1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193 |
- //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements the Expr constant evaluator.
- //
- // Constant expression evaluation produces four main results:
- //
- // * A success/failure flag indicating whether constant folding was successful.
- // This is the 'bool' return value used by most of the code in this file. A
- // 'false' return value indicates that constant folding has failed, and any
- // appropriate diagnostic has already been produced.
- //
- // * An evaluated result, valid only if constant folding has not failed.
- //
- // * A flag indicating if evaluation encountered (unevaluated) side-effects.
- // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
- // where it is possible to determine the evaluated result regardless.
- //
- // * A set of notes indicating why the evaluation was not a constant expression
- // (under the C++11 / C++1y rules only, at the moment), or, if folding failed
- // too, why the expression could not be folded.
- //
- // If we are checking for a potential constant expression, failure to constant
- // fold a potential constant sub-expression will be indicated by a 'false'
- // return value (the expression could not be folded) and no diagnostic (the
- // expression is not necessarily non-constant).
- //
- //===----------------------------------------------------------------------===//
- #include "clang/AST/APValue.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/ASTDiagnostic.h"
- #include "clang/AST/ASTLambda.h"
- #include "clang/AST/CharUnits.h"
- #include "clang/AST/Expr.h"
- #include "clang/AST/RecordLayout.h"
- #include "clang/AST/StmtVisitor.h"
- #include "clang/AST/TypeLoc.h"
- #include "clang/Basic/Builtins.h"
- #include "clang/Basic/TargetInfo.h"
- #include "llvm/Support/raw_ostream.h"
- #include <cstring>
- #include <functional>
- using namespace clang;
- using llvm::APSInt;
- using llvm::APFloat;
- static bool IsGlobalLValue(APValue::LValueBase B);
- namespace {
- struct LValue;
- struct CallStackFrame;
- struct EvalInfo;
- static QualType getType(APValue::LValueBase B) {
- if (!B) return QualType();
- if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
- return D->getType();
- const Expr *Base = B.get<const Expr*>();
- // For a materialized temporary, the type of the temporary we materialized
- // may not be the type of the expression.
- if (const MaterializeTemporaryExpr *MTE =
- dyn_cast<MaterializeTemporaryExpr>(Base)) {
- SmallVector<const Expr *, 2> CommaLHSs;
- SmallVector<SubobjectAdjustment, 2> Adjustments;
- const Expr *Temp = MTE->GetTemporaryExpr();
- const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
- Adjustments);
- // Keep any cv-qualifiers from the reference if we generated a temporary
- // for it directly. Otherwise use the type after adjustment.
- if (!Adjustments.empty())
- return Inner->getType();
- }
- return Base->getType();
- }
- /// Get an LValue path entry, which is known to not be an array index, as a
- /// field or base class.
- static
- APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
- APValue::BaseOrMemberType Value;
- Value.setFromOpaqueValue(E.BaseOrMember);
- return Value;
- }
- /// Get an LValue path entry, which is known to not be an array index, as a
- /// field declaration.
- static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
- return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
- }
- /// Get an LValue path entry, which is known to not be an array index, as a
- /// base class declaration.
- static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
- return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
- }
- /// Determine whether this LValue path entry for a base class names a virtual
- /// base class.
- static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
- return getAsBaseOrMember(E).getInt();
- }
- /// Find the path length and type of the most-derived subobject in the given
- /// path, and find the size of the containing array, if any.
- static
- unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
- ArrayRef<APValue::LValuePathEntry> Path,
- uint64_t &ArraySize, QualType &Type,
- bool &IsArray) {
- unsigned MostDerivedLength = 0;
- Type = Base;
- for (unsigned I = 0, N = Path.size(); I != N; ++I) {
- if (Type->isArrayType()) {
- const ConstantArrayType *CAT =
- cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
- Type = CAT->getElementType();
- ArraySize = CAT->getSize().getZExtValue();
- MostDerivedLength = I + 1;
- IsArray = true;
- } else if (Type->isAnyComplexType()) {
- const ComplexType *CT = Type->castAs<ComplexType>();
- Type = CT->getElementType();
- ArraySize = 2;
- MostDerivedLength = I + 1;
- IsArray = true;
- } else if (const FieldDecl *FD = getAsField(Path[I])) {
- Type = FD->getType();
- ArraySize = 0;
- MostDerivedLength = I + 1;
- IsArray = false;
- } else {
- // Path[I] describes a base class.
- ArraySize = 0;
- IsArray = false;
- }
- }
- return MostDerivedLength;
- }
- // The order of this enum is important for diagnostics.
- enum CheckSubobjectKind {
- CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
- CSK_This, CSK_Real, CSK_Imag
- };
- /// A path from a glvalue to a subobject of that glvalue.
- struct SubobjectDesignator {
- /// True if the subobject was named in a manner not supported by C++11. Such
- /// lvalues can still be folded, but they are not core constant expressions
- /// and we cannot perform lvalue-to-rvalue conversions on them.
- unsigned Invalid : 1;
- /// Is this a pointer one past the end of an object?
- unsigned IsOnePastTheEnd : 1;
- /// Indicator of whether the most-derived object is an array element.
- unsigned MostDerivedIsArrayElement : 1;
- /// The length of the path to the most-derived object of which this is a
- /// subobject.
- unsigned MostDerivedPathLength : 29;
- /// The size of the array of which the most-derived object is an element.
- /// This will always be 0 if the most-derived object is not an array
- /// element. 0 is not an indicator of whether or not the most-derived object
- /// is an array, however, because 0-length arrays are allowed.
- uint64_t MostDerivedArraySize;
- /// The type of the most derived object referred to by this address.
- QualType MostDerivedType;
- typedef APValue::LValuePathEntry PathEntry;
- /// The entries on the path from the glvalue to the designated subobject.
- SmallVector<PathEntry, 8> Entries;
- SubobjectDesignator() : Invalid(true) {}
- explicit SubobjectDesignator(QualType T)
- : Invalid(false), IsOnePastTheEnd(false),
- MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
- MostDerivedArraySize(0), MostDerivedType(T) {}
- SubobjectDesignator(ASTContext &Ctx, const APValue &V)
- : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
- MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
- MostDerivedArraySize(0) {
- if (!Invalid) {
- IsOnePastTheEnd = V.isLValueOnePastTheEnd();
- ArrayRef<PathEntry> VEntries = V.getLValuePath();
- Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
- if (V.getLValueBase()) {
- bool IsArray = false;
- MostDerivedPathLength =
- findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
- V.getLValuePath(), MostDerivedArraySize,
- MostDerivedType, IsArray);
- MostDerivedIsArrayElement = IsArray;
- }
- }
- }
- void setInvalid() {
- Invalid = true;
- Entries.clear();
- }
- /// Determine whether this is a one-past-the-end pointer.
- bool isOnePastTheEnd() const {
- assert(!Invalid);
- if (IsOnePastTheEnd)
- return true;
- if (MostDerivedIsArrayElement &&
- Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
- return true;
- return false;
- }
- /// Check that this refers to a valid subobject.
- bool isValidSubobject() const {
- if (Invalid)
- return false;
- return !isOnePastTheEnd();
- }
- /// Check that this refers to a valid subobject, and if not, produce a
- /// relevant diagnostic and set the designator as invalid.
- bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
- /// Update this designator to refer to the first element within this array.
- void addArrayUnchecked(const ConstantArrayType *CAT) {
- PathEntry Entry;
- Entry.ArrayIndex = 0;
- Entries.push_back(Entry);
- // This is a most-derived object.
- MostDerivedType = CAT->getElementType();
- MostDerivedIsArrayElement = true;
- MostDerivedArraySize = CAT->getSize().getZExtValue();
- MostDerivedPathLength = Entries.size();
- }
- /// Update this designator to refer to the given base or member of this
- /// object.
- void addDeclUnchecked(const Decl *D, bool Virtual = false) {
- PathEntry Entry;
- APValue::BaseOrMemberType Value(D, Virtual);
- Entry.BaseOrMember = Value.getOpaqueValue();
- Entries.push_back(Entry);
- // If this isn't a base class, it's a new most-derived object.
- if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
- MostDerivedType = FD->getType();
- MostDerivedIsArrayElement = false;
- MostDerivedArraySize = 0;
- MostDerivedPathLength = Entries.size();
- }
- }
- /// Update this designator to refer to the given complex component.
- void addComplexUnchecked(QualType EltTy, bool Imag) {
- PathEntry Entry;
- Entry.ArrayIndex = Imag;
- Entries.push_back(Entry);
- // This is technically a most-derived object, though in practice this
- // is unlikely to matter.
- MostDerivedType = EltTy;
- MostDerivedIsArrayElement = true;
- MostDerivedArraySize = 2;
- MostDerivedPathLength = Entries.size();
- }
- void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
- /// Add N to the address of this subobject.
- void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
- if (Invalid) return;
- if (MostDerivedPathLength == Entries.size() &&
- MostDerivedIsArrayElement) {
- Entries.back().ArrayIndex += N;
- if (Entries.back().ArrayIndex > MostDerivedArraySize) {
- diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
- setInvalid();
- }
- return;
- }
- // [expr.add]p4: For the purposes of these operators, a pointer to a
- // nonarray object behaves the same as a pointer to the first element of
- // an array of length one with the type of the object as its element type.
- if (IsOnePastTheEnd && N == (uint64_t)-1)
- IsOnePastTheEnd = false;
- else if (!IsOnePastTheEnd && N == 1)
- IsOnePastTheEnd = true;
- else if (N != 0) {
- diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
- setInvalid();
- }
- }
- };
- /// A stack frame in the constexpr call stack.
- struct CallStackFrame {
- EvalInfo &Info;
- /// Parent - The caller of this stack frame.
- CallStackFrame *Caller;
- /// Callee - The function which was called.
- const FunctionDecl *Callee;
- /// This - The binding for the this pointer in this call, if any.
- const LValue *This;
- /// Arguments - Parameter bindings for this function call, indexed by
- /// parameters' function scope indices.
- APValue *Arguments;
- // Note that we intentionally use std::map here so that references to
- // values are stable.
- typedef std::map<const void*, APValue> MapTy;
- typedef MapTy::const_iterator temp_iterator;
- /// Temporaries - Temporary lvalues materialized within this stack frame.
- MapTy Temporaries;
- /// CallLoc - The location of the call expression for this call.
- SourceLocation CallLoc;
- /// Index - The call index of this call.
- unsigned Index;
- CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
- const FunctionDecl *Callee, const LValue *This,
- APValue *Arguments);
- ~CallStackFrame();
- APValue *getTemporary(const void *Key) {
- MapTy::iterator I = Temporaries.find(Key);
- return I == Temporaries.end() ? nullptr : &I->second;
- }
- APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
- };
- /// Temporarily override 'this'.
- class ThisOverrideRAII {
- public:
- ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
- : Frame(Frame), OldThis(Frame.This) {
- if (Enable)
- Frame.This = NewThis;
- }
- ~ThisOverrideRAII() {
- Frame.This = OldThis;
- }
- private:
- CallStackFrame &Frame;
- const LValue *OldThis;
- };
- /// A partial diagnostic which we might know in advance that we are not going
- /// to emit.
- class OptionalDiagnostic {
- PartialDiagnostic *Diag;
- public:
- explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
- : Diag(Diag) {}
- template<typename T>
- OptionalDiagnostic &operator<<(const T &v) {
- if (Diag)
- *Diag << v;
- return *this;
- }
- OptionalDiagnostic &operator<<(const APSInt &I) {
- if (Diag) {
- SmallVector<char, 32> Buffer;
- I.toString(Buffer);
- *Diag << StringRef(Buffer.data(), Buffer.size());
- }
- return *this;
- }
- OptionalDiagnostic &operator<<(const APFloat &F) {
- if (Diag) {
- // FIXME: Force the precision of the source value down so we don't
- // print digits which are usually useless (we don't really care here if
- // we truncate a digit by accident in edge cases). Ideally,
- // APFloat::toString would automatically print the shortest
- // representation which rounds to the correct value, but it's a bit
- // tricky to implement.
- unsigned precision =
- llvm::APFloat::semanticsPrecision(F.getSemantics());
- precision = (precision * 59 + 195) / 196;
- SmallVector<char, 32> Buffer;
- F.toString(Buffer, precision);
- *Diag << StringRef(Buffer.data(), Buffer.size());
- }
- return *this;
- }
- };
- /// A cleanup, and a flag indicating whether it is lifetime-extended.
- class Cleanup {
- llvm::PointerIntPair<APValue*, 1, bool> Value;
- public:
- Cleanup(APValue *Val, bool IsLifetimeExtended)
- : Value(Val, IsLifetimeExtended) {}
- bool isLifetimeExtended() const { return Value.getInt(); }
- void endLifetime() {
- *Value.getPointer() = APValue();
- }
- };
- /// EvalInfo - This is a private struct used by the evaluator to capture
- /// information about a subexpression as it is folded. It retains information
- /// about the AST context, but also maintains information about the folded
- /// expression.
- ///
- /// If an expression could be evaluated, it is still possible it is not a C
- /// "integer constant expression" or constant expression. If not, this struct
- /// captures information about how and why not.
- ///
- /// One bit of information passed *into* the request for constant folding
- /// indicates whether the subexpression is "evaluated" or not according to C
- /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can
- /// evaluate the expression regardless of what the RHS is, but C only allows
- /// certain things in certain situations.
- struct LLVM_ALIGNAS(/*alignof(uint64_t)*/ 8) EvalInfo {
- ASTContext &Ctx;
- /// EvalStatus - Contains information about the evaluation.
- Expr::EvalStatus &EvalStatus;
- /// CurrentCall - The top of the constexpr call stack.
- CallStackFrame *CurrentCall;
- /// CallStackDepth - The number of calls in the call stack right now.
- unsigned CallStackDepth;
- /// NextCallIndex - The next call index to assign.
- unsigned NextCallIndex;
- /// StepsLeft - The remaining number of evaluation steps we're permitted
- /// to perform. This is essentially a limit for the number of statements
- /// we will evaluate.
- unsigned StepsLeft;
- /// BottomFrame - The frame in which evaluation started. This must be
- /// initialized after CurrentCall and CallStackDepth.
- CallStackFrame BottomFrame;
- /// A stack of values whose lifetimes end at the end of some surrounding
- /// evaluation frame.
- llvm::SmallVector<Cleanup, 16> CleanupStack;
- /// EvaluatingDecl - This is the declaration whose initializer is being
- /// evaluated, if any.
- APValue::LValueBase EvaluatingDecl;
- /// EvaluatingDeclValue - This is the value being constructed for the
- /// declaration whose initializer is being evaluated, if any.
- APValue *EvaluatingDeclValue;
- /// The current array initialization index, if we're performing array
- /// initialization.
- uint64_t ArrayInitIndex = -1;
- /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
- /// notes attached to it will also be stored, otherwise they will not be.
- bool HasActiveDiagnostic;
- /// \brief Have we emitted a diagnostic explaining why we couldn't constant
- /// fold (not just why it's not strictly a constant expression)?
- bool HasFoldFailureDiagnostic;
- /// \brief Whether or not we're currently speculatively evaluating.
- bool IsSpeculativelyEvaluating;
- enum EvaluationMode {
- /// Evaluate as a constant expression. Stop if we find that the expression
- /// is not a constant expression.
- EM_ConstantExpression,
- /// Evaluate as a potential constant expression. Keep going if we hit a
- /// construct that we can't evaluate yet (because we don't yet know the
- /// value of something) but stop if we hit something that could never be
- /// a constant expression.
- EM_PotentialConstantExpression,
- /// Fold the expression to a constant. Stop if we hit a side-effect that
- /// we can't model.
- EM_ConstantFold,
- /// Evaluate the expression looking for integer overflow and similar
- /// issues. Don't worry about side-effects, and try to visit all
- /// subexpressions.
- EM_EvaluateForOverflow,
- /// Evaluate in any way we know how. Don't worry about side-effects that
- /// can't be modeled.
- EM_IgnoreSideEffects,
- /// Evaluate as a constant expression. Stop if we find that the expression
- /// is not a constant expression. Some expressions can be retried in the
- /// optimizer if we don't constant fold them here, but in an unevaluated
- /// context we try to fold them immediately since the optimizer never
- /// gets a chance to look at it.
- EM_ConstantExpressionUnevaluated,
- /// Evaluate as a potential constant expression. Keep going if we hit a
- /// construct that we can't evaluate yet (because we don't yet know the
- /// value of something) but stop if we hit something that could never be
- /// a constant expression. Some expressions can be retried in the
- /// optimizer if we don't constant fold them here, but in an unevaluated
- /// context we try to fold them immediately since the optimizer never
- /// gets a chance to look at it.
- EM_PotentialConstantExpressionUnevaluated,
- /// Evaluate as a constant expression. Continue evaluating if we find a
- /// MemberExpr with a base that can't be evaluated.
- EM_DesignatorFold,
- } EvalMode;
- /// Are we checking whether the expression is a potential constant
- /// expression?
- bool checkingPotentialConstantExpression() const {
- return EvalMode == EM_PotentialConstantExpression ||
- EvalMode == EM_PotentialConstantExpressionUnevaluated;
- }
- /// Are we checking an expression for overflow?
- // FIXME: We should check for any kind of undefined or suspicious behavior
- // in such constructs, not just overflow.
- bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
- EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
- : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
- CallStackDepth(0), NextCallIndex(1),
- StepsLeft(getLangOpts().ConstexprStepLimit),
- BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
- EvaluatingDecl((const ValueDecl *)nullptr),
- EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
- HasFoldFailureDiagnostic(false), IsSpeculativelyEvaluating(false),
- EvalMode(Mode) {}
- void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
- EvaluatingDecl = Base;
- EvaluatingDeclValue = &Value;
- }
- const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
- bool CheckCallLimit(SourceLocation Loc) {
- // Don't perform any constexpr calls (other than the call we're checking)
- // when checking a potential constant expression.
- if (checkingPotentialConstantExpression() && CallStackDepth > 1)
- return false;
- if (NextCallIndex == 0) {
- // NextCallIndex has wrapped around.
- FFDiag(Loc, diag::note_constexpr_call_limit_exceeded);
- return false;
- }
- if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
- return true;
- FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded)
- << getLangOpts().ConstexprCallDepth;
- return false;
- }
- CallStackFrame *getCallFrame(unsigned CallIndex) {
- assert(CallIndex && "no call index in getCallFrame");
- // We will eventually hit BottomFrame, which has Index 1, so Frame can't
- // be null in this loop.
- CallStackFrame *Frame = CurrentCall;
- while (Frame->Index > CallIndex)
- Frame = Frame->Caller;
- return (Frame->Index == CallIndex) ? Frame : nullptr;
- }
- bool nextStep(const Stmt *S) {
- if (!StepsLeft) {
- FFDiag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
- return false;
- }
- --StepsLeft;
- return true;
- }
- private:
- /// Add a diagnostic to the diagnostics list.
- PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
- PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
- EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
- return EvalStatus.Diag->back().second;
- }
- /// Add notes containing a call stack to the current point of evaluation.
- void addCallStack(unsigned Limit);
- private:
- OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId,
- unsigned ExtraNotes, bool IsCCEDiag) {
-
- if (EvalStatus.Diag) {
- // If we have a prior diagnostic, it will be noting that the expression
- // isn't a constant expression. This diagnostic is more important,
- // unless we require this evaluation to produce a constant expression.
- //
- // FIXME: We might want to show both diagnostics to the user in
- // EM_ConstantFold mode.
- if (!EvalStatus.Diag->empty()) {
- switch (EvalMode) {
- case EM_ConstantFold:
- case EM_IgnoreSideEffects:
- case EM_EvaluateForOverflow:
- if (!HasFoldFailureDiagnostic)
- break;
- // We've already failed to fold something. Keep that diagnostic.
- case EM_ConstantExpression:
- case EM_PotentialConstantExpression:
- case EM_ConstantExpressionUnevaluated:
- case EM_PotentialConstantExpressionUnevaluated:
- case EM_DesignatorFold:
- HasActiveDiagnostic = false;
- return OptionalDiagnostic();
- }
- }
- unsigned CallStackNotes = CallStackDepth - 1;
- unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
- if (Limit)
- CallStackNotes = std::min(CallStackNotes, Limit + 1);
- if (checkingPotentialConstantExpression())
- CallStackNotes = 0;
- HasActiveDiagnostic = true;
- HasFoldFailureDiagnostic = !IsCCEDiag;
- EvalStatus.Diag->clear();
- EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
- addDiag(Loc, DiagId);
- if (!checkingPotentialConstantExpression())
- addCallStack(Limit);
- return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
- }
- HasActiveDiagnostic = false;
- return OptionalDiagnostic();
- }
- public:
- // Diagnose that the evaluation could not be folded (FF => FoldFailure)
- OptionalDiagnostic
- FFDiag(SourceLocation Loc,
- diag::kind DiagId = diag::note_invalid_subexpr_in_const_expr,
- unsigned ExtraNotes = 0) {
- return Diag(Loc, DiagId, ExtraNotes, false);
- }
-
- OptionalDiagnostic FFDiag(const Expr *E, diag::kind DiagId
- = diag::note_invalid_subexpr_in_const_expr,
- unsigned ExtraNotes = 0) {
- if (EvalStatus.Diag)
- return Diag(E->getExprLoc(), DiagId, ExtraNotes, /*IsCCEDiag*/false);
- HasActiveDiagnostic = false;
- return OptionalDiagnostic();
- }
- /// Diagnose that the evaluation does not produce a C++11 core constant
- /// expression.
- ///
- /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
- /// EM_PotentialConstantExpression mode and we produce one of these.
- OptionalDiagnostic CCEDiag(SourceLocation Loc, diag::kind DiagId
- = diag::note_invalid_subexpr_in_const_expr,
- unsigned ExtraNotes = 0) {
- // Don't override a previous diagnostic. Don't bother collecting
- // diagnostics if we're evaluating for overflow.
- if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
- HasActiveDiagnostic = false;
- return OptionalDiagnostic();
- }
- return Diag(Loc, DiagId, ExtraNotes, true);
- }
- OptionalDiagnostic CCEDiag(const Expr *E, diag::kind DiagId
- = diag::note_invalid_subexpr_in_const_expr,
- unsigned ExtraNotes = 0) {
- return CCEDiag(E->getExprLoc(), DiagId, ExtraNotes);
- }
- /// Add a note to a prior diagnostic.
- OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
- if (!HasActiveDiagnostic)
- return OptionalDiagnostic();
- return OptionalDiagnostic(&addDiag(Loc, DiagId));
- }
- /// Add a stack of notes to a prior diagnostic.
- void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
- if (HasActiveDiagnostic) {
- EvalStatus.Diag->insert(EvalStatus.Diag->end(),
- Diags.begin(), Diags.end());
- }
- }
- /// Should we continue evaluation after encountering a side-effect that we
- /// couldn't model?
- bool keepEvaluatingAfterSideEffect() {
- switch (EvalMode) {
- case EM_PotentialConstantExpression:
- case EM_PotentialConstantExpressionUnevaluated:
- case EM_EvaluateForOverflow:
- case EM_IgnoreSideEffects:
- return true;
- case EM_ConstantExpression:
- case EM_ConstantExpressionUnevaluated:
- case EM_ConstantFold:
- case EM_DesignatorFold:
- return false;
- }
- llvm_unreachable("Missed EvalMode case");
- }
- /// Note that we have had a side-effect, and determine whether we should
- /// keep evaluating.
- bool noteSideEffect() {
- EvalStatus.HasSideEffects = true;
- return keepEvaluatingAfterSideEffect();
- }
- /// Should we continue evaluation after encountering undefined behavior?
- bool keepEvaluatingAfterUndefinedBehavior() {
- switch (EvalMode) {
- case EM_EvaluateForOverflow:
- case EM_IgnoreSideEffects:
- case EM_ConstantFold:
- case EM_DesignatorFold:
- return true;
- case EM_PotentialConstantExpression:
- case EM_PotentialConstantExpressionUnevaluated:
- case EM_ConstantExpression:
- case EM_ConstantExpressionUnevaluated:
- return false;
- }
- llvm_unreachable("Missed EvalMode case");
- }
- /// Note that we hit something that was technically undefined behavior, but
- /// that we can evaluate past it (such as signed overflow or floating-point
- /// division by zero.)
- bool noteUndefinedBehavior() {
- EvalStatus.HasUndefinedBehavior = true;
- return keepEvaluatingAfterUndefinedBehavior();
- }
- /// Should we continue evaluation as much as possible after encountering a
- /// construct which can't be reduced to a value?
- bool keepEvaluatingAfterFailure() {
- if (!StepsLeft)
- return false;
- switch (EvalMode) {
- case EM_PotentialConstantExpression:
- case EM_PotentialConstantExpressionUnevaluated:
- case EM_EvaluateForOverflow:
- return true;
- case EM_ConstantExpression:
- case EM_ConstantExpressionUnevaluated:
- case EM_ConstantFold:
- case EM_IgnoreSideEffects:
- case EM_DesignatorFold:
- return false;
- }
- llvm_unreachable("Missed EvalMode case");
- }
- /// Notes that we failed to evaluate an expression that other expressions
- /// directly depend on, and determine if we should keep evaluating. This
- /// should only be called if we actually intend to keep evaluating.
- ///
- /// Call noteSideEffect() instead if we may be able to ignore the value that
- /// we failed to evaluate, e.g. if we failed to evaluate Foo() in:
- ///
- /// (Foo(), 1) // use noteSideEffect
- /// (Foo() || true) // use noteSideEffect
- /// Foo() + 1 // use noteFailure
- LLVM_NODISCARD bool noteFailure() {
- // Failure when evaluating some expression often means there is some
- // subexpression whose evaluation was skipped. Therefore, (because we
- // don't track whether we skipped an expression when unwinding after an
- // evaluation failure) every evaluation failure that bubbles up from a
- // subexpression implies that a side-effect has potentially happened. We
- // skip setting the HasSideEffects flag to true until we decide to
- // continue evaluating after that point, which happens here.
- bool KeepGoing = keepEvaluatingAfterFailure();
- EvalStatus.HasSideEffects |= KeepGoing;
- return KeepGoing;
- }
- bool allowInvalidBaseExpr() const {
- return EvalMode == EM_DesignatorFold;
- }
- class ArrayInitLoopIndex {
- EvalInfo &Info;
- uint64_t OuterIndex;
- public:
- ArrayInitLoopIndex(EvalInfo &Info)
- : Info(Info), OuterIndex(Info.ArrayInitIndex) {
- Info.ArrayInitIndex = 0;
- }
- ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; }
- operator uint64_t&() { return Info.ArrayInitIndex; }
- };
- };
- /// Object used to treat all foldable expressions as constant expressions.
- struct FoldConstant {
- EvalInfo &Info;
- bool Enabled;
- bool HadNoPriorDiags;
- EvalInfo::EvaluationMode OldMode;
- explicit FoldConstant(EvalInfo &Info, bool Enabled)
- : Info(Info),
- Enabled(Enabled),
- HadNoPriorDiags(Info.EvalStatus.Diag &&
- Info.EvalStatus.Diag->empty() &&
- !Info.EvalStatus.HasSideEffects),
- OldMode(Info.EvalMode) {
- if (Enabled &&
- (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
- Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
- Info.EvalMode = EvalInfo::EM_ConstantFold;
- }
- void keepDiagnostics() { Enabled = false; }
- ~FoldConstant() {
- if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
- !Info.EvalStatus.HasSideEffects)
- Info.EvalStatus.Diag->clear();
- Info.EvalMode = OldMode;
- }
- };
- /// RAII object used to treat the current evaluation as the correct pointer
- /// offset fold for the current EvalMode
- struct FoldOffsetRAII {
- EvalInfo &Info;
- EvalInfo::EvaluationMode OldMode;
- explicit FoldOffsetRAII(EvalInfo &Info, bool Subobject)
- : Info(Info), OldMode(Info.EvalMode) {
- if (!Info.checkingPotentialConstantExpression())
- Info.EvalMode = Subobject ? EvalInfo::EM_DesignatorFold
- : EvalInfo::EM_ConstantFold;
- }
- ~FoldOffsetRAII() { Info.EvalMode = OldMode; }
- };
- /// RAII object used to optionally suppress diagnostics and side-effects from
- /// a speculative evaluation.
- class SpeculativeEvaluationRAII {
- /// Pair of EvalInfo, and a bit that stores whether or not we were
- /// speculatively evaluating when we created this RAII.
- llvm::PointerIntPair<EvalInfo *, 1, bool> InfoAndOldSpecEval;
- Expr::EvalStatus Old;
- void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) {
- InfoAndOldSpecEval = Other.InfoAndOldSpecEval;
- Old = Other.Old;
- Other.InfoAndOldSpecEval.setPointer(nullptr);
- }
- void maybeRestoreState() {
- EvalInfo *Info = InfoAndOldSpecEval.getPointer();
- if (!Info)
- return;
- Info->EvalStatus = Old;
- Info->IsSpeculativelyEvaluating = InfoAndOldSpecEval.getInt();
- }
- public:
- SpeculativeEvaluationRAII() = default;
- SpeculativeEvaluationRAII(
- EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
- : InfoAndOldSpecEval(&Info, Info.IsSpeculativelyEvaluating),
- Old(Info.EvalStatus) {
- Info.EvalStatus.Diag = NewDiag;
- Info.IsSpeculativelyEvaluating = true;
- }
- SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete;
- SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) {
- moveFromAndCancel(std::move(Other));
- }
- SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) {
- maybeRestoreState();
- moveFromAndCancel(std::move(Other));
- return *this;
- }
- ~SpeculativeEvaluationRAII() { maybeRestoreState(); }
- };
- /// RAII object wrapping a full-expression or block scope, and handling
- /// the ending of the lifetime of temporaries created within it.
- template<bool IsFullExpression>
- class ScopeRAII {
- EvalInfo &Info;
- unsigned OldStackSize;
- public:
- ScopeRAII(EvalInfo &Info)
- : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
- ~ScopeRAII() {
- // Body moved to a static method to encourage the compiler to inline away
- // instances of this class.
- cleanup(Info, OldStackSize);
- }
- private:
- static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
- unsigned NewEnd = OldStackSize;
- for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
- I != N; ++I) {
- if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
- // Full-expression cleanup of a lifetime-extended temporary: nothing
- // to do, just move this cleanup to the right place in the stack.
- std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
- ++NewEnd;
- } else {
- // End the lifetime of the object.
- Info.CleanupStack[I].endLifetime();
- }
- }
- Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
- Info.CleanupStack.end());
- }
- };
- typedef ScopeRAII<false> BlockScopeRAII;
- typedef ScopeRAII<true> FullExpressionRAII;
- }
- bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
- CheckSubobjectKind CSK) {
- if (Invalid)
- return false;
- if (isOnePastTheEnd()) {
- Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
- << CSK;
- setInvalid();
- return false;
- }
- return true;
- }
- void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
- const Expr *E, uint64_t N) {
- if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
- Info.CCEDiag(E, diag::note_constexpr_array_index)
- << static_cast<int>(N) << /*array*/ 0
- << static_cast<unsigned>(MostDerivedArraySize);
- else
- Info.CCEDiag(E, diag::note_constexpr_array_index)
- << static_cast<int>(N) << /*non-array*/ 1;
- setInvalid();
- }
- CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
- const FunctionDecl *Callee, const LValue *This,
- APValue *Arguments)
- : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This),
- Arguments(Arguments), CallLoc(CallLoc), Index(Info.NextCallIndex++) {
- Info.CurrentCall = this;
- ++Info.CallStackDepth;
- }
- CallStackFrame::~CallStackFrame() {
- assert(Info.CurrentCall == this && "calls retired out of order");
- --Info.CallStackDepth;
- Info.CurrentCall = Caller;
- }
- APValue &CallStackFrame::createTemporary(const void *Key,
- bool IsLifetimeExtended) {
- APValue &Result = Temporaries[Key];
- assert(Result.isUninit() && "temporary created multiple times");
- Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
- return Result;
- }
- static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
- void EvalInfo::addCallStack(unsigned Limit) {
- // Determine which calls to skip, if any.
- unsigned ActiveCalls = CallStackDepth - 1;
- unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
- if (Limit && Limit < ActiveCalls) {
- SkipStart = Limit / 2 + Limit % 2;
- SkipEnd = ActiveCalls - Limit / 2;
- }
- // Walk the call stack and add the diagnostics.
- unsigned CallIdx = 0;
- for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
- Frame = Frame->Caller, ++CallIdx) {
- // Skip this call?
- if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
- if (CallIdx == SkipStart) {
- // Note that we're skipping calls.
- addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
- << unsigned(ActiveCalls - Limit);
- }
- continue;
- }
- // Use a different note for an inheriting constructor, because from the
- // user's perspective it's not really a function at all.
- if (auto *CD = dyn_cast_or_null<CXXConstructorDecl>(Frame->Callee)) {
- if (CD->isInheritingConstructor()) {
- addDiag(Frame->CallLoc, diag::note_constexpr_inherited_ctor_call_here)
- << CD->getParent();
- continue;
- }
- }
- SmallVector<char, 128> Buffer;
- llvm::raw_svector_ostream Out(Buffer);
- describeCall(Frame, Out);
- addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
- }
- }
- namespace {
- struct ComplexValue {
- private:
- bool IsInt;
- public:
- APSInt IntReal, IntImag;
- APFloat FloatReal, FloatImag;
- ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {}
- void makeComplexFloat() { IsInt = false; }
- bool isComplexFloat() const { return !IsInt; }
- APFloat &getComplexFloatReal() { return FloatReal; }
- APFloat &getComplexFloatImag() { return FloatImag; }
- void makeComplexInt() { IsInt = true; }
- bool isComplexInt() const { return IsInt; }
- APSInt &getComplexIntReal() { return IntReal; }
- APSInt &getComplexIntImag() { return IntImag; }
- void moveInto(APValue &v) const {
- if (isComplexFloat())
- v = APValue(FloatReal, FloatImag);
- else
- v = APValue(IntReal, IntImag);
- }
- void setFrom(const APValue &v) {
- assert(v.isComplexFloat() || v.isComplexInt());
- if (v.isComplexFloat()) {
- makeComplexFloat();
- FloatReal = v.getComplexFloatReal();
- FloatImag = v.getComplexFloatImag();
- } else {
- makeComplexInt();
- IntReal = v.getComplexIntReal();
- IntImag = v.getComplexIntImag();
- }
- }
- };
- struct LValue {
- APValue::LValueBase Base;
- CharUnits Offset;
- unsigned InvalidBase : 1;
- unsigned CallIndex : 31;
- SubobjectDesignator Designator;
- bool IsNullPtr;
- const APValue::LValueBase getLValueBase() const { return Base; }
- CharUnits &getLValueOffset() { return Offset; }
- const CharUnits &getLValueOffset() const { return Offset; }
- unsigned getLValueCallIndex() const { return CallIndex; }
- SubobjectDesignator &getLValueDesignator() { return Designator; }
- const SubobjectDesignator &getLValueDesignator() const { return Designator;}
- bool isNullPointer() const { return IsNullPtr;}
- void moveInto(APValue &V) const {
- if (Designator.Invalid)
- V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex,
- IsNullPtr);
- else
- V = APValue(Base, Offset, Designator.Entries,
- Designator.IsOnePastTheEnd, CallIndex, IsNullPtr);
- }
- void setFrom(ASTContext &Ctx, const APValue &V) {
- assert(V.isLValue());
- Base = V.getLValueBase();
- Offset = V.getLValueOffset();
- InvalidBase = false;
- CallIndex = V.getLValueCallIndex();
- Designator = SubobjectDesignator(Ctx, V);
- IsNullPtr = V.isNullPointer();
- }
- void set(APValue::LValueBase B, unsigned I = 0, bool BInvalid = false,
- bool IsNullPtr_ = false, uint64_t Offset_ = 0) {
- Base = B;
- Offset = CharUnits::fromQuantity(Offset_);
- InvalidBase = BInvalid;
- CallIndex = I;
- Designator = SubobjectDesignator(getType(B));
- IsNullPtr = IsNullPtr_;
- }
- void setInvalid(APValue::LValueBase B, unsigned I = 0) {
- set(B, I, true);
- }
- // Check that this LValue is not based on a null pointer. If it is, produce
- // a diagnostic and mark the designator as invalid.
