123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049 |
- //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements extra semantic analysis beyond what is enforced
- // by the C type system.
- //
- //===----------------------------------------------------------------------===//
- #include "clang/Sema/SemaInternal.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/CharUnits.h"
- #include "clang/AST/DeclCXX.h"
- #include "clang/AST/DeclObjC.h"
- #include "clang/AST/EvaluatedExprVisitor.h"
- #include "clang/AST/Expr.h"
- #include "clang/AST/ExprCXX.h"
- #include "clang/AST/ExprObjC.h"
- #include "clang/AST/StmtCXX.h"
- #include "clang/AST/StmtObjC.h"
- #include "clang/Analysis/Analyses/FormatString.h"
- #include "clang/Basic/CharInfo.h"
- #include "clang/Basic/TargetBuiltins.h"
- #include "clang/Basic/TargetInfo.h"
- #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
- #include "clang/Sema/Initialization.h"
- #include "clang/Sema/Lookup.h"
- #include "clang/Sema/ScopeInfo.h"
- #include "clang/Sema/Sema.h"
- #include "llvm/ADT/STLExtras.h"
- #include "llvm/ADT/SmallBitVector.h"
- #include "llvm/ADT/SmallString.h"
- #include "llvm/Support/ConvertUTF.h"
- #include "llvm/Support/raw_ostream.h"
- #include <limits>
- using namespace clang;
- using namespace sema;
- SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
- unsigned ByteNo) const {
- return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
- Context.getTargetInfo());
- }
- /// Checks that a call expression's argument count is the desired number.
- /// This is useful when doing custom type-checking. Returns true on error.
- static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
- unsigned argCount = call->getNumArgs();
- if (argCount == desiredArgCount) return false;
- if (argCount < desiredArgCount)
- return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
- << 0 /*function call*/ << desiredArgCount << argCount
- << call->getSourceRange();
- // Highlight all the excess arguments.
- SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
- call->getArg(argCount - 1)->getLocEnd());
-
- return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
- << 0 /*function call*/ << desiredArgCount << argCount
- << call->getArg(1)->getSourceRange();
- }
- /// Check that the first argument to __builtin_annotation is an integer
- /// and the second argument is a non-wide string literal.
- static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
- if (checkArgCount(S, TheCall, 2))
- return true;
- // First argument should be an integer.
- Expr *ValArg = TheCall->getArg(0);
- QualType Ty = ValArg->getType();
- if (!Ty->isIntegerType()) {
- S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
- << ValArg->getSourceRange();
- return true;
- }
- // Second argument should be a constant string.
- Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
- StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
- if (!Literal || !Literal->isAscii()) {
- S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
- << StrArg->getSourceRange();
- return true;
- }
- TheCall->setType(Ty);
- return false;
- }
- /// Check that the argument to __builtin_addressof is a glvalue, and set the
- /// result type to the corresponding pointer type.
- static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
- if (checkArgCount(S, TheCall, 1))
- return true;
- ExprResult Arg(S.Owned(TheCall->getArg(0)));
- QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
- if (ResultType.isNull())
- return true;
- TheCall->setArg(0, Arg.take());
- TheCall->setType(ResultType);
- return false;
- }
- ExprResult
- Sema::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
- ExprResult TheCallResult(Owned(TheCall));
- // Find out if any arguments are required to be integer constant expressions.
- unsigned ICEArguments = 0;
- ASTContext::GetBuiltinTypeError Error;
- Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
- if (Error != ASTContext::GE_None)
- ICEArguments = 0; // Don't diagnose previously diagnosed errors.
-
- // If any arguments are required to be ICE's, check and diagnose.
- for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
- // Skip arguments not required to be ICE's.
- if ((ICEArguments & (1 << ArgNo)) == 0) continue;
-
- llvm::APSInt Result;
- if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
- return true;
- ICEArguments &= ~(1 << ArgNo);
- }
-
- switch (BuiltinID) {
- case Builtin::BI__builtin___CFStringMakeConstantString:
- assert(TheCall->getNumArgs() == 1 &&
- "Wrong # arguments to builtin CFStringMakeConstantString");
- if (CheckObjCString(TheCall->getArg(0)))
- return ExprError();
- break;
- case Builtin::BI__builtin_stdarg_start:
- case Builtin::BI__builtin_va_start:
- case Builtin::BI__va_start:
- if (SemaBuiltinVAStart(TheCall))
- return ExprError();
- break;
- case Builtin::BI__builtin_isgreater:
- case Builtin::BI__builtin_isgreaterequal:
- case Builtin::BI__builtin_isless:
- case Builtin::BI__builtin_islessequal:
- case Builtin::BI__builtin_islessgreater:
- case Builtin::BI__builtin_isunordered:
- if (SemaBuiltinUnorderedCompare(TheCall))
- return ExprError();
- break;
- case Builtin::BI__builtin_fpclassify:
- if (SemaBuiltinFPClassification(TheCall, 6))
- return ExprError();
- break;
- case Builtin::BI__builtin_isfinite:
- case Builtin::BI__builtin_isinf:
- case Builtin::BI__builtin_isinf_sign:
- case Builtin::BI__builtin_isnan:
- case Builtin::BI__builtin_isnormal:
- if (SemaBuiltinFPClassification(TheCall, 1))
- return ExprError();
- break;
- case Builtin::BI__builtin_shufflevector:
- return SemaBuiltinShuffleVector(TheCall);
- // TheCall will be freed by the smart pointer here, but that's fine, since
- // SemaBuiltinShuffleVector guts it, but then doesn't release it.
- case Builtin::BI__builtin_prefetch:
- if (SemaBuiltinPrefetch(TheCall))
- return ExprError();
- break;
- case Builtin::BI__builtin_object_size:
- if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
- return ExprError();
- break;
- case Builtin::BI__builtin_longjmp:
- if (SemaBuiltinLongjmp(TheCall))
- return ExprError();
- break;
- case Builtin::BI__builtin_classify_type:
- if (checkArgCount(*this, TheCall, 1)) return true;
- TheCall->setType(Context.IntTy);
- break;
- case Builtin::BI__builtin_constant_p:
- if (checkArgCount(*this, TheCall, 1)) return true;
- TheCall->setType(Context.IntTy);
- break;
- case Builtin::BI__sync_fetch_and_add:
- case Builtin::BI__sync_fetch_and_add_1:
- case Builtin::BI__sync_fetch_and_add_2:
- case Builtin::BI__sync_fetch_and_add_4:
- case Builtin::BI__sync_fetch_and_add_8:
- case Builtin::BI__sync_fetch_and_add_16:
- case Builtin::BI__sync_fetch_and_sub:
- case Builtin::BI__sync_fetch_and_sub_1:
- case Builtin::BI__sync_fetch_and_sub_2:
- case Builtin::BI__sync_fetch_and_sub_4:
- case Builtin::BI__sync_fetch_and_sub_8:
- case Builtin::BI__sync_fetch_and_sub_16:
- case Builtin::BI__sync_fetch_and_or:
- case Builtin::BI__sync_fetch_and_or_1:
- case Builtin::BI__sync_fetch_and_or_2:
- case Builtin::BI__sync_fetch_and_or_4:
- case Builtin::BI__sync_fetch_and_or_8:
- case Builtin::BI__sync_fetch_and_or_16:
- case Builtin::BI__sync_fetch_and_and:
- case Builtin::BI__sync_fetch_and_and_1:
- case Builtin::BI__sync_fetch_and_and_2:
- case Builtin::BI__sync_fetch_and_and_4:
- case Builtin::BI__sync_fetch_and_and_8:
- case Builtin::BI__sync_fetch_and_and_16:
- case Builtin::BI__sync_fetch_and_xor:
- case Builtin::BI__sync_fetch_and_xor_1:
- case Builtin::BI__sync_fetch_and_xor_2:
- case Builtin::BI__sync_fetch_and_xor_4:
- case Builtin::BI__sync_fetch_and_xor_8:
- case Builtin::BI__sync_fetch_and_xor_16:
- case Builtin::BI__sync_add_and_fetch:
- case Builtin::BI__sync_add_and_fetch_1:
- case Builtin::BI__sync_add_and_fetch_2:
- case Builtin::BI__sync_add_and_fetch_4:
- case Builtin::BI__sync_add_and_fetch_8:
- case Builtin::BI__sync_add_and_fetch_16:
- case Builtin::BI__sync_sub_and_fetch:
- case Builtin::BI__sync_sub_and_fetch_1:
- case Builtin::BI__sync_sub_and_fetch_2:
- case Builtin::BI__sync_sub_and_fetch_4:
- case Builtin::BI__sync_sub_and_fetch_8:
- case Builtin::BI__sync_sub_and_fetch_16:
- case Builtin::BI__sync_and_and_fetch:
- case Builtin::BI__sync_and_and_fetch_1:
- case Builtin::BI__sync_and_and_fetch_2:
- case Builtin::BI__sync_and_and_fetch_4:
- case Builtin::BI__sync_and_and_fetch_8:
- case Builtin::BI__sync_and_and_fetch_16:
- case Builtin::BI__sync_or_and_fetch:
- case Builtin::BI__sync_or_and_fetch_1:
- case Builtin::BI__sync_or_and_fetch_2:
- case Builtin::BI__sync_or_and_fetch_4:
- case Builtin::BI__sync_or_and_fetch_8:
- case Builtin::BI__sync_or_and_fetch_16:
- case Builtin::BI__sync_xor_and_fetch:
- case Builtin::BI__sync_xor_and_fetch_1:
- case Builtin::BI__sync_xor_and_fetch_2:
- case Builtin::BI__sync_xor_and_fetch_4:
- case Builtin::BI__sync_xor_and_fetch_8:
- case Builtin::BI__sync_xor_and_fetch_16:
- case Builtin::BI__sync_val_compare_and_swap:
- case Builtin::BI__sync_val_compare_and_swap_1:
- case Builtin::BI__sync_val_compare_and_swap_2:
- case Builtin::BI__sync_val_compare_and_swap_4:
- case Builtin::BI__sync_val_compare_and_swap_8:
- case Builtin::BI__sync_val_compare_and_swap_16:
- case Builtin::BI__sync_bool_compare_and_swap:
- case Builtin::BI__sync_bool_compare_and_swap_1:
- case Builtin::BI__sync_bool_compare_and_swap_2:
- case Builtin::BI__sync_bool_compare_and_swap_4:
- case Builtin::BI__sync_bool_compare_and_swap_8:
- case Builtin::BI__sync_bool_compare_and_swap_16:
- case Builtin::BI__sync_lock_test_and_set:
- case Builtin::BI__sync_lock_test_and_set_1:
- case Builtin::BI__sync_lock_test_and_set_2:
- case Builtin::BI__sync_lock_test_and_set_4:
- case Builtin::BI__sync_lock_test_and_set_8:
- case Builtin::BI__sync_lock_test_and_set_16:
- case Builtin::BI__sync_lock_release:
- case Builtin::BI__sync_lock_release_1:
- case Builtin::BI__sync_lock_release_2:
- case Builtin::BI__sync_lock_release_4:
- case Builtin::BI__sync_lock_release_8:
- case Builtin::BI__sync_lock_release_16:
- case Builtin::BI__sync_swap:
- case Builtin::BI__sync_swap_1:
- case Builtin::BI__sync_swap_2:
- case Builtin::BI__sync_swap_4:
- case Builtin::BI__sync_swap_8:
- case Builtin::BI__sync_swap_16:
- return SemaBuiltinAtomicOverloaded(TheCallResult);
- #define BUILTIN(ID, TYPE, ATTRS)
- #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
- case Builtin::BI##ID: \
- return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
- #include "clang/Basic/Builtins.def"
- case Builtin::BI__builtin_annotation:
- if (SemaBuiltinAnnotation(*this, TheCall))
- return ExprError();
- break;
- case Builtin::BI__builtin_addressof:
- if (SemaBuiltinAddressof(*this, TheCall))
- return ExprError();
- break;
- }
-
- // Since the target specific builtins for each arch overlap, only check those
- // of the arch we are compiling for.
- if (BuiltinID >= Builtin::FirstTSBuiltin) {
- switch (Context.getTargetInfo().getTriple().getArch()) {
- case llvm::Triple::arm:
- case llvm::Triple::armeb:
- case llvm::Triple::thumb:
- case llvm::Triple::thumbeb:
- if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
- return ExprError();
- break;
- case llvm::Triple::aarch64:
- case llvm::Triple::aarch64_be:
- case llvm::Triple::arm64:
- case llvm::Triple::arm64_be:
- if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
- return ExprError();
- break;
- case llvm::Triple::mips:
- case llvm::Triple::mipsel:
- case llvm::Triple::mips64:
- case llvm::Triple::mips64el:
- if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
- return ExprError();
- break;
- case llvm::Triple::x86:
- case llvm::Triple::x86_64:
- if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
- return ExprError();
- break;
- default:
- break;
- }
- }
- return TheCallResult;
- }
- // Get the valid immediate range for the specified NEON type code.
- static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
- NeonTypeFlags Type(t);
- int IsQuad = ForceQuad ? true : Type.isQuad();
- switch (Type.getEltType()) {
- case NeonTypeFlags::Int8:
- case NeonTypeFlags::Poly8:
- return shift ? 7 : (8 << IsQuad) - 1;
- case NeonTypeFlags::Int16:
- case NeonTypeFlags::Poly16:
- return shift ? 15 : (4 << IsQuad) - 1;
- case NeonTypeFlags::Int32:
- return shift ? 31 : (2 << IsQuad) - 1;
- case NeonTypeFlags::Int64:
- case NeonTypeFlags::Poly64:
- return shift ? 63 : (1 << IsQuad) - 1;
- case NeonTypeFlags::Poly128:
- return shift ? 127 : (1 << IsQuad) - 1;
- case NeonTypeFlags::Float16:
- assert(!shift && "cannot shift float types!");
- return (4 << IsQuad) - 1;
- case NeonTypeFlags::Float32:
- assert(!shift && "cannot shift float types!");
- return (2 << IsQuad) - 1;
- case NeonTypeFlags::Float64:
- assert(!shift && "cannot shift float types!");
- return (1 << IsQuad) - 1;
- }
- llvm_unreachable("Invalid NeonTypeFlag!");
- }
- /// getNeonEltType - Return the QualType corresponding to the elements of
- /// the vector type specified by the NeonTypeFlags. This is used to check
- /// the pointer arguments for Neon load/store intrinsics.
- static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
- bool IsPolyUnsigned, bool IsInt64Long) {
- switch (Flags.getEltType()) {
- case NeonTypeFlags::Int8:
- return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
- case NeonTypeFlags::Int16:
- return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
- case NeonTypeFlags::Int32:
- return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
- case NeonTypeFlags::Int64:
- if (IsInt64Long)
- return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
- else
- return Flags.isUnsigned() ? Context.UnsignedLongLongTy
- : Context.LongLongTy;
- case NeonTypeFlags::Poly8:
- return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
- case NeonTypeFlags::Poly16:
- return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
- case NeonTypeFlags::Poly64:
- return Context.UnsignedLongTy;
- case NeonTypeFlags::Poly128:
- break;
- case NeonTypeFlags::Float16:
- return Context.HalfTy;
- case NeonTypeFlags::Float32:
- return Context.FloatTy;
- case NeonTypeFlags::Float64:
- return Context.DoubleTy;
- }
- llvm_unreachable("Invalid NeonTypeFlag!");
- }
- bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
- llvm::APSInt Result;
- uint64_t mask = 0;
- unsigned TV = 0;
- int PtrArgNum = -1;
- bool HasConstPtr = false;
- switch (BuiltinID) {
- #define GET_NEON_OVERLOAD_CHECK
- #include "clang/Basic/arm_neon.inc"
- #undef GET_NEON_OVERLOAD_CHECK
- }
- // For NEON intrinsics which are overloaded on vector element type, validate
- // the immediate which specifies which variant to emit.
- unsigned ImmArg = TheCall->getNumArgs()-1;
- if (mask) {
- if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
- return true;
- TV = Result.getLimitedValue(64);
- if ((TV > 63) || (mask & (1ULL << TV)) == 0)
- return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
- << TheCall->getArg(ImmArg)->getSourceRange();
- }
- if (PtrArgNum >= 0) {
- // Check that pointer arguments have the specified type.
- Expr *Arg = TheCall->getArg(PtrArgNum);
- if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
- Arg = ICE->getSubExpr();
- ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
- QualType RHSTy = RHS.get()->getType();
- llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
- bool IsPolyUnsigned =
- Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::arm64;
- bool IsInt64Long =
- Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
- QualType EltTy =
- getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
- if (HasConstPtr)
- EltTy = EltTy.withConst();
- QualType LHSTy = Context.getPointerType(EltTy);
- AssignConvertType ConvTy;
- ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
- if (RHS.isInvalid())
- return true;
- if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
- RHS.get(), AA_Assigning))
- return true;
- }
- // For NEON intrinsics which take an immediate value as part of the
- // instruction, range check them here.
- unsigned i = 0, l = 0, u = 0;
- switch (BuiltinID) {
- default:
- return false;
- #define GET_NEON_IMMEDIATE_CHECK
- #include "clang/Basic/arm_neon.inc"
- #undef GET_NEON_IMMEDIATE_CHECK
- }
- return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
- }
- bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
- unsigned MaxWidth) {
- assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
- BuiltinID == ARM::BI__builtin_arm_strex ||
- BuiltinID == AArch64::BI__builtin_arm_ldrex ||
- BuiltinID == AArch64::BI__builtin_arm_strex) &&
- "unexpected ARM builtin");
- bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
- BuiltinID == AArch64::BI__builtin_arm_ldrex;
- DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
- // Ensure that we have the proper number of arguments.
- if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
- return true;
- // Inspect the pointer argument of the atomic builtin. This should always be
- // a pointer type, whose element is an integral scalar or pointer type.
- // Because it is a pointer type, we don't have to worry about any implicit
- // casts here.
- Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
- ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
- if (PointerArgRes.isInvalid())
- return true;
- PointerArg = PointerArgRes.take();
- const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
- if (!pointerType) {
- Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
- << PointerArg->getType() << PointerArg->getSourceRange();
- return true;
- }
- // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
- // task is to insert the appropriate casts into the AST. First work out just
- // what the appropriate type is.
- QualType ValType = pointerType->getPointeeType();
- QualType AddrType = ValType.getUnqualifiedType().withVolatile();
- if (IsLdrex)
- AddrType.addConst();
- // Issue a warning if the cast is dodgy.
- CastKind CastNeeded = CK_NoOp;
- if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
- CastNeeded = CK_BitCast;
- Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
- << PointerArg->getType()
- << Context.getPointerType(AddrType)
- << AA_Passing << PointerArg->getSourceRange();
- }
- // Finally, do the cast and replace the argument with the corrected version.
- AddrType = Context.getPointerType(AddrType);
- PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
- if (PointerArgRes.isInvalid())
- return true;
- PointerArg = PointerArgRes.take();
- TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
- // In general, we allow ints, floats and pointers to be loaded and stored.
- if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
- !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
- Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
- << PointerArg->getType() << PointerArg->getSourceRange();
- return true;
- }
- // But ARM doesn't have instructions to deal with 128-bit versions.
- if (Context.getTypeSize(ValType) > MaxWidth) {
- assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
- Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
- << PointerArg->getType() << PointerArg->getSourceRange();
- return true;
- }
- switch (ValType.getObjCLifetime()) {
- case Qualifiers::OCL_None:
- case Qualifiers::OCL_ExplicitNone:
- // okay
- break;
- case Qualifiers::OCL_Weak:
- case Qualifiers::OCL_Strong:
- case Qualifiers::OCL_Autoreleasing:
- Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
- << ValType << PointerArg->getSourceRange();
- return true;
- }
- if (IsLdrex) {
- TheCall->setType(ValType);
- return false;
- }
- // Initialize the argument to be stored.
- ExprResult ValArg = TheCall->getArg(0);
- InitializedEntity Entity = InitializedEntity::InitializeParameter(
- Context, ValType, /*consume*/ false);
- ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
- if (ValArg.isInvalid())
- return true;
- TheCall->setArg(0, ValArg.get());
- // __builtin_arm_strex always returns an int. It's marked as such in the .def,
- // but the custom checker bypasses all default analysis.
- TheCall->setType(Context.IntTy);
- return false;
- }
- bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
- llvm::APSInt Result;
- if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
- BuiltinID == ARM::BI__builtin_arm_strex) {
- return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
- }
- if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
- return true;
- // For NEON intrinsics which take an immediate value as part of the
- // instruction, range check them here.
- unsigned i = 0, l = 0, u = 0;
- switch (BuiltinID) {
- default: return false;
- case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
- case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
- case ARM::BI__builtin_arm_vcvtr_f:
- case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
- case ARM::BI__builtin_arm_dmb:
- case ARM::BI__builtin_arm_dsb: l = 0; u = 15; break;
- }
- // FIXME: VFP Intrinsics should error if VFP not present.
- return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
- }
- bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
- CallExpr *TheCall) {
- llvm::APSInt Result;
- if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
- BuiltinID == AArch64::BI__builtin_arm_strex) {
- return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
- }
- if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
- return true;
- return false;
- }
- bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
- unsigned i = 0, l = 0, u = 0;
- switch (BuiltinID) {
- default: return false;
- case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
- case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
- case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
- case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
- case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
- case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
- case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
- }
- return SemaBuiltinConstantArgRange(TheCall, i, l, u);
- }
- bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
- switch (BuiltinID) {
- case X86::BI_mm_prefetch:
- // This is declared to take (const char*, int)
- return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
- }
- return false;
- }
- /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
- /// parameter with the FormatAttr's correct format_idx and firstDataArg.
- /// Returns true when the format fits the function and the FormatStringInfo has
- /// been populated.
- bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
- FormatStringInfo *FSI) {
- FSI->HasVAListArg = Format->getFirstArg() == 0;
- FSI->FormatIdx = Format->getFormatIdx() - 1;
- FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
- // The way the format attribute works in GCC, the implicit this argument
- // of member functions is counted. However, it doesn't appear in our own
- // lists, so decrement format_idx in that case.
- if (IsCXXMember) {
- if(FSI->FormatIdx == 0)
- return false;
- --FSI->FormatIdx;
- if (FSI->FirstDataArg != 0)
- --FSI->FirstDataArg;
- }
- return true;
- }
- /// Checks if a the given expression evaluates to null.
- ///
- /// \brief Returns true if the value evaluates to null.
- static bool CheckNonNullExpr(Sema &S,
- const Expr *Expr) {
- // As a special case, transparent unions initialized with zero are
- // considered null for the purposes of the nonnull attribute.
- if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
- if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
- if (const CompoundLiteralExpr *CLE =
- dyn_cast<CompoundLiteralExpr>(Expr))
- if (const InitListExpr *ILE =
- dyn_cast<InitListExpr>(CLE->getInitializer()))
- Expr = ILE->getInit(0);
- }
- bool Result;
- return (!Expr->isValueDependent() &&
- Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
- !Result);
- }
- static void CheckNonNullArgument(Sema &S,
- const Expr *ArgExpr,
- SourceLocation CallSiteLoc) {
- if (CheckNonNullExpr(S, ArgExpr))
- S.Diag(CallSiteLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
- }
- static void CheckNonNullArguments(Sema &S,
- const NamedDecl *FDecl,
- const Expr * const *ExprArgs,
- SourceLocation CallSiteLoc) {
- // Check the attributes attached to the method/function itself.
- for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
- for (const auto &Val : NonNull->args())
- CheckNonNullArgument(S, ExprArgs[Val], CallSiteLoc);
- }
- // Check the attributes on the parameters.
- ArrayRef<ParmVarDecl*> parms;
- if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
- parms = FD->parameters();
- else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(FDecl))
- parms = MD->parameters();
- unsigned argIndex = 0;
- for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
- I != E; ++I, ++argIndex) {
- const ParmVarDecl *PVD = *I;
- if (PVD->hasAttr<NonNullAttr>())
- CheckNonNullArgument(S, ExprArgs[argIndex], CallSiteLoc);
- }
- }
- /// Handles the checks for format strings, non-POD arguments to vararg
- /// functions, and NULL arguments passed to non-NULL parameters.
- void Sema::checkCall(NamedDecl *FDecl, ArrayRef<const Expr *> Args,
- unsigned NumParams, bool IsMemberFunction,
- SourceLocation Loc, SourceRange Range,
- VariadicCallType CallType) {
- // FIXME: We should check as much as we can in the template definition.
- if (CurContext->isDependentContext())
- return;
- // Printf and scanf checking.
- llvm::SmallBitVector CheckedVarArgs;
- if (FDecl) {
- for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
- // Only create vector if there are format attributes.
- CheckedVarArgs.resize(Args.size());
- CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
- CheckedVarArgs);
- }
- }
- // Refuse POD arguments that weren't caught by the format string
- // checks above.
- if (CallType != VariadicDoesNotApply) {
- for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
- // Args[ArgIdx] can be null in malformed code.
- if (const Expr *Arg = Args[ArgIdx]) {
- if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
- checkVariadicArgument(Arg, CallType);
- }
- }
- }
- if (FDecl) {
- CheckNonNullArguments(*this, FDecl, Args.data(), Loc);
- // Type safety checking.
- for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
- CheckArgumentWithTypeTag(I, Args.data());
- }
- }
- /// CheckConstructorCall - Check a constructor call for correctness and safety
- /// properties not enforced by the C type system.
- void Sema::CheckConstructorCall(FunctionDecl *FDecl,
- ArrayRef<const Expr *> Args,
- const FunctionProtoType *Proto,
- SourceLocation Loc) {
- VariadicCallType CallType =
- Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
- checkCall(FDecl, Args, Proto->getNumParams(),
- /*IsMemberFunction=*/true, Loc, SourceRange(), CallType);
- }
- /// CheckFunctionCall - Check a direct function call for various correctness
- /// and safety properties not strictly enforced by the C type system.
- bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
- const FunctionProtoType *Proto) {
- bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
- isa<CXXMethodDecl>(FDecl);
- bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
- IsMemberOperatorCall;
- VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
- TheCall->getCallee());
- unsigned NumParams = Proto ? Proto->getNumParams() : 0;
- Expr** Args = TheCall->getArgs();
- unsigned NumArgs = TheCall->getNumArgs();
- if (IsMemberOperatorCall) {
- // If this is a call to a member operator, hide the first argument
- // from checkCall.
- // FIXME: Our choice of AST representation here is less than ideal.
- ++Args;
- --NumArgs;
- }
- checkCall(FDecl, llvm::makeArrayRef<const Expr *>(Args, NumArgs), NumParams,
- IsMemberFunction, TheCall->getRParenLoc(),
- TheCall->getCallee()->getSourceRange(), CallType);
- IdentifierInfo *FnInfo = FDecl->getIdentifier();
- // None of the checks below are needed for functions that don't have
- // simple names (e.g., C++ conversion functions).
- if (!FnInfo)
- return false;
- CheckAbsoluteValueFunction(TheCall, FDecl, FnInfo);
- unsigned CMId = FDecl->getMemoryFunctionKind();
- if (CMId == 0)
- return false;
- // Handle memory setting and copying functions.
- if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
- CheckStrlcpycatArguments(TheCall, FnInfo);
- else if (CMId == Builtin::BIstrncat)
- CheckStrncatArguments(TheCall, FnInfo);
- else
- CheckMemaccessArguments(TheCall, CMId, FnInfo);
- return false;
- }
- bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
- ArrayRef<const Expr *> Args) {
- VariadicCallType CallType =
- Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
- checkCall(Method, Args, Method->param_size(),
- /*IsMemberFunction=*/false,
- lbrac, Method->getSourceRange(), CallType);
- return false;
- }
- bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
- const FunctionProtoType *Proto) {
- const VarDecl *V = dyn_cast<VarDecl>(NDecl);
- if (!V)
- return false;
- QualType Ty = V->getType();
- if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType())
- return false;
- VariadicCallType CallType;
- if (!Proto || !Proto->isVariadic()) {
- CallType = VariadicDoesNotApply;
- } else if (Ty->isBlockPointerType()) {
- CallType = VariadicBlock;
- } else { // Ty->isFunctionPointerType()
- CallType = VariadicFunction;
- }
- unsigned NumParams = Proto ? Proto->getNumParams() : 0;
- checkCall(NDecl, llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
- TheCall->getNumArgs()),
- NumParams, /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
- TheCall->getCallee()->getSourceRange(), CallType);
- return false;
- }
- /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
- /// such as function pointers returned from functions.
- bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
- VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
- TheCall->getCallee());
- unsigned NumParams = Proto ? Proto->getNumParams() : 0;
- checkCall(/*FDecl=*/nullptr,
- llvm::makeArrayRef<const Expr *>(TheCall->getArgs(),
- TheCall->getNumArgs()),
- NumParams, /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
- TheCall->getCallee()->getSourceRange(), CallType);
- return false;
- }
- static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
- if (Ordering < AtomicExpr::AO_ABI_memory_order_relaxed ||
- Ordering > AtomicExpr::AO_ABI_memory_order_seq_cst)
- return false;
- switch (Op) {
- case AtomicExpr::AO__c11_atomic_init:
- llvm_unreachable("There is no ordering argument for an init");
- case AtomicExpr::AO__c11_atomic_load:
- case AtomicExpr::AO__atomic_load_n:
- case AtomicExpr::AO__atomic_load:
- return Ordering != AtomicExpr::AO_ABI_memory_order_release &&
- Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
- case AtomicExpr::AO__c11_atomic_store:
- case AtomicExpr::AO__atomic_store:
- case AtomicExpr::AO__atomic_store_n:
- return Ordering != AtomicExpr::AO_ABI_memory_order_consume &&
- Ordering != AtomicExpr::AO_ABI_memory_order_acquire &&
- Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
- default:
- return true;
- }
- }
- ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
- AtomicExpr::AtomicOp Op) {
- CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
- DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
- // All these operations take one of the following forms:
- enum {
- // C __c11_atomic_init(A *, C)
- Init,
- // C __c11_atomic_load(A *, int)
- Load,
- // void __atomic_load(A *, CP, int)
- Copy,
- // C __c11_atomic_add(A *, M, int)
- Arithmetic,
- // C __atomic_exchange_n(A *, CP, int)
- Xchg,
- // void __atomic_exchange(A *, C *, CP, int)
- GNUXchg,
- // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
- C11CmpXchg,
- // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
- GNUCmpXchg
- } Form = Init;
- const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
- const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
- // where:
- // C is an appropriate type,
- // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
- // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
- // M is C if C is an integer, and ptrdiff_t if C is a pointer, and
- // the int parameters are for orderings.
