Expr.cpp 164 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673
  1. //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
  2. //
  3. // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
  4. // See https://llvm.org/LICENSE.txt for license information.
  5. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
  6. //
  7. //===----------------------------------------------------------------------===//
  8. //
  9. // This file implements the Expr class and subclasses.
  10. //
  11. //===----------------------------------------------------------------------===//
  12. #include "clang/AST/Expr.h"
  13. #include "clang/AST/APValue.h"
  14. #include "clang/AST/ASTContext.h"
  15. #include "clang/AST/Attr.h"
  16. #include "clang/AST/DeclCXX.h"
  17. #include "clang/AST/DeclObjC.h"
  18. #include "clang/AST/DeclTemplate.h"
  19. #include "clang/AST/EvaluatedExprVisitor.h"
  20. #include "clang/AST/ExprCXX.h"
  21. #include "clang/AST/Mangle.h"
  22. #include "clang/AST/RecordLayout.h"
  23. #include "clang/AST/StmtVisitor.h"
  24. #include "clang/Basic/Builtins.h"
  25. #include "clang/Basic/CharInfo.h"
  26. #include "clang/Basic/SourceManager.h"
  27. #include "clang/Basic/TargetInfo.h"
  28. #include "clang/Lex/Lexer.h"
  29. #include "clang/Lex/LiteralSupport.h"
  30. #include "llvm/Support/ErrorHandling.h"
  31. #include "llvm/Support/raw_ostream.h"
  32. #include <algorithm>
  33. #include <cstring>
  34. using namespace clang;
  35. const Expr *Expr::getBestDynamicClassTypeExpr() const {
  36. const Expr *E = this;
  37. while (true) {
  38. E = E->ignoreParenBaseCasts();
  39. // Follow the RHS of a comma operator.
  40. if (auto *BO = dyn_cast<BinaryOperator>(E)) {
  41. if (BO->getOpcode() == BO_Comma) {
  42. E = BO->getRHS();
  43. continue;
  44. }
  45. }
  46. // Step into initializer for materialized temporaries.
  47. if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
  48. E = MTE->GetTemporaryExpr();
  49. continue;
  50. }
  51. break;
  52. }
  53. return E;
  54. }
  55. const CXXRecordDecl *Expr::getBestDynamicClassType() const {
  56. const Expr *E = getBestDynamicClassTypeExpr();
  57. QualType DerivedType = E->getType();
  58. if (const PointerType *PTy = DerivedType->getAs<PointerType>())
  59. DerivedType = PTy->getPointeeType();
  60. if (DerivedType->isDependentType())
  61. return nullptr;
  62. const RecordType *Ty = DerivedType->castAs<RecordType>();
  63. Decl *D = Ty->getDecl();
  64. return cast<CXXRecordDecl>(D);
  65. }
  66. const Expr *Expr::skipRValueSubobjectAdjustments(
  67. SmallVectorImpl<const Expr *> &CommaLHSs,
  68. SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
  69. const Expr *E = this;
  70. while (true) {
  71. E = E->IgnoreParens();
  72. if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
  73. if ((CE->getCastKind() == CK_DerivedToBase ||
  74. CE->getCastKind() == CK_UncheckedDerivedToBase) &&
  75. E->getType()->isRecordType()) {
  76. E = CE->getSubExpr();
  77. auto *Derived =
  78. cast<CXXRecordDecl>(E->getType()->castAs<RecordType>()->getDecl());
  79. Adjustments.push_back(SubobjectAdjustment(CE, Derived));
  80. continue;
  81. }
  82. if (CE->getCastKind() == CK_NoOp) {
  83. E = CE->getSubExpr();
  84. continue;
  85. }
  86. } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
  87. if (!ME->isArrow()) {
  88. assert(ME->getBase()->getType()->isRecordType());
  89. if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
  90. if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
  91. E = ME->getBase();
  92. Adjustments.push_back(SubobjectAdjustment(Field));
  93. continue;
  94. }
  95. }
  96. }
  97. } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
  98. if (BO->getOpcode() == BO_PtrMemD) {
  99. assert(BO->getRHS()->isRValue());
  100. E = BO->getLHS();
  101. const MemberPointerType *MPT =
  102. BO->getRHS()->getType()->getAs<MemberPointerType>();
  103. Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
  104. continue;
  105. } else if (BO->getOpcode() == BO_Comma) {
  106. CommaLHSs.push_back(BO->getLHS());
  107. E = BO->getRHS();
  108. continue;
  109. }
  110. }
  111. // Nothing changed.
  112. break;
  113. }
  114. return E;
  115. }
  116. /// isKnownToHaveBooleanValue - Return true if this is an integer expression
  117. /// that is known to return 0 or 1. This happens for _Bool/bool expressions
  118. /// but also int expressions which are produced by things like comparisons in
  119. /// C.
  120. bool Expr::isKnownToHaveBooleanValue() const {
  121. const Expr *E = IgnoreParens();
  122. // If this value has _Bool type, it is obvious 0/1.
  123. if (E->getType()->isBooleanType()) return true;
  124. // If this is a non-scalar-integer type, we don't care enough to try.
  125. if (!E->getType()->isIntegralOrEnumerationType()) return false;
  126. if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
  127. switch (UO->getOpcode()) {
  128. case UO_Plus:
  129. return UO->getSubExpr()->isKnownToHaveBooleanValue();
  130. case UO_LNot:
  131. return true;
  132. default:
  133. return false;
  134. }
  135. }
  136. // Only look through implicit casts. If the user writes
  137. // '(int) (a && b)' treat it as an arbitrary int.
  138. if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
  139. return CE->getSubExpr()->isKnownToHaveBooleanValue();
  140. if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
  141. switch (BO->getOpcode()) {
  142. default: return false;
  143. case BO_LT: // Relational operators.
  144. case BO_GT:
  145. case BO_LE:
  146. case BO_GE:
  147. case BO_EQ: // Equality operators.
  148. case BO_NE:
  149. case BO_LAnd: // AND operator.
  150. case BO_LOr: // Logical OR operator.
  151. return true;
  152. case BO_And: // Bitwise AND operator.
  153. case BO_Xor: // Bitwise XOR operator.
  154. case BO_Or: // Bitwise OR operator.
  155. // Handle things like (x==2)|(y==12).
  156. return BO->getLHS()->isKnownToHaveBooleanValue() &&
  157. BO->getRHS()->isKnownToHaveBooleanValue();
  158. case BO_Comma:
  159. case BO_Assign:
  160. return BO->getRHS()->isKnownToHaveBooleanValue();
  161. }
  162. }
  163. if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
  164. return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
  165. CO->getFalseExpr()->isKnownToHaveBooleanValue();
  166. if (isa<ObjCBoolLiteralExpr>(E))
  167. return true;
  168. if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
  169. return OVE->getSourceExpr()->isKnownToHaveBooleanValue();
  170. return false;
  171. }
  172. // Amusing macro metaprogramming hack: check whether a class provides
  173. // a more specific implementation of getExprLoc().
  174. //
  175. // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
  176. namespace {
  177. /// This implementation is used when a class provides a custom
  178. /// implementation of getExprLoc.
  179. template <class E, class T>
  180. SourceLocation getExprLocImpl(const Expr *expr,
  181. SourceLocation (T::*v)() const) {
  182. return static_cast<const E*>(expr)->getExprLoc();
  183. }
  184. /// This implementation is used when a class doesn't provide
  185. /// a custom implementation of getExprLoc. Overload resolution
  186. /// should pick it over the implementation above because it's
  187. /// more specialized according to function template partial ordering.
  188. template <class E>
  189. SourceLocation getExprLocImpl(const Expr *expr,
  190. SourceLocation (Expr::*v)() const) {
  191. return static_cast<const E *>(expr)->getBeginLoc();
  192. }
  193. }
  194. SourceLocation Expr::getExprLoc() const {
  195. switch (getStmtClass()) {
  196. case Stmt::NoStmtClass: llvm_unreachable("statement without class");
  197. #define ABSTRACT_STMT(type)
  198. #define STMT(type, base) \
  199. case Stmt::type##Class: break;
  200. #define EXPR(type, base) \
  201. case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
  202. #include "clang/AST/StmtNodes.inc"
  203. }
  204. llvm_unreachable("unknown expression kind");
  205. }
  206. //===----------------------------------------------------------------------===//
  207. // Primary Expressions.
  208. //===----------------------------------------------------------------------===//
  209. static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) {
  210. assert((Kind == ConstantExpr::RSK_APValue ||
  211. Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) &&
  212. "Invalid StorageKind Value");
  213. }
  214. ConstantExpr::ResultStorageKind
  215. ConstantExpr::getStorageKind(const APValue &Value) {
  216. switch (Value.getKind()) {
  217. case APValue::None:
  218. case APValue::Indeterminate:
  219. return ConstantExpr::RSK_None;
  220. case APValue::Int:
  221. if (!Value.getInt().needsCleanup())
  222. return ConstantExpr::RSK_Int64;
  223. LLVM_FALLTHROUGH;
  224. default:
  225. return ConstantExpr::RSK_APValue;
  226. }
  227. }
  228. ConstantExpr::ResultStorageKind
  229. ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
  230. if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
  231. return ConstantExpr::RSK_Int64;
  232. return ConstantExpr::RSK_APValue;
  233. }
  234. void ConstantExpr::DefaultInit(ResultStorageKind StorageKind) {
  235. ConstantExprBits.ResultKind = StorageKind;
  236. ConstantExprBits.APValueKind = APValue::None;
  237. ConstantExprBits.HasCleanup = false;
  238. if (StorageKind == ConstantExpr::RSK_APValue)
  239. ::new (getTrailingObjects<APValue>()) APValue();
  240. }
  241. ConstantExpr::ConstantExpr(Expr *subexpr, ResultStorageKind StorageKind)
  242. : FullExpr(ConstantExprClass, subexpr) {
  243. DefaultInit(StorageKind);
  244. }
  245. ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
  246. ResultStorageKind StorageKind) {
  247. assert(!isa<ConstantExpr>(E));
  248. AssertResultStorageKind(StorageKind);
  249. unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
  250. StorageKind == ConstantExpr::RSK_APValue,
  251. StorageKind == ConstantExpr::RSK_Int64);
  252. void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
  253. ConstantExpr *Self = new (Mem) ConstantExpr(E, StorageKind);
  254. return Self;
  255. }
  256. ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
  257. const APValue &Result) {
  258. ResultStorageKind StorageKind = getStorageKind(Result);
  259. ConstantExpr *Self = Create(Context, E, StorageKind);
  260. Self->SetResult(Result, Context);
  261. return Self;
  262. }
  263. ConstantExpr::ConstantExpr(ResultStorageKind StorageKind, EmptyShell Empty)
  264. : FullExpr(ConstantExprClass, Empty) {
  265. DefaultInit(StorageKind);
  266. }
  267. ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
  268. ResultStorageKind StorageKind,
  269. EmptyShell Empty) {
  270. AssertResultStorageKind(StorageKind);
  271. unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
  272. StorageKind == ConstantExpr::RSK_APValue,
  273. StorageKind == ConstantExpr::RSK_Int64);
  274. void *Mem = Context.Allocate(Size, alignof(ConstantExpr));
  275. ConstantExpr *Self = new (Mem) ConstantExpr(StorageKind, Empty);
  276. return Self;
  277. }
  278. void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
  279. assert(getStorageKind(Value) == ConstantExprBits.ResultKind &&
  280. "Invalid storage for this value kind");
  281. ConstantExprBits.APValueKind = Value.getKind();
  282. switch (ConstantExprBits.ResultKind) {
  283. case RSK_None:
  284. return;
  285. case RSK_Int64:
  286. Int64Result() = *Value.getInt().getRawData();
  287. ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
  288. ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
  289. return;
  290. case RSK_APValue:
  291. if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
  292. ConstantExprBits.HasCleanup = true;
  293. Context.addDestruction(&APValueResult());
  294. }
  295. APValueResult() = std::move(Value);
  296. return;
  297. }
  298. llvm_unreachable("Invalid ResultKind Bits");
  299. }
  300. llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
  301. switch (ConstantExprBits.ResultKind) {
  302. case ConstantExpr::RSK_APValue:
  303. return APValueResult().getInt();
  304. case ConstantExpr::RSK_Int64:
  305. return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
  306. ConstantExprBits.IsUnsigned);
  307. default:
  308. llvm_unreachable("invalid Accessor");
  309. }
  310. }
  311. APValue ConstantExpr::getAPValueResult() const {
  312. switch (ConstantExprBits.ResultKind) {
  313. case ConstantExpr::RSK_APValue:
  314. return APValueResult();
  315. case ConstantExpr::RSK_Int64:
  316. return APValue(
  317. llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
  318. ConstantExprBits.IsUnsigned));
  319. case ConstantExpr::RSK_None:
  320. return APValue();
  321. }
  322. llvm_unreachable("invalid ResultKind");
  323. }
  324. /// Compute the type-, value-, and instantiation-dependence of a
  325. /// declaration reference
  326. /// based on the declaration being referenced.
  327. static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
  328. QualType T, bool &TypeDependent,
  329. bool &ValueDependent,
  330. bool &InstantiationDependent) {
  331. TypeDependent = false;
  332. ValueDependent = false;
  333. InstantiationDependent = false;
  334. // (TD) C++ [temp.dep.expr]p3:
  335. // An id-expression is type-dependent if it contains:
  336. //
  337. // and
  338. //
  339. // (VD) C++ [temp.dep.constexpr]p2:
  340. // An identifier is value-dependent if it is:
  341. // (TD) - an identifier that was declared with dependent type
  342. // (VD) - a name declared with a dependent type,
  343. if (T->isDependentType()) {
  344. TypeDependent = true;
  345. ValueDependent = true;
  346. InstantiationDependent = true;
  347. return;
  348. } else if (T->isInstantiationDependentType()) {
  349. InstantiationDependent = true;
  350. }
  351. // (TD) - a conversion-function-id that specifies a dependent type
  352. if (D->getDeclName().getNameKind()
  353. == DeclarationName::CXXConversionFunctionName) {
  354. QualType T = D->getDeclName().getCXXNameType();
  355. if (T->isDependentType()) {
  356. TypeDependent = true;
  357. ValueDependent = true;
  358. InstantiationDependent = true;
  359. return;
  360. }
  361. if (T->isInstantiationDependentType())
  362. InstantiationDependent = true;
  363. }
  364. // (VD) - the name of a non-type template parameter,
  365. if (isa<NonTypeTemplateParmDecl>(D)) {
  366. ValueDependent = true;
  367. InstantiationDependent = true;
  368. return;
  369. }
  370. // (VD) - a constant with integral or enumeration type and is
  371. // initialized with an expression that is value-dependent.
  372. // (VD) - a constant with literal type and is initialized with an
  373. // expression that is value-dependent [C++11].
  374. // (VD) - FIXME: Missing from the standard:
  375. // - an entity with reference type and is initialized with an
  376. // expression that is value-dependent [C++11]
  377. if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
  378. if ((Ctx.getLangOpts().CPlusPlus11 ?
  379. Var->getType()->isLiteralType(Ctx) :
  380. Var->getType()->isIntegralOrEnumerationType()) &&
  381. (Var->getType().isConstQualified() ||
  382. Var->getType()->isReferenceType())) {
  383. if (const Expr *Init = Var->getAnyInitializer())
  384. if (Init->isValueDependent()) {
  385. ValueDependent = true;
  386. InstantiationDependent = true;
  387. }
  388. }
  389. // (VD) - FIXME: Missing from the standard:
  390. // - a member function or a static data member of the current
  391. // instantiation
  392. if (Var->isStaticDataMember() &&
  393. Var->getDeclContext()->isDependentContext()) {
  394. ValueDependent = true;
  395. InstantiationDependent = true;
  396. TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
  397. if (TInfo->getType()->isIncompleteArrayType())
  398. TypeDependent = true;
  399. }
  400. return;
  401. }
  402. // (VD) - FIXME: Missing from the standard:
  403. // - a member function or a static data member of the current
  404. // instantiation
  405. if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
  406. ValueDependent = true;
  407. InstantiationDependent = true;
  408. }
  409. }
  410. void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
  411. bool TypeDependent = false;
  412. bool ValueDependent = false;
  413. bool InstantiationDependent = false;
  414. computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
  415. ValueDependent, InstantiationDependent);
  416. ExprBits.TypeDependent |= TypeDependent;
  417. ExprBits.ValueDependent |= ValueDependent;
  418. ExprBits.InstantiationDependent |= InstantiationDependent;
  419. // Is the declaration a parameter pack?
  420. if (getDecl()->isParameterPack())
  421. ExprBits.ContainsUnexpandedParameterPack = true;
  422. }
  423. DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
  424. bool RefersToEnclosingVariableOrCapture, QualType T,
  425. ExprValueKind VK, SourceLocation L,
  426. const DeclarationNameLoc &LocInfo,
  427. NonOdrUseReason NOUR)
  428. : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
  429. D(D), DNLoc(LocInfo) {
  430. DeclRefExprBits.HasQualifier = false;
  431. DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
  432. DeclRefExprBits.HasFoundDecl = false;
  433. DeclRefExprBits.HadMultipleCandidates = false;
  434. DeclRefExprBits.RefersToEnclosingVariableOrCapture =
  435. RefersToEnclosingVariableOrCapture;
  436. DeclRefExprBits.NonOdrUseReason = NOUR;
  437. DeclRefExprBits.Loc = L;
  438. computeDependence(Ctx);
  439. }
  440. DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
  441. NestedNameSpecifierLoc QualifierLoc,
  442. SourceLocation TemplateKWLoc, ValueDecl *D,
  443. bool RefersToEnclosingVariableOrCapture,
  444. const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
  445. const TemplateArgumentListInfo *TemplateArgs,
  446. QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
  447. : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
  448. D(D), DNLoc(NameInfo.getInfo()) {
  449. DeclRefExprBits.Loc = NameInfo.getLoc();
  450. DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
  451. if (QualifierLoc) {
  452. new (getTrailingObjects<NestedNameSpecifierLoc>())
  453. NestedNameSpecifierLoc(QualifierLoc);
  454. auto *NNS = QualifierLoc.getNestedNameSpecifier();
  455. if (NNS->isInstantiationDependent())
  456. ExprBits.InstantiationDependent = true;
  457. if (NNS->containsUnexpandedParameterPack())
  458. ExprBits.ContainsUnexpandedParameterPack = true;
  459. }
  460. DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
  461. if (FoundD)
  462. *getTrailingObjects<NamedDecl *>() = FoundD;
  463. DeclRefExprBits.HasTemplateKWAndArgsInfo
  464. = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
  465. DeclRefExprBits.RefersToEnclosingVariableOrCapture =
  466. RefersToEnclosingVariableOrCapture;
  467. DeclRefExprBits.NonOdrUseReason = NOUR;
  468. if (TemplateArgs) {
  469. bool Dependent = false;
  470. bool InstantiationDependent = false;
  471. bool ContainsUnexpandedParameterPack = false;
  472. getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
  473. TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
  474. Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
  475. assert(!Dependent && "built a DeclRefExpr with dependent template args");
  476. ExprBits.InstantiationDependent |= InstantiationDependent;
  477. ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
  478. } else if (TemplateKWLoc.isValid()) {
  479. getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
  480. TemplateKWLoc);
  481. }
  482. DeclRefExprBits.HadMultipleCandidates = 0;
  483. computeDependence(Ctx);
  484. }
  485. DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
  486. NestedNameSpecifierLoc QualifierLoc,
  487. SourceLocation TemplateKWLoc, ValueDecl *D,
  488. bool RefersToEnclosingVariableOrCapture,
  489. SourceLocation NameLoc, QualType T,
  490. ExprValueKind VK, NamedDecl *FoundD,
  491. const TemplateArgumentListInfo *TemplateArgs,
  492. NonOdrUseReason NOUR) {
  493. return Create(Context, QualifierLoc, TemplateKWLoc, D,
  494. RefersToEnclosingVariableOrCapture,
  495. DeclarationNameInfo(D->getDeclName(), NameLoc),
  496. T, VK, FoundD, TemplateArgs, NOUR);
  497. }
  498. DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
  499. NestedNameSpecifierLoc QualifierLoc,
  500. SourceLocation TemplateKWLoc, ValueDecl *D,
  501. bool RefersToEnclosingVariableOrCapture,
  502. const DeclarationNameInfo &NameInfo,
  503. QualType T, ExprValueKind VK,
  504. NamedDecl *FoundD,
  505. const TemplateArgumentListInfo *TemplateArgs,
  506. NonOdrUseReason NOUR) {
  507. // Filter out cases where the found Decl is the same as the value refenenced.