- bool checkNullPointer(EvalInfo &Info, const Expr *E,
- CheckSubobjectKind CSK) {
- if (Designator.Invalid)
- return false;
- if (IsNullPtr) {
- Info.CCEDiag(E, diag::note_constexpr_null_subobject)
- << CSK;
- Designator.setInvalid();
- return false;
- }
- return true;
- }
- // Check this LValue refers to an object. If not, set the designator to be
- // invalid and emit a diagnostic.
- bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
- return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
- Designator.checkSubobject(Info, E, CSK);
- }
- void addDecl(EvalInfo &Info, const Expr *E,
- const Decl *D, bool Virtual = false) {
- if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
- Designator.addDeclUnchecked(D, Virtual);
- }
- void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
- if (checkSubobject(Info, E, CSK_ArrayToPointer))
- Designator.addArrayUnchecked(CAT);
- }
- void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
- if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
- Designator.addComplexUnchecked(EltTy, Imag);
- }
- void clearIsNullPointer() {
- IsNullPtr = false;
- }
- void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E, uint64_t Index,
- CharUnits ElementSize) {
- // Compute the new offset in the appropriate width.
- Offset += Index * ElementSize;
- if (Index && checkNullPointer(Info, E, CSK_ArrayIndex))
- Designator.adjustIndex(Info, E, Index);
- if (Index)
- clearIsNullPointer();
- }
- void adjustOffset(CharUnits N) {
- Offset += N;
- if (N.getQuantity())
- clearIsNullPointer();
- }
- };
- struct MemberPtr {
- MemberPtr() {}
- explicit MemberPtr(const ValueDecl *Decl) :
- DeclAndIsDerivedMember(Decl, false), Path() {}
- /// The member or (direct or indirect) field referred to by this member
- /// pointer, or 0 if this is a null member pointer.
- const ValueDecl *getDecl() const {
- return DeclAndIsDerivedMember.getPointer();
- }
- /// Is this actually a member of some type derived from the relevant class?
- bool isDerivedMember() const {
- return DeclAndIsDerivedMember.getInt();
- }
- /// Get the class which the declaration actually lives in.
- const CXXRecordDecl *getContainingRecord() const {
- return cast<CXXRecordDecl>(
- DeclAndIsDerivedMember.getPointer()->getDeclContext());
- }
- void moveInto(APValue &V) const {
- V = APValue(getDecl(), isDerivedMember(), Path);
- }
- void setFrom(const APValue &V) {
- assert(V.isMemberPointer());
- DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
- DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
- Path.clear();
- ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
- Path.insert(Path.end(), P.begin(), P.end());
- }
- /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
- /// whether the member is a member of some class derived from the class type
- /// of the member pointer.
- llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
- /// Path - The path of base/derived classes from the member declaration's
- /// class (exclusive) to the class type of the member pointer (inclusive).
- SmallVector<const CXXRecordDecl*, 4> Path;
- /// Perform a cast towards the class of the Decl (either up or down the
- /// hierarchy).
- bool castBack(const CXXRecordDecl *Class) {
- assert(!Path.empty());
- const CXXRecordDecl *Expected;
- if (Path.size() >= 2)
- Expected = Path[Path.size() - 2];
- else
- Expected = getContainingRecord();
- if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
- // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
- // if B does not contain the original member and is not a base or
- // derived class of the class containing the original member, the result
- // of the cast is undefined.
- // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
- // (D::*). We consider that to be a language defect.
- return false;
- }
- Path.pop_back();
- return true;
- }
- /// Perform a base-to-derived member pointer cast.
- bool castToDerived(const CXXRecordDecl *Derived) {
- if (!getDecl())
- return true;
- if (!isDerivedMember()) {
- Path.push_back(Derived);
- return true;
- }
- if (!castBack(Derived))
- return false;
- if (Path.empty())
- DeclAndIsDerivedMember.setInt(false);
- return true;
- }
- /// Perform a derived-to-base member pointer cast.
- bool castToBase(const CXXRecordDecl *Base) {
- if (!getDecl())
- return true;
- if (Path.empty())
- DeclAndIsDerivedMember.setInt(true);
- if (isDerivedMember()) {
- Path.push_back(Base);
- return true;
- }
- return castBack(Base);
- }
- };
- /// Compare two member pointers, which are assumed to be of the same type.
- static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
- if (!LHS.getDecl() || !RHS.getDecl())
- return !LHS.getDecl() && !RHS.getDecl();
- if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
- return false;
- return LHS.Path == RHS.Path;
- }
- }
- static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
- static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
- const LValue &This, const Expr *E,
- bool AllowNonLiteralTypes = false);
- static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
- static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
- static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
- EvalInfo &Info);
- static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
- static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
- static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
- EvalInfo &Info);
- static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
- static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
- static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
- static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
- //===----------------------------------------------------------------------===//
- // Misc utilities
- //===----------------------------------------------------------------------===//
- /// Produce a string describing the given constexpr call.
- static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
- unsigned ArgIndex = 0;
- bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
- !isa<CXXConstructorDecl>(Frame->Callee) &&
- cast<CXXMethodDecl>(Frame->Callee)->isInstance();
- if (!IsMemberCall)
- Out << *Frame->Callee << '(';
- if (Frame->This && IsMemberCall) {
- APValue Val;
- Frame->This->moveInto(Val);
- Val.printPretty(Out, Frame->Info.Ctx,
- Frame->This->Designator.MostDerivedType);
- // FIXME: Add parens around Val if needed.
- Out << "->" << *Frame->Callee << '(';
- IsMemberCall = false;
- }
- for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
- E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
- if (ArgIndex > (unsigned)IsMemberCall)
- Out << ", ";
- const ParmVarDecl *Param = *I;
- const APValue &Arg = Frame->Arguments[ArgIndex];
- Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
- if (ArgIndex == 0 && IsMemberCall)
- Out << "->" << *Frame->Callee << '(';
- }
- Out << ')';
- }
- /// Evaluate an expression to see if it had side-effects, and discard its
- /// result.
- /// \return \c true if the caller should keep evaluating.
- static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
- APValue Scratch;
- if (!Evaluate(Scratch, Info, E))
- // We don't need the value, but we might have skipped a side effect here.
- return Info.noteSideEffect();
- return true;
- }
- /// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
- /// return its existing value.
- static int64_t getExtValue(const APSInt &Value) {
- return Value.isSigned() ? Value.getSExtValue()
- : static_cast<int64_t>(Value.getZExtValue());
- }
- /// Should this call expression be treated as a string literal?
- static bool IsStringLiteralCall(const CallExpr *E) {
- unsigned Builtin = E->getBuiltinCallee();
- return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
- Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
- }
- static bool IsGlobalLValue(APValue::LValueBase B) {
- // C++11 [expr.const]p3 An address constant expression is a prvalue core
- // constant expression of pointer type that evaluates to...
- // ... a null pointer value, or a prvalue core constant expression of type
- // std::nullptr_t.
- if (!B) return true;
- if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
- // ... the address of an object with static storage duration,
- if (const VarDecl *VD = dyn_cast<VarDecl>(D))
- return VD->hasGlobalStorage();
- // ... the address of a function,
- return isa<FunctionDecl>(D);
- }
- const Expr *E = B.get<const Expr*>();
- switch (E->getStmtClass()) {
- default:
- return false;
- case Expr::CompoundLiteralExprClass: {
- const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
- return CLE->isFileScope() && CLE->isLValue();
- }
- case Expr::MaterializeTemporaryExprClass:
- // A materialized temporary might have been lifetime-extended to static
- // storage duration.
- return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
- // A string literal has static storage duration.
- case Expr::StringLiteralClass:
- case Expr::PredefinedExprClass:
- case Expr::ObjCStringLiteralClass:
- case Expr::ObjCEncodeExprClass:
- case Expr::CXXTypeidExprClass:
- case Expr::CXXUuidofExprClass:
- return true;
- case Expr::CallExprClass:
- return IsStringLiteralCall(cast<CallExpr>(E));
- // For GCC compatibility, &&label has static storage duration.
- case Expr::AddrLabelExprClass:
- return true;
- // A Block literal expression may be used as the initialization value for
- // Block variables at global or local static scope.
- case Expr::BlockExprClass:
- return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
- case Expr::ImplicitValueInitExprClass:
- // FIXME:
- // We can never form an lvalue with an implicit value initialization as its
- // base through expression evaluation, so these only appear in one case: the
- // implicit variable declaration we invent when checking whether a constexpr
- // constructor can produce a constant expression. We must assume that such
- // an expression might be a global lvalue.
- return true;
- }
- }
- static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
- assert(Base && "no location for a null lvalue");
- const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
- if (VD)
- Info.Note(VD->getLocation(), diag::note_declared_at);
- else
- Info.Note(Base.get<const Expr*>()->getExprLoc(),
- diag::note_constexpr_temporary_here);
- }
- /// Check that this reference or pointer core constant expression is a valid
- /// value for an address or reference constant expression. Return true if we
- /// can fold this expression, whether or not it's a constant expression.
- static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
- QualType Type, const LValue &LVal) {
- bool IsReferenceType = Type->isReferenceType();
- APValue::LValueBase Base = LVal.getLValueBase();
- const SubobjectDesignator &Designator = LVal.getLValueDesignator();
- // Check that the object is a global. Note that the fake 'this' object we
- // manufacture when checking potential constant expressions is conservatively
- // assumed to be global here.
- if (!IsGlobalLValue(Base)) {
- if (Info.getLangOpts().CPlusPlus11) {
- const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
- Info.FFDiag(Loc, diag::note_constexpr_non_global, 1)
- << IsReferenceType << !Designator.Entries.empty()
- << !!VD << VD;
- NoteLValueLocation(Info, Base);
- } else {
- Info.FFDiag(Loc);
- }
- // Don't allow references to temporaries to escape.
- return false;
- }
- assert((Info.checkingPotentialConstantExpression() ||
- LVal.getLValueCallIndex() == 0) &&
- "have call index for global lvalue");
- if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
- if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
- // Check if this is a thread-local variable.
- if (Var->getTLSKind())
- return false;
- // A dllimport variable never acts like a constant.
- if (Var->hasAttr<DLLImportAttr>())
- return false;
- }
- if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
- // __declspec(dllimport) must be handled very carefully:
- // We must never initialize an expression with the thunk in C++.
- // Doing otherwise would allow the same id-expression to yield
- // different addresses for the same function in different translation
- // units. However, this means that we must dynamically initialize the
- // expression with the contents of the import address table at runtime.
- //
- // The C language has no notion of ODR; furthermore, it has no notion of
- // dynamic initialization. This means that we are permitted to
- // perform initialization with the address of the thunk.
- if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>())
- return false;
- }
- }
- // Allow address constant expressions to be past-the-end pointers. This is
- // an extension: the standard requires them to point to an object.
- if (!IsReferenceType)
- return true;
- // A reference constant expression must refer to an object.
- if (!Base) {
- // FIXME: diagnostic
- Info.CCEDiag(Loc);
- return true;
- }
- // Does this refer one past the end of some object?
- if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
- const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
- Info.FFDiag(Loc, diag::note_constexpr_past_end, 1)
- << !Designator.Entries.empty() << !!VD << VD;
- NoteLValueLocation(Info, Base);
- }
- return true;
- }
- /// Check that this core constant expression is of literal type, and if not,
- /// produce an appropriate diagnostic.
- static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
- const LValue *This = nullptr) {
- if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
- return true;
- // C++1y: A constant initializer for an object o [...] may also invoke
- // constexpr constructors for o and its subobjects even if those objects
- // are of non-literal class types.
- if (Info.getLangOpts().CPlusPlus14 && This &&
- Info.EvaluatingDecl == This->getLValueBase())
- return true;
- // Prvalue constant expressions must be of literal types.
- if (Info.getLangOpts().CPlusPlus11)
- Info.FFDiag(E, diag::note_constexpr_nonliteral)
- << E->getType();
- else
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- /// Check that this core constant expression value is a valid value for a
- /// constant expression. If not, report an appropriate diagnostic. Does not
- /// check that the expression is of literal type.
- static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
- QualType Type, const APValue &Value) {
- if (Value.isUninit()) {
- Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized)
- << true << Type;
- return false;
- }
- // We allow _Atomic(T) to be initialized from anything that T can be
- // initialized from.
- if (const AtomicType *AT = Type->getAs<AtomicType>())
- Type = AT->getValueType();
- // Core issue 1454: For a literal constant expression of array or class type,
- // each subobject of its value shall have been initialized by a constant
- // expression.
- if (Value.isArray()) {
- QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
- for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
- if (!CheckConstantExpression(Info, DiagLoc, EltTy,
- Value.getArrayInitializedElt(I)))
- return false;
- }
- if (!Value.hasArrayFiller())
- return true;
- return CheckConstantExpression(Info, DiagLoc, EltTy,
- Value.getArrayFiller());
- }
- if (Value.isUnion() && Value.getUnionField()) {
- return CheckConstantExpression(Info, DiagLoc,
- Value.getUnionField()->getType(),
- Value.getUnionValue());
- }
- if (Value.isStruct()) {
- RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
- if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
- unsigned BaseIndex = 0;
- for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
- End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
- if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
- Value.getStructBase(BaseIndex)))
- return false;
- }
- }
- for (const auto *I : RD->fields()) {
- if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
- Value.getStructField(I->getFieldIndex())))
- return false;
- }
- }
- if (Value.isLValue()) {
- LValue LVal;
- LVal.setFrom(Info.Ctx, Value);
- return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
- }
- // Everything else is fine.
- return true;
- }
- static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
- return LVal.Base.dyn_cast<const ValueDecl*>();
- }
- static bool IsLiteralLValue(const LValue &Value) {
- if (Value.CallIndex)
- return false;
- const Expr *E = Value.Base.dyn_cast<const Expr*>();
- return E && !isa<MaterializeTemporaryExpr>(E);
- }
- static bool IsWeakLValue(const LValue &Value) {
- const ValueDecl *Decl = GetLValueBaseDecl(Value);
- return Decl && Decl->isWeak();
- }
- static bool isZeroSized(const LValue &Value) {
- const ValueDecl *Decl = GetLValueBaseDecl(Value);
- if (Decl && isa<VarDecl>(Decl)) {
- QualType Ty = Decl->getType();
- if (Ty->isArrayType())
- return Ty->isIncompleteType() ||
- Decl->getASTContext().getTypeSize(Ty) == 0;
- }
- return false;
- }
- static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
- // A null base expression indicates a null pointer. These are always
- // evaluatable, and they are false unless the offset is zero.
- if (!Value.getLValueBase()) {
- Result = !Value.getLValueOffset().isZero();
- return true;
- }
- // We have a non-null base. These are generally known to be true, but if it's
- // a weak declaration it can be null at runtime.
- Result = true;
- const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
- return !Decl || !Decl->isWeak();
- }
- static bool HandleConversionToBool(const APValue &Val, bool &Result) {
- switch (Val.getKind()) {
- case APValue::Uninitialized:
- return false;
- case APValue::Int:
- Result = Val.getInt().getBoolValue();
- return true;
- case APValue::Float:
- Result = !Val.getFloat().isZero();
- return true;
- case APValue::ComplexInt:
- Result = Val.getComplexIntReal().getBoolValue() ||
- Val.getComplexIntImag().getBoolValue();
- return true;
- case APValue::ComplexFloat:
- Result = !Val.getComplexFloatReal().isZero() ||
- !Val.getComplexFloatImag().isZero();
- return true;
- case APValue::LValue:
- return EvalPointerValueAsBool(Val, Result);
- case APValue::MemberPointer:
- Result = Val.getMemberPointerDecl();
- return true;
- case APValue::Vector:
- case APValue::Array:
- case APValue::Struct:
- case APValue::Union:
- case APValue::AddrLabelDiff:
- return false;
- }
- llvm_unreachable("unknown APValue kind");
- }
- static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
- EvalInfo &Info) {
- assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
- APValue Val;
- if (!Evaluate(Val, Info, E))
- return false;
- return HandleConversionToBool(Val, Result);
- }
- template<typename T>
- static bool HandleOverflow(EvalInfo &Info, const Expr *E,
- const T &SrcValue, QualType DestType) {
- Info.CCEDiag(E, diag::note_constexpr_overflow)
- << SrcValue << DestType;
- return Info.noteUndefinedBehavior();
- }
- static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
- QualType SrcType, const APFloat &Value,
- QualType DestType, APSInt &Result) {
- unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
- // Determine whether we are converting to unsigned or signed.
- bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
- Result = APSInt(DestWidth, !DestSigned);
- bool ignored;
- if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
- & APFloat::opInvalidOp)
- return HandleOverflow(Info, E, Value, DestType);
- return true;
- }
- static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
- QualType SrcType, QualType DestType,
- APFloat &Result) {
- APFloat Value = Result;
- bool ignored;
- if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
- APFloat::rmNearestTiesToEven, &ignored)
- & APFloat::opOverflow)
- return HandleOverflow(Info, E, Value, DestType);
- return true;
- }
- static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
- QualType DestType, QualType SrcType,
- const APSInt &Value) {
- unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
- APSInt Result = Value;
- // Figure out if this is a truncate, extend or noop cast.
- // If the input is signed, do a sign extend, noop, or truncate.
- Result = Result.extOrTrunc(DestWidth);
- Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
- return Result;
- }
- static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
- QualType SrcType, const APSInt &Value,
- QualType DestType, APFloat &Result) {
- Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
- if (Result.convertFromAPInt(Value, Value.isSigned(),
- APFloat::rmNearestTiesToEven)
- & APFloat::opOverflow)
- return HandleOverflow(Info, E, Value, DestType);
- return true;
- }
- static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
- APValue &Value, const FieldDecl *FD) {
- assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
- if (!Value.isInt()) {
- // Trying to store a pointer-cast-to-integer into a bitfield.
- // FIXME: In this case, we should provide the diagnostic for casting
- // a pointer to an integer.
- assert(Value.isLValue() && "integral value neither int nor lvalue?");
- Info.FFDiag(E);
- return false;
- }
- APSInt &Int = Value.getInt();
- unsigned OldBitWidth = Int.getBitWidth();
- unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
- if (NewBitWidth < OldBitWidth)
- Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
- return true;
- }
- static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
- llvm::APInt &Res) {
- APValue SVal;
- if (!Evaluate(SVal, Info, E))
- return false;
- if (SVal.isInt()) {
- Res = SVal.getInt();
- return true;
- }
- if (SVal.isFloat()) {
- Res = SVal.getFloat().bitcastToAPInt();
- return true;
- }
- if (SVal.isVector()) {
- QualType VecTy = E->getType();
- unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
- QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
- unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
- bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
- Res = llvm::APInt::getNullValue(VecSize);
- for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
- APValue &Elt = SVal.getVectorElt(i);
- llvm::APInt EltAsInt;
- if (Elt.isInt()) {
- EltAsInt = Elt.getInt();
- } else if (Elt.isFloat()) {
- EltAsInt = Elt.getFloat().bitcastToAPInt();
- } else {
- // Don't try to handle vectors of anything other than int or float
- // (not sure if it's possible to hit this case).
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- unsigned BaseEltSize = EltAsInt.getBitWidth();
- if (BigEndian)
- Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
- else
- Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
- }
- return true;
- }
- // Give up if the input isn't an int, float, or vector. For example, we
- // reject "(v4i16)(intptr_t)&a".
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- /// Perform the given integer operation, which is known to need at most BitWidth
- /// bits, and check for overflow in the original type (if that type was not an
- /// unsigned type).
- template<typename Operation>
- static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
- const APSInt &LHS, const APSInt &RHS,
- unsigned BitWidth, Operation Op,
- APSInt &Result) {
- if (LHS.isUnsigned()) {
- Result = Op(LHS, RHS);
- return true;
- }
- APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
- Result = Value.trunc(LHS.getBitWidth());
- if (Result.extend(BitWidth) != Value) {
- if (Info.checkingForOverflow())
- Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
- diag::warn_integer_constant_overflow)
- << Result.toString(10) << E->getType();
- else
- return HandleOverflow(Info, E, Value, E->getType());
- }
- return true;
- }
- /// Perform the given binary integer operation.
- static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
- BinaryOperatorKind Opcode, APSInt RHS,
- APSInt &Result) {
- switch (Opcode) {
- default:
- Info.FFDiag(E);
- return false;
- case BO_Mul:
- return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
- std::multiplies<APSInt>(), Result);
- case BO_Add:
- return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
- std::plus<APSInt>(), Result);
- case BO_Sub:
- return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
- std::minus<APSInt>(), Result);
- case BO_And: Result = LHS & RHS; return true;
- case BO_Xor: Result = LHS ^ RHS; return true;
- case BO_Or: Result = LHS | RHS; return true;
- case BO_Div:
- case BO_Rem:
- if (RHS == 0) {
- Info.FFDiag(E, diag::note_expr_divide_by_zero);
- return false;
- }
- Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
- // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
- // this operation and gives the two's complement result.
- if (RHS.isNegative() && RHS.isAllOnesValue() &&
- LHS.isSigned() && LHS.isMinSignedValue())
- return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
- E->getType());
- return true;
- case BO_Shl: {
- if (Info.getLangOpts().OpenCL)
- // OpenCL 6.3j: shift values are effectively % word size of LHS.
- RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
- static_cast<uint64_t>(LHS.getBitWidth() - 1)),
- RHS.isUnsigned());
- else if (RHS.isSigned() && RHS.isNegative()) {
- // During constant-folding, a negative shift is an opposite shift. Such
- // a shift is not a constant expression.
- Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
- RHS = -RHS;
- goto shift_right;
- }
- shift_left:
- // C++11 [expr.shift]p1: Shift width must be less than the bit width of
- // the shifted type.
- unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
- if (SA != RHS) {
- Info.CCEDiag(E, diag::note_constexpr_large_shift)
- << RHS << E->getType() << LHS.getBitWidth();
- } else if (LHS.isSigned()) {
- // C++11 [expr.shift]p2: A signed left shift must have a non-negative
- // operand, and must not overflow the corresponding unsigned type.
- if (LHS.isNegative())
- Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
- else if (LHS.countLeadingZeros() < SA)
- Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
- }
- Result = LHS << SA;
- return true;
- }
- case BO_Shr: {
- if (Info.getLangOpts().OpenCL)
- // OpenCL 6.3j: shift values are effectively % word size of LHS.
- RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
- static_cast<uint64_t>(LHS.getBitWidth() - 1)),
- RHS.isUnsigned());
- else if (RHS.isSigned() && RHS.isNegative()) {
- // During constant-folding, a negative shift is an opposite shift. Such a
- // shift is not a constant expression.
- Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
- RHS = -RHS;
- goto shift_left;
- }
- shift_right:
- // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
- // shifted type.
- unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
- if (SA != RHS)
- Info.CCEDiag(E, diag::note_constexpr_large_shift)
- << RHS << E->getType() << LHS.getBitWidth();
- Result = LHS >> SA;
- return true;
- }
- case BO_LT: Result = LHS < RHS; return true;
- case BO_GT: Result = LHS > RHS; return true;
- case BO_LE: Result = LHS <= RHS; return true;
- case BO_GE: Result = LHS >= RHS; return true;
- case BO_EQ: Result = LHS == RHS; return true;
- case BO_NE: Result = LHS != RHS; return true;
- }
- }
- /// Perform the given binary floating-point operation, in-place, on LHS.
- static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
- APFloat &LHS, BinaryOperatorKind Opcode,
- const APFloat &RHS) {
- switch (Opcode) {
- default:
- Info.FFDiag(E);
- return false;
- case BO_Mul:
- LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
- break;
- case BO_Add:
- LHS.add(RHS, APFloat::rmNearestTiesToEven);
- break;
- case BO_Sub:
- LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
- break;
- case BO_Div:
- LHS.divide(RHS, APFloat::rmNearestTiesToEven);
- break;
- }
- if (LHS.isInfinity() || LHS.isNaN()) {
- Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
- return Info.noteUndefinedBehavior();
- }
- return true;
- }
- /// Cast an lvalue referring to a base subobject to a derived class, by
- /// truncating the lvalue's path to the given length.
- static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
- const RecordDecl *TruncatedType,
- unsigned TruncatedElements) {
- SubobjectDesignator &D = Result.Designator;
- // Check we actually point to a derived class object.
- if (TruncatedElements == D.Entries.size())
- return true;
- assert(TruncatedElements >= D.MostDerivedPathLength &&
- "not casting to a derived class");
- if (!Result.checkSubobject(Info, E, CSK_Derived))
- return false;
- // Truncate the path to the subobject, and remove any derived-to-base offsets.
- const RecordDecl *RD = TruncatedType;
- for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
- const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
- if (isVirtualBaseClass(D.Entries[I]))
- Result.Offset -= Layout.getVBaseClassOffset(Base);
- else
- Result.Offset -= Layout.getBaseClassOffset(Base);
- RD = Base;
- }
- D.Entries.resize(TruncatedElements);
- return true;
- }
- static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
- const CXXRecordDecl *Derived,
- const CXXRecordDecl *Base,
- const ASTRecordLayout *RL = nullptr) {
- if (!RL) {
- if (Derived->isInvalidDecl()) return false;
- RL = &Info.Ctx.getASTRecordLayout(Derived);
- }
- Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
- Obj.addDecl(Info, E, Base, /*Virtual*/ false);
- return true;
- }
- static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
- const CXXRecordDecl *DerivedDecl,
- const CXXBaseSpecifier *Base) {
- const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
- if (!Base->isVirtual())
- return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
- SubobjectDesignator &D = Obj.Designator;
- if (D.Invalid)
- return false;
- // Extract most-derived object and corresponding type.
- DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
- if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
- return false;
- // Find the virtual base class.
- if (DerivedDecl->isInvalidDecl()) return false;
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
- Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
- Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
- return true;
- }
- static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
- QualType Type, LValue &Result) {
- for (CastExpr::path_const_iterator PathI = E->path_begin(),
- PathE = E->path_end();
- PathI != PathE; ++PathI) {
- if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
- *PathI))
- return false;
- Type = (*PathI)->getType();
- }
- return true;
- }
- /// Update LVal to refer to the given field, which must be a member of the type
- /// currently described by LVal.
- static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
- const FieldDecl *FD,
- const ASTRecordLayout *RL = nullptr) {
- if (!RL) {
- if (FD->getParent()->isInvalidDecl()) return false;
- RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
- }
- unsigned I = FD->getFieldIndex();
- LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I)));
- LVal.addDecl(Info, E, FD);
- return true;
- }
- /// Update LVal to refer to the given indirect field.
- static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
- LValue &LVal,
- const IndirectFieldDecl *IFD) {
- for (const auto *C : IFD->chain())
- if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
- return false;
- return true;
- }
- /// Get the size of the given type in char units.
- static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
- QualType Type, CharUnits &Size) {
- // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
- // extension.
- if (Type->isVoidType() || Type->isFunctionType()) {
- Size = CharUnits::One();
- return true;
- }
- if (Type->isDependentType()) {
- Info.FFDiag(Loc);
- return false;
- }
- if (!Type->isConstantSizeType()) {
- // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
- // FIXME: Better diagnostic.
- Info.FFDiag(Loc);
- return false;
- }
- Size = Info.Ctx.getTypeSizeInChars(Type);
- return true;
- }
- /// Update a pointer value to model pointer arithmetic.
- /// \param Info - Information about the ongoing evaluation.
- /// \param E - The expression being evaluated, for diagnostic purposes.
- /// \param LVal - The pointer value to be updated.
- /// \param EltTy - The pointee type represented by LVal.
- /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
- static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
- LValue &LVal, QualType EltTy,
- int64_t Adjustment) {
- CharUnits SizeOfPointee;
- if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
- return false;
- LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee);
- return true;
- }
- /// Update an lvalue to refer to a component of a complex number.
- /// \param Info - Information about the ongoing evaluation.
- /// \param LVal - The lvalue to be updated.
- /// \param EltTy - The complex number's component type.
- /// \param Imag - False for the real component, true for the imaginary.
- static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
- LValue &LVal, QualType EltTy,
- bool Imag) {
- if (Imag) {
- CharUnits SizeOfComponent;
- if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
- return false;
- LVal.Offset += SizeOfComponent;
- }
- LVal.addComplex(Info, E, EltTy, Imag);
- return true;
- }
- /// Try to evaluate the initializer for a variable declaration.
- ///
- /// \param Info Information about the ongoing evaluation.
- /// \param E An expression to be used when printing diagnostics.
- /// \param VD The variable whose initializer should be obtained.
- /// \param Frame The frame in which the variable was created. Must be null
- /// if this variable is not local to the evaluation.
- /// \param Result Filled in with a pointer to the value of the variable.
- static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
- const VarDecl *VD, CallStackFrame *Frame,
- APValue *&Result) {
- // If this is a parameter to an active constexpr function call, perform
- // argument substitution.
- if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
- // Assume arguments of a potential constant expression are unknown
- // constant expressions.
- if (Info.checkingPotentialConstantExpression())
- return false;
- if (!Frame || !Frame->Arguments) {
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
- return true;
- }
- // If this is a local variable, dig out its value.
- if (Frame) {
- Result = Frame->getTemporary(VD);
- if (!Result) {
- // Assume variables referenced within a lambda's call operator that were
- // not declared within the call operator are captures and during checking
- // of a potential constant expression, assume they are unknown constant
- // expressions.
- assert(isLambdaCallOperator(Frame->Callee) &&
- (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) &&
- "missing value for local variable");
- if (Info.checkingPotentialConstantExpression())
- return false;
- // FIXME: implement capture evaluation during constant expr evaluation.
- Info.FFDiag(E->getLocStart(),
- diag::note_unimplemented_constexpr_lambda_feature_ast)
- << "captures not currently allowed";
- return false;
- }
- return true;
- }
- // Dig out the initializer, and use the declaration which it's attached to.
- const Expr *Init = VD->getAnyInitializer(VD);
- if (!Init || Init->isValueDependent()) {
- // If we're checking a potential constant expression, the variable could be
- // initialized later.
- if (!Info.checkingPotentialConstantExpression())
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- // If we're currently evaluating the initializer of this declaration, use that
- // in-flight value.
- if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
- Result = Info.EvaluatingDeclValue;
- return true;
- }
- // Never evaluate the initializer of a weak variable. We can't be sure that
- // this is the definition which will be used.
- if (VD->isWeak()) {
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- // Check that we can fold the initializer. In C++, we will have already done
- // this in the cases where it matters for conformance.
- SmallVector<PartialDiagnosticAt, 8> Notes;
- if (!VD->evaluateValue(Notes)) {
- Info.FFDiag(E, diag::note_constexpr_var_init_non_constant,
- Notes.size() + 1) << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- Info.addNotes(Notes);
- return false;
- } else if (!VD->checkInitIsICE()) {
- Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
- Notes.size() + 1) << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- Info.addNotes(Notes);
- }
- Result = VD->getEvaluatedValue();
- return true;
- }
- static bool IsConstNonVolatile(QualType T) {
- Qualifiers Quals = T.getQualifiers();
- return Quals.hasConst() && !Quals.hasVolatile();
- }
- /// Get the base index of the given base class within an APValue representing
- /// the given derived class.
- static unsigned getBaseIndex(const CXXRecordDecl *Derived,
- const CXXRecordDecl *Base) {
- Base = Base->getCanonicalDecl();
- unsigned Index = 0;
- for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
- E = Derived->bases_end(); I != E; ++I, ++Index) {
- if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
- return Index;
- }
- llvm_unreachable("base class missing from derived class's bases list");
- }
- /// Extract the value of a character from a string literal.
- static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
- uint64_t Index) {
- // FIXME: Support ObjCEncodeExpr, MakeStringConstant
- if (auto PE = dyn_cast<PredefinedExpr>(Lit))
- Lit = PE->getFunctionName();
- const StringLiteral *S = cast<StringLiteral>(Lit);
- const ConstantArrayType *CAT =
- Info.Ctx.getAsConstantArrayType(S->getType());
- assert(CAT && "string literal isn't an array");
- QualType CharType = CAT->getElementType();
- assert(CharType->isIntegerType() && "unexpected character type");
- APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
- CharType->isUnsignedIntegerType());
- if (Index < S->getLength())
- Value = S->getCodeUnit(Index);
- return Value;
- }
- // Expand a string literal into an array of characters.
- static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
- APValue &Result) {
- const StringLiteral *S = cast<StringLiteral>(Lit);
- const ConstantArrayType *CAT =
- Info.Ctx.getAsConstantArrayType(S->getType());
- assert(CAT && "string literal isn't an array");
- QualType CharType = CAT->getElementType();
- assert(CharType->isIntegerType() && "unexpected character type");
- unsigned Elts = CAT->getSize().getZExtValue();
- Result = APValue(APValue::UninitArray(),
- std::min(S->getLength(), Elts), Elts);
- APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
- CharType->isUnsignedIntegerType());
- if (Result.hasArrayFiller())
- Result.getArrayFiller() = APValue(Value);
- for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
- Value = S->getCodeUnit(I);
- Result.getArrayInitializedElt(I) = APValue(Value);
- }
- }
- // Expand an array so that it has more than Index filled elements.
- static void expandArray(APValue &Array, unsigned Index) {
- unsigned Size = Array.getArraySize();
- assert(Index < Size);
- // Always at least double the number of elements for which we store a value.
- unsigned OldElts = Array.getArrayInitializedElts();
- unsigned NewElts = std::max(Index+1, OldElts * 2);
- NewElts = std::min(Size, std::max(NewElts, 8u));
- // Copy the data across.
