBeTemporaryObject = false;
  2920. continue;
  2921. case DeclaratorChunk::Reference:
  2922. // FIXME: Suppress the warning here if there is no initializer; we're
  2923. // going to give an error anyway.
  2924. // We assume that something like 'T (&x) = y;' is highly likely to not
  2925. // be intended to be a temporary object.
  2926. CouldBeTemporaryObject = false;
  2927. StartsWithDeclaratorId = false;
  2928. continue;
  2929. case DeclaratorChunk::Function:
  2930. // In a new-type-id, function chunks require parentheses.
  2931. if (D.getContext() == DeclaratorContext::CXXNewContext)
  2932. return;
  2933. // FIXME: "A(f())" deserves a vexing-parse warning, not just a
  2934. // redundant-parens warning, but we don't know whether the function
  2935. // chunk was syntactically valid as an expression here.
  2936. CouldBeTemporaryObject = false;
  2937. continue;
  2938. case DeclaratorChunk::BlockPointer:
  2939. case DeclaratorChunk::MemberPointer:
  2940. case DeclaratorChunk::Pipe:
  2941. // These cannot appear in expressions.
  2942. CouldBeTemporaryObject = false;
  2943. StartsWithDeclaratorId = false;
  2944. continue;
  2945. }
  2946. }
  2947. // FIXME: If there is an initializer, assume that this is not intended to be
  2948. // a construction of a temporary object.
  2949. // Check whether the name has already been declared; if not, this is not a
  2950. // function-style cast.
  2951. if (CouldBeTemporaryObject) {
  2952. LookupResult Result(S, D.getIdentifier(), SourceLocation(),
  2953. Sema::LookupOrdinaryName);
  2954. if (!S.LookupName(Result, S.getCurScope()))
  2955. CouldBeTemporaryObject = false;
  2956. Result.suppressDiagnostics();
  2957. }
  2958. SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
  2959. if (!CouldBeTemporaryObject) {
  2960. // If we have A (::B), the parentheses affect the meaning of the program.
  2961. // Suppress the warning in that case. Don't bother looking at the DeclSpec
  2962. // here: even (e.g.) "int ::x" is visually ambiguous even though it's
  2963. // formally unambiguous.
  2964. if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
  2965. for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
  2966. NNS = NNS->getPrefix()) {
  2967. if (NNS->getKind() == NestedNameSpecifier::Global)
  2968. return;
  2969. }
  2970. }
  2971. S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
  2972. << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
  2973. << FixItHint::CreateRemoval(Paren.EndLoc);
  2974. return;
  2975. }
  2976. S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
  2977. << ParenRange << D.getIdentifier();
  2978. auto *RD = T->getAsCXXRecordDecl();
  2979. if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
  2980. S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
  2981. << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
  2982. << D.getIdentifier();
  2983. // FIXME: A cast to void is probably a better suggestion in cases where it's
  2984. // valid (when there is no initializer and we're not in a condition).
  2985. S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
  2986. << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
  2987. << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
  2988. S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
  2989. << FixItHint::CreateRemoval(Paren.Loc)
  2990. << FixItHint::CreateRemoval(Paren.EndLoc);
  2991. }
  2992. /// Helper for figuring out the default CC for a function declarator type. If
  2993. /// this is the outermost chunk, then we can determine the CC from the
  2994. /// declarator context. If not, then this could be either a member function
  2995. /// type or normal function type.
  2996. static CallingConv getCCForDeclaratorChunk(
  2997. Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
  2998. const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
  2999. assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
  3000. // Check for an explicit CC attribute.
  3001. for (const ParsedAttr &AL : AttrList) {
  3002. switch (AL.getKind()) {
  3003. CALLING_CONV_ATTRS_CASELIST : {
  3004. // Ignore attributes that don't validate or can't apply to the
  3005. // function type. We'll diagnose the failure to apply them in
  3006. // handleFunctionTypeAttr.
  3007. CallingConv CC;
  3008. if (!S.CheckCallingConvAttr(AL, CC) &&
  3009. (!FTI.isVariadic || supportsVariadicCall(CC))) {
  3010. return CC;
  3011. }
  3012. break;
  3013. }
  3014. default:
  3015. break;
  3016. }
  3017. }
  3018. bool IsCXXInstanceMethod = false;
  3019. if (S.getLangOpts().CPlusPlus) {
  3020. // Look inwards through parentheses to see if this chunk will form a
  3021. // member pointer type or if we're the declarator. Any type attributes
  3022. // between here and there will override the CC we choose here.
  3023. unsigned I = ChunkIndex;
  3024. bool FoundNonParen = false;
  3025. while (I && !FoundNonParen) {
  3026. --I;
  3027. if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
  3028. FoundNonParen = true;
  3029. }
  3030. if (FoundNonParen) {
  3031. // If we're not the declarator, we're a regular function type unless we're
  3032. // in a member pointer.
  3033. IsCXXInstanceMethod =
  3034. D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
  3035. } else if (D.getContext() == DeclaratorContext::LambdaExprContext) {
  3036. // This can only be a call operator for a lambda, which is an instance
  3037. // method.
  3038. IsCXXInstanceMethod = true;
  3039. } else {
  3040. // We're the innermost decl chunk, so must be a function declarator.
  3041. assert(D.isFunctionDeclarator());
  3042. // If we're inside a record, we're declaring a method, but it could be
  3043. // explicitly or implicitly static.
  3044. IsCXXInstanceMethod =
  3045. D.isFirstDeclarationOfMember() &&
  3046. D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
  3047. !D.isStaticMember();
  3048. }
  3049. }
  3050. CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
  3051. IsCXXInstanceMethod);
  3052. // Attribute AT_OpenCLKernel affects the calling convention for SPIR
  3053. // and AMDGPU targets, hence it cannot be treated as a calling
  3054. // convention attribute. This is the simplest place to infer
  3055. // calling convention for OpenCL kernels.
  3056. if (S.getLangOpts().OpenCL) {
  3057. for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
  3058. if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
  3059. CC = CC_OpenCLKernel;
  3060. break;
  3061. }
  3062. }
  3063. }
  3064. return CC;
  3065. }
  3066. namespace {
  3067. /// A simple notion of pointer kinds, which matches up with the various
  3068. /// pointer declarators.
  3069. enum class SimplePointerKind {
  3070. Pointer,
  3071. BlockPointer,
  3072. MemberPointer,
  3073. Array,
  3074. };
  3075. } // end anonymous namespace
  3076. IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
  3077. switch (nullability) {
  3078. case NullabilityKind::NonNull:
  3079. if (!Ident__Nonnull)
  3080. Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
  3081. return Ident__Nonnull;
  3082. case NullabilityKind::Nullable:
  3083. if (!Ident__Nullable)
  3084. Ident__Nullable = PP.getIdentifierInfo("_Nullable");
  3085. return Ident__Nullable;
  3086. case NullabilityKind::Unspecified:
  3087. if (!Ident__Null_unspecified)
  3088. Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
  3089. return Ident__Null_unspecified;
  3090. }
  3091. llvm_unreachable("Unknown nullability kind.");
  3092. }
  3093. /// Retrieve the identifier "NSError".
  3094. IdentifierInfo *Sema::getNSErrorIdent() {
  3095. if (!Ident_NSError)
  3096. Ident_NSError = PP.getIdentifierInfo("NSError");
  3097. return Ident_NSError;
  3098. }
  3099. /// Check whether there is a nullability attribute of any kind in the given
  3100. /// attribute list.
  3101. static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
  3102. for (const ParsedAttr &AL : attrs) {
  3103. if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
  3104. AL.getKind() == ParsedAttr::AT_TypeNullable ||
  3105. AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
  3106. return true;
  3107. }
  3108. return false;
  3109. }
  3110. namespace {
  3111. /// Describes the kind of a pointer a declarator describes.
  3112. enum class PointerDeclaratorKind {
  3113. // Not a pointer.
  3114. NonPointer,
  3115. // Single-level pointer.
  3116. SingleLevelPointer,
  3117. // Multi-level pointer (of any pointer kind).
  3118. MultiLevelPointer,
  3119. // CFFooRef*
  3120. MaybePointerToCFRef,
  3121. // CFErrorRef*
  3122. CFErrorRefPointer,
  3123. // NSError**
  3124. NSErrorPointerPointer,
  3125. };
  3126. /// Describes a declarator chunk wrapping a pointer that marks inference as
  3127. /// unexpected.
  3128. // These values must be kept in sync with diagnostics.
  3129. enum class PointerWrappingDeclaratorKind {
  3130. /// Pointer is top-level.
  3131. None = -1,
  3132. /// Pointer is an array element.
  3133. Array = 0,
  3134. /// Pointer is the referent type of a C++ reference.
  3135. Reference = 1
  3136. };
  3137. } // end anonymous namespace
  3138. /// Classify the given declarator, whose type-specified is \c type, based on
  3139. /// what kind of pointer it refers to.
  3140. ///
  3141. /// This is used to determine the default nullability.
  3142. static PointerDeclaratorKind
  3143. classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
  3144. PointerWrappingDeclaratorKind &wrappingKind) {
  3145. unsigned numNormalPointers = 0;
  3146. // For any dependent type, we consider it a non-pointer.
  3147. if (type->isDependentType())
  3148. return PointerDeclaratorKind::NonPointer;
  3149. // Look through the declarator chunks to identify pointers.
  3150. for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
  3151. DeclaratorChunk &chunk = declarator.getTypeObject(i);
  3152. switch (chunk.Kind) {
  3153. case DeclaratorChunk::Array:
  3154. if (numNormalPointers == 0)
  3155. wrappingKind = PointerWrappingDeclaratorKind::Array;
  3156. break;
  3157. case DeclaratorChunk::Function:
  3158. case DeclaratorChunk::Pipe:
  3159. break;
  3160. case DeclaratorChunk::BlockPointer:
  3161. case DeclaratorChunk::MemberPointer:
  3162. return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
  3163. : PointerDeclaratorKind::SingleLevelPointer;
  3164. case DeclaratorChunk::Paren:
  3165. break;
  3166. case DeclaratorChunk::Reference:
  3167. if (numNormalPointers == 0)
  3168. wrappingKind = PointerWrappingDeclaratorKind::Reference;
  3169. break;
  3170. case DeclaratorChunk::Pointer:
  3171. ++numNormalPointers;
  3172. if (numNormalPointers > 2)
  3173. return PointerDeclaratorKind::MultiLevelPointer;
  3174. break;
  3175. }
  3176. }
  3177. // Then, dig into the type specifier itself.
  3178. unsigned numTypeSpecifierPointers = 0;
  3179. do {
  3180. // Decompose normal pointers.
  3181. if (auto ptrType = type->getAs<PointerType>()) {
  3182. ++numNormalPointers;
  3183. if (numNormalPointers > 2)
  3184. return PointerDeclaratorKind::MultiLevelPointer;
  3185. type = ptrType->getPointeeType();
  3186. ++numTypeSpecifierPointers;
  3187. continue;
  3188. }
  3189. // Decompose block pointers.
  3190. if (type->getAs<BlockPointerType>()) {
  3191. return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
  3192. : PointerDeclaratorKind::SingleLevelPointer;
  3193. }
  3194. // Decompose member pointers.
  3195. if (type->getAs<MemberPointerType>()) {
  3196. return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
  3197. : PointerDeclaratorKind::SingleLevelPointer;
  3198. }
  3199. // Look at Objective-C object pointers.
  3200. if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
  3201. ++numNormalPointers;
  3202. ++numTypeSpecifierPointers;
  3203. // If this is NSError**, report that.
  3204. if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
  3205. if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
  3206. numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
  3207. return PointerDeclaratorKind::NSErrorPointerPointer;
  3208. }
  3209. }
  3210. break;
  3211. }
  3212. // Look at Objective-C class types.
  3213. if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
  3214. if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
  3215. if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
  3216. return PointerDeclaratorKind::NSErrorPointerPointer;
  3217. }
  3218. break;
  3219. }
  3220. // If at this point we haven't seen a pointer, we won't see one.
  3221. if (numNormalPointers == 0)
  3222. return PointerDeclaratorKind::NonPointer;
  3223. if (auto recordType = type->getAs<RecordType>()) {
  3224. RecordDecl *recordDecl = recordType->getDecl();
  3225. bool isCFError = false;
  3226. if (S.CFError) {
  3227. // If we already know about CFError, test it directly.
  3228. isCFError = (S.CFError == recordDecl);
  3229. } else {
  3230. // Check whether this is CFError, which we identify based on its bridge
  3231. // to NSError. CFErrorRef used to be declared with "objc_bridge" but is
  3232. // now declared with "objc_bridge_mutable", so look for either one of
  3233. // the two attributes.
  3234. if (recordDecl->getTagKind() == TTK_Struct && numNormalPointers > 0) {
  3235. IdentifierInfo *bridgedType = nullptr;
  3236. if (auto bridgeAttr = recordDecl->getAttr<ObjCBridgeAttr>())
  3237. bridgedType = bridgeAttr->getBridgedType();
  3238. else if (auto bridgeAttr =
  3239. recordDecl->getAttr<ObjCBridgeMutableAttr>())
  3240. bridgedType = bridgeAttr->getBridgedType();
  3241. if (bridgedType == S.getNSErrorIdent()) {
  3242. S.CFError = recordDecl;
  3243. isCFError = true;
  3244. }
  3245. }
  3246. }
  3247. // If this is CFErrorRef*, report it as such.
  3248. if (isCFError && numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
  3249. return PointerDeclaratorKind::CFErrorRefPointer;
  3250. }
  3251. break;
  3252. }
  3253. break;
  3254. } while (true);
  3255. switch (numNormalPointers) {
  3256. case 0:
  3257. return PointerDeclaratorKind::NonPointer;
  3258. case 1:
  3259. return PointerDeclaratorKind::SingleLevelPointer;
  3260. case 2:
  3261. return PointerDeclaratorKind::MaybePointerToCFRef;
  3262. default:
  3263. return PointerDeclaratorKind::MultiLevelPointer;
  3264. }
  3265. }
  3266. static FileID getNullabilityCompletenessCheckFileID(Sema &S,
  3267. SourceLocation loc) {
  3268. // If we're anywhere in a function, method, or closure context, don't perform
  3269. // completeness checks.
  3270. for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
  3271. if (ctx->isFunctionOrMethod())
  3272. return FileID();
  3273. if (ctx->isFileContext())
  3274. break;
  3275. }
  3276. // We only care about the expansion location.
  3277. loc = S.SourceMgr.getExpansionLoc(loc);
  3278. FileID file = S.SourceMgr.getFileID(loc);
  3279. if (file.isInvalid())
  3280. return FileID();
  3281. // Retrieve file information.
  3282. bool invalid = false;
  3283. const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
  3284. if (invalid || !sloc.isFile())
  3285. return FileID();
  3286. // We don't want to perform completeness checks on the main file or in
  3287. // system headers.
  3288. const SrcMgr::FileInfo &fileInfo = sloc.getFile();
  3289. if (fileInfo.getIncludeLoc().isInvalid())
  3290. return FileID();
  3291. if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
  3292. S.Diags.getSuppressSystemWarnings()) {
  3293. return FileID();
  3294. }
  3295. return file;
  3296. }
  3297. /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
  3298. /// taking into account whitespace before and after.
  3299. static void fixItNullability(Sema &S, DiagnosticBuilder &Diag,
  3300. SourceLocation PointerLoc,
  3301. NullabilityKind Nullability) {
  3302. assert(PointerLoc.isValid());
  3303. if (PointerLoc.isMacroID())
  3304. return;
  3305. SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
  3306. if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
  3307. return;
  3308. const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
  3309. if (!NextChar)
  3310. return;
  3311. SmallString<32> InsertionTextBuf{" "};
  3312. InsertionTextBuf += getNullabilitySpelling(Nullability);
  3313. InsertionTextBuf += " ";
  3314. StringRef InsertionText = InsertionTextBuf.str();
  3315. if (isWhitespace(*NextChar)) {
  3316. InsertionText = InsertionText.drop_back();
  3317. } else if (NextChar[-1] == '[') {
  3318. if (NextChar[0] == ']')
  3319. InsertionText = InsertionText.drop_back().drop_front();
  3320. else
  3321. InsertionText = InsertionText.drop_front();
  3322. } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
  3323. !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
  3324. InsertionText = InsertionText.drop_back().drop_front();
  3325. }
  3326. Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
  3327. }
  3328. static void emitNullabilityConsistencyWarning(Sema &S,
  3329. SimplePointerKind PointerKind,
  3330. SourceLocation PointerLoc,
  3331. SourceLocation PointerEndLoc) {
  3332. assert(PointerLoc.isValid());
  3333. if (PointerKind == SimplePointerKind::Array) {
  3334. S.Diag(PointerLoc, diag::warn_nullability_missing_array);
  3335. } else {
  3336. S.Diag(PointerLoc, diag::warn_nullability_missing)
  3337. << static_cast<unsigned>(PointerKind);
  3338. }
  3339. auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
  3340. if (FixItLoc.isMacroID())
  3341. return;
  3342. auto addFixIt = [&](NullabilityKind Nullability) {
  3343. auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
  3344. Diag << static_cast<unsigned>(Nullability);
  3345. Diag << static_cast<unsigned>(PointerKind);
  3346. fixItNullability(S, Diag, FixItLoc, Nullability);
  3347. };
  3348. addFixIt(NullabilityKind::Nullable);
  3349. addFixIt(NullabilityKind::NonNull);
  3350. }
  3351. /// Complains about missing nullability if the file containing \p pointerLoc
  3352. /// has other uses of nullability (either the keywords or the \c assume_nonnull
  3353. /// pragma).
  3354. ///
  3355. /// If the file has \e not seen other uses of nullability, this particular
  3356. /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
  3357. static void
  3358. checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
  3359. SourceLocation pointerLoc,
  3360. SourceLocation pointerEndLoc = SourceLocation()) {
  3361. // Determine which file we're performing consistency checking for.
  3362. FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
  3363. if (file.isInvalid())
  3364. return;
  3365. // If we haven't seen any type nullability in this file, we won't warn now
  3366. // about anything.
  3367. FileNullability &fileNullability = S.NullabilityMap[file];
  3368. if (!fileNullability.SawTypeNullability) {
  3369. // If this is the first pointer declarator in the file, and the appropriate
  3370. // warning is on, record it in case we need to diagnose it retroactively.
  3371. diag::kind diagKind;
  3372. if (pointerKind == SimplePointerKind::Array)
  3373. diagKind = diag::warn_nullability_missing_array;
  3374. else
  3375. diagKind = diag::warn_nullability_missing;
  3376. if (fileNullability.PointerLoc.isInvalid() &&
  3377. !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
  3378. fileNullability.PointerLoc = pointerLoc;
  3379. fileNullability.PointerEndLoc = pointerEndLoc;
  3380. fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
  3381. }
  3382. return;
  3383. }
  3384. // Complain about missing nullability.
  3385. emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
  3386. }
  3387. /// Marks that a nullability feature has been used in the file containing
  3388. /// \p loc.
  3389. ///
  3390. /// If this file already had pointer types in it that were missing nullability,
  3391. /// the first such instance is retroactively diagnosed.
  3392. ///
  3393. /// \sa checkNullabilityConsistency
  3394. static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
  3395. FileID file = getNullabilityCompletenessCheckFileID(S, loc);
  3396. if (file.isInvalid())
  3397. return;
  3398. FileNullability &fileNullability = S.NullabilityMap[file];
  3399. if (fileNullability.SawTypeNullability)
  3400. return;
  3401. fileNullability.SawTypeNullability = true;
  3402. // If we haven't seen any type nullability before, now we have. Retroactively
  3403. // diagnose the first unannotated pointer, if there was one.
  3404. if (fileNullability.PointerLoc.isInvalid())
  3405. return;
  3406. auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
  3407. emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
  3408. fileNullability.PointerEndLoc);
  3409. }
  3410. /// Returns true if any of the declarator chunks before \p endIndex include a
  3411. /// level of indirection: array, pointer, reference, or pointer-to-member.
  3412. ///
  3413. /// Because declarator chunks are stored in outer-to-inner order, testing
  3414. /// every chunk before \p endIndex is testing all chunks that embed the current
  3415. /// chunk as part of their type.
  3416. ///
  3417. /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
  3418. /// end index, in which case all chunks are tested.
  3419. static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
  3420. unsigned i = endIndex;
  3421. while (i != 0) {
  3422. // Walk outwards along the declarator chunks.
  3423. --i;
  3424. const DeclaratorChunk &DC = D.getTypeObject(i);
  3425. switch (DC.Kind) {
  3426. case DeclaratorChunk::Paren:
  3427. break;
  3428. case DeclaratorChunk::Array:
  3429. case DeclaratorChunk::Pointer:
  3430. case DeclaratorChunk::Reference:
  3431. case DeclaratorChunk::MemberPointer:
  3432. return true;
  3433. case DeclaratorChunk::Function:
  3434. case DeclaratorChunk::BlockPointer:
  3435. case DeclaratorChunk::Pipe:
  3436. // These are invalid anyway, so just ignore.
  3437. break;
  3438. }
  3439. }
  3440. return false;
  3441. }
  3442. static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
  3443. return (Chunk.Kind == DeclaratorChunk::Pointer ||
  3444. Chunk.Kind == DeclaratorChunk::Array);
  3445. }
  3446. template<typename AttrT>
  3447. static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
  3448. AL.setUsedAsTypeAttr();
  3449. return ::new (Ctx) AttrT(Ctx, AL);
  3450. }
  3451. static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
  3452. NullabilityKind NK) {
  3453. switch (NK) {
  3454. case NullabilityKind::NonNull:
  3455. return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
  3456. case NullabilityKind::Nullable:
  3457. return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
  3458. case NullabilityKind::Unspecified:
  3459. return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
  3460. }
  3461. llvm_unreachable("unknown NullabilityKind");
  3462. }
  3463. // Diagnose whether this is a case with the multiple addr spaces.
  3464. // Returns true if this is an invalid case.
  3465. // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
  3466. // by qualifiers for two or more different address spaces."
  3467. static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
  3468. LangAS ASNew,
  3469. SourceLocation AttrLoc) {
  3470. if (ASOld != LangAS::Default) {
  3471. if (ASOld != ASNew) {
  3472. S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
  3473. return true;
  3474. }
  3475. // Emit a warning if they are identical; it's likely unintended.
  3476. S.Diag(AttrLoc,
  3477. diag::warn_attribute_address_multiple_identical_qualifiers);
  3478. }
  3479. return false;
  3480. }
  3481. static TypeSourceInfo *
  3482. GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
  3483. QualType T, TypeSourceInfo *ReturnTypeInfo);
  3484. static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
  3485. QualType declSpecType,
  3486. TypeSourceInfo *TInfo) {
  3487. // The TypeSourceInfo that this function returns will not be a null type.
  3488. // If there is an error, this function will fill in a dummy type as fallback.
  3489. QualType T = declSpecType;
  3490. Declarator &D = state.getDeclarator();
  3491. Sema &S = state.getSema();
  3492. ASTContext &Context = S.Context;
  3493. const LangOptions &LangOpts = S.getLangOpts();
  3494. // The name we're declaring, if any.
  3495. DeclarationName Name;
  3496. if (D.getIdentifier())
  3497. Name = D.getIdentifier();
  3498. // Does this declaration declare a typedef-name?