- assert(AtomicExpr::AO__c11_atomic_init == 0 &&
- AtomicExpr::AO__c11_atomic_fetch_xor + 1 == AtomicExpr::AO__atomic_load
- && "need to update code for modified C11 atomics");
- bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
- Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
- bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
- Op == AtomicExpr::AO__atomic_store_n ||
- Op == AtomicExpr::AO__atomic_exchange_n ||
- Op == AtomicExpr::AO__atomic_compare_exchange_n;
- bool IsAddSub = false;
- switch (Op) {
- case AtomicExpr::AO__c11_atomic_init:
- Form = Init;
- break;
- case AtomicExpr::AO__c11_atomic_load:
- case AtomicExpr::AO__atomic_load_n:
- Form = Load;
- break;
- case AtomicExpr::AO__c11_atomic_store:
- case AtomicExpr::AO__atomic_load:
- case AtomicExpr::AO__atomic_store:
- case AtomicExpr::AO__atomic_store_n:
- Form = Copy;
- break;
- case AtomicExpr::AO__c11_atomic_fetch_add:
- case AtomicExpr::AO__c11_atomic_fetch_sub:
- case AtomicExpr::AO__atomic_fetch_add:
- case AtomicExpr::AO__atomic_fetch_sub:
- case AtomicExpr::AO__atomic_add_fetch:
- case AtomicExpr::AO__atomic_sub_fetch:
- IsAddSub = true;
- // Fall through.
- case AtomicExpr::AO__c11_atomic_fetch_and:
- case AtomicExpr::AO__c11_atomic_fetch_or:
- case AtomicExpr::AO__c11_atomic_fetch_xor:
- case AtomicExpr::AO__atomic_fetch_and:
- case AtomicExpr::AO__atomic_fetch_or:
- case AtomicExpr::AO__atomic_fetch_xor:
- case AtomicExpr::AO__atomic_fetch_nand:
- case AtomicExpr::AO__atomic_and_fetch:
- case AtomicExpr::AO__atomic_or_fetch:
- case AtomicExpr::AO__atomic_xor_fetch:
- case AtomicExpr::AO__atomic_nand_fetch:
- Form = Arithmetic;
- break;
- case AtomicExpr::AO__c11_atomic_exchange:
- case AtomicExpr::AO__atomic_exchange_n:
- Form = Xchg;
- break;
- case AtomicExpr::AO__atomic_exchange:
- Form = GNUXchg;
- break;
- case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
- case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
- Form = C11CmpXchg;
- break;
- case AtomicExpr::AO__atomic_compare_exchange:
- case AtomicExpr::AO__atomic_compare_exchange_n:
- Form = GNUCmpXchg;
- break;
- }
- // Check we have the right number of arguments.
- if (TheCall->getNumArgs() < NumArgs[Form]) {
- Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
- << 0 << NumArgs[Form] << TheCall->getNumArgs()
- << TheCall->getCallee()->getSourceRange();
- return ExprError();
- } else if (TheCall->getNumArgs() > NumArgs[Form]) {
- Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
- diag::err_typecheck_call_too_many_args)
- << 0 << NumArgs[Form] << TheCall->getNumArgs()
- << TheCall->getCallee()->getSourceRange();
- return ExprError();
- }
- // Inspect the first argument of the atomic operation.
- Expr *Ptr = TheCall->getArg(0);
- Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
- const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
- if (!pointerType) {
- Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
- << Ptr->getType() << Ptr->getSourceRange();
- return ExprError();
- }
- // For a __c11 builtin, this should be a pointer to an _Atomic type.
- QualType AtomTy = pointerType->getPointeeType(); // 'A'
- QualType ValType = AtomTy; // 'C'
- if (IsC11) {
- if (!AtomTy->isAtomicType()) {
- Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
- << Ptr->getType() << Ptr->getSourceRange();
- return ExprError();
- }
- if (AtomTy.isConstQualified()) {
- Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
- << Ptr->getType() << Ptr->getSourceRange();
- return ExprError();
- }
- ValType = AtomTy->getAs<AtomicType>()->getValueType();
- }
- // For an arithmetic operation, the implied arithmetic must be well-formed.
- if (Form == Arithmetic) {
- // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
- if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
- Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
- << IsC11 << Ptr->getType() << Ptr->getSourceRange();
- return ExprError();
- }
- if (!IsAddSub && !ValType->isIntegerType()) {
- Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
- << IsC11 << Ptr->getType() << Ptr->getSourceRange();
- return ExprError();
- }
- } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
- // For __atomic_*_n operations, the value type must be a scalar integral or
- // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
- Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
- << IsC11 << Ptr->getType() << Ptr->getSourceRange();
- return ExprError();
- }
- if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
- !AtomTy->isScalarType()) {
- // For GNU atomics, require a trivially-copyable type. This is not part of
- // the GNU atomics specification, but we enforce it for sanity.
- Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
- << Ptr->getType() << Ptr->getSourceRange();
- return ExprError();
- }
- // FIXME: For any builtin other than a load, the ValType must not be
- // const-qualified.
- switch (ValType.getObjCLifetime()) {
- case Qualifiers::OCL_None:
- case Qualifiers::OCL_ExplicitNone:
- // okay
- break;
- case Qualifiers::OCL_Weak:
- case Qualifiers::OCL_Strong:
- case Qualifiers::OCL_Autoreleasing:
- // FIXME: Can this happen? By this point, ValType should be known
- // to be trivially copyable.
- Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
- << ValType << Ptr->getSourceRange();
- return ExprError();
- }
- QualType ResultType = ValType;
- if (Form == Copy || Form == GNUXchg || Form == Init)
- ResultType = Context.VoidTy;
- else if (Form == C11CmpXchg || Form == GNUCmpXchg)
- ResultType = Context.BoolTy;
- // The type of a parameter passed 'by value'. In the GNU atomics, such
- // arguments are actually passed as pointers.
- QualType ByValType = ValType; // 'CP'
- if (!IsC11 && !IsN)
- ByValType = Ptr->getType();
- // The first argument --- the pointer --- has a fixed type; we
- // deduce the types of the rest of the arguments accordingly. Walk
- // the remaining arguments, converting them to the deduced value type.
- for (unsigned i = 1; i != NumArgs[Form]; ++i) {
- QualType Ty;
- if (i < NumVals[Form] + 1) {
- switch (i) {
- case 1:
- // The second argument is the non-atomic operand. For arithmetic, this
- // is always passed by value, and for a compare_exchange it is always
- // passed by address. For the rest, GNU uses by-address and C11 uses
- // by-value.
- assert(Form != Load);
- if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
- Ty = ValType;
- else if (Form == Copy || Form == Xchg)
- Ty = ByValType;
- else if (Form == Arithmetic)
- Ty = Context.getPointerDiffType();
- else
- Ty = Context.getPointerType(ValType.getUnqualifiedType());
- break;
- case 2:
- // The third argument to compare_exchange / GNU exchange is a
- // (pointer to a) desired value.
- Ty = ByValType;
- break;
- case 3:
- // The fourth argument to GNU compare_exchange is a 'weak' flag.
- Ty = Context.BoolTy;
- break;
- }
- } else {
- // The order(s) are always converted to int.
- Ty = Context.IntTy;
- }
- InitializedEntity Entity =
- InitializedEntity::InitializeParameter(Context, Ty, false);
- ExprResult Arg = TheCall->getArg(i);
- Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
- if (Arg.isInvalid())
- return true;
- TheCall->setArg(i, Arg.get());
- }
- // Permute the arguments into a 'consistent' order.
- SmallVector<Expr*, 5> SubExprs;
- SubExprs.push_back(Ptr);
- switch (Form) {
- case Init:
- // Note, AtomicExpr::getVal1() has a special case for this atomic.
- SubExprs.push_back(TheCall->getArg(1)); // Val1
- break;
- case Load:
- SubExprs.push_back(TheCall->getArg(1)); // Order
- break;
- case Copy:
- case Arithmetic:
- case Xchg:
- SubExprs.push_back(TheCall->getArg(2)); // Order
- SubExprs.push_back(TheCall->getArg(1)); // Val1
- break;
- case GNUXchg:
- // Note, AtomicExpr::getVal2() has a special case for this atomic.
- SubExprs.push_back(TheCall->getArg(3)); // Order
- SubExprs.push_back(TheCall->getArg(1)); // Val1
- SubExprs.push_back(TheCall->getArg(2)); // Val2
- break;
- case C11CmpXchg:
- SubExprs.push_back(TheCall->getArg(3)); // Order
- SubExprs.push_back(TheCall->getArg(1)); // Val1
- SubExprs.push_back(TheCall->getArg(4)); // OrderFail
- SubExprs.push_back(TheCall->getArg(2)); // Val2
- break;
- case GNUCmpXchg:
- SubExprs.push_back(TheCall->getArg(4)); // Order
- SubExprs.push_back(TheCall->getArg(1)); // Val1
- SubExprs.push_back(TheCall->getArg(5)); // OrderFail
- SubExprs.push_back(TheCall->getArg(2)); // Val2
- SubExprs.push_back(TheCall->getArg(3)); // Weak
- break;
- }
- if (SubExprs.size() >= 2 && Form != Init) {
- llvm::APSInt Result(32);
- if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
- !isValidOrderingForOp(Result.getSExtValue(), Op))
- Diag(SubExprs[1]->getLocStart(),
- diag::warn_atomic_op_has_invalid_memory_order)
- << SubExprs[1]->getSourceRange();
- }
- AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
- SubExprs, ResultType, Op,
- TheCall->getRParenLoc());
-
- if ((Op == AtomicExpr::AO__c11_atomic_load ||
- (Op == AtomicExpr::AO__c11_atomic_store)) &&
- Context.AtomicUsesUnsupportedLibcall(AE))
- Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
- ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
- return Owned(AE);
- }
- /// checkBuiltinArgument - Given a call to a builtin function, perform
- /// normal type-checking on the given argument, updating the call in
- /// place. This is useful when a builtin function requires custom
- /// type-checking for some of its arguments but not necessarily all of
- /// them.
- ///
- /// Returns true on error.
- static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
- FunctionDecl *Fn = E->getDirectCallee();
- assert(Fn && "builtin call without direct callee!");
- ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
- InitializedEntity Entity =
- InitializedEntity::InitializeParameter(S.Context, Param);
- ExprResult Arg = E->getArg(0);
- Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
- if (Arg.isInvalid())
- return true;
- E->setArg(ArgIndex, Arg.take());
- return false;
- }
- /// SemaBuiltinAtomicOverloaded - We have a call to a function like
- /// __sync_fetch_and_add, which is an overloaded function based on the pointer
- /// type of its first argument. The main ActOnCallExpr routines have already
- /// promoted the types of arguments because all of these calls are prototyped as
- /// void(...).
- ///
- /// This function goes through and does final semantic checking for these
- /// builtins,
- ExprResult
- Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
- CallExpr *TheCall = (CallExpr *)TheCallResult.get();
- DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
- FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
- // Ensure that we have at least one argument to do type inference from.
- if (TheCall->getNumArgs() < 1) {
- Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
- << 0 << 1 << TheCall->getNumArgs()
- << TheCall->getCallee()->getSourceRange();
- return ExprError();
- }
- // Inspect the first argument of the atomic builtin. This should always be
- // a pointer type, whose element is an integral scalar or pointer type.
- // Because it is a pointer type, we don't have to worry about any implicit
- // casts here.
- // FIXME: We don't allow floating point scalars as input.
- Expr *FirstArg = TheCall->getArg(0);
- ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
- if (FirstArgResult.isInvalid())
- return ExprError();
- FirstArg = FirstArgResult.take();
- TheCall->setArg(0, FirstArg);
- const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
- if (!pointerType) {
- Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
- << FirstArg->getType() << FirstArg->getSourceRange();
- return ExprError();
- }
- QualType ValType = pointerType->getPointeeType();
- if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
- !ValType->isBlockPointerType()) {
- Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
- << FirstArg->getType() << FirstArg->getSourceRange();
- return ExprError();
- }
- switch (ValType.getObjCLifetime()) {
- case Qualifiers::OCL_None:
- case Qualifiers::OCL_ExplicitNone:
- // okay
- break;
- case Qualifiers::OCL_Weak:
- case Qualifiers::OCL_Strong:
- case Qualifiers::OCL_Autoreleasing:
- Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
- << ValType << FirstArg->getSourceRange();
- return ExprError();
- }
- // Strip any qualifiers off ValType.
- ValType = ValType.getUnqualifiedType();
- // The majority of builtins return a value, but a few have special return
- // types, so allow them to override appropriately below.
- QualType ResultType = ValType;
- // We need to figure out which concrete builtin this maps onto. For example,
- // __sync_fetch_and_add with a 2 byte object turns into
- // __sync_fetch_and_add_2.
- #define BUILTIN_ROW(x) \
- { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
- Builtin::BI##x##_8, Builtin::BI##x##_16 }
- static const unsigned BuiltinIndices[][5] = {
- BUILTIN_ROW(__sync_fetch_and_add),
- BUILTIN_ROW(__sync_fetch_and_sub),
- BUILTIN_ROW(__sync_fetch_and_or),
- BUILTIN_ROW(__sync_fetch_and_and),
- BUILTIN_ROW(__sync_fetch_and_xor),
- BUILTIN_ROW(__sync_add_and_fetch),
- BUILTIN_ROW(__sync_sub_and_fetch),
- BUILTIN_ROW(__sync_and_and_fetch),
- BUILTIN_ROW(__sync_or_and_fetch),
- BUILTIN_ROW(__sync_xor_and_fetch),
- BUILTIN_ROW(__sync_val_compare_and_swap),
- BUILTIN_ROW(__sync_bool_compare_and_swap),
- BUILTIN_ROW(__sync_lock_test_and_set),
- BUILTIN_ROW(__sync_lock_release),
- BUILTIN_ROW(__sync_swap)
- };
- #undef BUILTIN_ROW
- // Determine the index of the size.
- unsigned SizeIndex;
- switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
- case 1: SizeIndex = 0; break;
- case 2: SizeIndex = 1; break;
- case 4: SizeIndex = 2; break;
- case 8: SizeIndex = 3; break;
- case 16: SizeIndex = 4; break;
- default:
- Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
- << FirstArg->getType() << FirstArg->getSourceRange();
- return ExprError();
- }
- // Each of these builtins has one pointer argument, followed by some number of
- // values (0, 1 or 2) followed by a potentially empty varags list of stuff
- // that we ignore. Find out which row of BuiltinIndices to read from as well
- // as the number of fixed args.
- unsigned BuiltinID = FDecl->getBuiltinID();
- unsigned BuiltinIndex, NumFixed = 1;
- switch (BuiltinID) {
- default: llvm_unreachable("Unknown overloaded atomic builtin!");
- case Builtin::BI__sync_fetch_and_add:
- case Builtin::BI__sync_fetch_and_add_1:
- case Builtin::BI__sync_fetch_and_add_2:
- case Builtin::BI__sync_fetch_and_add_4:
- case Builtin::BI__sync_fetch_and_add_8:
- case Builtin::BI__sync_fetch_and_add_16:
- BuiltinIndex = 0;
- break;
-
- case Builtin::BI__sync_fetch_and_sub:
- case Builtin::BI__sync_fetch_and_sub_1:
- case Builtin::BI__sync_fetch_and_sub_2:
- case Builtin::BI__sync_fetch_and_sub_4:
- case Builtin::BI__sync_fetch_and_sub_8:
- case Builtin::BI__sync_fetch_and_sub_16:
- BuiltinIndex = 1;
- break;
-
- case Builtin::BI__sync_fetch_and_or:
- case Builtin::BI__sync_fetch_and_or_1:
- case Builtin::BI__sync_fetch_and_or_2:
- case Builtin::BI__sync_fetch_and_or_4:
- case Builtin::BI__sync_fetch_and_or_8:
- case Builtin::BI__sync_fetch_and_or_16:
- BuiltinIndex = 2;
- break;
-
- case Builtin::BI__sync_fetch_and_and:
- case Builtin::BI__sync_fetch_and_and_1:
- case Builtin::BI__sync_fetch_and_and_2:
- case Builtin::BI__sync_fetch_and_and_4:
- case Builtin::BI__sync_fetch_and_and_8:
- case Builtin::BI__sync_fetch_and_and_16:
- BuiltinIndex = 3;
- break;
- case Builtin::BI__sync_fetch_and_xor:
- case Builtin::BI__sync_fetch_and_xor_1:
- case Builtin::BI__sync_fetch_and_xor_2:
- case Builtin::BI__sync_fetch_and_xor_4:
- case Builtin::BI__sync_fetch_and_xor_8:
- case Builtin::BI__sync_fetch_and_xor_16:
- BuiltinIndex = 4;
- break;
- case Builtin::BI__sync_add_and_fetch:
- case Builtin::BI__sync_add_and_fetch_1:
- case Builtin::BI__sync_add_and_fetch_2:
- case Builtin::BI__sync_add_and_fetch_4:
- case Builtin::BI__sync_add_and_fetch_8:
- case Builtin::BI__sync_add_and_fetch_16:
- BuiltinIndex = 5;
- break;
-
- case Builtin::BI__sync_sub_and_fetch:
- case Builtin::BI__sync_sub_and_fetch_1:
- case Builtin::BI__sync_sub_and_fetch_2:
- case Builtin::BI__sync_sub_and_fetch_4:
- case Builtin::BI__sync_sub_and_fetch_8:
- case Builtin::BI__sync_sub_and_fetch_16:
- BuiltinIndex = 6;
- break;
-
- case Builtin::BI__sync_and_and_fetch:
- case Builtin::BI__sync_and_and_fetch_1:
- case Builtin::BI__sync_and_and_fetch_2:
- case Builtin::BI__sync_and_and_fetch_4:
- case Builtin::BI__sync_and_and_fetch_8:
- case Builtin::BI__sync_and_and_fetch_16:
- BuiltinIndex = 7;
- break;
-
- case Builtin::BI__sync_or_and_fetch:
- case Builtin::BI__sync_or_and_fetch_1:
- case Builtin::BI__sync_or_and_fetch_2:
- case Builtin::BI__sync_or_and_fetch_4:
- case Builtin::BI__sync_or_and_fetch_8:
- case Builtin::BI__sync_or_and_fetch_16:
- BuiltinIndex = 8;
- break;
-
- case Builtin::BI__sync_xor_and_fetch:
- case Builtin::BI__sync_xor_and_fetch_1:
- case Builtin::BI__sync_xor_and_fetch_2:
- case Builtin::BI__sync_xor_and_fetch_4:
- case Builtin::BI__sync_xor_and_fetch_8:
- case Builtin::BI__sync_xor_and_fetch_16:
- BuiltinIndex = 9;
- break;
- case Builtin::BI__sync_val_compare_and_swap:
- case Builtin::BI__sync_val_compare_and_swap_1:
- case Builtin::BI__sync_val_compare_and_swap_2:
- case Builtin::BI__sync_val_compare_and_swap_4:
- case Builtin::BI__sync_val_compare_and_swap_8:
- case Builtin::BI__sync_val_compare_and_swap_16:
- BuiltinIndex = 10;
- NumFixed = 2;
- break;
-
- case Builtin::BI__sync_bool_compare_and_swap:
- case Builtin::BI__sync_bool_compare_and_swap_1:
- case Builtin::BI__sync_bool_compare_and_swap_2:
- case Builtin::BI__sync_bool_compare_and_swap_4:
- case Builtin::BI__sync_bool_compare_and_swap_8:
- case Builtin::BI__sync_bool_compare_and_swap_16:
- BuiltinIndex = 11;
- NumFixed = 2;
- ResultType = Context.BoolTy;
- break;
-
- case Builtin::BI__sync_lock_test_and_set:
- case Builtin::BI__sync_lock_test_and_set_1:
- case Builtin::BI__sync_lock_test_and_set_2:
- case Builtin::BI__sync_lock_test_and_set_4:
- case Builtin::BI__sync_lock_test_and_set_8:
- case Builtin::BI__sync_lock_test_and_set_16:
- BuiltinIndex = 12;
- break;
-
- case Builtin::BI__sync_lock_release:
- case Builtin::BI__sync_lock_release_1:
- case Builtin::BI__sync_lock_release_2:
- case Builtin::BI__sync_lock_release_4:
- case Builtin::BI__sync_lock_release_8:
- case Builtin::BI__sync_lock_release_16:
- BuiltinIndex = 13;
- NumFixed = 0;
- ResultType = Context.VoidTy;
- break;
-
- case Builtin::BI__sync_swap:
- case Builtin::BI__sync_swap_1:
- case Builtin::BI__sync_swap_2:
- case Builtin::BI__sync_swap_4:
- case Builtin::BI__sync_swap_8:
- case Builtin::BI__sync_swap_16:
- BuiltinIndex = 14;
- break;
- }
- // Now that we know how many fixed arguments we expect, first check that we
- // have at least that many.
- if (TheCall->getNumArgs() < 1+NumFixed) {
- Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
- << 0 << 1+NumFixed << TheCall->getNumArgs()
- << TheCall->getCallee()->getSourceRange();
- return ExprError();
- }
- // Get the decl for the concrete builtin from this, we can tell what the
- // concrete integer type we should convert to is.
- unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
- const char *NewBuiltinName = Context.BuiltinInfo.GetName(NewBuiltinID);
- FunctionDecl *NewBuiltinDecl;
- if (NewBuiltinID == BuiltinID)
- NewBuiltinDecl = FDecl;
- else {
- // Perform builtin lookup to avoid redeclaring it.
- DeclarationName DN(&Context.Idents.get(NewBuiltinName));
- LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
- LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
- assert(Res.getFoundDecl());
- NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
- if (!NewBuiltinDecl)
- return ExprError();
- }
- // The first argument --- the pointer --- has a fixed type; we
- // deduce the types of the rest of the arguments accordingly. Walk
- // the remaining arguments, converting them to the deduced value type.
- for (unsigned i = 0; i != NumFixed; ++i) {
- ExprResult Arg = TheCall->getArg(i+1);
- // GCC does an implicit conversion to the pointer or integer ValType. This
- // can fail in some cases (1i -> int**), check for this error case now.
- // Initialize the argument.
- InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
- ValType, /*consume*/ false);
- Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
- if (Arg.isInvalid())
- return ExprError();
- // Okay, we have something that *can* be converted to the right type. Check
- // to see if there is a potentially weird extension going on here. This can
- // happen when you do an atomic operation on something like an char* and
- // pass in 42. The 42 gets converted to char. This is even more strange
- // for things like 45.123 -> char, etc.
- // FIXME: Do this check.
- TheCall->setArg(i+1, Arg.take());
- }
- ASTContext& Context = this->getASTContext();
- // Create a new DeclRefExpr to refer to the new decl.
- DeclRefExpr* NewDRE = DeclRefExpr::Create(
- Context,
- DRE->getQualifierLoc(),
- SourceLocation(),
- NewBuiltinDecl,
- /*enclosing*/ false,
- DRE->getLocation(),
- Context.BuiltinFnTy,
- DRE->getValueKind());
- // Set the callee in the CallExpr.
- // FIXME: This loses syntactic information.
- QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
- ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
- CK_BuiltinFnToFnPtr);
- TheCall->setCallee(PromotedCall.take());
- // Change the result type of the call to match the original value type. This
- // is arbitrary, but the codegen for these builtins ins design to handle it
- // gracefully.
- TheCall->setType(ResultType);
- return TheCallResult;
- }
- /// CheckObjCString - Checks that the argument to the builtin
- /// CFString constructor is correct
- /// Note: It might also make sense to do the UTF-16 conversion here (would
- /// simplify the backend).
- bool Sema::CheckObjCString(Expr *Arg) {
- Arg = Arg->IgnoreParenCasts();
- StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
- if (!Literal || !Literal->isAscii()) {
- Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
- << Arg->getSourceRange();
- return true;
- }
- if (Literal->containsNonAsciiOrNull()) {
- StringRef String = Literal->getString();
- unsigned NumBytes = String.size();
- SmallVector<UTF16, 128> ToBuf(NumBytes);
- const UTF8 *FromPtr = (const UTF8 *)String.data();
- UTF16 *ToPtr = &ToBuf[0];
-
- ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
- &ToPtr, ToPtr + NumBytes,
- strictConversion);
- // Check for conversion failure.
- if (Result != conversionOK)
- Diag(Arg->getLocStart(),
- diag::warn_cfstring_truncated) << Arg->getSourceRange();
- }
- return false;
- }
- /// SemaBuiltinVAStart - Check the arguments to __builtin_va_start for validity.
- /// Emit an error and return true on failure, return false on success.
- bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
- Expr *Fn = TheCall->getCallee();
- if (TheCall->getNumArgs() > 2) {
- Diag(TheCall->getArg(2)->getLocStart(),
- diag::err_typecheck_call_too_many_args)
- << 0 /*function call*/ << 2 << TheCall->getNumArgs()
- << Fn->getSourceRange()
- << SourceRange(TheCall->getArg(2)->getLocStart(),
- (*(TheCall->arg_end()-1))->getLocEnd());
- return true;
- }
- if (TheCall->getNumArgs() < 2) {
- return Diag(TheCall->getLocEnd(),
- diag::err_typecheck_call_too_few_args_at_least)
- << 0 /*function call*/ << 2 << TheCall->getNumArgs();
- }
- // Type-check the first argument normally.
- if (checkBuiltinArgument(*this, TheCall, 0))
- return true;
- // Determine whether the current function is variadic or not.
- BlockScopeInfo *CurBlock = getCurBlock();
- bool isVariadic;
- if (CurBlock)
- isVariadic = CurBlock->TheDecl->isVariadic();
- else if (FunctionDecl *FD = getCurFunctionDecl())
- isVariadic = FD->isVariadic();
- else
- isVariadic = getCurMethodDecl()->isVariadic();
- if (!isVariadic) {
- Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
- return true;
- }
- // Verify that the second argument to the builtin is the last argument of the
- // current function or method.
- bool SecondArgIsLastNamedArgument = false;
- const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
- // These are valid if SecondArgIsLastNamedArgument is false after the next
- // block.
- QualType Type;
- SourceLocation ParamLoc;
- if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
- if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
- // FIXME: This isn't correct for methods (results in bogus warning).
- // Get the last formal in the current function.
- const ParmVarDecl *LastArg;
- if (CurBlock)
- LastArg = *(CurBlock->TheDecl->param_end()-1);
- else if (FunctionDecl *FD = getCurFunctionDecl())
- LastArg = *(FD->param_end()-1);
- else
- LastArg = *(getCurMethodDecl()->param_end()-1);
- SecondArgIsLastNamedArgument = PV == LastArg;
- Type = PV->getType();
- ParamLoc = PV->getLocation();
- }
- }
- if (!SecondArgIsLastNamedArgument)
- Diag(TheCall->getArg(1)->getLocStart(),
- diag::warn_second_parameter_of_va_start_not_last_named_argument);
- else if (Type->isReferenceType()) {
- Diag(Arg->getLocStart(),
- diag::warn_va_start_of_reference_type_is_undefined);
- Diag(ParamLoc, diag::note_parameter_type) << Type;
- }
- TheCall->setType(Context.VoidTy);
- return false;
- }
- /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
- /// friends. This is declared to take (...), so we have to check everything.
- bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
- if (TheCall->getNumArgs() < 2)
- return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
- << 0 << 2 << TheCall->getNumArgs()/*function call*/;
- if (TheCall->getNumArgs() > 2)
- return Diag(TheCall->getArg(2)->getLocStart(),
- diag::err_typecheck_call_too_many_args)
- << 0 /*function call*/ << 2 << TheCall->getNumArgs()
- << SourceRange(TheCall->getArg(2)->getLocStart(),
- (*(TheCall->arg_end()-1))->getLocEnd());
- ExprResult OrigArg0 = TheCall->getArg(0);
- ExprResult OrigArg1 = TheCall->getArg(1);
- // Do standard promotions between the two arguments, returning their common
- // type.
- QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
- if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
- return true;
- // Make sure any conversions are pushed back into the call; this is
- // type safe since unordered compare builtins are declared as "_Bool
- // foo(...)".
- TheCall->setArg(0, OrigArg0.get());
- TheCall->setArg(1, OrigArg1.get());
- if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
- return false;
- // If the common type isn't a real floating type, then the arguments were
- // invalid for this operation.
- if (Res.isNull() || !Res->isRealFloatingType())
- return Diag(OrigArg0.get()->getLocStart(),
- diag::err_typecheck_call_invalid_ordered_compare)
- << OrigArg0.get()->getType() << OrigArg1.get()->getType()
- << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
- return false;
- }
- /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
- /// __builtin_isnan and friends. This is declared to take (...), so we have
- /// to check everything. We expect the last argument to be a floating point
- /// value.
- bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
- if (TheCall->getNumArgs() < NumArgs)
- return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
- << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
- if (TheCall->getNumArgs() > NumArgs)
- return Diag(TheCall->getArg(NumArgs)->getLocStart(),
- diag::err_typecheck_call_too_many_args)
- << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
- << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
- (*(TheCall->arg_end()-1))->getLocEnd());
- Expr *OrigArg = TheCall->getArg(NumArgs-1);
- if (OrigArg->isTypeDependent())
- return false;
- // This operation requires a non-_Complex floating-point number.
- if (!OrigArg->getType()->isRealFloatingType())
- return Diag(OrigArg->getLocStart(),
- diag::err_typecheck_call_invalid_unary_fp)
- << OrigArg->getType() << OrigArg->getSourceRange();
- // If this is an implicit conversion from float -> double, remove it.
- if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
- Expr *CastArg = Cast->getSubExpr();
- if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
- assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
- "promotion from float to double is the only expected cast here");
- Cast->setSubExpr(nullptr);
- TheCall->setArg(NumArgs-1, CastArg);
- }
- }
-
- return false;
- }
- /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
- // This is declared to take (...), so we have to check everything.
- ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
- if (TheCall->getNumArgs() < 2)
- return ExprError(Diag(TheCall->getLocEnd(),
- diag::err_typecheck_call_too_few_args_at_least)
- << 0 /*function call*/ << 2 << TheCall->getNumArgs()
- << TheCall->getSourceRange());
- // Determine which of the following types of shufflevector we're checking:
- // 1) unary, vector mask: (lhs, mask)
- // 2) binary, vector mask: (lhs, rhs, mask)
- // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
- QualType resType = TheCall->getArg(0)->getType();
- unsigned numElements = 0;
- if (!TheCall->getArg(0)->isTypeDependent() &&
- !TheCall->getArg(1)->isTypeDependent()) {
- QualType LHSType = TheCall->getArg(0)->getType();
- QualType RHSType = TheCall->getArg(1)->getType();
- if (!LHSType->isVectorType() || !RHSType->isVectorType())
- return ExprError(Diag(TheCall->getLocStart(),
- diag::err_shufflevector_non_vector)
- << SourceRange(TheCall->getArg(0)->getLocStart(),
- TheCall->getArg(1)->getLocEnd()));
- numElements = LHSType->getAs<VectorType>()->getNumElements();
- unsigned numResElements = TheCall->getNumArgs() - 2;
- // Check to see if we have a call with 2 vector arguments, the unary shuffle
- // with mask. If so, verify that RHS is an integer vector type with the
- // same number of elts as lhs.