  508. if (D == FoundD)
  509. FoundD = nullptr;
  510. bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
  511. std::size_t Size =
  512. totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
  513. ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
  514. QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
  515. HasTemplateKWAndArgsInfo ? 1 : 0,
  516. TemplateArgs ? TemplateArgs->size() : 0);
  517. void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
  518. return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
  519. RefersToEnclosingVariableOrCapture, NameInfo,
  520. FoundD, TemplateArgs, T, VK, NOUR);
  521. }
  522. DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
  523. bool HasQualifier,
  524. bool HasFoundDecl,
  525. bool HasTemplateKWAndArgsInfo,
  526. unsigned NumTemplateArgs) {
  527. assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
  528. std::size_t Size =
  529. totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
  530. ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
  531. HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
  532. NumTemplateArgs);
  533. void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
  534. return new (Mem) DeclRefExpr(EmptyShell());
  535. }
  536. SourceLocation DeclRefExpr::getBeginLoc() const {
  537. if (hasQualifier())
  538. return getQualifierLoc().getBeginLoc();
  539. return getNameInfo().getBeginLoc();
  540. }
  541. SourceLocation DeclRefExpr::getEndLoc() const {
  542. if (hasExplicitTemplateArgs())
  543. return getRAngleLoc();
  544. return getNameInfo().getEndLoc();
  545. }
  546. PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK,
  547. StringLiteral *SL)
  548. : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
  549. FNTy->isDependentType(), FNTy->isDependentType(),
  550. FNTy->isInstantiationDependentType(),
  551. /*ContainsUnexpandedParameterPack=*/false) {
  552. PredefinedExprBits.Kind = IK;
  553. assert((getIdentKind() == IK) &&
  554. "IdentKind do not fit in PredefinedExprBitfields!");
  555. bool HasFunctionName = SL != nullptr;
  556. PredefinedExprBits.HasFunctionName = HasFunctionName;
  557. PredefinedExprBits.Loc = L;
  558. if (HasFunctionName)
  559. setFunctionName(SL);
  560. }
  561. PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
  562. : Expr(PredefinedExprClass, Empty) {
  563. PredefinedExprBits.HasFunctionName = HasFunctionName;
  564. }
  565. PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
  566. QualType FNTy, IdentKind IK,
  567. StringLiteral *SL) {
  568. bool HasFunctionName = SL != nullptr;
  569. void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
  570. alignof(PredefinedExpr));
  571. return new (Mem) PredefinedExpr(L, FNTy, IK, SL);
  572. }
  573. PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
  574. bool HasFunctionName) {
  575. void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(HasFunctionName),
  576. alignof(PredefinedExpr));
  577. return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
  578. }
  579. StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) {
  580. switch (IK) {
  581. case Func:
  582. return "__func__";
  583. case Function:
  584. return "__FUNCTION__";
  585. case FuncDName:
  586. return "__FUNCDNAME__";
  587. case LFunction:
  588. return "L__FUNCTION__";
  589. case PrettyFunction:
  590. return "__PRETTY_FUNCTION__";
  591. case FuncSig:
  592. return "__FUNCSIG__";
  593. case LFuncSig:
  594. return "L__FUNCSIG__";
  595. case PrettyFunctionNoVirtual:
  596. break;
  597. }
  598. llvm_unreachable("Unknown ident kind for PredefinedExpr");
  599. }
  600. // FIXME: Maybe this should use DeclPrinter with a special "print predefined
  601. // expr" policy instead.
  602. std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) {
  603. ASTContext &Context = CurrentDecl->getASTContext();
  604. if (IK == PredefinedExpr::FuncDName) {
  605. if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
  606. std::unique_ptr<MangleContext> MC;
  607. MC.reset(Context.createMangleContext());
  608. if (MC->shouldMangleDeclName(ND)) {
  609. SmallString<256> Buffer;
  610. llvm::raw_svector_ostream Out(Buffer);
  611. if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
  612. MC->mangleCXXCtor(CD, Ctor_Base, Out);
  613. else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
  614. MC->mangleCXXDtor(DD, Dtor_Base, Out);
  615. else
  616. MC->mangleName(ND, Out);
  617. if (!Buffer.empty() && Buffer.front() == '\01')
  618. return Buffer.substr(1);
  619. return Buffer.str();
  620. } else
  621. return ND->getIdentifier()->getName();
  622. }
  623. return "";
  624. }
  625. if (isa<BlockDecl>(CurrentDecl)) {
  626. // For blocks we only emit something if it is enclosed in a function
  627. // For top-level block we'd like to include the name of variable, but we
  628. // don't have it at this point.
  629. auto DC = CurrentDecl->getDeclContext();
  630. if (DC->isFileContext())
  631. return "";
  632. SmallString<256> Buffer;
  633. llvm::raw_svector_ostream Out(Buffer);
  634. if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
  635. // For nested blocks, propagate up to the parent.
  636. Out << ComputeName(IK, DCBlock);
  637. else if (auto *DCDecl = dyn_cast<Decl>(DC))
  638. Out << ComputeName(IK, DCDecl) << "_block_invoke";
  639. return Out.str();
  640. }
  641. if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
  642. if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual &&
  643. IK != FuncSig && IK != LFuncSig)
  644. return FD->getNameAsString();
  645. SmallString<256> Name;
  646. llvm::raw_svector_ostream Out(Name);
  647. if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
  648. if (MD->isVirtual() && IK != PrettyFunctionNoVirtual)
  649. Out << "virtual ";
  650. if (MD->isStatic())
  651. Out << "static ";
  652. }
  653. PrintingPolicy Policy(Context.getLangOpts());
  654. std::string Proto;
  655. llvm::raw_string_ostream POut(Proto);
  656. const FunctionDecl *Decl = FD;
  657. if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
  658. Decl = Pattern;
  659. const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
  660. const FunctionProtoType *FT = nullptr;
  661. if (FD->hasWrittenPrototype())
  662. FT = dyn_cast<FunctionProtoType>(AFT);
  663. if (IK == FuncSig || IK == LFuncSig) {
  664. switch (AFT->getCallConv()) {
  665. case CC_C: POut << "__cdecl "; break;
  666. case CC_X86StdCall: POut << "__stdcall "; break;
  667. case CC_X86FastCall: POut << "__fastcall "; break;
  668. case CC_X86ThisCall: POut << "__thiscall "; break;
  669. case CC_X86VectorCall: POut << "__vectorcall "; break;
  670. case CC_X86RegCall: POut << "__regcall "; break;
  671. // Only bother printing the conventions that MSVC knows about.
  672. default: break;
  673. }
  674. }
  675. FD->printQualifiedName(POut, Policy);
  676. POut << "(";
  677. if (FT) {
  678. for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
  679. if (i) POut << ", ";
  680. POut << Decl->getParamDecl(i)->getType().stream(Policy);
  681. }
  682. if (FT->isVariadic()) {
  683. if (FD->getNumParams()) POut << ", ";
  684. POut << "...";
  685. } else if ((IK == FuncSig || IK == LFuncSig ||
  686. !Context.getLangOpts().CPlusPlus) &&
  687. !Decl->getNumParams()) {
  688. POut << "void";
  689. }
  690. }
  691. POut << ")";
  692. if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
  693. assert(FT && "We must have a written prototype in this case.");
  694. if (FT->isConst())
  695. POut << " const";
  696. if (FT->isVolatile())
  697. POut << " volatile";
  698. RefQualifierKind Ref = MD->getRefQualifier();
  699. if (Ref == RQ_LValue)
  700. POut << " &";
  701. else if (Ref == RQ_RValue)
  702. POut << " &&";
  703. }
  704. typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
  705. SpecsTy Specs;
  706. const DeclContext *Ctx = FD->getDeclContext();
  707. while (Ctx && isa<NamedDecl>(Ctx)) {
  708. const ClassTemplateSpecializationDecl *Spec
  709. = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
  710. if (Spec && !Spec->isExplicitSpecialization())
  711. Specs.push_back(Spec);
  712. Ctx = Ctx->getParent();
  713. }
  714. std::string TemplateParams;
  715. llvm::raw_string_ostream TOut(TemplateParams);
  716. for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
  717. I != E; ++I) {
  718. const TemplateParameterList *Params
  719. = (*I)->getSpecializedTemplate()->getTemplateParameters();
  720. const TemplateArgumentList &Args = (*I)->getTemplateArgs();
  721. assert(Params->size() == Args.size());
  722. for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
  723. StringRef Param = Params->getParam(i)->getName();
  724. if (Param.empty()) continue;
  725. TOut << Param << " = ";
  726. Args.get(i).print(Policy, TOut);
  727. TOut << ", ";
  728. }
  729. }
  730. FunctionTemplateSpecializationInfo *FSI
  731. = FD->getTemplateSpecializationInfo();
  732. if (FSI && !FSI->isExplicitSpecialization()) {
  733. const TemplateParameterList* Params
  734. = FSI->getTemplate()->getTemplateParameters();
  735. const TemplateArgumentList* Args = FSI->TemplateArguments;
  736. assert(Params->size() == Args->size());
  737. for (unsigned i = 0, e = Params->size(); i != e; ++i) {
  738. StringRef Param = Params->getParam(i)->getName();
  739. if (Param.empty()) continue;
  740. TOut << Param << " = ";
  741. Args->get(i).print(Policy, TOut);
  742. TOut << ", ";
  743. }
  744. }
  745. TOut.flush();
  746. if (!TemplateParams.empty()) {
  747. // remove the trailing comma and space
  748. TemplateParams.resize(TemplateParams.size() - 2);
  749. POut << " [" << TemplateParams << "]";
  750. }
  751. POut.flush();
  752. // Print "auto" for all deduced return types. This includes C++1y return
  753. // type deduction and lambdas. For trailing return types resolve the
  754. // decltype expression. Otherwise print the real type when this is
  755. // not a constructor or destructor.
  756. if (isa<CXXMethodDecl>(FD) &&
  757. cast<CXXMethodDecl>(FD)->getParent()->isLambda())
  758. Proto = "auto " + Proto;
  759. else if (FT && FT->getReturnType()->getAs<DecltypeType>())
  760. FT->getReturnType()
  761. ->getAs<DecltypeType>()
  762. ->getUnderlyingType()
  763. .getAsStringInternal(Proto, Policy);
  764. else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
  765. AFT->getReturnType().getAsStringInternal(Proto, Policy);
  766. Out << Proto;
  767. return Name.str().str();
  768. }
  769. if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
  770. for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
  771. // Skip to its enclosing function or method, but not its enclosing
  772. // CapturedDecl.
  773. if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
  774. const Decl *D = Decl::castFromDeclContext(DC);
  775. return ComputeName(IK, D);
  776. }
  777. llvm_unreachable("CapturedDecl not inside a function or method");
  778. }
  779. if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
  780. SmallString<256> Name;
  781. llvm::raw_svector_ostream Out(Name);
  782. Out << (MD->isInstanceMethod() ? '-' : '+');
  783. Out << '[';
  784. // For incorrect code, there might not be an ObjCInterfaceDecl. Do
  785. // a null check to avoid a crash.
  786. if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
  787. Out << *ID;
  788. if (const ObjCCategoryImplDecl *CID =
  789. dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
  790. Out << '(' << *CID << ')';
  791. Out << ' ';
  792. MD->getSelector().print(Out);
  793. Out << ']';
  794. return Name.str().str();
  795. }
  796. if (isa<TranslationUnitDecl>(CurrentDecl) && IK == PrettyFunction) {
  797. // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
  798. return "top level";
  799. }
  800. return "";
  801. }
  802. void APNumericStorage::setIntValue(const ASTContext &C,
  803. const llvm::APInt &Val) {
  804. if (hasAllocation())
  805. C.Deallocate(pVal);
  806. BitWidth = Val.getBitWidth();
  807. unsigned NumWords = Val.getNumWords();
  808. const uint64_t* Words = Val.getRawData();
  809. if (NumWords > 1) {
  810. pVal = new (C) uint64_t[NumWords];
  811. std::copy(Words, Words + NumWords, pVal);
  812. } else if (NumWords == 1)
  813. VAL = Words[0];
  814. else
  815. VAL = 0;
  816. }
  817. IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
  818. QualType type, SourceLocation l)
  819. : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
  820. false, false),
  821. Loc(l) {
  822. assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
  823. assert(V.getBitWidth() == C.getIntWidth(type) &&
  824. "Integer type is not the correct size for constant.");
  825. setValue(C, V);
  826. }
  827. IntegerLiteral *
  828. IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
  829. QualType type, SourceLocation l) {
  830. return new (C) IntegerLiteral(C, V, type, l);
  831. }
  832. IntegerLiteral *
  833. IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
  834. return new (C) IntegerLiteral(Empty);
  835. }
  836. FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
  837. QualType type, SourceLocation l,
  838. unsigned Scale)
  839. : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
  840. false, false),
  841. Loc(l), Scale(Scale) {
  842. assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
  843. assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
  844. "Fixed point type is not the correct size for constant.");
  845. setValue(C, V);
  846. }
  847. FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
  848. const llvm::APInt &V,
  849. QualType type,
  850. SourceLocation l,
  851. unsigned Scale) {
  852. return new (C) FixedPointLiteral(C, V, type, l, Scale);
  853. }
  854. std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
  855. // Currently the longest decimal number that can be printed is the max for an
  856. // unsigned long _Accum: 4294967295.99999999976716935634613037109375
  857. // which is 43 characters.
  858. SmallString<64> S;
  859. FixedPointValueToString(
  860. S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale);
  861. return S.str();
  862. }
  863. FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
  864. bool isexact, QualType Type, SourceLocation L)
  865. : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
  866. false, false), Loc(L) {
  867. setSemantics(V.getSemantics());
  868. FloatingLiteralBits.IsExact = isexact;
  869. setValue(C, V);
  870. }
  871. FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
  872. : Expr(FloatingLiteralClass, Empty) {
  873. setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
  874. FloatingLiteralBits.IsExact = false;
  875. }
  876. FloatingLiteral *
  877. FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
  878. bool isexact, QualType Type, SourceLocation L) {
  879. return new (C) FloatingLiteral(C, V, isexact, Type, L);
  880. }
  881. FloatingLiteral *
  882. FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
  883. return new (C) FloatingLiteral(C, Empty);
  884. }
  885. /// getValueAsApproximateDouble - This returns the value as an inaccurate
  886. /// double. Note that this may cause loss of precision, but is useful for
  887. /// debugging dumps, etc.
  888. double FloatingLiteral::getValueAsApproximateDouble() const {
  889. llvm::APFloat V = getValue();
  890. bool ignored;
  891. V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
  892. &ignored);
  893. return V.convertToDouble();
  894. }
  895. unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
  896. StringKind SK) {
  897. unsigned CharByteWidth = 0;
  898. switch (SK) {
  899. case Ascii:
  900. case UTF8:
  901. CharByteWidth = Target.getCharWidth();
  902. break;
  903. case Wide:
  904. CharByteWidth = Target.getWCharWidth();
  905. break;
  906. case UTF16:
  907. CharByteWidth = Target.getChar16Width();
  908. break;
  909. case UTF32:
  910. CharByteWidth = Target.getChar32Width();
  911. break;
  912. }
  913. assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
  914. CharByteWidth /= 8;
  915. assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
  916. "The only supported character byte widths are 1,2 and 4!");
  917. return CharByteWidth;
  918. }
  919. StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
  920. StringKind Kind, bool Pascal, QualType Ty,
  921. const SourceLocation *Loc,
  922. unsigned NumConcatenated)
  923. : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
  924. false) {
  925. assert(Ctx.getAsConstantArrayType(Ty) &&
  926. "StringLiteral must be of constant array type!");
  927. unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind);
  928. unsigned ByteLength = Str.size();
  929. assert((ByteLength % CharByteWidth == 0) &&
  930. "The size of the data must be a multiple of CharByteWidth!");
  931. // Avoid the expensive division. The compiler should be able to figure it
  932. // out by itself. However as of clang 7, even with the appropriate
  933. // llvm_unreachable added just here, it is not able to do so.
  934. unsigned Length;
  935. switch (CharByteWidth) {
  936. case 1:
  937. Length = ByteLength;
  938. break;
  939. case 2:
  940. Length = ByteLength / 2;
  941. break;
  942. case 4:
  943. Length = ByteLength / 4;
  944. break;
  945. default:
  946. llvm_unreachable("Unsupported character width!");
  947. }
  948. StringLiteralBits.Kind = Kind;
  949. StringLiteralBits.CharByteWidth = CharByteWidth;
  950. StringLiteralBits.IsPascal = Pascal;
  951. StringLiteralBits.NumConcatenated = NumConcatenated;
  952. *getTrailingObjects<unsigned>() = Length;
  953. // Initialize the trailing array of SourceLocation.
  954. // This is safe since SourceLocation is POD-like.
  955. std::memcpy(getTrailingObjects<SourceLocation>(), Loc,
  956. NumConcatenated * sizeof(SourceLocation));
  957. // Initialize the trailing array of char holding the string data.
  958. std::memcpy(getTrailingObjects<char>(), Str.data(), ByteLength);
  959. }
  960. StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
  961. unsigned Length, unsigned CharByteWidth)
  962. : Expr(StringLiteralClass, Empty) {
  963. StringLiteralBits.CharByteWidth = CharByteWidth;
  964. StringLiteralBits.NumConcatenated = NumConcatenated;
  965. *getTrailingObjects<unsigned>() = Length;
  966. }
  967. StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
  968. StringKind Kind, bool Pascal, QualType Ty,
  969. const SourceLocation *Loc,
  970. unsigned NumConcatenated) {
  971. void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
  972. 1, NumConcatenated, Str.size()),
  973. alignof(StringLiteral));
  974. return new (Mem)
  975. StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
  976. }
  977. StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
  978. unsigned NumConcatenated,
  979. unsigned Length,
  980. unsigned CharByteWidth) {
  981. void *Mem = Ctx.Allocate(totalSizeToAlloc<unsigned, SourceLocation, char>(
  982. 1, NumConcatenated, Length * CharByteWidth),
  983. alignof(StringLiteral));
  984. return new (Mem)
  985. StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
  986. }
  987. void StringLiteral::outputString(raw_ostream &OS) const {
  988. switch (getKind()) {
  989. case Ascii: break; // no prefix.
  990. case Wide: OS << 'L'; break;
  991. case UTF8: OS << "u8"; break;
  992. case UTF16: OS << 'u'; break;
  993. case UTF32: OS << 'U'; break;
  994. }
  995. OS << '"';
  996. static const char Hex[] = "0123456789ABCDEF";
  997. unsigned LastSlashX = getLength();
  998. for (unsigned I = 0, N = getLength(); I != N; ++I) {
  999. switch (uint32_t Char = getCodeUnit(I)) {
  1000. default:
  1001. // FIXME: Convert UTF-8 back to codepoints before rendering.
  1002. // Convert UTF-16 surrogate pairs back to codepoints before rendering.
  1003. // Leave invalid surrogates alone; we'll use \x for those.
  1004. if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
  1005. Char <= 0xdbff) {
  1006. uint32_t Trail = getCodeUnit(I + 1);
  1007. if (Trail >= 0xdc00 && Trail <= 0xdfff) {
  1008. Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
  1009. ++I;
  1010. }
  1011. }
  1012. if (Char > 0xff) {
  1013. // If this is a wide string, output characters over 0xff using \x
  1014. // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
  1015. // codepoint: use \x escapes for invalid codepoints.
  1016. if (getKind() == Wide ||
  1017. (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
  1018. // FIXME: Is this the best way to print wchar_t?
  1019. OS << "\\x";
  1020. int Shift = 28;
  1021. while ((Char >> Shift) == 0)
  1022. Shift -= 4;
  1023. for (/**/; Shift >= 0; Shift -= 4)
  1024. OS << Hex[(Char >> Shift) & 15];
  1025. LastSlashX = I;
  1026. break;
  1027. }
  1028. if (Char > 0xffff)
  1029. OS << "\\U00"
  1030. << Hex[(Char >> 20) & 15]
  1031. << Hex[(Char >> 16) & 15];
  1032. else
  1033. OS << "\\u";
  1034. OS << Hex[(Char >> 12) & 15]
  1035. << Hex[(Char >> 8) & 15]
  1036. << Hex[(Char >> 4) & 15]
  1037. << Hex[(Char >> 0) & 15];
  1038. break;
  1039. }
  1040. // If we used \x... for the previous character, and this character is a
  1041. // hexadecimal digit, prevent it being slurped as part of the \x.
  1042. if (LastSlashX + 1 == I) {
  1043. switch (Char) {
  1044. case '0': case '1': case '2': case '3': case '4':
  1045. case '5': case '6': case '7': case '8': case '9':
  1046. case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
  1047. case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
  1048. OS << "\"\"";
  1049. }
  1050. }
  1051. assert(Char <= 0xff &&
  1052. "Characters above 0xff should already have been handled.");
  1053. if (isPrintable(Char))
  1054. OS << (char)Char;
  1055. else // Output anything hard as an octal escape.
  1056. OS << '\\'
  1057. << (char)('0' + ((Char >> 6) & 7))
  1058. << (char)('0' + ((Char >> 3) & 7))
  1059. << (char)('0' + ((Char >> 0) & 7));
  1060. break;
  1061. // Handle some common non-printable cases to make dumps prettier.