  3499. bool IsTypedefName =
  3500. D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
  3501. D.getContext() == DeclaratorContext::AliasDeclContext ||
  3502. D.getContext() == DeclaratorContext::AliasTemplateContext;
  3503. // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
  3504. bool IsQualifiedFunction = T->isFunctionProtoType() &&
  3505. (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
  3506. T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
  3507. // If T is 'decltype(auto)', the only declarators we can have are parens
  3508. // and at most one function declarator if this is a function declaration.
  3509. // If T is a deduced class template specialization type, we can have no
  3510. // declarator chunks at all.
  3511. if (auto *DT = T->getAs<DeducedType>()) {
  3512. const AutoType *AT = T->getAs<AutoType>();
  3513. bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
  3514. if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
  3515. for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
  3516. unsigned Index = E - I - 1;
  3517. DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
  3518. unsigned DiagId = IsClassTemplateDeduction
  3519. ? diag::err_deduced_class_template_compound_type
  3520. : diag::err_decltype_auto_compound_type;
  3521. unsigned DiagKind = 0;
  3522. switch (DeclChunk.Kind) {
  3523. case DeclaratorChunk::Paren:
  3524. // FIXME: Rejecting this is a little silly.
  3525. if (IsClassTemplateDeduction) {
  3526. DiagKind = 4;
  3527. break;
  3528. }
  3529. continue;
  3530. case DeclaratorChunk::Function: {
  3531. if (IsClassTemplateDeduction) {
  3532. DiagKind = 3;
  3533. break;
  3534. }
  3535. unsigned FnIndex;
  3536. if (D.isFunctionDeclarationContext() &&
  3537. D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
  3538. continue;
  3539. DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
  3540. break;
  3541. }
  3542. case DeclaratorChunk::Pointer:
  3543. case DeclaratorChunk::BlockPointer:
  3544. case DeclaratorChunk::MemberPointer:
  3545. DiagKind = 0;
  3546. break;
  3547. case DeclaratorChunk::Reference:
  3548. DiagKind = 1;
  3549. break;
  3550. case DeclaratorChunk::Array:
  3551. DiagKind = 2;
  3552. break;
  3553. case DeclaratorChunk::Pipe:
  3554. break;
  3555. }
  3556. S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
  3557. D.setInvalidType(true);
  3558. break;
  3559. }
  3560. }
  3561. }
  3562. // Determine whether we should infer _Nonnull on pointer types.
  3563. Optional<NullabilityKind> inferNullability;
  3564. bool inferNullabilityCS = false;
  3565. bool inferNullabilityInnerOnly = false;
  3566. bool inferNullabilityInnerOnlyComplete = false;
  3567. // Are we in an assume-nonnull region?
  3568. bool inAssumeNonNullRegion = false;
  3569. SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
  3570. if (assumeNonNullLoc.isValid()) {
  3571. inAssumeNonNullRegion = true;
  3572. recordNullabilitySeen(S, assumeNonNullLoc);
  3573. }
  3574. // Whether to complain about missing nullability specifiers or not.
  3575. enum {
  3576. /// Never complain.
  3577. CAMN_No,
  3578. /// Complain on the inner pointers (but not the outermost
  3579. /// pointer).
  3580. CAMN_InnerPointers,
  3581. /// Complain about any pointers that don't have nullability
  3582. /// specified or inferred.
  3583. CAMN_Yes
  3584. } complainAboutMissingNullability = CAMN_No;
  3585. unsigned NumPointersRemaining = 0;
  3586. auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
  3587. if (IsTypedefName) {
  3588. // For typedefs, we do not infer any nullability (the default),
  3589. // and we only complain about missing nullability specifiers on
  3590. // inner pointers.
  3591. complainAboutMissingNullability = CAMN_InnerPointers;
  3592. if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
  3593. !T->getNullability(S.Context)) {
  3594. // Note that we allow but don't require nullability on dependent types.
  3595. ++NumPointersRemaining;
  3596. }
  3597. for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
  3598. DeclaratorChunk &chunk = D.getTypeObject(i);
  3599. switch (chunk.Kind) {
  3600. case DeclaratorChunk::Array:
  3601. case DeclaratorChunk::Function:
  3602. case DeclaratorChunk::Pipe:
  3603. break;
  3604. case DeclaratorChunk::BlockPointer:
  3605. case DeclaratorChunk::MemberPointer:
  3606. ++NumPointersRemaining;
  3607. break;
  3608. case DeclaratorChunk::Paren:
  3609. case DeclaratorChunk::Reference:
  3610. continue;
  3611. case DeclaratorChunk::Pointer:
  3612. ++NumPointersRemaining;
  3613. continue;
  3614. }
  3615. }
  3616. } else {
  3617. bool isFunctionOrMethod = false;
  3618. switch (auto context = state.getDeclarator().getContext()) {
  3619. case DeclaratorContext::ObjCParameterContext:
  3620. case DeclaratorContext::ObjCResultContext:
  3621. case DeclaratorContext::PrototypeContext:
  3622. case DeclaratorContext::TrailingReturnContext:
  3623. case DeclaratorContext::TrailingReturnVarContext:
  3624. isFunctionOrMethod = true;
  3625. LLVM_FALLTHROUGH;
  3626. case DeclaratorContext::MemberContext:
  3627. if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
  3628. complainAboutMissingNullability = CAMN_No;
  3629. break;
  3630. }
  3631. // Weak properties are inferred to be nullable.
  3632. if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
  3633. inferNullability = NullabilityKind::Nullable;
  3634. break;
  3635. }
  3636. LLVM_FALLTHROUGH;
  3637. case DeclaratorContext::FileContext:
  3638. case DeclaratorContext::KNRTypeListContext: {
  3639. complainAboutMissingNullability = CAMN_Yes;
  3640. // Nullability inference depends on the type and declarator.
  3641. auto wrappingKind = PointerWrappingDeclaratorKind::None;
  3642. switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
  3643. case PointerDeclaratorKind::NonPointer:
  3644. case PointerDeclaratorKind::MultiLevelPointer:
  3645. // Cannot infer nullability.
  3646. break;
  3647. case PointerDeclaratorKind::SingleLevelPointer:
  3648. // Infer _Nonnull if we are in an assumes-nonnull region.
  3649. if (inAssumeNonNullRegion) {
  3650. complainAboutInferringWithinChunk = wrappingKind;
  3651. inferNullability = NullabilityKind::NonNull;
  3652. inferNullabilityCS =
  3653. (context == DeclaratorContext::ObjCParameterContext ||
  3654. context == DeclaratorContext::ObjCResultContext);
  3655. }
  3656. break;
  3657. case PointerDeclaratorKind::CFErrorRefPointer:
  3658. case PointerDeclaratorKind::NSErrorPointerPointer:
  3659. // Within a function or method signature, infer _Nullable at both
  3660. // levels.
  3661. if (isFunctionOrMethod && inAssumeNonNullRegion)
  3662. inferNullability = NullabilityKind::Nullable;
  3663. break;
  3664. case PointerDeclaratorKind::MaybePointerToCFRef:
  3665. if (isFunctionOrMethod) {
  3666. // On pointer-to-pointer parameters marked cf_returns_retained or
  3667. // cf_returns_not_retained, if the outer pointer is explicit then
  3668. // infer the inner pointer as _Nullable.
  3669. auto hasCFReturnsAttr =
  3670. [](const ParsedAttributesView &AttrList) -> bool {
  3671. return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
  3672. AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
  3673. };
  3674. if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
  3675. if (hasCFReturnsAttr(D.getAttributes()) ||
  3676. hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
  3677. hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
  3678. inferNullability = NullabilityKind::Nullable;
  3679. inferNullabilityInnerOnly = true;
  3680. }
  3681. }
  3682. }
  3683. break;
  3684. }
  3685. break;
  3686. }
  3687. case DeclaratorContext::ConversionIdContext:
  3688. complainAboutMissingNullability = CAMN_Yes;
  3689. break;
  3690. case DeclaratorContext::AliasDeclContext:
  3691. case DeclaratorContext::AliasTemplateContext:
  3692. case DeclaratorContext::BlockContext:
  3693. case DeclaratorContext::BlockLiteralContext:
  3694. case DeclaratorContext::ConditionContext:
  3695. case DeclaratorContext::CXXCatchContext:
  3696. case DeclaratorContext::CXXNewContext:
  3697. case DeclaratorContext::ForContext:
  3698. case DeclaratorContext::InitStmtContext:
  3699. case DeclaratorContext::LambdaExprContext:
  3700. case DeclaratorContext::LambdaExprParameterContext:
  3701. case DeclaratorContext::ObjCCatchContext:
  3702. case DeclaratorContext::TemplateParamContext:
  3703. case DeclaratorContext::TemplateArgContext:
  3704. case DeclaratorContext::TemplateTypeArgContext:
  3705. case DeclaratorContext::TypeNameContext:
  3706. case DeclaratorContext::FunctionalCastContext:
  3707. // Don't infer in these contexts.
  3708. break;
  3709. }
  3710. }
  3711. // Local function that returns true if its argument looks like a va_list.
  3712. auto isVaList = [&S](QualType T) -> bool {
  3713. auto *typedefTy = T->getAs<TypedefType>();
  3714. if (!typedefTy)
  3715. return false;
  3716. TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
  3717. do {
  3718. if (typedefTy->getDecl() == vaListTypedef)
  3719. return true;
  3720. if (auto *name = typedefTy->getDecl()->getIdentifier())
  3721. if (name->isStr("va_list"))
  3722. return true;
  3723. typedefTy = typedefTy->desugar()->getAs<TypedefType>();
  3724. } while (typedefTy);
  3725. return false;
  3726. };
  3727. // Local function that checks the nullability for a given pointer declarator.
  3728. // Returns true if _Nonnull was inferred.
  3729. auto inferPointerNullability =
  3730. [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
  3731. SourceLocation pointerEndLoc,
  3732. ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
  3733. // We've seen a pointer.
  3734. if (NumPointersRemaining > 0)
  3735. --NumPointersRemaining;
  3736. // If a nullability attribute is present, there's nothing to do.
  3737. if (hasNullabilityAttr(attrs))
  3738. return nullptr;
  3739. // If we're supposed to infer nullability, do so now.
  3740. if (inferNullability && !inferNullabilityInnerOnlyComplete) {
  3741. ParsedAttr::Syntax syntax = inferNullabilityCS
  3742. ? ParsedAttr::AS_ContextSensitiveKeyword
  3743. : ParsedAttr::AS_Keyword;
  3744. ParsedAttr *nullabilityAttr = Pool.create(
  3745. S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
  3746. nullptr, SourceLocation(), nullptr, 0, syntax);
  3747. attrs.addAtEnd(nullabilityAttr);
  3748. if (inferNullabilityCS) {
  3749. state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
  3750. ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
  3751. }
  3752. if (pointerLoc.isValid() &&
  3753. complainAboutInferringWithinChunk !=
  3754. PointerWrappingDeclaratorKind::None) {
  3755. auto Diag =
  3756. S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
  3757. Diag << static_cast<int>(complainAboutInferringWithinChunk);
  3758. fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
  3759. }
  3760. if (inferNullabilityInnerOnly)
  3761. inferNullabilityInnerOnlyComplete = true;
  3762. return nullabilityAttr;
  3763. }
  3764. // If we're supposed to complain about missing nullability, do so
  3765. // now if it's truly missing.
  3766. switch (complainAboutMissingNullability) {
  3767. case CAMN_No:
  3768. break;
  3769. case CAMN_InnerPointers:
  3770. if (NumPointersRemaining == 0)
  3771. break;
  3772. LLVM_FALLTHROUGH;
  3773. case CAMN_Yes:
  3774. checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
  3775. }
  3776. return nullptr;
  3777. };
  3778. // If the type itself could have nullability but does not, infer pointer
  3779. // nullability and perform consistency checking.
  3780. if (S.CodeSynthesisContexts.empty()) {
  3781. if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
  3782. !T->getNullability(S.Context)) {
  3783. if (isVaList(T)) {
  3784. // Record that we've seen a pointer, but do nothing else.
  3785. if (NumPointersRemaining > 0)
  3786. --NumPointersRemaining;
  3787. } else {
  3788. SimplePointerKind pointerKind = SimplePointerKind::Pointer;
  3789. if (T->isBlockPointerType())
  3790. pointerKind = SimplePointerKind::BlockPointer;
  3791. else if (T->isMemberPointerType())
  3792. pointerKind = SimplePointerKind::MemberPointer;
  3793. if (auto *attr = inferPointerNullability(
  3794. pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
  3795. D.getDeclSpec().getEndLoc(),
  3796. D.getMutableDeclSpec().getAttributes(),
  3797. D.getMutableDeclSpec().getAttributePool())) {
  3798. T = state.getAttributedType(
  3799. createNullabilityAttr(Context, *attr, *inferNullability), T, T);
  3800. }
  3801. }
  3802. }
  3803. if (complainAboutMissingNullability == CAMN_Yes &&
  3804. T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
  3805. D.isPrototypeContext() &&
  3806. !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
  3807. checkNullabilityConsistency(S, SimplePointerKind::Array,
  3808. D.getDeclSpec().getTypeSpecTypeLoc());
  3809. }
  3810. }
  3811. bool ExpectNoDerefChunk =
  3812. state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
  3813. // Walk the DeclTypeInfo, building the recursive type as we go.
  3814. // DeclTypeInfos are ordered from the identifier out, which is
  3815. // opposite of what we want :).
  3816. for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
  3817. unsigned chunkIndex = e - i - 1;
  3818. state.setCurrentChunkIndex(chunkIndex);
  3819. DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
  3820. IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
  3821. switch (DeclType.Kind) {
  3822. case DeclaratorChunk::Paren:
  3823. if (i == 0)
  3824. warnAboutRedundantParens(S, D, T);
  3825. T = S.BuildParenType(T);
  3826. break;
  3827. case DeclaratorChunk::BlockPointer:
  3828. // If blocks are disabled, emit an error.
  3829. if (!LangOpts.Blocks)
  3830. S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
  3831. // Handle pointer nullability.
  3832. inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
  3833. DeclType.EndLoc, DeclType.getAttrs(),
  3834. state.getDeclarator().getAttributePool());
  3835. T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
  3836. if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
  3837. // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
  3838. // qualified with const.
  3839. if (LangOpts.OpenCL)
  3840. DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
  3841. T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
  3842. }
  3843. break;
  3844. case DeclaratorChunk::Pointer:
  3845. // Verify that we're not building a pointer to pointer to function with
  3846. // exception specification.
  3847. if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
  3848. S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
  3849. D.setInvalidType(true);
  3850. // Build the type anyway.
  3851. }
  3852. // Handle pointer nullability
  3853. inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
  3854. DeclType.EndLoc, DeclType.getAttrs(),
  3855. state.getDeclarator().getAttributePool());
  3856. if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
  3857. T = Context.getObjCObjectPointerType(T);
  3858. if (DeclType.Ptr.TypeQuals)
  3859. T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
  3860. break;
  3861. }
  3862. // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
  3863. // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
  3864. // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
  3865. if (LangOpts.OpenCL) {
  3866. if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
  3867. T->isBlockPointerType()) {
  3868. S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
  3869. D.setInvalidType(true);
  3870. }
  3871. }
  3872. T = S.BuildPointerType(T, DeclType.Loc, Name);
  3873. if (DeclType.Ptr.TypeQuals)
  3874. T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
  3875. break;
  3876. case DeclaratorChunk::Reference: {
  3877. // Verify that we're not building a reference to pointer to function with
  3878. // exception specification.
  3879. if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
  3880. S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
  3881. D.setInvalidType(true);
  3882. // Build the type anyway.
  3883. }
  3884. T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
  3885. if (DeclType.Ref.HasRestrict)
  3886. T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
  3887. break;
  3888. }
  3889. case DeclaratorChunk::Array: {
  3890. // Verify that we're not building an array of pointers to function with
  3891. // exception specification.
  3892. if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
  3893. S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
  3894. D.setInvalidType(true);
  3895. // Build the type anyway.
  3896. }
  3897. DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
  3898. Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
  3899. ArrayType::ArraySizeModifier ASM;
  3900. if (ATI.isStar)
  3901. ASM = ArrayType::Star;
  3902. else if (ATI.hasStatic)
  3903. ASM = ArrayType::Static;
  3904. else
  3905. ASM = ArrayType::Normal;
  3906. if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
  3907. // FIXME: This check isn't quite right: it allows star in prototypes
  3908. // for function definitions, and disallows some edge cases detailed
  3909. // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
  3910. S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
  3911. ASM = ArrayType::Normal;
  3912. D.setInvalidType(true);
  3913. }
  3914. // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
  3915. // shall appear only in a declaration of a function parameter with an
  3916. // array type, ...
  3917. if (ASM == ArrayType::Static || ATI.TypeQuals) {
  3918. if (!(D.isPrototypeContext() ||
  3919. D.getContext() == DeclaratorContext::KNRTypeListContext)) {
  3920. S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
  3921. (ASM == ArrayType::Static ? "'static'" : "type qualifier");
  3922. // Remove the 'static' and the type qualifiers.
  3923. if (ASM == ArrayType::Static)
  3924. ASM = ArrayType::Normal;
  3925. ATI.TypeQuals = 0;
  3926. D.setInvalidType(true);
  3927. }
  3928. // C99 6.7.5.2p1: ... and then only in the outermost array type
  3929. // derivation.
  3930. if (hasOuterPointerLikeChunk(D, chunkIndex)) {
  3931. S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
  3932. (ASM == ArrayType::Static ? "'static'" : "type qualifier");
  3933. if (ASM == ArrayType::Static)
  3934. ASM = ArrayType::Normal;
  3935. ATI.TypeQuals = 0;
  3936. D.setInvalidType(true);
  3937. }
  3938. }
  3939. const AutoType *AT = T->getContainedAutoType();
  3940. // Allow arrays of auto if we are a generic lambda parameter.
  3941. // i.e. [](auto (&array)[5]) { return array[0]; }; OK
  3942. if (AT &&
  3943. D.getContext() != DeclaratorContext::LambdaExprParameterContext) {
  3944. // We've already diagnosed this for decltype(auto).
  3945. if (!AT->isDecltypeAuto())
  3946. S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
  3947. << getPrintableNameForEntity(Name) << T;
  3948. T = QualType();
  3949. break;
  3950. }
  3951. // Array parameters can be marked nullable as well, although it's not
  3952. // necessary if they're marked 'static'.
  3953. if (complainAboutMissingNullability == CAMN_Yes &&
  3954. !hasNullabilityAttr(DeclType.getAttrs()) &&
  3955. ASM != ArrayType::Static &&
  3956. D.isPrototypeContext() &&
  3957. !hasOuterPointerLikeChunk(D, chunkIndex)) {
  3958. checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
  3959. }
  3960. T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
  3961. SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
  3962. break;
  3963. }
  3964. case DeclaratorChunk::Function: {
  3965. // If the function declarator has a prototype (i.e. it is not () and
  3966. // does not have a K&R-style identifier list), then the arguments are part
  3967. // of the type, otherwise the argument list is ().
  3968. DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
  3969. IsQualifiedFunction =
  3970. FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
  3971. // Check for auto functions and trailing return type and adjust the
  3972. // return type accordingly.
  3973. if (!D.isInvalidType()) {
  3974. // trailing-return-type is only required if we're declaring a function,
  3975. // and not, for instance, a pointer to a function.
  3976. if (D.getDeclSpec().hasAutoTypeSpec() &&
  3977. !FTI.hasTrailingReturnType() && chunkIndex == 0) {
  3978. if (!S.getLangOpts().CPlusPlus14) {
  3979. S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
  3980. D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
  3981. ? diag::err_auto_missing_trailing_return
  3982. : diag::err_deduced_return_type);
  3983. T = Context.IntTy;
  3984. D.setInvalidType(true);
  3985. } else {
  3986. S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
  3987. diag::warn_cxx11_compat_deduced_return_type);
  3988. }
  3989. } else if (FTI.hasTrailingReturnType()) {
  3990. // T must be exactly 'auto' at this point. See CWG issue 681.
  3991. if (isa<ParenType>(T)) {
  3992. S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
  3993. << T << D.getSourceRange();
  3994. D.setInvalidType(true);
  3995. } else if (D.getName().getKind() ==
  3996. UnqualifiedIdKind::IK_DeductionGuideName) {
  3997. if (T != Context.DependentTy) {
  3998. S.Diag(D.getDeclSpec().getBeginLoc(),
  3999. diag::err_deduction_guide_with_complex_decl)
  4000. << D.getSourceRange();
  4001. D.setInvalidType(true);
  4002. }
  4003. } else if (D.getContext() != DeclaratorContext::LambdaExprContext &&
  4004. (T.hasQualifiers() || !isa<AutoType>(T) ||
  4005. cast<AutoType>(T)->getKeyword() !=
  4006. AutoTypeKeyword::Auto)) {
  4007. S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
  4008. diag::err_trailing_return_without_auto)
  4009. << T << D.getDeclSpec().getSourceRange();
  4010. D.setInvalidType(true);
  4011. }
  4012. T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
  4013. if (T.isNull()) {
  4014. // An error occurred parsing the trailing return type.
  4015. T = Context.IntTy;
  4016. D.setInvalidType(true);
  4017. }
  4018. } else {
  4019. // This function type is not the type of the entity being declared,
  4020. // so checking the 'auto' is not the responsibility of this chunk.
  4021. }
  4022. }
  4023. // C99 6.7.5.3p1: The return type may not be a function or array type.
  4024. // For conversion functions, we'll diagnose this particular error later.
  4025. if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
  4026. (D.getName().getKind() !=
  4027. UnqualifiedIdKind::IK_ConversionFunctionId)) {
  4028. unsigned diagID = diag::err_func_returning_array_function;
  4029. // Last processing chunk in block context means this function chunk
  4030. // represents the block.
  4031. if (chunkIndex == 0 &&
  4032. D.getContext() == DeclaratorContext::BlockLiteralContext)
  4033. diagID = diag::err_block_returning_array_function;
  4034. S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
  4035. T = Context.IntTy;
  4036. D.setInvalidType(true);
  4037. }
  4038. // Do not allow returning half FP value.
  4039. // FIXME: This really should be in BuildFunctionType.
  4040. if (T->isHalfType()) {
  4041. if (S.getLangOpts().OpenCL) {
  4042. if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
  4043. S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
  4044. << T << 0 /*pointer hint*/;
  4045. D.setInvalidType(true);
  4046. }
  4047. } else if (!S.getLangOpts().HalfArgsAndReturns) {
  4048. S.Diag(D.getIdentifierLoc(),
  4049. diag::err_parameters_retval_cannot_have_fp16_type) << 1;
  4050. D.setInvalidType(true);
  4051. }
  4052. }
  4053. if (LangOpts.OpenCL) {
  4054. // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
  4055. // function.
  4056. if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
  4057. T->isPipeType()) {
  4058. S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
  4059. << T << 1 /*hint off*/;
  4060. D.setInvalidType(true);
  4061. }
  4062. // OpenCL doesn't support variadic functions and blocks
  4063. // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
  4064. // We also allow here any toolchain reserved identifiers.
  4065. if (FTI.isVariadic &&
  4066. !(D.getIdentifier() &&
  4067. ((D.getIdentifier()->getName() == "printf" &&
  4068. (LangOpts.OpenCLCPlusPlus || LangOpts.OpenCLVersion >= 120)) ||
  4069. D.getIdentifier()->getName().startswith("__")))) {
  4070. S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
  4071. D.setInvalidType(true);
  4072. }
  4073. }
  4074. // Methods cannot return interface types. All ObjC objects are
  4075. // passed by reference.