- if (TheCall->getNumArgs() == 2) {
- if (!RHSType->hasIntegerRepresentation() ||
- RHSType->getAs<VectorType>()->getNumElements() != numElements)
- return ExprError(Diag(TheCall->getLocStart(),
- diag::err_shufflevector_incompatible_vector)
- << SourceRange(TheCall->getArg(1)->getLocStart(),
- TheCall->getArg(1)->getLocEnd()));
- } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
- return ExprError(Diag(TheCall->getLocStart(),
- diag::err_shufflevector_incompatible_vector)
- << SourceRange(TheCall->getArg(0)->getLocStart(),
- TheCall->getArg(1)->getLocEnd()));
- } else if (numElements != numResElements) {
- QualType eltType = LHSType->getAs<VectorType>()->getElementType();
- resType = Context.getVectorType(eltType, numResElements,
- VectorType::GenericVector);
- }
- }
- for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
- if (TheCall->getArg(i)->isTypeDependent() ||
- TheCall->getArg(i)->isValueDependent())
- continue;
- llvm::APSInt Result(32);
- if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
- return ExprError(Diag(TheCall->getLocStart(),
- diag::err_shufflevector_nonconstant_argument)
- << TheCall->getArg(i)->getSourceRange());
- // Allow -1 which will be translated to undef in the IR.
- if (Result.isSigned() && Result.isAllOnesValue())
- continue;
- if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
- return ExprError(Diag(TheCall->getLocStart(),
- diag::err_shufflevector_argument_too_large)
- << TheCall->getArg(i)->getSourceRange());
- }
- SmallVector<Expr*, 32> exprs;
- for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
- exprs.push_back(TheCall->getArg(i));
- TheCall->setArg(i, nullptr);
- }
- return Owned(new (Context) ShuffleVectorExpr(Context, exprs, resType,
- TheCall->getCallee()->getLocStart(),
- TheCall->getRParenLoc()));
- }
- /// SemaConvertVectorExpr - Handle __builtin_convertvector
- ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
- SourceLocation BuiltinLoc,
- SourceLocation RParenLoc) {
- ExprValueKind VK = VK_RValue;
- ExprObjectKind OK = OK_Ordinary;
- QualType DstTy = TInfo->getType();
- QualType SrcTy = E->getType();
- if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
- return ExprError(Diag(BuiltinLoc,
- diag::err_convertvector_non_vector)
- << E->getSourceRange());
- if (!DstTy->isVectorType() && !DstTy->isDependentType())
- return ExprError(Diag(BuiltinLoc,
- diag::err_convertvector_non_vector_type));
- if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
- unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
- unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
- if (SrcElts != DstElts)
- return ExprError(Diag(BuiltinLoc,
- diag::err_convertvector_incompatible_vector)
- << E->getSourceRange());
- }
- return Owned(new (Context) ConvertVectorExpr(E, TInfo, DstTy, VK, OK,
- BuiltinLoc, RParenLoc));
- }
- /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
- // This is declared to take (const void*, ...) and can take two
- // optional constant int args.
- bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
- unsigned NumArgs = TheCall->getNumArgs();
- if (NumArgs > 3)
- return Diag(TheCall->getLocEnd(),
- diag::err_typecheck_call_too_many_args_at_most)
- << 0 /*function call*/ << 3 << NumArgs
- << TheCall->getSourceRange();
- // Argument 0 is checked for us and the remaining arguments must be
- // constant integers.
- for (unsigned i = 1; i != NumArgs; ++i)
- if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
- return true;
- return false;
- }
- /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
- /// TheCall is a constant expression.
- bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
- llvm::APSInt &Result) {
- Expr *Arg = TheCall->getArg(ArgNum);
- DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
- FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
-
- if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
-
- if (!Arg->isIntegerConstantExpr(Result, Context))
- return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
- << FDecl->getDeclName() << Arg->getSourceRange();
-
- return false;
- }
- /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
- /// TheCall is a constant expression in the range [Low, High].
- bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
- int Low, int High) {
- llvm::APSInt Result;
- // We can't check the value of a dependent argument.
- Expr *Arg = TheCall->getArg(ArgNum);
- if (Arg->isTypeDependent() || Arg->isValueDependent())
- return false;
- // Check constant-ness first.
- if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
- return true;
- if (Result.getSExtValue() < Low || Result.getSExtValue() > High)
- return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
- << Low << High << Arg->getSourceRange();
- return false;
- }
- /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
- /// This checks that val is a constant 1.
- bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
- Expr *Arg = TheCall->getArg(1);
- llvm::APSInt Result;
- // TODO: This is less than ideal. Overload this to take a value.
- if (SemaBuiltinConstantArg(TheCall, 1, Result))
- return true;
-
- if (Result != 1)
- return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
- << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
- return false;
- }
- namespace {
- enum StringLiteralCheckType {
- SLCT_NotALiteral,
- SLCT_UncheckedLiteral,
- SLCT_CheckedLiteral
- };
- }
- // Determine if an expression is a string literal or constant string.
- // If this function returns false on the arguments to a function expecting a
- // format string, we will usually need to emit a warning.
- // True string literals are then checked by CheckFormatString.
- static StringLiteralCheckType
- checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
- bool HasVAListArg, unsigned format_idx,
- unsigned firstDataArg, Sema::FormatStringType Type,
- Sema::VariadicCallType CallType, bool InFunctionCall,
- llvm::SmallBitVector &CheckedVarArgs) {
- tryAgain:
- if (E->isTypeDependent() || E->isValueDependent())
- return SLCT_NotALiteral;
- E = E->IgnoreParenCasts();
- if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
- // Technically -Wformat-nonliteral does not warn about this case.
- // The behavior of printf and friends in this case is implementation
- // dependent. Ideally if the format string cannot be null then
- // it should have a 'nonnull' attribute in the function prototype.
- return SLCT_UncheckedLiteral;
- switch (E->getStmtClass()) {
- case Stmt::BinaryConditionalOperatorClass:
- case Stmt::ConditionalOperatorClass: {
- // The expression is a literal if both sub-expressions were, and it was
- // completely checked only if both sub-expressions were checked.
- const AbstractConditionalOperator *C =
- cast<AbstractConditionalOperator>(E);
- StringLiteralCheckType Left =
- checkFormatStringExpr(S, C->getTrueExpr(), Args,
- HasVAListArg, format_idx, firstDataArg,
- Type, CallType, InFunctionCall, CheckedVarArgs);
- if (Left == SLCT_NotALiteral)
- return SLCT_NotALiteral;
- StringLiteralCheckType Right =
- checkFormatStringExpr(S, C->getFalseExpr(), Args,
- HasVAListArg, format_idx, firstDataArg,
- Type, CallType, InFunctionCall, CheckedVarArgs);
- return Left < Right ? Left : Right;
- }
- case Stmt::ImplicitCastExprClass: {
- E = cast<ImplicitCastExpr>(E)->getSubExpr();
- goto tryAgain;
- }
- case Stmt::OpaqueValueExprClass:
- if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
- E = src;
- goto tryAgain;
- }
- return SLCT_NotALiteral;
- case Stmt::PredefinedExprClass:
- // While __func__, etc., are technically not string literals, they
- // cannot contain format specifiers and thus are not a security
- // liability.
- return SLCT_UncheckedLiteral;
-
- case Stmt::DeclRefExprClass: {
- const DeclRefExpr *DR = cast<DeclRefExpr>(E);
- // As an exception, do not flag errors for variables binding to
- // const string literals.
- if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
- bool isConstant = false;
- QualType T = DR->getType();
- if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
- isConstant = AT->getElementType().isConstant(S.Context);
- } else if (const PointerType *PT = T->getAs<PointerType>()) {
- isConstant = T.isConstant(S.Context) &&
- PT->getPointeeType().isConstant(S.Context);
- } else if (T->isObjCObjectPointerType()) {
- // In ObjC, there is usually no "const ObjectPointer" type,
- // so don't check if the pointee type is constant.
- isConstant = T.isConstant(S.Context);
- }
- if (isConstant) {
- if (const Expr *Init = VD->getAnyInitializer()) {
- // Look through initializers like const char c[] = { "foo" }
- if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
- if (InitList->isStringLiteralInit())
- Init = InitList->getInit(0)->IgnoreParenImpCasts();
- }
- return checkFormatStringExpr(S, Init, Args,
- HasVAListArg, format_idx,
- firstDataArg, Type, CallType,
- /*InFunctionCall*/false, CheckedVarArgs);
- }
- }
- // For vprintf* functions (i.e., HasVAListArg==true), we add a
- // special check to see if the format string is a function parameter
- // of the function calling the printf function. If the function
- // has an attribute indicating it is a printf-like function, then we
- // should suppress warnings concerning non-literals being used in a call
- // to a vprintf function. For example:
- //
- // void
- // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
- // va_list ap;
- // va_start(ap, fmt);
- // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
- // ...
- // }
- if (HasVAListArg) {
- if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
- if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
- int PVIndex = PV->getFunctionScopeIndex() + 1;
- for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
- // adjust for implicit parameter
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
- if (MD->isInstance())
- ++PVIndex;
- // We also check if the formats are compatible.
- // We can't pass a 'scanf' string to a 'printf' function.
- if (PVIndex == PVFormat->getFormatIdx() &&
- Type == S.GetFormatStringType(PVFormat))
- return SLCT_UncheckedLiteral;
- }
- }
- }
- }
- }
- return SLCT_NotALiteral;
- }
- case Stmt::CallExprClass:
- case Stmt::CXXMemberCallExprClass: {
- const CallExpr *CE = cast<CallExpr>(E);
- if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
- if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
- unsigned ArgIndex = FA->getFormatIdx();
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
- if (MD->isInstance())
- --ArgIndex;
- const Expr *Arg = CE->getArg(ArgIndex - 1);
- return checkFormatStringExpr(S, Arg, Args,
- HasVAListArg, format_idx, firstDataArg,
- Type, CallType, InFunctionCall,
- CheckedVarArgs);
- } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
- unsigned BuiltinID = FD->getBuiltinID();
- if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
- BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
- const Expr *Arg = CE->getArg(0);
- return checkFormatStringExpr(S, Arg, Args,
- HasVAListArg, format_idx,
- firstDataArg, Type, CallType,
- InFunctionCall, CheckedVarArgs);
- }
- }
- }
- return SLCT_NotALiteral;
- }
- case Stmt::ObjCStringLiteralClass:
- case Stmt::StringLiteralClass: {
- const StringLiteral *StrE = nullptr;
- if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
- StrE = ObjCFExpr->getString();
- else
- StrE = cast<StringLiteral>(E);
- if (StrE) {
- S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
- Type, InFunctionCall, CallType, CheckedVarArgs);
- return SLCT_CheckedLiteral;
- }
- return SLCT_NotALiteral;
- }
- default:
- return SLCT_NotALiteral;
- }
- }
- Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
- return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
- .Case("scanf", FST_Scanf)
- .Cases("printf", "printf0", FST_Printf)
- .Cases("NSString", "CFString", FST_NSString)
- .Case("strftime", FST_Strftime)
- .Case("strfmon", FST_Strfmon)
- .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
- .Default(FST_Unknown);
- }
- /// CheckFormatArguments - Check calls to printf and scanf (and similar
- /// functions) for correct use of format strings.
- /// Returns true if a format string has been fully checked.
- bool Sema::CheckFormatArguments(const FormatAttr *Format,
- ArrayRef<const Expr *> Args,
- bool IsCXXMember,
- VariadicCallType CallType,
- SourceLocation Loc, SourceRange Range,
- llvm::SmallBitVector &CheckedVarArgs) {
- FormatStringInfo FSI;
- if (getFormatStringInfo(Format, IsCXXMember, &FSI))
- return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
- FSI.FirstDataArg, GetFormatStringType(Format),
- CallType, Loc, Range, CheckedVarArgs);
- return false;
- }
- bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
- bool HasVAListArg, unsigned format_idx,
- unsigned firstDataArg, FormatStringType Type,
- VariadicCallType CallType,
- SourceLocation Loc, SourceRange Range,
- llvm::SmallBitVector &CheckedVarArgs) {
- // CHECK: printf/scanf-like function is called with no format string.
- if (format_idx >= Args.size()) {
- Diag(Loc, diag::warn_missing_format_string) << Range;
- return false;
- }
- const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
- // CHECK: format string is not a string literal.
- //
- // Dynamically generated format strings are difficult to
- // automatically vet at compile time. Requiring that format strings
- // are string literals: (1) permits the checking of format strings by
- // the compiler and thereby (2) can practically remove the source of
- // many format string exploits.
- // Format string can be either ObjC string (e.g. @"%d") or
- // C string (e.g. "%d")
- // ObjC string uses the same format specifiers as C string, so we can use
- // the same format string checking logic for both ObjC and C strings.
- StringLiteralCheckType CT =
- checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
- format_idx, firstDataArg, Type, CallType,
- /*IsFunctionCall*/true, CheckedVarArgs);
- if (CT != SLCT_NotALiteral)
- // Literal format string found, check done!
- return CT == SLCT_CheckedLiteral;
- // Strftime is particular as it always uses a single 'time' argument,
- // so it is safe to pass a non-literal string.
- if (Type == FST_Strftime)
- return false;
- // Do not emit diag when the string param is a macro expansion and the
- // format is either NSString or CFString. This is a hack to prevent
- // diag when using the NSLocalizedString and CFCopyLocalizedString macros
- // which are usually used in place of NS and CF string literals.
- if (Type == FST_NSString &&
- SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
- return false;
- // If there are no arguments specified, warn with -Wformat-security, otherwise
- // warn only with -Wformat-nonliteral.
- if (Args.size() == firstDataArg)
- Diag(Args[format_idx]->getLocStart(),
- diag::warn_format_nonliteral_noargs)
- << OrigFormatExpr->getSourceRange();
- else
- Diag(Args[format_idx]->getLocStart(),
- diag::warn_format_nonliteral)
- << OrigFormatExpr->getSourceRange();
- return false;
- }
- namespace {
- class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
- protected:
- Sema &S;
- const StringLiteral *FExpr;
- const Expr *OrigFormatExpr;
- const unsigned FirstDataArg;
- const unsigned NumDataArgs;
- const char *Beg; // Start of format string.
- const bool HasVAListArg;
- ArrayRef<const Expr *> Args;
- unsigned FormatIdx;
- llvm::SmallBitVector CoveredArgs;
- bool usesPositionalArgs;
- bool atFirstArg;
- bool inFunctionCall;
- Sema::VariadicCallType CallType;
- llvm::SmallBitVector &CheckedVarArgs;
- public:
- CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
- const Expr *origFormatExpr, unsigned firstDataArg,
- unsigned numDataArgs, const char *beg, bool hasVAListArg,
- ArrayRef<const Expr *> Args,
- unsigned formatIdx, bool inFunctionCall,
- Sema::VariadicCallType callType,
- llvm::SmallBitVector &CheckedVarArgs)
- : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
- FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
- Beg(beg), HasVAListArg(hasVAListArg),
- Args(Args), FormatIdx(formatIdx),
- usesPositionalArgs(false), atFirstArg(true),
- inFunctionCall(inFunctionCall), CallType(callType),
- CheckedVarArgs(CheckedVarArgs) {
- CoveredArgs.resize(numDataArgs);
- CoveredArgs.reset();
- }
- void DoneProcessing();
- void HandleIncompleteSpecifier(const char *startSpecifier,
- unsigned specifierLen) override;
- void HandleInvalidLengthModifier(
- const analyze_format_string::FormatSpecifier &FS,
- const analyze_format_string::ConversionSpecifier &CS,
- const char *startSpecifier, unsigned specifierLen,
- unsigned DiagID);
- void HandleNonStandardLengthModifier(
- const analyze_format_string::FormatSpecifier &FS,
- const char *startSpecifier, unsigned specifierLen);
- void HandleNonStandardConversionSpecifier(
- const analyze_format_string::ConversionSpecifier &CS,
- const char *startSpecifier, unsigned specifierLen);
- void HandlePosition(const char *startPos, unsigned posLen) override;
- void HandleInvalidPosition(const char *startSpecifier,
- unsigned specifierLen,
- analyze_format_string::PositionContext p) override;
- void HandleZeroPosition(const char *startPos, unsigned posLen) override;
- void HandleNullChar(const char *nullCharacter) override;
- template <typename Range>
- static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
- const Expr *ArgumentExpr,
- PartialDiagnostic PDiag,
- SourceLocation StringLoc,
- bool IsStringLocation, Range StringRange,
- ArrayRef<FixItHint> Fixit = None);
- protected:
- bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
- const char *startSpec,
- unsigned specifierLen,
- const char *csStart, unsigned csLen);
- void HandlePositionalNonpositionalArgs(SourceLocation Loc,
- const char *startSpec,
- unsigned specifierLen);
-
- SourceRange getFormatStringRange();
- CharSourceRange getSpecifierRange(const char *startSpecifier,
- unsigned specifierLen);
- SourceLocation getLocationOfByte(const char *x);
- const Expr *getDataArg(unsigned i) const;
-
- bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
- const analyze_format_string::ConversionSpecifier &CS,
- const char *startSpecifier, unsigned specifierLen,
- unsigned argIndex);
- template <typename Range>
- void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
- bool IsStringLocation, Range StringRange,
- ArrayRef<FixItHint> Fixit = None);
- };
- }
- SourceRange CheckFormatHandler::getFormatStringRange() {
- return OrigFormatExpr->getSourceRange();
- }
- CharSourceRange CheckFormatHandler::
- getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
- SourceLocation Start = getLocationOfByte(startSpecifier);
- SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
- // Advance the end SourceLocation by one due to half-open ranges.
- End = End.getLocWithOffset(1);
- return CharSourceRange::getCharRange(Start, End);
- }
- SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
- return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
- }
- void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
- unsigned specifierLen){
- EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
- getLocationOfByte(startSpecifier),
- /*IsStringLocation*/true,
- getSpecifierRange(startSpecifier, specifierLen));
- }
- void CheckFormatHandler::HandleInvalidLengthModifier(
- const analyze_format_string::FormatSpecifier &FS,
- const analyze_format_string::ConversionSpecifier &CS,
- const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
- using namespace analyze_format_string;
- const LengthModifier &LM = FS.getLengthModifier();
- CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
- // See if we know how to fix this length modifier.
- Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
- if (FixedLM) {
- EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
- getLocationOfByte(LM.getStart()),
- /*IsStringLocation*/true,
- getSpecifierRange(startSpecifier, specifierLen));
- S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
- << FixedLM->toString()
- << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
- } else {
- FixItHint Hint;
- if (DiagID == diag::warn_format_nonsensical_length)
- Hint = FixItHint::CreateRemoval(LMRange);
- EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
- getLocationOfByte(LM.getStart()),
- /*IsStringLocation*/true,
- getSpecifierRange(startSpecifier, specifierLen),
- Hint);
- }
- }
- void CheckFormatHandler::HandleNonStandardLengthModifier(
- const analyze_format_string::FormatSpecifier &FS,
- const char *startSpecifier, unsigned specifierLen) {
- using namespace analyze_format_string;
- const LengthModifier &LM = FS.getLengthModifier();
- CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
- // See if we know how to fix this length modifier.
- Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
- if (FixedLM) {
- EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
- << LM.toString() << 0,
- getLocationOfByte(LM.getStart()),
- /*IsStringLocation*/true,
- getSpecifierRange(startSpecifier, specifierLen));
- S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
- << FixedLM->toString()
- << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
- } else {
- EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
- << LM.toString() << 0,
- getLocationOfByte(LM.getStart()),
- /*IsStringLocation*/true,
- getSpecifierRange(startSpecifier, specifierLen));
- }
- }
- void CheckFormatHandler::HandleNonStandardConversionSpecifier(
- const analyze_format_string::ConversionSpecifier &CS,
- const char *startSpecifier, unsigned specifierLen) {
- using namespace analyze_format_string;
- // See if we know how to fix this conversion specifier.
- Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
- if (FixedCS) {
- EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
- << CS.toString() << /*conversion specifier*/1,
- getLocationOfByte(CS.getStart()),
- /*IsStringLocation*/true,
- getSpecifierRange(startSpecifier, specifierLen));
- CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
- S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
- << FixedCS->toString()
- << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
- } else {
- EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
- << CS.toString() << /*conversion specifier*/1,
- getLocationOfByte(CS.getStart()),
- /*IsStringLocation*/true,
- getSpecifierRange(startSpecifier, specifierLen));
- }
- }
- void CheckFormatHandler::HandlePosition(const char *startPos,
- unsigned posLen) {
- EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
- getLocationOfByte(startPos),
- /*IsStringLocation*/true,
- getSpecifierRange(startPos, posLen));
- }
- void
- CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
- analyze_format_string::PositionContext p) {
- EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
- << (unsigned) p,
- getLocationOfByte(startPos), /*IsStringLocation*/true,
- getSpecifierRange(startPos, posLen));
- }
- void CheckFormatHandler::HandleZeroPosition(const char *startPos,
- unsigned posLen) {
- EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
- getLocationOfByte(startPos),
- /*IsStringLocation*/true,
- getSpecifierRange(startPos, posLen));
- }
- void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
- if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
- // The presence of a null character is likely an error.
- EmitFormatDiagnostic(
- S.PDiag(diag::warn_printf_format_string_contains_null_char),
- getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
- getFormatStringRange());
- }
- }
- // Note that this may return NULL if there was an error parsing or building
- // one of the argument expressions.
- const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
- return Args[FirstDataArg + i];
- }
- void CheckFormatHandler::DoneProcessing() {
- // Does the number of data arguments exceed the number of
- // format conversions in the format string?
- if (!HasVAListArg) {
- // Find any arguments that weren't covered.
- CoveredArgs.flip();
- signed notCoveredArg = CoveredArgs.find_first();
- if (notCoveredArg >= 0) {
- assert((unsigned)notCoveredArg < NumDataArgs);
- if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
- SourceLocation Loc = E->getLocStart();
- if (!S.getSourceManager().isInSystemMacro(Loc)) {
- EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
- Loc, /*IsStringLocation*/false,
- getFormatStringRange());
- }
- }
- }
- }
- }
- bool
- CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
- SourceLocation Loc,
- const char *startSpec,
- unsigned specifierLen,
- const char *csStart,
- unsigned csLen) {
-
- bool keepGoing = true;
- if (argIndex < NumDataArgs) {
- // Consider the argument coverered, even though the specifier doesn't
- // make sense.
- CoveredArgs.set(argIndex);
- }
- else {
- // If argIndex exceeds the number of data arguments we
- // don't issue a warning because that is just a cascade of warnings (and
- // they may have intended '%%' anyway). We don't want to continue processing
- // the format string after this point, however, as we will like just get
- // gibberish when trying to match arguments.
- keepGoing = false;
- }
-
- EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
- << StringRef(csStart, csLen),
- Loc, /*IsStringLocation*/true,
- getSpecifierRange(startSpec, specifierLen));
-
- return keepGoing;
- }
- void
- CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
- const char *startSpec,
- unsigned specifierLen) {
- EmitFormatDiagnostic(
- S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
- Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
- }
- bool
- CheckFormatHandler::CheckNumArgs(
- const analyze_format_string::FormatSpecifier &FS,
- const analyze_format_string::ConversionSpecifier &CS,
- const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
- if (argIndex >= NumDataArgs) {
- PartialDiagnostic PDiag = FS.usesPositionalArg()
- ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
- << (argIndex+1) << NumDataArgs)
- : S.PDiag(diag::warn_printf_insufficient_data_args);
- EmitFormatDiagnostic(
- PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
- getSpecifierRange(startSpecifier, specifierLen));
- return false;
- }
- return true;
- }
- template<typename Range>
- void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
- SourceLocation Loc,
- bool IsStringLocation,
- Range StringRange,
- ArrayRef<FixItHint> FixIt) {
- EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
- Loc, IsStringLocation, StringRange, FixIt);
- }
- /// \brief If the format string is not within the funcion call, emit a note
- /// so that the function call and string are in diagnostic messages.
- ///
- /// \param InFunctionCall if true, the format string is within the function
- /// call and only one diagnostic message will be produced. Otherwise, an
- /// extra note will be emitted pointing to location of the format string.
- ///
- /// \param ArgumentExpr the expression that is passed as the format string
- /// argument in the function call. Used for getting locations when two
- /// diagnostics are emitted.
- ///
- /// \param PDiag the callee should already have provided any strings for the
- /// diagnostic message. This function only adds locations and fixits
- /// to diagnostics.
- ///
- /// \param Loc primary location for diagnostic. If two diagnostics are
- /// required, one will be at Loc and a new SourceLocation will be created for
- /// the other one.
- ///
- /// \param IsStringLocation if true, Loc points to the format string should be
- /// used for the note. Otherwise, Loc points to the argument list and will
- /// be used with PDiag.
- ///
- /// \param StringRange some or all of the string to highlight. This is
- /// templated so it can accept either a CharSourceRange or a SourceRange.
- ///
- /// \param FixIt optional fix it hint for the format string.
- template<typename Range>
- void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
- const Expr *ArgumentExpr,
- PartialDiagnostic PDiag,
- SourceLocation Loc,
- bool IsStringLocation,
- Range StringRange,
- ArrayRef<FixItHint> FixIt) {
- if (InFunctionCall) {
- const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
- D << StringRange;
- for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
- I != E; ++I) {
- D << *I;
- }
- } else {
- S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
- << ArgumentExpr->getSourceRange();
- const Sema::SemaDiagnosticBuilder &Note =
- S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
- diag::note_format_string_defined);
- Note << StringRange;
- for (ArrayRef<FixItHint>::iterator I = FixIt.begin(), E = FixIt.end();
- I != E; ++I) {
- Note << *I;
- }
- }
- }
- //===--- CHECK: Printf format string checking ------------------------------===//
- namespace {
- class CheckPrintfHandler : public CheckFormatHandler {
- bool ObjCContext;
- public:
- CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
- const Expr *origFormatExpr, unsigned firstDataArg,
- unsigned numDataArgs, bool isObjC,
- const char *beg, bool hasVAListArg,
- ArrayRef<const Expr *> Args,
- unsigned formatIdx, bool inFunctionCall,
- Sema::VariadicCallType CallType,
- llvm::SmallBitVector &CheckedVarArgs)
- : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
- numDataArgs, beg, hasVAListArg, Args,
- formatIdx, inFunctionCall, CallType, CheckedVarArgs),
- ObjCContext(isObjC)
- {}
- bool HandleInvalidPrintfConversionSpecifier(
- const analyze_printf::PrintfSpecifier &FS,
- const char *startSpecifier,
- unsigned specifierLen) override;
- bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
- const char *startSpecifier,
- unsigned specifierLen) override;
- bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
- const char *StartSpecifier,
- unsigned SpecifierLen,
- const Expr *E);
- bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
- const char *startSpecifier, unsigned specifierLen);
- void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
- const analyze_printf::OptionalAmount &Amt,
- unsigned type,
- const char *startSpecifier, unsigned specifierLen);
- void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
- const analyze_printf::OptionalFlag &flag,
- const char *startSpecifier, unsigned specifierLen);
- void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
- const analyze_printf::OptionalFlag &ignoredFlag,
- const analyze_printf::OptionalFlag &flag,
- const char *startSpecifier, unsigned specifierLen);
- bool checkForCStrMembers(const analyze_printf::ArgType &AT,
- const Expr *E);
- };
- }
- bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
- const analyze_printf::PrintfSpecifier &FS,
- const char *startSpecifier,
- unsigned specifierLen) {
- const analyze_printf::PrintfConversionSpecifier &CS =
- FS.getConversionSpecifier();
-
- return HandleInvalidConversionSpecifier(FS.getArgIndex(),
- getLocationOfByte(CS.getStart()),
- startSpecifier, specifierLen,
- CS.getStart(), CS.getLength());
- }
- bool CheckPrintfHandler::HandleAmount(
- const analyze_format_string::OptionalAmount &Amt,
- unsigned k, const char *startSpecifier,
- unsigned specifierLen) {
- if (Amt.hasDataArgument()) {
- if (!HasVAListArg) {
- unsigned argIndex = Amt.getArgIndex();
- if (argIndex >= NumDataArgs) {
- EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
- << k,
- getLocationOfByte(Amt.getStart()),
- /*IsStringLocation*/true,
- getSpecifierRange(startSpecifier, specifierLen));
- // Don't do any more checking. We will just emit
- // spurious errors.
- return false;
- }
- // Type check the data argument. It should be an 'int'.
- // Although not in conformance with C99, we also allow the argument to be
- // an 'unsigned int' as that is a reasonably safe case. GCC also
- // doesn't emit a warning for that case.
- CoveredArgs.set(argIndex);
- const Expr *Arg = getDataArg(argIndex);
- if (!Arg)
- return false;
- QualType T = Arg->getType();
- const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
- assert(AT.isValid());
- if (!AT.matchesType(S.Context, T)) {
- EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
- << k << AT.getRepresentativeTypeName(S.Context)
- << T << Arg->getSourceRange(),
- getLocationOfByte(Amt.getStart()),
- /*IsStringLocation*/true,
- getSpecifierRange(startSpecifier, specifierLen));
- // Don't do any more checking. We will just emit
- // spurious errors.
- return false;
- }
- }
- }
- return true;
- }
- void CheckPrintfHandler::HandleInvalidAmount(
- const analyze_printf::PrintfSpecifier &FS,
- const analyze_printf::OptionalAmount &Amt,
- unsigned type,
- const char *startSpecifier,
- unsigned specifierLen) {
- const analyze_printf::PrintfConversionSpecifier &CS =
- FS.getConversionSpecifier();
- FixItHint fixit =
- Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
- ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
- Amt.getConstantLength()))
- : FixItHint();
- EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
- << type << CS.toString(),
- getLocationOfByte(Amt.getStart()),
- /*IsStringLocation*/true,
- getSpecifierRange(startSpecifier, specifierLen),
- fixit);
- }
- void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
- const analyze_printf::OptionalFlag &flag,
- const char *startSpecifier,
- unsigned specifierLen) {
- // Warn about pointless flag with a fixit removal.