  1062. case '\\': OS << "\\\\"; break;
  1063. case '"': OS << "\\\""; break;
  1064. case '\a': OS << "\\a"; break;
  1065. case '\b': OS << "\\b"; break;
  1066. case '\f': OS << "\\f"; break;
  1067. case '\n': OS << "\\n"; break;
  1068. case '\r': OS << "\\r"; break;
  1069. case '\t': OS << "\\t"; break;
  1070. case '\v': OS << "\\v"; break;
  1071. }
  1072. }
  1073. OS << '"';
  1074. }
  1075. /// getLocationOfByte - Return a source location that points to the specified
  1076. /// byte of this string literal.
  1077. ///
  1078. /// Strings are amazingly complex. They can be formed from multiple tokens and
  1079. /// can have escape sequences in them in addition to the usual trigraph and
  1080. /// escaped newline business. This routine handles this complexity.
  1081. ///
  1082. /// The *StartToken sets the first token to be searched in this function and
  1083. /// the *StartTokenByteOffset is the byte offset of the first token. Before
  1084. /// returning, it updates the *StartToken to the TokNo of the token being found
  1085. /// and sets *StartTokenByteOffset to the byte offset of the token in the
  1086. /// string.
  1087. /// Using these two parameters can reduce the time complexity from O(n^2) to
  1088. /// O(n) if one wants to get the location of byte for all the tokens in a
  1089. /// string.
  1090. ///
  1091. SourceLocation
  1092. StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
  1093. const LangOptions &Features,
  1094. const TargetInfo &Target, unsigned *StartToken,
  1095. unsigned *StartTokenByteOffset) const {
  1096. assert((getKind() == StringLiteral::Ascii ||
  1097. getKind() == StringLiteral::UTF8) &&
  1098. "Only narrow string literals are currently supported");
  1099. // Loop over all of the tokens in this string until we find the one that
  1100. // contains the byte we're looking for.
  1101. unsigned TokNo = 0;
  1102. unsigned StringOffset = 0;
  1103. if (StartToken)
  1104. TokNo = *StartToken;
  1105. if (StartTokenByteOffset) {
  1106. StringOffset = *StartTokenByteOffset;
  1107. ByteNo -= StringOffset;
  1108. }
  1109. while (1) {
  1110. assert(TokNo < getNumConcatenated() && "Invalid byte number!");
  1111. SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
  1112. // Get the spelling of the string so that we can get the data that makes up
  1113. // the string literal, not the identifier for the macro it is potentially
  1114. // expanded through.
  1115. SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
  1116. // Re-lex the token to get its length and original spelling.
  1117. std::pair<FileID, unsigned> LocInfo =
  1118. SM.getDecomposedLoc(StrTokSpellingLoc);
  1119. bool Invalid = false;
  1120. StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
  1121. if (Invalid) {
  1122. if (StartTokenByteOffset != nullptr)
  1123. *StartTokenByteOffset = StringOffset;
  1124. if (StartToken != nullptr)
  1125. *StartToken = TokNo;
  1126. return StrTokSpellingLoc;
  1127. }
  1128. const char *StrData = Buffer.data()+LocInfo.second;
  1129. // Create a lexer starting at the beginning of this token.
  1130. Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
  1131. Buffer.begin(), StrData, Buffer.end());
  1132. Token TheTok;
  1133. TheLexer.LexFromRawLexer(TheTok);
  1134. // Use the StringLiteralParser to compute the length of the string in bytes.
  1135. StringLiteralParser SLP(TheTok, SM, Features, Target);
  1136. unsigned TokNumBytes = SLP.GetStringLength();
  1137. // If the byte is in this token, return the location of the byte.
  1138. if (ByteNo < TokNumBytes ||
  1139. (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
  1140. unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
  1141. // Now that we know the offset of the token in the spelling, use the
  1142. // preprocessor to get the offset in the original source.
  1143. if (StartTokenByteOffset != nullptr)
  1144. *StartTokenByteOffset = StringOffset;
  1145. if (StartToken != nullptr)
  1146. *StartToken = TokNo;
  1147. return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
  1148. }
  1149. // Move to the next string token.
  1150. StringOffset += TokNumBytes;
  1151. ++TokNo;
  1152. ByteNo -= TokNumBytes;
  1153. }
  1154. }
  1155. /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
  1156. /// corresponds to, e.g. "sizeof" or "[pre]++".
  1157. StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
  1158. switch (Op) {
  1159. #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
  1160. #include "clang/AST/OperationKinds.def"
  1161. }
  1162. llvm_unreachable("Unknown unary operator");
  1163. }
  1164. UnaryOperatorKind
  1165. UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
  1166. switch (OO) {
  1167. default: llvm_unreachable("No unary operator for overloaded function");
  1168. case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
  1169. case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
  1170. case OO_Amp: return UO_AddrOf;
  1171. case OO_Star: return UO_Deref;
  1172. case OO_Plus: return UO_Plus;
  1173. case OO_Minus: return UO_Minus;
  1174. case OO_Tilde: return UO_Not;
  1175. case OO_Exclaim: return UO_LNot;
  1176. case OO_Coawait: return UO_Coawait;
  1177. }
  1178. }
  1179. OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
  1180. switch (Opc) {
  1181. case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
  1182. case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
  1183. case UO_AddrOf: return OO_Amp;
  1184. case UO_Deref: return OO_Star;
  1185. case UO_Plus: return OO_Plus;
  1186. case UO_Minus: return OO_Minus;
  1187. case UO_Not: return OO_Tilde;
  1188. case UO_LNot: return OO_Exclaim;
  1189. case UO_Coawait: return OO_Coawait;
  1190. default: return OO_None;
  1191. }
  1192. }
  1193. //===----------------------------------------------------------------------===//
  1194. // Postfix Operators.
  1195. //===----------------------------------------------------------------------===//
  1196. CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
  1197. ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
  1198. SourceLocation RParenLoc, unsigned MinNumArgs,
  1199. ADLCallKind UsesADL)
  1200. : Expr(SC, Ty, VK, OK_Ordinary, Fn->isTypeDependent(),
  1201. Fn->isValueDependent(), Fn->isInstantiationDependent(),
  1202. Fn->containsUnexpandedParameterPack()),
  1203. RParenLoc(RParenLoc) {
  1204. NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
  1205. unsigned NumPreArgs = PreArgs.size();
  1206. CallExprBits.NumPreArgs = NumPreArgs;
  1207. assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
  1208. unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
  1209. CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
  1210. assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
  1211. "OffsetToTrailingObjects overflow!");
  1212. CallExprBits.UsesADL = static_cast<bool>(UsesADL);
  1213. setCallee(Fn);
  1214. for (unsigned I = 0; I != NumPreArgs; ++I) {
  1215. updateDependenciesFromArg(PreArgs[I]);
  1216. setPreArg(I, PreArgs[I]);
  1217. }
  1218. for (unsigned I = 0; I != Args.size(); ++I) {
  1219. updateDependenciesFromArg(Args[I]);
  1220. setArg(I, Args[I]);
  1221. }
  1222. for (unsigned I = Args.size(); I != NumArgs; ++I) {
  1223. setArg(I, nullptr);
  1224. }
  1225. }
  1226. CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
  1227. EmptyShell Empty)
  1228. : Expr(SC, Empty), NumArgs(NumArgs) {
  1229. CallExprBits.NumPreArgs = NumPreArgs;
  1230. assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
  1231. unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
  1232. CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
  1233. assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
  1234. "OffsetToTrailingObjects overflow!");
  1235. }
  1236. CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
  1237. ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
  1238. SourceLocation RParenLoc, unsigned MinNumArgs,
  1239. ADLCallKind UsesADL) {
  1240. unsigned NumArgs = std::max<unsigned>(Args.size(), MinNumArgs);
  1241. unsigned SizeOfTrailingObjects =
  1242. CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
  1243. void *Mem =
  1244. Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
  1245. return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
  1246. RParenLoc, MinNumArgs, UsesADL);
  1247. }
  1248. CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
  1249. ExprValueKind VK, SourceLocation RParenLoc,
  1250. ADLCallKind UsesADL) {
  1251. assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
  1252. "Misaligned memory in CallExpr::CreateTemporary!");
  1253. return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
  1254. VK, RParenLoc, /*MinNumArgs=*/0, UsesADL);
  1255. }
  1256. CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
  1257. EmptyShell Empty) {
  1258. unsigned SizeOfTrailingObjects =
  1259. CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs);
  1260. void *Mem =
  1261. Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr));
  1262. return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty);
  1263. }
  1264. unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
  1265. switch (SC) {
  1266. case CallExprClass:
  1267. return sizeof(CallExpr);
  1268. case CXXOperatorCallExprClass:
  1269. return sizeof(CXXOperatorCallExpr);
  1270. case CXXMemberCallExprClass:
  1271. return sizeof(CXXMemberCallExpr);
  1272. case UserDefinedLiteralClass:
  1273. return sizeof(UserDefinedLiteral);
  1274. case CUDAKernelCallExprClass:
  1275. return sizeof(CUDAKernelCallExpr);
  1276. default:
  1277. llvm_unreachable("unexpected class deriving from CallExpr!");
  1278. }
  1279. }
  1280. void CallExpr::updateDependenciesFromArg(Expr *Arg) {
  1281. if (Arg->isTypeDependent())
  1282. ExprBits.TypeDependent = true;
  1283. if (Arg->isValueDependent())
  1284. ExprBits.ValueDependent = true;
  1285. if (Arg->isInstantiationDependent())
  1286. ExprBits.InstantiationDependent = true;
  1287. if (Arg->containsUnexpandedParameterPack())
  1288. ExprBits.ContainsUnexpandedParameterPack = true;
  1289. }
  1290. Decl *Expr::getReferencedDeclOfCallee() {
  1291. Expr *CEE = IgnoreParenImpCasts();
  1292. while (SubstNonTypeTemplateParmExpr *NTTP
  1293. = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
  1294. CEE = NTTP->getReplacement()->IgnoreParenCasts();
  1295. }
  1296. // If we're calling a dereference, look at the pointer instead.
  1297. if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
  1298. if (BO->isPtrMemOp())
  1299. CEE = BO->getRHS()->IgnoreParenCasts();
  1300. } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
  1301. if (UO->getOpcode() == UO_Deref)
  1302. CEE = UO->getSubExpr()->IgnoreParenCasts();
  1303. }
  1304. if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
  1305. return DRE->getDecl();
  1306. if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
  1307. return ME->getMemberDecl();
  1308. if (auto *BE = dyn_cast<BlockExpr>(CEE))
  1309. return BE->getBlockDecl();
  1310. return nullptr;
  1311. }
  1312. /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
  1313. /// not, return 0.
  1314. unsigned CallExpr::getBuiltinCallee() const {
  1315. // All simple function calls (e.g. func()) are implicitly cast to pointer to
  1316. // function. As a result, we try and obtain the DeclRefExpr from the
  1317. // ImplicitCastExpr.
  1318. const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
  1319. if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
  1320. return 0;
  1321. const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
  1322. if (!DRE)
  1323. return 0;
  1324. const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
  1325. if (!FDecl)
  1326. return 0;
  1327. if (!FDecl->getIdentifier())
  1328. return 0;
  1329. return FDecl->getBuiltinID();
  1330. }
  1331. bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
  1332. if (unsigned BI = getBuiltinCallee())
  1333. return Ctx.BuiltinInfo.isUnevaluated(BI);
  1334. return false;
  1335. }
  1336. QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
  1337. const Expr *Callee = getCallee();
  1338. QualType CalleeType = Callee->getType();
  1339. if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
  1340. CalleeType = FnTypePtr->getPointeeType();
  1341. } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
  1342. CalleeType = BPT->getPointeeType();
  1343. } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
  1344. if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
  1345. return Ctx.VoidTy;
  1346. // This should never be overloaded and so should never return null.
  1347. CalleeType = Expr::findBoundMemberType(Callee);
  1348. }
  1349. const FunctionType *FnType = CalleeType->castAs<FunctionType>();
  1350. return FnType->getReturnType();
  1351. }
  1352. const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
  1353. // If the return type is a struct, union, or enum that is marked nodiscard,
  1354. // then return the return type attribute.
  1355. if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
  1356. if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
  1357. return A;
  1358. // Otherwise, see if the callee is marked nodiscard and return that attribute
  1359. // instead.
  1360. const Decl *D = getCalleeDecl();
  1361. return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
  1362. }
  1363. SourceLocation CallExpr::getBeginLoc() const {
  1364. if (isa<CXXOperatorCallExpr>(this))
  1365. return cast<CXXOperatorCallExpr>(this)->getBeginLoc();
  1366. SourceLocation begin = getCallee()->getBeginLoc();
  1367. if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
  1368. begin = getArg(0)->getBeginLoc();
  1369. return begin;
  1370. }
  1371. SourceLocation CallExpr::getEndLoc() const {
  1372. if (isa<CXXOperatorCallExpr>(this))
  1373. return cast<CXXOperatorCallExpr>(this)->getEndLoc();
  1374. SourceLocation end = getRParenLoc();
  1375. if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
  1376. end = getArg(getNumArgs() - 1)->getEndLoc();
  1377. return end;
  1378. }
  1379. OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
  1380. SourceLocation OperatorLoc,
  1381. TypeSourceInfo *tsi,
  1382. ArrayRef<OffsetOfNode> comps,
  1383. ArrayRef<Expr*> exprs,
  1384. SourceLocation RParenLoc) {
  1385. void *Mem = C.Allocate(
  1386. totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
  1387. return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
  1388. RParenLoc);
  1389. }
  1390. OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
  1391. unsigned numComps, unsigned numExprs) {
  1392. void *Mem =
  1393. C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
  1394. return new (Mem) OffsetOfExpr(numComps, numExprs);
  1395. }
  1396. OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
  1397. SourceLocation OperatorLoc, TypeSourceInfo *tsi,
  1398. ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
  1399. SourceLocation RParenLoc)
  1400. : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
  1401. /*TypeDependent=*/false,
  1402. /*ValueDependent=*/tsi->getType()->isDependentType(),
  1403. tsi->getType()->isInstantiationDependentType(),
  1404. tsi->getType()->containsUnexpandedParameterPack()),
  1405. OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
  1406. NumComps(comps.size()), NumExprs(exprs.size())
  1407. {
  1408. for (unsigned i = 0; i != comps.size(); ++i) {
  1409. setComponent(i, comps[i]);
  1410. }
  1411. for (unsigned i = 0; i != exprs.size(); ++i) {
  1412. if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
  1413. ExprBits.ValueDependent = true;
  1414. if (exprs[i]->containsUnexpandedParameterPack())
  1415. ExprBits.ContainsUnexpandedParameterPack = true;
  1416. setIndexExpr(i, exprs[i]);
  1417. }
  1418. }
  1419. IdentifierInfo *OffsetOfNode::getFieldName() const {
  1420. assert(getKind() == Field || getKind() == Identifier);
  1421. if (getKind() == Field)
  1422. return getField()->getIdentifier();
  1423. return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
  1424. }
  1425. UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
  1426. UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
  1427. SourceLocation op, SourceLocation rp)
  1428. : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
  1429. false, // Never type-dependent (C++ [temp.dep.expr]p3).
  1430. // Value-dependent if the argument is type-dependent.
  1431. E->isTypeDependent(), E->isInstantiationDependent(),
  1432. E->containsUnexpandedParameterPack()),
  1433. OpLoc(op), RParenLoc(rp) {
  1434. UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
  1435. UnaryExprOrTypeTraitExprBits.IsType = false;
  1436. Argument.Ex = E;
  1437. // Check to see if we are in the situation where alignof(decl) should be
  1438. // dependent because decl's alignment is dependent.
  1439. if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
  1440. if (!isValueDependent() || !isInstantiationDependent()) {
  1441. E = E->IgnoreParens();
  1442. const ValueDecl *D = nullptr;
  1443. if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
  1444. D = DRE->getDecl();
  1445. else if (const auto *ME = dyn_cast<MemberExpr>(E))
  1446. D = ME->getMemberDecl();
  1447. if (D) {
  1448. for (const auto *I : D->specific_attrs<AlignedAttr>()) {
  1449. if (I->isAlignmentDependent()) {
  1450. setValueDependent(true);
  1451. setInstantiationDependent(true);
  1452. break;
  1453. }
  1454. }
  1455. }
  1456. }
  1457. }
  1458. }
  1459. MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
  1460. ValueDecl *MemberDecl,
  1461. const DeclarationNameInfo &NameInfo, QualType T,
  1462. ExprValueKind VK, ExprObjectKind OK,
  1463. NonOdrUseReason NOUR)
  1464. : Expr(MemberExprClass, T, VK, OK, Base->isTypeDependent(),
  1465. Base->isValueDependent(), Base->isInstantiationDependent(),
  1466. Base->containsUnexpandedParameterPack()),
  1467. Base(Base), MemberDecl(MemberDecl), MemberDNLoc(NameInfo.getInfo()),
  1468. MemberLoc(NameInfo.getLoc()) {
  1469. assert(!NameInfo.getName() ||
  1470. MemberDecl->getDeclName() == NameInfo.getName());
  1471. MemberExprBits.IsArrow = IsArrow;
  1472. MemberExprBits.HasQualifierOrFoundDecl = false;
  1473. MemberExprBits.HasTemplateKWAndArgsInfo = false;
  1474. MemberExprBits.HadMultipleCandidates = false;
  1475. MemberExprBits.NonOdrUseReason = NOUR;
  1476. MemberExprBits.OperatorLoc = OperatorLoc;
  1477. }
  1478. MemberExpr *MemberExpr::Create(
  1479. const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
  1480. NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
  1481. ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
  1482. DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
  1483. QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
  1484. bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl ||
  1485. FoundDecl.getAccess() != MemberDecl->getAccess();
  1486. bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
  1487. std::size_t Size =
  1488. totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
  1489. TemplateArgumentLoc>(
  1490. HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0,
  1491. TemplateArgs ? TemplateArgs->size() : 0);
  1492. void *Mem = C.Allocate(Size, alignof(MemberExpr));
  1493. MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl,
  1494. NameInfo, T, VK, OK, NOUR);
  1495. if (HasQualOrFound) {
  1496. // FIXME: Wrong. We should be looking at the member declaration we found.
  1497. if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
  1498. E->setValueDependent(true);
  1499. E->setTypeDependent(true);
  1500. E->setInstantiationDependent(true);
  1501. }
  1502. else if (QualifierLoc &&
  1503. QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
  1504. E->setInstantiationDependent(true);
  1505. E->MemberExprBits.HasQualifierOrFoundDecl = true;
  1506. MemberExprNameQualifier *NQ =
  1507. E->getTrailingObjects<MemberExprNameQualifier>();
  1508. NQ->QualifierLoc = QualifierLoc;
  1509. NQ->FoundDecl = FoundDecl;
  1510. }
  1511. E->MemberExprBits.HasTemplateKWAndArgsInfo =
  1512. TemplateArgs || TemplateKWLoc.isValid();
  1513. if (TemplateArgs) {
  1514. bool Dependent = false;
  1515. bool InstantiationDependent = false;
  1516. bool ContainsUnexpandedParameterPack = false;
  1517. E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
  1518. TemplateKWLoc, *TemplateArgs,
  1519. E->getTrailingObjects<TemplateArgumentLoc>(), Dependent,
  1520. InstantiationDependent, ContainsUnexpandedParameterPack);
  1521. if (InstantiationDependent)
  1522. E->setInstantiationDependent(true);
  1523. } else if (TemplateKWLoc.isValid()) {
  1524. E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
  1525. TemplateKWLoc);
  1526. }
  1527. return E;
  1528. }
  1529. MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
  1530. bool HasQualifier, bool HasFoundDecl,
  1531. bool HasTemplateKWAndArgsInfo,
  1532. unsigned NumTemplateArgs) {
  1533. assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
  1534. "template args but no template arg info?");
  1535. bool HasQualOrFound = HasQualifier || HasFoundDecl;
  1536. std::size_t Size =
  1537. totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
  1538. TemplateArgumentLoc>(HasQualOrFound ? 1 : 0,
  1539. HasTemplateKWAndArgsInfo ? 1 : 0,
  1540. NumTemplateArgs);
  1541. void *Mem = Context.Allocate(Size, alignof(MemberExpr));
  1542. return new (Mem) MemberExpr(EmptyShell());
  1543. }
  1544. SourceLocation MemberExpr::getBeginLoc() const {
  1545. if (isImplicitAccess()) {
  1546. if (hasQualifier())
  1547. return getQualifierLoc().getBeginLoc();
  1548. return MemberLoc;
  1549. }
  1550. // FIXME: We don't want this to happen. Rather, we should be able to
  1551. // detect all kinds of implicit accesses more cleanly.
