123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445 |
- //== BasicConstraintManager.cpp - Manage basic constraints.------*- C++ -*--==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines BasicConstraintManager, a class that tracks simple
- // equality and inequality constraints on symbolic values of ProgramState.
- //
- //===----------------------------------------------------------------------===//
- #include "SimpleConstraintManager.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace clang;
- using namespace ento;
- namespace { class ConstNotEq {}; }
- namespace { class ConstEq {}; }
- typedef llvm::ImmutableMap<SymbolRef,ProgramState::IntSetTy> ConstNotEqTy;
- typedef llvm::ImmutableMap<SymbolRef,const llvm::APSInt*> ConstEqTy;
- static int ConstEqIndex = 0;
- static int ConstNotEqIndex = 0;
- namespace clang {
- namespace ento {
- template<>
- struct ProgramStateTrait<ConstNotEq> :
- public ProgramStatePartialTrait<ConstNotEqTy> {
- static inline void *GDMIndex() { return &ConstNotEqIndex; }
- };
- template<>
- struct ProgramStateTrait<ConstEq> : public ProgramStatePartialTrait<ConstEqTy> {
- static inline void *GDMIndex() { return &ConstEqIndex; }
- };
- }
- }
- namespace {
- // BasicConstraintManager only tracks equality and inequality constraints of
- // constants and integer variables.
- class BasicConstraintManager
- : public SimpleConstraintManager {
- ProgramState::IntSetTy::Factory ISetFactory;
- public:
- BasicConstraintManager(ProgramStateManager &statemgr, SubEngine &subengine)
- : SimpleConstraintManager(subengine, statemgr.getBasicVals()),
- ISetFactory(statemgr.getAllocator()) {}
- ProgramStateRef assumeSymEquality(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment,
- bool Assumption);
- ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) {
- return assumeSymEquality(State, Sym, V, Adjustment, false);
- }
- ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) {
- return assumeSymEquality(State, Sym, V, Adjustment, true);
- }
- ProgramStateRef assumeSymLT(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt& V,
- const llvm::APSInt& Adjustment);
- ProgramStateRef assumeSymGT(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt& V,
- const llvm::APSInt& Adjustment);
- ProgramStateRef assumeSymGE(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt& V,
- const llvm::APSInt& Adjustment);
- ProgramStateRef assumeSymLE(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt& V,
- const llvm::APSInt& Adjustment);
- ProgramStateRef AddEQ(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt& V);
- ProgramStateRef AddNE(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt& V);
- const llvm::APSInt* getSymVal(ProgramStateRef state,
- SymbolRef sym) const;
- bool isNotEqual(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt& V) const;
- bool isEqual(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt& V) const;
- ProgramStateRef removeDeadBindings(ProgramStateRef state,
- SymbolReaper& SymReaper);
- bool performTest(llvm::APSInt SymVal, llvm::APSInt Adjustment,
- BinaryOperator::Opcode Op, llvm::APSInt ComparisonVal);
- void print(ProgramStateRef state,
- raw_ostream &Out,
- const char* nl,
- const char *sep);
- };
- } // end anonymous namespace
- ConstraintManager*
- ento::CreateBasicConstraintManager(ProgramStateManager& statemgr,
- SubEngine &subengine) {
- return new BasicConstraintManager(statemgr, subengine);
- }
- // FIXME: This is a more general utility and should live somewhere else.
- bool BasicConstraintManager::performTest(llvm::APSInt SymVal,
- llvm::APSInt Adjustment,
- BinaryOperator::Opcode Op,
- llvm::APSInt ComparisonVal) {
- APSIntType Type(Adjustment);
- Type.apply(SymVal);
- Type.apply(ComparisonVal);
- SymVal += Adjustment;
- assert(BinaryOperator::isComparisonOp(Op));
- BasicValueFactory &BVF = getBasicVals();
- const llvm::APSInt *Result = BVF.evalAPSInt(Op, SymVal, ComparisonVal);
- assert(Result && "Comparisons should always have valid results.");
- return Result->getBoolValue();
- }
- ProgramStateRef
- BasicConstraintManager::assumeSymEquality(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment,
- bool Assumption) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- if (AdjustmentType.testInRange(V) != APSIntType::RTR_Within)
- return Assumption ? NULL : State;
- // Get the symbol type.
- BasicValueFactory &BVF = getBasicVals();
- ASTContext &Ctx = BVF.getContext();
- APSIntType SymbolType = BVF.getAPSIntType(Sym->getType(Ctx));
- // First, see if the adjusted value is within range for the symbol.
- llvm::APSInt Adjusted = AdjustmentType.convert(V) - Adjustment;
- if (SymbolType.testInRange(Adjusted) != APSIntType::RTR_Within)
- return Assumption ? NULL : State;
- // Now we can do things properly in the symbol space.