- const analyze_printf::PrintfConversionSpecifier &CS =
- FS.getConversionSpecifier();
- EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
- << flag.toString() << CS.toString(),
- getLocationOfByte(flag.getPosition()),
- /*IsStringLocation*/true,
- getSpecifierRange(startSpecifier, specifierLen),
- FixItHint::CreateRemoval(
- getSpecifierRange(flag.getPosition(), 1)));
- }
- void CheckPrintfHandler::HandleIgnoredFlag(
- const analyze_printf::PrintfSpecifier &FS,
- const analyze_printf::OptionalFlag &ignoredFlag,
- const analyze_printf::OptionalFlag &flag,
- const char *startSpecifier,
- unsigned specifierLen) {
- // Warn about ignored flag with a fixit removal.
- EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
- << ignoredFlag.toString() << flag.toString(),
- getLocationOfByte(ignoredFlag.getPosition()),
- /*IsStringLocation*/true,
- getSpecifierRange(startSpecifier, specifierLen),
- FixItHint::CreateRemoval(
- getSpecifierRange(ignoredFlag.getPosition(), 1)));
- }
- // Determines if the specified is a C++ class or struct containing
- // a member with the specified name and kind (e.g. a CXXMethodDecl named
- // "c_str()").
- template<typename MemberKind>
- static llvm::SmallPtrSet<MemberKind*, 1>
- CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
- const RecordType *RT = Ty->getAs<RecordType>();
- llvm::SmallPtrSet<MemberKind*, 1> Results;
- if (!RT)
- return Results;
- const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
- if (!RD || !RD->getDefinition())
- return Results;
- LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
- Sema::LookupMemberName);
- R.suppressDiagnostics();
- // We just need to include all members of the right kind turned up by the
- // filter, at this point.
- if (S.LookupQualifiedName(R, RT->getDecl()))
- for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
- NamedDecl *decl = (*I)->getUnderlyingDecl();
- if (MemberKind *FK = dyn_cast<MemberKind>(decl))
- Results.insert(FK);
- }
- return Results;
- }
- /// Check if we could call '.c_str()' on an object.
- ///
- /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
- /// allow the call, or if it would be ambiguous).
- bool Sema::hasCStrMethod(const Expr *E) {
- typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
- MethodSet Results =
- CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
- for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
- MI != ME; ++MI)
- if ((*MI)->getMinRequiredArguments() == 0)
- return true;
- return false;
- }
- // Check if a (w)string was passed when a (w)char* was needed, and offer a
- // better diagnostic if so. AT is assumed to be valid.
- // Returns true when a c_str() conversion method is found.
- bool CheckPrintfHandler::checkForCStrMembers(
- const analyze_printf::ArgType &AT, const Expr *E) {
- typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
- MethodSet Results =
- CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
- for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
- MI != ME; ++MI) {
- const CXXMethodDecl *Method = *MI;
- if (Method->getMinRequiredArguments() == 0 &&
- AT.matchesType(S.Context, Method->getReturnType())) {
- // FIXME: Suggest parens if the expression needs them.
- SourceLocation EndLoc = S.getLocForEndOfToken(E->getLocEnd());
- S.Diag(E->getLocStart(), diag::note_printf_c_str)
- << "c_str()"
- << FixItHint::CreateInsertion(EndLoc, ".c_str()");
- return true;
- }
- }
- return false;
- }
- bool
- CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
- &FS,
- const char *startSpecifier,
- unsigned specifierLen) {
- using namespace analyze_format_string;
- using namespace analyze_printf;
- const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
- if (FS.consumesDataArgument()) {
- if (atFirstArg) {
- atFirstArg = false;
- usesPositionalArgs = FS.usesPositionalArg();
- }
- else if (usesPositionalArgs != FS.usesPositionalArg()) {
- HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
- startSpecifier, specifierLen);
- return false;
- }
- }
- // First check if the field width, precision, and conversion specifier
- // have matching data arguments.
- if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
- startSpecifier, specifierLen)) {
- return false;
- }
- if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
- startSpecifier, specifierLen)) {
- return false;
- }
- if (!CS.consumesDataArgument()) {
- // FIXME: Technically specifying a precision or field width here
- // makes no sense. Worth issuing a warning at some point.
- return true;
- }
- // Consume the argument.
- unsigned argIndex = FS.getArgIndex();
- if (argIndex < NumDataArgs) {
- // The check to see if the argIndex is valid will come later.
- // We set the bit here because we may exit early from this
- // function if we encounter some other error.
- CoveredArgs.set(argIndex);
- }
- // Check for using an Objective-C specific conversion specifier
- // in a non-ObjC literal.
- if (!ObjCContext && CS.isObjCArg()) {
- return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
- specifierLen);
- }
- // Check for invalid use of field width
- if (!FS.hasValidFieldWidth()) {
- HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
- startSpecifier, specifierLen);
- }
- // Check for invalid use of precision
- if (!FS.hasValidPrecision()) {
- HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
- startSpecifier, specifierLen);
- }
- // Check each flag does not conflict with any other component.
- if (!FS.hasValidThousandsGroupingPrefix())
- HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
- if (!FS.hasValidLeadingZeros())
- HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
- if (!FS.hasValidPlusPrefix())
- HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
- if (!FS.hasValidSpacePrefix())
- HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
- if (!FS.hasValidAlternativeForm())
- HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
- if (!FS.hasValidLeftJustified())
- HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
- // Check that flags are not ignored by another flag
- if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
- HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
- startSpecifier, specifierLen);
- if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
- HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
- startSpecifier, specifierLen);
- // Check the length modifier is valid with the given conversion specifier.
- if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
- HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
- diag::warn_format_nonsensical_length);
- else if (!FS.hasStandardLengthModifier())
- HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
- else if (!FS.hasStandardLengthConversionCombination())
- HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
- diag::warn_format_non_standard_conversion_spec);
- if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
- HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
- // The remaining checks depend on the data arguments.
- if (HasVAListArg)
- return true;
- if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
- return false;
- const Expr *Arg = getDataArg(argIndex);
- if (!Arg)
- return true;
- return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
- }
- static bool requiresParensToAddCast(const Expr *E) {
- // FIXME: We should have a general way to reason about operator
- // precedence and whether parens are actually needed here.
- // Take care of a few common cases where they aren't.
- const Expr *Inside = E->IgnoreImpCasts();
- if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
- Inside = POE->getSyntacticForm()->IgnoreImpCasts();
- switch (Inside->getStmtClass()) {
- case Stmt::ArraySubscriptExprClass:
- case Stmt::CallExprClass:
- case Stmt::CharacterLiteralClass:
- case Stmt::CXXBoolLiteralExprClass:
- case Stmt::DeclRefExprClass:
- case Stmt::FloatingLiteralClass:
- case Stmt::IntegerLiteralClass:
- case Stmt::MemberExprClass:
- case Stmt::ObjCArrayLiteralClass:
- case Stmt::ObjCBoolLiteralExprClass:
- case Stmt::ObjCBoxedExprClass:
- case Stmt::ObjCDictionaryLiteralClass:
- case Stmt::ObjCEncodeExprClass:
- case Stmt::ObjCIvarRefExprClass:
- case Stmt::ObjCMessageExprClass:
- case Stmt::ObjCPropertyRefExprClass:
- case Stmt::ObjCStringLiteralClass:
- case Stmt::ObjCSubscriptRefExprClass:
- case Stmt::ParenExprClass:
- case Stmt::StringLiteralClass:
- case Stmt::UnaryOperatorClass:
- return false;
- default:
- return true;
- }
- }
- bool
- CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
- const char *StartSpecifier,
- unsigned SpecifierLen,
- const Expr *E) {
- using namespace analyze_format_string;
- using namespace analyze_printf;
- // Now type check the data expression that matches the
- // format specifier.
- const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
- ObjCContext);
- if (!AT.isValid())
- return true;
- QualType ExprTy = E->getType();
- while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
- ExprTy = TET->getUnderlyingExpr()->getType();
- }
- if (AT.matchesType(S.Context, ExprTy))
- return true;
- // Look through argument promotions for our error message's reported type.
- // This includes the integral and floating promotions, but excludes array
- // and function pointer decay; seeing that an argument intended to be a
- // string has type 'char [6]' is probably more confusing than 'char *'.
- if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
- if (ICE->getCastKind() == CK_IntegralCast ||
- ICE->getCastKind() == CK_FloatingCast) {
- E = ICE->getSubExpr();
- ExprTy = E->getType();
- // Check if we didn't match because of an implicit cast from a 'char'
- // or 'short' to an 'int'. This is done because printf is a varargs
- // function.
- if (ICE->getType() == S.Context.IntTy ||
- ICE->getType() == S.Context.UnsignedIntTy) {
- // All further checking is done on the subexpression.
- if (AT.matchesType(S.Context, ExprTy))
- return true;
- }
- }
- } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
- // Special case for 'a', which has type 'int' in C.
- // Note, however, that we do /not/ want to treat multibyte constants like
- // 'MooV' as characters! This form is deprecated but still exists.
- if (ExprTy == S.Context.IntTy)
- if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
- ExprTy = S.Context.CharTy;
- }
- // %C in an Objective-C context prints a unichar, not a wchar_t.
- // If the argument is an integer of some kind, believe the %C and suggest
- // a cast instead of changing the conversion specifier.
- QualType IntendedTy = ExprTy;
- if (ObjCContext &&
- FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
- if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
- !ExprTy->isCharType()) {
- // 'unichar' is defined as a typedef of unsigned short, but we should
- // prefer using the typedef if it is visible.
- IntendedTy = S.Context.UnsignedShortTy;
- // While we are here, check if the value is an IntegerLiteral that happens
- // to be within the valid range.
- if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
- const llvm::APInt &V = IL->getValue();
- if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
- return true;
- }
- LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
- Sema::LookupOrdinaryName);
- if (S.LookupName(Result, S.getCurScope())) {
- NamedDecl *ND = Result.getFoundDecl();
- if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
- if (TD->getUnderlyingType() == IntendedTy)
- IntendedTy = S.Context.getTypedefType(TD);
- }
- }
- }
- // Special-case some of Darwin's platform-independence types by suggesting
- // casts to primitive types that are known to be large enough.
- bool ShouldNotPrintDirectly = false;
- if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
- // Use a 'while' to peel off layers of typedefs.
- QualType TyTy = IntendedTy;
- while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
- StringRef Name = UserTy->getDecl()->getName();
- QualType CastTy = llvm::StringSwitch<QualType>(Name)
- .Case("NSInteger", S.Context.LongTy)
- .Case("NSUInteger", S.Context.UnsignedLongTy)
- .Case("SInt32", S.Context.IntTy)
- .Case("UInt32", S.Context.UnsignedIntTy)
- .Default(QualType());
- if (!CastTy.isNull()) {
- ShouldNotPrintDirectly = true;
- IntendedTy = CastTy;
- break;
- }
- TyTy = UserTy->desugar();
- }
- }
- // We may be able to offer a FixItHint if it is a supported type.
- PrintfSpecifier fixedFS = FS;
- bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
- S.Context, ObjCContext);
- if (success) {
- // Get the fix string from the fixed format specifier
- SmallString<16> buf;
- llvm::raw_svector_ostream os(buf);
- fixedFS.toString(os);
- CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
- if (IntendedTy == ExprTy) {
- // In this case, the specifier is wrong and should be changed to match
- // the argument.
- EmitFormatDiagnostic(
- S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
- << AT.getRepresentativeTypeName(S.Context) << IntendedTy
- << E->getSourceRange(),
- E->getLocStart(),
- /*IsStringLocation*/false,
- SpecRange,
- FixItHint::CreateReplacement(SpecRange, os.str()));
- } else {
- // The canonical type for formatting this value is different from the
- // actual type of the expression. (This occurs, for example, with Darwin's
- // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
- // should be printed as 'long' for 64-bit compatibility.)
- // Rather than emitting a normal format/argument mismatch, we want to
- // add a cast to the recommended type (and correct the format string
- // if necessary).
- SmallString<16> CastBuf;
- llvm::raw_svector_ostream CastFix(CastBuf);
- CastFix << "(";
- IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
- CastFix << ")";
- SmallVector<FixItHint,4> Hints;
- if (!AT.matchesType(S.Context, IntendedTy))
- Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
- if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
- // If there's already a cast present, just replace it.
- SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
- Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
- } else if (!requiresParensToAddCast(E)) {
- // If the expression has high enough precedence,
- // just write the C-style cast.
- Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
- CastFix.str()));
- } else {
- // Otherwise, add parens around the expression as well as the cast.
- CastFix << "(";
- Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
- CastFix.str()));
- SourceLocation After = S.getLocForEndOfToken(E->getLocEnd());
- Hints.push_back(FixItHint::CreateInsertion(After, ")"));
- }
- if (ShouldNotPrintDirectly) {
- // The expression has a type that should not be printed directly.
- // We extract the name from the typedef because we don't want to show
- // the underlying type in the diagnostic.
- StringRef Name = cast<TypedefType>(ExprTy)->getDecl()->getName();
- EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
- << Name << IntendedTy
- << E->getSourceRange(),
- E->getLocStart(), /*IsStringLocation=*/false,
- SpecRange, Hints);
- } else {
- // In this case, the expression could be printed using a different
- // specifier, but we've decided that the specifier is probably correct
- // and we should cast instead. Just use the normal warning message.
- EmitFormatDiagnostic(
- S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
- << AT.getRepresentativeTypeName(S.Context) << ExprTy
- << E->getSourceRange(),
- E->getLocStart(), /*IsStringLocation*/false,
- SpecRange, Hints);
- }
- }
- } else {
- const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
- SpecifierLen);
- // Since the warning for passing non-POD types to variadic functions
- // was deferred until now, we emit a warning for non-POD
- // arguments here.
- switch (S.isValidVarArgType(ExprTy)) {
- case Sema::VAK_Valid:
- case Sema::VAK_ValidInCXX11:
- EmitFormatDiagnostic(
- S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
- << AT.getRepresentativeTypeName(S.Context) << ExprTy
- << CSR
- << E->getSourceRange(),
- E->getLocStart(), /*IsStringLocation*/false, CSR);
- break;
- case Sema::VAK_Undefined:
- EmitFormatDiagnostic(
- S.PDiag(diag::warn_non_pod_vararg_with_format_string)
- << S.getLangOpts().CPlusPlus11
- << ExprTy
- << CallType
- << AT.getRepresentativeTypeName(S.Context)
- << CSR
- << E->getSourceRange(),
- E->getLocStart(), /*IsStringLocation*/false, CSR);
- checkForCStrMembers(AT, E);
- break;
- case Sema::VAK_Invalid:
- if (ExprTy->isObjCObjectType())
- EmitFormatDiagnostic(
- S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
- << S.getLangOpts().CPlusPlus11
- << ExprTy
- << CallType
- << AT.getRepresentativeTypeName(S.Context)
- << CSR
- << E->getSourceRange(),
- E->getLocStart(), /*IsStringLocation*/false, CSR);
- else
- // FIXME: If this is an initializer list, suggest removing the braces
- // or inserting a cast to the target type.
- S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
- << isa<InitListExpr>(E) << ExprTy << CallType
- << AT.getRepresentativeTypeName(S.Context)
- << E->getSourceRange();
- break;
- }
- assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
- "format string specifier index out of range");
- CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
- }
- return true;
- }
- //===--- CHECK: Scanf format string checking ------------------------------===//
- namespace {
- class CheckScanfHandler : public CheckFormatHandler {
- public:
- CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
- const Expr *origFormatExpr, unsigned firstDataArg,
- unsigned numDataArgs, const char *beg, bool hasVAListArg,
- ArrayRef<const Expr *> Args,
- unsigned formatIdx, bool inFunctionCall,
- Sema::VariadicCallType CallType,
- llvm::SmallBitVector &CheckedVarArgs)
- : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
- numDataArgs, beg, hasVAListArg,
- Args, formatIdx, inFunctionCall, CallType,
- CheckedVarArgs)
- {}
-
- bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
- const char *startSpecifier,
- unsigned specifierLen) override;
-
- bool HandleInvalidScanfConversionSpecifier(
- const analyze_scanf::ScanfSpecifier &FS,
- const char *startSpecifier,
- unsigned specifierLen) override;
- void HandleIncompleteScanList(const char *start, const char *end) override;
- };
- }
- void CheckScanfHandler::HandleIncompleteScanList(const char *start,
- const char *end) {
- EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
- getLocationOfByte(end), /*IsStringLocation*/true,
- getSpecifierRange(start, end - start));
- }
- bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
- const analyze_scanf::ScanfSpecifier &FS,
- const char *startSpecifier,
- unsigned specifierLen) {
- const analyze_scanf::ScanfConversionSpecifier &CS =
- FS.getConversionSpecifier();
- return HandleInvalidConversionSpecifier(FS.getArgIndex(),
- getLocationOfByte(CS.getStart()),
- startSpecifier, specifierLen,
- CS.getStart(), CS.getLength());
- }
- bool CheckScanfHandler::HandleScanfSpecifier(
- const analyze_scanf::ScanfSpecifier &FS,
- const char *startSpecifier,
- unsigned specifierLen) {
-
- using namespace analyze_scanf;
- using namespace analyze_format_string;
- const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
- // Handle case where '%' and '*' don't consume an argument. These shouldn't
- // be used to decide if we are using positional arguments consistently.
- if (FS.consumesDataArgument()) {
- if (atFirstArg) {
- atFirstArg = false;
- usesPositionalArgs = FS.usesPositionalArg();
- }
- else if (usesPositionalArgs != FS.usesPositionalArg()) {
- HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
- startSpecifier, specifierLen);
- return false;
- }
- }
-
- // Check if the field with is non-zero.
- const OptionalAmount &Amt = FS.getFieldWidth();
- if (Amt.getHowSpecified() == OptionalAmount::Constant) {
- if (Amt.getConstantAmount() == 0) {
- const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
- Amt.getConstantLength());
- EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
- getLocationOfByte(Amt.getStart()),
- /*IsStringLocation*/true, R,
- FixItHint::CreateRemoval(R));
- }
- }
-
- if (!FS.consumesDataArgument()) {
- // FIXME: Technically specifying a precision or field width here
- // makes no sense. Worth issuing a warning at some point.
- return true;
- }
-
- // Consume the argument.
- unsigned argIndex = FS.getArgIndex();
- if (argIndex < NumDataArgs) {
- // The check to see if the argIndex is valid will come later.
- // We set the bit here because we may exit early from this
- // function if we encounter some other error.
- CoveredArgs.set(argIndex);
- }
-
- // Check the length modifier is valid with the given conversion specifier.
- if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
- HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
- diag::warn_format_nonsensical_length);
- else if (!FS.hasStandardLengthModifier())
- HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
- else if (!FS.hasStandardLengthConversionCombination())
- HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
- diag::warn_format_non_standard_conversion_spec);
- if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
- HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
- // The remaining checks depend on the data arguments.
- if (HasVAListArg)
- return true;
-
- if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
- return false;
-
- // Check that the argument type matches the format specifier.
- const Expr *Ex = getDataArg(argIndex);
- if (!Ex)
- return true;
- const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
- if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) {
- ScanfSpecifier fixedFS = FS;
- bool success = fixedFS.fixType(Ex->getType(),
- Ex->IgnoreImpCasts()->getType(),
- S.getLangOpts(), S.Context);
- if (success) {
- // Get the fix string from the fixed format specifier.
- SmallString<128> buf;
- llvm::raw_svector_ostream os(buf);
- fixedFS.toString(os);
- EmitFormatDiagnostic(
- S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
- << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
- << Ex->getSourceRange(),
- Ex->getLocStart(),
- /*IsStringLocation*/false,
- getSpecifierRange(startSpecifier, specifierLen),
- FixItHint::CreateReplacement(
- getSpecifierRange(startSpecifier, specifierLen),
- os.str()));
- } else {
- EmitFormatDiagnostic(
- S.PDiag(diag::warn_printf_conversion_argument_type_mismatch)
- << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
- << Ex->getSourceRange(),
- Ex->getLocStart(),
- /*IsStringLocation*/false,
- getSpecifierRange(startSpecifier, specifierLen));
- }
- }
- return true;
- }
- void Sema::CheckFormatString(const StringLiteral *FExpr,
- const Expr *OrigFormatExpr,
- ArrayRef<const Expr *> Args,
- bool HasVAListArg, unsigned format_idx,
- unsigned firstDataArg, FormatStringType Type,
- bool inFunctionCall, VariadicCallType CallType,
- llvm::SmallBitVector &CheckedVarArgs) {
-
- // CHECK: is the format string a wide literal?
- if (!FExpr->isAscii() && !FExpr->isUTF8()) {
- CheckFormatHandler::EmitFormatDiagnostic(
- *this, inFunctionCall, Args[format_idx],
- PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
- /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
- return;
- }
-
- // Str - The format string. NOTE: this is NOT null-terminated!
- StringRef StrRef = FExpr->getString();
- const char *Str = StrRef.data();
- // Account for cases where the string literal is truncated in a declaration.
- const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
- assert(T && "String literal not of constant array type!");
- size_t TypeSize = T->getSize().getZExtValue();
- size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
- const unsigned numDataArgs = Args.size() - firstDataArg;
- // Emit a warning if the string literal is truncated and does not contain an
- // embedded null character.
- if (TypeSize <= StrRef.size() &&
- StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
- CheckFormatHandler::EmitFormatDiagnostic(
- *this, inFunctionCall, Args[format_idx],
- PDiag(diag::warn_printf_format_string_not_null_terminated),
- FExpr->getLocStart(),
- /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
- return;
- }
- // CHECK: empty format string?
- if (StrLen == 0 && numDataArgs > 0) {
- CheckFormatHandler::EmitFormatDiagnostic(
- *this, inFunctionCall, Args[format_idx],
- PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
- /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
- return;
- }
-
- if (Type == FST_Printf || Type == FST_NSString) {
- CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
- numDataArgs, (Type == FST_NSString),
- Str, HasVAListArg, Args, format_idx,
- inFunctionCall, CallType, CheckedVarArgs);
-
- if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
- getLangOpts(),
- Context.getTargetInfo()))
- H.DoneProcessing();
- } else if (Type == FST_Scanf) {
- CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
- Str, HasVAListArg, Args, format_idx,
- inFunctionCall, CallType, CheckedVarArgs);
-
- if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
- getLangOpts(),
- Context.getTargetInfo()))
- H.DoneProcessing();
- } // TODO: handle other formats
- }
- //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
- // Returns the related absolute value function that is larger, of 0 if one
- // does not exist.
- static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
- switch (AbsFunction) {
- default:
- return 0;
- case Builtin::BI__builtin_abs:
- return Builtin::BI__builtin_labs;
- case Builtin::BI__builtin_labs:
- return Builtin::BI__builtin_llabs;
- case Builtin::BI__builtin_llabs:
- return 0;
- case Builtin::BI__builtin_fabsf:
- return Builtin::BI__builtin_fabs;
- case Builtin::BI__builtin_fabs:
- return Builtin::BI__builtin_fabsl;
- case Builtin::BI__builtin_fabsl:
- return 0;
- case Builtin::BI__builtin_cabsf:
- return Builtin::BI__builtin_cabs;
- case Builtin::BI__builtin_cabs:
- return Builtin::BI__builtin_cabsl;
- case Builtin::BI__builtin_cabsl:
- return 0;
- case Builtin::BIabs:
- return Builtin::BIlabs;
- case Builtin::BIlabs:
- return Builtin::BIllabs;
- case Builtin::BIllabs:
- return 0;
- case Builtin::BIfabsf:
- return Builtin::BIfabs;
- case Builtin::BIfabs:
- return Builtin::BIfabsl;
- case Builtin::BIfabsl:
- return 0;
- case Builtin::BIcabsf:
- return Builtin::BIcabs;
- case Builtin::BIcabs:
- return Builtin::BIcabsl;
- case Builtin::BIcabsl:
- return 0;
- }
- }
- // Returns the argument type of the absolute value function.
- static QualType getAbsoluteValueArgumentType(ASTContext &Context,
- unsigned AbsType) {
- if (AbsType == 0)
- return QualType();
- ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
- QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
- if (Error != ASTContext::GE_None)
- return QualType();
- const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
- if (!FT)
- return QualType();
- if (FT->getNumParams() != 1)
- return QualType();
- return FT->getParamType(0);
- }
- // Returns the best absolute value function, or zero, based on type and
- // current absolute value function.
- static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
- unsigned AbsFunctionKind) {
- unsigned BestKind = 0;
- uint64_t ArgSize = Context.getTypeSize(ArgType);
- for (unsigned Kind = AbsFunctionKind; Kind != 0;
- Kind = getLargerAbsoluteValueFunction(Kind)) {
- QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
- if (Context.getTypeSize(ParamType) >= ArgSize) {
- if (BestKind == 0)
- BestKind = Kind;
- else if (Context.hasSameType(ParamType, ArgType)) {
- BestKind = Kind;
- break;
- }
- }
- }
- return BestKind;
- }
- enum AbsoluteValueKind {
- AVK_Integer,
- AVK_Floating,
- AVK_Complex
- };
- static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
- if (T->isIntegralOrEnumerationType())
- return AVK_Integer;
- if (T->isRealFloatingType())
- return AVK_Floating;
- if (T->isAnyComplexType())
- return AVK_Complex;
- llvm_unreachable("Type not integer, floating, or complex");
- }
- // Changes the absolute value function to a different type. Preserves whether
- // the function is a builtin.
- static unsigned changeAbsFunction(unsigned AbsKind,
- AbsoluteValueKind ValueKind) {
- switch (ValueKind) {
- case AVK_Integer:
- switch (AbsKind) {
- default:
- return 0;
- case Builtin::BI__builtin_fabsf:
- case Builtin::BI__builtin_fabs:
- case Builtin::BI__builtin_fabsl:
- case Builtin::BI__builtin_cabsf:
- case Builtin::BI__builtin_cabs:
- case Builtin::BI__builtin_cabsl:
- return Builtin::BI__builtin_abs;
- case Builtin::BIfabsf:
- case Builtin::BIfabs:
- case Builtin::BIfabsl:
- case Builtin::BIcabsf:
- case Builtin::BIcabs:
- case Builtin::BIcabsl:
- return Builtin::BIabs;
- }
- case AVK_Floating:
- switch (AbsKind) {
- default:
- return 0;
- case Builtin::BI__builtin_abs:
- case Builtin::BI__builtin_labs:
- case Builtin::BI__builtin_llabs:
- case Builtin::BI__builtin_cabsf:
- case Builtin::BI__builtin_cabs:
- case Builtin::BI__builtin_cabsl:
- return Builtin::BI__builtin_fabsf;
- case Builtin::BIabs:
- case Builtin::BIlabs:
- case Builtin::BIllabs:
- case Builtin::BIcabsf:
- case Builtin::BIcabs:
- case Builtin::BIcabsl:
- return Builtin::BIfabsf;
- }
- case AVK_Complex:
- switch (AbsKind) {
- default:
- return 0;
- case Builtin::BI__builtin_abs:
- case Builtin::BI__builtin_labs:
- case Builtin::BI__builtin_llabs:
- case Builtin::BI__builtin_fabsf:
- case Builtin::BI__builtin_fabs:
- case Builtin::BI__builtin_fabsl:
- return Builtin::BI__builtin_cabsf;
- case Builtin::BIabs:
- case Builtin::BIlabs:
- case Builtin::BIllabs:
- case Builtin::BIfabsf:
- case Builtin::BIfabs:
- case Builtin::BIfabsl:
- return Builtin::BIcabsf;
- }
- }
- llvm_unreachable("Unable to convert function");
- }
- static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
- const IdentifierInfo *FnInfo = FDecl->getIdentifier();
- if (!FnInfo)
- return 0;
- switch (FDecl->getBuiltinID()) {
- default:
- return 0;
- case Builtin::BI__builtin_abs:
- case Builtin::BI__builtin_fabs:
- case Builtin::BI__builtin_fabsf:
- case Builtin::BI__builtin_fabsl:
- case Builtin::BI__builtin_labs:
- case Builtin::BI__builtin_llabs:
- case Builtin::BI__builtin_cabs:
- case Builtin::BI__builtin_cabsf:
- case Builtin::BI__builtin_cabsl:
- case Builtin::BIabs:
- case Builtin::BIlabs:
- case Builtin::BIllabs:
- case Builtin::BIfabs:
- case Builtin::BIfabsf:
- case Builtin::BIfabsl:
- case Builtin::BIcabs:
- case Builtin::BIcabsf:
- case Builtin::BIcabsl:
- return FDecl->getBuiltinID();
- }
- llvm_unreachable("Unknown Builtin type");
- }
- // If the replacement is valid, emit a note with replacement function.
- // Additionally, suggest including the proper header if not already included.
- static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
- unsigned AbsKind, QualType ArgType) {
- bool EmitHeaderHint = true;
- const char *HeaderName = nullptr;
- const char *FunctionName = nullptr;
- if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
- FunctionName = "std::abs";
- if (ArgType->isIntegralOrEnumerationType()) {
- HeaderName = "cstdlib";
- } else if (ArgType->isRealFloatingType()) {
- HeaderName = "cmath";
- } else {
- llvm_unreachable("Invalid Type");
- }
- // Lookup all std::abs
- if (NamespaceDecl *Std = S.getStdNamespace()) {
- LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
- R.suppressDiagnostics();
- S.LookupQualifiedName(R, Std);
- for (const auto *I : R) {
- const FunctionDecl *FDecl = nullptr;
- if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
- FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
- } else {
- FDecl = dyn_cast<FunctionDecl>(I);
- }
- if (!FDecl)
- continue;
- // Found std::abs(), check that they are the right ones.
- if (FDecl->getNumParams() != 1)
- continue;
- // Check that the parameter type can handle the argument.
- QualType ParamType = FDecl->getParamDecl(0)->getType();
- if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
- S.Context.getTypeSize(ArgType) <=
- S.Context.getTypeSize(ParamType)) {
- // Found a function, don't need the header hint.
- EmitHeaderHint = false;
- break;
- }
- }
- }
- } else {
- FunctionName = S.Context.BuiltinInfo.GetName(AbsKind);
- HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
- if (HeaderName) {
- DeclarationName DN(&S.Context.Idents.get(FunctionName));
- LookupResult R(S, DN, Loc, Sema::LookupAnyName);
- R.suppressDiagnostics();
- S.LookupName(R, S.getCurScope());
- if (R.isSingleResult()) {
- FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
- if (FD && FD->getBuiltinID() == AbsKind) {
- EmitHeaderHint = false;
- } else {
- return;
- }
- } else if (!R.empty()) {
- return;
- }
- }
- }
- S.Diag(Loc, diag::note_replace_abs_function)
- << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
- if (!HeaderName)
- return;
- if (!EmitHeaderHint)
- return;
- S.Diag(Loc, diag::note_please_include_header) << HeaderName << FunctionName;
- }
- static bool IsFunctionStdAbs(const FunctionDecl *FDecl) {
- if (!FDecl)
- return false;
- if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr("abs"))
- return false;
- const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(FDecl->getDeclContext());
- while (ND && ND->isInlineNamespace()) {
- ND = dyn_cast<NamespaceDecl>(ND->getDeclContext());
- }
- if (!ND || !ND->getIdentifier() || !ND->getIdentifier()->isStr("std"))
- return false;
- if (!isa<TranslationUnitDecl>(ND->getDeclContext()))
- return false;
- return true;
- }
- // Warn when using the wrong abs() function.