  4076. if (T->isObjCObjectType()) {
  4077. SourceLocation DiagLoc, FixitLoc;
  4078. if (TInfo) {
  4079. DiagLoc = TInfo->getTypeLoc().getBeginLoc();
  4080. FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
  4081. } else {
  4082. DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
  4083. FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
  4084. }
  4085. S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
  4086. << 0 << T
  4087. << FixItHint::CreateInsertion(FixitLoc, "*");
  4088. T = Context.getObjCObjectPointerType(T);
  4089. if (TInfo) {
  4090. TypeLocBuilder TLB;
  4091. TLB.pushFullCopy(TInfo->getTypeLoc());
  4092. ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
  4093. TLoc.setStarLoc(FixitLoc);
  4094. TInfo = TLB.getTypeSourceInfo(Context, T);
  4095. }
  4096. D.setInvalidType(true);
  4097. }
  4098. // cv-qualifiers on return types are pointless except when the type is a
  4099. // class type in C++.
  4100. if ((T.getCVRQualifiers() || T->isAtomicType()) &&
  4101. !(S.getLangOpts().CPlusPlus &&
  4102. (T->isDependentType() || T->isRecordType()))) {
  4103. if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
  4104. D.getFunctionDefinitionKind() == FDK_Definition) {
  4105. // [6.9.1/3] qualified void return is invalid on a C
  4106. // function definition. Apparently ok on declarations and
  4107. // in C++ though (!)
  4108. S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
  4109. } else
  4110. diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
  4111. }
  4112. // Objective-C ARC ownership qualifiers are ignored on the function
  4113. // return type (by type canonicalization). Complain if this attribute
  4114. // was written here.
  4115. if (T.getQualifiers().hasObjCLifetime()) {
  4116. SourceLocation AttrLoc;
  4117. if (chunkIndex + 1 < D.getNumTypeObjects()) {
  4118. DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
  4119. for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
  4120. if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
  4121. AttrLoc = AL.getLoc();
  4122. break;
  4123. }
  4124. }
  4125. }
  4126. if (AttrLoc.isInvalid()) {
  4127. for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
  4128. if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
  4129. AttrLoc = AL.getLoc();
  4130. break;
  4131. }
  4132. }
  4133. }
  4134. if (AttrLoc.isValid()) {
  4135. // The ownership attributes are almost always written via
  4136. // the predefined
  4137. // __strong/__weak/__autoreleasing/__unsafe_unretained.
  4138. if (AttrLoc.isMacroID())
  4139. AttrLoc =
  4140. S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
  4141. S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
  4142. << T.getQualifiers().getObjCLifetime();
  4143. }
  4144. }
  4145. if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
  4146. // C++ [dcl.fct]p6:
  4147. // Types shall not be defined in return or parameter types.
  4148. TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
  4149. S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
  4150. << Context.getTypeDeclType(Tag);
  4151. }
  4152. // Exception specs are not allowed in typedefs. Complain, but add it
  4153. // anyway.
  4154. if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
  4155. S.Diag(FTI.getExceptionSpecLocBeg(),
  4156. diag::err_exception_spec_in_typedef)
  4157. << (D.getContext() == DeclaratorContext::AliasDeclContext ||
  4158. D.getContext() == DeclaratorContext::AliasTemplateContext);
  4159. // If we see "T var();" or "T var(T());" at block scope, it is probably
  4160. // an attempt to initialize a variable, not a function declaration.
  4161. if (FTI.isAmbiguous)
  4162. warnAboutAmbiguousFunction(S, D, DeclType, T);
  4163. FunctionType::ExtInfo EI(
  4164. getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
  4165. if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
  4166. && !LangOpts.OpenCL) {
  4167. // Simple void foo(), where the incoming T is the result type.
  4168. T = Context.getFunctionNoProtoType(T, EI);
  4169. } else {
  4170. // We allow a zero-parameter variadic function in C if the
  4171. // function is marked with the "overloadable" attribute. Scan
  4172. // for this attribute now.
  4173. if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
  4174. if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable))
  4175. S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
  4176. if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
  4177. // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
  4178. // definition.
  4179. S.Diag(FTI.Params[0].IdentLoc,
  4180. diag::err_ident_list_in_fn_declaration);
  4181. D.setInvalidType(true);
  4182. // Recover by creating a K&R-style function type.
  4183. T = Context.getFunctionNoProtoType(T, EI);
  4184. break;
  4185. }
  4186. FunctionProtoType::ExtProtoInfo EPI;
  4187. EPI.ExtInfo = EI;
  4188. EPI.Variadic = FTI.isVariadic;
  4189. EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
  4190. EPI.TypeQuals.addCVRUQualifiers(
  4191. FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
  4192. : 0);
  4193. EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
  4194. : FTI.RefQualifierIsLValueRef? RQ_LValue
  4195. : RQ_RValue;
  4196. // Otherwise, we have a function with a parameter list that is
  4197. // potentially variadic.
  4198. SmallVector<QualType, 16> ParamTys;
  4199. ParamTys.reserve(FTI.NumParams);
  4200. SmallVector<FunctionProtoType::ExtParameterInfo, 16>
  4201. ExtParameterInfos(FTI.NumParams);
  4202. bool HasAnyInterestingExtParameterInfos = false;
  4203. for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
  4204. ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
  4205. QualType ParamTy = Param->getType();
  4206. assert(!ParamTy.isNull() && "Couldn't parse type?");
  4207. // Look for 'void'. void is allowed only as a single parameter to a
  4208. // function with no other parameters (C99 6.7.5.3p10). We record
  4209. // int(void) as a FunctionProtoType with an empty parameter list.
  4210. if (ParamTy->isVoidType()) {
  4211. // If this is something like 'float(int, void)', reject it. 'void'
  4212. // is an incomplete type (C99 6.2.5p19) and function decls cannot
  4213. // have parameters of incomplete type.
  4214. if (FTI.NumParams != 1 || FTI.isVariadic) {
  4215. S.Diag(DeclType.Loc, diag::err_void_only_param);
  4216. ParamTy = Context.IntTy;
  4217. Param->setType(ParamTy);
  4218. } else if (FTI.Params[i].Ident) {
  4219. // Reject, but continue to parse 'int(void abc)'.
  4220. S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
  4221. ParamTy = Context.IntTy;
  4222. Param->setType(ParamTy);
  4223. } else {
  4224. // Reject, but continue to parse 'float(const void)'.
  4225. if (ParamTy.hasQualifiers())
  4226. S.Diag(DeclType.Loc, diag::err_void_param_qualified);
  4227. // Do not add 'void' to the list.
  4228. break;
  4229. }
  4230. } else if (ParamTy->isHalfType()) {
  4231. // Disallow half FP parameters.
  4232. // FIXME: This really should be in BuildFunctionType.
  4233. if (S.getLangOpts().OpenCL) {
  4234. if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
  4235. S.Diag(Param->getLocation(),
  4236. diag::err_opencl_half_param) << ParamTy;
  4237. D.setInvalidType();
  4238. Param->setInvalidDecl();
  4239. }
  4240. } else if (!S.getLangOpts().HalfArgsAndReturns) {
  4241. S.Diag(Param->getLocation(),
  4242. diag::err_parameters_retval_cannot_have_fp16_type) << 0;
  4243. D.setInvalidType();
  4244. }
  4245. } else if (!FTI.hasPrototype) {
  4246. if (ParamTy->isPromotableIntegerType()) {
  4247. ParamTy = Context.getPromotedIntegerType(ParamTy);
  4248. Param->setKNRPromoted(true);
  4249. } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
  4250. if (BTy->getKind() == BuiltinType::Float) {
  4251. ParamTy = Context.DoubleTy;
  4252. Param->setKNRPromoted(true);
  4253. }
  4254. }
  4255. }
  4256. if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
  4257. ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
  4258. HasAnyInterestingExtParameterInfos = true;
  4259. }
  4260. if (auto attr = Param->getAttr<ParameterABIAttr>()) {
  4261. ExtParameterInfos[i] =
  4262. ExtParameterInfos[i].withABI(attr->getABI());
  4263. HasAnyInterestingExtParameterInfos = true;
  4264. }
  4265. if (Param->hasAttr<PassObjectSizeAttr>()) {
  4266. ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
  4267. HasAnyInterestingExtParameterInfos = true;
  4268. }
  4269. if (Param->hasAttr<NoEscapeAttr>()) {
  4270. ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
  4271. HasAnyInterestingExtParameterInfos = true;
  4272. }
  4273. ParamTys.push_back(ParamTy);
  4274. }
  4275. if (HasAnyInterestingExtParameterInfos) {
  4276. EPI.ExtParameterInfos = ExtParameterInfos.data();
  4277. checkExtParameterInfos(S, ParamTys, EPI,
  4278. [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
  4279. }
  4280. SmallVector<QualType, 4> Exceptions;
  4281. SmallVector<ParsedType, 2> DynamicExceptions;
  4282. SmallVector<SourceRange, 2> DynamicExceptionRanges;
  4283. Expr *NoexceptExpr = nullptr;
  4284. if (FTI.getExceptionSpecType() == EST_Dynamic) {
  4285. // FIXME: It's rather inefficient to have to split into two vectors
  4286. // here.
  4287. unsigned N = FTI.getNumExceptions();
  4288. DynamicExceptions.reserve(N);
  4289. DynamicExceptionRanges.reserve(N);
  4290. for (unsigned I = 0; I != N; ++I) {
  4291. DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
  4292. DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
  4293. }
  4294. } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
  4295. NoexceptExpr = FTI.NoexceptExpr;
  4296. }
  4297. S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
  4298. FTI.getExceptionSpecType(),
  4299. DynamicExceptions,
  4300. DynamicExceptionRanges,
  4301. NoexceptExpr,
  4302. Exceptions,
  4303. EPI.ExceptionSpec);
  4304. // FIXME: Set address space from attrs for C++ mode here.
  4305. // OpenCLCPlusPlus: A class member function has an address space.
  4306. auto IsClassMember = [&]() {
  4307. return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
  4308. state.getDeclarator()
  4309. .getCXXScopeSpec()
  4310. .getScopeRep()
  4311. ->getKind() == NestedNameSpecifier::TypeSpec) ||
  4312. state.getDeclarator().getContext() ==
  4313. DeclaratorContext::MemberContext;
  4314. };
  4315. if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
  4316. LangAS ASIdx = LangAS::Default;
  4317. // Take address space attr if any and mark as invalid to avoid adding
  4318. // them later while creating QualType.
  4319. if (FTI.MethodQualifiers)
  4320. for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
  4321. LangAS ASIdxNew = attr.asOpenCLLangAS();
  4322. if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
  4323. attr.getLoc()))
  4324. D.setInvalidType(true);
  4325. else
  4326. ASIdx = ASIdxNew;
  4327. }
  4328. // If a class member function's address space is not set, set it to
  4329. // __generic.
  4330. LangAS AS =
  4331. (ASIdx == LangAS::Default ? LangAS::opencl_generic : ASIdx);
  4332. EPI.TypeQuals.addAddressSpace(AS);
  4333. }
  4334. T = Context.getFunctionType(T, ParamTys, EPI);
  4335. }
  4336. break;
  4337. }
  4338. case DeclaratorChunk::MemberPointer: {
  4339. // The scope spec must refer to a class, or be dependent.
  4340. CXXScopeSpec &SS = DeclType.Mem.Scope();
  4341. QualType ClsType;
  4342. // Handle pointer nullability.
  4343. inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
  4344. DeclType.EndLoc, DeclType.getAttrs(),
  4345. state.getDeclarator().getAttributePool());
  4346. if (SS.isInvalid()) {
  4347. // Avoid emitting extra errors if we already errored on the scope.
  4348. D.setInvalidType(true);
  4349. } else if (S.isDependentScopeSpecifier(SS) ||
  4350. dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
  4351. NestedNameSpecifier *NNS = SS.getScopeRep();
  4352. NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
  4353. switch (NNS->getKind()) {
  4354. case NestedNameSpecifier::Identifier:
  4355. ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
  4356. NNS->getAsIdentifier());
  4357. break;
  4358. case NestedNameSpecifier::Namespace:
  4359. case NestedNameSpecifier::NamespaceAlias:
  4360. case NestedNameSpecifier::Global:
  4361. case NestedNameSpecifier::Super:
  4362. llvm_unreachable("Nested-name-specifier must name a type");
  4363. case NestedNameSpecifier::TypeSpec:
  4364. case NestedNameSpecifier::TypeSpecWithTemplate:
  4365. ClsType = QualType(NNS->getAsType(), 0);
  4366. // Note: if the NNS has a prefix and ClsType is a nondependent
  4367. // TemplateSpecializationType, then the NNS prefix is NOT included
  4368. // in ClsType; hence we wrap ClsType into an ElaboratedType.
  4369. // NOTE: in particular, no wrap occurs if ClsType already is an
  4370. // Elaborated, DependentName, or DependentTemplateSpecialization.
  4371. if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
  4372. ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
  4373. break;
  4374. }
  4375. } else {
  4376. S.Diag(DeclType.Mem.Scope().getBeginLoc(),
  4377. diag::err_illegal_decl_mempointer_in_nonclass)
  4378. << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
  4379. << DeclType.Mem.Scope().getRange();
  4380. D.setInvalidType(true);
  4381. }
  4382. if (!ClsType.isNull())
  4383. T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
  4384. D.getIdentifier());
  4385. if (T.isNull()) {
  4386. T = Context.IntTy;
  4387. D.setInvalidType(true);
  4388. } else if (DeclType.Mem.TypeQuals) {
  4389. T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
  4390. }
  4391. break;
  4392. }
  4393. case DeclaratorChunk::Pipe: {
  4394. T = S.BuildReadPipeType(T, DeclType.Loc);
  4395. processTypeAttrs(state, T, TAL_DeclSpec,
  4396. D.getMutableDeclSpec().getAttributes());
  4397. break;
  4398. }
  4399. }
  4400. if (T.isNull()) {
  4401. D.setInvalidType(true);
  4402. T = Context.IntTy;
  4403. }
  4404. // See if there are any attributes on this declarator chunk.
  4405. processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
  4406. if (DeclType.Kind != DeclaratorChunk::Paren) {
  4407. if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
  4408. S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
  4409. ExpectNoDerefChunk = state.didParseNoDeref();
  4410. }
  4411. }
  4412. if (ExpectNoDerefChunk)
  4413. S.Diag(state.getDeclarator().getBeginLoc(),
  4414. diag::warn_noderef_on_non_pointer_or_array);
  4415. // GNU warning -Wstrict-prototypes
  4416. // Warn if a function declaration is without a prototype.
  4417. // This warning is issued for all kinds of unprototyped function
  4418. // declarations (i.e. function type typedef, function pointer etc.)
  4419. // C99 6.7.5.3p14:
  4420. // The empty list in a function declarator that is not part of a definition
  4421. // of that function specifies that no information about the number or types
  4422. // of the parameters is supplied.
  4423. if (!LangOpts.CPlusPlus && D.getFunctionDefinitionKind() == FDK_Declaration) {
  4424. bool IsBlock = false;
  4425. for (const DeclaratorChunk &DeclType : D.type_objects()) {
  4426. switch (DeclType.Kind) {
  4427. case DeclaratorChunk::BlockPointer:
  4428. IsBlock = true;
  4429. break;
  4430. case DeclaratorChunk::Function: {
  4431. const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
  4432. // We supress the warning when there's no LParen location, as this
  4433. // indicates the declaration was an implicit declaration, which gets
  4434. // warned about separately via -Wimplicit-function-declaration.
  4435. if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid())
  4436. S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
  4437. << IsBlock
  4438. << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
  4439. IsBlock = false;
  4440. break;
  4441. }
  4442. default:
  4443. break;
  4444. }
  4445. }
  4446. }
  4447. assert(!T.isNull() && "T must not be null after this point");
  4448. if (LangOpts.CPlusPlus && T->isFunctionType()) {
  4449. const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
  4450. assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
  4451. // C++ 8.3.5p4:
  4452. // A cv-qualifier-seq shall only be part of the function type
  4453. // for a nonstatic member function, the function type to which a pointer
  4454. // to member refers, or the top-level function type of a function typedef
  4455. // declaration.
  4456. //
  4457. // Core issue 547 also allows cv-qualifiers on function types that are
  4458. // top-level template type arguments.
  4459. enum { NonMember, Member, DeductionGuide } Kind = NonMember;
  4460. if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
  4461. Kind = DeductionGuide;
  4462. else if (!D.getCXXScopeSpec().isSet()) {
  4463. if ((D.getContext() == DeclaratorContext::MemberContext ||
  4464. D.getContext() == DeclaratorContext::LambdaExprContext) &&
  4465. !D.getDeclSpec().isFriendSpecified())
  4466. Kind = Member;
  4467. } else {
  4468. DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
  4469. if (!DC || DC->isRecord())
  4470. Kind = Member;
  4471. }
  4472. // C++11 [dcl.fct]p6 (w/DR1417):
  4473. // An attempt to specify a function type with a cv-qualifier-seq or a
  4474. // ref-qualifier (including by typedef-name) is ill-formed unless it is:
  4475. // - the function type for a non-static member function,
  4476. // - the function type to which a pointer to member refers,
  4477. // - the top-level function type of a function typedef declaration or
  4478. // alias-declaration,
  4479. // - the type-id in the default argument of a type-parameter, or
  4480. // - the type-id of a template-argument for a type-parameter
  4481. //
  4482. // FIXME: Checking this here is insufficient. We accept-invalid on:
  4483. //
  4484. // template<typename T> struct S { void f(T); };
  4485. // S<int() const> s;
  4486. //
  4487. // ... for instance.
  4488. if (IsQualifiedFunction &&
  4489. !(Kind == Member &&
  4490. D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
  4491. !IsTypedefName &&
  4492. D.getContext() != DeclaratorContext::TemplateArgContext &&
  4493. D.getContext() != DeclaratorContext::TemplateTypeArgContext) {
  4494. SourceLocation Loc = D.getBeginLoc();
  4495. SourceRange RemovalRange;
  4496. unsigned I;
  4497. if (D.isFunctionDeclarator(I)) {
  4498. SmallVector<SourceLocation, 4> RemovalLocs;
  4499. const DeclaratorChunk &Chunk = D.getTypeObject(I);
  4500. assert(Chunk.Kind == DeclaratorChunk::Function);
  4501. if (Chunk.Fun.hasRefQualifier())
  4502. RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
  4503. if (Chunk.Fun.hasMethodTypeQualifiers())
  4504. Chunk.Fun.MethodQualifiers->forEachQualifier(
  4505. [&](DeclSpec::TQ TypeQual, StringRef QualName,
  4506. SourceLocation SL) { RemovalLocs.push_back(SL); });
  4507. if (!RemovalLocs.empty()) {
  4508. llvm::sort(RemovalLocs,
  4509. BeforeThanCompare<SourceLocation>(S.getSourceManager()));
  4510. RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
  4511. Loc = RemovalLocs.front();
  4512. }
  4513. }
  4514. S.Diag(Loc, diag::err_invalid_qualified_function_type)
  4515. << Kind << D.isFunctionDeclarator() << T
  4516. << getFunctionQualifiersAsString(FnTy)
  4517. << FixItHint::CreateRemoval(RemovalRange);
  4518. // Strip the cv-qualifiers and ref-qualifiers from the type.
  4519. FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
  4520. EPI.TypeQuals.removeCVRQualifiers();
  4521. EPI.RefQualifier = RQ_None;
  4522. T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
  4523. EPI);
  4524. // Rebuild any parens around the identifier in the function type.
  4525. for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
  4526. if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
  4527. break;
  4528. T = S.BuildParenType(T);
  4529. }
  4530. }
  4531. }
  4532. // Apply any undistributed attributes from the declarator.
  4533. processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
  4534. // Diagnose any ignored type attributes.
  4535. state.diagnoseIgnoredTypeAttrs(T);
  4536. // C++0x [dcl.constexpr]p9:
  4537. // A constexpr specifier used in an object declaration declares the object
  4538. // as const.
  4539. if (D.getDeclSpec().getConstexprSpecifier() == CSK_constexpr &&
  4540. T->isObjectType())
  4541. T.addConst();
  4542. // If there was an ellipsis in the declarator, the declaration declares a
  4543. // parameter pack whose type may be a pack expansion type.
  4544. if (D.hasEllipsis()) {
  4545. // C++0x [dcl.fct]p13:
  4546. // A declarator-id or abstract-declarator containing an ellipsis shall
  4547. // only be used in a parameter-declaration. Such a parameter-declaration
  4548. // is a parameter pack (14.5.3). [...]
  4549. switch (D.getContext()) {
  4550. case DeclaratorContext::PrototypeContext:
  4551. case DeclaratorContext::LambdaExprParameterContext:
  4552. // C++0x [dcl.fct]p13:
  4553. // [...] When it is part of a parameter-declaration-clause, the
  4554. // parameter pack is a function parameter pack (14.5.3). The type T
  4555. // of the declarator-id of the function parameter pack shall contain
  4556. // a template parameter pack; each template parameter pack in T is
  4557. // expanded by the function parameter pack.
  4558. //
  4559. // We represent function parameter packs as function parameters whose
  4560. // type is a pack expansion.
  4561. if (!T->containsUnexpandedParameterPack()) {
  4562. S.Diag(D.getEllipsisLoc(),
  4563. diag::err_function_parameter_pack_without_parameter_packs)
  4564. << T << D.getSourceRange();
  4565. D.setEllipsisLoc(SourceLocation());
  4566. } else {
  4567. T = Context.getPackExpansionType(T, None);
  4568. }
  4569. break;
  4570. case DeclaratorContext::TemplateParamContext:
  4571. // C++0x [temp.param]p15:
  4572. // If a template-parameter is a [...] is a parameter-declaration that
  4573. // declares a parameter pack (8.3.5), then the template-parameter is a
  4574. // template parameter pack (14.5.3).
  4575. //
  4576. // Note: core issue 778 clarifies that, if there are any unexpanded
  4577. // parameter packs in the type of the non-type template parameter, then
  4578. // it expands those parameter packs.
  4579. if (T->containsUnexpandedParameterPack())
  4580. T = Context.getPackExpansionType(T, None);
  4581. else
  4582. S.Diag(D.getEllipsisLoc(),
  4583. LangOpts.CPlusPlus11
  4584. ? diag::warn_cxx98_compat_variadic_templates
  4585. : diag::ext_variadic_templates);
  4586. break;
  4587. case DeclaratorContext::FileContext:
  4588. case DeclaratorContext::KNRTypeListContext:
  4589. case DeclaratorContext::ObjCParameterContext: // FIXME: special diagnostic
  4590. // here?
  4591. case DeclaratorContext::ObjCResultContext: // FIXME: special diagnostic
  4592. // here?