- APValue NewValue(APValue::UninitArray(), NewElts, Size);
- for (unsigned I = 0; I != OldElts; ++I)
- NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
- for (unsigned I = OldElts; I != NewElts; ++I)
- NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
- if (NewValue.hasArrayFiller())
- NewValue.getArrayFiller() = Array.getArrayFiller();
- Array.swap(NewValue);
- }
- /// Determine whether a type would actually be read by an lvalue-to-rvalue
- /// conversion. If it's of class type, we may assume that the copy operation
- /// is trivial. Note that this is never true for a union type with fields
- /// (because the copy always "reads" the active member) and always true for
- /// a non-class type.
- static bool isReadByLvalueToRvalueConversion(QualType T) {
- CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
- if (!RD || (RD->isUnion() && !RD->field_empty()))
- return true;
- if (RD->isEmpty())
- return false;
- for (auto *Field : RD->fields())
- if (isReadByLvalueToRvalueConversion(Field->getType()))
- return true;
- for (auto &BaseSpec : RD->bases())
- if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
- return true;
- return false;
- }
- /// Diagnose an attempt to read from any unreadable field within the specified
- /// type, which might be a class type.
- static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E,
- QualType T) {
- CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
- if (!RD)
- return false;
- if (!RD->hasMutableFields())
- return false;
- for (auto *Field : RD->fields()) {
- // If we're actually going to read this field in some way, then it can't
- // be mutable. If we're in a union, then assigning to a mutable field
- // (even an empty one) can change the active member, so that's not OK.
- // FIXME: Add core issue number for the union case.
- if (Field->isMutable() &&
- (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
- Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1) << Field;
- Info.Note(Field->getLocation(), diag::note_declared_at);
- return true;
- }
- if (diagnoseUnreadableFields(Info, E, Field->getType()))
- return true;
- }
- for (auto &BaseSpec : RD->bases())
- if (diagnoseUnreadableFields(Info, E, BaseSpec.getType()))
- return true;
- // All mutable fields were empty, and thus not actually read.
- return false;
- }
- /// Kinds of access we can perform on an object, for diagnostics.
- enum AccessKinds {
- AK_Read,
- AK_Assign,
- AK_Increment,
- AK_Decrement
- };
- namespace {
- /// A handle to a complete object (an object that is not a subobject of
- /// another object).
- struct CompleteObject {
- /// The value of the complete object.
- APValue *Value;
- /// The type of the complete object.
- QualType Type;
- CompleteObject() : Value(nullptr) {}
- CompleteObject(APValue *Value, QualType Type)
- : Value(Value), Type(Type) {
- assert(Value && "missing value for complete object");
- }
- explicit operator bool() const { return Value; }
- };
- } // end anonymous namespace
- /// Find the designated sub-object of an rvalue.
- template<typename SubobjectHandler>
- typename SubobjectHandler::result_type
- findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
- const SubobjectDesignator &Sub, SubobjectHandler &handler) {
- if (Sub.Invalid)
- // A diagnostic will have already been produced.
- return handler.failed();
- if (Sub.isOnePastTheEnd()) {
- if (Info.getLangOpts().CPlusPlus11)
- Info.FFDiag(E, diag::note_constexpr_access_past_end)
- << handler.AccessKind;
- else
- Info.FFDiag(E);
- return handler.failed();
- }
- APValue *O = Obj.Value;
- QualType ObjType = Obj.Type;
- const FieldDecl *LastField = nullptr;
- // Walk the designator's path to find the subobject.
- for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
- if (O->isUninit()) {
- if (!Info.checkingPotentialConstantExpression())
- Info.FFDiag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
- return handler.failed();
- }
- if (I == N) {
- // If we are reading an object of class type, there may still be more
- // things we need to check: if there are any mutable subobjects, we
- // cannot perform this read. (This only happens when performing a trivial
- // copy or assignment.)
- if (ObjType->isRecordType() && handler.AccessKind == AK_Read &&
- diagnoseUnreadableFields(Info, E, ObjType))
- return handler.failed();
- if (!handler.found(*O, ObjType))
- return false;
- // If we modified a bit-field, truncate it to the right width.
- if (handler.AccessKind != AK_Read &&
- LastField && LastField->isBitField() &&
- !truncateBitfieldValue(Info, E, *O, LastField))
- return false;
- return true;
- }
- LastField = nullptr;
- if (ObjType->isArrayType()) {
- // Next subobject is an array element.
- const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
- assert(CAT && "vla in literal type?");
- uint64_t Index = Sub.Entries[I].ArrayIndex;
- if (CAT->getSize().ule(Index)) {
- // Note, it should not be possible to form a pointer with a valid
- // designator which points more than one past the end of the array.
- if (Info.getLangOpts().CPlusPlus11)
- Info.FFDiag(E, diag::note_constexpr_access_past_end)
- << handler.AccessKind;
- else
- Info.FFDiag(E);
- return handler.failed();
- }
- ObjType = CAT->getElementType();
- // An array object is represented as either an Array APValue or as an
- // LValue which refers to a string literal.
- if (O->isLValue()) {
- assert(I == N - 1 && "extracting subobject of character?");
- assert(!O->hasLValuePath() || O->getLValuePath().empty());
- if (handler.AccessKind != AK_Read)
- expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
- *O);
- else
- return handler.foundString(*O, ObjType, Index);
- }
- if (O->getArrayInitializedElts() > Index)
- O = &O->getArrayInitializedElt(Index);
- else if (handler.AccessKind != AK_Read) {
- expandArray(*O, Index);
- O = &O->getArrayInitializedElt(Index);
- } else
- O = &O->getArrayFiller();
- } else if (ObjType->isAnyComplexType()) {
- // Next subobject is a complex number.
- uint64_t Index = Sub.Entries[I].ArrayIndex;
- if (Index > 1) {
- if (Info.getLangOpts().CPlusPlus11)
- Info.FFDiag(E, diag::note_constexpr_access_past_end)
- << handler.AccessKind;
- else
- Info.FFDiag(E);
- return handler.failed();
- }
- bool WasConstQualified = ObjType.isConstQualified();
- ObjType = ObjType->castAs<ComplexType>()->getElementType();
- if (WasConstQualified)
- ObjType.addConst();
- assert(I == N - 1 && "extracting subobject of scalar?");
- if (O->isComplexInt()) {
- return handler.found(Index ? O->getComplexIntImag()
- : O->getComplexIntReal(), ObjType);
- } else {
- assert(O->isComplexFloat());
- return handler.found(Index ? O->getComplexFloatImag()
- : O->getComplexFloatReal(), ObjType);
- }
- } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
- if (Field->isMutable() && handler.AccessKind == AK_Read) {
- Info.FFDiag(E, diag::note_constexpr_ltor_mutable, 1)
- << Field;
- Info.Note(Field->getLocation(), diag::note_declared_at);
- return handler.failed();
- }
- // Next subobject is a class, struct or union field.
- RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
- if (RD->isUnion()) {
- const FieldDecl *UnionField = O->getUnionField();
- if (!UnionField ||
- UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
- Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member)
- << handler.AccessKind << Field << !UnionField << UnionField;
- return handler.failed();
- }
- O = &O->getUnionValue();
- } else
- O = &O->getStructField(Field->getFieldIndex());
- bool WasConstQualified = ObjType.isConstQualified();
- ObjType = Field->getType();
- if (WasConstQualified && !Field->isMutable())
- ObjType.addConst();
- if (ObjType.isVolatileQualified()) {
- if (Info.getLangOpts().CPlusPlus) {
- // FIXME: Include a description of the path to the volatile subobject.
- Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
- << handler.AccessKind << 2 << Field;
- Info.Note(Field->getLocation(), diag::note_declared_at);
- } else {
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- }
- return handler.failed();
- }
- LastField = Field;
- } else {
- // Next subobject is a base class.
- const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
- const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
- O = &O->getStructBase(getBaseIndex(Derived, Base));
- bool WasConstQualified = ObjType.isConstQualified();
- ObjType = Info.Ctx.getRecordType(Base);
- if (WasConstQualified)
- ObjType.addConst();
- }
- }
- }
- namespace {
- struct ExtractSubobjectHandler {
- EvalInfo &Info;
- APValue &Result;
- static const AccessKinds AccessKind = AK_Read;
- typedef bool result_type;
- bool failed() { return false; }
- bool found(APValue &Subobj, QualType SubobjType) {
- Result = Subobj;
- return true;
- }
- bool found(APSInt &Value, QualType SubobjType) {
- Result = APValue(Value);
- return true;
- }
- bool found(APFloat &Value, QualType SubobjType) {
- Result = APValue(Value);
- return true;
- }
- bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
- Result = APValue(extractStringLiteralCharacter(
- Info, Subobj.getLValueBase().get<const Expr *>(), Character));
- return true;
- }
- };
- } // end anonymous namespace
- const AccessKinds ExtractSubobjectHandler::AccessKind;
- /// Extract the designated sub-object of an rvalue.
- static bool extractSubobject(EvalInfo &Info, const Expr *E,
- const CompleteObject &Obj,
- const SubobjectDesignator &Sub,
- APValue &Result) {
- ExtractSubobjectHandler Handler = { Info, Result };
- return findSubobject(Info, E, Obj, Sub, Handler);
- }
- namespace {
- struct ModifySubobjectHandler {
- EvalInfo &Info;
- APValue &NewVal;
- const Expr *E;
- typedef bool result_type;
- static const AccessKinds AccessKind = AK_Assign;
- bool checkConst(QualType QT) {
- // Assigning to a const object has undefined behavior.
- if (QT.isConstQualified()) {
- Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
- return false;
- }
- return true;
- }
- bool failed() { return false; }
- bool found(APValue &Subobj, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- // We've been given ownership of NewVal, so just swap it in.
- Subobj.swap(NewVal);
- return true;
- }
- bool found(APSInt &Value, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- if (!NewVal.isInt()) {
- // Maybe trying to write a cast pointer value into a complex?
- Info.FFDiag(E);
- return false;
- }
- Value = NewVal.getInt();
- return true;
- }
- bool found(APFloat &Value, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- Value = NewVal.getFloat();
- return true;
- }
- bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
- llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
- }
- };
- } // end anonymous namespace
- const AccessKinds ModifySubobjectHandler::AccessKind;
- /// Update the designated sub-object of an rvalue to the given value.
- static bool modifySubobject(EvalInfo &Info, const Expr *E,
- const CompleteObject &Obj,
- const SubobjectDesignator &Sub,
- APValue &NewVal) {
- ModifySubobjectHandler Handler = { Info, NewVal, E };
- return findSubobject(Info, E, Obj, Sub, Handler);
- }
- /// Find the position where two subobject designators diverge, or equivalently
- /// the length of the common initial subsequence.
- static unsigned FindDesignatorMismatch(QualType ObjType,
- const SubobjectDesignator &A,
- const SubobjectDesignator &B,
- bool &WasArrayIndex) {
- unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
- for (/**/; I != N; ++I) {
- if (!ObjType.isNull() &&
- (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
- // Next subobject is an array element.
- if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
- WasArrayIndex = true;
- return I;
- }
- if (ObjType->isAnyComplexType())
- ObjType = ObjType->castAs<ComplexType>()->getElementType();
- else
- ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
- } else {
- if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
- WasArrayIndex = false;
- return I;
- }
- if (const FieldDecl *FD = getAsField(A.Entries[I]))
- // Next subobject is a field.
- ObjType = FD->getType();
- else
- // Next subobject is a base class.
- ObjType = QualType();
- }
- }
- WasArrayIndex = false;
- return I;
- }
- /// Determine whether the given subobject designators refer to elements of the
- /// same array object.
- static bool AreElementsOfSameArray(QualType ObjType,
- const SubobjectDesignator &A,
- const SubobjectDesignator &B) {
- if (A.Entries.size() != B.Entries.size())
- return false;
- bool IsArray = A.MostDerivedIsArrayElement;
- if (IsArray && A.MostDerivedPathLength != A.Entries.size())
- // A is a subobject of the array element.
- return false;
- // If A (and B) designates an array element, the last entry will be the array
- // index. That doesn't have to match. Otherwise, we're in the 'implicit array
- // of length 1' case, and the entire path must match.
- bool WasArrayIndex;
- unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
- return CommonLength >= A.Entries.size() - IsArray;
- }
- /// Find the complete object to which an LValue refers.
- static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
- AccessKinds AK, const LValue &LVal,
- QualType LValType) {
- if (!LVal.Base) {
- Info.FFDiag(E, diag::note_constexpr_access_null) << AK;
- return CompleteObject();
- }
- CallStackFrame *Frame = nullptr;
- if (LVal.CallIndex) {
- Frame = Info.getCallFrame(LVal.CallIndex);
- if (!Frame) {
- Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1)
- << AK << LVal.Base.is<const ValueDecl*>();
- NoteLValueLocation(Info, LVal.Base);
- return CompleteObject();
- }
- }
- // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
- // is not a constant expression (even if the object is non-volatile). We also
- // apply this rule to C++98, in order to conform to the expected 'volatile'
- // semantics.
- if (LValType.isVolatileQualified()) {
- if (Info.getLangOpts().CPlusPlus)
- Info.FFDiag(E, diag::note_constexpr_access_volatile_type)
- << AK << LValType;
- else
- Info.FFDiag(E);
- return CompleteObject();
- }
- // Compute value storage location and type of base object.
- APValue *BaseVal = nullptr;
- QualType BaseType = getType(LVal.Base);
- if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
- // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
- // In C++11, constexpr, non-volatile variables initialized with constant
- // expressions are constant expressions too. Inside constexpr functions,
- // parameters are constant expressions even if they're non-const.
- // In C++1y, objects local to a constant expression (those with a Frame) are
- // both readable and writable inside constant expressions.
- // In C, such things can also be folded, although they are not ICEs.
- const VarDecl *VD = dyn_cast<VarDecl>(D);
- if (VD) {
- if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
- VD = VDef;
- }
- if (!VD || VD->isInvalidDecl()) {
- Info.FFDiag(E);
- return CompleteObject();
- }
- // Accesses of volatile-qualified objects are not allowed.
- if (BaseType.isVolatileQualified()) {
- if (Info.getLangOpts().CPlusPlus) {
- Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
- << AK << 1 << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- } else {
- Info.FFDiag(E);
- }
- return CompleteObject();
- }
- // Unless we're looking at a local variable or argument in a constexpr call,
- // the variable we're reading must be const.
- if (!Frame) {
- if (Info.getLangOpts().CPlusPlus14 &&
- VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
- // OK, we can read and modify an object if we're in the process of
- // evaluating its initializer, because its lifetime began in this
- // evaluation.
- } else if (AK != AK_Read) {
- // All the remaining cases only permit reading.
- Info.FFDiag(E, diag::note_constexpr_modify_global);
- return CompleteObject();
- } else if (VD->isConstexpr()) {
- // OK, we can read this variable.
- } else if (BaseType->isIntegralOrEnumerationType()) {
- // In OpenCL if a variable is in constant address space it is a const value.
- if (!(BaseType.isConstQualified() ||
- (Info.getLangOpts().OpenCL &&
- BaseType.getAddressSpace() == LangAS::opencl_constant))) {
- if (Info.getLangOpts().CPlusPlus) {
- Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- } else {
- Info.FFDiag(E);
- }
- return CompleteObject();
- }
- } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
- // We support folding of const floating-point types, in order to make
- // static const data members of such types (supported as an extension)
- // more useful.
- if (Info.getLangOpts().CPlusPlus11) {
- Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- } else {
- Info.CCEDiag(E);
- }
- } else {
- // FIXME: Allow folding of values of any literal type in all languages.
- if (Info.checkingPotentialConstantExpression() &&
- VD->getType().isConstQualified() && !VD->hasDefinition(Info.Ctx)) {
- // The definition of this variable could be constexpr. We can't
- // access it right now, but may be able to in future.
- } else if (Info.getLangOpts().CPlusPlus11) {
- Info.FFDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
- Info.Note(VD->getLocation(), diag::note_declared_at);
- } else {
- Info.FFDiag(E);
- }
- return CompleteObject();
- }
- }
- if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
- return CompleteObject();
- } else {
- const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
- if (!Frame) {
- if (const MaterializeTemporaryExpr *MTE =
- dyn_cast<MaterializeTemporaryExpr>(Base)) {
- assert(MTE->getStorageDuration() == SD_Static &&
- "should have a frame for a non-global materialized temporary");
- // Per C++1y [expr.const]p2:
- // an lvalue-to-rvalue conversion [is not allowed unless it applies to]
- // - a [...] glvalue of integral or enumeration type that refers to
- // a non-volatile const object [...]
- // [...]
- // - a [...] glvalue of literal type that refers to a non-volatile
- // object whose lifetime began within the evaluation of e.
- //
- // C++11 misses the 'began within the evaluation of e' check and
- // instead allows all temporaries, including things like:
- // int &&r = 1;
- // int x = ++r;
- // constexpr int k = r;
- // Therefore we use the C++1y rules in C++11 too.
- const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
- const ValueDecl *ED = MTE->getExtendingDecl();
- if (!(BaseType.isConstQualified() &&
- BaseType->isIntegralOrEnumerationType()) &&
- !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
- Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
- Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
- return CompleteObject();
- }
- BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
- assert(BaseVal && "got reference to unevaluated temporary");
- } else {
- Info.FFDiag(E);
- return CompleteObject();
- }
- } else {
- BaseVal = Frame->getTemporary(Base);
- assert(BaseVal && "missing value for temporary");
- }
- // Volatile temporary objects cannot be accessed in constant expressions.