- void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
- const FunctionDecl *FDecl,
- IdentifierInfo *FnInfo) {
- if (Call->getNumArgs() != 1)
- return;
- unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
- bool IsStdAbs = IsFunctionStdAbs(FDecl);
- if (AbsKind == 0 && !IsStdAbs)
- return;
- QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
- QualType ParamType = Call->getArg(0)->getType();
- // Unsigned types can not be negative. Suggest to drop the absolute value
- // function.
- if (ArgType->isUnsignedIntegerType()) {
- const char *FunctionName =
- IsStdAbs ? "std::abs" : Context.BuiltinInfo.GetName(AbsKind);
- Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
- Diag(Call->getExprLoc(), diag::note_remove_abs)
- << FunctionName
- << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
- return;
- }
- // std::abs has overloads which prevent most of the absolute value problems
- // from occurring.
- if (IsStdAbs)
- return;
- AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
- AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
- // The argument and parameter are the same kind. Check if they are the right
- // size.
- if (ArgValueKind == ParamValueKind) {
- if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
- return;
- unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
- Diag(Call->getExprLoc(), diag::warn_abs_too_small)
- << FDecl << ArgType << ParamType;
- if (NewAbsKind == 0)
- return;
- emitReplacement(*this, Call->getExprLoc(),
- Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
- return;
- }
- // ArgValueKind != ParamValueKind
- // The wrong type of absolute value function was used. Attempt to find the
- // proper one.
- unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
- NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
- if (NewAbsKind == 0)
- return;
- Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
- << FDecl << ParamValueKind << ArgValueKind;
- emitReplacement(*this, Call->getExprLoc(),
- Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
- return;
- }
- //===--- CHECK: Standard memory functions ---------------------------------===//
- /// \brief Takes the expression passed to the size_t parameter of functions
- /// such as memcmp, strncat, etc and warns if it's a comparison.
- ///
- /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
- static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
- IdentifierInfo *FnName,
- SourceLocation FnLoc,
- SourceLocation RParenLoc) {
- const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
- if (!Size)
- return false;
- // if E is binop and op is >, <, >=, <=, ==, &&, ||:
- if (!Size->isComparisonOp() && !Size->isEqualityOp() && !Size->isLogicalOp())
- return false;
- SourceRange SizeRange = Size->getSourceRange();
- S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
- << SizeRange << FnName;
- S.Diag(FnLoc, diag::note_memsize_comparison_paren)
- << FnName << FixItHint::CreateInsertion(
- S.getLocForEndOfToken(Size->getLHS()->getLocEnd()), ")")
- << FixItHint::CreateRemoval(RParenLoc);
- S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
- << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
- << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
- ")");
- return true;
- }
- /// \brief Determine whether the given type is a dynamic class type (e.g.,
- /// whether it has a vtable).
- static bool isDynamicClassType(QualType T) {
- if (CXXRecordDecl *Record = T->getAsCXXRecordDecl())
- if (CXXRecordDecl *Definition = Record->getDefinition())
- if (Definition->isDynamicClass())
- return true;
-
- return false;
- }
- /// \brief If E is a sizeof expression, returns its argument expression,
- /// otherwise returns NULL.
- static const Expr *getSizeOfExprArg(const Expr* E) {
- if (const UnaryExprOrTypeTraitExpr *SizeOf =
- dyn_cast<UnaryExprOrTypeTraitExpr>(E))
- if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
- return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
- return nullptr;
- }
- /// \brief If E is a sizeof expression, returns its argument type.
- static QualType getSizeOfArgType(const Expr* E) {
- if (const UnaryExprOrTypeTraitExpr *SizeOf =
- dyn_cast<UnaryExprOrTypeTraitExpr>(E))
- if (SizeOf->getKind() == clang::UETT_SizeOf)
- return SizeOf->getTypeOfArgument();
- return QualType();
- }
- /// \brief Check for dangerous or invalid arguments to memset().
- ///
- /// This issues warnings on known problematic, dangerous or unspecified
- /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
- /// function calls.
- ///
- /// \param Call The call expression to diagnose.
- void Sema::CheckMemaccessArguments(const CallExpr *Call,
- unsigned BId,
- IdentifierInfo *FnName) {
- assert(BId != 0);
- // It is possible to have a non-standard definition of memset. Validate
- // we have enough arguments, and if not, abort further checking.
- unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
- if (Call->getNumArgs() < ExpectedNumArgs)
- return;
- unsigned LastArg = (BId == Builtin::BImemset ||
- BId == Builtin::BIstrndup ? 1 : 2);
- unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
- const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
- if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
- Call->getLocStart(), Call->getRParenLoc()))
- return;
- // We have special checking when the length is a sizeof expression.
- QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
- const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
- llvm::FoldingSetNodeID SizeOfArgID;
- for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
- const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
- SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
- QualType DestTy = Dest->getType();
- if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
- QualType PointeeTy = DestPtrTy->getPointeeType();
- // Never warn about void type pointers. This can be used to suppress
- // false positives.
- if (PointeeTy->isVoidType())
- continue;
- // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
- // actually comparing the expressions for equality. Because computing the
- // expression IDs can be expensive, we only do this if the diagnostic is
- // enabled.
- if (SizeOfArg &&
- Diags.getDiagnosticLevel(diag::warn_sizeof_pointer_expr_memaccess,
- SizeOfArg->getExprLoc())) {
- // We only compute IDs for expressions if the warning is enabled, and
- // cache the sizeof arg's ID.
- if (SizeOfArgID == llvm::FoldingSetNodeID())
- SizeOfArg->Profile(SizeOfArgID, Context, true);
- llvm::FoldingSetNodeID DestID;
- Dest->Profile(DestID, Context, true);
- if (DestID == SizeOfArgID) {
- // TODO: For strncpy() and friends, this could suggest sizeof(dst)
- // over sizeof(src) as well.
- unsigned ActionIdx = 0; // Default is to suggest dereferencing.
- StringRef ReadableName = FnName->getName();
- if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
- if (UnaryOp->getOpcode() == UO_AddrOf)
- ActionIdx = 1; // If its an address-of operator, just remove it.
- if (!PointeeTy->isIncompleteType() &&
- (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
- ActionIdx = 2; // If the pointee's size is sizeof(char),
- // suggest an explicit length.
- // If the function is defined as a builtin macro, do not show macro
- // expansion.
- SourceLocation SL = SizeOfArg->getExprLoc();
- SourceRange DSR = Dest->getSourceRange();
- SourceRange SSR = SizeOfArg->getSourceRange();
- SourceManager &SM = getSourceManager();
- if (SM.isMacroArgExpansion(SL)) {
- ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
- SL = SM.getSpellingLoc(SL);
- DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
- SM.getSpellingLoc(DSR.getEnd()));
- SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
- SM.getSpellingLoc(SSR.getEnd()));
- }
- DiagRuntimeBehavior(SL, SizeOfArg,
- PDiag(diag::warn_sizeof_pointer_expr_memaccess)
- << ReadableName
- << PointeeTy
- << DestTy
- << DSR
- << SSR);
- DiagRuntimeBehavior(SL, SizeOfArg,
- PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
- << ActionIdx
- << SSR);
- break;
- }
- }
- // Also check for cases where the sizeof argument is the exact same
- // type as the memory argument, and where it points to a user-defined
- // record type.
- if (SizeOfArgTy != QualType()) {
- if (PointeeTy->isRecordType() &&
- Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
- DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
- PDiag(diag::warn_sizeof_pointer_type_memaccess)
- << FnName << SizeOfArgTy << ArgIdx
- << PointeeTy << Dest->getSourceRange()
- << LenExpr->getSourceRange());
- break;
- }
- }
- // Always complain about dynamic classes.
- if (isDynamicClassType(PointeeTy)) {
- unsigned OperationType = 0;
- // "overwritten" if we're warning about the destination for any call
- // but memcmp; otherwise a verb appropriate to the call.
- if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
- if (BId == Builtin::BImemcpy)
- OperationType = 1;
- else if(BId == Builtin::BImemmove)
- OperationType = 2;
- else if (BId == Builtin::BImemcmp)
- OperationType = 3;
- }
-
- DiagRuntimeBehavior(
- Dest->getExprLoc(), Dest,
- PDiag(diag::warn_dyn_class_memaccess)
- << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
- << FnName << PointeeTy
- << OperationType
- << Call->getCallee()->getSourceRange());
- } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
- BId != Builtin::BImemset)
- DiagRuntimeBehavior(
- Dest->getExprLoc(), Dest,
- PDiag(diag::warn_arc_object_memaccess)
- << ArgIdx << FnName << PointeeTy
- << Call->getCallee()->getSourceRange());
- else
- continue;
- DiagRuntimeBehavior(
- Dest->getExprLoc(), Dest,
- PDiag(diag::note_bad_memaccess_silence)
- << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
- break;
- }
- }
- }
- // A little helper routine: ignore addition and subtraction of integer literals.
- // This intentionally does not ignore all integer constant expressions because
- // we don't want to remove sizeof().
- static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
- Ex = Ex->IgnoreParenCasts();
- for (;;) {
- const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
- if (!BO || !BO->isAdditiveOp())
- break;
- const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
- const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
-
- if (isa<IntegerLiteral>(RHS))
- Ex = LHS;
- else if (isa<IntegerLiteral>(LHS))
- Ex = RHS;
- else
- break;
- }
- return Ex;
- }
- static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
- ASTContext &Context) {
- // Only handle constant-sized or VLAs, but not flexible members.
- if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
- // Only issue the FIXIT for arrays of size > 1.
- if (CAT->getSize().getSExtValue() <= 1)
- return false;
- } else if (!Ty->isVariableArrayType()) {
- return false;
- }
- return true;
- }
- // Warn if the user has made the 'size' argument to strlcpy or strlcat
- // be the size of the source, instead of the destination.
- void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
- IdentifierInfo *FnName) {
- // Don't crash if the user has the wrong number of arguments
- if (Call->getNumArgs() != 3)
- return;
- const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
- const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
- const Expr *CompareWithSrc = nullptr;
- if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
- Call->getLocStart(), Call->getRParenLoc()))
- return;
-
- // Look for 'strlcpy(dst, x, sizeof(x))'
- if (const Expr *Ex = getSizeOfExprArg(SizeArg))
- CompareWithSrc = Ex;
- else {
- // Look for 'strlcpy(dst, x, strlen(x))'
- if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
- if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
- SizeCall->getNumArgs() == 1)
- CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
- }
- }
- if (!CompareWithSrc)
- return;
- // Determine if the argument to sizeof/strlen is equal to the source
- // argument. In principle there's all kinds of things you could do
- // here, for instance creating an == expression and evaluating it with
- // EvaluateAsBooleanCondition, but this uses a more direct technique:
- const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
- if (!SrcArgDRE)
- return;
-
- const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
- if (!CompareWithSrcDRE ||
- SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
- return;
-
- const Expr *OriginalSizeArg = Call->getArg(2);
- Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
- << OriginalSizeArg->getSourceRange() << FnName;
-
- // Output a FIXIT hint if the destination is an array (rather than a
- // pointer to an array). This could be enhanced to handle some
- // pointers if we know the actual size, like if DstArg is 'array+2'
- // we could say 'sizeof(array)-2'.
- const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
- if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
- return;
- SmallString<128> sizeString;
- llvm::raw_svector_ostream OS(sizeString);
- OS << "sizeof(";
- DstArg->printPretty(OS, nullptr, getPrintingPolicy());
- OS << ")";
-
- Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
- << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
- OS.str());
- }
- /// Check if two expressions refer to the same declaration.
- static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
- if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
- if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
- return D1->getDecl() == D2->getDecl();
- return false;
- }
- static const Expr *getStrlenExprArg(const Expr *E) {
- if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
- const FunctionDecl *FD = CE->getDirectCallee();
- if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
- return nullptr;
- return CE->getArg(0)->IgnoreParenCasts();
- }
- return nullptr;
- }
- // Warn on anti-patterns as the 'size' argument to strncat.
- // The correct size argument should look like following:
- // strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
- void Sema::CheckStrncatArguments(const CallExpr *CE,
- IdentifierInfo *FnName) {
- // Don't crash if the user has the wrong number of arguments.
- if (CE->getNumArgs() < 3)
- return;
- const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
- const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
- const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
- if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getLocStart(),
- CE->getRParenLoc()))
- return;
- // Identify common expressions, which are wrongly used as the size argument
- // to strncat and may lead to buffer overflows.
- unsigned PatternType = 0;
- if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
- // - sizeof(dst)
- if (referToTheSameDecl(SizeOfArg, DstArg))
- PatternType = 1;
- // - sizeof(src)
- else if (referToTheSameDecl(SizeOfArg, SrcArg))
- PatternType = 2;
- } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
- if (BE->getOpcode() == BO_Sub) {
- const Expr *L = BE->getLHS()->IgnoreParenCasts();
- const Expr *R = BE->getRHS()->IgnoreParenCasts();
- // - sizeof(dst) - strlen(dst)
- if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
- referToTheSameDecl(DstArg, getStrlenExprArg(R)))
- PatternType = 1;
- // - sizeof(src) - (anything)
- else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
- PatternType = 2;
- }
- }
- if (PatternType == 0)
- return;
- // Generate the diagnostic.
- SourceLocation SL = LenArg->getLocStart();
- SourceRange SR = LenArg->getSourceRange();
- SourceManager &SM = getSourceManager();
- // If the function is defined as a builtin macro, do not show macro expansion.
- if (SM.isMacroArgExpansion(SL)) {
- SL = SM.getSpellingLoc(SL);
- SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
- SM.getSpellingLoc(SR.getEnd()));
- }
- // Check if the destination is an array (rather than a pointer to an array).
- QualType DstTy = DstArg->getType();
- bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
- Context);
- if (!isKnownSizeArray) {
- if (PatternType == 1)
- Diag(SL, diag::warn_strncat_wrong_size) << SR;
- else
- Diag(SL, diag::warn_strncat_src_size) << SR;
- return;
- }
- if (PatternType == 1)
- Diag(SL, diag::warn_strncat_large_size) << SR;
- else
- Diag(SL, diag::warn_strncat_src_size) << SR;
- SmallString<128> sizeString;
- llvm::raw_svector_ostream OS(sizeString);
- OS << "sizeof(";
- DstArg->printPretty(OS, nullptr, getPrintingPolicy());
- OS << ") - ";
- OS << "strlen(";
- DstArg->printPretty(OS, nullptr, getPrintingPolicy());
- OS << ") - 1";
- Diag(SL, diag::note_strncat_wrong_size)
- << FixItHint::CreateReplacement(SR, OS.str());
- }
- //===--- CHECK: Return Address of Stack Variable --------------------------===//
- static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
- Decl *ParentDecl);
- static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
- Decl *ParentDecl);
- /// CheckReturnStackAddr - Check if a return statement returns the address
- /// of a stack variable.
- static void
- CheckReturnStackAddr(Sema &S, Expr *RetValExp, QualType lhsType,
- SourceLocation ReturnLoc) {
- Expr *stackE = nullptr;
- SmallVector<DeclRefExpr *, 8> refVars;
- // Perform checking for returned stack addresses, local blocks,
- // label addresses or references to temporaries.
- if (lhsType->isPointerType() ||
- (!S.getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
- stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/nullptr);
- } else if (lhsType->isReferenceType()) {
- stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/nullptr);
- }
- if (!stackE)
- return; // Nothing suspicious was found.
- SourceLocation diagLoc;
- SourceRange diagRange;
- if (refVars.empty()) {
- diagLoc = stackE->getLocStart();
- diagRange = stackE->getSourceRange();
- } else {
- // We followed through a reference variable. 'stackE' contains the
- // problematic expression but we will warn at the return statement pointing
- // at the reference variable. We will later display the "trail" of
- // reference variables using notes.
- diagLoc = refVars[0]->getLocStart();
- diagRange = refVars[0]->getSourceRange();
- }
- if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
- S.Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_stack_ref
- : diag::warn_ret_stack_addr)
- << DR->getDecl()->getDeclName() << diagRange;
- } else if (isa<BlockExpr>(stackE)) { // local block.
- S.Diag(diagLoc, diag::err_ret_local_block) << diagRange;
- } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
- S.Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
- } else { // local temporary.
- S.Diag(diagLoc, lhsType->isReferenceType() ? diag::warn_ret_local_temp_ref
- : diag::warn_ret_local_temp_addr)
- << diagRange;
- }
- // Display the "trail" of reference variables that we followed until we
- // found the problematic expression using notes.
- for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
- VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
- // If this var binds to another reference var, show the range of the next
- // var, otherwise the var binds to the problematic expression, in which case
- // show the range of the expression.
- SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
- : stackE->getSourceRange();
- S.Diag(VD->getLocation(), diag::note_ref_var_local_bind)
- << VD->getDeclName() << range;
- }
- }
- /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
- /// check if the expression in a return statement evaluates to an address
- /// to a location on the stack, a local block, an address of a label, or a
- /// reference to local temporary. The recursion is used to traverse the
- /// AST of the return expression, with recursion backtracking when we
- /// encounter a subexpression that (1) clearly does not lead to one of the
- /// above problematic expressions (2) is something we cannot determine leads to
- /// a problematic expression based on such local checking.
- ///
- /// Both EvalAddr and EvalVal follow through reference variables to evaluate
- /// the expression that they point to. Such variables are added to the
- /// 'refVars' vector so that we know what the reference variable "trail" was.
- ///
- /// EvalAddr processes expressions that are pointers that are used as
- /// references (and not L-values). EvalVal handles all other values.
- /// At the base case of the recursion is a check for the above problematic
- /// expressions.
- ///
- /// This implementation handles:
- ///
- /// * pointer-to-pointer casts
- /// * implicit conversions from array references to pointers
- /// * taking the address of fields
- /// * arbitrary interplay between "&" and "*" operators
- /// * pointer arithmetic from an address of a stack variable
- /// * taking the address of an array element where the array is on the stack
- static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
- Decl *ParentDecl) {
- if (E->isTypeDependent())
- return nullptr;
- // We should only be called for evaluating pointer expressions.
- assert((E->getType()->isAnyPointerType() ||
- E->getType()->isBlockPointerType() ||
- E->getType()->isObjCQualifiedIdType()) &&
- "EvalAddr only works on pointers");
- E = E->IgnoreParens();
- // Our "symbolic interpreter" is just a dispatch off the currently
- // viewed AST node. We then recursively traverse the AST by calling
- // EvalAddr and EvalVal appropriately.
- switch (E->getStmtClass()) {
- case Stmt::DeclRefExprClass: {
- DeclRefExpr *DR = cast<DeclRefExpr>(E);
- // If we leave the immediate function, the lifetime isn't about to end.
- if (DR->refersToEnclosingLocal())
- return nullptr;
- if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
- // If this is a reference variable, follow through to the expression that
- // it points to.
- if (V->hasLocalStorage() &&
- V->getType()->isReferenceType() && V->hasInit()) {
- // Add the reference variable to the "trail".
- refVars.push_back(DR);
- return EvalAddr(V->getInit(), refVars, ParentDecl);
- }
- return nullptr;
- }
- case Stmt::UnaryOperatorClass: {
- // The only unary operator that make sense to handle here
- // is AddrOf. All others don't make sense as pointers.
- UnaryOperator *U = cast<UnaryOperator>(E);
- if (U->getOpcode() == UO_AddrOf)
- return EvalVal(U->getSubExpr(), refVars, ParentDecl);
- else
- return nullptr;
- }
- case Stmt::BinaryOperatorClass: {
- // Handle pointer arithmetic. All other binary operators are not valid
- // in this context.
- BinaryOperator *B = cast<BinaryOperator>(E);
- BinaryOperatorKind op = B->getOpcode();
- if (op != BO_Add && op != BO_Sub)
- return nullptr;
- Expr *Base = B->getLHS();
- // Determine which argument is the real pointer base. It could be
- // the RHS argument instead of the LHS.
- if (!Base->getType()->isPointerType()) Base = B->getRHS();
- assert (Base->getType()->isPointerType());
- return EvalAddr(Base, refVars, ParentDecl);
- }
- // For conditional operators we need to see if either the LHS or RHS are
- // valid DeclRefExpr*s. If one of them is valid, we return it.
- case Stmt::ConditionalOperatorClass: {
- ConditionalOperator *C = cast<ConditionalOperator>(E);
- // Handle the GNU extension for missing LHS.
- // FIXME: That isn't a ConditionalOperator, so doesn't get here.
- if (Expr *LHSExpr = C->getLHS()) {
- // In C++, we can have a throw-expression, which has 'void' type.
- if (!LHSExpr->getType()->isVoidType())
- if (Expr *LHS = EvalAddr(LHSExpr, refVars, ParentDecl))
- return LHS;
- }
- // In C++, we can have a throw-expression, which has 'void' type.
- if (C->getRHS()->getType()->isVoidType())
- return nullptr;
- return EvalAddr(C->getRHS(), refVars, ParentDecl);
- }
- case Stmt::BlockExprClass:
- if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
- return E; // local block.
- return nullptr;
- case Stmt::AddrLabelExprClass:
- return E; // address of label.
- case Stmt::ExprWithCleanupsClass:
- return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
- ParentDecl);
- // For casts, we need to handle conversions from arrays to
- // pointer values, and pointer-to-pointer conversions.
- case Stmt::ImplicitCastExprClass:
- case Stmt::CStyleCastExprClass:
- case Stmt::CXXFunctionalCastExprClass:
- case Stmt::ObjCBridgedCastExprClass:
- case Stmt::CXXStaticCastExprClass:
- case Stmt::CXXDynamicCastExprClass:
- case Stmt::CXXConstCastExprClass:
- case Stmt::CXXReinterpretCastExprClass: {
- Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
- switch (cast<CastExpr>(E)->getCastKind()) {
- case CK_BitCast:
- case CK_LValueToRValue:
- case CK_NoOp:
- case CK_BaseToDerived:
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase:
- case CK_Dynamic:
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_AnyPointerToBlockPointerCast:
- return EvalAddr(SubExpr, refVars, ParentDecl);
- case CK_ArrayToPointerDecay:
- return EvalVal(SubExpr, refVars, ParentDecl);
- default:
- return nullptr;
- }
- }
- case Stmt::MaterializeTemporaryExprClass:
- if (Expr *Result = EvalAddr(
- cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
- refVars, ParentDecl))
- return Result;
-
- return E;
-
- // Everything else: we simply don't reason about them.
- default:
- return nullptr;
- }
- }
- /// EvalVal - This function is complements EvalAddr in the mutual recursion.
- /// See the comments for EvalAddr for more details.
- static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
- Decl *ParentDecl) {
- do {
- // We should only be called for evaluating non-pointer expressions, or
- // expressions with a pointer type that are not used as references but instead
- // are l-values (e.g., DeclRefExpr with a pointer type).
- // Our "symbolic interpreter" is just a dispatch off the currently
- // viewed AST node. We then recursively traverse the AST by calling
- // EvalAddr and EvalVal appropriately.
- E = E->IgnoreParens();
- switch (E->getStmtClass()) {
- case Stmt::ImplicitCastExprClass: {
- ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
- if (IE->getValueKind() == VK_LValue) {
- E = IE->getSubExpr();
- continue;
- }
- return nullptr;
- }
- case Stmt::ExprWithCleanupsClass:
- return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
- case Stmt::DeclRefExprClass: {
- // When we hit a DeclRefExpr we are looking at code that refers to a
- // variable's name. If it's not a reference variable we check if it has
- // local storage within the function, and if so, return the expression.
- DeclRefExpr *DR = cast<DeclRefExpr>(E);
- // If we leave the immediate function, the lifetime isn't about to end.
- if (DR->refersToEnclosingLocal())
- return nullptr;
- if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
- // Check if it refers to itself, e.g. "int& i = i;".
- if (V == ParentDecl)
- return DR;
- if (V->hasLocalStorage()) {
- if (!V->getType()->isReferenceType())
- return DR;
- // Reference variable, follow through to the expression that
- // it points to.
- if (V->hasInit()) {
- // Add the reference variable to the "trail".
- refVars.push_back(DR);
- return EvalVal(V->getInit(), refVars, V);
- }
- }
- }
- return nullptr;
- }
- case Stmt::UnaryOperatorClass: {
- // The only unary operator that make sense to handle here
- // is Deref. All others don't resolve to a "name." This includes
- // handling all sorts of rvalues passed to a unary operator.
- UnaryOperator *U = cast<UnaryOperator>(E);
- if (U->getOpcode() == UO_Deref)
- return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
- return nullptr;
- }
- case Stmt::ArraySubscriptExprClass: {
- // Array subscripts are potential references to data on the stack. We
- // retrieve the DeclRefExpr* for the array variable if it indeed
- // has local storage.
- return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
- }
- case Stmt::ConditionalOperatorClass: {
- // For conditional operators we need to see if either the LHS or RHS are
- // non-NULL Expr's. If one is non-NULL, we return it.
- ConditionalOperator *C = cast<ConditionalOperator>(E);
- // Handle the GNU extension for missing LHS.
- if (Expr *LHSExpr = C->getLHS()) {
- // In C++, we can have a throw-expression, which has 'void' type.
- if (!LHSExpr->getType()->isVoidType())
- if (Expr *LHS = EvalVal(LHSExpr, refVars, ParentDecl))
- return LHS;
- }
- // In C++, we can have a throw-expression, which has 'void' type.
- if (C->getRHS()->getType()->isVoidType())
- return nullptr;
- return EvalVal(C->getRHS(), refVars, ParentDecl);
- }
- // Accesses to members are potential references to data on the stack.
- case Stmt::MemberExprClass: {
- MemberExpr *M = cast<MemberExpr>(E);
- // Check for indirect access. We only want direct field accesses.
- if (M->isArrow())
- return nullptr;
- // Check whether the member type is itself a reference, in which case
- // we're not going to refer to the member, but to what the member refers to.
- if (M->getMemberDecl()->getType()->isReferenceType())
- return nullptr;
- return EvalVal(M->getBase(), refVars, ParentDecl);
- }
- case Stmt::MaterializeTemporaryExprClass:
- if (Expr *Result = EvalVal(
- cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
- refVars, ParentDecl))
- return Result;
-
- return E;
- default:
- // Check that we don't return or take the address of a reference to a
- // temporary. This is only useful in C++.
- if (!E->isTypeDependent() && E->isRValue())
- return E;
- // Everything else: we simply don't reason about them.
- return nullptr;
- }
- } while (true);
- }
- void
- Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
- SourceLocation ReturnLoc,
- bool isObjCMethod,
- const AttrVec *Attrs,
- const FunctionDecl *FD) {
- CheckReturnStackAddr(*this, RetValExp, lhsType, ReturnLoc);
- // Check if the return value is null but should not be.
- if (Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs) &&
- CheckNonNullExpr(*this, RetValExp))
- Diag(ReturnLoc, diag::warn_null_ret)
- << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
- // C++11 [basic.stc.dynamic.allocation]p4:
- // If an allocation function declared with a non-throwing
- // exception-specification fails to allocate storage, it shall return
- // a null pointer. Any other allocation function that fails to allocate
- // storage shall indicate failure only by throwing an exception [...]
- if (FD) {
- OverloadedOperatorKind Op = FD->getOverloadedOperator();
- if (Op == OO_New || Op == OO_Array_New) {
- const FunctionProtoType *Proto
- = FD->getType()->castAs<FunctionProtoType>();
- if (!Proto->isNothrow(Context, /*ResultIfDependent*/true) &&
- CheckNonNullExpr(*this, RetValExp))
- Diag(ReturnLoc, diag::warn_operator_new_returns_null)
- << FD << getLangOpts().CPlusPlus11;
- }
- }
- }
- //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
- /// Check for comparisons of floating point operands using != and ==.
- /// Issue a warning if these are no self-comparisons, as they are not likely
- /// to do what the programmer intended.
- void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
- Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
- Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
- // Special case: check for x == x (which is OK).
- // Do not emit warnings for such cases.
- if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
- if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
- if (DRL->getDecl() == DRR->getDecl())
- return;
- // Special case: check for comparisons against literals that can be exactly
- // represented by APFloat. In such cases, do not emit a warning. This
- // is a heuristic: often comparison against such literals are used to
- // detect if a value in a variable has not changed. This clearly can
- // lead to false negatives.
- if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
- if (FLL->isExact())
- return;
- } else
- if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
- if (FLR->isExact())
- return;
- // Check for comparisons with builtin types.
- if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
- if (CL->getBuiltinCallee())
- return;
- if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
- if (CR->getBuiltinCallee())
- return;
- // Emit the diagnostic.
- Diag(Loc, diag::warn_floatingpoint_eq)
- << LHS->getSourceRange() << RHS->getSourceRange();
- }
- //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
- //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
- namespace {
- /// Structure recording the 'active' range of an integer-valued
- /// expression.
- struct IntRange {
- /// The number of bits active in the int.
- unsigned Width;
- /// True if the int is known not to have negative values.
- bool NonNegative;
- IntRange(unsigned Width, bool NonNegative)
- : Width(Width), NonNegative(NonNegative)
- {}
- /// Returns the range of the bool type.
- static IntRange forBoolType() {
- return IntRange(1, true);
- }
- /// Returns the range of an opaque value of the given integral type.
- static IntRange forValueOfType(ASTContext &C, QualType T) {
- return forValueOfCanonicalType(C,
- T->getCanonicalTypeInternal().getTypePtr());
- }
- /// Returns the range of an opaque value of a canonical integral type.
- static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
- assert(T->isCanonicalUnqualified());
- if (const VectorType *VT = dyn_cast<VectorType>(T))
- T = VT->getElementType().getTypePtr();
- if (const ComplexType *CT = dyn_cast<ComplexType>(T))
- T = CT->getElementType().getTypePtr();
- // For enum types, use the known bit width of the enumerators.
- if (const EnumType *ET = dyn_cast<EnumType>(T)) {
- EnumDecl *Enum = ET->getDecl();
- if (!Enum->isCompleteDefinition())
- return IntRange(C.getIntWidth(QualType(T, 0)), false);
- unsigned NumPositive = Enum->getNumPositiveBits();
- unsigned NumNegative = Enum->getNumNegativeBits();
- if (NumNegative == 0)
- return IntRange(NumPositive, true/*NonNegative*/);
- else
- return IntRange(std::max(NumPositive + 1, NumNegative),
- false/*NonNegative*/);
- }
- const BuiltinType *BT = cast<BuiltinType>(T);
- assert(BT->isInteger());
- return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
- }
- /// Returns the "target" range of a canonical integral type, i.e.