  4593. case DeclaratorContext::TypeNameContext:
  4594. case DeclaratorContext::FunctionalCastContext:
  4595. case DeclaratorContext::CXXNewContext:
  4596. case DeclaratorContext::AliasDeclContext:
  4597. case DeclaratorContext::AliasTemplateContext:
  4598. case DeclaratorContext::MemberContext:
  4599. case DeclaratorContext::BlockContext:
  4600. case DeclaratorContext::ForContext:
  4601. case DeclaratorContext::InitStmtContext:
  4602. case DeclaratorContext::ConditionContext:
  4603. case DeclaratorContext::CXXCatchContext:
  4604. case DeclaratorContext::ObjCCatchContext:
  4605. case DeclaratorContext::BlockLiteralContext:
  4606. case DeclaratorContext::LambdaExprContext:
  4607. case DeclaratorContext::ConversionIdContext:
  4608. case DeclaratorContext::TrailingReturnContext:
  4609. case DeclaratorContext::TrailingReturnVarContext:
  4610. case DeclaratorContext::TemplateArgContext:
  4611. case DeclaratorContext::TemplateTypeArgContext:
  4612. // FIXME: We may want to allow parameter packs in block-literal contexts
  4613. // in the future.
  4614. S.Diag(D.getEllipsisLoc(),
  4615. diag::err_ellipsis_in_declarator_not_parameter);
  4616. D.setEllipsisLoc(SourceLocation());
  4617. break;
  4618. }
  4619. }
  4620. assert(!T.isNull() && "T must not be null at the end of this function");
  4621. if (D.isInvalidType())
  4622. return Context.getTrivialTypeSourceInfo(T);
  4623. return GetTypeSourceInfoForDeclarator(state, T, TInfo);
  4624. }
  4625. /// GetTypeForDeclarator - Convert the type for the specified
  4626. /// declarator to Type instances.
  4627. ///
  4628. /// The result of this call will never be null, but the associated
  4629. /// type may be a null type if there's an unrecoverable error.
  4630. TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
  4631. // Determine the type of the declarator. Not all forms of declarator
  4632. // have a type.
  4633. TypeProcessingState state(*this, D);
  4634. TypeSourceInfo *ReturnTypeInfo = nullptr;
  4635. QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
  4636. if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
  4637. inferARCWriteback(state, T);
  4638. return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
  4639. }
  4640. static void transferARCOwnershipToDeclSpec(Sema &S,
  4641. QualType &declSpecTy,
  4642. Qualifiers::ObjCLifetime ownership) {
  4643. if (declSpecTy->isObjCRetainableType() &&
  4644. declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
  4645. Qualifiers qs;
  4646. qs.addObjCLifetime(ownership);
  4647. declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
  4648. }
  4649. }
  4650. static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
  4651. Qualifiers::ObjCLifetime ownership,
  4652. unsigned chunkIndex) {
  4653. Sema &S = state.getSema();
  4654. Declarator &D = state.getDeclarator();
  4655. // Look for an explicit lifetime attribute.
  4656. DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
  4657. if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
  4658. return;
  4659. const char *attrStr = nullptr;
  4660. switch (ownership) {
  4661. case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
  4662. case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
  4663. case Qualifiers::OCL_Strong: attrStr = "strong"; break;
  4664. case Qualifiers::OCL_Weak: attrStr = "weak"; break;
  4665. case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
  4666. }
  4667. IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
  4668. Arg->Ident = &S.Context.Idents.get(attrStr);
  4669. Arg->Loc = SourceLocation();
  4670. ArgsUnion Args(Arg);
  4671. // If there wasn't one, add one (with an invalid source location
  4672. // so that we don't make an AttributedType for it).
  4673. ParsedAttr *attr = D.getAttributePool().create(
  4674. &S.Context.Idents.get("objc_ownership"), SourceLocation(),
  4675. /*scope*/ nullptr, SourceLocation(),
  4676. /*args*/ &Args, 1, ParsedAttr::AS_GNU);
  4677. chunk.getAttrs().addAtEnd(attr);
  4678. // TODO: mark whether we did this inference?
  4679. }
  4680. /// Used for transferring ownership in casts resulting in l-values.
  4681. static void transferARCOwnership(TypeProcessingState &state,
  4682. QualType &declSpecTy,
  4683. Qualifiers::ObjCLifetime ownership) {
  4684. Sema &S = state.getSema();
  4685. Declarator &D = state.getDeclarator();
  4686. int inner = -1;
  4687. bool hasIndirection = false;
  4688. for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
  4689. DeclaratorChunk &chunk = D.getTypeObject(i);
  4690. switch (chunk.Kind) {
  4691. case DeclaratorChunk::Paren:
  4692. // Ignore parens.
  4693. break;
  4694. case DeclaratorChunk::Array:
  4695. case DeclaratorChunk::Reference:
  4696. case DeclaratorChunk::Pointer:
  4697. if (inner != -1)
  4698. hasIndirection = true;
  4699. inner = i;
  4700. break;
  4701. case DeclaratorChunk::BlockPointer:
  4702. if (inner != -1)
  4703. transferARCOwnershipToDeclaratorChunk(state, ownership, i);
  4704. return;
  4705. case DeclaratorChunk::Function:
  4706. case DeclaratorChunk::MemberPointer:
  4707. case DeclaratorChunk::Pipe:
  4708. return;
  4709. }
  4710. }
  4711. if (inner == -1)
  4712. return;
  4713. DeclaratorChunk &chunk = D.getTypeObject(inner);
  4714. if (chunk.Kind == DeclaratorChunk::Pointer) {
  4715. if (declSpecTy->isObjCRetainableType())
  4716. return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
  4717. if (declSpecTy->isObjCObjectType() && hasIndirection)
  4718. return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
  4719. } else {
  4720. assert(chunk.Kind == DeclaratorChunk::Array ||
  4721. chunk.Kind == DeclaratorChunk::Reference);
  4722. return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
  4723. }
  4724. }
  4725. TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
  4726. TypeProcessingState state(*this, D);
  4727. TypeSourceInfo *ReturnTypeInfo = nullptr;
  4728. QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
  4729. if (getLangOpts().ObjC) {
  4730. Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
  4731. if (ownership != Qualifiers::OCL_None)
  4732. transferARCOwnership(state, declSpecTy, ownership);
  4733. }
  4734. return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
  4735. }
  4736. static void fillAttributedTypeLoc(AttributedTypeLoc TL,
  4737. TypeProcessingState &State) {
  4738. TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
  4739. }
  4740. namespace {
  4741. class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
  4742. ASTContext &Context;
  4743. TypeProcessingState &State;
  4744. const DeclSpec &DS;
  4745. public:
  4746. TypeSpecLocFiller(ASTContext &Context, TypeProcessingState &State,
  4747. const DeclSpec &DS)
  4748. : Context(Context), State(State), DS(DS) {}
  4749. void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
  4750. Visit(TL.getModifiedLoc());
  4751. fillAttributedTypeLoc(TL, State);
  4752. }
  4753. void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
  4754. Visit(TL.getInnerLoc());
  4755. TL.setExpansionLoc(
  4756. State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
  4757. }
  4758. void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
  4759. Visit(TL.getUnqualifiedLoc());
  4760. }
  4761. void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
  4762. TL.setNameLoc(DS.getTypeSpecTypeLoc());
  4763. }
  4764. void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
  4765. TL.setNameLoc(DS.getTypeSpecTypeLoc());
  4766. // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
  4767. // addition field. What we have is good enough for dispay of location
  4768. // of 'fixit' on interface name.
  4769. TL.setNameEndLoc(DS.getEndLoc());
  4770. }
  4771. void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
  4772. TypeSourceInfo *RepTInfo = nullptr;
  4773. Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
  4774. TL.copy(RepTInfo->getTypeLoc());
  4775. }
  4776. void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
  4777. TypeSourceInfo *RepTInfo = nullptr;
  4778. Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
  4779. TL.copy(RepTInfo->getTypeLoc());
  4780. }
  4781. void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
  4782. TypeSourceInfo *TInfo = nullptr;
  4783. Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
  4784. // If we got no declarator info from previous Sema routines,
  4785. // just fill with the typespec loc.
  4786. if (!TInfo) {
  4787. TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
  4788. return;
  4789. }
  4790. TypeLoc OldTL = TInfo->getTypeLoc();
  4791. if (TInfo->getType()->getAs<ElaboratedType>()) {
  4792. ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
  4793. TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
  4794. .castAs<TemplateSpecializationTypeLoc>();
  4795. TL.copy(NamedTL);
  4796. } else {
  4797. TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
  4798. assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
  4799. }
  4800. }
  4801. void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
  4802. assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
  4803. TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
  4804. TL.setParensRange(DS.getTypeofParensRange());
  4805. }
  4806. void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
  4807. assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
  4808. TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
  4809. TL.setParensRange(DS.getTypeofParensRange());
  4810. assert(DS.getRepAsType());
  4811. TypeSourceInfo *TInfo = nullptr;
  4812. Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
  4813. TL.setUnderlyingTInfo(TInfo);
  4814. }
  4815. void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
  4816. // FIXME: This holds only because we only have one unary transform.
  4817. assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
  4818. TL.setKWLoc(DS.getTypeSpecTypeLoc());
  4819. TL.setParensRange(DS.getTypeofParensRange());
  4820. assert(DS.getRepAsType());
  4821. TypeSourceInfo *TInfo = nullptr;
  4822. Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
  4823. TL.setUnderlyingTInfo(TInfo);
  4824. }
  4825. void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
  4826. // By default, use the source location of the type specifier.
  4827. TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
  4828. if (TL.needsExtraLocalData()) {
  4829. // Set info for the written builtin specifiers.
  4830. TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
  4831. // Try to have a meaningful source location.
  4832. if (TL.getWrittenSignSpec() != TSS_unspecified)
  4833. TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
  4834. if (TL.getWrittenWidthSpec() != TSW_unspecified)
  4835. TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
  4836. }
  4837. }
  4838. void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
  4839. ElaboratedTypeKeyword Keyword
  4840. = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
  4841. if (DS.getTypeSpecType() == TST_typename) {
  4842. TypeSourceInfo *TInfo = nullptr;
  4843. Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
  4844. if (TInfo) {
  4845. TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
  4846. return;
  4847. }
  4848. }
  4849. TL.setElaboratedKeywordLoc(Keyword != ETK_None
  4850. ? DS.getTypeSpecTypeLoc()
  4851. : SourceLocation());
  4852. const CXXScopeSpec& SS = DS.getTypeSpecScope();
  4853. TL.setQualifierLoc(SS.getWithLocInContext(Context));
  4854. Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
  4855. }
  4856. void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
  4857. assert(DS.getTypeSpecType() == TST_typename);
  4858. TypeSourceInfo *TInfo = nullptr;
  4859. Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
  4860. assert(TInfo);
  4861. TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
  4862. }
  4863. void VisitDependentTemplateSpecializationTypeLoc(
  4864. DependentTemplateSpecializationTypeLoc TL) {
  4865. assert(DS.getTypeSpecType() == TST_typename);
  4866. TypeSourceInfo *TInfo = nullptr;
  4867. Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
  4868. assert(TInfo);
  4869. TL.copy(
  4870. TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
  4871. }
  4872. void VisitTagTypeLoc(TagTypeLoc TL) {
  4873. TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
  4874. }
  4875. void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
  4876. // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
  4877. // or an _Atomic qualifier.
  4878. if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
  4879. TL.setKWLoc(DS.getTypeSpecTypeLoc());
  4880. TL.setParensRange(DS.getTypeofParensRange());
  4881. TypeSourceInfo *TInfo = nullptr;
  4882. Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
  4883. assert(TInfo);
  4884. TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
  4885. } else {
  4886. TL.setKWLoc(DS.getAtomicSpecLoc());
  4887. // No parens, to indicate this was spelled as an _Atomic qualifier.
  4888. TL.setParensRange(SourceRange());
  4889. Visit(TL.getValueLoc());
  4890. }
  4891. }
  4892. void VisitPipeTypeLoc(PipeTypeLoc TL) {
  4893. TL.setKWLoc(DS.getTypeSpecTypeLoc());
  4894. TypeSourceInfo *TInfo = nullptr;
  4895. Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
  4896. TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
  4897. }
  4898. void VisitTypeLoc(TypeLoc TL) {
  4899. // FIXME: add other typespec types and change this to an assert.
  4900. TL.initialize(Context, DS.getTypeSpecTypeLoc());
  4901. }
  4902. };
  4903. class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
  4904. ASTContext &Context;
  4905. TypeProcessingState &State;
  4906. const DeclaratorChunk &Chunk;
  4907. public:
  4908. DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
  4909. const DeclaratorChunk &Chunk)
  4910. : Context(Context), State(State), Chunk(Chunk) {}
  4911. void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
  4912. llvm_unreachable("qualified type locs not expected here!");
  4913. }
  4914. void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
  4915. llvm_unreachable("decayed type locs not expected here!");
  4916. }
  4917. void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
  4918. fillAttributedTypeLoc(TL, State);
  4919. }
  4920. void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
  4921. // nothing
  4922. }
  4923. void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
  4924. assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
  4925. TL.setCaretLoc(Chunk.Loc);
  4926. }
  4927. void VisitPointerTypeLoc(PointerTypeLoc TL) {
  4928. assert(Chunk.Kind == DeclaratorChunk::Pointer);
  4929. TL.setStarLoc(Chunk.Loc);
  4930. }
  4931. void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
  4932. assert(Chunk.Kind == DeclaratorChunk::Pointer);
  4933. TL.setStarLoc(Chunk.Loc);
  4934. }
  4935. void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
  4936. assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
  4937. const CXXScopeSpec& SS = Chunk.Mem.Scope();
  4938. NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
  4939. const Type* ClsTy = TL.getClass();
  4940. QualType ClsQT = QualType(ClsTy, 0);
  4941. TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
  4942. // Now copy source location info into the type loc component.
  4943. TypeLoc ClsTL = ClsTInfo->getTypeLoc();
  4944. switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
  4945. case NestedNameSpecifier::Identifier:
  4946. assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
  4947. {
  4948. DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
  4949. DNTLoc.setElaboratedKeywordLoc(SourceLocation());
  4950. DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
  4951. DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
  4952. }
  4953. break;
  4954. case NestedNameSpecifier::TypeSpec:
  4955. case NestedNameSpecifier::TypeSpecWithTemplate:
  4956. if (isa<ElaboratedType>(ClsTy)) {
  4957. ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
  4958. ETLoc.setElaboratedKeywordLoc(SourceLocation());
  4959. ETLoc.setQualifierLoc(NNSLoc.getPrefix());
  4960. TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
  4961. NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
  4962. } else {
  4963. ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
  4964. }
  4965. break;
  4966. case NestedNameSpecifier::Namespace:
  4967. case NestedNameSpecifier::NamespaceAlias:
  4968. case NestedNameSpecifier::Global:
  4969. case NestedNameSpecifier::Super:
  4970. llvm_unreachable("Nested-name-specifier must name a type");
  4971. }
  4972. // Finally fill in MemberPointerLocInfo fields.
  4973. TL.setStarLoc(Chunk.Loc);
  4974. TL.setClassTInfo(ClsTInfo);
  4975. }
  4976. void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
  4977. assert(Chunk.Kind == DeclaratorChunk::Reference);
  4978. // 'Amp' is misleading: this might have been originally
  4979. /// spelled with AmpAmp.
  4980. TL.setAmpLoc(Chunk.Loc);
  4981. }
  4982. void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
  4983. assert(Chunk.Kind == DeclaratorChunk::Reference);
  4984. assert(!Chunk.Ref.LValueRef);
  4985. TL.setAmpAmpLoc(Chunk.Loc);
  4986. }
  4987. void VisitArrayTypeLoc(ArrayTypeLoc TL) {
  4988. assert(Chunk.Kind == DeclaratorChunk::Array);
  4989. TL.setLBracketLoc(Chunk.Loc);
  4990. TL.setRBracketLoc(Chunk.EndLoc);
  4991. TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
  4992. }
  4993. void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
  4994. assert(Chunk.Kind == DeclaratorChunk::Function);
  4995. TL.setLocalRangeBegin(Chunk.Loc);
  4996. TL.setLocalRangeEnd(Chunk.EndLoc);
  4997. const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
  4998. TL.setLParenLoc(FTI.getLParenLoc());
  4999. TL.setRParenLoc(FTI.getRParenLoc());
  5000. for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
  5001. ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
  5002. TL.setParam(tpi++, Param);
  5003. }
  5004. TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
  5005. }
  5006. void VisitParenTypeLoc(ParenTypeLoc TL) {
  5007. assert(Chunk.Kind == DeclaratorChunk::Paren);
  5008. TL.setLParenLoc(Chunk.Loc);
  5009. TL.setRParenLoc(Chunk.EndLoc);
  5010. }
  5011. void VisitPipeTypeLoc(PipeTypeLoc TL) {
  5012. assert(Chunk.Kind == DeclaratorChunk::Pipe);
  5013. TL.setKWLoc(Chunk.Loc);
  5014. }
  5015. void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
  5016. TL.setExpansionLoc(Chunk.Loc);
  5017. }
  5018. void VisitTypeLoc(TypeLoc TL) {
  5019. llvm_unreachable("unsupported TypeLoc kind in declarator!");
  5020. }
  5021. };
  5022. } // end anonymous namespace
  5023. static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
  5024. SourceLocation Loc;
  5025. switch (Chunk.Kind) {
  5026. case DeclaratorChunk::Function:
  5027. case DeclaratorChunk::Array:
  5028. case DeclaratorChunk::Paren:
  5029. case DeclaratorChunk::Pipe:
  5030. llvm_unreachable("cannot be _Atomic qualified");
  5031. case DeclaratorChunk::Pointer:
  5032. Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
  5033. break;
  5034. case DeclaratorChunk::BlockPointer:
  5035. case DeclaratorChunk::Reference:
  5036. case DeclaratorChunk::MemberPointer:
  5037. // FIXME: Provide a source location for the _Atomic keyword.
  5038. break;
  5039. }
  5040. ATL.setKWLoc(Loc);
  5041. ATL.setParensRange(SourceRange());
  5042. }
  5043. static void
  5044. fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
  5045. const ParsedAttributesView &Attrs) {
  5046. for (const ParsedAttr &AL : Attrs) {
  5047. if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
  5048. DASTL.setAttrNameLoc(AL.getLoc());
  5049. DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
  5050. DASTL.setAttrOperandParensRange(SourceRange());
  5051. return;
  5052. }
  5053. }
  5054. llvm_unreachable(
  5055. "no address_space attribute found at the expected location!");
  5056. }
  5057. /// Create and instantiate a TypeSourceInfo with type source information.
  5058. ///
  5059. /// \param T QualType referring to the type as written in source code.
  5060. ///
  5061. /// \param ReturnTypeInfo For declarators whose return type does not show
  5062. /// up in the normal place in the declaration specifiers (such as a C++
  5063. /// conversion function), this pointer will refer to a type source information
  5064. /// for that return type.
  5065. static TypeSourceInfo *
  5066. GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
  5067. QualType T, TypeSourceInfo *ReturnTypeInfo) {
  5068. Sema &S = State.getSema();
  5069. Declarator &D = State.getDeclarator();
  5070. TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
  5071. UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
  5072. // Handle parameter packs whose type is a pack expansion.
  5073. if (isa<PackExpansionType>(T)) {
  5074. CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
  5075. CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
  5076. }
  5077. for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
  5078. // An AtomicTypeLoc might be produced by an atomic qualifier in this
  5079. // declarator chunk.
  5080. if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
  5081. fillAtomicQualLoc(ATL, D.getTypeObject(i));
  5082. CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
  5083. }
  5084. while (MacroQualifiedTypeLoc TL = CurrTL.getAs<MacroQualifiedTypeLoc>()) {
  5085. TL.setExpansionLoc(
  5086. State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
  5087. CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
  5088. }
  5089. while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
  5090. fillAttributedTypeLoc(TL, State);
  5091. CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
  5092. }
  5093. while (DependentAddressSpaceTypeLoc TL =
  5094. CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
  5095. fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
  5096. CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
  5097. }
  5098. // FIXME: Ordering here?
  5099. while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
  5100. CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
  5101. DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
  5102. CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
  5103. }
  5104. // If we have different source information for the return type, use
  5105. // that. This really only applies to C++ conversion functions.
  5106. if (ReturnTypeInfo) {
  5107. TypeLoc TL = ReturnTypeInfo->getTypeLoc();
  5108. assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
  5109. memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
  5110. } else {
  5111. TypeSpecLocFiller(S.Context, State, D.getDeclSpec()).Visit(CurrTL);
  5112. }
  5113. return TInfo;
  5114. }
  5115. /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
  5116. ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
  5117. // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
  5118. // and Sema during declaration parsing. Try deallocating/caching them when
  5119. // it's appropriate, instead of allocating them and keeping them around.
  5120. LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
  5121. TypeAlignment);
  5122. new (LocT) LocInfoType(T, TInfo);
  5123. assert(LocT->getTypeClass() != T->getTypeClass() &&
  5124. "LocInfoType's TypeClass conflicts with an existing Type class");
  5125. return ParsedType::make(QualType(LocT, 0));
  5126. }
  5127. void LocInfoType::getAsStringInternal(std::string &Str,
  5128. const PrintingPolicy &Policy) const {
  5129. llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
  5130. " was used directly instead of getting the QualType through"
  5131. " GetTypeFromParser");
  5132. }
  5133. TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
  5134. // C99 6.7.6: Type names have no identifier. This is already validated by
  5135. // the parser.
  5136. assert(D.getIdentifier() == nullptr &&
  5137. "Type name should have no identifier!");
  5138. TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
  5139. QualType T = TInfo->getType();
  5140. if (D.isInvalidType())
  5141. return true;
  5142. // Make sure there are no unused decl attributes on the declarator.
  5143. // We don't want to do this for ObjC parameters because we're going
  5144. // to apply them to the actual parameter declaration.
  5145. // Likewise, we don't want to do this for alias declarations, because
  5146. // we are actually going to build a declaration from this eventually.
  5147. if (D.getContext() != DeclaratorContext::ObjCParameterContext &&
  5148. D.getContext() != DeclaratorContext::AliasDeclContext &&
  5149. D.getContext() != DeclaratorContext::AliasTemplateContext)
  5150. checkUnusedDeclAttributes(D);
  5151. if (getLangOpts().CPlusPlus) {
  5152. // Check that there are no default arguments (C++ only).
  5153. CheckExtraCXXDefaultArguments(D);
  5154. }
  5155. return CreateParsedType(T, TInfo);
  5156. }
  5157. ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
  5158. QualType T = Context.getObjCInstanceType();
  5159. TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
  5160. return CreateParsedType(T, TInfo);
  5161. }
  5162. //===----------------------------------------------------------------------===//
  5163. // Type Attribute Processing
  5164. //===----------------------------------------------------------------------===//
  5165. /// Build an AddressSpace index from a constant expression and diagnose any
  5166. /// errors related to invalid address_spaces. Returns true on successfully
  5167. /// building an AddressSpace index.
  5168. static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
  5169. const Expr *AddrSpace,
  5170. SourceLocation AttrLoc) {
  5171. if (!AddrSpace->isValueDependent()) {
  5172. llvm::APSInt addrSpace(32);
  5173. if (!AddrSpace->isIntegerConstantExpr(addrSpace, S.Context)) {
  5174. S.Diag(AttrLoc, diag::err_attribute_argument_type)
  5175. << "'address_space'" << AANT_ArgumentIntegerConstant
  5176. << AddrSpace->getSourceRange();
  5177. return false;
  5178. }
  5179. // Bounds checking.