- if (BaseType.isVolatileQualified()) {
- if (Info.getLangOpts().CPlusPlus) {
- Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1)
- << AK << 0;
- Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
- } else {
- Info.FFDiag(E);
- }
- return CompleteObject();
- }
- }
- // During the construction of an object, it is not yet 'const'.
- // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
- // and this doesn't do quite the right thing for const subobjects of the
- // object under construction.
- if (LVal.getLValueBase() == Info.EvaluatingDecl) {
- BaseType = Info.Ctx.getCanonicalType(BaseType);
- BaseType.removeLocalConst();
- }
- // In C++1y, we can't safely access any mutable state when we might be
- // evaluating after an unmodeled side effect.
- //
- // FIXME: Not all local state is mutable. Allow local constant subobjects
- // to be read here (but take care with 'mutable' fields).
- if ((Frame && Info.getLangOpts().CPlusPlus14 &&
- Info.EvalStatus.HasSideEffects) ||
- (AK != AK_Read && Info.IsSpeculativelyEvaluating))
- return CompleteObject();
- return CompleteObject(BaseVal, BaseType);
- }
- /// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
- /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
- /// glvalue referred to by an entity of reference type.
- ///
- /// \param Info - Information about the ongoing evaluation.
- /// \param Conv - The expression for which we are performing the conversion.
- /// Used for diagnostics.
- /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
- /// case of a non-class type).
- /// \param LVal - The glvalue on which we are attempting to perform this action.
- /// \param RVal - The produced value will be placed here.
- static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
- QualType Type,
- const LValue &LVal, APValue &RVal) {
- if (LVal.Designator.Invalid)
- return false;
- // Check for special cases where there is no existing APValue to look at.
- const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
- if (Base && !LVal.CallIndex && !Type.isVolatileQualified()) {
- if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
- // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
- // initializer until now for such expressions. Such an expression can't be
- // an ICE in C, so this only matters for fold.
- if (Type.isVolatileQualified()) {
- Info.FFDiag(Conv);
- return false;
- }
- APValue Lit;
- if (!Evaluate(Lit, Info, CLE->getInitializer()))
- return false;
- CompleteObject LitObj(&Lit, Base->getType());
- return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
- } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
- // We represent a string literal array as an lvalue pointing at the
- // corresponding expression, rather than building an array of chars.
- // FIXME: Support ObjCEncodeExpr, MakeStringConstant
- APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
- CompleteObject StrObj(&Str, Base->getType());
- return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
- }
- }
- CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
- return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
- }
- /// Perform an assignment of Val to LVal. Takes ownership of Val.
- static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
- QualType LValType, APValue &Val) {
- if (LVal.Designator.Invalid)
- return false;
- if (!Info.getLangOpts().CPlusPlus14) {
- Info.FFDiag(E);
- return false;
- }
- CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
- return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
- }
- static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
- return T->isSignedIntegerType() &&
- Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
- }
- namespace {
- struct CompoundAssignSubobjectHandler {
- EvalInfo &Info;
- const Expr *E;
- QualType PromotedLHSType;
- BinaryOperatorKind Opcode;
- const APValue &RHS;
- static const AccessKinds AccessKind = AK_Assign;
- typedef bool result_type;
- bool checkConst(QualType QT) {
- // Assigning to a const object has undefined behavior.
- if (QT.isConstQualified()) {
- Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
- return false;
- }
- return true;
- }
- bool failed() { return false; }
- bool found(APValue &Subobj, QualType SubobjType) {
- switch (Subobj.getKind()) {
- case APValue::Int:
- return found(Subobj.getInt(), SubobjType);
- case APValue::Float:
- return found(Subobj.getFloat(), SubobjType);
- case APValue::ComplexInt:
- case APValue::ComplexFloat:
- // FIXME: Implement complex compound assignment.
- Info.FFDiag(E);
- return false;
- case APValue::LValue:
- return foundPointer(Subobj, SubobjType);
- default:
- // FIXME: can this happen?
- Info.FFDiag(E);
- return false;
- }
- }
- bool found(APSInt &Value, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- if (!SubobjType->isIntegerType() || !RHS.isInt()) {
- // We don't support compound assignment on integer-cast-to-pointer
- // values.
- Info.FFDiag(E);
- return false;
- }
- APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
- SubobjType, Value);
- if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
- return false;
- Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
- return true;
- }
- bool found(APFloat &Value, QualType SubobjType) {
- return checkConst(SubobjType) &&
- HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
- Value) &&
- handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
- HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
- }
- bool foundPointer(APValue &Subobj, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- QualType PointeeType;
- if (const PointerType *PT = SubobjType->getAs<PointerType>())
- PointeeType = PT->getPointeeType();
- if (PointeeType.isNull() || !RHS.isInt() ||
- (Opcode != BO_Add && Opcode != BO_Sub)) {
- Info.FFDiag(E);
- return false;
- }
- int64_t Offset = getExtValue(RHS.getInt());
- if (Opcode == BO_Sub)
- Offset = -Offset;
- LValue LVal;
- LVal.setFrom(Info.Ctx, Subobj);
- if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
- return false;
- LVal.moveInto(Subobj);
- return true;
- }
- bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
- llvm_unreachable("shouldn't encounter string elements here");
- }
- };
- } // end anonymous namespace
- const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
- /// Perform a compound assignment of LVal <op>= RVal.
- static bool handleCompoundAssignment(
- EvalInfo &Info, const Expr *E,
- const LValue &LVal, QualType LValType, QualType PromotedLValType,
- BinaryOperatorKind Opcode, const APValue &RVal) {
- if (LVal.Designator.Invalid)
- return false;
- if (!Info.getLangOpts().CPlusPlus14) {
- Info.FFDiag(E);
- return false;
- }
- CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
- CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
- RVal };
- return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
- }
- namespace {
- struct IncDecSubobjectHandler {
- EvalInfo &Info;
- const Expr *E;
- AccessKinds AccessKind;
- APValue *Old;
- typedef bool result_type;
- bool checkConst(QualType QT) {
- // Assigning to a const object has undefined behavior.
- if (QT.isConstQualified()) {
- Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT;
- return false;
- }
- return true;
- }
- bool failed() { return false; }
- bool found(APValue &Subobj, QualType SubobjType) {
- // Stash the old value. Also clear Old, so we don't clobber it later
- // if we're post-incrementing a complex.
- if (Old) {
- *Old = Subobj;
- Old = nullptr;
- }
- switch (Subobj.getKind()) {
- case APValue::Int:
- return found(Subobj.getInt(), SubobjType);
- case APValue::Float:
- return found(Subobj.getFloat(), SubobjType);
- case APValue::ComplexInt:
- return found(Subobj.getComplexIntReal(),
- SubobjType->castAs<ComplexType>()->getElementType()
- .withCVRQualifiers(SubobjType.getCVRQualifiers()));
- case APValue::ComplexFloat:
- return found(Subobj.getComplexFloatReal(),
- SubobjType->castAs<ComplexType>()->getElementType()
- .withCVRQualifiers(SubobjType.getCVRQualifiers()));
- case APValue::LValue:
- return foundPointer(Subobj, SubobjType);
- default:
- // FIXME: can this happen?
- Info.FFDiag(E);
- return false;
- }
- }
- bool found(APSInt &Value, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- if (!SubobjType->isIntegerType()) {
- // We don't support increment / decrement on integer-cast-to-pointer
- // values.
- Info.FFDiag(E);
- return false;
- }
- if (Old) *Old = APValue(Value);
- // bool arithmetic promotes to int, and the conversion back to bool
- // doesn't reduce mod 2^n, so special-case it.
- if (SubobjType->isBooleanType()) {
- if (AccessKind == AK_Increment)
- Value = 1;
- else
- Value = !Value;
- return true;
- }
- bool WasNegative = Value.isNegative();
- if (AccessKind == AK_Increment) {
- ++Value;
- if (!WasNegative && Value.isNegative() &&
- isOverflowingIntegerType(Info.Ctx, SubobjType)) {
- APSInt ActualValue(Value, /*IsUnsigned*/true);
- return HandleOverflow(Info, E, ActualValue, SubobjType);
- }
- } else {
- --Value;
- if (WasNegative && !Value.isNegative() &&
- isOverflowingIntegerType(Info.Ctx, SubobjType)) {
- unsigned BitWidth = Value.getBitWidth();
- APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
- ActualValue.setBit(BitWidth);
- return HandleOverflow(Info, E, ActualValue, SubobjType);
- }
- }
- return true;
- }
- bool found(APFloat &Value, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- if (Old) *Old = APValue(Value);
- APFloat One(Value.getSemantics(), 1);
- if (AccessKind == AK_Increment)
- Value.add(One, APFloat::rmNearestTiesToEven);
- else
- Value.subtract(One, APFloat::rmNearestTiesToEven);
- return true;
- }
- bool foundPointer(APValue &Subobj, QualType SubobjType) {
- if (!checkConst(SubobjType))
- return false;
- QualType PointeeType;
- if (const PointerType *PT = SubobjType->getAs<PointerType>())
- PointeeType = PT->getPointeeType();
- else {
- Info.FFDiag(E);
- return false;
- }
- LValue LVal;
- LVal.setFrom(Info.Ctx, Subobj);
- if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
- AccessKind == AK_Increment ? 1 : -1))
- return false;
- LVal.moveInto(Subobj);
- return true;
- }
- bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
- llvm_unreachable("shouldn't encounter string elements here");
- }
- };
- } // end anonymous namespace
- /// Perform an increment or decrement on LVal.
- static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
- QualType LValType, bool IsIncrement, APValue *Old) {
- if (LVal.Designator.Invalid)
- return false;
- if (!Info.getLangOpts().CPlusPlus14) {
- Info.FFDiag(E);
- return false;
- }
- AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
- CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
- IncDecSubobjectHandler Handler = { Info, E, AK, Old };
- return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
- }
- /// Build an lvalue for the object argument of a member function call.
- static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
- LValue &This) {
- if (Object->getType()->isPointerType())
- return EvaluatePointer(Object, This, Info);
- if (Object->isGLValue())
- return EvaluateLValue(Object, This, Info);
- if (Object->getType()->isLiteralType(Info.Ctx))
- return EvaluateTemporary(Object, This, Info);
- Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType();
- return false;
- }
- /// HandleMemberPointerAccess - Evaluate a member access operation and build an
- /// lvalue referring to the result.
- ///
- /// \param Info - Information about the ongoing evaluation.
- /// \param LV - An lvalue referring to the base of the member pointer.
- /// \param RHS - The member pointer expression.
- /// \param IncludeMember - Specifies whether the member itself is included in
- /// the resulting LValue subobject designator. This is not possible when
- /// creating a bound member function.
- /// \return The field or method declaration to which the member pointer refers,
- /// or 0 if evaluation fails.
- static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
- QualType LVType,
- LValue &LV,
- const Expr *RHS,
- bool IncludeMember = true) {
- MemberPtr MemPtr;
- if (!EvaluateMemberPointer(RHS, MemPtr, Info))
- return nullptr;
- // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
- // member value, the behavior is undefined.
- if (!MemPtr.getDecl()) {
- // FIXME: Specific diagnostic.
- Info.FFDiag(RHS);
- return nullptr;
- }
- if (MemPtr.isDerivedMember()) {
- // This is a member of some derived class. Truncate LV appropriately.
- // The end of the derived-to-base path for the base object must match the
- // derived-to-base path for the member pointer.
- if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
- LV.Designator.Entries.size()) {
- Info.FFDiag(RHS);
- return nullptr;
- }
- unsigned PathLengthToMember =
- LV.Designator.Entries.size() - MemPtr.Path.size();
- for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
- const CXXRecordDecl *LVDecl = getAsBaseClass(
- LV.Designator.Entries[PathLengthToMember + I]);
- const CXXRecordDecl *MPDecl = MemPtr.Path[I];
- if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
- Info.FFDiag(RHS);
- return nullptr;
- }
- }
- // Truncate the lvalue to the appropriate derived class.
- if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
- PathLengthToMember))
- return nullptr;
- } else if (!MemPtr.Path.empty()) {
- // Extend the LValue path with the member pointer's path.
- LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
- MemPtr.Path.size() + IncludeMember);
- // Walk down to the appropriate base class.
- if (const PointerType *PT = LVType->getAs<PointerType>())
- LVType = PT->getPointeeType();
- const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
- assert(RD && "member pointer access on non-class-type expression");
- // The first class in the path is that of the lvalue.
- for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
- const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
- if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
- return nullptr;
- RD = Base;
- }
- // Finally cast to the class containing the member.
- if (!HandleLValueDirectBase(Info, RHS, LV, RD,
- MemPtr.getContainingRecord()))
- return nullptr;
- }
- // Add the member. Note that we cannot build bound member functions here.
- if (IncludeMember) {
- if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
- if (!HandleLValueMember(Info, RHS, LV, FD))
- return nullptr;
- } else if (const IndirectFieldDecl *IFD =
- dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
- if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
- return nullptr;
- } else {
- llvm_unreachable("can't construct reference to bound member function");
- }
- }
- return MemPtr.getDecl();
- }
- static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
- const BinaryOperator *BO,
- LValue &LV,
- bool IncludeMember = true) {
- assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
- if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
- if (Info.noteFailure()) {
- MemberPtr MemPtr;
- EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
- }
- return nullptr;
- }
- return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
- BO->getRHS(), IncludeMember);
- }
- /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
- /// the provided lvalue, which currently refers to the base object.
- static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
- LValue &Result) {
- SubobjectDesignator &D = Result.Designator;
- if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
- return false;
- QualType TargetQT = E->getType();
- if (const PointerType *PT = TargetQT->getAs<PointerType>())
- TargetQT = PT->getPointeeType();
- // Check this cast lands within the final derived-to-base subobject path.
- if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
- Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
- << D.MostDerivedType << TargetQT;
- return false;
- }
- // Check the type of the final cast. We don't need to check the path,
- // since a cast can only be formed if the path is unique.
- unsigned NewEntriesSize = D.Entries.size() - E->path_size();
- const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
- const CXXRecordDecl *FinalType;
- if (NewEntriesSize == D.MostDerivedPathLength)
- FinalType = D.MostDerivedType->getAsCXXRecordDecl();
- else
- FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
- if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
- Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
- << D.MostDerivedType << TargetQT;
- return false;
- }
- // Truncate the lvalue to the appropriate derived class.
- return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
- }
- namespace {
- enum EvalStmtResult {
- /// Evaluation failed.
- ESR_Failed,
- /// Hit a 'return' statement.
- ESR_Returned,
- /// Evaluation succeeded.
- ESR_Succeeded,
- /// Hit a 'continue' statement.
- ESR_Continue,
- /// Hit a 'break' statement.
- ESR_Break,
- /// Still scanning for 'case' or 'default' statement.
- ESR_CaseNotFound
- };
- }
- static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) {
- // We don't need to evaluate the initializer for a static local.
- if (!VD->hasLocalStorage())
- return true;
- LValue Result;
- Result.set(VD, Info.CurrentCall->Index);
- APValue &Val = Info.CurrentCall->createTemporary(VD, true);
- const Expr *InitE = VD->getInit();
- if (!InitE) {
- Info.FFDiag(VD->getLocStart(), diag::note_constexpr_uninitialized)
- << false << VD->getType();
- Val = APValue();
- return false;
- }
- if (InitE->isValueDependent())
- return false;
- if (!EvaluateInPlace(Val, Info, Result, InitE)) {
- // Wipe out any partially-computed value, to allow tracking that this
- // evaluation failed.
- Val = APValue();
- return false;
- }
- return true;
- }
- static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
- bool OK = true;
- if (const VarDecl *VD = dyn_cast<VarDecl>(D))
- OK &= EvaluateVarDecl(Info, VD);
- if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D))
- for (auto *BD : DD->bindings())
- if (auto *VD = BD->getHoldingVar())
- OK &= EvaluateDecl(Info, VD);
- return OK;
- }
- /// Evaluate a condition (either a variable declaration or an expression).
- static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
- const Expr *Cond, bool &Result) {
- FullExpressionRAII Scope(Info);
- if (CondDecl && !EvaluateDecl(Info, CondDecl))
- return false;
- return EvaluateAsBooleanCondition(Cond, Result, Info);
- }
- namespace {
- /// \brief A location where the result (returned value) of evaluating a
- /// statement should be stored.
- struct StmtResult {
- /// The APValue that should be filled in with the returned value.
- APValue &Value;
- /// The location containing the result, if any (used to support RVO).
- const LValue *Slot;
- };
- }
- static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
- const Stmt *S,
- const SwitchCase *SC = nullptr);
- /// Evaluate the body of a loop, and translate the result as appropriate.
- static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
- const Stmt *Body,
- const SwitchCase *Case = nullptr) {
- BlockScopeRAII Scope(Info);
- switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
- case ESR_Break:
- return ESR_Succeeded;
- case ESR_Succeeded:
- case ESR_Continue:
- return ESR_Continue;
- case ESR_Failed:
- case ESR_Returned:
- case ESR_CaseNotFound:
- return ESR;
- }
- llvm_unreachable("Invalid EvalStmtResult!");
- }
- /// Evaluate a switch statement.
- static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
- const SwitchStmt *SS) {
- BlockScopeRAII Scope(Info);
- // Evaluate the switch condition.