- /// the range of values expressible in the type.
- ///
- /// This matches forValueOfCanonicalType except that enums have the
- /// full range of their type, not the range of their enumerators.
- static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
- assert(T->isCanonicalUnqualified());
- if (const VectorType *VT = dyn_cast<VectorType>(T))
- T = VT->getElementType().getTypePtr();
- if (const ComplexType *CT = dyn_cast<ComplexType>(T))
- T = CT->getElementType().getTypePtr();
- if (const EnumType *ET = dyn_cast<EnumType>(T))
- T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
- const BuiltinType *BT = cast<BuiltinType>(T);
- assert(BT->isInteger());
- return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
- }
- /// Returns the supremum of two ranges: i.e. their conservative merge.
- static IntRange join(IntRange L, IntRange R) {
- return IntRange(std::max(L.Width, R.Width),
- L.NonNegative && R.NonNegative);
- }
- /// Returns the infinum of two ranges: i.e. their aggressive merge.
- static IntRange meet(IntRange L, IntRange R) {
- return IntRange(std::min(L.Width, R.Width),
- L.NonNegative || R.NonNegative);
- }
- };
- static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
- unsigned MaxWidth) {
- if (value.isSigned() && value.isNegative())
- return IntRange(value.getMinSignedBits(), false);
- if (value.getBitWidth() > MaxWidth)
- value = value.trunc(MaxWidth);
- // isNonNegative() just checks the sign bit without considering
- // signedness.
- return IntRange(value.getActiveBits(), true);
- }
- static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
- unsigned MaxWidth) {
- if (result.isInt())
- return GetValueRange(C, result.getInt(), MaxWidth);
- if (result.isVector()) {
- IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
- for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
- IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
- R = IntRange::join(R, El);
- }
- return R;
- }
- if (result.isComplexInt()) {
- IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
- IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
- return IntRange::join(R, I);
- }
- // This can happen with lossless casts to intptr_t of "based" lvalues.
- // Assume it might use arbitrary bits.
- // FIXME: The only reason we need to pass the type in here is to get
- // the sign right on this one case. It would be nice if APValue
- // preserved this.
- assert(result.isLValue() || result.isAddrLabelDiff());
- return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
- }
- static QualType GetExprType(Expr *E) {
- QualType Ty = E->getType();
- if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
- Ty = AtomicRHS->getValueType();
- return Ty;
- }
- /// Pseudo-evaluate the given integer expression, estimating the
- /// range of values it might take.
- ///
- /// \param MaxWidth - the width to which the value will be truncated
- static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
- E = E->IgnoreParens();
- // Try a full evaluation first.
- Expr::EvalResult result;
- if (E->EvaluateAsRValue(result, C))
- return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
- // I think we only want to look through implicit casts here; if the
- // user has an explicit widening cast, we should treat the value as
- // being of the new, wider type.
- if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
- if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
- return GetExprRange(C, CE->getSubExpr(), MaxWidth);
- IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
- bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
- // Assume that non-integer casts can span the full range of the type.
- if (!isIntegerCast)
- return OutputTypeRange;
- IntRange SubRange
- = GetExprRange(C, CE->getSubExpr(),
- std::min(MaxWidth, OutputTypeRange.Width));
- // Bail out if the subexpr's range is as wide as the cast type.
- if (SubRange.Width >= OutputTypeRange.Width)
- return OutputTypeRange;
- // Otherwise, we take the smaller width, and we're non-negative if
- // either the output type or the subexpr is.
- return IntRange(SubRange.Width,
- SubRange.NonNegative || OutputTypeRange.NonNegative);
- }
- if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
- // If we can fold the condition, just take that operand.
- bool CondResult;
- if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
- return GetExprRange(C, CondResult ? CO->getTrueExpr()
- : CO->getFalseExpr(),
- MaxWidth);
- // Otherwise, conservatively merge.
- IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
- IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
- return IntRange::join(L, R);
- }
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
- switch (BO->getOpcode()) {
- // Boolean-valued operations are single-bit and positive.
- case BO_LAnd:
- case BO_LOr:
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- case BO_EQ:
- case BO_NE:
- return IntRange::forBoolType();
- // The type of the assignments is the type of the LHS, so the RHS
- // is not necessarily the same type.
- case BO_MulAssign:
- case BO_DivAssign:
- case BO_RemAssign:
- case BO_AddAssign:
- case BO_SubAssign:
- case BO_XorAssign:
- case BO_OrAssign:
- // TODO: bitfields?
- return IntRange::forValueOfType(C, GetExprType(E));
- // Simple assignments just pass through the RHS, which will have
- // been coerced to the LHS type.
- case BO_Assign:
- // TODO: bitfields?
- return GetExprRange(C, BO->getRHS(), MaxWidth);
- // Operations with opaque sources are black-listed.
- case BO_PtrMemD:
- case BO_PtrMemI:
- return IntRange::forValueOfType(C, GetExprType(E));
- // Bitwise-and uses the *infinum* of the two source ranges.
- case BO_And:
- case BO_AndAssign:
- return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
- GetExprRange(C, BO->getRHS(), MaxWidth));
- // Left shift gets black-listed based on a judgement call.
- case BO_Shl:
- // ...except that we want to treat '1 << (blah)' as logically
- // positive. It's an important idiom.
- if (IntegerLiteral *I
- = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
- if (I->getValue() == 1) {
- IntRange R = IntRange::forValueOfType(C, GetExprType(E));
- return IntRange(R.Width, /*NonNegative*/ true);
- }
- }
- // fallthrough
- case BO_ShlAssign:
- return IntRange::forValueOfType(C, GetExprType(E));
- // Right shift by a constant can narrow its left argument.
- case BO_Shr:
- case BO_ShrAssign: {
- IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
- // If the shift amount is a positive constant, drop the width by
- // that much.
- llvm::APSInt shift;
- if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
- shift.isNonNegative()) {
- unsigned zext = shift.getZExtValue();
- if (zext >= L.Width)
- L.Width = (L.NonNegative ? 0 : 1);
- else
- L.Width -= zext;
- }
- return L;
- }
- // Comma acts as its right operand.
- case BO_Comma:
- return GetExprRange(C, BO->getRHS(), MaxWidth);
- // Black-list pointer subtractions.
- case BO_Sub:
- if (BO->getLHS()->getType()->isPointerType())
- return IntRange::forValueOfType(C, GetExprType(E));
- break;
- // The width of a division result is mostly determined by the size
- // of the LHS.
- case BO_Div: {
- // Don't 'pre-truncate' the operands.
- unsigned opWidth = C.getIntWidth(GetExprType(E));
- IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
- // If the divisor is constant, use that.
- llvm::APSInt divisor;
- if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
- unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
- if (log2 >= L.Width)
- L.Width = (L.NonNegative ? 0 : 1);
- else
- L.Width = std::min(L.Width - log2, MaxWidth);
- return L;
- }
- // Otherwise, just use the LHS's width.
- IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
- return IntRange(L.Width, L.NonNegative && R.NonNegative);
- }
- // The result of a remainder can't be larger than the result of
- // either side.
- case BO_Rem: {
- // Don't 'pre-truncate' the operands.
- unsigned opWidth = C.getIntWidth(GetExprType(E));
- IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
- IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
- IntRange meet = IntRange::meet(L, R);
- meet.Width = std::min(meet.Width, MaxWidth);
- return meet;
- }
- // The default behavior is okay for these.
- case BO_Mul:
- case BO_Add:
- case BO_Xor:
- case BO_Or:
- break;
- }
- // The default case is to treat the operation as if it were closed
- // on the narrowest type that encompasses both operands.
- IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
- IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
- return IntRange::join(L, R);
- }
- if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
- switch (UO->getOpcode()) {
- // Boolean-valued operations are white-listed.
- case UO_LNot:
- return IntRange::forBoolType();
- // Operations with opaque sources are black-listed.
- case UO_Deref:
- case UO_AddrOf: // should be impossible
- return IntRange::forValueOfType(C, GetExprType(E));
- default:
- return GetExprRange(C, UO->getSubExpr(), MaxWidth);
- }
- }
- if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
- return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
- if (FieldDecl *BitField = E->getSourceBitField())
- return IntRange(BitField->getBitWidthValue(C),
- BitField->getType()->isUnsignedIntegerOrEnumerationType());
- return IntRange::forValueOfType(C, GetExprType(E));
- }
- static IntRange GetExprRange(ASTContext &C, Expr *E) {
- return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
- }
- /// Checks whether the given value, which currently has the given
- /// source semantics, has the same value when coerced through the
- /// target semantics.
- static bool IsSameFloatAfterCast(const llvm::APFloat &value,
- const llvm::fltSemantics &Src,
- const llvm::fltSemantics &Tgt) {
- llvm::APFloat truncated = value;
- bool ignored;
- truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
- truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
- return truncated.bitwiseIsEqual(value);
- }
- /// Checks whether the given value, which currently has the given
- /// source semantics, has the same value when coerced through the
- /// target semantics.
- ///
- /// The value might be a vector of floats (or a complex number).
- static bool IsSameFloatAfterCast(const APValue &value,
- const llvm::fltSemantics &Src,
- const llvm::fltSemantics &Tgt) {
- if (value.isFloat())
- return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
- if (value.isVector()) {
- for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
- if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
- return false;
- return true;
- }
- assert(value.isComplexFloat());
- return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
- IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
- }
- static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
- static bool IsZero(Sema &S, Expr *E) {
- // Suppress cases where we are comparing against an enum constant.
- if (const DeclRefExpr *DR =
- dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
- if (isa<EnumConstantDecl>(DR->getDecl()))
- return false;
- // Suppress cases where the '0' value is expanded from a macro.
- if (E->getLocStart().isMacroID())
- return false;
- llvm::APSInt Value;
- return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
- }
- static bool HasEnumType(Expr *E) {
- // Strip off implicit integral promotions.
- while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
- if (ICE->getCastKind() != CK_IntegralCast &&
- ICE->getCastKind() != CK_NoOp)
- break;
- E = ICE->getSubExpr();
- }
- return E->getType()->isEnumeralType();
- }
- static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
- // Disable warning in template instantiations.
- if (!S.ActiveTemplateInstantiations.empty())
- return;
- BinaryOperatorKind op = E->getOpcode();
- if (E->isValueDependent())
- return;
- if (op == BO_LT && IsZero(S, E->getRHS())) {
- S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
- << "< 0" << "false" << HasEnumType(E->getLHS())
- << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
- } else if (op == BO_GE && IsZero(S, E->getRHS())) {
- S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
- << ">= 0" << "true" << HasEnumType(E->getLHS())
- << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
- } else if (op == BO_GT && IsZero(S, E->getLHS())) {
- S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
- << "0 >" << "false" << HasEnumType(E->getRHS())
- << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
- } else if (op == BO_LE && IsZero(S, E->getLHS())) {
- S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
- << "0 <=" << "true" << HasEnumType(E->getRHS())
- << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
- }
- }
- static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
- Expr *Constant, Expr *Other,
- llvm::APSInt Value,
- bool RhsConstant) {
- // Disable warning in template instantiations.
- if (!S.ActiveTemplateInstantiations.empty())
- return;
- // TODO: Investigate using GetExprRange() to get tighter bounds
- // on the bit ranges.
- QualType OtherT = Other->getType();
- IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
- unsigned OtherWidth = OtherRange.Width;
- bool OtherIsBooleanType = Other->isKnownToHaveBooleanValue();
- // 0 values are handled later by CheckTrivialUnsignedComparison().
- if ((Value == 0) && (!OtherIsBooleanType))
- return;
- BinaryOperatorKind op = E->getOpcode();
- bool IsTrue = true;
- // Used for diagnostic printout.
- enum {
- LiteralConstant = 0,
- CXXBoolLiteralTrue,
- CXXBoolLiteralFalse
- } LiteralOrBoolConstant = LiteralConstant;
- if (!OtherIsBooleanType) {
- QualType ConstantT = Constant->getType();
- QualType CommonT = E->getLHS()->getType();
- if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
- return;
- assert((OtherT->isIntegerType() && ConstantT->isIntegerType()) &&
- "comparison with non-integer type");
- bool ConstantSigned = ConstantT->isSignedIntegerType();
- bool CommonSigned = CommonT->isSignedIntegerType();
- bool EqualityOnly = false;
- if (CommonSigned) {
- // The common type is signed, therefore no signed to unsigned conversion.
- if (!OtherRange.NonNegative) {
- // Check that the constant is representable in type OtherT.
- if (ConstantSigned) {
- if (OtherWidth >= Value.getMinSignedBits())
- return;
- } else { // !ConstantSigned
- if (OtherWidth >= Value.getActiveBits() + 1)
- return;
- }
- } else { // !OtherSigned
- // Check that the constant is representable in type OtherT.
- // Negative values are out of range.
- if (ConstantSigned) {
- if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
- return;
- } else { // !ConstantSigned
- if (OtherWidth >= Value.getActiveBits())
- return;
- }
- }
- } else { // !CommonSigned
- if (OtherRange.NonNegative) {
- if (OtherWidth >= Value.getActiveBits())
- return;
- } else if (!OtherRange.NonNegative && !ConstantSigned) {
- // Check to see if the constant is representable in OtherT.
- if (OtherWidth > Value.getActiveBits())
- return;
- // Check to see if the constant is equivalent to a negative value
- // cast to CommonT.
- if (S.Context.getIntWidth(ConstantT) ==
- S.Context.getIntWidth(CommonT) &&
- Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
- return;
- // The constant value rests between values that OtherT can represent
- // after conversion. Relational comparison still works, but equality
- // comparisons will be tautological.
- EqualityOnly = true;
- } else { // OtherSigned && ConstantSigned
- assert(0 && "Two signed types converted to unsigned types.");
- }
- }
- bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
- if (op == BO_EQ || op == BO_NE) {
- IsTrue = op == BO_NE;
- } else if (EqualityOnly) {
- return;
- } else if (RhsConstant) {
- if (op == BO_GT || op == BO_GE)
- IsTrue = !PositiveConstant;
- else // op == BO_LT || op == BO_LE
- IsTrue = PositiveConstant;
- } else {
- if (op == BO_LT || op == BO_LE)
- IsTrue = !PositiveConstant;
- else // op == BO_GT || op == BO_GE
- IsTrue = PositiveConstant;
- }
- } else {
- // Other isKnownToHaveBooleanValue
- enum CompareBoolWithConstantResult { AFals, ATrue, Unkwn };
- enum ConstantValue { LT_Zero, Zero, One, GT_One, SizeOfConstVal };
- enum ConstantSide { Lhs, Rhs, SizeOfConstSides };
- static const struct LinkedConditions {
- CompareBoolWithConstantResult BO_LT_OP[SizeOfConstSides][SizeOfConstVal];
- CompareBoolWithConstantResult BO_GT_OP[SizeOfConstSides][SizeOfConstVal];
- CompareBoolWithConstantResult BO_LE_OP[SizeOfConstSides][SizeOfConstVal];
- CompareBoolWithConstantResult BO_GE_OP[SizeOfConstSides][SizeOfConstVal];
- CompareBoolWithConstantResult BO_EQ_OP[SizeOfConstSides][SizeOfConstVal];
- CompareBoolWithConstantResult BO_NE_OP[SizeOfConstSides][SizeOfConstVal];
- } TruthTable = {
- // Constant on LHS. | Constant on RHS. |
- // LT_Zero| Zero | One |GT_One| LT_Zero| Zero | One |GT_One|
- { { ATrue, Unkwn, AFals, AFals }, { AFals, AFals, Unkwn, ATrue } },
- { { AFals, AFals, Unkwn, ATrue }, { ATrue, Unkwn, AFals, AFals } },
- { { ATrue, ATrue, Unkwn, AFals }, { AFals, Unkwn, ATrue, ATrue } },
- { { AFals, Unkwn, ATrue, ATrue }, { ATrue, ATrue, Unkwn, AFals } },
- { { AFals, Unkwn, Unkwn, AFals }, { AFals, Unkwn, Unkwn, AFals } },
- { { ATrue, Unkwn, Unkwn, ATrue }, { ATrue, Unkwn, Unkwn, ATrue } }
- };
- bool ConstantIsBoolLiteral = isa<CXXBoolLiteralExpr>(Constant);
- enum ConstantValue ConstVal = Zero;
- if (Value.isUnsigned() || Value.isNonNegative()) {
- if (Value == 0) {
- LiteralOrBoolConstant =
- ConstantIsBoolLiteral ? CXXBoolLiteralFalse : LiteralConstant;
- ConstVal = Zero;
- } else if (Value == 1) {
- LiteralOrBoolConstant =
- ConstantIsBoolLiteral ? CXXBoolLiteralTrue : LiteralConstant;
- ConstVal = One;
- } else {
- LiteralOrBoolConstant = LiteralConstant;
- ConstVal = GT_One;
- }
- } else {
- ConstVal = LT_Zero;
- }
- CompareBoolWithConstantResult CmpRes;
- switch (op) {
- case BO_LT:
- CmpRes = TruthTable.BO_LT_OP[RhsConstant][ConstVal];
- break;
- case BO_GT:
- CmpRes = TruthTable.BO_GT_OP[RhsConstant][ConstVal];
- break;
- case BO_LE:
- CmpRes = TruthTable.BO_LE_OP[RhsConstant][ConstVal];
- break;
- case BO_GE:
- CmpRes = TruthTable.BO_GE_OP[RhsConstant][ConstVal];
- break;
- case BO_EQ:
- CmpRes = TruthTable.BO_EQ_OP[RhsConstant][ConstVal];
- break;
- case BO_NE:
- CmpRes = TruthTable.BO_NE_OP[RhsConstant][ConstVal];
- break;
- default:
- CmpRes = Unkwn;
- break;
- }
- if (CmpRes == AFals) {
- IsTrue = false;
- } else if (CmpRes == ATrue) {
- IsTrue = true;
- } else {
- return;
- }
- }
- // If this is a comparison to an enum constant, include that
- // constant in the diagnostic.
- const EnumConstantDecl *ED = nullptr;
- if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
- ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
- SmallString<64> PrettySourceValue;
- llvm::raw_svector_ostream OS(PrettySourceValue);
- if (ED)
- OS << '\'' << *ED << "' (" << Value << ")";
- else
- OS << Value;
- S.DiagRuntimeBehavior(
- E->getOperatorLoc(), E,
- S.PDiag(diag::warn_out_of_range_compare)
- << OS.str() << LiteralOrBoolConstant
- << OtherT << (OtherIsBooleanType && !OtherT->isBooleanType()) << IsTrue
- << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
- }
- /// Analyze the operands of the given comparison. Implements the
- /// fallback case from AnalyzeComparison.
- static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
- AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
- AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
- }
- /// \brief Implements -Wsign-compare.
- ///
- /// \param E the binary operator to check for warnings
- static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
- // The type the comparison is being performed in.
- QualType T = E->getLHS()->getType();
- assert(S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())
- && "comparison with mismatched types");
- if (E->isValueDependent())
- return AnalyzeImpConvsInComparison(S, E);
- Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
- Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
-
- bool IsComparisonConstant = false;
-
- // Check whether an integer constant comparison results in a value
- // of 'true' or 'false'.
- if (T->isIntegralType(S.Context)) {
- llvm::APSInt RHSValue;
- bool IsRHSIntegralLiteral =
- RHS->isIntegerConstantExpr(RHSValue, S.Context);
- llvm::APSInt LHSValue;
- bool IsLHSIntegralLiteral =
- LHS->isIntegerConstantExpr(LHSValue, S.Context);
- if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
- DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
- else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
- DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
- else
- IsComparisonConstant =
- (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
- } else if (!T->hasUnsignedIntegerRepresentation())
- IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
-
- // We don't do anything special if this isn't an unsigned integral
- // comparison: we're only interested in integral comparisons, and
- // signed comparisons only happen in cases we don't care to warn about.
- //
- // We also don't care about value-dependent expressions or expressions
- // whose result is a constant.
- if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
- return AnalyzeImpConvsInComparison(S, E);
-
- // Check to see if one of the (unmodified) operands is of different
- // signedness.
- Expr *signedOperand, *unsignedOperand;
- if (LHS->getType()->hasSignedIntegerRepresentation()) {
- assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
- "unsigned comparison between two signed integer expressions?");
- signedOperand = LHS;
- unsignedOperand = RHS;
- } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
- signedOperand = RHS;
- unsignedOperand = LHS;
- } else {
- CheckTrivialUnsignedComparison(S, E);
- return AnalyzeImpConvsInComparison(S, E);
- }
- // Otherwise, calculate the effective range of the signed operand.
- IntRange signedRange = GetExprRange(S.Context, signedOperand);
- // Go ahead and analyze implicit conversions in the operands. Note
- // that we skip the implicit conversions on both sides.
- AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
- AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
- // If the signed range is non-negative, -Wsign-compare won't fire,
- // but we should still check for comparisons which are always true
- // or false.
- if (signedRange.NonNegative)
- return CheckTrivialUnsignedComparison(S, E);
- // For (in)equality comparisons, if the unsigned operand is a
- // constant which cannot collide with a overflowed signed operand,
- // then reinterpreting the signed operand as unsigned will not
- // change the result of the comparison.
- if (E->isEqualityOp()) {
- unsigned comparisonWidth = S.Context.getIntWidth(T);
- IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
- // We should never be unable to prove that the unsigned operand is
- // non-negative.
- assert(unsignedRange.NonNegative && "unsigned range includes negative?");
- if (unsignedRange.Width < comparisonWidth)
- return;
- }
- S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
- S.PDiag(diag::warn_mixed_sign_comparison)
- << LHS->getType() << RHS->getType()
- << LHS->getSourceRange() << RHS->getSourceRange());
- }
- /// Analyzes an attempt to assign the given value to a bitfield.
- ///
- /// Returns true if there was something fishy about the attempt.
- static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
- SourceLocation InitLoc) {
- assert(Bitfield->isBitField());
- if (Bitfield->isInvalidDecl())
- return false;
- // White-list bool bitfields.
- if (Bitfield->getType()->isBooleanType())
- return false;
- // Ignore value- or type-dependent expressions.
- if (Bitfield->getBitWidth()->isValueDependent() ||
- Bitfield->getBitWidth()->isTypeDependent() ||
- Init->isValueDependent() ||
- Init->isTypeDependent())
- return false;
- Expr *OriginalInit = Init->IgnoreParenImpCasts();
- llvm::APSInt Value;
- if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
- return false;
- unsigned OriginalWidth = Value.getBitWidth();
- unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
- if (OriginalWidth <= FieldWidth)
- return false;
- // Compute the value which the bitfield will contain.
- llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
- TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
- // Check whether the stored value is equal to the original value.
- TruncatedValue = TruncatedValue.extend(OriginalWidth);
- if (llvm::APSInt::isSameValue(Value, TruncatedValue))
- return false;
- // Special-case bitfields of width 1: booleans are naturally 0/1, and
- // therefore don't strictly fit into a signed bitfield of width 1.
- if (FieldWidth == 1 && Value == 1)
- return false;
- std::string PrettyValue = Value.toString(10);
- std::string PrettyTrunc = TruncatedValue.toString(10);
- S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
- << PrettyValue << PrettyTrunc << OriginalInit->getType()
- << Init->getSourceRange();
- return true;
- }
- /// Analyze the given simple or compound assignment for warning-worthy
- /// operations.
- static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
- // Just recurse on the LHS.
- AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
- // We want to recurse on the RHS as normal unless we're assigning to
- // a bitfield.
- if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
- if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
- E->getOperatorLoc())) {
- // Recurse, ignoring any implicit conversions on the RHS.
- return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
- E->getOperatorLoc());
- }
- }
- AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
- }
- /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
- static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
- SourceLocation CContext, unsigned diag,
- bool pruneControlFlow = false) {
- if (pruneControlFlow) {
- S.DiagRuntimeBehavior(E->getExprLoc(), E,
- S.PDiag(diag)
- << SourceType << T << E->getSourceRange()
- << SourceRange(CContext));
- return;
- }
- S.Diag(E->getExprLoc(), diag)
- << SourceType << T << E->getSourceRange() << SourceRange(CContext);
- }
- /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
- static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
- SourceLocation CContext, unsigned diag,
- bool pruneControlFlow = false) {
- DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
- }
- /// Diagnose an implicit cast from a literal expression. Does not warn when the
- /// cast wouldn't lose information.
- void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
- SourceLocation CContext) {
- // Try to convert the literal exactly to an integer. If we can, don't warn.
- bool isExact = false;
- const llvm::APFloat &Value = FL->getValue();
- llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
- T->hasUnsignedIntegerRepresentation());
- if (Value.convertToInteger(IntegerValue,
- llvm::APFloat::rmTowardZero, &isExact)
- == llvm::APFloat::opOK && isExact)
- return;
- // FIXME: Force the precision of the source value down so we don't print
- // digits which are usually useless (we don't really care here if we
- // truncate a digit by accident in edge cases). Ideally, APFloat::toString
- // would automatically print the shortest representation, but it's a bit
- // tricky to implement.
- SmallString<16> PrettySourceValue;
- unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
- precision = (precision * 59 + 195) / 196;
- Value.toString(PrettySourceValue, precision);
- SmallString<16> PrettyTargetValue;
- if (T->isSpecificBuiltinType(BuiltinType::Bool))
- PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
- else
- IntegerValue.toString(PrettyTargetValue);
- S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
- << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
- << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
- }
- std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
- if (!Range.Width) return "0";
- llvm::APSInt ValueInRange = Value;
- ValueInRange.setIsSigned(!Range.NonNegative);
- ValueInRange = ValueInRange.trunc(Range.Width);
- return ValueInRange.toString(10);
- }
- static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
- if (!isa<ImplicitCastExpr>(Ex))
- return false;
- Expr *InnerE = Ex->IgnoreParenImpCasts();
- const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
- const Type *Source =
- S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
- if (Target->isDependentType())
- return false;
- const BuiltinType *FloatCandidateBT =
- dyn_cast<BuiltinType>(ToBool ? Source : Target);
- const Type *BoolCandidateType = ToBool ? Target : Source;
- return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
- FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
- }
- void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
- SourceLocation CC) {
- unsigned NumArgs = TheCall->getNumArgs();
- for (unsigned i = 0; i < NumArgs; ++i) {
- Expr *CurrA = TheCall->getArg(i);
- if (!IsImplicitBoolFloatConversion(S, CurrA, true))
- continue;
- bool IsSwapped = ((i > 0) &&
- IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
- IsSwapped |= ((i < (NumArgs - 1)) &&
- IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
- if (IsSwapped) {
- // Warn on this floating-point to bool conversion.
- DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
- CurrA->getType(), CC,
- diag::warn_impcast_floating_point_to_bool);
- }
- }
- }
- void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
- SourceLocation CC, bool *ICContext = nullptr) {
- if (E->isTypeDependent() || E->isValueDependent()) return;
- const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
- const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
- if (Source == Target) return;
- if (Target->isDependentType()) return;
- // If the conversion context location is invalid don't complain. We also
- // don't want to emit a warning if the issue occurs from the expansion of
- // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
- // delay this check as long as possible. Once we detect we are in that
- // scenario, we just return.
- if (CC.isInvalid())
- return;
- // Diagnose implicit casts to bool.
- if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
- if (isa<StringLiteral>(E))
- // Warn on string literal to bool. Checks for string literals in logical
- // and expressions, for instance, assert(0 && "error here"), are
- // prevented by a check in AnalyzeImplicitConversions().
- return DiagnoseImpCast(S, E, T, CC,
- diag::warn_impcast_string_literal_to_bool);
- if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
- isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
- // This covers the literal expressions that evaluate to Objective-C
- // objects.
- return DiagnoseImpCast(S, E, T, CC,
- diag::warn_impcast_objective_c_literal_to_bool);
- }
- if (Source->isPointerType() || Source->canDecayToPointerType()) {
- // Warn on pointer to bool conversion that is always true.
- S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
- SourceRange(CC));
- }
- }
- // Strip vector types.
- if (isa<VectorType>(Source)) {
- if (!isa<VectorType>(Target)) {
- if (S.SourceMgr.isInSystemMacro(CC))
- return;
- return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
- }
-
- // If the vector cast is cast between two vectors of the same size, it is
- // a bitcast, not a conversion.
- if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
- return;
- Source = cast<VectorType>(Source)->getElementType().getTypePtr();
- Target = cast<VectorType>(Target)->getElementType().getTypePtr();
- }
- if (auto VecTy = dyn_cast<VectorType>(Target))
- Target = VecTy->getElementType().getTypePtr();
- // Strip complex types.
- if (isa<ComplexType>(Source)) {
- if (!isa<ComplexType>(Target)) {
- if (S.SourceMgr.isInSystemMacro(CC))
- return;
- return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
- }
- Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
- Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
- }
- const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
- const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
- // If the source is floating point...
- if (SourceBT && SourceBT->isFloatingPoint()) {
- // ...and the target is floating point...
- if (TargetBT && TargetBT->isFloatingPoint()) {
- // ...then warn if we're dropping FP rank.
- // Builtin FP kinds are ordered by increasing FP rank.
- if (SourceBT->getKind() > TargetBT->getKind()) {
- // Don't warn about float constants that are precisely
- // representable in the target type.
- Expr::EvalResult result;
- if (E->EvaluateAsRValue(result, S.Context)) {
- // Value might be a float, a float vector, or a float complex.
- if (IsSameFloatAfterCast(result.Val,
- S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
- S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
- return;
- }
- if (S.SourceMgr.isInSystemMacro(CC))
- return;
- DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
- }
- return;
- }
- // If the target is integral, always warn.
- if (TargetBT && TargetBT->isInteger()) {
- if (S.SourceMgr.isInSystemMacro(CC))
- return;
-
- Expr *InnerE = E->IgnoreParenImpCasts();
- // We also want to warn on, e.g., "int i = -1.234"
- if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
- if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
- InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
- if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
- DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
- } else {
- DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
- }
- }
- // If the target is bool, warn if expr is a function or method call.
- if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
- isa<CallExpr>(E)) {
- // Check last argument of function call to see if it is an
- // implicit cast from a type matching the type the result
- // is being cast to.