  1552. SourceLocation BaseStartLoc = getBase()->getBeginLoc();
  1553. if (BaseStartLoc.isValid())
  1554. return BaseStartLoc;
  1555. return MemberLoc;
  1556. }
  1557. SourceLocation MemberExpr::getEndLoc() const {
  1558. SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
  1559. if (hasExplicitTemplateArgs())
  1560. EndLoc = getRAngleLoc();
  1561. else if (EndLoc.isInvalid())
  1562. EndLoc = getBase()->getEndLoc();
  1563. return EndLoc;
  1564. }
  1565. bool CastExpr::CastConsistency() const {
  1566. switch (getCastKind()) {
  1567. case CK_DerivedToBase:
  1568. case CK_UncheckedDerivedToBase:
  1569. case CK_DerivedToBaseMemberPointer:
  1570. case CK_BaseToDerived:
  1571. case CK_BaseToDerivedMemberPointer:
  1572. assert(!path_empty() && "Cast kind should have a base path!");
  1573. break;
  1574. case CK_CPointerToObjCPointerCast:
  1575. assert(getType()->isObjCObjectPointerType());
  1576. assert(getSubExpr()->getType()->isPointerType());
  1577. goto CheckNoBasePath;
  1578. case CK_BlockPointerToObjCPointerCast:
  1579. assert(getType()->isObjCObjectPointerType());
  1580. assert(getSubExpr()->getType()->isBlockPointerType());
  1581. goto CheckNoBasePath;
  1582. case CK_ReinterpretMemberPointer:
  1583. assert(getType()->isMemberPointerType());
  1584. assert(getSubExpr()->getType()->isMemberPointerType());
  1585. goto CheckNoBasePath;
  1586. case CK_BitCast:
  1587. // Arbitrary casts to C pointer types count as bitcasts.
  1588. // Otherwise, we should only have block and ObjC pointer casts
  1589. // here if they stay within the type kind.
  1590. if (!getType()->isPointerType()) {
  1591. assert(getType()->isObjCObjectPointerType() ==
  1592. getSubExpr()->getType()->isObjCObjectPointerType());
  1593. assert(getType()->isBlockPointerType() ==
  1594. getSubExpr()->getType()->isBlockPointerType());
  1595. }
  1596. goto CheckNoBasePath;
  1597. case CK_AnyPointerToBlockPointerCast:
  1598. assert(getType()->isBlockPointerType());
  1599. assert(getSubExpr()->getType()->isAnyPointerType() &&
  1600. !getSubExpr()->getType()->isBlockPointerType());
  1601. goto CheckNoBasePath;
  1602. case CK_CopyAndAutoreleaseBlockObject:
  1603. assert(getType()->isBlockPointerType());
  1604. assert(getSubExpr()->getType()->isBlockPointerType());
  1605. goto CheckNoBasePath;
  1606. case CK_FunctionToPointerDecay:
  1607. assert(getType()->isPointerType());
  1608. assert(getSubExpr()->getType()->isFunctionType());
  1609. goto CheckNoBasePath;
  1610. case CK_AddressSpaceConversion: {
  1611. auto Ty = getType();
  1612. auto SETy = getSubExpr()->getType();
  1613. assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
  1614. if (/*isRValue()*/ !Ty->getPointeeType().isNull()) {
  1615. Ty = Ty->getPointeeType();
  1616. SETy = SETy->getPointeeType();
  1617. }
  1618. assert(!Ty.isNull() && !SETy.isNull() &&
  1619. Ty.getAddressSpace() != SETy.getAddressSpace());
  1620. goto CheckNoBasePath;
  1621. }
  1622. // These should not have an inheritance path.
  1623. case CK_Dynamic:
  1624. case CK_ToUnion:
  1625. case CK_ArrayToPointerDecay:
  1626. case CK_NullToMemberPointer:
  1627. case CK_NullToPointer:
  1628. case CK_ConstructorConversion:
  1629. case CK_IntegralToPointer:
  1630. case CK_PointerToIntegral:
  1631. case CK_ToVoid:
  1632. case CK_VectorSplat:
  1633. case CK_IntegralCast:
  1634. case CK_BooleanToSignedIntegral:
  1635. case CK_IntegralToFloating:
  1636. case CK_FloatingToIntegral:
  1637. case CK_FloatingCast:
  1638. case CK_ObjCObjectLValueCast:
  1639. case CK_FloatingRealToComplex:
  1640. case CK_FloatingComplexToReal:
  1641. case CK_FloatingComplexCast:
  1642. case CK_FloatingComplexToIntegralComplex:
  1643. case CK_IntegralRealToComplex:
  1644. case CK_IntegralComplexToReal:
  1645. case CK_IntegralComplexCast:
  1646. case CK_IntegralComplexToFloatingComplex:
  1647. case CK_ARCProduceObject:
  1648. case CK_ARCConsumeObject:
  1649. case CK_ARCReclaimReturnedObject:
  1650. case CK_ARCExtendBlockObject:
  1651. case CK_ZeroToOCLOpaqueType:
  1652. case CK_IntToOCLSampler:
  1653. case CK_FixedPointCast:
  1654. case CK_FixedPointToIntegral:
  1655. case CK_IntegralToFixedPoint:
  1656. assert(!getType()->isBooleanType() && "unheralded conversion to bool");
  1657. goto CheckNoBasePath;
  1658. case CK_Dependent:
  1659. case CK_LValueToRValue:
  1660. case CK_NoOp:
  1661. case CK_AtomicToNonAtomic:
  1662. case CK_NonAtomicToAtomic:
  1663. case CK_PointerToBoolean:
  1664. case CK_IntegralToBoolean:
  1665. case CK_FloatingToBoolean:
  1666. case CK_MemberPointerToBoolean:
  1667. case CK_FloatingComplexToBoolean:
  1668. case CK_IntegralComplexToBoolean:
  1669. case CK_LValueBitCast: // -> bool&
  1670. case CK_LValueToRValueBitCast:
  1671. case CK_UserDefinedConversion: // operator bool()
  1672. case CK_BuiltinFnToFnPtr:
  1673. case CK_FixedPointToBoolean:
  1674. CheckNoBasePath:
  1675. assert(path_empty() && "Cast kind should not have a base path!");
  1676. break;
  1677. }
  1678. return true;
  1679. }
  1680. const char *CastExpr::getCastKindName(CastKind CK) {
  1681. switch (CK) {
  1682. #define CAST_OPERATION(Name) case CK_##Name: return #Name;
  1683. #include "clang/AST/OperationKinds.def"
  1684. }
  1685. llvm_unreachable("Unhandled cast kind!");
  1686. }
  1687. namespace {
  1688. const Expr *skipImplicitTemporary(const Expr *E) {
  1689. // Skip through reference binding to temporary.
  1690. if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
  1691. E = Materialize->GetTemporaryExpr();
  1692. // Skip any temporary bindings; they're implicit.
  1693. if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
  1694. E = Binder->getSubExpr();
  1695. return E;
  1696. }
  1697. }
  1698. Expr *CastExpr::getSubExprAsWritten() {
  1699. const Expr *SubExpr = nullptr;
  1700. const CastExpr *E = this;
  1701. do {
  1702. SubExpr = skipImplicitTemporary(E->getSubExpr());
  1703. // Conversions by constructor and conversion functions have a
  1704. // subexpression describing the call; strip it off.
  1705. if (E->getCastKind() == CK_ConstructorConversion)
  1706. SubExpr =
  1707. skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
  1708. else if (E->getCastKind() == CK_UserDefinedConversion) {
  1709. assert((isa<CXXMemberCallExpr>(SubExpr) ||
  1710. isa<BlockExpr>(SubExpr)) &&
  1711. "Unexpected SubExpr for CK_UserDefinedConversion.");
  1712. if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
  1713. SubExpr = MCE->getImplicitObjectArgument();
  1714. }
  1715. // If the subexpression we're left with is an implicit cast, look
  1716. // through that, too.
  1717. } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
  1718. return const_cast<Expr*>(SubExpr);
  1719. }
  1720. NamedDecl *CastExpr::getConversionFunction() const {
  1721. const Expr *SubExpr = nullptr;
  1722. for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
  1723. SubExpr = skipImplicitTemporary(E->getSubExpr());
  1724. if (E->getCastKind() == CK_ConstructorConversion)
  1725. return cast<CXXConstructExpr>(SubExpr)->getConstructor();
  1726. if (E->getCastKind() == CK_UserDefinedConversion) {
  1727. if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
  1728. return MCE->getMethodDecl();
  1729. }
  1730. }
  1731. return nullptr;
  1732. }
  1733. CXXBaseSpecifier **CastExpr::path_buffer() {
  1734. switch (getStmtClass()) {
  1735. #define ABSTRACT_STMT(x)
  1736. #define CASTEXPR(Type, Base) \
  1737. case Stmt::Type##Class: \
  1738. return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
  1739. #define STMT(Type, Base)
  1740. #include "clang/AST/StmtNodes.inc"
  1741. default:
  1742. llvm_unreachable("non-cast expressions not possible here");
  1743. }
  1744. }
  1745. const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
  1746. QualType opType) {
  1747. auto RD = unionType->castAs<RecordType>()->getDecl();
  1748. return getTargetFieldForToUnionCast(RD, opType);
  1749. }
  1750. const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
  1751. QualType OpType) {
  1752. auto &Ctx = RD->getASTContext();
  1753. RecordDecl::field_iterator Field, FieldEnd;
  1754. for (Field = RD->field_begin(), FieldEnd = RD->field_end();
  1755. Field != FieldEnd; ++Field) {
  1756. if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
  1757. !Field->isUnnamedBitfield()) {
  1758. return *Field;
  1759. }
  1760. }
  1761. return nullptr;
  1762. }
  1763. ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
  1764. CastKind Kind, Expr *Operand,
  1765. const CXXCastPath *BasePath,
  1766. ExprValueKind VK) {
  1767. unsigned PathSize = (BasePath ? BasePath->size() : 0);
  1768. void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
  1769. // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
  1770. // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
  1771. assert((Kind != CK_LValueToRValue ||
  1772. !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
  1773. "invalid type for lvalue-to-rvalue conversion");
  1774. ImplicitCastExpr *E =
  1775. new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
  1776. if (PathSize)
  1777. std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
  1778. E->getTrailingObjects<CXXBaseSpecifier *>());
  1779. return E;
  1780. }
  1781. ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
  1782. unsigned PathSize) {
  1783. void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
  1784. return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
  1785. }
  1786. CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
  1787. ExprValueKind VK, CastKind K, Expr *Op,
  1788. const CXXCastPath *BasePath,
  1789. TypeSourceInfo *WrittenTy,
  1790. SourceLocation L, SourceLocation R) {
  1791. unsigned PathSize = (BasePath ? BasePath->size() : 0);
  1792. void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
  1793. CStyleCastExpr *E =
  1794. new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
  1795. if (PathSize)
  1796. std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
  1797. E->getTrailingObjects<CXXBaseSpecifier *>());
  1798. return E;
  1799. }
  1800. CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
  1801. unsigned PathSize) {
  1802. void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
  1803. return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
  1804. }
  1805. /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
  1806. /// corresponds to, e.g. "<<=".
  1807. StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
  1808. switch (Op) {
  1809. #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
  1810. #include "clang/AST/OperationKinds.def"
  1811. }
  1812. llvm_unreachable("Invalid OpCode!");
  1813. }
  1814. BinaryOperatorKind
  1815. BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
  1816. switch (OO) {
  1817. default: llvm_unreachable("Not an overloadable binary operator");
  1818. case OO_Plus: return BO_Add;
  1819. case OO_Minus: return BO_Sub;
  1820. case OO_Star: return BO_Mul;
  1821. case OO_Slash: return BO_Div;
  1822. case OO_Percent: return BO_Rem;
  1823. case OO_Caret: return BO_Xor;
  1824. case OO_Amp: return BO_And;
  1825. case OO_Pipe: return BO_Or;
  1826. case OO_Equal: return BO_Assign;
  1827. case OO_Spaceship: return BO_Cmp;
  1828. case OO_Less: return BO_LT;
  1829. case OO_Greater: return BO_GT;
  1830. case OO_PlusEqual: return BO_AddAssign;
  1831. case OO_MinusEqual: return BO_SubAssign;
  1832. case OO_StarEqual: return BO_MulAssign;
  1833. case OO_SlashEqual: return BO_DivAssign;
  1834. case OO_PercentEqual: return BO_RemAssign;
  1835. case OO_CaretEqual: return BO_XorAssign;
  1836. case OO_AmpEqual: return BO_AndAssign;
  1837. case OO_PipeEqual: return BO_OrAssign;
  1838. case OO_LessLess: return BO_Shl;
  1839. case OO_GreaterGreater: return BO_Shr;
  1840. case OO_LessLessEqual: return BO_ShlAssign;
  1841. case OO_GreaterGreaterEqual: return BO_ShrAssign;
  1842. case OO_EqualEqual: return BO_EQ;
  1843. case OO_ExclaimEqual: return BO_NE;
  1844. case OO_LessEqual: return BO_LE;
  1845. case OO_GreaterEqual: return BO_GE;
  1846. case OO_AmpAmp: return BO_LAnd;
  1847. case OO_PipePipe: return BO_LOr;
  1848. case OO_Comma: return BO_Comma;
  1849. case OO_ArrowStar: return BO_PtrMemI;
  1850. }
  1851. }
  1852. OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
  1853. static const OverloadedOperatorKind OverOps[] = {
  1854. /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
  1855. OO_Star, OO_Slash, OO_Percent,
  1856. OO_Plus, OO_Minus,
  1857. OO_LessLess, OO_GreaterGreater,
  1858. OO_Spaceship,
  1859. OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
  1860. OO_EqualEqual, OO_ExclaimEqual,
  1861. OO_Amp,
  1862. OO_Caret,
  1863. OO_Pipe,
  1864. OO_AmpAmp,
  1865. OO_PipePipe,
  1866. OO_Equal, OO_StarEqual,
  1867. OO_SlashEqual, OO_PercentEqual,
  1868. OO_PlusEqual, OO_MinusEqual,
  1869. OO_LessLessEqual, OO_GreaterGreaterEqual,
  1870. OO_AmpEqual, OO_CaretEqual,
  1871. OO_PipeEqual,
  1872. OO_Comma
  1873. };
  1874. return OverOps[Opc];
  1875. }
  1876. bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
  1877. Opcode Opc,
  1878. Expr *LHS, Expr *RHS) {
  1879. if (Opc != BO_Add)
  1880. return false;
  1881. // Check that we have one pointer and one integer operand.
  1882. Expr *PExp;
  1883. if (LHS->getType()->isPointerType()) {
  1884. if (!RHS->getType()->isIntegerType())
  1885. return false;
  1886. PExp = LHS;
  1887. } else if (RHS->getType()->isPointerType()) {
  1888. if (!LHS->getType()->isIntegerType())
  1889. return false;
  1890. PExp = RHS;
  1891. } else {
  1892. return false;
  1893. }
  1894. // Check that the pointer is a nullptr.
  1895. if (!PExp->IgnoreParenCasts()
  1896. ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
  1897. return false;
  1898. // Check that the pointee type is char-sized.
  1899. const PointerType *PTy = PExp->getType()->getAs<PointerType>();
  1900. if (!PTy || !PTy->getPointeeType()->isCharType())
  1901. return false;
  1902. return true;
  1903. }
  1904. static QualType getDecayedSourceLocExprType(const ASTContext &Ctx,
  1905. SourceLocExpr::IdentKind Kind) {
  1906. switch (Kind) {
  1907. case SourceLocExpr::File:
  1908. case SourceLocExpr::Function: {
  1909. QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0);
  1910. return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
  1911. }
  1912. case SourceLocExpr::Line:
  1913. case SourceLocExpr::Column:
  1914. return Ctx.UnsignedIntTy;
  1915. }
  1916. llvm_unreachable("unhandled case");
  1917. }
  1918. SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind,
  1919. SourceLocation BLoc, SourceLocation RParenLoc,
  1920. DeclContext *ParentContext)
  1921. : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind),
  1922. VK_RValue, OK_Ordinary, false, false, false, false),
  1923. BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
  1924. SourceLocExprBits.Kind = Kind;
  1925. }
  1926. StringRef SourceLocExpr::getBuiltinStr() const {
  1927. switch (getIdentKind()) {
  1928. case File:
  1929. return "__builtin_FILE";
  1930. case Function:
  1931. return "__builtin_FUNCTION";
  1932. case Line:
  1933. return "__builtin_LINE";
  1934. case Column:
  1935. return "__builtin_COLUMN";
  1936. }
  1937. llvm_unreachable("unexpected IdentKind!");
  1938. }
  1939. APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
  1940. const Expr *DefaultExpr) const {
  1941. SourceLocation Loc;
  1942. const DeclContext *Context;
  1943. std::tie(Loc,
  1944. Context) = [&]() -> std::pair<SourceLocation, const DeclContext *> {
  1945. if (auto *DIE = dyn_cast_or_null<CXXDefaultInitExpr>(DefaultExpr))
  1946. return {DIE->getUsedLocation(), DIE->getUsedContext()};
  1947. if (auto *DAE = dyn_cast_or_null<CXXDefaultArgExpr>(DefaultExpr))
  1948. return {DAE->getUsedLocation(), DAE->getUsedContext()};
  1949. return {this->getLocation(), this->getParentContext()};
  1950. }();
  1951. PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
  1952. Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
  1953. auto MakeStringLiteral = [&](StringRef Tmp) {
  1954. using LValuePathEntry = APValue::LValuePathEntry;
  1955. StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp);
  1956. // Decay the string to a pointer to the first character.
  1957. LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)};
  1958. return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
  1959. };
  1960. switch (getIdentKind()) {
  1961. case SourceLocExpr::File:
  1962. return MakeStringLiteral(PLoc.getFilename());
  1963. case SourceLocExpr::Function: {
  1964. const Decl *CurDecl = dyn_cast_or_null<Decl>(Context);
  1965. return MakeStringLiteral(
  1966. CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl)
  1967. : std::string(""));
  1968. }
  1969. case SourceLocExpr::Line:
  1970. case SourceLocExpr::Column: {
  1971. llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy),
  1972. /*isUnsigned=*/true);
  1973. IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine()
  1974. : PLoc.getColumn();
  1975. return APValue(IntVal);
  1976. }
  1977. }
  1978. llvm_unreachable("unhandled case");
  1979. }
  1980. InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
  1981. ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
  1982. : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
  1983. false, false),
  1984. InitExprs(C, initExprs.size()),
  1985. LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
  1986. {
  1987. sawArrayRangeDesignator(false);
  1988. for (unsigned I = 0; I != initExprs.size(); ++I) {
  1989. if (initExprs[I]->isTypeDependent())
  1990. ExprBits.TypeDependent = true;
  1991. if (initExprs[I]->isValueDependent())
  1992. ExprBits.ValueDependent = true;
  1993. if (initExprs[I]->isInstantiationDependent())
  1994. ExprBits.InstantiationDependent = true;
  1995. if (initExprs[I]->containsUnexpandedParameterPack())
  1996. ExprBits.ContainsUnexpandedParameterPack = true;
  1997. }
  1998. InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
  1999. }
  2000. void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
  2001. if (NumInits > InitExprs.size())
  2002. InitExprs.reserve(C, NumInits);
  2003. }
  2004. void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
  2005. InitExprs.resize(C, NumInits, nullptr);
  2006. }
  2007. Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
  2008. if (Init >= InitExprs.size()) {
  2009. InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
  2010. setInit(Init, expr);
  2011. return nullptr;
  2012. }
  2013. Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
  2014. setInit(Init, expr);
  2015. return Result;
  2016. }
  2017. void InitListExpr::setArrayFiller(Expr *filler) {
  2018. assert(!hasArrayFiller() && "Filler already set!");
  2019. ArrayFillerOrUnionFieldInit = filler;
  2020. // Fill out any "holes" in the array due to designated initializers.
  2021. Expr **inits = getInits();
  2022. for (unsigned i = 0, e = getNumInits(); i != e; ++i)
  2023. if (inits[i] == nullptr)
  2024. inits[i] = filler;
  2025. }
  2026. bool InitListExpr::isStringLiteralInit() const {
  2027. if (getNumInits() != 1)
  2028. return false;
  2029. const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
  2030. if (!AT || !AT->getElementType()->isIntegerType())
  2031. return false;
  2032. // It is possible for getInit() to return null.
  2033. const Expr *Init = getInit(0);
  2034. if (!Init)
  2035. return false;
  2036. Init = Init->IgnoreParens();
  2037. return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
  2038. }
  2039. bool InitListExpr::isTransparent() const {
  2040. assert(isSemanticForm() && "syntactic form never semantically transparent");
  2041. // A glvalue InitListExpr is always just sugar.
  2042. if (isGLValue()) {
  2043. assert(getNumInits() == 1 && "multiple inits in glvalue init list");
  2044. return true;
  2045. }
  2046. // Otherwise, we're sugar if and only if we have exactly one initializer that
  2047. // is of the same type.
  2048. if (getNumInits() != 1 || !getInit(0))
  2049. return false;
  2050. // Don't confuse aggregate initialization of a struct X { X &x; }; with a
  2051. // transparent struct copy.