  5180. if (addrSpace.isSigned()) {
  5181. if (addrSpace.isNegative()) {
  5182. S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
  5183. << AddrSpace->getSourceRange();
  5184. return false;
  5185. }
  5186. addrSpace.setIsSigned(false);
  5187. }
  5188. llvm::APSInt max(addrSpace.getBitWidth());
  5189. max =
  5190. Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
  5191. if (addrSpace > max) {
  5192. S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
  5193. << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
  5194. return false;
  5195. }
  5196. ASIdx =
  5197. getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
  5198. return true;
  5199. }
  5200. // Default value for DependentAddressSpaceTypes
  5201. ASIdx = LangAS::Default;
  5202. return true;
  5203. }
  5204. /// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
  5205. /// is uninstantiated. If instantiated it will apply the appropriate address
  5206. /// space to the type. This function allows dependent template variables to be
  5207. /// used in conjunction with the address_space attribute
  5208. QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
  5209. SourceLocation AttrLoc) {
  5210. if (!AddrSpace->isValueDependent()) {
  5211. if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
  5212. AttrLoc))
  5213. return QualType();
  5214. return Context.getAddrSpaceQualType(T, ASIdx);
  5215. }
  5216. // A check with similar intentions as checking if a type already has an
  5217. // address space except for on a dependent types, basically if the
  5218. // current type is already a DependentAddressSpaceType then its already
  5219. // lined up to have another address space on it and we can't have
  5220. // multiple address spaces on the one pointer indirection
  5221. if (T->getAs<DependentAddressSpaceType>()) {
  5222. Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
  5223. return QualType();
  5224. }
  5225. return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
  5226. }
  5227. QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
  5228. SourceLocation AttrLoc) {
  5229. LangAS ASIdx;
  5230. if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
  5231. return QualType();
  5232. return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
  5233. }
  5234. /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
  5235. /// specified type. The attribute contains 1 argument, the id of the address
  5236. /// space for the type.
  5237. static void HandleAddressSpaceTypeAttribute(QualType &Type,
  5238. const ParsedAttr &Attr,
  5239. TypeProcessingState &State) {
  5240. Sema &S = State.getSema();
  5241. // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
  5242. // qualified by an address-space qualifier."
  5243. if (Type->isFunctionType()) {
  5244. S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
  5245. Attr.setInvalid();
  5246. return;
  5247. }
  5248. LangAS ASIdx;
  5249. if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
  5250. // Check the attribute arguments.
  5251. if (Attr.getNumArgs() != 1) {
  5252. S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
  5253. << 1;
  5254. Attr.setInvalid();
  5255. return;
  5256. }
  5257. Expr *ASArgExpr;
  5258. if (Attr.isArgIdent(0)) {
  5259. // Special case where the argument is a template id.
  5260. CXXScopeSpec SS;
  5261. SourceLocation TemplateKWLoc;
  5262. UnqualifiedId id;
  5263. id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
  5264. ExprResult AddrSpace = S.ActOnIdExpression(
  5265. S.getCurScope(), SS, TemplateKWLoc, id, /*HasTrailingLParen=*/false,
  5266. /*IsAddressOfOperand=*/false);
  5267. if (AddrSpace.isInvalid())
  5268. return;
  5269. ASArgExpr = static_cast<Expr *>(AddrSpace.get());
  5270. } else {
  5271. ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
  5272. }
  5273. LangAS ASIdx;
  5274. if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
  5275. Attr.setInvalid();
  5276. return;
  5277. }
  5278. ASTContext &Ctx = S.Context;
  5279. auto *ASAttr =
  5280. ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
  5281. // If the expression is not value dependent (not templated), then we can
  5282. // apply the address space qualifiers just to the equivalent type.
  5283. // Otherwise, we make an AttributedType with the modified and equivalent
  5284. // type the same, and wrap it in a DependentAddressSpaceType. When this
  5285. // dependent type is resolved, the qualifier is added to the equivalent type
  5286. // later.
  5287. QualType T;
  5288. if (!ASArgExpr->isValueDependent()) {
  5289. QualType EquivType =
  5290. S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
  5291. if (EquivType.isNull()) {
  5292. Attr.setInvalid();
  5293. return;
  5294. }
  5295. T = State.getAttributedType(ASAttr, Type, EquivType);
  5296. } else {
  5297. T = State.getAttributedType(ASAttr, Type, Type);
  5298. T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
  5299. }
  5300. if (!T.isNull())
  5301. Type = T;
  5302. else
  5303. Attr.setInvalid();
  5304. } else {
  5305. // The keyword-based type attributes imply which address space to use.
  5306. ASIdx = Attr.asOpenCLLangAS();
  5307. if (ASIdx == LangAS::Default)
  5308. llvm_unreachable("Invalid address space");
  5309. if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
  5310. Attr.getLoc())) {
  5311. Attr.setInvalid();
  5312. return;
  5313. }
  5314. Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
  5315. }
  5316. }
  5317. /// handleObjCOwnershipTypeAttr - Process an objc_ownership
  5318. /// attribute on the specified type.
  5319. ///
  5320. /// Returns 'true' if the attribute was handled.
  5321. static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
  5322. ParsedAttr &attr, QualType &type) {
  5323. bool NonObjCPointer = false;
  5324. if (!type->isDependentType() && !type->isUndeducedType()) {
  5325. if (const PointerType *ptr = type->getAs<PointerType>()) {
  5326. QualType pointee = ptr->getPointeeType();
  5327. if (pointee->isObjCRetainableType() || pointee->isPointerType())
  5328. return false;
  5329. // It is important not to lose the source info that there was an attribute
  5330. // applied to non-objc pointer. We will create an attributed type but
  5331. // its type will be the same as the original type.
  5332. NonObjCPointer = true;
  5333. } else if (!type->isObjCRetainableType()) {
  5334. return false;
  5335. }
  5336. // Don't accept an ownership attribute in the declspec if it would
  5337. // just be the return type of a block pointer.
  5338. if (state.isProcessingDeclSpec()) {
  5339. Declarator &D = state.getDeclarator();
  5340. if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
  5341. /*onlyBlockPointers=*/true))
  5342. return false;
  5343. }
  5344. }
  5345. Sema &S = state.getSema();
  5346. SourceLocation AttrLoc = attr.getLoc();
  5347. if (AttrLoc.isMacroID())
  5348. AttrLoc =
  5349. S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
  5350. if (!attr.isArgIdent(0)) {
  5351. S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
  5352. << AANT_ArgumentString;
  5353. attr.setInvalid();
  5354. return true;
  5355. }
  5356. IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
  5357. Qualifiers::ObjCLifetime lifetime;
  5358. if (II->isStr("none"))
  5359. lifetime = Qualifiers::OCL_ExplicitNone;
  5360. else if (II->isStr("strong"))
  5361. lifetime = Qualifiers::OCL_Strong;
  5362. else if (II->isStr("weak"))
  5363. lifetime = Qualifiers::OCL_Weak;
  5364. else if (II->isStr("autoreleasing"))
  5365. lifetime = Qualifiers::OCL_Autoreleasing;
  5366. else {
  5367. S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
  5368. attr.setInvalid();
  5369. return true;
  5370. }
  5371. // Just ignore lifetime attributes other than __weak and __unsafe_unretained
  5372. // outside of ARC mode.
  5373. if (!S.getLangOpts().ObjCAutoRefCount &&
  5374. lifetime != Qualifiers::OCL_Weak &&
  5375. lifetime != Qualifiers::OCL_ExplicitNone) {
  5376. return true;
  5377. }
  5378. SplitQualType underlyingType = type.split();
  5379. // Check for redundant/conflicting ownership qualifiers.
  5380. if (Qualifiers::ObjCLifetime previousLifetime
  5381. = type.getQualifiers().getObjCLifetime()) {
  5382. // If it's written directly, that's an error.
  5383. if (S.Context.hasDirectOwnershipQualifier(type)) {
  5384. S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
  5385. << type;
  5386. return true;
  5387. }
  5388. // Otherwise, if the qualifiers actually conflict, pull sugar off
  5389. // and remove the ObjCLifetime qualifiers.
  5390. if (previousLifetime != lifetime) {
  5391. // It's possible to have multiple local ObjCLifetime qualifiers. We
  5392. // can't stop after we reach a type that is directly qualified.
  5393. const Type *prevTy = nullptr;
  5394. while (!prevTy || prevTy != underlyingType.Ty) {
  5395. prevTy = underlyingType.Ty;
  5396. underlyingType = underlyingType.getSingleStepDesugaredType();
  5397. }
  5398. underlyingType.Quals.removeObjCLifetime();
  5399. }
  5400. }
  5401. underlyingType.Quals.addObjCLifetime(lifetime);
  5402. if (NonObjCPointer) {
  5403. StringRef name = attr.getAttrName()->getName();
  5404. switch (lifetime) {
  5405. case Qualifiers::OCL_None:
  5406. case Qualifiers::OCL_ExplicitNone:
  5407. break;
  5408. case Qualifiers::OCL_Strong: name = "__strong"; break;
  5409. case Qualifiers::OCL_Weak: name = "__weak"; break;
  5410. case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
  5411. }
  5412. S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
  5413. << TDS_ObjCObjOrBlock << type;
  5414. }
  5415. // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
  5416. // because having both 'T' and '__unsafe_unretained T' exist in the type
  5417. // system causes unfortunate widespread consistency problems. (For example,
  5418. // they're not considered compatible types, and we mangle them identicially
  5419. // as template arguments.) These problems are all individually fixable,
  5420. // but it's easier to just not add the qualifier and instead sniff it out
  5421. // in specific places using isObjCInertUnsafeUnretainedType().
  5422. //
  5423. // Doing this does means we miss some trivial consistency checks that
  5424. // would've triggered in ARC, but that's better than trying to solve all
  5425. // the coexistence problems with __unsafe_unretained.
  5426. if (!S.getLangOpts().ObjCAutoRefCount &&
  5427. lifetime == Qualifiers::OCL_ExplicitNone) {
  5428. type = state.getAttributedType(
  5429. createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
  5430. type, type);
  5431. return true;
  5432. }
  5433. QualType origType = type;
  5434. if (!NonObjCPointer)
  5435. type = S.Context.getQualifiedType(underlyingType);
  5436. // If we have a valid source location for the attribute, use an
  5437. // AttributedType instead.
  5438. if (AttrLoc.isValid()) {
  5439. type = state.getAttributedType(::new (S.Context)
  5440. ObjCOwnershipAttr(S.Context, attr, II),
  5441. origType, type);
  5442. }
  5443. auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
  5444. unsigned diagnostic, QualType type) {
  5445. if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
  5446. S.DelayedDiagnostics.add(
  5447. sema::DelayedDiagnostic::makeForbiddenType(
  5448. S.getSourceManager().getExpansionLoc(loc),
  5449. diagnostic, type, /*ignored*/ 0));
  5450. } else {
  5451. S.Diag(loc, diagnostic);
  5452. }
  5453. };
  5454. // Sometimes, __weak isn't allowed.
  5455. if (lifetime == Qualifiers::OCL_Weak &&
  5456. !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
  5457. // Use a specialized diagnostic if the runtime just doesn't support them.
  5458. unsigned diagnostic =
  5459. (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
  5460. : diag::err_arc_weak_no_runtime);
  5461. // In any case, delay the diagnostic until we know what we're parsing.
  5462. diagnoseOrDelay(S, AttrLoc, diagnostic, type);
  5463. attr.setInvalid();
  5464. return true;
  5465. }
  5466. // Forbid __weak for class objects marked as
  5467. // objc_arc_weak_reference_unavailable
  5468. if (lifetime == Qualifiers::OCL_Weak) {
  5469. if (const ObjCObjectPointerType *ObjT =
  5470. type->getAs<ObjCObjectPointerType>()) {
  5471. if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
  5472. if (Class->isArcWeakrefUnavailable()) {
  5473. S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
  5474. S.Diag(ObjT->getInterfaceDecl()->getLocation(),
  5475. diag::note_class_declared);
  5476. }
  5477. }
  5478. }
  5479. }
  5480. return true;
  5481. }
  5482. /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
  5483. /// attribute on the specified type. Returns true to indicate that
  5484. /// the attribute was handled, false to indicate that the type does
  5485. /// not permit the attribute.
  5486. static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
  5487. QualType &type) {
  5488. Sema &S = state.getSema();
  5489. // Delay if this isn't some kind of pointer.
  5490. if (!type->isPointerType() &&
  5491. !type->isObjCObjectPointerType() &&
  5492. !type->isBlockPointerType())
  5493. return false;
  5494. if (type.getObjCGCAttr() != Qualifiers::GCNone) {
  5495. S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
  5496. attr.setInvalid();
  5497. return true;
  5498. }
  5499. // Check the attribute arguments.
  5500. if (!attr.isArgIdent(0)) {
  5501. S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
  5502. << attr << AANT_ArgumentString;
  5503. attr.setInvalid();
  5504. return true;
  5505. }
  5506. Qualifiers::GC GCAttr;
  5507. if (attr.getNumArgs() > 1) {
  5508. S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
  5509. << 1;
  5510. attr.setInvalid();
  5511. return true;
  5512. }
  5513. IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
  5514. if (II->isStr("weak"))
  5515. GCAttr = Qualifiers::Weak;
  5516. else if (II->isStr("strong"))
  5517. GCAttr = Qualifiers::Strong;
  5518. else {
  5519. S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
  5520. << attr << II;
  5521. attr.setInvalid();
  5522. return true;
  5523. }
  5524. QualType origType = type;
  5525. type = S.Context.getObjCGCQualType(origType, GCAttr);
  5526. // Make an attributed type to preserve the source information.
  5527. if (attr.getLoc().isValid())
  5528. type = state.getAttributedType(
  5529. ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
  5530. return true;
  5531. }
  5532. namespace {
  5533. /// A helper class to unwrap a type down to a function for the
  5534. /// purposes of applying attributes there.
  5535. ///
  5536. /// Use:
  5537. /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
  5538. /// if (unwrapped.isFunctionType()) {
  5539. /// const FunctionType *fn = unwrapped.get();
  5540. /// // change fn somehow
  5541. /// T = unwrapped.wrap(fn);
  5542. /// }
  5543. struct FunctionTypeUnwrapper {
  5544. enum WrapKind {
  5545. Desugar,
  5546. Attributed,
  5547. Parens,
  5548. Pointer,
  5549. BlockPointer,
  5550. Reference,
  5551. MemberPointer
  5552. };
  5553. QualType Original;
  5554. const FunctionType *Fn;
  5555. SmallVector<unsigned char /*WrapKind*/, 8> Stack;
  5556. FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
  5557. while (true) {
  5558. const Type *Ty = T.getTypePtr();
  5559. if (isa<FunctionType>(Ty)) {
  5560. Fn = cast<FunctionType>(Ty);
  5561. return;
  5562. } else if (isa<ParenType>(Ty)) {
  5563. T = cast<ParenType>(Ty)->getInnerType();
  5564. Stack.push_back(Parens);
  5565. } else if (isa<PointerType>(Ty)) {
  5566. T = cast<PointerType>(Ty)->getPointeeType();
  5567. Stack.push_back(Pointer);
  5568. } else if (isa<BlockPointerType>(Ty)) {
  5569. T = cast<BlockPointerType>(Ty)->getPointeeType();
  5570. Stack.push_back(BlockPointer);
  5571. } else if (isa<MemberPointerType>(Ty)) {
  5572. T = cast<MemberPointerType>(Ty)->getPointeeType();
  5573. Stack.push_back(MemberPointer);
  5574. } else if (isa<ReferenceType>(Ty)) {
  5575. T = cast<ReferenceType>(Ty)->getPointeeType();
  5576. Stack.push_back(Reference);
  5577. } else if (isa<AttributedType>(Ty)) {
  5578. T = cast<AttributedType>(Ty)->getEquivalentType();
  5579. Stack.push_back(Attributed);
  5580. } else {
  5581. const Type *DTy = Ty->getUnqualifiedDesugaredType();
  5582. if (Ty == DTy) {
  5583. Fn = nullptr;
  5584. return;
  5585. }
  5586. T = QualType(DTy, 0);
  5587. Stack.push_back(Desugar);
  5588. }
  5589. }
  5590. }
  5591. bool isFunctionType() const { return (Fn != nullptr); }
  5592. const FunctionType *get() const { return Fn; }
  5593. QualType wrap(Sema &S, const FunctionType *New) {
  5594. // If T wasn't modified from the unwrapped type, do nothing.
  5595. if (New == get()) return Original;
  5596. Fn = New;
  5597. return wrap(S.Context, Original, 0);
  5598. }
  5599. private:
  5600. QualType wrap(ASTContext &C, QualType Old, unsigned I) {
  5601. if (I == Stack.size())
  5602. return C.getQualifiedType(Fn, Old.getQualifiers());
  5603. // Build up the inner type, applying the qualifiers from the old
  5604. // type to the new type.
  5605. SplitQualType SplitOld = Old.split();
  5606. // As a special case, tail-recurse if there are no qualifiers.
  5607. if (SplitOld.Quals.empty())
  5608. return wrap(C, SplitOld.Ty, I);
  5609. return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
  5610. }
  5611. QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
  5612. if (I == Stack.size()) return QualType(Fn, 0);
  5613. switch (static_cast<WrapKind>(Stack[I++])) {
  5614. case Desugar:
  5615. // This is the point at which we potentially lose source
  5616. // information.
  5617. return wrap(C, Old->getUnqualifiedDesugaredType(), I);
  5618. case Attributed:
  5619. return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
  5620. case Parens: {
  5621. QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
  5622. return C.getParenType(New);
  5623. }
  5624. case Pointer: {
  5625. QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
  5626. return C.getPointerType(New);
  5627. }
  5628. case BlockPointer: {
  5629. QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
  5630. return C.getBlockPointerType(New);
  5631. }
  5632. case MemberPointer: {
  5633. const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
  5634. QualType New = wrap(C, OldMPT->getPointeeType(), I);
  5635. return C.getMemberPointerType(New, OldMPT->getClass());
  5636. }
  5637. case Reference: {
  5638. const ReferenceType *OldRef = cast<ReferenceType>(Old);
  5639. QualType New = wrap(C, OldRef->getPointeeType(), I);
  5640. if (isa<LValueReferenceType>(OldRef))
  5641. return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
  5642. else
  5643. return C.getRValueReferenceType(New);
  5644. }
  5645. }
  5646. llvm_unreachable("unknown wrapping kind");
  5647. }
  5648. };
  5649. } // end anonymous namespace
  5650. static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
  5651. ParsedAttr &PAttr, QualType &Type) {
  5652. Sema &S = State.getSema();
  5653. Attr *A;
  5654. switch (PAttr.getKind()) {
  5655. default: llvm_unreachable("Unknown attribute kind");
  5656. case ParsedAttr::AT_Ptr32:
  5657. A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
  5658. break;
  5659. case ParsedAttr::AT_Ptr64:
  5660. A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
  5661. break;
  5662. case ParsedAttr::AT_SPtr:
  5663. A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
  5664. break;
  5665. case ParsedAttr::AT_UPtr:
  5666. A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
  5667. break;
  5668. }
  5669. attr::Kind NewAttrKind = A->getKind();
  5670. QualType Desugared = Type;
  5671. const AttributedType *AT = dyn_cast<AttributedType>(Type);
  5672. while (AT) {
  5673. attr::Kind CurAttrKind = AT->getAttrKind();
  5674. // You cannot specify duplicate type attributes, so if the attribute has
  5675. // already been applied, flag it.
  5676. if (NewAttrKind == CurAttrKind) {
  5677. S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
  5678. return true;
  5679. }
  5680. // You cannot have both __sptr and __uptr on the same type, nor can you
  5681. // have __ptr32 and __ptr64.
  5682. if ((CurAttrKind == attr::Ptr32 && NewAttrKind == attr::Ptr64) ||
  5683. (CurAttrKind == attr::Ptr64 && NewAttrKind == attr::Ptr32)) {
  5684. S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
  5685. << "'__ptr32'" << "'__ptr64'";
  5686. return true;
  5687. } else if ((CurAttrKind == attr::SPtr && NewAttrKind == attr::UPtr) ||
  5688. (CurAttrKind == attr::UPtr && NewAttrKind == attr::SPtr)) {
  5689. S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
  5690. << "'__sptr'" << "'__uptr'";
  5691. return true;
  5692. }
  5693. Desugared = AT->getEquivalentType();
  5694. AT = dyn_cast<AttributedType>(Desugared);
  5695. }
  5696. // Pointer type qualifiers can only operate on pointer types, but not
  5697. // pointer-to-member types.
  5698. //
  5699. // FIXME: Should we really be disallowing this attribute if there is any
  5700. // type sugar between it and the pointer (other than attributes)? Eg, this
  5701. // disallows the attribute on a parenthesized pointer.
  5702. // And if so, should we really allow *any* type attribute?
  5703. if (!isa<PointerType>(Desugared)) {
  5704. if (Type->isMemberPointerType())
  5705. S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
  5706. else
  5707. S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
  5708. return true;
  5709. }
  5710. Type = State.getAttributedType(A, Type, Type);
  5711. return false;
  5712. }
  5713. /// Map a nullability attribute kind to a nullability kind.
  5714. static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
  5715. switch (kind) {
  5716. case ParsedAttr::AT_TypeNonNull:
  5717. return NullabilityKind::NonNull;
  5718. case ParsedAttr::AT_TypeNullable:
  5719. return NullabilityKind::Nullable;
  5720. case ParsedAttr::AT_TypeNullUnspecified:
  5721. return NullabilityKind::Unspecified;
  5722. default:
  5723. llvm_unreachable("not a nullability attribute kind");
  5724. }
  5725. }
  5726. /// Applies a nullability type specifier to the given type, if possible.
  5727. ///
  5728. /// \param state The type processing state.
  5729. ///
  5730. /// \param type The type to which the nullability specifier will be
  5731. /// added. On success, this type will be updated appropriately.
  5732. ///
  5733. /// \param attr The attribute as written on the type.
  5734. ///
  5735. /// \param allowOnArrayType Whether to accept nullability specifiers on an
  5736. /// array type (e.g., because it will decay to a pointer).
  5737. ///
  5738. /// \returns true if a problem has been diagnosed, false on success.
  5739. static bool checkNullabilityTypeSpecifier(TypeProcessingState &state,
  5740. QualType &type,
  5741. ParsedAttr &attr,
  5742. bool allowOnArrayType) {
  5743. Sema &S = state.getSema();
  5744. NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind());
  5745. SourceLocation nullabilityLoc = attr.getLoc();
  5746. bool isContextSensitive = attr.isContextSensitiveKeywordAttribute();
  5747. recordNullabilitySeen(S, nullabilityLoc);
  5748. // Check for existing nullability attributes on the type.
  5749. QualType desugared = type;
  5750. while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
  5751. // Check whether there is already a null
  5752. if (auto existingNullability = attributed->getImmediateNullability()) {
  5753. // Duplicated nullability.
  5754. if (nullability == *existingNullability) {
  5755. S.Diag(nullabilityLoc, diag::warn_nullability_duplicate)
  5756. << DiagNullabilityKind(nullability, isContextSensitive)
  5757. << FixItHint::CreateRemoval(nullabilityLoc);
  5758. break;
  5759. }
  5760. // Conflicting nullability.
  5761. S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
  5762. << DiagNullabilityKind(nullability, isContextSensitive)
  5763. << DiagNullabilityKind(*existingNullability, false);
  5764. return true;
  5765. }
  5766. desugared = attributed->getModifiedType();
  5767. }
  5768. // If there is already a different nullability specifier, complain.