- CallExpr *CEx = cast<CallExpr>(E);
- unsigned NumArgs = CEx->getNumArgs();
- if (NumArgs > 0) {
- Expr *LastA = CEx->getArg(NumArgs - 1);
- Expr *InnerE = LastA->IgnoreParenImpCasts();
- const Type *InnerType =
- S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
- if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
- // Warn on this floating-point to bool conversion
- DiagnoseImpCast(S, E, T, CC,
- diag::warn_impcast_floating_point_to_bool);
- }
- }
- }
- return;
- }
- if ((E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)
- == Expr::NPCK_GNUNull) && !Target->isAnyPointerType()
- && !Target->isBlockPointerType() && !Target->isMemberPointerType()
- && Target->isScalarType() && !Target->isNullPtrType()) {
- SourceLocation Loc = E->getSourceRange().getBegin();
- if (Loc.isMacroID())
- Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
- if (!Loc.isMacroID() || CC.isMacroID())
- S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
- << T << clang::SourceRange(CC)
- << FixItHint::CreateReplacement(Loc,
- S.getFixItZeroLiteralForType(T, Loc));
- }
- if (!Source->isIntegerType() || !Target->isIntegerType())
- return;
- // TODO: remove this early return once the false positives for constant->bool
- // in templates, macros, etc, are reduced or removed.
- if (Target->isSpecificBuiltinType(BuiltinType::Bool))
- return;
- IntRange SourceRange = GetExprRange(S.Context, E);
- IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
- if (SourceRange.Width > TargetRange.Width) {
- // If the source is a constant, use a default-on diagnostic.
- // TODO: this should happen for bitfield stores, too.
- llvm::APSInt Value(32);
- if (E->isIntegerConstantExpr(Value, S.Context)) {
- if (S.SourceMgr.isInSystemMacro(CC))
- return;
- std::string PrettySourceValue = Value.toString(10);
- std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
- S.DiagRuntimeBehavior(E->getExprLoc(), E,
- S.PDiag(diag::warn_impcast_integer_precision_constant)
- << PrettySourceValue << PrettyTargetValue
- << E->getType() << T << E->getSourceRange()
- << clang::SourceRange(CC));
- return;
- }
- // People want to build with -Wshorten-64-to-32 and not -Wconversion.
- if (S.SourceMgr.isInSystemMacro(CC))
- return;
- if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
- return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
- /* pruneControlFlow */ true);
- return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
- }
- if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
- (!TargetRange.NonNegative && SourceRange.NonNegative &&
- SourceRange.Width == TargetRange.Width)) {
-
- if (S.SourceMgr.isInSystemMacro(CC))
- return;
- unsigned DiagID = diag::warn_impcast_integer_sign;
- // Traditionally, gcc has warned about this under -Wsign-compare.
- // We also want to warn about it in -Wconversion.
- // So if -Wconversion is off, use a completely identical diagnostic
- // in the sign-compare group.
- // The conditional-checking code will
- if (ICContext) {
- DiagID = diag::warn_impcast_integer_sign_conditional;
- *ICContext = true;
- }
- return DiagnoseImpCast(S, E, T, CC, DiagID);
- }
- // Diagnose conversions between different enumeration types.
- // In C, we pretend that the type of an EnumConstantDecl is its enumeration
- // type, to give us better diagnostics.
- QualType SourceType = E->getType();
- if (!S.getLangOpts().CPlusPlus) {
- if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
- if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
- EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
- SourceType = S.Context.getTypeDeclType(Enum);
- Source = S.Context.getCanonicalType(SourceType).getTypePtr();
- }
- }
-
- if (const EnumType *SourceEnum = Source->getAs<EnumType>())
- if (const EnumType *TargetEnum = Target->getAs<EnumType>())
- if (SourceEnum->getDecl()->hasNameForLinkage() &&
- TargetEnum->getDecl()->hasNameForLinkage() &&
- SourceEnum != TargetEnum) {
- if (S.SourceMgr.isInSystemMacro(CC))
- return;
- return DiagnoseImpCast(S, E, SourceType, T, CC,
- diag::warn_impcast_different_enum_types);
- }
-
- return;
- }
- void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
- SourceLocation CC, QualType T);
- void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
- SourceLocation CC, bool &ICContext) {
- E = E->IgnoreParenImpCasts();
- if (isa<ConditionalOperator>(E))
- return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
- AnalyzeImplicitConversions(S, E, CC);
- if (E->getType() != T)
- return CheckImplicitConversion(S, E, T, CC, &ICContext);
- return;
- }
- void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
- SourceLocation CC, QualType T) {
- AnalyzeImplicitConversions(S, E->getCond(), CC);
- bool Suspicious = false;
- CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
- CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
- // If -Wconversion would have warned about either of the candidates
- // for a signedness conversion to the context type...
- if (!Suspicious) return;
- // ...but it's currently ignored...
- if (S.Diags.getDiagnosticLevel(diag::warn_impcast_integer_sign_conditional,
- CC))
- return;
- // ...then check whether it would have warned about either of the
- // candidates for a signedness conversion to the condition type.
- if (E->getType() == T) return;
-
- Suspicious = false;
- CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
- E->getType(), CC, &Suspicious);
- if (!Suspicious)
- CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
- E->getType(), CC, &Suspicious);
- }
- /// AnalyzeImplicitConversions - Find and report any interesting
- /// implicit conversions in the given expression. There are a couple
- /// of competing diagnostics here, -Wconversion and -Wsign-compare.
- void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
- QualType T = OrigE->getType();
- Expr *E = OrigE->IgnoreParenImpCasts();
- if (E->isTypeDependent() || E->isValueDependent())
- return;
-
- // For conditional operators, we analyze the arguments as if they
- // were being fed directly into the output.
- if (isa<ConditionalOperator>(E)) {
- ConditionalOperator *CO = cast<ConditionalOperator>(E);
- CheckConditionalOperator(S, CO, CC, T);
- return;
- }
- // Check implicit argument conversions for function calls.
- if (CallExpr *Call = dyn_cast<CallExpr>(E))
- CheckImplicitArgumentConversions(S, Call, CC);
- // Go ahead and check any implicit conversions we might have skipped.
- // The non-canonical typecheck is just an optimization;
- // CheckImplicitConversion will filter out dead implicit conversions.
- if (E->getType() != T)
- CheckImplicitConversion(S, E, T, CC);
- // Now continue drilling into this expression.
-
- if (PseudoObjectExpr * POE = dyn_cast<PseudoObjectExpr>(E)) {
- if (POE->getResultExpr())
- E = POE->getResultExpr();
- }
-
- if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
- return AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
-
- // Skip past explicit casts.
- if (isa<ExplicitCastExpr>(E)) {
- E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
- return AnalyzeImplicitConversions(S, E, CC);
- }
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
- // Do a somewhat different check with comparison operators.
- if (BO->isComparisonOp())
- return AnalyzeComparison(S, BO);
- // And with simple assignments.
- if (BO->getOpcode() == BO_Assign)
- return AnalyzeAssignment(S, BO);
- }
- // These break the otherwise-useful invariant below. Fortunately,
- // we don't really need to recurse into them, because any internal
- // expressions should have been analyzed already when they were
- // built into statements.
- if (isa<StmtExpr>(E)) return;
- // Don't descend into unevaluated contexts.
- if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
- // Now just recurse over the expression's children.
- CC = E->getExprLoc();
- BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
- bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
- for (Stmt::child_range I = E->children(); I; ++I) {
- Expr *ChildExpr = dyn_cast_or_null<Expr>(*I);
- if (!ChildExpr)
- continue;
- if (IsLogicalAndOperator &&
- isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
- // Ignore checking string literals that are in logical and operators.
- // This is a common pattern for asserts.
- continue;
- AnalyzeImplicitConversions(S, ChildExpr, CC);
- }
- }
- } // end anonymous namespace
- enum {
- AddressOf,
- FunctionPointer,
- ArrayPointer
- };
- /// \brief Diagnose pointers that are always non-null.
- /// \param E the expression containing the pointer
- /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
- /// compared to a null pointer
- /// \param IsEqual True when the comparison is equal to a null pointer
- /// \param Range Extra SourceRange to highlight in the diagnostic
- void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
- Expr::NullPointerConstantKind NullKind,
- bool IsEqual, SourceRange Range) {
- // Don't warn inside macros.
- if (E->getExprLoc().isMacroID())
- return;
- E = E->IgnoreImpCasts();
- const bool IsCompare = NullKind != Expr::NPCK_NotNull;
- bool IsAddressOf = false;
- if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
- if (UO->getOpcode() != UO_AddrOf)
- return;
- IsAddressOf = true;
- E = UO->getSubExpr();
- }
- // Expect to find a single Decl. Skip anything more complicated.
- ValueDecl *D = nullptr;
- if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
- D = R->getDecl();
- } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
- D = M->getMemberDecl();
- }
- // Weak Decls can be null.
- if (!D || D->isWeak())
- return;
- QualType T = D->getType();
- const bool IsArray = T->isArrayType();
- const bool IsFunction = T->isFunctionType();
- if (IsAddressOf) {
- // Address of function is used to silence the function warning.
- if (IsFunction)
- return;
- // Address of reference can be null.
- if (T->isReferenceType())
- return;
- }
- // Found nothing.
- if (!IsAddressOf && !IsFunction && !IsArray)
- return;
- // Pretty print the expression for the diagnostic.
- std::string Str;
- llvm::raw_string_ostream S(Str);
- E->printPretty(S, nullptr, getPrintingPolicy());
- unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
- : diag::warn_impcast_pointer_to_bool;
- unsigned DiagType;
- if (IsAddressOf)
- DiagType = AddressOf;
- else if (IsFunction)
- DiagType = FunctionPointer;
- else if (IsArray)
- DiagType = ArrayPointer;
- else
- llvm_unreachable("Could not determine diagnostic.");
- Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
- << Range << IsEqual;
- if (!IsFunction)
- return;
- // Suggest '&' to silence the function warning.
- Diag(E->getExprLoc(), diag::note_function_warning_silence)
- << FixItHint::CreateInsertion(E->getLocStart(), "&");
- // Check to see if '()' fixit should be emitted.
- QualType ReturnType;
- UnresolvedSet<4> NonTemplateOverloads;
- tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
- if (ReturnType.isNull())
- return;
- if (IsCompare) {
- // There are two cases here. If there is null constant, the only suggest
- // for a pointer return type. If the null is 0, then suggest if the return
- // type is a pointer or an integer type.
- if (!ReturnType->isPointerType()) {
- if (NullKind == Expr::NPCK_ZeroExpression ||
- NullKind == Expr::NPCK_ZeroLiteral) {
- if (!ReturnType->isIntegerType())
- return;
- } else {
- return;
- }
- }
- } else { // !IsCompare
- // For function to bool, only suggest if the function pointer has bool
- // return type.
- if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
- return;
- }
- Diag(E->getExprLoc(), diag::note_function_to_function_call)
- << FixItHint::CreateInsertion(getLocForEndOfToken(E->getLocEnd()), "()");
- }
- /// Diagnoses "dangerous" implicit conversions within the given
- /// expression (which is a full expression). Implements -Wconversion
- /// and -Wsign-compare.
- ///
- /// \param CC the "context" location of the implicit conversion, i.e.
- /// the most location of the syntactic entity requiring the implicit
- /// conversion
- void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
- // Don't diagnose in unevaluated contexts.
- if (isUnevaluatedContext())
- return;
- // Don't diagnose for value- or type-dependent expressions.
- if (E->isTypeDependent() || E->isValueDependent())
- return;
- // Check for array bounds violations in cases where the check isn't triggered
- // elsewhere for other Expr types (like BinaryOperators), e.g. when an
- // ArraySubscriptExpr is on the RHS of a variable initialization.
- CheckArrayAccess(E);
- // This is not the right CC for (e.g.) a variable initialization.
- AnalyzeImplicitConversions(*this, E, CC);
- }
- /// Diagnose when expression is an integer constant expression and its evaluation
- /// results in integer overflow
- void Sema::CheckForIntOverflow (Expr *E) {
- if (isa<BinaryOperator>(E->IgnoreParens()))
- E->EvaluateForOverflow(Context);
- }
- namespace {
- /// \brief Visitor for expressions which looks for unsequenced operations on the
- /// same object.
- class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
- typedef EvaluatedExprVisitor<SequenceChecker> Base;
- /// \brief A tree of sequenced regions within an expression. Two regions are
- /// unsequenced if one is an ancestor or a descendent of the other. When we
- /// finish processing an expression with sequencing, such as a comma
- /// expression, we fold its tree nodes into its parent, since they are
- /// unsequenced with respect to nodes we will visit later.
- class SequenceTree {
- struct Value {
- explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
- unsigned Parent : 31;
- bool Merged : 1;
- };
- SmallVector<Value, 8> Values;
- public:
- /// \brief A region within an expression which may be sequenced with respect
- /// to some other region.
- class Seq {
- explicit Seq(unsigned N) : Index(N) {}
- unsigned Index;
- friend class SequenceTree;
- public:
- Seq() : Index(0) {}
- };
- SequenceTree() { Values.push_back(Value(0)); }
- Seq root() const { return Seq(0); }
- /// \brief Create a new sequence of operations, which is an unsequenced
- /// subset of \p Parent. This sequence of operations is sequenced with
- /// respect to other children of \p Parent.
- Seq allocate(Seq Parent) {
- Values.push_back(Value(Parent.Index));
- return Seq(Values.size() - 1);
- }
- /// \brief Merge a sequence of operations into its parent.
- void merge(Seq S) {
- Values[S.Index].Merged = true;
- }
- /// \brief Determine whether two operations are unsequenced. This operation
- /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
- /// should have been merged into its parent as appropriate.
- bool isUnsequenced(Seq Cur, Seq Old) {
- unsigned C = representative(Cur.Index);
- unsigned Target = representative(Old.Index);
- while (C >= Target) {
- if (C == Target)
- return true;
- C = Values[C].Parent;
- }
- return false;
- }
- private:
- /// \brief Pick a representative for a sequence.
- unsigned representative(unsigned K) {
- if (Values[K].Merged)
- // Perform path compression as we go.
- return Values[K].Parent = representative(Values[K].Parent);
- return K;
- }
- };
- /// An object for which we can track unsequenced uses.
- typedef NamedDecl *Object;
- /// Different flavors of object usage which we track. We only track the
- /// least-sequenced usage of each kind.
- enum UsageKind {
- /// A read of an object. Multiple unsequenced reads are OK.
- UK_Use,
- /// A modification of an object which is sequenced before the value
- /// computation of the expression, such as ++n in C++.
- UK_ModAsValue,
- /// A modification of an object which is not sequenced before the value
- /// computation of the expression, such as n++.
- UK_ModAsSideEffect,
- UK_Count = UK_ModAsSideEffect + 1
- };
- struct Usage {
- Usage() : Use(nullptr), Seq() {}
- Expr *Use;
- SequenceTree::Seq Seq;
- };
- struct UsageInfo {
- UsageInfo() : Diagnosed(false) {}
- Usage Uses[UK_Count];
- /// Have we issued a diagnostic for this variable already?
- bool Diagnosed;
- };
- typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
- Sema &SemaRef;
- /// Sequenced regions within the expression.
- SequenceTree Tree;
- /// Declaration modifications and references which we have seen.
- UsageInfoMap UsageMap;
- /// The region we are currently within.
- SequenceTree::Seq Region;
- /// Filled in with declarations which were modified as a side-effect
- /// (that is, post-increment operations).
- SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
- /// Expressions to check later. We defer checking these to reduce
- /// stack usage.
- SmallVectorImpl<Expr *> &WorkList;
- /// RAII object wrapping the visitation of a sequenced subexpression of an
- /// expression. At the end of this process, the side-effects of the evaluation
- /// become sequenced with respect to the value computation of the result, so
- /// we downgrade any UK_ModAsSideEffect within the evaluation to
- /// UK_ModAsValue.
- struct SequencedSubexpression {
- SequencedSubexpression(SequenceChecker &Self)
- : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
- Self.ModAsSideEffect = &ModAsSideEffect;
- }
- ~SequencedSubexpression() {
- for (unsigned I = 0, E = ModAsSideEffect.size(); I != E; ++I) {
- UsageInfo &U = Self.UsageMap[ModAsSideEffect[I].first];
- U.Uses[UK_ModAsSideEffect] = ModAsSideEffect[I].second;
- Self.addUsage(U, ModAsSideEffect[I].first,
- ModAsSideEffect[I].second.Use, UK_ModAsValue);
- }
- Self.ModAsSideEffect = OldModAsSideEffect;
- }
- SequenceChecker &Self;
- SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
- SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
- };
- /// RAII object wrapping the visitation of a subexpression which we might
- /// choose to evaluate as a constant. If any subexpression is evaluated and
- /// found to be non-constant, this allows us to suppress the evaluation of
- /// the outer expression.
- class EvaluationTracker {
- public:
- EvaluationTracker(SequenceChecker &Self)
- : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
- Self.EvalTracker = this;
- }
- ~EvaluationTracker() {
- Self.EvalTracker = Prev;
- if (Prev)
- Prev->EvalOK &= EvalOK;
- }
- bool evaluate(const Expr *E, bool &Result) {
- if (!EvalOK || E->isValueDependent())
- return false;
- EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
- return EvalOK;
- }
- private:
- SequenceChecker &Self;
- EvaluationTracker *Prev;
- bool EvalOK;
- } *EvalTracker;
- /// \brief Find the object which is produced by the specified expression,
- /// if any.
- Object getObject(Expr *E, bool Mod) const {
- E = E->IgnoreParenCasts();
- if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
- if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
- return getObject(UO->getSubExpr(), Mod);
- } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
- if (BO->getOpcode() == BO_Comma)
- return getObject(BO->getRHS(), Mod);
- if (Mod && BO->isAssignmentOp())
- return getObject(BO->getLHS(), Mod);
- } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
- // FIXME: Check for more interesting cases, like "x.n = ++x.n".
- if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
- return ME->getMemberDecl();
- } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
- // FIXME: If this is a reference, map through to its value.
- return DRE->getDecl();
- return nullptr;
- }
- /// \brief Note that an object was modified or used by an expression.
- void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
- Usage &U = UI.Uses[UK];
- if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
- if (UK == UK_ModAsSideEffect && ModAsSideEffect)
- ModAsSideEffect->push_back(std::make_pair(O, U));
- U.Use = Ref;
- U.Seq = Region;
- }
- }
- /// \brief Check whether a modification or use conflicts with a prior usage.
- void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
- bool IsModMod) {
- if (UI.Diagnosed)
- return;
- const Usage &U = UI.Uses[OtherKind];
- if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
- return;
- Expr *Mod = U.Use;
- Expr *ModOrUse = Ref;
- if (OtherKind == UK_Use)
- std::swap(Mod, ModOrUse);
- SemaRef.Diag(Mod->getExprLoc(),
- IsModMod ? diag::warn_unsequenced_mod_mod
- : diag::warn_unsequenced_mod_use)
- << O << SourceRange(ModOrUse->getExprLoc());
- UI.Diagnosed = true;
- }
- void notePreUse(Object O, Expr *Use) {
- UsageInfo &U = UsageMap[O];
- // Uses conflict with other modifications.
- checkUsage(O, U, Use, UK_ModAsValue, false);
- }
- void notePostUse(Object O, Expr *Use) {
- UsageInfo &U = UsageMap[O];
- checkUsage(O, U, Use, UK_ModAsSideEffect, false);
- addUsage(U, O, Use, UK_Use);
- }
- void notePreMod(Object O, Expr *Mod) {
- UsageInfo &U = UsageMap[O];
- // Modifications conflict with other modifications and with uses.
- checkUsage(O, U, Mod, UK_ModAsValue, true);
- checkUsage(O, U, Mod, UK_Use, false);
- }
- void notePostMod(Object O, Expr *Use, UsageKind UK) {
- UsageInfo &U = UsageMap[O];
- checkUsage(O, U, Use, UK_ModAsSideEffect, true);
- addUsage(U, O, Use, UK);
- }
- public:
- SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
- : Base(S.Context), SemaRef(S), Region(Tree.root()),
- ModAsSideEffect(nullptr), WorkList(WorkList), EvalTracker(nullptr) {
- Visit(E);
- }
- void VisitStmt(Stmt *S) {
- // Skip all statements which aren't expressions for now.
- }
- void VisitExpr(Expr *E) {
- // By default, just recurse to evaluated subexpressions.
- Base::VisitStmt(E);
- }
- void VisitCastExpr(CastExpr *E) {
- Object O = Object();
- if (E->getCastKind() == CK_LValueToRValue)
- O = getObject(E->getSubExpr(), false);
- if (O)
- notePreUse(O, E);
- VisitExpr(E);
- if (O)
- notePostUse(O, E);
- }
- void VisitBinComma(BinaryOperator *BO) {
- // C++11 [expr.comma]p1:
- // Every value computation and side effect associated with the left
- // expression is sequenced before every value computation and side
- // effect associated with the right expression.
- SequenceTree::Seq LHS = Tree.allocate(Region);
- SequenceTree::Seq RHS = Tree.allocate(Region);
- SequenceTree::Seq OldRegion = Region;
- {
- SequencedSubexpression SeqLHS(*this);
- Region = LHS;
- Visit(BO->getLHS());
- }
- Region = RHS;
- Visit(BO->getRHS());
- Region = OldRegion;
- // Forget that LHS and RHS are sequenced. They are both unsequenced
- // with respect to other stuff.
- Tree.merge(LHS);
- Tree.merge(RHS);
- }
- void VisitBinAssign(BinaryOperator *BO) {
- // The modification is sequenced after the value computation of the LHS
- // and RHS, so check it before inspecting the operands and update the
- // map afterwards.
- Object O = getObject(BO->getLHS(), true);
- if (!O)
- return VisitExpr(BO);
- notePreMod(O, BO);
- // C++11 [expr.ass]p7:
- // E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
- // only once.
- //
- // Therefore, for a compound assignment operator, O is considered used
- // everywhere except within the evaluation of E1 itself.
- if (isa<CompoundAssignOperator>(BO))
- notePreUse(O, BO);
- Visit(BO->getLHS());
- if (isa<CompoundAssignOperator>(BO))
- notePostUse(O, BO);
- Visit(BO->getRHS());
- // C++11 [expr.ass]p1:
- // the assignment is sequenced [...] before the value computation of the
- // assignment expression.
- // C11 6.5.16/3 has no such rule.
- notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
- : UK_ModAsSideEffect);
- }
- void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
- VisitBinAssign(CAO);
- }
- void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
- void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
- void VisitUnaryPreIncDec(UnaryOperator *UO) {
- Object O = getObject(UO->getSubExpr(), true);
- if (!O)
- return VisitExpr(UO);
- notePreMod(O, UO);
- Visit(UO->getSubExpr());
- // C++11 [expr.pre.incr]p1:
- // the expression ++x is equivalent to x+=1
- notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
- : UK_ModAsSideEffect);
- }
- void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
- void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
- void VisitUnaryPostIncDec(UnaryOperator *UO) {
- Object O = getObject(UO->getSubExpr(), true);
- if (!O)
- return VisitExpr(UO);
- notePreMod(O, UO);
- Visit(UO->getSubExpr());
- notePostMod(O, UO, UK_ModAsSideEffect);
- }
- /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
- void VisitBinLOr(BinaryOperator *BO) {
- // The side-effects of the LHS of an '&&' are sequenced before the
- // value computation of the RHS, and hence before the value computation
- // of the '&&' itself, unless the LHS evaluates to zero. We treat them
- // as if they were unconditionally sequenced.
- EvaluationTracker Eval(*this);
- {
- SequencedSubexpression Sequenced(*this);
- Visit(BO->getLHS());
- }
- bool Result;
- if (Eval.evaluate(BO->getLHS(), Result)) {
- if (!Result)
- Visit(BO->getRHS());
- } else {
- // Check for unsequenced operations in the RHS, treating it as an
- // entirely separate evaluation.
- //
- // FIXME: If there are operations in the RHS which are unsequenced
- // with respect to operations outside the RHS, and those operations
- // are unconditionally evaluated, diagnose them.
- WorkList.push_back(BO->getRHS());
- }
- }
- void VisitBinLAnd(BinaryOperator *BO) {
- EvaluationTracker Eval(*this);
- {
- SequencedSubexpression Sequenced(*this);
- Visit(BO->getLHS());
- }
- bool Result;
- if (Eval.evaluate(BO->getLHS(), Result)) {
- if (Result)
- Visit(BO->getRHS());
- } else {
- WorkList.push_back(BO->getRHS());
- }
- }
- // Only visit the condition, unless we can be sure which subexpression will
- // be chosen.
- void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
- EvaluationTracker Eval(*this);
- {
- SequencedSubexpression Sequenced(*this);
- Visit(CO->getCond());
- }
- bool Result;
- if (Eval.evaluate(CO->getCond(), Result))
- Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
- else {
- WorkList.push_back(CO->getTrueExpr());
- WorkList.push_back(CO->getFalseExpr());
- }
- }
- void VisitCallExpr(CallExpr *CE) {
- // C++11 [intro.execution]p15:
- // When calling a function [...], every value computation and side effect
- // associated with any argument expression, or with the postfix expression
- // designating the called function, is sequenced before execution of every
- // expression or statement in the body of the function [and thus before
- // the value computation of its result].
- SequencedSubexpression Sequenced(*this);
- Base::VisitCallExpr(CE);
- // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
- }
- void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
- // This is a call, so all subexpressions are sequenced before the result.
- SequencedSubexpression Sequenced(*this);
- if (!CCE->isListInitialization())
- return VisitExpr(CCE);
- // In C++11, list initializations are sequenced.
- SmallVector<SequenceTree::Seq, 32> Elts;
- SequenceTree::Seq Parent = Region;
- for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
- E = CCE->arg_end();
- I != E; ++I) {
- Region = Tree.allocate(Parent);
- Elts.push_back(Region);
- Visit(*I);
- }
- // Forget that the initializers are sequenced.
- Region = Parent;
- for (unsigned I = 0; I < Elts.size(); ++I)
- Tree.merge(Elts[I]);
- }
- void VisitInitListExpr(InitListExpr *ILE) {
- if (!SemaRef.getLangOpts().CPlusPlus11)
- return VisitExpr(ILE);
- // In C++11, list initializations are sequenced.
- SmallVector<SequenceTree::Seq, 32> Elts;
- SequenceTree::Seq Parent = Region;
- for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
- Expr *E = ILE->getInit(I);
- if (!E) continue;
- Region = Tree.allocate(Parent);
- Elts.push_back(Region);
- Visit(E);
- }
- // Forget that the initializers are sequenced.
- Region = Parent;
- for (unsigned I = 0; I < Elts.size(); ++I)
- Tree.merge(Elts[I]);
- }
- };
- }
- void Sema::CheckUnsequencedOperations(Expr *E) {
- SmallVector<Expr *, 8> WorkList;
- WorkList.push_back(E);
- while (!WorkList.empty()) {
- Expr *Item = WorkList.pop_back_val();
- SequenceChecker(*this, Item, WorkList);
- }
- }
- void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
- bool IsConstexpr) {
- CheckImplicitConversions(E, CheckLoc);
- CheckUnsequencedOperations(E);
- if (!IsConstexpr && !E->isValueDependent())
- CheckForIntOverflow(E);
- }
- void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
- FieldDecl *BitField,
- Expr *Init) {
- (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
- }
- /// CheckParmsForFunctionDef - Check that the parameters of the given
- /// function are appropriate for the definition of a function. This
- /// takes care of any checks that cannot be performed on the
- /// declaration itself, e.g., that the types of each of the function
- /// parameters are complete.
- bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
- ParmVarDecl *const *PEnd,
- bool CheckParameterNames) {
- bool HasInvalidParm = false;
- for (; P != PEnd; ++P) {
- ParmVarDecl *Param = *P;
-
- // C99 6.7.5.3p4: the parameters in a parameter type list in a
- // function declarator that is part of a function definition of
- // that function shall not have incomplete type.
- //
- // This is also C++ [dcl.fct]p6.
- if (!Param->isInvalidDecl() &&
- RequireCompleteType(Param->getLocation(), Param->getType(),
- diag::err_typecheck_decl_incomplete_type)) {
- Param->setInvalidDecl();
- HasInvalidParm = true;
- }
- // C99 6.9.1p5: If the declarator includes a parameter type list, the
- // declaration of each parameter shall include an identifier.
- if (CheckParameterNames &&
- Param->getIdentifier() == nullptr &&
- !Param->isImplicit() &&
- !getLangOpts().CPlusPlus)
- Diag(Param->getLocation(), diag::err_parameter_name_omitted);
- // C99 6.7.5.3p12:
- // If the function declarator is not part of a definition of that
- // function, parameters may have incomplete type and may use the [*]
- // notation in their sequences of declarator specifiers to specify
- // variable length array types.
- QualType PType = Param->getOriginalType();
- while (const ArrayType *AT = Context.getAsArrayType(PType)) {
- if (AT->getSizeModifier() == ArrayType::Star) {
- // FIXME: This diagnostic should point the '[*]' if source-location
- // information is added for it.
- Diag(Param->getLocation(), diag::err_array_star_in_function_definition);
- break;
- }
- PType= AT->getElementType();
- }
- // MSVC destroys objects passed by value in the callee. Therefore a
- // function definition which takes such a parameter must be able to call the
- // object's destructor. However, we don't perform any direct access check
- // on the dtor.
- if (getLangOpts().CPlusPlus && Context.getTargetInfo()
- .getCXXABI()
- .areArgsDestroyedLeftToRightInCallee()) {
- if (!Param->isInvalidDecl()) {
- if (const RecordType *RT = Param->getType()->getAs<RecordType>()) {
- CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
- if (!ClassDecl->isInvalidDecl() &&
- !ClassDecl->hasIrrelevantDestructor() &&
- !ClassDecl->isDependentContext()) {
- CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
- MarkFunctionReferenced(Param->getLocation(), Destructor);
- DiagnoseUseOfDecl(Destructor, Param->getLocation());
- }
- }
- }
- }
- }
- return HasInvalidParm;
- }
- /// CheckCastAlign - Implements -Wcast-align, which warns when a
- /// pointer cast increases the alignment requirements.
- void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
- // This is actually a lot of work to potentially be doing on every
- // cast; don't do it if we're ignoring -Wcast_align (as is the default).
- if (getDiagnostics().getDiagnosticLevel(diag::warn_cast_align,
- TRange.getBegin())
- == DiagnosticsEngine::Ignored)
- return;
- // Ignore dependent types.
- if (T->isDependentType() || Op->getType()->isDependentType())
- return;
- // Require that the destination be a pointer type.
- const PointerType *DestPtr = T->getAs<PointerType>();
- if (!DestPtr) return;
- // If the destination has alignment 1, we're done.
- QualType DestPointee = DestPtr->getPointeeType();
- if (DestPointee->isIncompleteType()) return;
- CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
- if (DestAlign.isOne()) return;
- // Require that the source be a pointer type.