  2052. if (!getInit(0)->isRValue() && getType()->isRecordType())
  2053. return false;
  2054. return getType().getCanonicalType() ==
  2055. getInit(0)->getType().getCanonicalType();
  2056. }
  2057. bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
  2058. assert(isSyntacticForm() && "only test syntactic form as zero initializer");
  2059. if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) {
  2060. return false;
  2061. }
  2062. const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0)->IgnoreImplicit());
  2063. return Lit && Lit->getValue() == 0;
  2064. }
  2065. SourceLocation InitListExpr::getBeginLoc() const {
  2066. if (InitListExpr *SyntacticForm = getSyntacticForm())
  2067. return SyntacticForm->getBeginLoc();
  2068. SourceLocation Beg = LBraceLoc;
  2069. if (Beg.isInvalid()) {
  2070. // Find the first non-null initializer.
  2071. for (InitExprsTy::const_iterator I = InitExprs.begin(),
  2072. E = InitExprs.end();
  2073. I != E; ++I) {
  2074. if (Stmt *S = *I) {
  2075. Beg = S->getBeginLoc();
  2076. break;
  2077. }
  2078. }
  2079. }
  2080. return Beg;
  2081. }
  2082. SourceLocation InitListExpr::getEndLoc() const {
  2083. if (InitListExpr *SyntacticForm = getSyntacticForm())
  2084. return SyntacticForm->getEndLoc();
  2085. SourceLocation End = RBraceLoc;
  2086. if (End.isInvalid()) {
  2087. // Find the first non-null initializer from the end.
  2088. for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
  2089. E = InitExprs.rend();
  2090. I != E; ++I) {
  2091. if (Stmt *S = *I) {
  2092. End = S->getEndLoc();
  2093. break;
  2094. }
  2095. }
  2096. }
  2097. return End;
  2098. }
  2099. /// getFunctionType - Return the underlying function type for this block.
  2100. ///
  2101. const FunctionProtoType *BlockExpr::getFunctionType() const {
  2102. // The block pointer is never sugared, but the function type might be.
  2103. return cast<BlockPointerType>(getType())
  2104. ->getPointeeType()->castAs<FunctionProtoType>();
  2105. }
  2106. SourceLocation BlockExpr::getCaretLocation() const {
  2107. return TheBlock->getCaretLocation();
  2108. }
  2109. const Stmt *BlockExpr::getBody() const {
  2110. return TheBlock->getBody();
  2111. }
  2112. Stmt *BlockExpr::getBody() {
  2113. return TheBlock->getBody();
  2114. }
  2115. //===----------------------------------------------------------------------===//
  2116. // Generic Expression Routines
  2117. //===----------------------------------------------------------------------===//
  2118. /// isUnusedResultAWarning - Return true if this immediate expression should
  2119. /// be warned about if the result is unused. If so, fill in Loc and Ranges
  2120. /// with location to warn on and the source range[s] to report with the
  2121. /// warning.
  2122. bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
  2123. SourceRange &R1, SourceRange &R2,
  2124. ASTContext &Ctx) const {
  2125. // Don't warn if the expr is type dependent. The type could end up
  2126. // instantiating to void.
  2127. if (isTypeDependent())
  2128. return false;
  2129. switch (getStmtClass()) {
  2130. default:
  2131. if (getType()->isVoidType())
  2132. return false;
  2133. WarnE = this;
  2134. Loc = getExprLoc();
  2135. R1 = getSourceRange();
  2136. return true;
  2137. case ParenExprClass:
  2138. return cast<ParenExpr>(this)->getSubExpr()->
  2139. isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2140. case GenericSelectionExprClass:
  2141. return cast<GenericSelectionExpr>(this)->getResultExpr()->
  2142. isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2143. case CoawaitExprClass:
  2144. case CoyieldExprClass:
  2145. return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
  2146. isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2147. case ChooseExprClass:
  2148. return cast<ChooseExpr>(this)->getChosenSubExpr()->
  2149. isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2150. case UnaryOperatorClass: {
  2151. const UnaryOperator *UO = cast<UnaryOperator>(this);
  2152. switch (UO->getOpcode()) {
  2153. case UO_Plus:
  2154. case UO_Minus:
  2155. case UO_AddrOf:
  2156. case UO_Not:
  2157. case UO_LNot:
  2158. case UO_Deref:
  2159. break;
  2160. case UO_Coawait:
  2161. // This is just the 'operator co_await' call inside the guts of a
  2162. // dependent co_await call.
  2163. case UO_PostInc:
  2164. case UO_PostDec:
  2165. case UO_PreInc:
  2166. case UO_PreDec: // ++/--
  2167. return false; // Not a warning.
  2168. case UO_Real:
  2169. case UO_Imag:
  2170. // accessing a piece of a volatile complex is a side-effect.
  2171. if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
  2172. .isVolatileQualified())
  2173. return false;
  2174. break;
  2175. case UO_Extension:
  2176. return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2177. }
  2178. WarnE = this;
  2179. Loc = UO->getOperatorLoc();
  2180. R1 = UO->getSubExpr()->getSourceRange();
  2181. return true;
  2182. }
  2183. case BinaryOperatorClass: {
  2184. const BinaryOperator *BO = cast<BinaryOperator>(this);
  2185. switch (BO->getOpcode()) {
  2186. default:
  2187. break;
  2188. // Consider the RHS of comma for side effects. LHS was checked by
  2189. // Sema::CheckCommaOperands.
  2190. case BO_Comma:
  2191. // ((foo = <blah>), 0) is an idiom for hiding the result (and
  2192. // lvalue-ness) of an assignment written in a macro.
  2193. if (IntegerLiteral *IE =
  2194. dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
  2195. if (IE->getValue() == 0)
  2196. return false;
  2197. return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2198. // Consider '||', '&&' to have side effects if the LHS or RHS does.
  2199. case BO_LAnd:
  2200. case BO_LOr:
  2201. if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
  2202. !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
  2203. return false;
  2204. break;
  2205. }
  2206. if (BO->isAssignmentOp())
  2207. return false;
  2208. WarnE = this;
  2209. Loc = BO->getOperatorLoc();
  2210. R1 = BO->getLHS()->getSourceRange();
  2211. R2 = BO->getRHS()->getSourceRange();
  2212. return true;
  2213. }
  2214. case CompoundAssignOperatorClass:
  2215. case VAArgExprClass:
  2216. case AtomicExprClass:
  2217. return false;
  2218. case ConditionalOperatorClass: {
  2219. // If only one of the LHS or RHS is a warning, the operator might
  2220. // be being used for control flow. Only warn if both the LHS and
  2221. // RHS are warnings.
  2222. const auto *Exp = cast<ConditionalOperator>(this);
  2223. return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
  2224. Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2225. }
  2226. case BinaryConditionalOperatorClass: {
  2227. const auto *Exp = cast<BinaryConditionalOperator>(this);
  2228. return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2229. }
  2230. case MemberExprClass:
  2231. WarnE = this;
  2232. Loc = cast<MemberExpr>(this)->getMemberLoc();
  2233. R1 = SourceRange(Loc, Loc);
  2234. R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
  2235. return true;
  2236. case ArraySubscriptExprClass:
  2237. WarnE = this;
  2238. Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
  2239. R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
  2240. R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
  2241. return true;
  2242. case CXXOperatorCallExprClass: {
  2243. // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
  2244. // overloads as there is no reasonable way to define these such that they
  2245. // have non-trivial, desirable side-effects. See the -Wunused-comparison
  2246. // warning: operators == and != are commonly typo'ed, and so warning on them
  2247. // provides additional value as well. If this list is updated,
  2248. // DiagnoseUnusedComparison should be as well.
  2249. const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
  2250. switch (Op->getOperator()) {
  2251. default:
  2252. break;
  2253. case OO_EqualEqual:
  2254. case OO_ExclaimEqual:
  2255. case OO_Less:
  2256. case OO_Greater:
  2257. case OO_GreaterEqual:
  2258. case OO_LessEqual:
  2259. if (Op->getCallReturnType(Ctx)->isReferenceType() ||
  2260. Op->getCallReturnType(Ctx)->isVoidType())
  2261. break;
  2262. WarnE = this;
  2263. Loc = Op->getOperatorLoc();
  2264. R1 = Op->getSourceRange();
  2265. return true;
  2266. }
  2267. // Fallthrough for generic call handling.
  2268. LLVM_FALLTHROUGH;
  2269. }
  2270. case CallExprClass:
  2271. case CXXMemberCallExprClass:
  2272. case UserDefinedLiteralClass: {
  2273. // If this is a direct call, get the callee.
  2274. const CallExpr *CE = cast<CallExpr>(this);
  2275. if (const Decl *FD = CE->getCalleeDecl()) {
  2276. // If the callee has attribute pure, const, or warn_unused_result, warn
  2277. // about it. void foo() { strlen("bar"); } should warn.
  2278. //
  2279. // Note: If new cases are added here, DiagnoseUnusedExprResult should be
  2280. // updated to match for QoI.
  2281. if (CE->hasUnusedResultAttr(Ctx) ||
  2282. FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
  2283. WarnE = this;
  2284. Loc = CE->getCallee()->getBeginLoc();
  2285. R1 = CE->getCallee()->getSourceRange();
  2286. if (unsigned NumArgs = CE->getNumArgs())
  2287. R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
  2288. CE->getArg(NumArgs - 1)->getEndLoc());
  2289. return true;
  2290. }
  2291. }
  2292. return false;
  2293. }
  2294. // If we don't know precisely what we're looking at, let's not warn.
  2295. case UnresolvedLookupExprClass:
  2296. case CXXUnresolvedConstructExprClass:
  2297. return false;
  2298. case CXXTemporaryObjectExprClass:
  2299. case CXXConstructExprClass: {
  2300. if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
  2301. const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
  2302. if (Type->hasAttr<WarnUnusedAttr>() ||
  2303. (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
  2304. WarnE = this;
  2305. Loc = getBeginLoc();
  2306. R1 = getSourceRange();
  2307. return true;
  2308. }
  2309. }
  2310. const auto *CE = cast<CXXConstructExpr>(this);
  2311. if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
  2312. const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
  2313. if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
  2314. WarnE = this;
  2315. Loc = getBeginLoc();
  2316. R1 = getSourceRange();
  2317. if (unsigned NumArgs = CE->getNumArgs())
  2318. R2 = SourceRange(CE->getArg(0)->getBeginLoc(),
  2319. CE->getArg(NumArgs - 1)->getEndLoc());
  2320. return true;
  2321. }
  2322. }
  2323. return false;
  2324. }
  2325. case ObjCMessageExprClass: {
  2326. const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
  2327. if (Ctx.getLangOpts().ObjCAutoRefCount &&
  2328. ME->isInstanceMessage() &&
  2329. !ME->getType()->isVoidType() &&
  2330. ME->getMethodFamily() == OMF_init) {
  2331. WarnE = this;
  2332. Loc = getExprLoc();
  2333. R1 = ME->getSourceRange();
  2334. return true;
  2335. }
  2336. if (const ObjCMethodDecl *MD = ME->getMethodDecl())
  2337. if (MD->hasAttr<WarnUnusedResultAttr>()) {
  2338. WarnE = this;
  2339. Loc = getExprLoc();
  2340. return true;
  2341. }
  2342. return false;
  2343. }
  2344. case ObjCPropertyRefExprClass:
  2345. WarnE = this;
  2346. Loc = getExprLoc();
  2347. R1 = getSourceRange();
  2348. return true;
  2349. case PseudoObjectExprClass: {
  2350. const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
  2351. // Only complain about things that have the form of a getter.
  2352. if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
  2353. isa<BinaryOperator>(PO->getSyntacticForm()))
  2354. return false;
  2355. WarnE = this;
  2356. Loc = getExprLoc();
  2357. R1 = getSourceRange();
  2358. return true;
  2359. }
  2360. case StmtExprClass: {
  2361. // Statement exprs don't logically have side effects themselves, but are
  2362. // sometimes used in macros in ways that give them a type that is unused.
  2363. // For example ({ blah; foo(); }) will end up with a type if foo has a type.
  2364. // however, if the result of the stmt expr is dead, we don't want to emit a
  2365. // warning.
  2366. const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
  2367. if (!CS->body_empty()) {
  2368. if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
  2369. return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2370. if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
  2371. if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
  2372. return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2373. }
  2374. if (getType()->isVoidType())
  2375. return false;
  2376. WarnE = this;
  2377. Loc = cast<StmtExpr>(this)->getLParenLoc();
  2378. R1 = getSourceRange();
  2379. return true;
  2380. }
  2381. case CXXFunctionalCastExprClass:
  2382. case CStyleCastExprClass: {
  2383. // Ignore an explicit cast to void unless the operand is a non-trivial
  2384. // volatile lvalue.
  2385. const CastExpr *CE = cast<CastExpr>(this);
  2386. if (CE->getCastKind() == CK_ToVoid) {
  2387. if (CE->getSubExpr()->isGLValue() &&
  2388. CE->getSubExpr()->getType().isVolatileQualified()) {
  2389. const DeclRefExpr *DRE =
  2390. dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
  2391. if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
  2392. cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) &&
  2393. !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) {
  2394. return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
  2395. R1, R2, Ctx);
  2396. }
  2397. }
  2398. return false;
  2399. }
  2400. // If this is a cast to a constructor conversion, check the operand.
  2401. // Otherwise, the result of the cast is unused.
  2402. if (CE->getCastKind() == CK_ConstructorConversion)
  2403. return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2404. WarnE = this;
  2405. if (const CXXFunctionalCastExpr *CXXCE =
  2406. dyn_cast<CXXFunctionalCastExpr>(this)) {
  2407. Loc = CXXCE->getBeginLoc();
  2408. R1 = CXXCE->getSubExpr()->getSourceRange();
  2409. } else {
  2410. const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
  2411. Loc = CStyleCE->getLParenLoc();
  2412. R1 = CStyleCE->getSubExpr()->getSourceRange();
  2413. }
  2414. return true;
  2415. }
  2416. case ImplicitCastExprClass: {
  2417. const CastExpr *ICE = cast<ImplicitCastExpr>(this);
  2418. // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
  2419. if (ICE->getCastKind() == CK_LValueToRValue &&
  2420. ICE->getSubExpr()->getType().isVolatileQualified())
  2421. return false;
  2422. return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2423. }
  2424. case CXXDefaultArgExprClass:
  2425. return (cast<CXXDefaultArgExpr>(this)
  2426. ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
  2427. case CXXDefaultInitExprClass:
  2428. return (cast<CXXDefaultInitExpr>(this)
  2429. ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
  2430. case CXXNewExprClass:
  2431. // FIXME: In theory, there might be new expressions that don't have side
  2432. // effects (e.g. a placement new with an uninitialized POD).
  2433. case CXXDeleteExprClass:
  2434. return false;
  2435. case MaterializeTemporaryExprClass:
  2436. return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
  2437. ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2438. case CXXBindTemporaryExprClass:
  2439. return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
  2440. ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2441. case ExprWithCleanupsClass:
  2442. return cast<ExprWithCleanups>(this)->getSubExpr()
  2443. ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
  2444. }
  2445. }
  2446. /// isOBJCGCCandidate - Check if an expression is objc gc'able.
  2447. /// returns true, if it is; false otherwise.
  2448. bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
  2449. const Expr *E = IgnoreParens();
  2450. switch (E->getStmtClass()) {
  2451. default:
  2452. return false;
  2453. case ObjCIvarRefExprClass:
  2454. return true;
  2455. case Expr::UnaryOperatorClass:
  2456. return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  2457. case ImplicitCastExprClass:
  2458. return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  2459. case MaterializeTemporaryExprClass:
  2460. return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
  2461. ->isOBJCGCCandidate(Ctx);
  2462. case CStyleCastExprClass:
  2463. return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
  2464. case DeclRefExprClass: {
  2465. const Decl *D = cast<DeclRefExpr>(E)->getDecl();
  2466. if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
  2467. if (VD->hasGlobalStorage())
  2468. return true;
  2469. QualType T = VD->getType();
  2470. // dereferencing to a pointer is always a gc'able candidate,
  2471. // unless it is __weak.
  2472. return T->isPointerType() &&
  2473. (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
  2474. }
  2475. return false;
  2476. }
  2477. case MemberExprClass: {
  2478. const MemberExpr *M = cast<MemberExpr>(E);
  2479. return M->getBase()->isOBJCGCCandidate(Ctx);
  2480. }
  2481. case ArraySubscriptExprClass:
  2482. return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
  2483. }
  2484. }
  2485. bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
  2486. if (isTypeDependent())
  2487. return false;
  2488. return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
  2489. }
  2490. QualType Expr::findBoundMemberType(const Expr *expr) {
  2491. assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
  2492. // Bound member expressions are always one of these possibilities:
  2493. // x->m x.m x->*y x.*y
  2494. // (possibly parenthesized)
  2495. expr = expr->IgnoreParens();
  2496. if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
  2497. assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
  2498. return mem->getMemberDecl()->getType();
  2499. }
  2500. if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
  2501. QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
  2502. ->getPointeeType();
  2503. assert(type->isFunctionType());
  2504. return type;
  2505. }
  2506. assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
  2507. return QualType();
  2508. }
  2509. static Expr *IgnoreImpCastsSingleStep(Expr *E) {
  2510. if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
  2511. return ICE->getSubExpr();
  2512. if (auto *FE = dyn_cast<FullExpr>(E))
  2513. return FE->getSubExpr();
  2514. return E;
  2515. }
  2516. static Expr *IgnoreImpCastsExtraSingleStep(Expr *E) {
  2517. // FIXME: Skip MaterializeTemporaryExpr and SubstNonTypeTemplateParmExpr in
  2518. // addition to what IgnoreImpCasts() skips to account for the current
  2519. // behaviour of IgnoreParenImpCasts().
  2520. Expr *SubE = IgnoreImpCastsSingleStep(E);
  2521. if (SubE != E)
  2522. return SubE;
  2523. if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
  2524. return MTE->GetTemporaryExpr();
  2525. if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
  2526. return NTTP->getReplacement();
  2527. return E;
  2528. }
  2529. static Expr *IgnoreCastsSingleStep(Expr *E) {
  2530. if (auto *CE = dyn_cast<CastExpr>(E))
  2531. return CE->getSubExpr();
  2532. if (auto *FE = dyn_cast<FullExpr>(E))
  2533. return FE->getSubExpr();
  2534. if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
  2535. return MTE->GetTemporaryExpr();
  2536. if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
  2537. return NTTP->getReplacement();
  2538. return E;
  2539. }
  2540. static Expr *IgnoreLValueCastsSingleStep(Expr *E) {
  2541. // Skip what IgnoreCastsSingleStep skips, except that only
  2542. // lvalue-to-rvalue casts are skipped.
  2543. if (auto *CE = dyn_cast<CastExpr>(E))
  2544. if (CE->getCastKind() != CK_LValueToRValue)
  2545. return E;
  2546. return IgnoreCastsSingleStep(E);
  2547. }
  2548. static Expr *IgnoreBaseCastsSingleStep(Expr *E) {
  2549. if (auto *CE = dyn_cast<CastExpr>(E))
  2550. if (CE->getCastKind() == CK_DerivedToBase ||
  2551. CE->getCastKind() == CK_UncheckedDerivedToBase ||
  2552. CE->getCastKind() == CK_NoOp)
  2553. return CE->getSubExpr();
  2554. return E;
  2555. }
  2556. static Expr *IgnoreImplicitSingleStep(Expr *E) {
  2557. Expr *SubE = IgnoreImpCastsSingleStep(E);
  2558. if (SubE != E)
  2559. return SubE;
  2560. if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E))
  2561. return MTE->GetTemporaryExpr();
  2562. if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
  2563. return BTE->getSubExpr();
  2564. return E;
  2565. }
  2566. static Expr *IgnoreParensSingleStep(Expr *E) {
  2567. if (auto *PE = dyn_cast<ParenExpr>(E))
  2568. return PE->getSubExpr();
  2569. if (auto *UO = dyn_cast<UnaryOperator>(E)) {
  2570. if (UO->getOpcode() == UO_Extension)
  2571. return UO->getSubExpr();
  2572. }
  2573. else if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) {
  2574. if (!GSE->isResultDependent())
  2575. return GSE->getResultExpr();
  2576. }
  2577. else if (auto *CE = dyn_cast<ChooseExpr>(E)) {
  2578. if (!CE->isConditionDependent())
  2579. return CE->getChosenSubExpr();
  2580. }
  2581. else if (auto *CE = dyn_cast<ConstantExpr>(E))
  2582. return CE->getSubExpr();
  2583. return E;
  2584. }
  2585. static Expr *IgnoreNoopCastsSingleStep(const ASTContext &Ctx, Expr *E) {
  2586. if (auto *CE = dyn_cast<CastExpr>(E)) {
  2587. // We ignore integer <-> casts that are of the same width, ptr<->ptr and
  2588. // ptr<->int casts of the same width. We also ignore all identity casts.