- SymbolType.apply(Adjusted);
- // Second, determine if sym == X, where X+Adjustment != V.
- if (const llvm::APSInt *X = getSymVal(State, Sym)) {
- bool IsFeasible = (*X == Adjusted);
- return (IsFeasible == Assumption) ? State : NULL;
- }
- // Third, determine if we already know sym+Adjustment != V.
- if (isNotEqual(State, Sym, Adjusted))
- return Assumption ? NULL : State;
- // If we reach here, sym is not a constant and we don't know if it is != V.
- // Make the correct assumption.
- if (Assumption)
- return AddEQ(State, Sym, Adjusted);
- else
- return AddNE(State, Sym, Adjusted);
- }
- // The logic for these will be handled in another ConstraintManager.
- // Approximate it here anyway by handling some edge cases.
- ProgramStateRef
- BasicConstraintManager::assumeSymLT(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) {
- APSIntType ComparisonType(V), AdjustmentType(Adjustment);
- // Is 'V' out of range above the type?
- llvm::APSInt Max = AdjustmentType.getMaxValue();
- if (V > ComparisonType.convert(Max)) {
- // This path is trivially feasible.
- return state;
- }
- // Is 'V' the smallest possible value, or out of range below the type?
- llvm::APSInt Min = AdjustmentType.getMinValue();
- if (V <= ComparisonType.convert(Min)) {
- // sym cannot be any value less than 'V'. This path is infeasible.
- return NULL;
- }
- // Reject a path if the value of sym is a constant X and !(X+Adj < V).
- if (const llvm::APSInt *X = getSymVal(state, sym)) {
- bool isFeasible = performTest(*X, Adjustment, BO_LT, V);
- return isFeasible ? state : NULL;
- }
- // FIXME: For now have assuming x < y be the same as assuming sym != V;
- return assumeSymNE(state, sym, V, Adjustment);
- }
- ProgramStateRef
- BasicConstraintManager::assumeSymGT(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) {
- APSIntType ComparisonType(V), AdjustmentType(Adjustment);
- // Is 'V' the largest possible value, or out of range above the type?
- llvm::APSInt Max = AdjustmentType.getMaxValue();
- if (V >= ComparisonType.convert(Max)) {
- // sym cannot be any value greater than 'V'. This path is infeasible.
- return NULL;
- }
- // Is 'V' out of range below the type?
- llvm::APSInt Min = AdjustmentType.getMinValue();
- if (V < ComparisonType.convert(Min)) {
- // This path is trivially feasible.
- return state;
- }
- // Reject a path if the value of sym is a constant X and !(X+Adj > V).
- if (const llvm::APSInt *X = getSymVal(state, sym)) {
- bool isFeasible = performTest(*X, Adjustment, BO_GT, V);
- return isFeasible ? state : NULL;
- }
- // FIXME: For now have assuming x > y be the same as assuming sym != V;
- return assumeSymNE(state, sym, V, Adjustment);
- }
- ProgramStateRef
- BasicConstraintManager::assumeSymGE(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) {
- APSIntType ComparisonType(V), AdjustmentType(Adjustment);
- // Is 'V' the largest possible value, or out of range above the type?
- llvm::APSInt Max = AdjustmentType.getMaxValue();
- ComparisonType.apply(Max);
- if (V > Max) {
- // sym cannot be any value greater than 'V'. This path is infeasible.
- return NULL;
- } else if (V == Max) {
- // If the path is feasible then as a consequence we know that
- // 'sym+Adjustment == V' because there are no larger values.
- // Add this constraint.
- return assumeSymEQ(state, sym, V, Adjustment);
- }
- // Is 'V' out of range below the type?
- llvm::APSInt Min = AdjustmentType.getMinValue();
- if (V < ComparisonType.convert(Min)) {
- // This path is trivially feasible.
- return state;
- }
- // Reject a path if the value of sym is a constant X and !(X+Adj >= V).
- if (const llvm::APSInt *X = getSymVal(state, sym)) {
- bool isFeasible = performTest(*X, Adjustment, BO_GE, V);
- return isFeasible ? state : NULL;
- }
- return state;
- }
- ProgramStateRef
- BasicConstraintManager::assumeSymLE(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) {
- APSIntType ComparisonType(V), AdjustmentType(Adjustment);
- // Is 'V' out of range above the type?
- llvm::APSInt Max = AdjustmentType.getMaxValue();
- if (V > ComparisonType.convert(Max)) {
- // This path is trivially feasible.
- return state;
- }
- // Is 'V' the smallest possible value, or out of range below the type?