- const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
- if (!SrcPtr) return;
- QualType SrcPointee = SrcPtr->getPointeeType();
- // Whitelist casts from cv void*. We already implicitly
- // whitelisted casts to cv void*, since they have alignment 1.
- // Also whitelist casts involving incomplete types, which implicitly
- // includes 'void'.
- if (SrcPointee->isIncompleteType()) return;
- CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
- if (SrcAlign >= DestAlign) return;
- Diag(TRange.getBegin(), diag::warn_cast_align)
- << Op->getType() << T
- << static_cast<unsigned>(SrcAlign.getQuantity())
- << static_cast<unsigned>(DestAlign.getQuantity())
- << TRange << Op->getSourceRange();
- }
- static const Type* getElementType(const Expr *BaseExpr) {
- const Type* EltType = BaseExpr->getType().getTypePtr();
- if (EltType->isAnyPointerType())
- return EltType->getPointeeType().getTypePtr();
- else if (EltType->isArrayType())
- return EltType->getBaseElementTypeUnsafe();
- return EltType;
- }
- /// \brief Check whether this array fits the idiom of a size-one tail padded
- /// array member of a struct.
- ///
- /// We avoid emitting out-of-bounds access warnings for such arrays as they are
- /// commonly used to emulate flexible arrays in C89 code.
- static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
- const NamedDecl *ND) {
- if (Size != 1 || !ND) return false;
- const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
- if (!FD) return false;
- // Don't consider sizes resulting from macro expansions or template argument
- // substitution to form C89 tail-padded arrays.
- TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
- while (TInfo) {
- TypeLoc TL = TInfo->getTypeLoc();
- // Look through typedefs.
- if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
- const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
- TInfo = TDL->getTypeSourceInfo();
- continue;
- }
- if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
- const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
- if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
- return false;
- }
- break;
- }
- const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
- if (!RD) return false;
- if (RD->isUnion()) return false;
- if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
- if (!CRD->isStandardLayout()) return false;
- }
- // See if this is the last field decl in the record.
- const Decl *D = FD;
- while ((D = D->getNextDeclInContext()))
- if (isa<FieldDecl>(D))
- return false;
- return true;
- }
- void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
- const ArraySubscriptExpr *ASE,
- bool AllowOnePastEnd, bool IndexNegated) {
- IndexExpr = IndexExpr->IgnoreParenImpCasts();
- if (IndexExpr->isValueDependent())
- return;
- const Type *EffectiveType = getElementType(BaseExpr);
- BaseExpr = BaseExpr->IgnoreParenCasts();
- const ConstantArrayType *ArrayTy =
- Context.getAsConstantArrayType(BaseExpr->getType());
- if (!ArrayTy)
- return;
- llvm::APSInt index;
- if (!IndexExpr->EvaluateAsInt(index, Context))
- return;
- if (IndexNegated)
- index = -index;
- const NamedDecl *ND = nullptr;
- if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
- ND = dyn_cast<NamedDecl>(DRE->getDecl());
- if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
- ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
- if (index.isUnsigned() || !index.isNegative()) {
- llvm::APInt size = ArrayTy->getSize();
- if (!size.isStrictlyPositive())
- return;
- const Type* BaseType = getElementType(BaseExpr);
- if (BaseType != EffectiveType) {
- // Make sure we're comparing apples to apples when comparing index to size
- uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
- uint64_t array_typesize = Context.getTypeSize(BaseType);
- // Handle ptrarith_typesize being zero, such as when casting to void*
- if (!ptrarith_typesize) ptrarith_typesize = 1;
- if (ptrarith_typesize != array_typesize) {
- // There's a cast to a different size type involved
- uint64_t ratio = array_typesize / ptrarith_typesize;
- // TODO: Be smarter about handling cases where array_typesize is not a
- // multiple of ptrarith_typesize
- if (ptrarith_typesize * ratio == array_typesize)
- size *= llvm::APInt(size.getBitWidth(), ratio);
- }
- }
- if (size.getBitWidth() > index.getBitWidth())
- index = index.zext(size.getBitWidth());
- else if (size.getBitWidth() < index.getBitWidth())
- size = size.zext(index.getBitWidth());
- // For array subscripting the index must be less than size, but for pointer
- // arithmetic also allow the index (offset) to be equal to size since
- // computing the next address after the end of the array is legal and
- // commonly done e.g. in C++ iterators and range-based for loops.
- if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
- return;
- // Also don't warn for arrays of size 1 which are members of some
- // structure. These are often used to approximate flexible arrays in C89
- // code.
- if (IsTailPaddedMemberArray(*this, size, ND))
- return;
- // Suppress the warning if the subscript expression (as identified by the
- // ']' location) and the index expression are both from macro expansions
- // within a system header.
- if (ASE) {
- SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
- ASE->getRBracketLoc());
- if (SourceMgr.isInSystemHeader(RBracketLoc)) {
- SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
- IndexExpr->getLocStart());
- if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
- return;
- }
- }
- unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
- if (ASE)
- DiagID = diag::warn_array_index_exceeds_bounds;
- DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
- PDiag(DiagID) << index.toString(10, true)
- << size.toString(10, true)
- << (unsigned)size.getLimitedValue(~0U)
- << IndexExpr->getSourceRange());
- } else {
- unsigned DiagID = diag::warn_array_index_precedes_bounds;
- if (!ASE) {
- DiagID = diag::warn_ptr_arith_precedes_bounds;
- if (index.isNegative()) index = -index;
- }
- DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
- PDiag(DiagID) << index.toString(10, true)
- << IndexExpr->getSourceRange());
- }
- if (!ND) {
- // Try harder to find a NamedDecl to point at in the note.
- while (const ArraySubscriptExpr *ASE =
- dyn_cast<ArraySubscriptExpr>(BaseExpr))
- BaseExpr = ASE->getBase()->IgnoreParenCasts();
- if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
- ND = dyn_cast<NamedDecl>(DRE->getDecl());
- if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
- ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
- }
- if (ND)
- DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
- PDiag(diag::note_array_index_out_of_bounds)
- << ND->getDeclName());
- }
- void Sema::CheckArrayAccess(const Expr *expr) {
- int AllowOnePastEnd = 0;
- while (expr) {
- expr = expr->IgnoreParenImpCasts();
- switch (expr->getStmtClass()) {
- case Stmt::ArraySubscriptExprClass: {
- const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
- CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
- AllowOnePastEnd > 0);
- return;
- }
- case Stmt::UnaryOperatorClass: {
- // Only unwrap the * and & unary operators
- const UnaryOperator *UO = cast<UnaryOperator>(expr);
- expr = UO->getSubExpr();
- switch (UO->getOpcode()) {
- case UO_AddrOf:
- AllowOnePastEnd++;
- break;
- case UO_Deref:
- AllowOnePastEnd--;
- break;
- default:
- return;
- }
- break;
- }
- case Stmt::ConditionalOperatorClass: {
- const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
- if (const Expr *lhs = cond->getLHS())
- CheckArrayAccess(lhs);
- if (const Expr *rhs = cond->getRHS())
- CheckArrayAccess(rhs);
- return;
- }
- default:
- return;
- }
- }
- }
- //===--- CHECK: Objective-C retain cycles ----------------------------------//
- namespace {
- struct RetainCycleOwner {
- RetainCycleOwner() : Variable(nullptr), Indirect(false) {}
- VarDecl *Variable;
- SourceRange Range;
- SourceLocation Loc;
- bool Indirect;
- void setLocsFrom(Expr *e) {
- Loc = e->getExprLoc();
- Range = e->getSourceRange();
- }
- };
- }
- /// Consider whether capturing the given variable can possibly lead to
- /// a retain cycle.
- static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
- // In ARC, it's captured strongly iff the variable has __strong
- // lifetime. In MRR, it's captured strongly if the variable is
- // __block and has an appropriate type.
- if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
- return false;
- owner.Variable = var;
- if (ref)
- owner.setLocsFrom(ref);
- return true;
- }
- static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
- while (true) {
- e = e->IgnoreParens();
- if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
- switch (cast->getCastKind()) {
- case CK_BitCast:
- case CK_LValueBitCast:
- case CK_LValueToRValue:
- case CK_ARCReclaimReturnedObject:
- e = cast->getSubExpr();
- continue;
- default:
- return false;
- }
- }
- if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
- ObjCIvarDecl *ivar = ref->getDecl();
- if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
- return false;
- // Try to find a retain cycle in the base.
- if (!findRetainCycleOwner(S, ref->getBase(), owner))
- return false;
- if (ref->isFreeIvar()) owner.setLocsFrom(ref);
- owner.Indirect = true;
- return true;
- }
- if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
- VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
- if (!var) return false;
- return considerVariable(var, ref, owner);
- }
- if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
- if (member->isArrow()) return false;
- // Don't count this as an indirect ownership.
- e = member->getBase();
- continue;
- }
- if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
- // Only pay attention to pseudo-objects on property references.
- ObjCPropertyRefExpr *pre
- = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
- ->IgnoreParens());
- if (!pre) return false;
- if (pre->isImplicitProperty()) return false;
- ObjCPropertyDecl *property = pre->getExplicitProperty();
- if (!property->isRetaining() &&
- !(property->getPropertyIvarDecl() &&
- property->getPropertyIvarDecl()->getType()
- .getObjCLifetime() == Qualifiers::OCL_Strong))
- return false;
- owner.Indirect = true;
- if (pre->isSuperReceiver()) {
- owner.Variable = S.getCurMethodDecl()->getSelfDecl();
- if (!owner.Variable)
- return false;
- owner.Loc = pre->getLocation();
- owner.Range = pre->getSourceRange();
- return true;
- }
- e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
- ->getSourceExpr());
- continue;
- }
- // Array ivars?
- return false;
- }
- }
- namespace {
- struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
- FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
- : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
- Variable(variable), Capturer(nullptr) {}
- VarDecl *Variable;
- Expr *Capturer;
- void VisitDeclRefExpr(DeclRefExpr *ref) {
- if (ref->getDecl() == Variable && !Capturer)
- Capturer = ref;
- }
- void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
- if (Capturer) return;
- Visit(ref->getBase());
- if (Capturer && ref->isFreeIvar())
- Capturer = ref;
- }
- void VisitBlockExpr(BlockExpr *block) {
- // Look inside nested blocks
- if (block->getBlockDecl()->capturesVariable(Variable))
- Visit(block->getBlockDecl()->getBody());
- }
-
- void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
- if (Capturer) return;
- if (OVE->getSourceExpr())
- Visit(OVE->getSourceExpr());
- }
- };
- }
- /// Check whether the given argument is a block which captures a
- /// variable.
- static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
- assert(owner.Variable && owner.Loc.isValid());
- e = e->IgnoreParenCasts();
- // Look through [^{...} copy] and Block_copy(^{...}).
- if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
- Selector Cmd = ME->getSelector();
- if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
- e = ME->getInstanceReceiver();
- if (!e)
- return nullptr;
- e = e->IgnoreParenCasts();
- }
- } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
- if (CE->getNumArgs() == 1) {
- FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
- if (Fn) {
- const IdentifierInfo *FnI = Fn->getIdentifier();
- if (FnI && FnI->isStr("_Block_copy")) {
- e = CE->getArg(0)->IgnoreParenCasts();
- }
- }
- }
- }
-
- BlockExpr *block = dyn_cast<BlockExpr>(e);
- if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
- return nullptr;
- FindCaptureVisitor visitor(S.Context, owner.Variable);
- visitor.Visit(block->getBlockDecl()->getBody());
- return visitor.Capturer;
- }
- static void diagnoseRetainCycle(Sema &S, Expr *capturer,
- RetainCycleOwner &owner) {
- assert(capturer);
- assert(owner.Variable && owner.Loc.isValid());
- S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
- << owner.Variable << capturer->getSourceRange();
- S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
- << owner.Indirect << owner.Range;
- }
- /// Check for a keyword selector that starts with the word 'add' or
- /// 'set'.
- static bool isSetterLikeSelector(Selector sel) {
- if (sel.isUnarySelector()) return false;
- StringRef str = sel.getNameForSlot(0);
- while (!str.empty() && str.front() == '_') str = str.substr(1);
- if (str.startswith("set"))
- str = str.substr(3);
- else if (str.startswith("add")) {
- // Specially whitelist 'addOperationWithBlock:'.
- if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
- return false;
- str = str.substr(3);
- }
- else
- return false;
- if (str.empty()) return true;
- return !isLowercase(str.front());
- }
- /// Check a message send to see if it's likely to cause a retain cycle.
- void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
- // Only check instance methods whose selector looks like a setter.
- if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
- return;
- // Try to find a variable that the receiver is strongly owned by.
- RetainCycleOwner owner;
- if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
- if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
- return;
- } else {
- assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
- owner.Variable = getCurMethodDecl()->getSelfDecl();
- owner.Loc = msg->getSuperLoc();
- owner.Range = msg->getSuperLoc();
- }
- // Check whether the receiver is captured by any of the arguments.
- for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
- if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
- return diagnoseRetainCycle(*this, capturer, owner);
- }
- /// Check a property assign to see if it's likely to cause a retain cycle.
- void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
- RetainCycleOwner owner;
- if (!findRetainCycleOwner(*this, receiver, owner))
- return;
- if (Expr *capturer = findCapturingExpr(*this, argument, owner))
- diagnoseRetainCycle(*this, capturer, owner);
- }
- void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
- RetainCycleOwner Owner;
- if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
- return;
-
- // Because we don't have an expression for the variable, we have to set the
- // location explicitly here.
- Owner.Loc = Var->getLocation();
- Owner.Range = Var->getSourceRange();
-
- if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
- diagnoseRetainCycle(*this, Capturer, Owner);
- }
- static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
- Expr *RHS, bool isProperty) {
- // Check if RHS is an Objective-C object literal, which also can get
- // immediately zapped in a weak reference. Note that we explicitly
- // allow ObjCStringLiterals, since those are designed to never really die.
- RHS = RHS->IgnoreParenImpCasts();
- // This enum needs to match with the 'select' in
- // warn_objc_arc_literal_assign (off-by-1).
- Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
- if (Kind == Sema::LK_String || Kind == Sema::LK_None)
- return false;
- S.Diag(Loc, diag::warn_arc_literal_assign)
- << (unsigned) Kind
- << (isProperty ? 0 : 1)
- << RHS->getSourceRange();
- return true;
- }
- static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
- Qualifiers::ObjCLifetime LT,
- Expr *RHS, bool isProperty) {
- // Strip off any implicit cast added to get to the one ARC-specific.
- while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
- if (cast->getCastKind() == CK_ARCConsumeObject) {
- S.Diag(Loc, diag::warn_arc_retained_assign)
- << (LT == Qualifiers::OCL_ExplicitNone)
- << (isProperty ? 0 : 1)
- << RHS->getSourceRange();
- return true;
- }
- RHS = cast->getSubExpr();
- }
- if (LT == Qualifiers::OCL_Weak &&
- checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
- return true;
- return false;
- }
- bool Sema::checkUnsafeAssigns(SourceLocation Loc,
- QualType LHS, Expr *RHS) {
- Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
- if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
- return false;
- if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
- return true;
- return false;
- }
- void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
- Expr *LHS, Expr *RHS) {
- QualType LHSType;
- // PropertyRef on LHS type need be directly obtained from
- // its declaration as it has a PseudoType.
- ObjCPropertyRefExpr *PRE
- = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
- if (PRE && !PRE->isImplicitProperty()) {
- const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
- if (PD)
- LHSType = PD->getType();
- }
-
- if (LHSType.isNull())
- LHSType = LHS->getType();
- Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
- if (LT == Qualifiers::OCL_Weak) {
- DiagnosticsEngine::Level Level =
- Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak, Loc);
- if (Level != DiagnosticsEngine::Ignored)
- getCurFunction()->markSafeWeakUse(LHS);
- }
- if (checkUnsafeAssigns(Loc, LHSType, RHS))
- return;
- // FIXME. Check for other life times.
- if (LT != Qualifiers::OCL_None)
- return;
-
- if (PRE) {
- if (PRE->isImplicitProperty())
- return;
- const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
- if (!PD)
- return;
-
- unsigned Attributes = PD->getPropertyAttributes();
- if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
- // when 'assign' attribute was not explicitly specified
- // by user, ignore it and rely on property type itself
- // for lifetime info.
- unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
- if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
- LHSType->isObjCRetainableType())
- return;
-
- while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
- if (cast->getCastKind() == CK_ARCConsumeObject) {
- Diag(Loc, diag::warn_arc_retained_property_assign)
- << RHS->getSourceRange();
- return;
- }
- RHS = cast->getSubExpr();
- }
- }
- else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
- if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
- return;
- }
- }
- }
- //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
- namespace {
- bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
- SourceLocation StmtLoc,
- const NullStmt *Body) {
- // Do not warn if the body is a macro that expands to nothing, e.g:
- //
- // #define CALL(x)
- // if (condition)
- // CALL(0);
- //
- if (Body->hasLeadingEmptyMacro())
- return false;
- // Get line numbers of statement and body.
- bool StmtLineInvalid;
- unsigned StmtLine = SourceMgr.getSpellingLineNumber(StmtLoc,
- &StmtLineInvalid);
- if (StmtLineInvalid)
- return false;
- bool BodyLineInvalid;
- unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
- &BodyLineInvalid);
- if (BodyLineInvalid)
- return false;
- // Warn if null statement and body are on the same line.
- if (StmtLine != BodyLine)
- return false;
- return true;
- }
- } // Unnamed namespace
- void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
- const Stmt *Body,
- unsigned DiagID) {
- // Since this is a syntactic check, don't emit diagnostic for template
- // instantiations, this just adds noise.
- if (CurrentInstantiationScope)
- return;
- // The body should be a null statement.
- const NullStmt *NBody = dyn_cast<NullStmt>(Body);
- if (!NBody)
- return;
- // Do the usual checks.
- if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
- return;
- Diag(NBody->getSemiLoc(), DiagID);
- Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
- }
- void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
- const Stmt *PossibleBody) {
- assert(!CurrentInstantiationScope); // Ensured by caller
- SourceLocation StmtLoc;
- const Stmt *Body;
- unsigned DiagID;
- if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
- StmtLoc = FS->getRParenLoc();
- Body = FS->getBody();
- DiagID = diag::warn_empty_for_body;
- } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
- StmtLoc = WS->getCond()->getSourceRange().getEnd();
- Body = WS->getBody();
- DiagID = diag::warn_empty_while_body;
- } else
- return; // Neither `for' nor `while'.
- // The body should be a null statement.
- const NullStmt *NBody = dyn_cast<NullStmt>(Body);
- if (!NBody)
- return;
- // Skip expensive checks if diagnostic is disabled.
- if (Diags.getDiagnosticLevel(DiagID, NBody->getSemiLoc()) ==
- DiagnosticsEngine::Ignored)
- return;
- // Do the usual checks.
- if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
- return;
- // `for(...);' and `while(...);' are popular idioms, so in order to keep
- // noise level low, emit diagnostics only if for/while is followed by a
- // CompoundStmt, e.g.:
- // for (int i = 0; i < n; i++);
- // {
- // a(i);
- // }
- // or if for/while is followed by a statement with more indentation
- // than for/while itself:
- // for (int i = 0; i < n; i++);
- // a(i);
- bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
- if (!ProbableTypo) {
- bool BodyColInvalid;
- unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
- PossibleBody->getLocStart(),
- &BodyColInvalid);
- if (BodyColInvalid)
- return;
- bool StmtColInvalid;
- unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
- S->getLocStart(),
- &StmtColInvalid);
- if (StmtColInvalid)
- return;
- if (BodyCol > StmtCol)
- ProbableTypo = true;
- }
- if (ProbableTypo) {
- Diag(NBody->getSemiLoc(), DiagID);
- Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
- }
- }
- //===--- Layout compatibility ----------------------------------------------//
- namespace {
- bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
- /// \brief Check if two enumeration types are layout-compatible.
- bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
- // C++11 [dcl.enum] p8:
- // Two enumeration types are layout-compatible if they have the same
- // underlying type.
- return ED1->isComplete() && ED2->isComplete() &&
- C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
- }
- /// \brief Check if two fields are layout-compatible.
- bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
- if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
- return false;
- if (Field1->isBitField() != Field2->isBitField())
- return false;
- if (Field1->isBitField()) {
- // Make sure that the bit-fields are the same length.
- unsigned Bits1 = Field1->getBitWidthValue(C);
- unsigned Bits2 = Field2->getBitWidthValue(C);
- if (Bits1 != Bits2)
- return false;
- }
- return true;
- }
- /// \brief Check if two standard-layout structs are layout-compatible.
- /// (C++11 [class.mem] p17)
- bool isLayoutCompatibleStruct(ASTContext &C,
- RecordDecl *RD1,
- RecordDecl *RD2) {
- // If both records are C++ classes, check that base classes match.
- if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
- // If one of records is a CXXRecordDecl we are in C++ mode,
- // thus the other one is a CXXRecordDecl, too.
- const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
- // Check number of base classes.
- if (D1CXX->getNumBases() != D2CXX->getNumBases())
- return false;
- // Check the base classes.
- for (CXXRecordDecl::base_class_const_iterator
- Base1 = D1CXX->bases_begin(),
- BaseEnd1 = D1CXX->bases_end(),
- Base2 = D2CXX->bases_begin();
- Base1 != BaseEnd1;
- ++Base1, ++Base2) {
- if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
- return false;
- }
- } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
- // If only RD2 is a C++ class, it should have zero base classes.
- if (D2CXX->getNumBases() > 0)
- return false;
- }
- // Check the fields.
- RecordDecl::field_iterator Field2 = RD2->field_begin(),
- Field2End = RD2->field_end(),
- Field1 = RD1->field_begin(),
- Field1End = RD1->field_end();
- for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
- if (!isLayoutCompatible(C, *Field1, *Field2))
- return false;
- }
- if (Field1 != Field1End || Field2 != Field2End)
- return false;
- return true;
- }
- /// \brief Check if two standard-layout unions are layout-compatible.
- /// (C++11 [class.mem] p18)
- bool isLayoutCompatibleUnion(ASTContext &C,
- RecordDecl *RD1,
- RecordDecl *RD2) {
- llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
- for (auto *Field2 : RD2->fields())
- UnmatchedFields.insert(Field2);
- for (auto *Field1 : RD1->fields()) {
- llvm::SmallPtrSet<FieldDecl *, 8>::iterator
- I = UnmatchedFields.begin(),
- E = UnmatchedFields.end();
- for ( ; I != E; ++I) {
- if (isLayoutCompatible(C, Field1, *I)) {
- bool Result = UnmatchedFields.erase(*I);
- (void) Result;
- assert(Result);
- break;
- }
- }
- if (I == E)
- return false;
- }
- return UnmatchedFields.empty();
- }
- bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
- if (RD1->isUnion() != RD2->isUnion())
- return false;
- if (RD1->isUnion())
- return isLayoutCompatibleUnion(C, RD1, RD2);
- else
- return isLayoutCompatibleStruct(C, RD1, RD2);
- }
- /// \brief Check if two types are layout-compatible in C++11 sense.
- bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
- if (T1.isNull() || T2.isNull())
- return false;
- // C++11 [basic.types] p11:
- // If two types T1 and T2 are the same type, then T1 and T2 are
- // layout-compatible types.
- if (C.hasSameType(T1, T2))
- return true;
- T1 = T1.getCanonicalType().getUnqualifiedType();
- T2 = T2.getCanonicalType().getUnqualifiedType();
- const Type::TypeClass TC1 = T1->getTypeClass();
- const Type::TypeClass TC2 = T2->getTypeClass();
- if (TC1 != TC2)
- return false;
- if (TC1 == Type::Enum) {
- return isLayoutCompatible(C,
- cast<EnumType>(T1)->getDecl(),
- cast<EnumType>(T2)->getDecl());
- } else if (TC1 == Type::Record) {
- if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
- return false;
- return isLayoutCompatible(C,
- cast<RecordType>(T1)->getDecl(),
- cast<RecordType>(T2)->getDecl());
- }
- return false;
- }
- }
- //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
- namespace {
- /// \brief Given a type tag expression find the type tag itself.
- ///
- /// \param TypeExpr Type tag expression, as it appears in user's code.
- ///
- /// \param VD Declaration of an identifier that appears in a type tag.
- ///
- /// \param MagicValue Type tag magic value.
- bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
- const ValueDecl **VD, uint64_t *MagicValue) {
- while(true) {
- if (!TypeExpr)
- return false;
- TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
- switch (TypeExpr->getStmtClass()) {
- case Stmt::UnaryOperatorClass: {
- const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
- if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
- TypeExpr = UO->getSubExpr();
- continue;
- }
- return false;
- }
- case Stmt::DeclRefExprClass: {
- const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
- *VD = DRE->getDecl();
- return true;
- }
- case Stmt::IntegerLiteralClass: {
- const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
- llvm::APInt MagicValueAPInt = IL->getValue();
- if (MagicValueAPInt.getActiveBits() <= 64) {
- *MagicValue = MagicValueAPInt.getZExtValue();
- return true;
- } else
- return false;
- }
- case Stmt::BinaryConditionalOperatorClass:
- case Stmt::ConditionalOperatorClass: {
- const AbstractConditionalOperator *ACO =
- cast<AbstractConditionalOperator>(TypeExpr);
- bool Result;
- if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
- if (Result)
- TypeExpr = ACO->getTrueExpr();
- else
- TypeExpr = ACO->getFalseExpr();
- continue;
- }
- return false;
- }
- case Stmt::BinaryOperatorClass: {
- const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
- if (BO->getOpcode() == BO_Comma) {
- TypeExpr = BO->getRHS();
- continue;
- }
- return false;
- }
- default:
- return false;
- }
- }
- }
- /// \brief Retrieve the C type corresponding to type tag TypeExpr.
- ///
- /// \param TypeExpr Expression that specifies a type tag.
- ///
- /// \param MagicValues Registered magic values.
- ///
- /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
- /// kind.
- ///
- /// \param TypeInfo Information about the corresponding C type.
- ///
- /// \returns true if the corresponding C type was found.
- bool GetMatchingCType(
- const IdentifierInfo *ArgumentKind,
- const Expr *TypeExpr, const ASTContext &Ctx,
- const llvm::DenseMap<Sema::TypeTagMagicValue,
- Sema::TypeTagData> *MagicValues,
- bool &FoundWrongKind,
- Sema::TypeTagData &TypeInfo) {
- FoundWrongKind = false;
- // Variable declaration that has type_tag_for_datatype attribute.
- const ValueDecl *VD = nullptr;
- uint64_t MagicValue;
- if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
- return false;
- if (VD) {
- if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
- if (I->getArgumentKind() != ArgumentKind) {
- FoundWrongKind = true;
- return false;
- }
- TypeInfo.Type = I->getMatchingCType();
- TypeInfo.LayoutCompatible = I->getLayoutCompatible();
- TypeInfo.MustBeNull = I->getMustBeNull();
- return true;
- }
- return false;
- }
- if (!MagicValues)
- return false;
- llvm::DenseMap<Sema::TypeTagMagicValue,
- Sema::TypeTagData>::const_iterator I =
- MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
- if (I == MagicValues->end())
- return false;
- TypeInfo = I->second;
- return true;
- }
- } // unnamed namespace
- void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
- uint64_t MagicValue, QualType Type,
- bool LayoutCompatible,
- bool MustBeNull) {
- if (!TypeTagForDatatypeMagicValues)
- TypeTagForDatatypeMagicValues.reset(
- new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
- TypeTagMagicValue Magic(ArgumentKind, MagicValue);
- (*TypeTagForDatatypeMagicValues)[Magic] =
- TypeTagData(Type, LayoutCompatible, MustBeNull);
- }
- namespace {
- bool IsSameCharType(QualType T1, QualType T2) {
- const BuiltinType *BT1 = T1->getAs<BuiltinType>();
- if (!BT1)
- return false;
- const BuiltinType *BT2 = T2->getAs<BuiltinType>();
- if (!BT2)
- return false;
- BuiltinType::Kind T1Kind = BT1->getKind();
- BuiltinType::Kind T2Kind = BT2->getKind();
- return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) ||
- (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) ||
- (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
- (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
- }
- } // unnamed namespace
- void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
- const Expr * const *ExprArgs) {
- const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
- bool IsPointerAttr = Attr->getIsPointer();
- const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
- bool FoundWrongKind;
- TypeTagData TypeInfo;
- if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
- TypeTagForDatatypeMagicValues.get(),
- FoundWrongKind, TypeInfo)) {
- if (FoundWrongKind)
- Diag(TypeTagExpr->getExprLoc(),
- diag::warn_type_tag_for_datatype_wrong_kind)
- << TypeTagExpr->getSourceRange();
- return;
- }
- const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
- if (IsPointerAttr) {
- // Skip implicit cast of pointer to `void *' (as a function argument).
- if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
- if (ICE->getType()->isVoidPointerType() &&
- ICE->getCastKind() == CK_BitCast)
- ArgumentExpr = ICE->getSubExpr();
- }
- QualType ArgumentType = ArgumentExpr->getType();
- // Passing a `void*' pointer shouldn't trigger a warning.
- if (IsPointerAttr && ArgumentType->isVoidPointerType())
- return;
- if (TypeInfo.MustBeNull) {
- // Type tag with matching void type requires a null pointer.
- if (!ArgumentExpr->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNotNull)) {
- Diag(ArgumentExpr->getExprLoc(),
- diag::warn_type_safety_null_pointer_required)
- << ArgumentKind->getName()
- << ArgumentExpr->getSourceRange()
- << TypeTagExpr->getSourceRange();
- }
- return;
- }
- QualType RequiredType = TypeInfo.Type;
- if (IsPointerAttr)
- RequiredType = Context.getPointerType(RequiredType);
- bool mismatch = false;
- if (!TypeInfo.LayoutCompatible) {
- mismatch = !Context.hasSameType(ArgumentType, RequiredType);
- // C++11 [basic.fundamental] p1:
- // Plain char, signed char, and unsigned char are three distinct types.
- //
- // But we treat plain `char' as equivalent to `signed char' or `unsigned
- // char' depending on the current char signedness mode.
- if (mismatch)
- if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
- RequiredType->getPointeeType())) ||
- (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
- mismatch = false;
- } else
- if (IsPointerAttr)
- mismatch = !isLayoutCompatible(Context,
- ArgumentType->getPointeeType(),
- RequiredType->getPointeeType());
- else
- mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
- if (mismatch)
- Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
- << ArgumentType << ArgumentKind
- << TypeInfo.LayoutCompatible << RequiredType
- << ArgumentExpr->getSourceRange()
- << TypeTagExpr->getSourceRange();
- }
|