  2589. Expr *SubExpr = CE->getSubExpr();
  2590. bool IsIdentityCast =
  2591. Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType());
  2592. bool IsSameWidthCast =
  2593. (E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) &&
  2594. (SubExpr->getType()->isPointerType() ||
  2595. SubExpr->getType()->isIntegralType(Ctx)) &&
  2596. (Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SubExpr->getType()));
  2597. if (IsIdentityCast || IsSameWidthCast)
  2598. return SubExpr;
  2599. }
  2600. else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E))
  2601. return NTTP->getReplacement();
  2602. return E;
  2603. }
  2604. static Expr *IgnoreExprNodesImpl(Expr *E) { return E; }
  2605. template <typename FnTy, typename... FnTys>
  2606. static Expr *IgnoreExprNodesImpl(Expr *E, FnTy &&Fn, FnTys &&... Fns) {
  2607. return IgnoreExprNodesImpl(Fn(E), std::forward<FnTys>(Fns)...);
  2608. }
  2609. /// Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *,
  2610. /// Recursively apply each of the functions to E until reaching a fixed point.
  2611. /// Note that a null E is valid; in this case nothing is done.
  2612. template <typename... FnTys>
  2613. static Expr *IgnoreExprNodes(Expr *E, FnTys &&... Fns) {
  2614. Expr *LastE = nullptr;
  2615. while (E != LastE) {
  2616. LastE = E;
  2617. E = IgnoreExprNodesImpl(E, std::forward<FnTys>(Fns)...);
  2618. }
  2619. return E;
  2620. }
  2621. Expr *Expr::IgnoreImpCasts() {
  2622. return IgnoreExprNodes(this, IgnoreImpCastsSingleStep);
  2623. }
  2624. Expr *Expr::IgnoreCasts() {
  2625. return IgnoreExprNodes(this, IgnoreCastsSingleStep);
  2626. }
  2627. Expr *Expr::IgnoreImplicit() {
  2628. return IgnoreExprNodes(this, IgnoreImplicitSingleStep);
  2629. }
  2630. Expr *Expr::IgnoreParens() {
  2631. return IgnoreExprNodes(this, IgnoreParensSingleStep);
  2632. }
  2633. Expr *Expr::IgnoreParenImpCasts() {
  2634. return IgnoreExprNodes(this, IgnoreParensSingleStep,
  2635. IgnoreImpCastsExtraSingleStep);
  2636. }
  2637. Expr *Expr::IgnoreParenCasts() {
  2638. return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep);
  2639. }
  2640. Expr *Expr::IgnoreConversionOperator() {
  2641. if (auto *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
  2642. if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
  2643. return MCE->getImplicitObjectArgument();
  2644. }
  2645. return this;
  2646. }
  2647. Expr *Expr::IgnoreParenLValueCasts() {
  2648. return IgnoreExprNodes(this, IgnoreParensSingleStep,
  2649. IgnoreLValueCastsSingleStep);
  2650. }
  2651. Expr *Expr::ignoreParenBaseCasts() {
  2652. return IgnoreExprNodes(this, IgnoreParensSingleStep,
  2653. IgnoreBaseCastsSingleStep);
  2654. }
  2655. Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
  2656. return IgnoreExprNodes(this, IgnoreParensSingleStep, [&Ctx](Expr *E) {
  2657. return IgnoreNoopCastsSingleStep(Ctx, E);
  2658. });
  2659. }
  2660. bool Expr::isDefaultArgument() const {
  2661. const Expr *E = this;
  2662. if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
  2663. E = M->GetTemporaryExpr();
  2664. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
  2665. E = ICE->getSubExprAsWritten();
  2666. return isa<CXXDefaultArgExpr>(E);
  2667. }
  2668. /// Skip over any no-op casts and any temporary-binding
  2669. /// expressions.
  2670. static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
  2671. if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
  2672. E = M->GetTemporaryExpr();
  2673. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  2674. if (ICE->getCastKind() == CK_NoOp)
  2675. E = ICE->getSubExpr();
  2676. else
  2677. break;
  2678. }
  2679. while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
  2680. E = BE->getSubExpr();
  2681. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  2682. if (ICE->getCastKind() == CK_NoOp)
  2683. E = ICE->getSubExpr();
  2684. else
  2685. break;
  2686. }
  2687. return E->IgnoreParens();
  2688. }
  2689. /// isTemporaryObject - Determines if this expression produces a
  2690. /// temporary of the given class type.
  2691. bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
  2692. if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
  2693. return false;
  2694. const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
  2695. // Temporaries are by definition pr-values of class type.
  2696. if (!E->Classify(C).isPRValue()) {
  2697. // In this context, property reference is a message call and is pr-value.
  2698. if (!isa<ObjCPropertyRefExpr>(E))
  2699. return false;
  2700. }
  2701. // Black-list a few cases which yield pr-values of class type that don't
  2702. // refer to temporaries of that type:
  2703. // - implicit derived-to-base conversions
  2704. if (isa<ImplicitCastExpr>(E)) {
  2705. switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
  2706. case CK_DerivedToBase:
  2707. case CK_UncheckedDerivedToBase:
  2708. return false;
  2709. default:
  2710. break;
  2711. }
  2712. }
  2713. // - member expressions (all)
  2714. if (isa<MemberExpr>(E))
  2715. return false;
  2716. if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
  2717. if (BO->isPtrMemOp())
  2718. return false;
  2719. // - opaque values (all)
  2720. if (isa<OpaqueValueExpr>(E))
  2721. return false;
  2722. return true;
  2723. }
  2724. bool Expr::isImplicitCXXThis() const {
  2725. const Expr *E = this;
  2726. // Strip away parentheses and casts we don't care about.
  2727. while (true) {
  2728. if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
  2729. E = Paren->getSubExpr();
  2730. continue;
  2731. }
  2732. if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  2733. if (ICE->getCastKind() == CK_NoOp ||
  2734. ICE->getCastKind() == CK_LValueToRValue ||
  2735. ICE->getCastKind() == CK_DerivedToBase ||
  2736. ICE->getCastKind() == CK_UncheckedDerivedToBase) {
  2737. E = ICE->getSubExpr();
  2738. continue;
  2739. }
  2740. }
  2741. if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
  2742. if (UnOp->getOpcode() == UO_Extension) {
  2743. E = UnOp->getSubExpr();
  2744. continue;
  2745. }
  2746. }
  2747. if (const MaterializeTemporaryExpr *M
  2748. = dyn_cast<MaterializeTemporaryExpr>(E)) {
  2749. E = M->GetTemporaryExpr();
  2750. continue;
  2751. }
  2752. break;
  2753. }
  2754. if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
  2755. return This->isImplicit();
  2756. return false;
  2757. }
  2758. /// hasAnyTypeDependentArguments - Determines if any of the expressions
  2759. /// in Exprs is type-dependent.
  2760. bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
  2761. for (unsigned I = 0; I < Exprs.size(); ++I)
  2762. if (Exprs[I]->isTypeDependent())
  2763. return true;
  2764. return false;
  2765. }
  2766. bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
  2767. const Expr **Culprit) const {
  2768. assert(!isValueDependent() &&
  2769. "Expression evaluator can't be called on a dependent expression.");
  2770. // This function is attempting whether an expression is an initializer
  2771. // which can be evaluated at compile-time. It very closely parallels
  2772. // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
  2773. // will lead to unexpected results. Like ConstExprEmitter, it falls back
  2774. // to isEvaluatable most of the time.
  2775. //
  2776. // If we ever capture reference-binding directly in the AST, we can
  2777. // kill the second parameter.
  2778. if (IsForRef) {
  2779. EvalResult Result;
  2780. if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
  2781. return true;
  2782. if (Culprit)
  2783. *Culprit = this;
  2784. return false;
  2785. }
  2786. switch (getStmtClass()) {
  2787. default: break;
  2788. case StringLiteralClass:
  2789. case ObjCEncodeExprClass:
  2790. return true;
  2791. case CXXTemporaryObjectExprClass:
  2792. case CXXConstructExprClass: {
  2793. const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
  2794. if (CE->getConstructor()->isTrivial() &&
  2795. CE->getConstructor()->getParent()->hasTrivialDestructor()) {
  2796. // Trivial default constructor
  2797. if (!CE->getNumArgs()) return true;
  2798. // Trivial copy constructor
  2799. assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
  2800. return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
  2801. }
  2802. break;
  2803. }
  2804. case ConstantExprClass: {
  2805. // FIXME: We should be able to return "true" here, but it can lead to extra
  2806. // error messages. E.g. in Sema/array-init.c.
  2807. const Expr *Exp = cast<ConstantExpr>(this)->getSubExpr();
  2808. return Exp->isConstantInitializer(Ctx, false, Culprit);
  2809. }
  2810. case CompoundLiteralExprClass: {
  2811. // This handles gcc's extension that allows global initializers like
  2812. // "struct x {int x;} x = (struct x) {};".
  2813. // FIXME: This accepts other cases it shouldn't!
  2814. const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
  2815. return Exp->isConstantInitializer(Ctx, false, Culprit);
  2816. }
  2817. case DesignatedInitUpdateExprClass: {
  2818. const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
  2819. return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
  2820. DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
  2821. }
  2822. case InitListExprClass: {
  2823. const InitListExpr *ILE = cast<InitListExpr>(this);
  2824. assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
  2825. if (ILE->getType()->isArrayType()) {
  2826. unsigned numInits = ILE->getNumInits();
  2827. for (unsigned i = 0; i < numInits; i++) {
  2828. if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
  2829. return false;
  2830. }
  2831. return true;
  2832. }
  2833. if (ILE->getType()->isRecordType()) {
  2834. unsigned ElementNo = 0;
  2835. RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
  2836. for (const auto *Field : RD->fields()) {
  2837. // If this is a union, skip all the fields that aren't being initialized.
  2838. if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
  2839. continue;
  2840. // Don't emit anonymous bitfields, they just affect layout.
  2841. if (Field->isUnnamedBitfield())
  2842. continue;
  2843. if (ElementNo < ILE->getNumInits()) {
  2844. const Expr *Elt = ILE->getInit(ElementNo++);
  2845. if (Field->isBitField()) {
  2846. // Bitfields have to evaluate to an integer.
  2847. EvalResult Result;
  2848. if (!Elt->EvaluateAsInt(Result, Ctx)) {
  2849. if (Culprit)
  2850. *Culprit = Elt;
  2851. return false;
  2852. }
  2853. } else {
  2854. bool RefType = Field->getType()->isReferenceType();
  2855. if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
  2856. return false;
  2857. }
  2858. }
  2859. }
  2860. return true;
  2861. }
  2862. break;
  2863. }
  2864. case ImplicitValueInitExprClass:
  2865. case NoInitExprClass:
  2866. return true;
  2867. case ParenExprClass:
  2868. return cast<ParenExpr>(this)->getSubExpr()
  2869. ->isConstantInitializer(Ctx, IsForRef, Culprit);
  2870. case GenericSelectionExprClass:
  2871. return cast<GenericSelectionExpr>(this)->getResultExpr()
  2872. ->isConstantInitializer(Ctx, IsForRef, Culprit);
  2873. case ChooseExprClass:
  2874. if (cast<ChooseExpr>(this)->isConditionDependent()) {
  2875. if (Culprit)
  2876. *Culprit = this;
  2877. return false;
  2878. }
  2879. return cast<ChooseExpr>(this)->getChosenSubExpr()
  2880. ->isConstantInitializer(Ctx, IsForRef, Culprit);
  2881. case UnaryOperatorClass: {
  2882. const UnaryOperator* Exp = cast<UnaryOperator>(this);
  2883. if (Exp->getOpcode() == UO_Extension)
  2884. return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
  2885. break;
  2886. }
  2887. case CXXFunctionalCastExprClass:
  2888. case CXXStaticCastExprClass:
  2889. case ImplicitCastExprClass:
  2890. case CStyleCastExprClass:
  2891. case ObjCBridgedCastExprClass:
  2892. case CXXDynamicCastExprClass:
  2893. case CXXReinterpretCastExprClass:
  2894. case CXXConstCastExprClass: {
  2895. const CastExpr *CE = cast<CastExpr>(this);
  2896. // Handle misc casts we want to ignore.
  2897. if (CE->getCastKind() == CK_NoOp ||
  2898. CE->getCastKind() == CK_LValueToRValue ||
  2899. CE->getCastKind() == CK_ToUnion ||
  2900. CE->getCastKind() == CK_ConstructorConversion ||
  2901. CE->getCastKind() == CK_NonAtomicToAtomic ||
  2902. CE->getCastKind() == CK_AtomicToNonAtomic ||
  2903. CE->getCastKind() == CK_IntToOCLSampler)
  2904. return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
  2905. break;
  2906. }
  2907. case MaterializeTemporaryExprClass:
  2908. return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
  2909. ->isConstantInitializer(Ctx, false, Culprit);
  2910. case SubstNonTypeTemplateParmExprClass:
  2911. return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
  2912. ->isConstantInitializer(Ctx, false, Culprit);
  2913. case CXXDefaultArgExprClass:
  2914. return cast<CXXDefaultArgExpr>(this)->getExpr()
  2915. ->isConstantInitializer(Ctx, false, Culprit);
  2916. case CXXDefaultInitExprClass:
  2917. return cast<CXXDefaultInitExpr>(this)->getExpr()
  2918. ->isConstantInitializer(Ctx, false, Culprit);
  2919. }
  2920. // Allow certain forms of UB in constant initializers: signed integer
  2921. // overflow and floating-point division by zero. We'll give a warning on
  2922. // these, but they're common enough that we have to accept them.
  2923. if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
  2924. return true;
  2925. if (Culprit)
  2926. *Culprit = this;
  2927. return false;
  2928. }
  2929. bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
  2930. const FunctionDecl* FD = getDirectCallee();
  2931. if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
  2932. FD->getBuiltinID() != Builtin::BI__builtin_assume))
  2933. return false;
  2934. const Expr* Arg = getArg(0);
  2935. bool ArgVal;
  2936. return !Arg->isValueDependent() &&
  2937. Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
  2938. }
  2939. namespace {
  2940. /// Look for any side effects within a Stmt.
  2941. class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
  2942. typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
  2943. const bool IncludePossibleEffects;
  2944. bool HasSideEffects;
  2945. public:
  2946. explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
  2947. : Inherited(Context),
  2948. IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
  2949. bool hasSideEffects() const { return HasSideEffects; }
  2950. void VisitExpr(const Expr *E) {
  2951. if (!HasSideEffects &&
  2952. E->HasSideEffects(Context, IncludePossibleEffects))
  2953. HasSideEffects = true;
  2954. }
  2955. };
  2956. }
  2957. bool Expr::HasSideEffects(const ASTContext &Ctx,
  2958. bool IncludePossibleEffects) const {
  2959. // In circumstances where we care about definite side effects instead of
  2960. // potential side effects, we want to ignore expressions that are part of a
  2961. // macro expansion as a potential side effect.
  2962. if (!IncludePossibleEffects && getExprLoc().isMacroID())
  2963. return false;
  2964. if (isInstantiationDependent())
  2965. return IncludePossibleEffects;
  2966. switch (getStmtClass()) {
  2967. case NoStmtClass:
  2968. #define ABSTRACT_STMT(Type)
  2969. #define STMT(Type, Base) case Type##Class:
  2970. #define EXPR(Type, Base)
  2971. #include "clang/AST/StmtNodes.inc"
  2972. llvm_unreachable("unexpected Expr kind");
  2973. case DependentScopeDeclRefExprClass:
  2974. case CXXUnresolvedConstructExprClass:
  2975. case CXXDependentScopeMemberExprClass:
  2976. case UnresolvedLookupExprClass:
  2977. case UnresolvedMemberExprClass:
  2978. case PackExpansionExprClass:
  2979. case SubstNonTypeTemplateParmPackExprClass:
  2980. case FunctionParmPackExprClass:
  2981. case TypoExprClass:
  2982. case CXXFoldExprClass:
  2983. llvm_unreachable("shouldn't see dependent / unresolved nodes here");
  2984. case DeclRefExprClass:
  2985. case ObjCIvarRefExprClass:
  2986. case PredefinedExprClass:
  2987. case IntegerLiteralClass:
  2988. case FixedPointLiteralClass:
  2989. case FloatingLiteralClass:
  2990. case ImaginaryLiteralClass:
  2991. case StringLiteralClass:
  2992. case CharacterLiteralClass:
  2993. case OffsetOfExprClass:
  2994. case ImplicitValueInitExprClass:
  2995. case UnaryExprOrTypeTraitExprClass:
  2996. case AddrLabelExprClass:
  2997. case GNUNullExprClass:
  2998. case ArrayInitIndexExprClass:
  2999. case NoInitExprClass:
  3000. case CXXBoolLiteralExprClass:
  3001. case CXXNullPtrLiteralExprClass:
  3002. case CXXThisExprClass:
  3003. case CXXScalarValueInitExprClass:
  3004. case TypeTraitExprClass:
  3005. case ArrayTypeTraitExprClass:
  3006. case ExpressionTraitExprClass:
  3007. case CXXNoexceptExprClass:
  3008. case SizeOfPackExprClass:
  3009. case ObjCStringLiteralClass:
  3010. case ObjCEncodeExprClass:
  3011. case ObjCBoolLiteralExprClass:
  3012. case ObjCAvailabilityCheckExprClass:
  3013. case CXXUuidofExprClass:
  3014. case OpaqueValueExprClass:
  3015. case SourceLocExprClass:
  3016. // These never have a side-effect.
  3017. return false;
  3018. case ConstantExprClass:
  3019. // FIXME: Move this into the "return false;" block above.
  3020. return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
  3021. Ctx, IncludePossibleEffects);
  3022. case CallExprClass:
  3023. case CXXOperatorCallExprClass:
  3024. case CXXMemberCallExprClass:
  3025. case CUDAKernelCallExprClass:
  3026. case UserDefinedLiteralClass: {
  3027. // We don't know a call definitely has side effects, except for calls
  3028. // to pure/const functions that definitely don't.
  3029. // If the call itself is considered side-effect free, check the operands.
  3030. const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
  3031. bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
  3032. if (IsPure || !IncludePossibleEffects)
  3033. break;
  3034. return true;
  3035. }
  3036. case BlockExprClass:
  3037. case CXXBindTemporaryExprClass:
  3038. if (!IncludePossibleEffects)
  3039. break;
  3040. return true;
  3041. case MSPropertyRefExprClass:
  3042. case MSPropertySubscriptExprClass:
  3043. case CompoundAssignOperatorClass:
  3044. case VAArgExprClass:
  3045. case AtomicExprClass:
  3046. case CXXThrowExprClass:
  3047. case CXXNewExprClass:
  3048. case CXXDeleteExprClass:
  3049. case CoawaitExprClass:
  3050. case DependentCoawaitExprClass:
  3051. case CoyieldExprClass:
  3052. // These always have a side-effect.
  3053. return true;
  3054. case StmtExprClass: {
  3055. // StmtExprs have a side-effect if any substatement does.
  3056. SideEffectFinder Finder(Ctx, IncludePossibleEffects);
  3057. Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
  3058. return Finder.hasSideEffects();
  3059. }
  3060. case ExprWithCleanupsClass:
  3061. if (IncludePossibleEffects)
  3062. if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
  3063. return true;
  3064. break;
  3065. case ParenExprClass:
  3066. case ArraySubscriptExprClass:
  3067. case OMPArraySectionExprClass:
  3068. case MemberExprClass:
  3069. case ConditionalOperatorClass:
  3070. case BinaryConditionalOperatorClass:
  3071. case CompoundLiteralExprClass:
  3072. case ExtVectorElementExprClass:
  3073. case DesignatedInitExprClass:
  3074. case DesignatedInitUpdateExprClass:
  3075. case ArrayInitLoopExprClass:
  3076. case ParenListExprClass:
  3077. case CXXPseudoDestructorExprClass:
  3078. case CXXStdInitializerListExprClass:
  3079. case SubstNonTypeTemplateParmExprClass:
  3080. case MaterializeTemporaryExprClass:
  3081. case ShuffleVectorExprClass:
  3082. case ConvertVectorExprClass:
  3083. case AsTypeExprClass:
  3084. // These have a side-effect if any subexpression does.
  3085. break;
  3086. case UnaryOperatorClass:
  3087. if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
  3088. return true;
  3089. break;
  3090. case BinaryOperatorClass:
  3091. if (cast<BinaryOperator>(this)->isAssignmentOp())
  3092. return true;
  3093. break;
  3094. case InitListExprClass:
  3095. // FIXME: The children for an InitListExpr doesn't include the array filler.
  3096. if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
  3097. if (E->HasSideEffects(Ctx, IncludePossibleEffects))
  3098. return true;
  3099. break;
  3100. case GenericSelectionExprClass:
  3101. return cast<GenericSelectionExpr>(this)->getResultExpr()->
  3102. HasSideEffects(Ctx, IncludePossibleEffects);
  3103. case ChooseExprClass:
  3104. return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
  3105. Ctx, IncludePossibleEffects);
  3106. case CXXDefaultArgExprClass:
  3107. return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
  3108. Ctx, IncludePossibleEffects);
  3109. case CXXDefaultInitExprClass: {
  3110. const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
  3111. if (const Expr *E = FD->getInClassInitializer())
  3112. return E->HasSideEffects(Ctx, IncludePossibleEffects);
  3113. // If we've not yet parsed the initializer, assume it has side-effects.