  5769. // This (unlike the code above) looks through typedefs that might
  5770. // have nullability specifiers on them, which means we cannot
  5771. // provide a useful Fix-It.
  5772. if (auto existingNullability = desugared->getNullability(S.Context)) {
  5773. if (nullability != *existingNullability) {
  5774. S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
  5775. << DiagNullabilityKind(nullability, isContextSensitive)
  5776. << DiagNullabilityKind(*existingNullability, false);
  5777. // Try to find the typedef with the existing nullability specifier.
  5778. if (auto typedefType = desugared->getAs<TypedefType>()) {
  5779. TypedefNameDecl *typedefDecl = typedefType->getDecl();
  5780. QualType underlyingType = typedefDecl->getUnderlyingType();
  5781. if (auto typedefNullability
  5782. = AttributedType::stripOuterNullability(underlyingType)) {
  5783. if (*typedefNullability == *existingNullability) {
  5784. S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
  5785. << DiagNullabilityKind(*existingNullability, false);
  5786. }
  5787. }
  5788. }
  5789. return true;
  5790. }
  5791. }
  5792. // If this definitely isn't a pointer type, reject the specifier.
  5793. if (!desugared->canHaveNullability() &&
  5794. !(allowOnArrayType && desugared->isArrayType())) {
  5795. S.Diag(nullabilityLoc, diag::err_nullability_nonpointer)
  5796. << DiagNullabilityKind(nullability, isContextSensitive) << type;
  5797. return true;
  5798. }
  5799. // For the context-sensitive keywords/Objective-C property
  5800. // attributes, require that the type be a single-level pointer.
  5801. if (isContextSensitive) {
  5802. // Make sure that the pointee isn't itself a pointer type.
  5803. const Type *pointeeType;
  5804. if (desugared->isArrayType())
  5805. pointeeType = desugared->getArrayElementTypeNoTypeQual();
  5806. else
  5807. pointeeType = desugared->getPointeeType().getTypePtr();
  5808. if (pointeeType->isAnyPointerType() ||
  5809. pointeeType->isObjCObjectPointerType() ||
  5810. pointeeType->isMemberPointerType()) {
  5811. S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
  5812. << DiagNullabilityKind(nullability, true)
  5813. << type;
  5814. S.Diag(nullabilityLoc, diag::note_nullability_type_specifier)
  5815. << DiagNullabilityKind(nullability, false)
  5816. << type
  5817. << FixItHint::CreateReplacement(nullabilityLoc,
  5818. getNullabilitySpelling(nullability));
  5819. return true;
  5820. }
  5821. }
  5822. // Form the attributed type.
  5823. type = state.getAttributedType(
  5824. createNullabilityAttr(S.Context, attr, nullability), type, type);
  5825. return false;
  5826. }
  5827. /// Check the application of the Objective-C '__kindof' qualifier to
  5828. /// the given type.
  5829. static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
  5830. ParsedAttr &attr) {
  5831. Sema &S = state.getSema();
  5832. if (isa<ObjCTypeParamType>(type)) {
  5833. // Build the attributed type to record where __kindof occurred.
  5834. type = state.getAttributedType(
  5835. createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
  5836. return false;
  5837. }
  5838. // Find out if it's an Objective-C object or object pointer type;
  5839. const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
  5840. const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
  5841. : type->getAs<ObjCObjectType>();
  5842. // If not, we can't apply __kindof.
  5843. if (!objType) {
  5844. // FIXME: Handle dependent types that aren't yet object types.
  5845. S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
  5846. << type;
  5847. return true;
  5848. }
  5849. // Rebuild the "equivalent" type, which pushes __kindof down into
  5850. // the object type.
  5851. // There is no need to apply kindof on an unqualified id type.
  5852. QualType equivType = S.Context.getObjCObjectType(
  5853. objType->getBaseType(), objType->getTypeArgsAsWritten(),
  5854. objType->getProtocols(),
  5855. /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
  5856. // If we started with an object pointer type, rebuild it.
  5857. if (ptrType) {
  5858. equivType = S.Context.getObjCObjectPointerType(equivType);
  5859. if (auto nullability = type->getNullability(S.Context)) {
  5860. // We create a nullability attribute from the __kindof attribute.
  5861. // Make sure that will make sense.
  5862. assert(attr.getAttributeSpellingListIndex() == 0 &&
  5863. "multiple spellings for __kindof?");
  5864. Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
  5865. A->setImplicit(true);
  5866. equivType = state.getAttributedType(A, equivType, equivType);
  5867. }
  5868. }
  5869. // Build the attributed type to record where __kindof occurred.
  5870. type = state.getAttributedType(
  5871. createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
  5872. return false;
  5873. }
  5874. /// Distribute a nullability type attribute that cannot be applied to
  5875. /// the type specifier to a pointer, block pointer, or member pointer
  5876. /// declarator, complaining if necessary.
  5877. ///
  5878. /// \returns true if the nullability annotation was distributed, false
  5879. /// otherwise.
  5880. static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
  5881. QualType type, ParsedAttr &attr) {
  5882. Declarator &declarator = state.getDeclarator();
  5883. /// Attempt to move the attribute to the specified chunk.
  5884. auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
  5885. // If there is already a nullability attribute there, don't add
  5886. // one.
  5887. if (hasNullabilityAttr(chunk.getAttrs()))
  5888. return false;
  5889. // Complain about the nullability qualifier being in the wrong
  5890. // place.
  5891. enum {
  5892. PK_Pointer,
  5893. PK_BlockPointer,
  5894. PK_MemberPointer,
  5895. PK_FunctionPointer,
  5896. PK_MemberFunctionPointer,
  5897. } pointerKind
  5898. = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
  5899. : PK_Pointer)
  5900. : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
  5901. : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
  5902. auto diag = state.getSema().Diag(attr.getLoc(),
  5903. diag::warn_nullability_declspec)
  5904. << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
  5905. attr.isContextSensitiveKeywordAttribute())
  5906. << type
  5907. << static_cast<unsigned>(pointerKind);
  5908. // FIXME: MemberPointer chunks don't carry the location of the *.
  5909. if (chunk.Kind != DeclaratorChunk::MemberPointer) {
  5910. diag << FixItHint::CreateRemoval(attr.getLoc())
  5911. << FixItHint::CreateInsertion(
  5912. state.getSema().getPreprocessor().getLocForEndOfToken(
  5913. chunk.Loc),
  5914. " " + attr.getAttrName()->getName().str() + " ");
  5915. }
  5916. moveAttrFromListToList(attr, state.getCurrentAttributes(),
  5917. chunk.getAttrs());
  5918. return true;
  5919. };
  5920. // Move it to the outermost pointer, member pointer, or block
  5921. // pointer declarator.
  5922. for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
  5923. DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
  5924. switch (chunk.Kind) {
  5925. case DeclaratorChunk::Pointer:
  5926. case DeclaratorChunk::BlockPointer:
  5927. case DeclaratorChunk::MemberPointer:
  5928. return moveToChunk(chunk, false);
  5929. case DeclaratorChunk::Paren:
  5930. case DeclaratorChunk::Array:
  5931. continue;
  5932. case DeclaratorChunk::Function:
  5933. // Try to move past the return type to a function/block/member
  5934. // function pointer.
  5935. if (DeclaratorChunk *dest = maybeMovePastReturnType(
  5936. declarator, i,
  5937. /*onlyBlockPointers=*/false)) {
  5938. return moveToChunk(*dest, true);
  5939. }
  5940. return false;
  5941. // Don't walk through these.
  5942. case DeclaratorChunk::Reference:
  5943. case DeclaratorChunk::Pipe:
  5944. return false;
  5945. }
  5946. }
  5947. return false;
  5948. }
  5949. static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
  5950. assert(!Attr.isInvalid());
  5951. switch (Attr.getKind()) {
  5952. default:
  5953. llvm_unreachable("not a calling convention attribute");
  5954. case ParsedAttr::AT_CDecl:
  5955. return createSimpleAttr<CDeclAttr>(Ctx, Attr);
  5956. case ParsedAttr::AT_FastCall:
  5957. return createSimpleAttr<FastCallAttr>(Ctx, Attr);
  5958. case ParsedAttr::AT_StdCall:
  5959. return createSimpleAttr<StdCallAttr>(Ctx, Attr);
  5960. case ParsedAttr::AT_ThisCall:
  5961. return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
  5962. case ParsedAttr::AT_RegCall:
  5963. return createSimpleAttr<RegCallAttr>(Ctx, Attr);
  5964. case ParsedAttr::AT_Pascal:
  5965. return createSimpleAttr<PascalAttr>(Ctx, Attr);
  5966. case ParsedAttr::AT_SwiftCall:
  5967. return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
  5968. case ParsedAttr::AT_VectorCall:
  5969. return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
  5970. case ParsedAttr::AT_AArch64VectorPcs:
  5971. return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
  5972. case ParsedAttr::AT_Pcs: {
  5973. // The attribute may have had a fixit applied where we treated an
  5974. // identifier as a string literal. The contents of the string are valid,
  5975. // but the form may not be.
  5976. StringRef Str;
  5977. if (Attr.isArgExpr(0))
  5978. Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
  5979. else
  5980. Str = Attr.getArgAsIdent(0)->Ident->getName();
  5981. PcsAttr::PCSType Type;
  5982. if (!PcsAttr::ConvertStrToPCSType(Str, Type))
  5983. llvm_unreachable("already validated the attribute");
  5984. return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
  5985. }
  5986. case ParsedAttr::AT_IntelOclBicc:
  5987. return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
  5988. case ParsedAttr::AT_MSABI:
  5989. return createSimpleAttr<MSABIAttr>(Ctx, Attr);
  5990. case ParsedAttr::AT_SysVABI:
  5991. return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
  5992. case ParsedAttr::AT_PreserveMost:
  5993. return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
  5994. case ParsedAttr::AT_PreserveAll:
  5995. return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
  5996. }
  5997. llvm_unreachable("unexpected attribute kind!");
  5998. }
  5999. /// Process an individual function attribute. Returns true to
  6000. /// indicate that the attribute was handled, false if it wasn't.
  6001. static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
  6002. QualType &type) {
  6003. Sema &S = state.getSema();
  6004. FunctionTypeUnwrapper unwrapped(S, type);
  6005. if (attr.getKind() == ParsedAttr::AT_NoReturn) {
  6006. if (S.CheckAttrNoArgs(attr))
  6007. return true;
  6008. // Delay if this is not a function type.
  6009. if (!unwrapped.isFunctionType())
  6010. return false;
  6011. // Otherwise we can process right away.
  6012. FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
  6013. type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
  6014. return true;
  6015. }
  6016. // ns_returns_retained is not always a type attribute, but if we got
  6017. // here, we're treating it as one right now.
  6018. if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
  6019. if (attr.getNumArgs()) return true;
  6020. // Delay if this is not a function type.
  6021. if (!unwrapped.isFunctionType())
  6022. return false;
  6023. // Check whether the return type is reasonable.
  6024. if (S.checkNSReturnsRetainedReturnType(attr.getLoc(),
  6025. unwrapped.get()->getReturnType()))
  6026. return true;
  6027. // Only actually change the underlying type in ARC builds.
  6028. QualType origType = type;
  6029. if (state.getSema().getLangOpts().ObjCAutoRefCount) {
  6030. FunctionType::ExtInfo EI
  6031. = unwrapped.get()->getExtInfo().withProducesResult(true);
  6032. type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
  6033. }
  6034. type = state.getAttributedType(
  6035. createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
  6036. origType, type);
  6037. return true;
  6038. }
  6039. if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
  6040. if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
  6041. return true;
  6042. // Delay if this is not a function type.
  6043. if (!unwrapped.isFunctionType())
  6044. return false;
  6045. FunctionType::ExtInfo EI =
  6046. unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
  6047. type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
  6048. return true;
  6049. }
  6050. if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
  6051. if (!S.getLangOpts().CFProtectionBranch) {
  6052. S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
  6053. attr.setInvalid();
  6054. return true;
  6055. }
  6056. if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
  6057. return true;
  6058. // If this is not a function type, warning will be asserted by subject
  6059. // check.
  6060. if (!unwrapped.isFunctionType())
  6061. return true;
  6062. FunctionType::ExtInfo EI =
  6063. unwrapped.get()->getExtInfo().withNoCfCheck(true);
  6064. type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
  6065. return true;
  6066. }
  6067. if (attr.getKind() == ParsedAttr::AT_Regparm) {
  6068. unsigned value;
  6069. if (S.CheckRegparmAttr(attr, value))
  6070. return true;
  6071. // Delay if this is not a function type.
  6072. if (!unwrapped.isFunctionType())
  6073. return false;
  6074. // Diagnose regparm with fastcall.
  6075. const FunctionType *fn = unwrapped.get();
  6076. CallingConv CC = fn->getCallConv();
  6077. if (CC == CC_X86FastCall) {
  6078. S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
  6079. << FunctionType::getNameForCallConv(CC)
  6080. << "regparm";
  6081. attr.setInvalid();
  6082. return true;
  6083. }
  6084. FunctionType::ExtInfo EI =
  6085. unwrapped.get()->getExtInfo().withRegParm(value);
  6086. type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
  6087. return true;
  6088. }
  6089. if (attr.getKind() == ParsedAttr::AT_NoThrow) {
  6090. // Delay if this is not a function type.
  6091. if (!unwrapped.isFunctionType())
  6092. return false;
  6093. if (S.CheckAttrNoArgs(attr)) {
  6094. attr.setInvalid();
  6095. return true;
  6096. }
  6097. // Otherwise we can process right away.
  6098. auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
  6099. // MSVC ignores nothrow if it is in conflict with an explicit exception
  6100. // specification.
  6101. if (Proto->hasExceptionSpec()) {
  6102. switch (Proto->getExceptionSpecType()) {
  6103. case EST_None:
  6104. llvm_unreachable("This doesn't have an exception spec!");
  6105. case EST_DynamicNone:
  6106. case EST_BasicNoexcept:
  6107. case EST_NoexceptTrue:
  6108. case EST_NoThrow:
  6109. // Exception spec doesn't conflict with nothrow, so don't warn.
  6110. LLVM_FALLTHROUGH;
  6111. case EST_Unparsed:
  6112. case EST_Uninstantiated:
  6113. case EST_DependentNoexcept:
  6114. case EST_Unevaluated:
  6115. // We don't have enough information to properly determine if there is a
  6116. // conflict, so suppress the warning.
  6117. break;
  6118. case EST_Dynamic:
  6119. case EST_MSAny:
  6120. case EST_NoexceptFalse:
  6121. S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
  6122. break;
  6123. }
  6124. return true;
  6125. }
  6126. type = unwrapped.wrap(
  6127. S, S.Context
  6128. .getFunctionTypeWithExceptionSpec(
  6129. QualType{Proto, 0},
  6130. FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
  6131. ->getAs<FunctionType>());
  6132. return true;
  6133. }
  6134. // Delay if the type didn't work out to a function.
  6135. if (!unwrapped.isFunctionType()) return false;
  6136. // Otherwise, a calling convention.
  6137. CallingConv CC;
  6138. if (S.CheckCallingConvAttr(attr, CC))
  6139. return true;
  6140. const FunctionType *fn = unwrapped.get();
  6141. CallingConv CCOld = fn->getCallConv();
  6142. Attr *CCAttr = getCCTypeAttr(S.Context, attr);
  6143. if (CCOld != CC) {
  6144. // Error out on when there's already an attribute on the type
  6145. // and the CCs don't match.
  6146. if (S.getCallingConvAttributedType(type)) {
  6147. S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
  6148. << FunctionType::getNameForCallConv(CC)
  6149. << FunctionType::getNameForCallConv(CCOld);
  6150. attr.setInvalid();
  6151. return true;
  6152. }
  6153. }
  6154. // Diagnose use of variadic functions with calling conventions that
  6155. // don't support them (e.g. because they're callee-cleanup).
  6156. // We delay warning about this on unprototyped function declarations
  6157. // until after redeclaration checking, just in case we pick up a
  6158. // prototype that way. And apparently we also "delay" warning about
  6159. // unprototyped function types in general, despite not necessarily having
  6160. // much ability to diagnose it later.
  6161. if (!supportsVariadicCall(CC)) {
  6162. const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
  6163. if (FnP && FnP->isVariadic()) {
  6164. // stdcall and fastcall are ignored with a warning for GCC and MS
  6165. // compatibility.
  6166. if (CC == CC_X86StdCall || CC == CC_X86FastCall)
  6167. return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
  6168. << FunctionType::getNameForCallConv(CC)
  6169. << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
  6170. attr.setInvalid();
  6171. return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
  6172. << FunctionType::getNameForCallConv(CC);
  6173. }
  6174. }
  6175. // Also diagnose fastcall with regparm.
  6176. if (CC == CC_X86FastCall && fn->getHasRegParm()) {
  6177. S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
  6178. << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
  6179. attr.setInvalid();
  6180. return true;
  6181. }
  6182. // Modify the CC from the wrapped function type, wrap it all back, and then
  6183. // wrap the whole thing in an AttributedType as written. The modified type
  6184. // might have a different CC if we ignored the attribute.
  6185. QualType Equivalent;
  6186. if (CCOld == CC) {
  6187. Equivalent = type;
  6188. } else {
  6189. auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
  6190. Equivalent =
  6191. unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
  6192. }
  6193. type = state.getAttributedType(CCAttr, type, Equivalent);
  6194. return true;
  6195. }
  6196. bool Sema::hasExplicitCallingConv(QualType T) {
  6197. const AttributedType *AT;
  6198. // Stop if we'd be stripping off a typedef sugar node to reach the
  6199. // AttributedType.
  6200. while ((AT = T->getAs<AttributedType>()) &&
  6201. AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
  6202. if (AT->isCallingConv())
  6203. return true;
  6204. T = AT->getModifiedType();
  6205. }
  6206. return false;
  6207. }
  6208. void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
  6209. SourceLocation Loc) {
  6210. FunctionTypeUnwrapper Unwrapped(*this, T);
  6211. const FunctionType *FT = Unwrapped.get();
  6212. bool IsVariadic = (isa<FunctionProtoType>(FT) &&
  6213. cast<FunctionProtoType>(FT)->isVariadic());
  6214. CallingConv CurCC = FT->getCallConv();
  6215. CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
  6216. if (CurCC == ToCC)
  6217. return;
  6218. // MS compiler ignores explicit calling convention attributes on structors. We
  6219. // should do the same.
  6220. if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
  6221. // Issue a warning on ignored calling convention -- except of __stdcall.
  6222. // Again, this is what MS compiler does.
  6223. if (CurCC != CC_X86StdCall)
  6224. Diag(Loc, diag::warn_cconv_unsupported)
  6225. << FunctionType::getNameForCallConv(CurCC)
  6226. << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
  6227. // Default adjustment.
  6228. } else {
  6229. // Only adjust types with the default convention. For example, on Windows
  6230. // we should adjust a __cdecl type to __thiscall for instance methods, and a
  6231. // __thiscall type to __cdecl for static methods.
  6232. CallingConv DefaultCC =
  6233. Context.getDefaultCallingConvention(IsVariadic, IsStatic);
  6234. if (CurCC != DefaultCC || DefaultCC == ToCC)
  6235. return;
  6236. if (hasExplicitCallingConv(T))
  6237. return;
  6238. }
  6239. FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
  6240. QualType Wrapped = Unwrapped.wrap(*this, FT);
  6241. T = Context.getAdjustedType(T, Wrapped);
  6242. }
  6243. /// HandleVectorSizeAttribute - this attribute is only applicable to integral
  6244. /// and float scalars, although arrays, pointers, and function return values are
  6245. /// allowed in conjunction with this construct. Aggregates with this attribute
  6246. /// are invalid, even if they are of the same size as a corresponding scalar.
  6247. /// The raw attribute should contain precisely 1 argument, the vector size for
  6248. /// the variable, measured in bytes. If curType and rawAttr are well formed,
  6249. /// this routine will return a new vector type.
  6250. static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
  6251. Sema &S) {
  6252. // Check the attribute arguments.
  6253. if (Attr.getNumArgs() != 1) {
  6254. S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
  6255. << 1;
  6256. Attr.setInvalid();
  6257. return;
  6258. }
  6259. Expr *SizeExpr;
  6260. // Special case where the argument is a template id.
  6261. if (Attr.isArgIdent(0)) {
  6262. CXXScopeSpec SS;
  6263. SourceLocation TemplateKWLoc;
  6264. UnqualifiedId Id;
  6265. Id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
  6266. ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
  6267. Id, /*HasTrailingLParen=*/false,
  6268. /*IsAddressOfOperand=*/false);
  6269. if (Size.isInvalid())
  6270. return;
  6271. SizeExpr = Size.get();
  6272. } else {
  6273. SizeExpr = Attr.getArgAsExpr(0);
  6274. }
  6275. QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
  6276. if (!T.isNull())
  6277. CurType = T;
  6278. else
  6279. Attr.setInvalid();
  6280. }
  6281. /// Process the OpenCL-like ext_vector_type attribute when it occurs on
  6282. /// a type.
  6283. static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
  6284. Sema &S) {
  6285. // check the attribute arguments.
  6286. if (Attr.getNumArgs() != 1) {
  6287. S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
  6288. << 1;
  6289. return;
  6290. }
  6291. Expr *sizeExpr;
  6292. // Special case where the argument is a template id.
  6293. if (Attr.isArgIdent(0)) {
  6294. CXXScopeSpec SS;
  6295. SourceLocation TemplateKWLoc;
  6296. UnqualifiedId id;
  6297. id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
  6298. ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
  6299. id, /*HasTrailingLParen=*/false,
  6300. /*IsAddressOfOperand=*/false);
  6301. if (Size.isInvalid())
  6302. return;
  6303. sizeExpr = Size.get();
  6304. } else {
  6305. sizeExpr = Attr.getArgAsExpr(0);
  6306. }
  6307. // Create the vector type.
  6308. QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
  6309. if (!T.isNull())
  6310. CurType = T;
  6311. }
  6312. static bool isPermittedNeonBaseType(QualType &Ty,
  6313. VectorType::VectorKind VecKind, Sema &S) {
  6314. const BuiltinType *BTy = Ty->getAs<BuiltinType>();
  6315. if (!BTy)
  6316. return false;
  6317. llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
  6318. // Signed poly is mathematically wrong, but has been baked into some ABIs by
  6319. // now.
  6320. bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
  6321. Triple.getArch() == llvm::Triple::aarch64_be;
  6322. if (VecKind == VectorType::NeonPolyVector) {
  6323. if (IsPolyUnsigned) {
  6324. // AArch64 polynomial vectors are unsigned and support poly64.
  6325. return BTy->getKind() == BuiltinType::UChar ||
  6326. BTy->getKind() == BuiltinType::UShort ||
  6327. BTy->getKind() == BuiltinType::ULong ||
  6328. BTy->getKind() == BuiltinType::ULongLong;
  6329. } else {
  6330. // AArch32 polynomial vector are signed.
  6331. return BTy->getKind() == BuiltinType::SChar ||
  6332. BTy->getKind() == BuiltinType::Short;
  6333. }
  6334. }
  6335. // Non-polynomial vector types: the usual suspects are allowed, as well as
  6336. // float64_t on AArch64.