- APSInt Value;
- {
- FullExpressionRAII Scope(Info);
- if (const Stmt *Init = SS->getInit()) {
- EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
- if (ESR != ESR_Succeeded)
- return ESR;
- }
- if (SS->getConditionVariable() &&
- !EvaluateDecl(Info, SS->getConditionVariable()))
- return ESR_Failed;
- if (!EvaluateInteger(SS->getCond(), Value, Info))
- return ESR_Failed;
- }
- // Find the switch case corresponding to the value of the condition.
- // FIXME: Cache this lookup.
- const SwitchCase *Found = nullptr;
- for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
- SC = SC->getNextSwitchCase()) {
- if (isa<DefaultStmt>(SC)) {
- Found = SC;
- continue;
- }
- const CaseStmt *CS = cast<CaseStmt>(SC);
- APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
- APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
- : LHS;
- if (LHS <= Value && Value <= RHS) {
- Found = SC;
- break;
- }
- }
- if (!Found)
- return ESR_Succeeded;
- // Search the switch body for the switch case and evaluate it from there.
- switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
- case ESR_Break:
- return ESR_Succeeded;
- case ESR_Succeeded:
- case ESR_Continue:
- case ESR_Failed:
- case ESR_Returned:
- return ESR;
- case ESR_CaseNotFound:
- // This can only happen if the switch case is nested within a statement
- // expression. We have no intention of supporting that.
- Info.FFDiag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
- return ESR_Failed;
- }
- llvm_unreachable("Invalid EvalStmtResult!");
- }
- // Evaluate a statement.
- static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
- const Stmt *S, const SwitchCase *Case) {
- if (!Info.nextStep(S))
- return ESR_Failed;
- // If we're hunting down a 'case' or 'default' label, recurse through
- // substatements until we hit the label.
- if (Case) {
- // FIXME: We don't start the lifetime of objects whose initialization we
- // jump over. However, such objects must be of class type with a trivial
- // default constructor that initialize all subobjects, so must be empty,
- // so this almost never matters.
- switch (S->getStmtClass()) {
- case Stmt::CompoundStmtClass:
- // FIXME: Precompute which substatement of a compound statement we
- // would jump to, and go straight there rather than performing a
- // linear scan each time.
- case Stmt::LabelStmtClass:
- case Stmt::AttributedStmtClass:
- case Stmt::DoStmtClass:
- break;
- case Stmt::CaseStmtClass:
- case Stmt::DefaultStmtClass:
- if (Case == S)
- Case = nullptr;
- break;
- case Stmt::IfStmtClass: {
- // FIXME: Precompute which side of an 'if' we would jump to, and go
- // straight there rather than scanning both sides.
- const IfStmt *IS = cast<IfStmt>(S);
- // Wrap the evaluation in a block scope, in case it's a DeclStmt
- // preceded by our switch label.
- BlockScopeRAII Scope(Info);
- EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
- if (ESR != ESR_CaseNotFound || !IS->getElse())
- return ESR;
- return EvaluateStmt(Result, Info, IS->getElse(), Case);
- }
- case Stmt::WhileStmtClass: {
- EvalStmtResult ESR =
- EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
- if (ESR != ESR_Continue)
- return ESR;
- break;
- }
- case Stmt::ForStmtClass: {
- const ForStmt *FS = cast<ForStmt>(S);
- EvalStmtResult ESR =
- EvaluateLoopBody(Result, Info, FS->getBody(), Case);
- if (ESR != ESR_Continue)
- return ESR;
- if (FS->getInc()) {
- FullExpressionRAII IncScope(Info);
- if (!EvaluateIgnoredValue(Info, FS->getInc()))
- return ESR_Failed;
- }
- break;
- }
- case Stmt::DeclStmtClass:
- // FIXME: If the variable has initialization that can't be jumped over,
- // bail out of any immediately-surrounding compound-statement too.
- default:
- return ESR_CaseNotFound;
- }
- }
- switch (S->getStmtClass()) {
- default:
- if (const Expr *E = dyn_cast<Expr>(S)) {
- // Don't bother evaluating beyond an expression-statement which couldn't
- // be evaluated.
- FullExpressionRAII Scope(Info);
- if (!EvaluateIgnoredValue(Info, E))
- return ESR_Failed;
- return ESR_Succeeded;
- }
- Info.FFDiag(S->getLocStart());
- return ESR_Failed;
- case Stmt::NullStmtClass:
- return ESR_Succeeded;
- case Stmt::DeclStmtClass: {
- const DeclStmt *DS = cast<DeclStmt>(S);
- for (const auto *DclIt : DS->decls()) {
- // Each declaration initialization is its own full-expression.
- // FIXME: This isn't quite right; if we're performing aggregate
- // initialization, each braced subexpression is its own full-expression.
- FullExpressionRAII Scope(Info);
- if (!EvaluateDecl(Info, DclIt) && !Info.noteFailure())
- return ESR_Failed;
- }
- return ESR_Succeeded;
- }
- case Stmt::ReturnStmtClass: {
- const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
- FullExpressionRAII Scope(Info);
- if (RetExpr &&
- !(Result.Slot
- ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
- : Evaluate(Result.Value, Info, RetExpr)))
- return ESR_Failed;
- return ESR_Returned;
- }
- case Stmt::CompoundStmtClass: {
- BlockScopeRAII Scope(Info);
- const CompoundStmt *CS = cast<CompoundStmt>(S);
- for (const auto *BI : CS->body()) {
- EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
- if (ESR == ESR_Succeeded)
- Case = nullptr;
- else if (ESR != ESR_CaseNotFound)
- return ESR;
- }
- return Case ? ESR_CaseNotFound : ESR_Succeeded;
- }
- case Stmt::IfStmtClass: {
- const IfStmt *IS = cast<IfStmt>(S);
- // Evaluate the condition, as either a var decl or as an expression.
- BlockScopeRAII Scope(Info);
- if (const Stmt *Init = IS->getInit()) {
- EvalStmtResult ESR = EvaluateStmt(Result, Info, Init);
- if (ESR != ESR_Succeeded)
- return ESR;
- }
- bool Cond;
- if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
- return ESR_Failed;
- if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
- EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
- if (ESR != ESR_Succeeded)
- return ESR;
- }
- return ESR_Succeeded;
- }
- case Stmt::WhileStmtClass: {
- const WhileStmt *WS = cast<WhileStmt>(S);
- while (true) {
- BlockScopeRAII Scope(Info);
- bool Continue;
- if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
- Continue))
- return ESR_Failed;
- if (!Continue)
- break;
- EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
- if (ESR != ESR_Continue)
- return ESR;
- }
- return ESR_Succeeded;
- }
- case Stmt::DoStmtClass: {
- const DoStmt *DS = cast<DoStmt>(S);
- bool Continue;
- do {
- EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
- if (ESR != ESR_Continue)
- return ESR;
- Case = nullptr;
- FullExpressionRAII CondScope(Info);
- if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
- return ESR_Failed;
- } while (Continue);
- return ESR_Succeeded;
- }
- case Stmt::ForStmtClass: {
- const ForStmt *FS = cast<ForStmt>(S);
- BlockScopeRAII Scope(Info);
- if (FS->getInit()) {
- EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
- if (ESR != ESR_Succeeded)
- return ESR;
- }
- while (true) {
- BlockScopeRAII Scope(Info);
- bool Continue = true;
- if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
- FS->getCond(), Continue))
- return ESR_Failed;
- if (!Continue)
- break;
- EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
- if (ESR != ESR_Continue)
- return ESR;
- if (FS->getInc()) {
- FullExpressionRAII IncScope(Info);
- if (!EvaluateIgnoredValue(Info, FS->getInc()))
- return ESR_Failed;
- }
- }
- return ESR_Succeeded;
- }
- case Stmt::CXXForRangeStmtClass: {
- const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
- BlockScopeRAII Scope(Info);
- // Initialize the __range variable.
- EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
- if (ESR != ESR_Succeeded)
- return ESR;
- // Create the __begin and __end iterators.
- ESR = EvaluateStmt(Result, Info, FS->getBeginStmt());
- if (ESR != ESR_Succeeded)
- return ESR;
- ESR = EvaluateStmt(Result, Info, FS->getEndStmt());
- if (ESR != ESR_Succeeded)
- return ESR;
- while (true) {
- // Condition: __begin != __end.
- {
- bool Continue = true;
- FullExpressionRAII CondExpr(Info);
- if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
- return ESR_Failed;
- if (!Continue)
- break;
- }
- // User's variable declaration, initialized by *__begin.
- BlockScopeRAII InnerScope(Info);
- ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
- if (ESR != ESR_Succeeded)
- return ESR;
- // Loop body.
- ESR = EvaluateLoopBody(Result, Info, FS->getBody());
- if (ESR != ESR_Continue)
- return ESR;
- // Increment: ++__begin
- if (!EvaluateIgnoredValue(Info, FS->getInc()))
- return ESR_Failed;
- }
- return ESR_Succeeded;
- }
- case Stmt::SwitchStmtClass:
- return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
- case Stmt::ContinueStmtClass:
- return ESR_Continue;
- case Stmt::BreakStmtClass:
- return ESR_Break;
- case Stmt::LabelStmtClass:
- return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
- case Stmt::AttributedStmtClass:
- // As a general principle, C++11 attributes can be ignored without
- // any semantic impact.
- return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
- Case);
- case Stmt::CaseStmtClass:
- case Stmt::DefaultStmtClass:
- return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
- }
- }
- /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
- /// default constructor. If so, we'll fold it whether or not it's marked as
- /// constexpr. If it is marked as constexpr, we will never implicitly define it,
- /// so we need special handling.
- static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
- const CXXConstructorDecl *CD,
- bool IsValueInitialization) {
- if (!CD->isTrivial() || !CD->isDefaultConstructor())
- return false;
- // Value-initialization does not call a trivial default constructor, so such a
- // call is a core constant expression whether or not the constructor is
- // constexpr.
- if (!CD->isConstexpr() && !IsValueInitialization) {
- if (Info.getLangOpts().CPlusPlus11) {
- // FIXME: If DiagDecl is an implicitly-declared special member function,
- // we should be much more explicit about why it's not constexpr.
- Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
- << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
- Info.Note(CD->getLocation(), diag::note_declared_at);
- } else {
- Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
- }
- }
- return true;
- }
- /// CheckConstexprFunction - Check that a function can be called in a constant
- /// expression.
- static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
- const FunctionDecl *Declaration,
- const FunctionDecl *Definition,
- const Stmt *Body) {
- // Potential constant expressions can contain calls to declared, but not yet
- // defined, constexpr functions.
- if (Info.checkingPotentialConstantExpression() && !Definition &&
- Declaration->isConstexpr())
- return false;
- // Bail out with no diagnostic if the function declaration itself is invalid.
- // We will have produced a relevant diagnostic while parsing it.
- if (Declaration->isInvalidDecl())
- return false;
- // Can we evaluate this function call?
- if (Definition && Definition->isConstexpr() &&
- !Definition->isInvalidDecl() && Body)
- return true;
- if (Info.getLangOpts().CPlusPlus11) {
- const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
-
- // If this function is not constexpr because it is an inherited
- // non-constexpr constructor, diagnose that directly.
- auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
- if (CD && CD->isInheritingConstructor()) {
- auto *Inherited = CD->getInheritedConstructor().getConstructor();
- if (!Inherited->isConstexpr())
- DiagDecl = CD = Inherited;
- }
- // FIXME: If DiagDecl is an implicitly-declared special member function
- // or an inheriting constructor, we should be much more explicit about why
- // it's not constexpr.
- if (CD && CD->isInheritingConstructor())
- Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1)
- << CD->getInheritedConstructor().getConstructor()->getParent();
- else
- Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1)
- << DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
- Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
- } else {
- Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
- }
- return false;
- }
- /// Determine if a class has any fields that might need to be copied by a
- /// trivial copy or move operation.
- static bool hasFields(const CXXRecordDecl *RD) {
- if (!RD || RD->isEmpty())
- return false;
- for (auto *FD : RD->fields()) {
- if (FD->isUnnamedBitfield())
- continue;
- return true;
- }
- for (auto &Base : RD->bases())
- if (hasFields(Base.getType()->getAsCXXRecordDecl()))
- return true;
- return false;
- }
- namespace {
- typedef SmallVector<APValue, 8> ArgVector;
- }
- /// EvaluateArgs - Evaluate the arguments to a function call.
- static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
- EvalInfo &Info) {
- bool Success = true;
- for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
- I != E; ++I) {
- if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
- // If we're checking for a potential constant expression, evaluate all
- // initializers even if some of them fail.
- if (!Info.noteFailure())
- return false;
- Success = false;
- }
- }
- return Success;
- }
- /// Evaluate a function call.
- static bool HandleFunctionCall(SourceLocation CallLoc,
- const FunctionDecl *Callee, const LValue *This,
- ArrayRef<const Expr*> Args, const Stmt *Body,
- EvalInfo &Info, APValue &Result,
- const LValue *ResultSlot) {
- ArgVector ArgValues(Args.size());
- if (!EvaluateArgs(Args, ArgValues, Info))
- return false;
- if (!Info.CheckCallLimit(CallLoc))
- return false;
- CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
- // For a trivial copy or move assignment, perform an APValue copy. This is
- // essential for unions, where the operations performed by the assignment
- // operator cannot be represented as statements.
- //
- // Skip this for non-union classes with no fields; in that case, the defaulted
- // copy/move does not actually read the object.
- const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
- if (MD && MD->isDefaulted() &&
- (MD->getParent()->isUnion() ||
- (MD->isTrivial() && hasFields(MD->getParent())))) {
- assert(This &&
- (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
- LValue RHS;
- RHS.setFrom(Info.Ctx, ArgValues[0]);
- APValue RHSValue;
- if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
- RHS, RHSValue))
- return false;
- if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
- RHSValue))
- return false;
- This->moveInto(Result);
- return true;
- }
- StmtResult Ret = {Result, ResultSlot};
- EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
- if (ESR == ESR_Succeeded) {
- if (Callee->getReturnType()->isVoidType())
- return true;
- Info.FFDiag(Callee->getLocEnd(), diag::note_constexpr_no_return);
- }
- return ESR == ESR_Returned;
- }
- /// Evaluate a constructor call.
- static bool HandleConstructorCall(const Expr *E, const LValue &This,
- APValue *ArgValues,
- const CXXConstructorDecl *Definition,
- EvalInfo &Info, APValue &Result) {
- SourceLocation CallLoc = E->getExprLoc();
- if (!Info.CheckCallLimit(CallLoc))
- return false;
- const CXXRecordDecl *RD = Definition->getParent();
- if (RD->getNumVBases()) {
- Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD;
- return false;
- }
- CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues);
- // FIXME: Creating an APValue just to hold a nonexistent return value is
- // wasteful.
- APValue RetVal;
- StmtResult Ret = {RetVal, nullptr};
- // If it's a delegating constructor, delegate.
- if (Definition->isDelegatingConstructor()) {
- CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
- {
- FullExpressionRAII InitScope(Info);
- if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
- return false;
- }
- return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
- }
- // For a trivial copy or move constructor, perform an APValue copy. This is
- // essential for unions (or classes with anonymous union members), where the
- // operations performed by the constructor cannot be represented by
- // ctor-initializers.
- //
- // Skip this for empty non-union classes; we should not perform an
- // lvalue-to-rvalue conversion on them because their copy constructor does not
- // actually read them.
- if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
- (Definition->getParent()->isUnion() ||
- (Definition->isTrivial() && hasFields(Definition->getParent())))) {
- LValue RHS;
- RHS.setFrom(Info.Ctx, ArgValues[0]);
- return handleLValueToRValueConversion(
- Info, E, Definition->getParamDecl(0)->getType().getNonReferenceType(),
- RHS, Result);
- }
- // Reserve space for the struct members.
- if (!RD->isUnion() && Result.isUninit())
- Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
- std::distance(RD->field_begin(), RD->field_end()));
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
- // A scope for temporaries lifetime-extended by reference members.
- BlockScopeRAII LifetimeExtendedScope(Info);
- bool Success = true;
- unsigned BasesSeen = 0;
- #ifndef NDEBUG
- CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
- #endif
- for (const auto *I : Definition->inits()) {
- LValue Subobject = This;
- APValue *Value = &Result;
- // Determine the subobject to initialize.
- FieldDecl *FD = nullptr;
- if (I->isBaseInitializer()) {
- QualType BaseType(I->getBaseClass(), 0);
- #ifndef NDEBUG
- // Non-virtual base classes are initialized in the order in the class
- // definition. We have already checked for virtual base classes.
- assert(!BaseIt->isVirtual() && "virtual base for literal type");
- assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
- "base class initializers not in expected order");
- ++BaseIt;
- #endif
- if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
- BaseType->getAsCXXRecordDecl(), &Layout))
- return false;
- Value = &Result.getStructBase(BasesSeen++);
- } else if ((FD = I->getMember())) {
- if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
- return false;
- if (RD->isUnion()) {
- Result = APValue(FD);
- Value = &Result.getUnionValue();
- } else {
- Value = &Result.getStructField(FD->getFieldIndex());
- }
- } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
- // Walk the indirect field decl's chain to find the object to initialize,
- // and make sure we've initialized every step along it.
- for (auto *C : IFD->chain()) {
- FD = cast<FieldDecl>(C);
- CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
- // Switch the union field if it differs. This happens if we had
- // preceding zero-initialization, and we're now initializing a union
- // subobject other than the first.
- // FIXME: In this case, the values of the other subobjects are
- // specified, since zero-initialization sets all padding bits to zero.