  3114. return true;
  3115. }
  3116. case CXXDynamicCastExprClass: {
  3117. // A dynamic_cast expression has side-effects if it can throw.
  3118. const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
  3119. if (DCE->getTypeAsWritten()->isReferenceType() &&
  3120. DCE->getCastKind() == CK_Dynamic)
  3121. return true;
  3122. }
  3123. LLVM_FALLTHROUGH;
  3124. case ImplicitCastExprClass:
  3125. case CStyleCastExprClass:
  3126. case CXXStaticCastExprClass:
  3127. case CXXReinterpretCastExprClass:
  3128. case CXXConstCastExprClass:
  3129. case CXXFunctionalCastExprClass:
  3130. case BuiltinBitCastExprClass: {
  3131. // While volatile reads are side-effecting in both C and C++, we treat them
  3132. // as having possible (not definite) side-effects. This allows idiomatic
  3133. // code to behave without warning, such as sizeof(*v) for a volatile-
  3134. // qualified pointer.
  3135. if (!IncludePossibleEffects)
  3136. break;
  3137. const CastExpr *CE = cast<CastExpr>(this);
  3138. if (CE->getCastKind() == CK_LValueToRValue &&
  3139. CE->getSubExpr()->getType().isVolatileQualified())
  3140. return true;
  3141. break;
  3142. }
  3143. case CXXTypeidExprClass:
  3144. // typeid might throw if its subexpression is potentially-evaluated, so has
  3145. // side-effects in that case whether or not its subexpression does.
  3146. return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
  3147. case CXXConstructExprClass:
  3148. case CXXTemporaryObjectExprClass: {
  3149. const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
  3150. if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
  3151. return true;
  3152. // A trivial constructor does not add any side-effects of its own. Just look
  3153. // at its arguments.
  3154. break;
  3155. }
  3156. case CXXInheritedCtorInitExprClass: {
  3157. const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
  3158. if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
  3159. return true;
  3160. break;
  3161. }
  3162. case LambdaExprClass: {
  3163. const LambdaExpr *LE = cast<LambdaExpr>(this);
  3164. for (Expr *E : LE->capture_inits())
  3165. if (E->HasSideEffects(Ctx, IncludePossibleEffects))
  3166. return true;
  3167. return false;
  3168. }
  3169. case PseudoObjectExprClass: {
  3170. // Only look for side-effects in the semantic form, and look past
  3171. // OpaqueValueExpr bindings in that form.
  3172. const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
  3173. for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
  3174. E = PO->semantics_end();
  3175. I != E; ++I) {
  3176. const Expr *Subexpr = *I;
  3177. if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
  3178. Subexpr = OVE->getSourceExpr();
  3179. if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
  3180. return true;
  3181. }
  3182. return false;
  3183. }
  3184. case ObjCBoxedExprClass:
  3185. case ObjCArrayLiteralClass:
  3186. case ObjCDictionaryLiteralClass:
  3187. case ObjCSelectorExprClass:
  3188. case ObjCProtocolExprClass:
  3189. case ObjCIsaExprClass:
  3190. case ObjCIndirectCopyRestoreExprClass:
  3191. case ObjCSubscriptRefExprClass:
  3192. case ObjCBridgedCastExprClass:
  3193. case ObjCMessageExprClass:
  3194. case ObjCPropertyRefExprClass:
  3195. // FIXME: Classify these cases better.
  3196. if (IncludePossibleEffects)
  3197. return true;
  3198. break;
  3199. }
  3200. // Recurse to children.
  3201. for (const Stmt *SubStmt : children())
  3202. if (SubStmt &&
  3203. cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
  3204. return true;
  3205. return false;
  3206. }
  3207. namespace {
  3208. /// Look for a call to a non-trivial function within an expression.
  3209. class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
  3210. {
  3211. typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
  3212. bool NonTrivial;
  3213. public:
  3214. explicit NonTrivialCallFinder(const ASTContext &Context)
  3215. : Inherited(Context), NonTrivial(false) { }
  3216. bool hasNonTrivialCall() const { return NonTrivial; }
  3217. void VisitCallExpr(const CallExpr *E) {
  3218. if (const CXXMethodDecl *Method
  3219. = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
  3220. if (Method->isTrivial()) {
  3221. // Recurse to children of the call.
  3222. Inherited::VisitStmt(E);
  3223. return;
  3224. }
  3225. }
  3226. NonTrivial = true;
  3227. }
  3228. void VisitCXXConstructExpr(const CXXConstructExpr *E) {
  3229. if (E->getConstructor()->isTrivial()) {
  3230. // Recurse to children of the call.
  3231. Inherited::VisitStmt(E);
  3232. return;
  3233. }
  3234. NonTrivial = true;
  3235. }
  3236. void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
  3237. if (E->getTemporary()->getDestructor()->isTrivial()) {
  3238. Inherited::VisitStmt(E);
  3239. return;
  3240. }
  3241. NonTrivial = true;
  3242. }
  3243. };
  3244. }
  3245. bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
  3246. NonTrivialCallFinder Finder(Ctx);
  3247. Finder.Visit(this);
  3248. return Finder.hasNonTrivialCall();
  3249. }
  3250. /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
  3251. /// pointer constant or not, as well as the specific kind of constant detected.
  3252. /// Null pointer constants can be integer constant expressions with the
  3253. /// value zero, casts of zero to void*, nullptr (C++0X), or __null
  3254. /// (a GNU extension).
  3255. Expr::NullPointerConstantKind
  3256. Expr::isNullPointerConstant(ASTContext &Ctx,
  3257. NullPointerConstantValueDependence NPC) const {
  3258. if (isValueDependent() &&
  3259. (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
  3260. switch (NPC) {
  3261. case NPC_NeverValueDependent:
  3262. llvm_unreachable("Unexpected value dependent expression!");
  3263. case NPC_ValueDependentIsNull:
  3264. if (isTypeDependent() || getType()->isIntegralType(Ctx))
  3265. return NPCK_ZeroExpression;
  3266. else
  3267. return NPCK_NotNull;
  3268. case NPC_ValueDependentIsNotNull:
  3269. return NPCK_NotNull;
  3270. }
  3271. }
  3272. // Strip off a cast to void*, if it exists. Except in C++.
  3273. if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
  3274. if (!Ctx.getLangOpts().CPlusPlus) {
  3275. // Check that it is a cast to void*.
  3276. if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
  3277. QualType Pointee = PT->getPointeeType();
  3278. Qualifiers Qs = Pointee.getQualifiers();
  3279. // Only (void*)0 or equivalent are treated as nullptr. If pointee type
  3280. // has non-default address space it is not treated as nullptr.
  3281. // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
  3282. // since it cannot be assigned to a pointer to constant address space.
  3283. if ((Ctx.getLangOpts().OpenCLVersion >= 200 &&
  3284. Pointee.getAddressSpace() == LangAS::opencl_generic) ||
  3285. (Ctx.getLangOpts().OpenCL &&
  3286. Ctx.getLangOpts().OpenCLVersion < 200 &&
  3287. Pointee.getAddressSpace() == LangAS::opencl_private))
  3288. Qs.removeAddressSpace();
  3289. if (Pointee->isVoidType() && Qs.empty() && // to void*
  3290. CE->getSubExpr()->getType()->isIntegerType()) // from int
  3291. return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  3292. }
  3293. }
  3294. } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
  3295. // Ignore the ImplicitCastExpr type entirely.
  3296. return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  3297. } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
  3298. // Accept ((void*)0) as a null pointer constant, as many other
  3299. // implementations do.
  3300. return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
  3301. } else if (const GenericSelectionExpr *GE =
  3302. dyn_cast<GenericSelectionExpr>(this)) {
  3303. if (GE->isResultDependent())
  3304. return NPCK_NotNull;
  3305. return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
  3306. } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
  3307. if (CE->isConditionDependent())
  3308. return NPCK_NotNull;
  3309. return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
  3310. } else if (const CXXDefaultArgExpr *DefaultArg
  3311. = dyn_cast<CXXDefaultArgExpr>(this)) {
  3312. // See through default argument expressions.
  3313. return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
  3314. } else if (const CXXDefaultInitExpr *DefaultInit
  3315. = dyn_cast<CXXDefaultInitExpr>(this)) {
  3316. // See through default initializer expressions.
  3317. return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
  3318. } else if (isa<GNUNullExpr>(this)) {
  3319. // The GNU __null extension is always a null pointer constant.
  3320. return NPCK_GNUNull;
  3321. } else if (const MaterializeTemporaryExpr *M
  3322. = dyn_cast<MaterializeTemporaryExpr>(this)) {
  3323. return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
  3324. } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
  3325. if (const Expr *Source = OVE->getSourceExpr())
  3326. return Source->isNullPointerConstant(Ctx, NPC);
  3327. }
  3328. // C++11 nullptr_t is always a null pointer constant.
  3329. if (getType()->isNullPtrType())
  3330. return NPCK_CXX11_nullptr;
  3331. if (const RecordType *UT = getType()->getAsUnionType())
  3332. if (!Ctx.getLangOpts().CPlusPlus11 &&
  3333. UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
  3334. if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
  3335. const Expr *InitExpr = CLE->getInitializer();
  3336. if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
  3337. return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
  3338. }
  3339. // This expression must be an integer type.
  3340. if (!getType()->isIntegerType() ||
  3341. (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
  3342. return NPCK_NotNull;
  3343. if (Ctx.getLangOpts().CPlusPlus11) {
  3344. // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
  3345. // value zero or a prvalue of type std::nullptr_t.
  3346. // Microsoft mode permits C++98 rules reflecting MSVC behavior.
  3347. const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
  3348. if (Lit && !Lit->getValue())
  3349. return NPCK_ZeroLiteral;
  3350. else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
  3351. return NPCK_NotNull;
  3352. } else {
  3353. // If we have an integer constant expression, we need to *evaluate* it and
  3354. // test for the value 0.
  3355. if (!isIntegerConstantExpr(Ctx))
  3356. return NPCK_NotNull;
  3357. }
  3358. if (EvaluateKnownConstInt(Ctx) != 0)
  3359. return NPCK_NotNull;
  3360. if (isa<IntegerLiteral>(this))
  3361. return NPCK_ZeroLiteral;
  3362. return NPCK_ZeroExpression;
  3363. }
  3364. /// If this expression is an l-value for an Objective C
  3365. /// property, find the underlying property reference expression.
  3366. const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
  3367. const Expr *E = this;
  3368. while (true) {
  3369. assert((E->getValueKind() == VK_LValue &&
  3370. E->getObjectKind() == OK_ObjCProperty) &&
  3371. "expression is not a property reference");
  3372. E = E->IgnoreParenCasts();
  3373. if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
  3374. if (BO->getOpcode() == BO_Comma) {
  3375. E = BO->getRHS();
  3376. continue;
  3377. }
  3378. }
  3379. break;
  3380. }
  3381. return cast<ObjCPropertyRefExpr>(E);
  3382. }
  3383. bool Expr::isObjCSelfExpr() const {
  3384. const Expr *E = IgnoreParenImpCasts();
  3385. const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
  3386. if (!DRE)
  3387. return false;
  3388. const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
  3389. if (!Param)
  3390. return false;
  3391. const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
  3392. if (!M)
  3393. return false;
  3394. return M->getSelfDecl() == Param;
  3395. }
  3396. FieldDecl *Expr::getSourceBitField() {
  3397. Expr *E = this->IgnoreParens();
  3398. while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  3399. if (ICE->getCastKind() == CK_LValueToRValue ||
  3400. (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
  3401. E = ICE->getSubExpr()->IgnoreParens();
  3402. else
  3403. break;
  3404. }
  3405. if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
  3406. if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
  3407. if (Field->isBitField())
  3408. return Field;
  3409. if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
  3410. FieldDecl *Ivar = IvarRef->getDecl();
  3411. if (Ivar->isBitField())
  3412. return Ivar;
  3413. }
  3414. if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
  3415. if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
  3416. if (Field->isBitField())
  3417. return Field;
  3418. if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
  3419. if (Expr *E = BD->getBinding())
  3420. return E->getSourceBitField();
  3421. }
  3422. if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
  3423. if (BinOp->isAssignmentOp() && BinOp->getLHS())
  3424. return BinOp->getLHS()->getSourceBitField();
  3425. if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
  3426. return BinOp->getRHS()->getSourceBitField();
  3427. }
  3428. if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
  3429. if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
  3430. return UnOp->getSubExpr()->getSourceBitField();
  3431. return nullptr;
  3432. }
  3433. bool Expr::refersToVectorElement() const {
  3434. // FIXME: Why do we not just look at the ObjectKind here?
  3435. const Expr *E = this->IgnoreParens();
  3436. while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
  3437. if (ICE->getValueKind() != VK_RValue &&
  3438. ICE->getCastKind() == CK_NoOp)
  3439. E = ICE->getSubExpr()->IgnoreParens();
  3440. else
  3441. break;
  3442. }
  3443. if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
  3444. return ASE->getBase()->getType()->isVectorType();
  3445. if (isa<ExtVectorElementExpr>(E))
  3446. return true;
  3447. if (auto *DRE = dyn_cast<DeclRefExpr>(E))
  3448. if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
  3449. if (auto *E = BD->getBinding())
  3450. return E->refersToVectorElement();
  3451. return false;
  3452. }
  3453. bool Expr::refersToGlobalRegisterVar() const {
  3454. const Expr *E = this->IgnoreParenImpCasts();
  3455. if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
  3456. if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
  3457. if (VD->getStorageClass() == SC_Register &&
  3458. VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
  3459. return true;
  3460. return false;
  3461. }
  3462. bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
  3463. E1 = E1->IgnoreParens();
  3464. E2 = E2->IgnoreParens();
  3465. if (E1->getStmtClass() != E2->getStmtClass())
  3466. return false;
  3467. switch (E1->getStmtClass()) {
  3468. default:
  3469. return false;
  3470. case CXXThisExprClass:
  3471. return true;
  3472. case DeclRefExprClass: {
  3473. // DeclRefExpr without an ImplicitCastExpr can happen for integral
  3474. // template parameters.
  3475. const auto *DRE1 = cast<DeclRefExpr>(E1);
  3476. const auto *DRE2 = cast<DeclRefExpr>(E2);
  3477. return DRE1->isRValue() && DRE2->isRValue() &&
  3478. DRE1->getDecl() == DRE2->getDecl();
  3479. }
  3480. case ImplicitCastExprClass: {
  3481. // Peel off implicit casts.
  3482. while (true) {
  3483. const auto *ICE1 = dyn_cast<ImplicitCastExpr>(E1);
  3484. const auto *ICE2 = dyn_cast<ImplicitCastExpr>(E2);
  3485. if (!ICE1 || !ICE2)
  3486. return false;
  3487. if (ICE1->getCastKind() != ICE2->getCastKind())
  3488. return false;
  3489. E1 = ICE1->getSubExpr()->IgnoreParens();
  3490. E2 = ICE2->getSubExpr()->IgnoreParens();
  3491. // The final cast must be one of these types.
  3492. if (ICE1->getCastKind() == CK_LValueToRValue ||
  3493. ICE1->getCastKind() == CK_ArrayToPointerDecay ||
  3494. ICE1->getCastKind() == CK_FunctionToPointerDecay) {
  3495. break;
  3496. }
  3497. }
  3498. const auto *DRE1 = dyn_cast<DeclRefExpr>(E1);
  3499. const auto *DRE2 = dyn_cast<DeclRefExpr>(E2);
  3500. if (DRE1 && DRE2)
  3501. return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
  3502. const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(E1);
  3503. const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(E2);
  3504. if (Ivar1 && Ivar2) {
  3505. return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
  3506. declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
  3507. }
  3508. const auto *Array1 = dyn_cast<ArraySubscriptExpr>(E1);
  3509. const auto *Array2 = dyn_cast<ArraySubscriptExpr>(E2);
  3510. if (Array1 && Array2) {
  3511. if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase()))
  3512. return false;
  3513. auto Idx1 = Array1->getIdx();
  3514. auto Idx2 = Array2->getIdx();
  3515. const auto Integer1 = dyn_cast<IntegerLiteral>(Idx1);
  3516. const auto Integer2 = dyn_cast<IntegerLiteral>(Idx2);
  3517. if (Integer1 && Integer2) {
  3518. if (!llvm::APInt::isSameValue(Integer1->getValue(),
  3519. Integer2->getValue()))
  3520. return false;
  3521. } else {
  3522. if (!isSameComparisonOperand(Idx1, Idx2))
  3523. return false;
  3524. }
  3525. return true;
  3526. }
  3527. // Walk the MemberExpr chain.
  3528. while (isa<MemberExpr>(E1) && isa<MemberExpr>(E2)) {
  3529. const auto *ME1 = cast<MemberExpr>(E1);
  3530. const auto *ME2 = cast<MemberExpr>(E2);
  3531. if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
  3532. return false;
  3533. if (const auto *D = dyn_cast<VarDecl>(ME1->getMemberDecl()))
  3534. if (D->isStaticDataMember())
  3535. return true;
  3536. E1 = ME1->getBase()->IgnoreParenImpCasts();
  3537. E2 = ME2->getBase()->IgnoreParenImpCasts();
  3538. }
  3539. if (isa<CXXThisExpr>(E1) && isa<CXXThisExpr>(E2))
  3540. return true;
  3541. // A static member variable can end the MemberExpr chain with either
  3542. // a MemberExpr or a DeclRefExpr.
  3543. auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
  3544. if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
  3545. return DRE->getDecl();
  3546. if (const auto *ME = dyn_cast<MemberExpr>(E))
  3547. return ME->getMemberDecl();
  3548. return nullptr;
  3549. };
  3550. const ValueDecl *VD1 = getAnyDecl(E1);
  3551. const ValueDecl *VD2 = getAnyDecl(E2);
  3552. return declaresSameEntity(VD1, VD2);
  3553. }
  3554. }
  3555. }
  3556. /// isArrow - Return true if the base expression is a pointer to vector,
  3557. /// return false if the base expression is a vector.
  3558. bool ExtVectorElementExpr::isArrow() const {
  3559. return getBase()->getType()->isPointerType();
  3560. }
  3561. unsigned ExtVectorElementExpr::getNumElements() const {
  3562. if (const VectorType *VT = getType()->getAs<VectorType>())
  3563. return VT->getNumElements();
  3564. return 1;
  3565. }
  3566. /// containsDuplicateElements - Return true if any element access is repeated.
  3567. bool ExtVectorElementExpr::containsDuplicateElements() const {
  3568. // FIXME: Refactor this code to an accessor on the AST node which returns the
  3569. // "type" of component access, and share with code below and in Sema.
  3570. StringRef Comp = Accessor->getName();
  3571. // Halving swizzles do not contain duplicate elements.
  3572. if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
  3573. return false;
  3574. // Advance past s-char prefix on hex swizzles.