  6337. bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
  6338. Triple.getArch() == llvm::Triple::aarch64_be;
  6339. if (Is64Bit && BTy->getKind() == BuiltinType::Double)
  6340. return true;
  6341. return BTy->getKind() == BuiltinType::SChar ||
  6342. BTy->getKind() == BuiltinType::UChar ||
  6343. BTy->getKind() == BuiltinType::Short ||
  6344. BTy->getKind() == BuiltinType::UShort ||
  6345. BTy->getKind() == BuiltinType::Int ||
  6346. BTy->getKind() == BuiltinType::UInt ||
  6347. BTy->getKind() == BuiltinType::Long ||
  6348. BTy->getKind() == BuiltinType::ULong ||
  6349. BTy->getKind() == BuiltinType::LongLong ||
  6350. BTy->getKind() == BuiltinType::ULongLong ||
  6351. BTy->getKind() == BuiltinType::Float ||
  6352. BTy->getKind() == BuiltinType::Half;
  6353. }
  6354. /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
  6355. /// "neon_polyvector_type" attributes are used to create vector types that
  6356. /// are mangled according to ARM's ABI. Otherwise, these types are identical
  6357. /// to those created with the "vector_size" attribute. Unlike "vector_size"
  6358. /// the argument to these Neon attributes is the number of vector elements,
  6359. /// not the vector size in bytes. The vector width and element type must
  6360. /// match one of the standard Neon vector types.
  6361. static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
  6362. Sema &S, VectorType::VectorKind VecKind) {
  6363. // Target must have NEON
  6364. if (!S.Context.getTargetInfo().hasFeature("neon")) {
  6365. S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr;
  6366. Attr.setInvalid();
  6367. return;
  6368. }
  6369. // Check the attribute arguments.
  6370. if (Attr.getNumArgs() != 1) {
  6371. S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
  6372. << 1;
  6373. Attr.setInvalid();
  6374. return;
  6375. }
  6376. // The number of elements must be an ICE.
  6377. Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
  6378. llvm::APSInt numEltsInt(32);
  6379. if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
  6380. !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
  6381. S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
  6382. << Attr << AANT_ArgumentIntegerConstant
  6383. << numEltsExpr->getSourceRange();
  6384. Attr.setInvalid();
  6385. return;
  6386. }
  6387. // Only certain element types are supported for Neon vectors.
  6388. if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
  6389. S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
  6390. Attr.setInvalid();
  6391. return;
  6392. }
  6393. // The total size of the vector must be 64 or 128 bits.
  6394. unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
  6395. unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
  6396. unsigned vecSize = typeSize * numElts;
  6397. if (vecSize != 64 && vecSize != 128) {
  6398. S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
  6399. Attr.setInvalid();
  6400. return;
  6401. }
  6402. CurType = S.Context.getVectorType(CurType, numElts, VecKind);
  6403. }
  6404. /// Handle OpenCL Access Qualifier Attribute.
  6405. static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
  6406. Sema &S) {
  6407. // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
  6408. if (!(CurType->isImageType() || CurType->isPipeType())) {
  6409. S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
  6410. Attr.setInvalid();
  6411. return;
  6412. }
  6413. if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
  6414. QualType BaseTy = TypedefTy->desugar();
  6415. std::string PrevAccessQual;
  6416. if (BaseTy->isPipeType()) {
  6417. if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
  6418. OpenCLAccessAttr *Attr =
  6419. TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
  6420. PrevAccessQual = Attr->getSpelling();
  6421. } else {
  6422. PrevAccessQual = "read_only";
  6423. }
  6424. } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
  6425. switch (ImgType->getKind()) {
  6426. #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
  6427. case BuiltinType::Id: \
  6428. PrevAccessQual = #Access; \
  6429. break;
  6430. #include "clang/Basic/OpenCLImageTypes.def"
  6431. default:
  6432. llvm_unreachable("Unable to find corresponding image type.");
  6433. }
  6434. } else {
  6435. llvm_unreachable("unexpected type");
  6436. }
  6437. StringRef AttrName = Attr.getAttrName()->getName();
  6438. if (PrevAccessQual == AttrName.ltrim("_")) {
  6439. // Duplicated qualifiers
  6440. S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
  6441. << AttrName << Attr.getRange();
  6442. } else {
  6443. // Contradicting qualifiers
  6444. S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
  6445. }
  6446. S.Diag(TypedefTy->getDecl()->getBeginLoc(),
  6447. diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
  6448. } else if (CurType->isPipeType()) {
  6449. if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
  6450. QualType ElemType = CurType->getAs<PipeType>()->getElementType();
  6451. CurType = S.Context.getWritePipeType(ElemType);
  6452. }
  6453. }
  6454. }
  6455. static void deduceOpenCLImplicitAddrSpace(TypeProcessingState &State,
  6456. QualType &T, TypeAttrLocation TAL) {
  6457. Declarator &D = State.getDeclarator();
  6458. // Handle the cases where address space should not be deduced.
  6459. //
  6460. // The pointee type of a pointer type is always deduced since a pointer always
  6461. // points to some memory location which should has an address space.
  6462. //
  6463. // There are situations that at the point of certain declarations, the address
  6464. // space may be unknown and better to be left as default. For example, when
  6465. // defining a typedef or struct type, they are not associated with any
  6466. // specific address space. Later on, they may be used with any address space
  6467. // to declare a variable.
  6468. //
  6469. // The return value of a function is r-value, therefore should not have
  6470. // address space.
  6471. //
  6472. // The void type does not occupy memory, therefore should not have address
  6473. // space, except when it is used as a pointee type.
  6474. //
  6475. // Since LLVM assumes function type is in default address space, it should not
  6476. // have address space.
  6477. auto ChunkIndex = State.getCurrentChunkIndex();
  6478. bool IsPointee =
  6479. ChunkIndex > 0 &&
  6480. (D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Pointer ||
  6481. D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Reference ||
  6482. D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::BlockPointer);
  6483. // For pointers/references to arrays the next chunk is always an array
  6484. // followed by any number of parentheses.
  6485. if (!IsPointee && ChunkIndex > 1) {
  6486. auto AdjustedCI = ChunkIndex - 1;
  6487. if (D.getTypeObject(AdjustedCI).Kind == DeclaratorChunk::Array)
  6488. AdjustedCI--;
  6489. // Skip over all parentheses.
  6490. while (AdjustedCI > 0 &&
  6491. D.getTypeObject(AdjustedCI).Kind == DeclaratorChunk::Paren)
  6492. AdjustedCI--;
  6493. if (D.getTypeObject(AdjustedCI).Kind == DeclaratorChunk::Pointer ||
  6494. D.getTypeObject(AdjustedCI).Kind == DeclaratorChunk::Reference)
  6495. IsPointee = true;
  6496. }
  6497. bool IsFuncReturnType =
  6498. ChunkIndex > 0 &&
  6499. D.getTypeObject(ChunkIndex - 1).Kind == DeclaratorChunk::Function;
  6500. bool IsFuncType =
  6501. ChunkIndex < D.getNumTypeObjects() &&
  6502. D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function;
  6503. if ( // Do not deduce addr space for function return type and function type,
  6504. // otherwise it will fail some sema check.
  6505. IsFuncReturnType || IsFuncType ||
  6506. // Do not deduce addr space for member types of struct, except the pointee
  6507. // type of a pointer member type or static data members.
  6508. (D.getContext() == DeclaratorContext::MemberContext &&
  6509. (!IsPointee &&
  6510. D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)) ||
  6511. // Do not deduce addr space of non-pointee in type alias because it
  6512. // doesn't define any object.
  6513. (D.getContext() == DeclaratorContext::AliasDeclContext && !IsPointee) ||
  6514. // Do not deduce addr space for types used to define a typedef and the
  6515. // typedef itself, except the pointee type of a pointer type which is used
  6516. // to define the typedef.
  6517. (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef &&
  6518. !IsPointee) ||
  6519. // Do not deduce addr space of the void type, e.g. in f(void), otherwise
  6520. // it will fail some sema check.
  6521. (T->isVoidType() && !IsPointee) ||
  6522. // Do not deduce addr spaces for dependent types because they might end
  6523. // up instantiating to a type with an explicit address space qualifier.
  6524. // Except for pointer or reference types because the addr space in
  6525. // template argument can only belong to a pointee.
  6526. (T->isDependentType() && !T->isPointerType() && !T->isReferenceType()) ||
  6527. // Do not deduce addr space of decltype because it will be taken from
  6528. // its argument.
  6529. T->isDecltypeType() ||
  6530. // OpenCL spec v2.0 s6.9.b:
  6531. // The sampler type cannot be used with the __local and __global address
  6532. // space qualifiers.
  6533. // OpenCL spec v2.0 s6.13.14:
  6534. // Samplers can also be declared as global constants in the program
  6535. // source using the following syntax.
  6536. // const sampler_t <sampler name> = <value>
  6537. // In codegen, file-scope sampler type variable has special handing and
  6538. // does not rely on address space qualifier. On the other hand, deducing
  6539. // address space of const sampler file-scope variable as global address
  6540. // space causes spurious diagnostic about __global address space
  6541. // qualifier, therefore do not deduce address space of file-scope sampler
  6542. // type variable.
  6543. (D.getContext() == DeclaratorContext::FileContext && T->isSamplerT()))
  6544. return;
  6545. LangAS ImpAddr = LangAS::Default;
  6546. // Put OpenCL automatic variable in private address space.
  6547. // OpenCL v1.2 s6.5:
  6548. // The default address space name for arguments to a function in a
  6549. // program, or local variables of a function is __private. All function
  6550. // arguments shall be in the __private address space.
  6551. if (State.getSema().getLangOpts().OpenCLVersion <= 120 &&
  6552. !State.getSema().getLangOpts().OpenCLCPlusPlus) {
  6553. ImpAddr = LangAS::opencl_private;
  6554. } else {
  6555. // If address space is not set, OpenCL 2.0 defines non private default
  6556. // address spaces for some cases:
  6557. // OpenCL 2.0, section 6.5:
  6558. // The address space for a variable at program scope or a static variable
  6559. // inside a function can either be __global or __constant, but defaults to
  6560. // __global if not specified.
  6561. // (...)
  6562. // Pointers that are declared without pointing to a named address space
  6563. // point to the generic address space.
  6564. if (IsPointee) {
  6565. ImpAddr = LangAS::opencl_generic;
  6566. } else {
  6567. if (D.getContext() == DeclaratorContext::TemplateArgContext) {
  6568. // Do not deduce address space for non-pointee type in template arg.
  6569. } else if (D.getContext() == DeclaratorContext::FileContext) {
  6570. ImpAddr = LangAS::opencl_global;
  6571. } else {
  6572. if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
  6573. D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern) {
  6574. ImpAddr = LangAS::opencl_global;
  6575. } else {
  6576. ImpAddr = LangAS::opencl_private;
  6577. }
  6578. }
  6579. }
  6580. }
  6581. T = State.getSema().Context.getAddrSpaceQualType(T, ImpAddr);
  6582. }
  6583. static void HandleLifetimeBoundAttr(TypeProcessingState &State,
  6584. QualType &CurType,
  6585. ParsedAttr &Attr) {
  6586. if (State.getDeclarator().isDeclarationOfFunction()) {
  6587. CurType = State.getAttributedType(
  6588. createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
  6589. CurType, CurType);
  6590. } else {
  6591. Attr.diagnoseAppertainsTo(State.getSema(), nullptr);
  6592. }
  6593. }
  6594. static void processTypeAttrs(TypeProcessingState &state, QualType &type,
  6595. TypeAttrLocation TAL,
  6596. ParsedAttributesView &attrs) {
  6597. // Scan through and apply attributes to this type where it makes sense. Some
  6598. // attributes (such as __address_space__, __vector_size__, etc) apply to the
  6599. // type, but others can be present in the type specifiers even though they
  6600. // apply to the decl. Here we apply type attributes and ignore the rest.
  6601. // This loop modifies the list pretty frequently, but we still need to make
  6602. // sure we visit every element once. Copy the attributes list, and iterate
  6603. // over that.
  6604. ParsedAttributesView AttrsCopy{attrs};
  6605. state.setParsedNoDeref(false);
  6606. for (ParsedAttr &attr : AttrsCopy) {
  6607. // Skip attributes that were marked to be invalid.
  6608. if (attr.isInvalid())
  6609. continue;
  6610. if (attr.isCXX11Attribute()) {
  6611. // [[gnu::...]] attributes are treated as declaration attributes, so may
  6612. // not appertain to a DeclaratorChunk. If we handle them as type
  6613. // attributes, accept them in that position and diagnose the GCC
  6614. // incompatibility.
  6615. if (attr.isGNUScope()) {
  6616. bool IsTypeAttr = attr.isTypeAttr();
  6617. if (TAL == TAL_DeclChunk) {
  6618. state.getSema().Diag(attr.getLoc(),
  6619. IsTypeAttr
  6620. ? diag::warn_gcc_ignores_type_attr
  6621. : diag::warn_cxx11_gnu_attribute_on_type)
  6622. << attr;
  6623. if (!IsTypeAttr)
  6624. continue;
  6625. }
  6626. } else if (TAL != TAL_DeclChunk &&
  6627. attr.getKind() != ParsedAttr::AT_AddressSpace) {
  6628. // Otherwise, only consider type processing for a C++11 attribute if
  6629. // it's actually been applied to a type.
  6630. // We also allow C++11 address_space attributes to pass through.
  6631. continue;
  6632. }
  6633. }
  6634. // If this is an attribute we can handle, do so now,
  6635. // otherwise, add it to the FnAttrs list for rechaining.
  6636. switch (attr.getKind()) {
  6637. default:
  6638. // A C++11 attribute on a declarator chunk must appertain to a type.
  6639. if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
  6640. state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
  6641. << attr;
  6642. attr.setUsedAsTypeAttr();
  6643. }
  6644. break;
  6645. case ParsedAttr::UnknownAttribute:
  6646. if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
  6647. state.getSema().Diag(attr.getLoc(),
  6648. diag::warn_unknown_attribute_ignored)
  6649. << attr;
  6650. break;
  6651. case ParsedAttr::IgnoredAttribute:
  6652. break;
  6653. case ParsedAttr::AT_MayAlias:
  6654. // FIXME: This attribute needs to actually be handled, but if we ignore
  6655. // it it breaks large amounts of Linux software.
  6656. attr.setUsedAsTypeAttr();
  6657. break;
  6658. case ParsedAttr::AT_OpenCLPrivateAddressSpace:
  6659. case ParsedAttr::AT_OpenCLGlobalAddressSpace:
  6660. case ParsedAttr::AT_OpenCLLocalAddressSpace:
  6661. case ParsedAttr::AT_OpenCLConstantAddressSpace:
  6662. case ParsedAttr::AT_OpenCLGenericAddressSpace:
  6663. case ParsedAttr::AT_AddressSpace:
  6664. HandleAddressSpaceTypeAttribute(type, attr, state);
  6665. attr.setUsedAsTypeAttr();
  6666. break;
  6667. OBJC_POINTER_TYPE_ATTRS_CASELIST:
  6668. if (!handleObjCPointerTypeAttr(state, attr, type))
  6669. distributeObjCPointerTypeAttr(state, attr, type);
  6670. attr.setUsedAsTypeAttr();
  6671. break;
  6672. case ParsedAttr::AT_VectorSize:
  6673. HandleVectorSizeAttr(type, attr, state.getSema());
  6674. attr.setUsedAsTypeAttr();
  6675. break;
  6676. case ParsedAttr::AT_ExtVectorType:
  6677. HandleExtVectorTypeAttr(type, attr, state.getSema());
  6678. attr.setUsedAsTypeAttr();
  6679. break;
  6680. case ParsedAttr::AT_NeonVectorType:
  6681. HandleNeonVectorTypeAttr(type, attr, state.getSema(),
  6682. VectorType::NeonVector);
  6683. attr.setUsedAsTypeAttr();
  6684. break;
  6685. case ParsedAttr::AT_NeonPolyVectorType:
  6686. HandleNeonVectorTypeAttr(type, attr, state.getSema(),
  6687. VectorType::NeonPolyVector);
  6688. attr.setUsedAsTypeAttr();
  6689. break;
  6690. case ParsedAttr::AT_OpenCLAccess:
  6691. HandleOpenCLAccessAttr(type, attr, state.getSema());
  6692. attr.setUsedAsTypeAttr();
  6693. break;
  6694. case ParsedAttr::AT_LifetimeBound:
  6695. if (TAL == TAL_DeclChunk)
  6696. HandleLifetimeBoundAttr(state, type, attr);
  6697. break;
  6698. case ParsedAttr::AT_NoDeref: {
  6699. ASTContext &Ctx = state.getSema().Context;
  6700. type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
  6701. type, type);
  6702. attr.setUsedAsTypeAttr();
  6703. state.setParsedNoDeref(true);
  6704. break;
  6705. }
  6706. MS_TYPE_ATTRS_CASELIST:
  6707. if (!handleMSPointerTypeQualifierAttr(state, attr, type))
  6708. attr.setUsedAsTypeAttr();
  6709. break;
  6710. NULLABILITY_TYPE_ATTRS_CASELIST:
  6711. // Either add nullability here or try to distribute it. We
  6712. // don't want to distribute the nullability specifier past any
  6713. // dependent type, because that complicates the user model.
  6714. if (type->canHaveNullability() || type->isDependentType() ||
  6715. type->isArrayType() ||
  6716. !distributeNullabilityTypeAttr(state, type, attr)) {
  6717. unsigned endIndex;
  6718. if (TAL == TAL_DeclChunk)
  6719. endIndex = state.getCurrentChunkIndex();
  6720. else
  6721. endIndex = state.getDeclarator().getNumTypeObjects();
  6722. bool allowOnArrayType =
  6723. state.getDeclarator().isPrototypeContext() &&
  6724. !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
  6725. if (checkNullabilityTypeSpecifier(
  6726. state,
  6727. type,
  6728. attr,
  6729. allowOnArrayType)) {
  6730. attr.setInvalid();
  6731. }
  6732. attr.setUsedAsTypeAttr();
  6733. }
  6734. break;
  6735. case ParsedAttr::AT_ObjCKindOf:
  6736. // '__kindof' must be part of the decl-specifiers.
  6737. switch (TAL) {
  6738. case TAL_DeclSpec:
  6739. break;
  6740. case TAL_DeclChunk:
  6741. case TAL_DeclName:
  6742. state.getSema().Diag(attr.getLoc(),
  6743. diag::err_objc_kindof_wrong_position)
  6744. << FixItHint::CreateRemoval(attr.getLoc())
  6745. << FixItHint::CreateInsertion(
  6746. state.getDeclarator().getDeclSpec().getBeginLoc(),
  6747. "__kindof ");
  6748. break;
  6749. }
  6750. // Apply it regardless.
  6751. if (checkObjCKindOfType(state, type, attr))
  6752. attr.setInvalid();
  6753. break;
  6754. case ParsedAttr::AT_NoThrow:
  6755. // Exception Specifications aren't generally supported in C mode throughout
  6756. // clang, so revert to attribute-based handling for C.
  6757. if (!state.getSema().getLangOpts().CPlusPlus)
  6758. break;
  6759. LLVM_FALLTHROUGH;
  6760. FUNCTION_TYPE_ATTRS_CASELIST:
  6761. attr.setUsedAsTypeAttr();
  6762. // Never process function type attributes as part of the
  6763. // declaration-specifiers.
  6764. if (TAL == TAL_DeclSpec)
  6765. distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
  6766. // Otherwise, handle the possible delays.
  6767. else if (!handleFunctionTypeAttr(state, attr, type))
  6768. distributeFunctionTypeAttr(state, attr, type);
  6769. break;
  6770. }
  6771. // Handle attributes that are defined in a macro. We do not want this to be
  6772. // applied to ObjC builtin attributes.
  6773. if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
  6774. !type.getQualifiers().hasObjCLifetime() &&
  6775. !type.getQualifiers().hasObjCGCAttr() &&
  6776. attr.getKind() != ParsedAttr::AT_ObjCGC &&
  6777. attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
  6778. const IdentifierInfo *MacroII = attr.getMacroIdentifier();
  6779. type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
  6780. state.setExpansionLocForMacroQualifiedType(
  6781. cast<MacroQualifiedType>(type.getTypePtr()),
  6782. attr.getMacroExpansionLoc());
  6783. }
  6784. }
  6785. if (!state.getSema().getLangOpts().OpenCL ||
  6786. type.getAddressSpace() != LangAS::Default)
  6787. return;
  6788. deduceOpenCLImplicitAddrSpace(state, type, TAL);
  6789. }
  6790. void Sema::completeExprArrayBound(Expr *E) {
  6791. if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
  6792. if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
  6793. if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
  6794. auto *Def = Var->getDefinition();
  6795. if (!Def) {
  6796. SourceLocation PointOfInstantiation = E->getExprLoc();
  6797. runWithSufficientStackSpace(PointOfInstantiation, [&] {
  6798. InstantiateVariableDefinition(PointOfInstantiation, Var);
  6799. });
  6800. Def = Var->getDefinition();
  6801. // If we don't already have a point of instantiation, and we managed
  6802. // to instantiate a definition, this is the point of instantiation.
  6803. // Otherwise, we don't request an end-of-TU instantiation, so this is
  6804. // not a point of instantiation.
  6805. // FIXME: Is this really the right behavior?
  6806. if (Var->getPointOfInstantiation().isInvalid() && Def) {
  6807. assert(Var->getTemplateSpecializationKind() ==
  6808. TSK_ImplicitInstantiation &&
  6809. "explicit instantiation with no point of instantiation");
  6810. Var->setTemplateSpecializationKind(
  6811. Var->getTemplateSpecializationKind(), PointOfInstantiation);
  6812. }
  6813. }
  6814. // Update the type to the definition's type both here and within the
  6815. // expression.
  6816. if (Def) {
  6817. DRE->setDecl(Def);
  6818. QualType T = Def->getType();
  6819. DRE->setType(T);
  6820. // FIXME: Update the type on all intervening expressions.
  6821. E->setType(T);
  6822. }
  6823. // We still go on to try to complete the type independently, as it
  6824. // may also require instantiations or diagnostics if it remains
  6825. // incomplete.
  6826. }
  6827. }
  6828. }
  6829. }
  6830. /// Ensure that the type of the given expression is complete.
  6831. ///
  6832. /// This routine checks whether the expression \p E has a complete type. If the
  6833. /// expression refers to an instantiable construct, that instantiation is
  6834. /// performed as needed to complete its type. Furthermore
  6835. /// Sema::RequireCompleteType is called for the expression's type (or in the
  6836. /// case of a reference type, the referred-to type).
  6837. ///
  6838. /// \param E The expression whose type is required to be complete.
  6839. /// \param Diagnoser The object that will emit a diagnostic if the type is
  6840. /// incomplete.
  6841. ///
  6842. /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
  6843. /// otherwise.
  6844. bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser) {
  6845. QualType T = E->getType();
  6846. // Incomplete array types may be completed by the initializer attached to
  6847. // their definitions. For static data members of class templates and for
  6848. // variable templates, we need to instantiate the definition to get this
  6849. // initializer and complete the type.
  6850. if (T->isIncompleteArrayType()) {
  6851. completeExprArrayBound(E);
  6852. T = E->getType();
  6853. }
  6854. // FIXME: Are there other cases which require instantiating something other
  6855. // than the type to complete the type of an expression?