- llvm::APSInt Min = AdjustmentType.getMinValue();
- ComparisonType.apply(Min);
- if (V < Min) {
- // sym cannot be any value less than 'V'. This path is infeasible.
- return NULL;
- } else if (V == Min) {
- // If the path is feasible then as a consequence we know that
- // 'sym+Adjustment == V' because there are no smaller values.
- // Add this constraint.
- return assumeSymEQ(state, sym, V, Adjustment);
- }
- // Reject a path if the value of sym is a constant X and !(X+Adj >= V).
- if (const llvm::APSInt *X = getSymVal(state, sym)) {
- bool isFeasible = performTest(*X, Adjustment, BO_LE, V);
- return isFeasible ? state : NULL;
- }
- return state;
- }
- ProgramStateRef BasicConstraintManager::AddEQ(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt& V) {
- // Now that we have an actual value, we can throw out the NE-set.
- // Create a new state with the old bindings replaced.
- state = state->remove<ConstNotEq>(sym);
- return state->set<ConstEq>(sym, &getBasicVals().getValue(V));
- }
- ProgramStateRef BasicConstraintManager::AddNE(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt& V) {
- // First, retrieve the NE-set associated with the given symbol.
- ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym);
- ProgramState::IntSetTy S = T ? *T : ISetFactory.getEmptySet();
- // Now add V to the NE set.
- S = ISetFactory.add(S, &getBasicVals().getValue(V));
- // Create a new state with the old binding replaced.
- return state->set<ConstNotEq>(sym, S);
- }
- const llvm::APSInt* BasicConstraintManager::getSymVal(ProgramStateRef state,
- SymbolRef sym) const {
- const ConstEqTy::data_type* T = state->get<ConstEq>(sym);
- return T ? *T : NULL;
- }
- bool BasicConstraintManager::isNotEqual(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt& V) const {
- // Retrieve the NE-set associated with the given symbol.
- const ConstNotEqTy::data_type* T = state->get<ConstNotEq>(sym);
- // See if V is present in the NE-set.
- return T ? T->contains(&getBasicVals().getValue(V)) : false;
- }
- bool BasicConstraintManager::isEqual(ProgramStateRef state,
- SymbolRef sym,
- const llvm::APSInt& V) const {
- // Retrieve the EQ-set associated with the given symbol.
- const ConstEqTy::data_type* T = state->get<ConstEq>(sym);
- // See if V is present in the EQ-set.
- return T ? **T == V : false;
- }
- /// Scan all symbols referenced by the constraints. If the symbol is not alive
- /// as marked in LSymbols, mark it as dead in DSymbols.
- ProgramStateRef
- BasicConstraintManager::removeDeadBindings(ProgramStateRef state,
- SymbolReaper& SymReaper) {
- ConstEqTy CE = state->get<ConstEq>();
- ConstEqTy::Factory& CEFactory = state->get_context<ConstEq>();
- for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I) {
- SymbolRef sym = I.getKey();
- if (SymReaper.maybeDead(sym))
- CE = CEFactory.remove(CE, sym);
- }
- state = state->set<ConstEq>(CE);
- ConstNotEqTy CNE = state->get<ConstNotEq>();
- ConstNotEqTy::Factory& CNEFactory = state->get_context<ConstNotEq>();
- for (ConstNotEqTy::iterator I = CNE.begin(), E = CNE.end(); I != E; ++I) {
- SymbolRef sym = I.getKey();
- if (SymReaper.maybeDead(sym))
- CNE = CNEFactory.remove(CNE, sym);
- }
- return state->set<ConstNotEq>(CNE);
- }
- void BasicConstraintManager::print(ProgramStateRef state,
- raw_ostream &Out,
- const char* nl, const char *sep) {
- // Print equality constraints.
- ConstEqTy CE = state->get<ConstEq>();
- if (!CE.isEmpty()) {
- Out << nl << sep << "'==' constraints:";
- for (ConstEqTy::iterator I = CE.begin(), E = CE.end(); I!=E; ++I)
- Out << nl << " $" << I.getKey() << " : " << *I.getData();
- }
- // Print != constraints.
- ConstNotEqTy CNE = state->get<ConstNotEq>();
- if (!CNE.isEmpty()) {
- Out << nl << sep << "'!=' constraints:";
- for (ConstNotEqTy::iterator I = CNE.begin(), EI = CNE.end(); I!=EI; ++I) {
- Out << nl << " $" << I.getKey() << " : ";
- bool isFirst = true;
- ProgramState::IntSetTy::iterator J = I.getData().begin(),
- EJ = I.getData().end();
- for ( ; J != EJ; ++J) {
- if (isFirst) isFirst = false;
- else Out << ", ";
- Out << (*J)->getSExtValue(); // Hack: should print to raw_ostream.
- }
- }
- }
- }
|