  3575. if (Comp[0] == 's' || Comp[0] == 'S')
  3576. Comp = Comp.substr(1);
  3577. for (unsigned i = 0, e = Comp.size(); i != e; ++i)
  3578. if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
  3579. return true;
  3580. return false;
  3581. }
  3582. /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
  3583. void ExtVectorElementExpr::getEncodedElementAccess(
  3584. SmallVectorImpl<uint32_t> &Elts) const {
  3585. StringRef Comp = Accessor->getName();
  3586. bool isNumericAccessor = false;
  3587. if (Comp[0] == 's' || Comp[0] == 'S') {
  3588. Comp = Comp.substr(1);
  3589. isNumericAccessor = true;
  3590. }
  3591. bool isHi = Comp == "hi";
  3592. bool isLo = Comp == "lo";
  3593. bool isEven = Comp == "even";
  3594. bool isOdd = Comp == "odd";
  3595. for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
  3596. uint64_t Index;
  3597. if (isHi)
  3598. Index = e + i;
  3599. else if (isLo)
  3600. Index = i;
  3601. else if (isEven)
  3602. Index = 2 * i;
  3603. else if (isOdd)
  3604. Index = 2 * i + 1;
  3605. else
  3606. Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
  3607. Elts.push_back(Index);
  3608. }
  3609. }
  3610. ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
  3611. QualType Type, SourceLocation BLoc,
  3612. SourceLocation RP)
  3613. : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
  3614. Type->isDependentType(), Type->isDependentType(),
  3615. Type->isInstantiationDependentType(),
  3616. Type->containsUnexpandedParameterPack()),
  3617. BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
  3618. {
  3619. SubExprs = new (C) Stmt*[args.size()];
  3620. for (unsigned i = 0; i != args.size(); i++) {
  3621. if (args[i]->isTypeDependent())
  3622. ExprBits.TypeDependent = true;
  3623. if (args[i]->isValueDependent())
  3624. ExprBits.ValueDependent = true;
  3625. if (args[i]->isInstantiationDependent())
  3626. ExprBits.InstantiationDependent = true;
  3627. if (args[i]->containsUnexpandedParameterPack())
  3628. ExprBits.ContainsUnexpandedParameterPack = true;
  3629. SubExprs[i] = args[i];
  3630. }
  3631. }
  3632. void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
  3633. if (SubExprs) C.Deallocate(SubExprs);
  3634. this->NumExprs = Exprs.size();
  3635. SubExprs = new (C) Stmt*[NumExprs];
  3636. memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
  3637. }
  3638. GenericSelectionExpr::GenericSelectionExpr(
  3639. const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
  3640. ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
  3641. SourceLocation DefaultLoc, SourceLocation RParenLoc,
  3642. bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
  3643. : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
  3644. AssocExprs[ResultIndex]->getValueKind(),
  3645. AssocExprs[ResultIndex]->getObjectKind(),
  3646. AssocExprs[ResultIndex]->isTypeDependent(),
  3647. AssocExprs[ResultIndex]->isValueDependent(),
  3648. AssocExprs[ResultIndex]->isInstantiationDependent(),
  3649. ContainsUnexpandedParameterPack),
  3650. NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
  3651. DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
  3652. assert(AssocTypes.size() == AssocExprs.size() &&
  3653. "Must have the same number of association expressions"
  3654. " and TypeSourceInfo!");
  3655. assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
  3656. GenericSelectionExprBits.GenericLoc = GenericLoc;
  3657. getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
  3658. std::copy(AssocExprs.begin(), AssocExprs.end(),
  3659. getTrailingObjects<Stmt *>() + AssocExprStartIndex);
  3660. std::copy(AssocTypes.begin(), AssocTypes.end(),
  3661. getTrailingObjects<TypeSourceInfo *>());
  3662. }
  3663. GenericSelectionExpr::GenericSelectionExpr(
  3664. const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
  3665. ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
  3666. SourceLocation DefaultLoc, SourceLocation RParenLoc,
  3667. bool ContainsUnexpandedParameterPack)
  3668. : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue,
  3669. OK_Ordinary,
  3670. /*isTypeDependent=*/true,
  3671. /*isValueDependent=*/true,
  3672. /*isInstantiationDependent=*/true, ContainsUnexpandedParameterPack),
  3673. NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
  3674. DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
  3675. assert(AssocTypes.size() == AssocExprs.size() &&
  3676. "Must have the same number of association expressions"
  3677. " and TypeSourceInfo!");
  3678. GenericSelectionExprBits.GenericLoc = GenericLoc;
  3679. getTrailingObjects<Stmt *>()[ControllingIndex] = ControllingExpr;
  3680. std::copy(AssocExprs.begin(), AssocExprs.end(),
  3681. getTrailingObjects<Stmt *>() + AssocExprStartIndex);
  3682. std::copy(AssocTypes.begin(), AssocTypes.end(),
  3683. getTrailingObjects<TypeSourceInfo *>());
  3684. }
  3685. GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
  3686. : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
  3687. GenericSelectionExpr *GenericSelectionExpr::Create(
  3688. const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
  3689. ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
  3690. SourceLocation DefaultLoc, SourceLocation RParenLoc,
  3691. bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
  3692. unsigned NumAssocs = AssocExprs.size();
  3693. void *Mem = Context.Allocate(
  3694. totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
  3695. alignof(GenericSelectionExpr));
  3696. return new (Mem) GenericSelectionExpr(
  3697. Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
  3698. RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
  3699. }
  3700. GenericSelectionExpr *GenericSelectionExpr::Create(
  3701. const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
  3702. ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
  3703. SourceLocation DefaultLoc, SourceLocation RParenLoc,
  3704. bool ContainsUnexpandedParameterPack) {
  3705. unsigned NumAssocs = AssocExprs.size();
  3706. void *Mem = Context.Allocate(
  3707. totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
  3708. alignof(GenericSelectionExpr));
  3709. return new (Mem) GenericSelectionExpr(
  3710. Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
  3711. RParenLoc, ContainsUnexpandedParameterPack);
  3712. }
  3713. GenericSelectionExpr *
  3714. GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
  3715. unsigned NumAssocs) {
  3716. void *Mem = Context.Allocate(
  3717. totalSizeToAlloc<Stmt *, TypeSourceInfo *>(1 + NumAssocs, NumAssocs),
  3718. alignof(GenericSelectionExpr));
  3719. return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
  3720. }
  3721. //===----------------------------------------------------------------------===//
  3722. // DesignatedInitExpr
  3723. //===----------------------------------------------------------------------===//
  3724. IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
  3725. assert(Kind == FieldDesignator && "Only valid on a field designator");
  3726. if (Field.NameOrField & 0x01)
  3727. return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
  3728. else
  3729. return getField()->getIdentifier();
  3730. }
  3731. DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
  3732. llvm::ArrayRef<Designator> Designators,
  3733. SourceLocation EqualOrColonLoc,
  3734. bool GNUSyntax,
  3735. ArrayRef<Expr*> IndexExprs,
  3736. Expr *Init)
  3737. : Expr(DesignatedInitExprClass, Ty,
  3738. Init->getValueKind(), Init->getObjectKind(),
  3739. Init->isTypeDependent(), Init->isValueDependent(),
  3740. Init->isInstantiationDependent(),
  3741. Init->containsUnexpandedParameterPack()),
  3742. EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
  3743. NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
  3744. this->Designators = new (C) Designator[NumDesignators];
  3745. // Record the initializer itself.
  3746. child_iterator Child = child_begin();
  3747. *Child++ = Init;
  3748. // Copy the designators and their subexpressions, computing
  3749. // value-dependence along the way.
  3750. unsigned IndexIdx = 0;
  3751. for (unsigned I = 0; I != NumDesignators; ++I) {
  3752. this->Designators[I] = Designators[I];
  3753. if (this->Designators[I].isArrayDesignator()) {
  3754. // Compute type- and value-dependence.
  3755. Expr *Index = IndexExprs[IndexIdx];
  3756. if (Index->isTypeDependent() || Index->isValueDependent())
  3757. ExprBits.TypeDependent = ExprBits.ValueDependent = true;
  3758. if (Index->isInstantiationDependent())
  3759. ExprBits.InstantiationDependent = true;
  3760. // Propagate unexpanded parameter packs.
  3761. if (Index->containsUnexpandedParameterPack())
  3762. ExprBits.ContainsUnexpandedParameterPack = true;
  3763. // Copy the index expressions into permanent storage.
  3764. *Child++ = IndexExprs[IndexIdx++];
  3765. } else if (this->Designators[I].isArrayRangeDesignator()) {
  3766. // Compute type- and value-dependence.
  3767. Expr *Start = IndexExprs[IndexIdx];
  3768. Expr *End = IndexExprs[IndexIdx + 1];
  3769. if (Start->isTypeDependent() || Start->isValueDependent() ||
  3770. End->isTypeDependent() || End->isValueDependent()) {
  3771. ExprBits.TypeDependent = ExprBits.ValueDependent = true;
  3772. ExprBits.InstantiationDependent = true;
  3773. } else if (Start->isInstantiationDependent() ||
  3774. End->isInstantiationDependent()) {
  3775. ExprBits.InstantiationDependent = true;
  3776. }
  3777. // Propagate unexpanded parameter packs.
  3778. if (Start->containsUnexpandedParameterPack() ||
  3779. End->containsUnexpandedParameterPack())
  3780. ExprBits.ContainsUnexpandedParameterPack = true;
  3781. // Copy the start/end expressions into permanent storage.
  3782. *Child++ = IndexExprs[IndexIdx++];
  3783. *Child++ = IndexExprs[IndexIdx++];
  3784. }
  3785. }
  3786. assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
  3787. }
  3788. DesignatedInitExpr *
  3789. DesignatedInitExpr::Create(const ASTContext &C,
  3790. llvm::ArrayRef<Designator> Designators,
  3791. ArrayRef<Expr*> IndexExprs,
  3792. SourceLocation ColonOrEqualLoc,
  3793. bool UsesColonSyntax, Expr *Init) {
  3794. void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
  3795. alignof(DesignatedInitExpr));
  3796. return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
  3797. ColonOrEqualLoc, UsesColonSyntax,
  3798. IndexExprs, Init);
  3799. }
  3800. DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
  3801. unsigned NumIndexExprs) {
  3802. void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
  3803. alignof(DesignatedInitExpr));
  3804. return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
  3805. }
  3806. void DesignatedInitExpr::setDesignators(const ASTContext &C,
  3807. const Designator *Desigs,
  3808. unsigned NumDesigs) {
  3809. Designators = new (C) Designator[NumDesigs];
  3810. NumDesignators = NumDesigs;
  3811. for (unsigned I = 0; I != NumDesigs; ++I)
  3812. Designators[I] = Desigs[I];
  3813. }
  3814. SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
  3815. DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
  3816. if (size() == 1)
  3817. return DIE->getDesignator(0)->getSourceRange();
  3818. return SourceRange(DIE->getDesignator(0)->getBeginLoc(),
  3819. DIE->getDesignator(size() - 1)->getEndLoc());
  3820. }
  3821. SourceLocation DesignatedInitExpr::getBeginLoc() const {
  3822. SourceLocation StartLoc;
  3823. auto *DIE = const_cast<DesignatedInitExpr *>(this);
  3824. Designator &First = *DIE->getDesignator(0);
  3825. if (First.isFieldDesignator()) {
  3826. if (GNUSyntax)
  3827. StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
  3828. else
  3829. StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
  3830. } else
  3831. StartLoc =
  3832. SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
  3833. return StartLoc;
  3834. }
  3835. SourceLocation DesignatedInitExpr::getEndLoc() const {
  3836. return getInit()->getEndLoc();
  3837. }
  3838. Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
  3839. assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
  3840. return getSubExpr(D.ArrayOrRange.Index + 1);
  3841. }
  3842. Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
  3843. assert(D.Kind == Designator::ArrayRangeDesignator &&
  3844. "Requires array range designator");
  3845. return getSubExpr(D.ArrayOrRange.Index + 1);
  3846. }
  3847. Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
  3848. assert(D.Kind == Designator::ArrayRangeDesignator &&
  3849. "Requires array range designator");
  3850. return getSubExpr(D.ArrayOrRange.Index + 2);
  3851. }
  3852. /// Replaces the designator at index @p Idx with the series
  3853. /// of designators in [First, Last).
  3854. void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
  3855. const Designator *First,
  3856. const Designator *Last) {
  3857. unsigned NumNewDesignators = Last - First;
  3858. if (NumNewDesignators == 0) {
  3859. std::copy_backward(Designators + Idx + 1,
  3860. Designators + NumDesignators,
  3861. Designators + Idx);
  3862. --NumNewDesignators;
  3863. return;
  3864. } else if (NumNewDesignators == 1) {
  3865. Designators[Idx] = *First;
  3866. return;
  3867. }
  3868. Designator *NewDesignators
  3869. = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
  3870. std::copy(Designators, Designators + Idx, NewDesignators);
  3871. std::copy(First, Last, NewDesignators + Idx);
  3872. std::copy(Designators + Idx + 1, Designators + NumDesignators,
  3873. NewDesignators + Idx + NumNewDesignators);
  3874. Designators = NewDesignators;
  3875. NumDesignators = NumDesignators - 1 + NumNewDesignators;
  3876. }
  3877. DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
  3878. SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
  3879. : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
  3880. OK_Ordinary, false, false, false, false) {
  3881. BaseAndUpdaterExprs[0] = baseExpr;
  3882. InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
  3883. ILE->setType(baseExpr->getType());
  3884. BaseAndUpdaterExprs[1] = ILE;
  3885. }
  3886. SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
  3887. return getBase()->getBeginLoc();
  3888. }
  3889. SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
  3890. return getBase()->getEndLoc();
  3891. }
  3892. ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
  3893. SourceLocation RParenLoc)
  3894. : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
  3895. false, false),
  3896. LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
  3897. ParenListExprBits.NumExprs = Exprs.size();
  3898. for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
  3899. if (Exprs[I]->isTypeDependent())
  3900. ExprBits.TypeDependent = true;
  3901. if (Exprs[I]->isValueDependent())
  3902. ExprBits.ValueDependent = true;
  3903. if (Exprs[I]->isInstantiationDependent())
  3904. ExprBits.InstantiationDependent = true;
  3905. if (Exprs[I]->containsUnexpandedParameterPack())
  3906. ExprBits.ContainsUnexpandedParameterPack = true;
  3907. getTrailingObjects<Stmt *>()[I] = Exprs[I];
  3908. }
  3909. }
  3910. ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
  3911. : Expr(ParenListExprClass, Empty) {
  3912. ParenListExprBits.NumExprs = NumExprs;
  3913. }
  3914. ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
  3915. SourceLocation LParenLoc,
  3916. ArrayRef<Expr *> Exprs,
  3917. SourceLocation RParenLoc) {
  3918. void *Mem = Ctx.Allocate(totalSizeToAlloc<Stmt *>(Exprs.size()),
  3919. alignof(ParenListExpr));
  3920. return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
  3921. }
  3922. ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
  3923. unsigned NumExprs) {
  3924. void *Mem =
  3925. Ctx.Allocate(totalSizeToAlloc<Stmt *>(NumExprs), alignof(ParenListExpr));
  3926. return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
  3927. }
  3928. const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
  3929. if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
  3930. e = ewc->getSubExpr();
  3931. if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
  3932. e = m->GetTemporaryExpr();
  3933. e = cast<CXXConstructExpr>(e)->getArg(0);
  3934. while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
  3935. e = ice->getSubExpr();
  3936. return cast<OpaqueValueExpr>(e);
  3937. }
  3938. PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
  3939. EmptyShell sh,
  3940. unsigned numSemanticExprs) {
  3941. void *buffer =
  3942. Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
  3943. alignof(PseudoObjectExpr));
  3944. return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
  3945. }
  3946. PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
  3947. : Expr(PseudoObjectExprClass, shell) {
  3948. PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
  3949. }
  3950. PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
  3951. ArrayRef<Expr*> semantics,
  3952. unsigned resultIndex) {
  3953. assert(syntax && "no syntactic expression!");
  3954. assert(semantics.size() && "no semantic expressions!");
  3955. QualType type;
  3956. ExprValueKind VK;
  3957. if (resultIndex == NoResult) {
  3958. type = C.VoidTy;
  3959. VK = VK_RValue;
  3960. } else {
  3961. assert(resultIndex < semantics.size());
  3962. type = semantics[resultIndex]->getType();
  3963. VK = semantics[resultIndex]->getValueKind();
  3964. assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
  3965. }
  3966. void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
  3967. alignof(PseudoObjectExpr));
  3968. return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
  3969. resultIndex);
  3970. }
  3971. PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
  3972. Expr *syntax, ArrayRef<Expr*> semantics,
  3973. unsigned resultIndex)
  3974. : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
  3975. /*filled in at end of ctor*/ false, false, false, false) {
  3976. PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
  3977. PseudoObjectExprBits.ResultIndex = resultIndex + 1;
  3978. for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
  3979. Expr *E = (i == 0 ? syntax : semantics[i-1]);
  3980. getSubExprsBuffer()[i] = E;
  3981. if (E->isTypeDependent())
  3982. ExprBits.TypeDependent = true;
  3983. if (E->isValueDependent())
  3984. ExprBits.ValueDependent = true;
  3985. if (E->isInstantiationDependent())
  3986. ExprBits.InstantiationDependent = true;
  3987. if (E->containsUnexpandedParameterPack())
  3988. ExprBits.ContainsUnexpandedParameterPack = true;
  3989. if (isa<OpaqueValueExpr>(E))
  3990. assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
  3991. "opaque-value semantic expressions for pseudo-object "
  3992. "operations must have sources");
  3993. }
  3994. }
  3995. //===----------------------------------------------------------------------===//
  3996. // Child Iterators for iterating over subexpressions/substatements
  3997. //===----------------------------------------------------------------------===//
  3998. // UnaryExprOrTypeTraitExpr
  3999. Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
  4000. const_child_range CCR =
  4001. const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
  4002. return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
  4003. }
  4004. Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
  4005. // If this is of a type and the type is a VLA type (and not a typedef), the
  4006. // size expression of the VLA needs to be treated as an executable expression.
  4007. // Why isn't this weirdness documented better in StmtIterator?
  4008. if (isArgumentType()) {
  4009. if (const VariableArrayType *T =
  4010. dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
  4011. return const_child_range(const_child_iterator(T), const_child_iterator());
  4012. return const_child_range(const_child_iterator(), const_child_iterator());
  4013. }
  4014. return const_child_range(&Argument.Ex, &Argument.Ex + 1);
  4015. }
  4016. AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
  4017. QualType t, AtomicOp op, SourceLocation RP)
  4018. : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
  4019. false, false, false, false),
  4020. NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
  4021. {
  4022. assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
  4023. for (unsigned i = 0; i != args.size(); i++) {
  4024. if (args[i]->isTypeDependent())
  4025. ExprBits.TypeDependent = true;
  4026. if (args[i]->isValueDependent())
  4027. ExprBits.ValueDependent = true;
  4028. if (args[i]->isInstantiationDependent())
  4029. ExprBits.InstantiationDependent = true;
  4030. if (args[i]->containsUnexpandedParameterPack())
  4031. ExprBits.ContainsUnexpandedParameterPack = true;
  4032. SubExprs[i] = args[i];
  4033. }
  4034. }
  4035. unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
  4036. switch (Op) {
  4037. case AO__c11_atomic_init:
  4038. case AO__opencl_atomic_init:
  4039. case AO__c11_atomic_load:
  4040. case AO__atomic_load_n:
  4041. return 2;
  4042. case AO__opencl_atomic_load:
  4043. case AO__c11_atomic_store:
  4044. case AO__c11_atomic_exchange:
  4045. case AO__atomic_load:
  4046. case AO__atomic_store:
  4047. case AO__atomic_store_n:
  4048. case AO__atomic_exchange_n:
  4049. case AO__c11_atomic_fetch_add:
  4050. case AO__c11_atomic_fetch_sub:
  4051. case AO__c11_atomic_fetch_and:
  4052. case AO__c11_atomic_fetch_or:
  4053. case AO__c11_atomic_fetch_xor:
  4054. case AO__atomic_fetch_add:
  4055. case AO__atomic_fetch_sub:
  4056. case AO__atomic_fetch_and:
  4057. case AO__atomic_fetch_or:
  4058. case AO__atomic_fetch_xor:
  4059. case AO__atomic_fetch_nand:
  4060. case AO__atomic_add_fetch:
  4061. case AO__atomic_sub_fetch:
  4062. case AO__atomic_and_fetch:
  4063. case AO__atomic_or_fetch:
  4064. case AO__atomic_xor_fetch:
  4065. case AO__atomic_nand_fetch:
  4066. case AO__atomic_fetch_min:
  4067. case AO__atomic_fetch_max:
  4068. return 3;
  4069. case AO__opencl_atomic_store:
  4070. case AO__opencl_atomic_exchange:
  4071. case AO__opencl_atomic_fetch_add:
  4072. case AO__opencl_atomic_fetch_sub:
  4073. case AO__opencl_atomic_fetch_and:
  4074. case AO__opencl_atomic_fetch_or:
  4075. case AO__opencl_atomic_fetch_xor:
  4076. case AO__opencl_atomic_fetch_min:
  4077. case AO__opencl_atomic_fetch_max:
  4078. case AO__atomic_exchange:
  4079. return 4;
  4080. case AO__c11_atomic_compare_exchange_strong:
  4081. case AO__c11_atomic_compare_exchange_weak:
  4082. return 5;
  4083. case AO__opencl_atomic_compare_exchange_strong:
  4084. case AO__opencl_atomic_compare_exchange_weak:
  4085. case AO__atomic_compare_exchange:
  4086. case AO__atomic_compare_exchange_n:
  4087. return 6;
  4088. }
  4089. llvm_unreachable("unknown atomic op");
  4090. }
  4091. QualType AtomicExpr::getValueType() const {
  4092. auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
  4093. if (auto AT = T->getAs<AtomicType>())
  4094. return AT->getValueType();
  4095. return T;
  4096. }
  4097. QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
  4098. unsigned ArraySectionCount = 0;
  4099. while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
  4100. Base = OASE->getBase();
  4101. ++ArraySectionCount;
  4102. }
  4103. while (auto *ASE =
  4104. dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
  4105. Base = ASE->getBase();
  4106. ++ArraySectionCount;
  4107. }
  4108. Base = Base->IgnoreParenImpCasts();
  4109. auto OriginalTy = Base->getType();
  4110. if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
  4111. if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
  4112. OriginalTy = PVD->getOriginalType().getNonReferenceType();
  4113. for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
  4114. if (OriginalTy->isAnyPointerType())
  4115. OriginalTy = OriginalTy->getPointeeType();
  4116. else {
  4117. assert (OriginalTy->isArrayType());
  4118. OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
  4119. }
  4120. }
  4121. return OriginalTy;
  4122. }