  6856. return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
  6857. }
  6858. bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
  6859. BoundTypeDiagnoser<> Diagnoser(DiagID);
  6860. return RequireCompleteExprType(E, Diagnoser);
  6861. }
  6862. /// Ensure that the type T is a complete type.
  6863. ///
  6864. /// This routine checks whether the type @p T is complete in any
  6865. /// context where a complete type is required. If @p T is a complete
  6866. /// type, returns false. If @p T is a class template specialization,
  6867. /// this routine then attempts to perform class template
  6868. /// instantiation. If instantiation fails, or if @p T is incomplete
  6869. /// and cannot be completed, issues the diagnostic @p diag (giving it
  6870. /// the type @p T) and returns true.
  6871. ///
  6872. /// @param Loc The location in the source that the incomplete type
  6873. /// diagnostic should refer to.
  6874. ///
  6875. /// @param T The type that this routine is examining for completeness.
  6876. ///
  6877. /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
  6878. /// @c false otherwise.
  6879. bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
  6880. TypeDiagnoser &Diagnoser) {
  6881. if (RequireCompleteTypeImpl(Loc, T, &Diagnoser))
  6882. return true;
  6883. if (const TagType *Tag = T->getAs<TagType>()) {
  6884. if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
  6885. Tag->getDecl()->setCompleteDefinitionRequired();
  6886. Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
  6887. }
  6888. }
  6889. return false;
  6890. }
  6891. bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
  6892. llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
  6893. if (!Suggested)
  6894. return false;
  6895. // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
  6896. // and isolate from other C++ specific checks.
  6897. StructuralEquivalenceContext Ctx(
  6898. D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
  6899. StructuralEquivalenceKind::Default,
  6900. false /*StrictTypeSpelling*/, true /*Complain*/,
  6901. true /*ErrorOnTagTypeMismatch*/);
  6902. return Ctx.IsEquivalent(D, Suggested);
  6903. }
  6904. /// Determine whether there is any declaration of \p D that was ever a
  6905. /// definition (perhaps before module merging) and is currently visible.
  6906. /// \param D The definition of the entity.
  6907. /// \param Suggested Filled in with the declaration that should be made visible
  6908. /// in order to provide a definition of this entity.
  6909. /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
  6910. /// not defined. This only matters for enums with a fixed underlying
  6911. /// type, since in all other cases, a type is complete if and only if it
  6912. /// is defined.
  6913. bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
  6914. bool OnlyNeedComplete) {
  6915. // Easy case: if we don't have modules, all declarations are visible.
  6916. if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
  6917. return true;
  6918. // If this definition was instantiated from a template, map back to the
  6919. // pattern from which it was instantiated.
  6920. if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
  6921. // We're in the middle of defining it; this definition should be treated
  6922. // as visible.
  6923. return true;
  6924. } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
  6925. if (auto *Pattern = RD->getTemplateInstantiationPattern())
  6926. RD = Pattern;
  6927. D = RD->getDefinition();
  6928. } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
  6929. if (auto *Pattern = ED->getTemplateInstantiationPattern())
  6930. ED = Pattern;
  6931. if (OnlyNeedComplete && ED->isFixed()) {
  6932. // If the enum has a fixed underlying type, and we're only looking for a
  6933. // complete type (not a definition), any visible declaration of it will
  6934. // do.
  6935. *Suggested = nullptr;
  6936. for (auto *Redecl : ED->redecls()) {
  6937. if (isVisible(Redecl))
  6938. return true;
  6939. if (Redecl->isThisDeclarationADefinition() ||
  6940. (Redecl->isCanonicalDecl() && !*Suggested))
  6941. *Suggested = Redecl;
  6942. }
  6943. return false;
  6944. }
  6945. D = ED->getDefinition();
  6946. } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
  6947. if (auto *Pattern = FD->getTemplateInstantiationPattern())
  6948. FD = Pattern;
  6949. D = FD->getDefinition();
  6950. } else if (auto *VD = dyn_cast<VarDecl>(D)) {
  6951. if (auto *Pattern = VD->getTemplateInstantiationPattern())
  6952. VD = Pattern;
  6953. D = VD->getDefinition();
  6954. }
  6955. assert(D && "missing definition for pattern of instantiated definition");
  6956. *Suggested = D;
  6957. auto DefinitionIsVisible = [&] {
  6958. // The (primary) definition might be in a visible module.
  6959. if (isVisible(D))
  6960. return true;
  6961. // A visible module might have a merged definition instead.
  6962. if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
  6963. : hasVisibleMergedDefinition(D)) {
  6964. if (CodeSynthesisContexts.empty() &&
  6965. !getLangOpts().ModulesLocalVisibility) {
  6966. // Cache the fact that this definition is implicitly visible because
  6967. // there is a visible merged definition.
  6968. D->setVisibleDespiteOwningModule();
  6969. }
  6970. return true;
  6971. }
  6972. return false;
  6973. };
  6974. if (DefinitionIsVisible())
  6975. return true;
  6976. // The external source may have additional definitions of this entity that are
  6977. // visible, so complete the redeclaration chain now and ask again.
  6978. if (auto *Source = Context.getExternalSource()) {
  6979. Source->CompleteRedeclChain(D);
  6980. return DefinitionIsVisible();
  6981. }
  6982. return false;
  6983. }
  6984. /// Locks in the inheritance model for the given class and all of its bases.
  6985. static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
  6986. RD = RD->getMostRecentNonInjectedDecl();
  6987. if (!RD->hasAttr<MSInheritanceAttr>()) {
  6988. MSInheritanceAttr::Spelling IM;
  6989. switch (S.MSPointerToMemberRepresentationMethod) {
  6990. case LangOptions::PPTMK_BestCase:
  6991. IM = RD->calculateInheritanceModel();
  6992. break;
  6993. case LangOptions::PPTMK_FullGeneralitySingleInheritance:
  6994. IM = MSInheritanceAttr::Keyword_single_inheritance;
  6995. break;
  6996. case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
  6997. IM = MSInheritanceAttr::Keyword_multiple_inheritance;
  6998. break;
  6999. case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
  7000. IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
  7001. break;
  7002. }
  7003. SourceRange Loc =
  7004. S.ImplicitMSInheritanceAttrLoc.isValid()
  7005. ? S.ImplicitMSInheritanceAttrLoc
  7006. : RD->getSourceRange();
  7007. RD->addAttr(MSInheritanceAttr::CreateImplicit(
  7008. S.getASTContext(),
  7009. /*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
  7010. LangOptions::PPTMK_BestCase,
  7011. Loc, AttributeCommonInfo::AS_Microsoft, IM));
  7012. S.Consumer.AssignInheritanceModel(RD);
  7013. }
  7014. }
  7015. /// The implementation of RequireCompleteType
  7016. bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
  7017. TypeDiagnoser *Diagnoser) {
  7018. // FIXME: Add this assertion to make sure we always get instantiation points.
  7019. // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
  7020. // FIXME: Add this assertion to help us flush out problems with
  7021. // checking for dependent types and type-dependent expressions.
  7022. //
  7023. // assert(!T->isDependentType() &&
  7024. // "Can't ask whether a dependent type is complete");
  7025. if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
  7026. if (!MPTy->getClass()->isDependentType()) {
  7027. if (getLangOpts().CompleteMemberPointers &&
  7028. !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
  7029. RequireCompleteType(Loc, QualType(MPTy->getClass(), 0),
  7030. diag::err_memptr_incomplete))
  7031. return true;
  7032. // We lock in the inheritance model once somebody has asked us to ensure
  7033. // that a pointer-to-member type is complete.
  7034. if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
  7035. (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
  7036. assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
  7037. }
  7038. }
  7039. }
  7040. NamedDecl *Def = nullptr;
  7041. bool Incomplete = T->isIncompleteType(&Def);
  7042. // Check that any necessary explicit specializations are visible. For an
  7043. // enum, we just need the declaration, so don't check this.
  7044. if (Def && !isa<EnumDecl>(Def))
  7045. checkSpecializationVisibility(Loc, Def);
  7046. // If we have a complete type, we're done.
  7047. if (!Incomplete) {
  7048. // If we know about the definition but it is not visible, complain.
  7049. NamedDecl *SuggestedDef = nullptr;
  7050. if (Def &&
  7051. !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
  7052. // If the user is going to see an error here, recover by making the
  7053. // definition visible.
  7054. bool TreatAsComplete = Diagnoser && !isSFINAEContext();
  7055. if (Diagnoser && SuggestedDef)
  7056. diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
  7057. /*Recover*/TreatAsComplete);
  7058. return !TreatAsComplete;
  7059. } else if (Def && !TemplateInstCallbacks.empty()) {
  7060. CodeSynthesisContext TempInst;
  7061. TempInst.Kind = CodeSynthesisContext::Memoization;
  7062. TempInst.Template = Def;
  7063. TempInst.Entity = Def;
  7064. TempInst.PointOfInstantiation = Loc;
  7065. atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
  7066. atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
  7067. }
  7068. return false;
  7069. }
  7070. TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
  7071. ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
  7072. // Give the external source a chance to provide a definition of the type.
  7073. // This is kept separate from completing the redeclaration chain so that
  7074. // external sources such as LLDB can avoid synthesizing a type definition
  7075. // unless it's actually needed.
  7076. if (Tag || IFace) {
  7077. // Avoid diagnosing invalid decls as incomplete.
  7078. if (Def->isInvalidDecl())
  7079. return true;
  7080. // Give the external AST source a chance to complete the type.
  7081. if (auto *Source = Context.getExternalSource()) {
  7082. if (Tag && Tag->hasExternalLexicalStorage())
  7083. Source->CompleteType(Tag);
  7084. if (IFace && IFace->hasExternalLexicalStorage())
  7085. Source->CompleteType(IFace);
  7086. // If the external source completed the type, go through the motions
  7087. // again to ensure we're allowed to use the completed type.
  7088. if (!T->isIncompleteType())
  7089. return RequireCompleteTypeImpl(Loc, T, Diagnoser);
  7090. }
  7091. }
  7092. // If we have a class template specialization or a class member of a
  7093. // class template specialization, or an array with known size of such,
  7094. // try to instantiate it.
  7095. if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
  7096. bool Instantiated = false;
  7097. bool Diagnosed = false;
  7098. if (RD->isDependentContext()) {
  7099. // Don't try to instantiate a dependent class (eg, a member template of
  7100. // an instantiated class template specialization).
  7101. // FIXME: Can this ever happen?
  7102. } else if (auto *ClassTemplateSpec =
  7103. dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
  7104. if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
  7105. runWithSufficientStackSpace(Loc, [&] {
  7106. Diagnosed = InstantiateClassTemplateSpecialization(
  7107. Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
  7108. /*Complain=*/Diagnoser);
  7109. });
  7110. Instantiated = true;
  7111. }
  7112. } else {
  7113. CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
  7114. if (!RD->isBeingDefined() && Pattern) {
  7115. MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
  7116. assert(MSI && "Missing member specialization information?");
  7117. // This record was instantiated from a class within a template.
  7118. if (MSI->getTemplateSpecializationKind() !=
  7119. TSK_ExplicitSpecialization) {
  7120. runWithSufficientStackSpace(Loc, [&] {
  7121. Diagnosed = InstantiateClass(Loc, RD, Pattern,
  7122. getTemplateInstantiationArgs(RD),
  7123. TSK_ImplicitInstantiation,
  7124. /*Complain=*/Diagnoser);
  7125. });
  7126. Instantiated = true;
  7127. }
  7128. }
  7129. }
  7130. if (Instantiated) {
  7131. // Instantiate* might have already complained that the template is not
  7132. // defined, if we asked it to.
  7133. if (Diagnoser && Diagnosed)
  7134. return true;
  7135. // If we instantiated a definition, check that it's usable, even if
  7136. // instantiation produced an error, so that repeated calls to this
  7137. // function give consistent answers.
  7138. if (!T->isIncompleteType())
  7139. return RequireCompleteTypeImpl(Loc, T, Diagnoser);
  7140. }
  7141. }
  7142. // FIXME: If we didn't instantiate a definition because of an explicit
  7143. // specialization declaration, check that it's visible.
  7144. if (!Diagnoser)
  7145. return true;
  7146. Diagnoser->diagnose(*this, Loc, T);
  7147. // If the type was a forward declaration of a class/struct/union
  7148. // type, produce a note.
  7149. if (Tag && !Tag->isInvalidDecl())
  7150. Diag(Tag->getLocation(),
  7151. Tag->isBeingDefined() ? diag::note_type_being_defined
  7152. : diag::note_forward_declaration)
  7153. << Context.getTagDeclType(Tag);
  7154. // If the Objective-C class was a forward declaration, produce a note.
  7155. if (IFace && !IFace->isInvalidDecl())
  7156. Diag(IFace->getLocation(), diag::note_forward_class);
  7157. // If we have external information that we can use to suggest a fix,
  7158. // produce a note.
  7159. if (ExternalSource)
  7160. ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
  7161. return true;
  7162. }
  7163. bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
  7164. unsigned DiagID) {
  7165. BoundTypeDiagnoser<> Diagnoser(DiagID);
  7166. return RequireCompleteType(Loc, T, Diagnoser);
  7167. }
  7168. /// Get diagnostic %select index for tag kind for
  7169. /// literal type diagnostic message.
  7170. /// WARNING: Indexes apply to particular diagnostics only!
  7171. ///
  7172. /// \returns diagnostic %select index.
  7173. static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
  7174. switch (Tag) {
  7175. case TTK_Struct: return 0;
  7176. case TTK_Interface: return 1;
  7177. case TTK_Class: return 2;
  7178. default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
  7179. }
  7180. }
  7181. /// Ensure that the type T is a literal type.
  7182. ///
  7183. /// This routine checks whether the type @p T is a literal type. If @p T is an
  7184. /// incomplete type, an attempt is made to complete it. If @p T is a literal
  7185. /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
  7186. /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
  7187. /// it the type @p T), along with notes explaining why the type is not a
  7188. /// literal type, and returns true.
  7189. ///
  7190. /// @param Loc The location in the source that the non-literal type
  7191. /// diagnostic should refer to.
  7192. ///
  7193. /// @param T The type that this routine is examining for literalness.
  7194. ///
  7195. /// @param Diagnoser Emits a diagnostic if T is not a literal type.
  7196. ///
  7197. /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
  7198. /// @c false otherwise.
  7199. bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
  7200. TypeDiagnoser &Diagnoser) {
  7201. assert(!T->isDependentType() && "type should not be dependent");
  7202. QualType ElemType = Context.getBaseElementType(T);
  7203. if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
  7204. T->isLiteralType(Context))
  7205. return false;
  7206. Diagnoser.diagnose(*this, Loc, T);
  7207. if (T->isVariableArrayType())
  7208. return true;
  7209. const RecordType *RT = ElemType->getAs<RecordType>();
  7210. if (!RT)
  7211. return true;
  7212. const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
  7213. // A partially-defined class type can't be a literal type, because a literal
  7214. // class type must have a trivial destructor (which can't be checked until
  7215. // the class definition is complete).
  7216. if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
  7217. return true;
  7218. // [expr.prim.lambda]p3:
  7219. // This class type is [not] a literal type.
  7220. if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
  7221. Diag(RD->getLocation(), diag::note_non_literal_lambda);
  7222. return true;
  7223. }
  7224. // If the class has virtual base classes, then it's not an aggregate, and
  7225. // cannot have any constexpr constructors or a trivial default constructor,
  7226. // so is non-literal. This is better to diagnose than the resulting absence
  7227. // of constexpr constructors.
  7228. if (RD->getNumVBases()) {
  7229. Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
  7230. << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
  7231. for (const auto &I : RD->vbases())
  7232. Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
  7233. << I.getSourceRange();
  7234. } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
  7235. !RD->hasTrivialDefaultConstructor()) {
  7236. Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
  7237. } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
  7238. for (const auto &I : RD->bases()) {
  7239. if (!I.getType()->isLiteralType(Context)) {
  7240. Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
  7241. << RD << I.getType() << I.getSourceRange();
  7242. return true;
  7243. }
  7244. }
  7245. for (const auto *I : RD->fields()) {
  7246. if (!I->getType()->isLiteralType(Context) ||
  7247. I->getType().isVolatileQualified()) {
  7248. Diag(I->getLocation(), diag::note_non_literal_field)
  7249. << RD << I << I->getType()
  7250. << I->getType().isVolatileQualified();
  7251. return true;
  7252. }
  7253. }
  7254. } else if (!RD->hasTrivialDestructor()) {
  7255. // All fields and bases are of literal types, so have trivial destructors.
  7256. // If this class's destructor is non-trivial it must be user-declared.
  7257. CXXDestructorDecl *Dtor = RD->getDestructor();
  7258. assert(Dtor && "class has literal fields and bases but no dtor?");
  7259. if (!Dtor)
  7260. return true;
  7261. Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
  7262. diag::note_non_literal_user_provided_dtor :
  7263. diag::note_non_literal_nontrivial_dtor) << RD;
  7264. if (!Dtor->isUserProvided())
  7265. SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
  7266. /*Diagnose*/true);
  7267. }
  7268. return true;
  7269. }
  7270. bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
  7271. BoundTypeDiagnoser<> Diagnoser(DiagID);
  7272. return RequireLiteralType(Loc, T, Diagnoser);
  7273. }
  7274. /// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
  7275. /// by the nested-name-specifier contained in SS, and that is (re)declared by
  7276. /// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
  7277. QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
  7278. const CXXScopeSpec &SS, QualType T,
  7279. TagDecl *OwnedTagDecl) {
  7280. if (T.isNull())
  7281. return T;
  7282. NestedNameSpecifier *NNS;
  7283. if (SS.isValid())
  7284. NNS = SS.getScopeRep();
  7285. else {
  7286. if (Keyword == ETK_None)
  7287. return T;
  7288. NNS = nullptr;
  7289. }
  7290. return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl);
  7291. }
  7292. QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
  7293. assert(!E->hasPlaceholderType() && "unexpected placeholder");
  7294. if (!getLangOpts().CPlusPlus && E->refersToBitField())
  7295. Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
  7296. if (!E->isTypeDependent()) {
  7297. QualType T = E->getType();
  7298. if (const TagType *TT = T->getAs<TagType>())
  7299. DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
  7300. }
  7301. return Context.getTypeOfExprType(E);
  7302. }
  7303. /// getDecltypeForExpr - Given an expr, will return the decltype for
  7304. /// that expression, according to the rules in C++11
  7305. /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
  7306. static QualType getDecltypeForExpr(Sema &S, Expr *E) {
  7307. if (E->isTypeDependent())
  7308. return S.Context.DependentTy;
  7309. // C++11 [dcl.type.simple]p4:
  7310. // The type denoted by decltype(e) is defined as follows:
  7311. //
  7312. // - if e is an unparenthesized id-expression or an unparenthesized class
  7313. // member access (5.2.5), decltype(e) is the type of the entity named
  7314. // by e. If there is no such entity, or if e names a set of overloaded
  7315. // functions, the program is ill-formed;
  7316. //
  7317. // We apply the same rules for Objective-C ivar and property references.
  7318. if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
  7319. const ValueDecl *VD = DRE->getDecl();
  7320. return VD->getType();
  7321. } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
  7322. if (const ValueDecl *VD = ME->getMemberDecl())
  7323. if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
  7324. return VD->getType();
  7325. } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
  7326. return IR->getDecl()->getType();
  7327. } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
  7328. if (PR->isExplicitProperty())
  7329. return PR->getExplicitProperty()->getType();
  7330. } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
  7331. return PE->getType();
  7332. }
  7333. // C++11 [expr.lambda.prim]p18:
  7334. // Every occurrence of decltype((x)) where x is a possibly
  7335. // parenthesized id-expression that names an entity of automatic
  7336. // storage duration is treated as if x were transformed into an
  7337. // access to a corresponding data member of the closure type that
  7338. // would have been declared if x were an odr-use of the denoted
  7339. // entity.
  7340. using namespace sema;
  7341. if (S.getCurLambda()) {
  7342. if (isa<ParenExpr>(E)) {
  7343. if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
  7344. if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
  7345. QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
  7346. if (!T.isNull())
  7347. return S.Context.getLValueReferenceType(T);
  7348. }
  7349. }
  7350. }
  7351. }
  7352. // C++11 [dcl.type.simple]p4:
  7353. // [...]
  7354. QualType T = E->getType();
  7355. switch (E->getValueKind()) {
  7356. // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
  7357. // type of e;
  7358. case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
  7359. // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
  7360. // type of e;
  7361. case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
  7362. // - otherwise, decltype(e) is the type of e.
  7363. case VK_RValue: break;
  7364. }
  7365. return T;
  7366. }
  7367. QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
  7368. bool AsUnevaluated) {
  7369. assert(!E->hasPlaceholderType() && "unexpected placeholder");
  7370. if (AsUnevaluated && CodeSynthesisContexts.empty() &&
  7371. E->HasSideEffects(Context, false)) {
  7372. // The expression operand for decltype is in an unevaluated expression
  7373. // context, so side effects could result in unintended consequences.
  7374. Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
  7375. }
  7376. return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
  7377. }
  7378. QualType Sema::BuildUnaryTransformType(QualType BaseType,
  7379. UnaryTransformType::UTTKind UKind,
  7380. SourceLocation Loc) {
  7381. switch (UKind) {
  7382. case UnaryTransformType::EnumUnderlyingType:
  7383. if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
  7384. Diag(Loc, diag::err_only_enums_have_underlying_types);
  7385. return QualType();
  7386. } else {
  7387. QualType Underlying = BaseType;
  7388. if (!BaseType->isDependentType()) {
  7389. // The enum could be incomplete if we're parsing its definition or
  7390. // recovering from an error.
  7391. NamedDecl *FwdDecl = nullptr;
  7392. if (BaseType->isIncompleteType(&FwdDecl)) {
  7393. Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
  7394. Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
  7395. return QualType();
  7396. }
  7397. EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
  7398. assert(ED && "EnumType has no EnumDecl");
  7399. DiagnoseUseOfDecl(ED, Loc);
  7400. Underlying = ED->getIntegerType();
  7401. assert(!Underlying.isNull());
  7402. }
  7403. return Context.getUnaryTransformType(BaseType, Underlying,
  7404. UnaryTransformType::EnumUnderlyingType);
  7405. }
  7406. }
  7407. llvm_unreachable("unknown unary transform type");
  7408. }
  7409. QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
  7410. if (!T->isDependentType()) {
  7411. // FIXME: It isn't entirely clear whether incomplete atomic types
  7412. // are allowed or not; for simplicity, ban them for the moment.
  7413. if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
  7414. return QualType();
  7415. int DisallowedKind = -1;
  7416. if (T->isArrayType())
  7417. DisallowedKind = 1;
  7418. else if (T->isFunctionType())
  7419. DisallowedKind = 2;
  7420. else if (T->isReferenceType())
  7421. DisallowedKind = 3;
  7422. else if (T->isAtomicType())
  7423. DisallowedKind = 4;
  7424. else if (T.hasQualifiers())
  7425. DisallowedKind = 5;
  7426. else if (!T.isTriviallyCopyableType(Context))
  7427. // Some other non-trivially-copyable type (probably a C++ class)
  7428. DisallowedKind = 6;
  7429. if (DisallowedKind != -1) {
  7430. Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
  7431. return QualType();
  7432. }
  7433. // FIXME: Do we need any handling for ARC here?
  7434. }
  7435. // Build the pointer type.
  7436. return Context.getAtomicType(T);
  7437. }