- if (Value->isUninit() ||
- (Value->isUnion() && Value->getUnionField() != FD)) {
- if (CD->isUnion())
- *Value = APValue(FD);
- else
- *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
- std::distance(CD->field_begin(), CD->field_end()));
- }
- if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
- return false;
- if (CD->isUnion())
- Value = &Value->getUnionValue();
- else
- Value = &Value->getStructField(FD->getFieldIndex());
- }
- } else {
- llvm_unreachable("unknown base initializer kind");
- }
- FullExpressionRAII InitScope(Info);
- if (!EvaluateInPlace(*Value, Info, Subobject, I->getInit()) ||
- (FD && FD->isBitField() && !truncateBitfieldValue(Info, I->getInit(),
- *Value, FD))) {
- // If we're checking for a potential constant expression, evaluate all
- // initializers even if some of them fail.
- if (!Info.noteFailure())
- return false;
- Success = false;
- }
- }
- return Success &&
- EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
- }
- static bool HandleConstructorCall(const Expr *E, const LValue &This,
- ArrayRef<const Expr*> Args,
- const CXXConstructorDecl *Definition,
- EvalInfo &Info, APValue &Result) {
- ArgVector ArgValues(Args.size());
- if (!EvaluateArgs(Args, ArgValues, Info))
- return false;
- return HandleConstructorCall(E, This, ArgValues.data(), Definition,
- Info, Result);
- }
- //===----------------------------------------------------------------------===//
- // Generic Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- template <class Derived>
- class ExprEvaluatorBase
- : public ConstStmtVisitor<Derived, bool> {
- private:
- Derived &getDerived() { return static_cast<Derived&>(*this); }
- bool DerivedSuccess(const APValue &V, const Expr *E) {
- return getDerived().Success(V, E);
- }
- bool DerivedZeroInitialization(const Expr *E) {
- return getDerived().ZeroInitialization(E);
- }
- // Check whether a conditional operator with a non-constant condition is a
- // potential constant expression. If neither arm is a potential constant
- // expression, then the conditional operator is not either.
- template<typename ConditionalOperator>
- void CheckPotentialConstantConditional(const ConditionalOperator *E) {
- assert(Info.checkingPotentialConstantExpression());
- // Speculatively evaluate both arms.
- SmallVector<PartialDiagnosticAt, 8> Diag;
- {
- SpeculativeEvaluationRAII Speculate(Info, &Diag);
- StmtVisitorTy::Visit(E->getFalseExpr());
- if (Diag.empty())
- return;
- }
- {
- SpeculativeEvaluationRAII Speculate(Info, &Diag);
- Diag.clear();
- StmtVisitorTy::Visit(E->getTrueExpr());
- if (Diag.empty())
- return;
- }
- Error(E, diag::note_constexpr_conditional_never_const);
- }
- template<typename ConditionalOperator>
- bool HandleConditionalOperator(const ConditionalOperator *E) {
- bool BoolResult;
- if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
- if (Info.checkingPotentialConstantExpression() && Info.noteFailure())
- CheckPotentialConstantConditional(E);
- return false;
- }
- Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
- return StmtVisitorTy::Visit(EvalExpr);
- }
- protected:
- EvalInfo &Info;
- typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
- typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
- OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
- return Info.CCEDiag(E, D);
- }
- bool ZeroInitialization(const Expr *E) { return Error(E); }
- public:
- ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
- EvalInfo &getEvalInfo() { return Info; }
- /// Report an evaluation error. This should only be called when an error is
- /// first discovered. When propagating an error, just return false.
- bool Error(const Expr *E, diag::kind D) {
- Info.FFDiag(E, D);
- return false;
- }
- bool Error(const Expr *E) {
- return Error(E, diag::note_invalid_subexpr_in_const_expr);
- }
- bool VisitStmt(const Stmt *) {
- llvm_unreachable("Expression evaluator should not be called on stmts");
- }
- bool VisitExpr(const Expr *E) {
- return Error(E);
- }
- bool VisitParenExpr(const ParenExpr *E)
- { return StmtVisitorTy::Visit(E->getSubExpr()); }
- bool VisitUnaryExtension(const UnaryOperator *E)
- { return StmtVisitorTy::Visit(E->getSubExpr()); }
- bool VisitUnaryPlus(const UnaryOperator *E)
- { return StmtVisitorTy::Visit(E->getSubExpr()); }
- bool VisitChooseExpr(const ChooseExpr *E)
- { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
- bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
- { return StmtVisitorTy::Visit(E->getResultExpr()); }
- bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
- { return StmtVisitorTy::Visit(E->getReplacement()); }
- bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
- { return StmtVisitorTy::Visit(E->getExpr()); }
- bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
- // The initializer may not have been parsed yet, or might be erroneous.
- if (!E->getExpr())
- return Error(E);
- return StmtVisitorTy::Visit(E->getExpr());
- }
- // We cannot create any objects for which cleanups are required, so there is
- // nothing to do here; all cleanups must come from unevaluated subexpressions.
- bool VisitExprWithCleanups(const ExprWithCleanups *E)
- { return StmtVisitorTy::Visit(E->getSubExpr()); }
- bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
- CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
- return static_cast<Derived*>(this)->VisitCastExpr(E);
- }
- bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
- CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
- return static_cast<Derived*>(this)->VisitCastExpr(E);
- }
- bool VisitBinaryOperator(const BinaryOperator *E) {
- switch (E->getOpcode()) {
- default:
- return Error(E);
- case BO_Comma:
- VisitIgnoredValue(E->getLHS());
- return StmtVisitorTy::Visit(E->getRHS());
- case BO_PtrMemD:
- case BO_PtrMemI: {
- LValue Obj;
- if (!HandleMemberPointerAccess(Info, E, Obj))
- return false;
- APValue Result;
- if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
- return false;
- return DerivedSuccess(Result, E);
- }
- }
- }
- bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
- // Evaluate and cache the common expression. We treat it as a temporary,
- // even though it's not quite the same thing.
- if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
- Info, E->getCommon()))
- return false;
- return HandleConditionalOperator(E);
- }
- bool VisitConditionalOperator(const ConditionalOperator *E) {
- bool IsBcpCall = false;
- // If the condition (ignoring parens) is a __builtin_constant_p call,
- // the result is a constant expression if it can be folded without
- // side-effects. This is an important GNU extension. See GCC PR38377
- // for discussion.
- if (const CallExpr *CallCE =
- dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
- if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
- IsBcpCall = true;
- // Always assume __builtin_constant_p(...) ? ... : ... is a potential
- // constant expression; we can't check whether it's potentially foldable.
- if (Info.checkingPotentialConstantExpression() && IsBcpCall)
- return false;
- FoldConstant Fold(Info, IsBcpCall);
- if (!HandleConditionalOperator(E)) {
- Fold.keepDiagnostics();
- return false;
- }
- return true;
- }
- bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
- if (APValue *Value = Info.CurrentCall->getTemporary(E))
- return DerivedSuccess(*Value, E);
- const Expr *Source = E->getSourceExpr();
- if (!Source)
- return Error(E);
- if (Source == E) { // sanity checking.
- assert(0 && "OpaqueValueExpr recursively refers to itself");
- return Error(E);
- }
- return StmtVisitorTy::Visit(Source);
- }
- bool VisitCallExpr(const CallExpr *E) {
- APValue Result;
- if (!handleCallExpr(E, Result, nullptr))
- return false;
- return DerivedSuccess(Result, E);
- }
- bool handleCallExpr(const CallExpr *E, APValue &Result,
- const LValue *ResultSlot) {
- const Expr *Callee = E->getCallee()->IgnoreParens();
- QualType CalleeType = Callee->getType();
- const FunctionDecl *FD = nullptr;
- LValue *This = nullptr, ThisVal;
- auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
- bool HasQualifier = false;
- // Extract function decl and 'this' pointer from the callee.
- if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
- const ValueDecl *Member = nullptr;
- if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
- // Explicit bound member calls, such as x.f() or p->g();
- if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
- return false;
- Member = ME->getMemberDecl();
- This = &ThisVal;
- HasQualifier = ME->hasQualifier();
- } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
- // Indirect bound member calls ('.*' or '->*').
- Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
- if (!Member) return false;
- This = &ThisVal;
- } else
- return Error(Callee);
- FD = dyn_cast<FunctionDecl>(Member);
- if (!FD)
- return Error(Callee);
- } else if (CalleeType->isFunctionPointerType()) {
- LValue Call;
- if (!EvaluatePointer(Callee, Call, Info))
- return false;
- if (!Call.getLValueOffset().isZero())
- return Error(Callee);
- FD = dyn_cast_or_null<FunctionDecl>(
- Call.getLValueBase().dyn_cast<const ValueDecl*>());
- if (!FD)
- return Error(Callee);
- // Overloaded operator calls to member functions are represented as normal
- // calls with '*this' as the first argument.
- const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
- if (MD && !MD->isStatic()) {
- // FIXME: When selecting an implicit conversion for an overloaded
- // operator delete, we sometimes try to evaluate calls to conversion
- // operators without a 'this' parameter!
- if (Args.empty())
- return Error(E);
- if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
- return false;
- This = &ThisVal;
- Args = Args.slice(1);
- }
- // Don't call function pointers which have been cast to some other type.
- // Per DR (no number yet), the caller and callee can differ in noexcept.
- if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec(
- CalleeType->getPointeeType(), FD->getType())) {
- return Error(E);
- }
- } else
- return Error(E);
- if (This && !This->checkSubobject(Info, E, CSK_This))
- return false;
- // DR1358 allows virtual constexpr functions in some cases. Don't allow
- // calls to such functions in constant expressions.
- if (This && !HasQualifier &&
- isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
- return Error(E, diag::note_constexpr_virtual_call);
- const FunctionDecl *Definition = nullptr;
- Stmt *Body = FD->getBody(Definition);
- if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) ||
- !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
- Result, ResultSlot))
- return false;
- return true;
- }
- bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
- return StmtVisitorTy::Visit(E->getInitializer());
- }
- bool VisitInitListExpr(const InitListExpr *E) {
- if (E->getNumInits() == 0)
- return DerivedZeroInitialization(E);
- if (E->getNumInits() == 1)
- return StmtVisitorTy::Visit(E->getInit(0));
- return Error(E);
- }
- bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
- return DerivedZeroInitialization(E);
- }
- bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
- return DerivedZeroInitialization(E);
- }
- bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
- return DerivedZeroInitialization(E);
- }
- /// A member expression where the object is a prvalue is itself a prvalue.
- bool VisitMemberExpr(const MemberExpr *E) {
- assert(!E->isArrow() && "missing call to bound member function?");
- APValue Val;
- if (!Evaluate(Val, Info, E->getBase()))
- return false;
- QualType BaseTy = E->getBase()->getType();
- const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
- if (!FD) return Error(E);
- assert(!FD->getType()->isReferenceType() && "prvalue reference?");
- assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
- FD->getParent()->getCanonicalDecl() && "record / field mismatch");
- CompleteObject Obj(&Val, BaseTy);
- SubobjectDesignator Designator(BaseTy);
- Designator.addDeclUnchecked(FD);
- APValue Result;
- return extractSubobject(Info, E, Obj, Designator, Result) &&
- DerivedSuccess(Result, E);
- }
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- break;
- case CK_AtomicToNonAtomic: {
- APValue AtomicVal;
- if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
- return false;
- return DerivedSuccess(AtomicVal, E);
- }
- case CK_NoOp:
- case CK_UserDefinedConversion:
- return StmtVisitorTy::Visit(E->getSubExpr());
- case CK_LValueToRValue: {
- LValue LVal;
- if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
- return false;
- APValue RVal;
- // Note, we use the subexpression's type in order to retain cv-qualifiers.
- if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
- LVal, RVal))
- return false;
- return DerivedSuccess(RVal, E);
- }
- }
- return Error(E);
- }
- bool VisitUnaryPostInc(const UnaryOperator *UO) {
- return VisitUnaryPostIncDec(UO);
- }
- bool VisitUnaryPostDec(const UnaryOperator *UO) {
- return VisitUnaryPostIncDec(UO);
- }
- bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
- if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
- return Error(UO);
- LValue LVal;
- if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
- return false;
- APValue RVal;
- if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
- UO->isIncrementOp(), &RVal))
- return false;
- return DerivedSuccess(RVal, UO);
- }
- bool VisitStmtExpr(const StmtExpr *E) {
- // We will have checked the full-expressions inside the statement expression
- // when they were completed, and don't need to check them again now.
- if (Info.checkingForOverflow())
- return Error(E);
- BlockScopeRAII Scope(Info);
- const CompoundStmt *CS = E->getSubStmt();
- if (CS->body_empty())
- return true;
- for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
- BE = CS->body_end();
- /**/; ++BI) {
- if (BI + 1 == BE) {
- const Expr *FinalExpr = dyn_cast<Expr>(*BI);
- if (!FinalExpr) {
- Info.FFDiag((*BI)->getLocStart(),
- diag::note_constexpr_stmt_expr_unsupported);
- return false;
- }
- return this->Visit(FinalExpr);
- }
- APValue ReturnValue;
- StmtResult Result = { ReturnValue, nullptr };
- EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
- if (ESR != ESR_Succeeded) {
- // FIXME: If the statement-expression terminated due to 'return',
- // 'break', or 'continue', it would be nice to propagate that to
- // the outer statement evaluation rather than bailing out.
- if (ESR != ESR_Failed)
- Info.FFDiag((*BI)->getLocStart(),
- diag::note_constexpr_stmt_expr_unsupported);
- return false;
- }
- }
- llvm_unreachable("Return from function from the loop above.");
- }
- /// Visit a value which is evaluated, but whose value is ignored.
- void VisitIgnoredValue(const Expr *E) {
- EvaluateIgnoredValue(Info, E);
- }
- /// Potentially visit a MemberExpr's base expression.
- void VisitIgnoredBaseExpression(const Expr *E) {
- // While MSVC doesn't evaluate the base expression, it does diagnose the
- // presence of side-effecting behavior.
- if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx))
- return;
- VisitIgnoredValue(E);
- }
- };
- }
- //===----------------------------------------------------------------------===//
- // Common base class for lvalue and temporary evaluation.
- //===----------------------------------------------------------------------===//
- namespace {
- template<class Derived>
- class LValueExprEvaluatorBase
- : public ExprEvaluatorBase<Derived> {
- protected:
- LValue &Result;
- typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
- typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
- bool Success(APValue::LValueBase B) {
- Result.set(B);
- return true;
- }
- public:
- LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
- ExprEvaluatorBaseTy(Info), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- Result.setFrom(this->Info.Ctx, V);
- return true;
- }
- bool VisitMemberExpr(const MemberExpr *E) {
- // Handle non-static data members.
- QualType BaseTy;
- bool EvalOK;
- if (E->isArrow()) {
- EvalOK = EvaluatePointer(E->getBase(), Result, this->Info);
- BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
- } else if (E->getBase()->isRValue()) {
- assert(E->getBase()->getType()->isRecordType());
- EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
- BaseTy = E->getBase()->getType();
- } else {
- EvalOK = this->Visit(E->getBase());
- BaseTy = E->getBase()->getType();
- }
- if (!EvalOK) {
- if (!this->Info.allowInvalidBaseExpr())
- return false;
- Result.setInvalid(E);
- return true;
- }
- const ValueDecl *MD = E->getMemberDecl();
- if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
- assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
- FD->getParent()->getCanonicalDecl() && "record / field mismatch");
- (void)BaseTy;
- if (!HandleLValueMember(this->Info, E, Result, FD))
- return false;
- } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
- if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
- return false;
- } else
- return this->Error(E);
- if (MD->getType()->isReferenceType()) {
- APValue RefValue;
- if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
- RefValue))
- return false;
- return Success(RefValue, E);
- }
- return true;
- }
- bool VisitBinaryOperator(const BinaryOperator *E) {
- switch (E->getOpcode()) {
- default:
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- case BO_PtrMemD:
- case BO_PtrMemI:
- return HandleMemberPointerAccess(this->Info, E, Result);
- }
- }
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase:
- if (!this->Visit(E->getSubExpr()))
- return false;
- // Now figure out the necessary offset to add to the base LV to get from
- // the derived class to the base class.
- return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
- Result);
- }
- }
- };
- }
- //===----------------------------------------------------------------------===//
- // LValue Evaluation
- //
- // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
- // function designators (in C), decl references to void objects (in C), and
- // temporaries (if building with -Wno-address-of-temporary).
- //
- // LValue evaluation produces values comprising a base expression of one of the
- // following types:
- // - Declarations
- // * VarDecl
- // * FunctionDecl
- // - Literals
- // * CompoundLiteralExpr in C (and in global scope in C++)
- // * StringLiteral
- // * CXXTypeidExpr
- // * PredefinedExpr
- // * ObjCStringLiteralExpr
- // * ObjCEncodeExpr
- // * AddrLabelExpr
- // * BlockExpr
- // * CallExpr for a MakeStringConstant builtin
- // - Locals and temporaries
- // * MaterializeTemporaryExpr
- // * Any Expr, with a CallIndex indicating the function in which the temporary
- // was evaluated, for cases where the MaterializeTemporaryExpr is missing
- // from the AST (FIXME).
- // * A MaterializeTemporaryExpr that has static storage duration, with no
- // CallIndex, for a lifetime-extended temporary.
- // plus an offset in bytes.
- //===----------------------------------------------------------------------===//
- namespace {
- class LValueExprEvaluator
- : public LValueExprEvaluatorBase<LValueExprEvaluator> {
- public:
- LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
- LValueExprEvaluatorBaseTy(Info, Result) {}
- bool VisitVarDecl(const Expr *E, const VarDecl *VD);
- bool VisitUnaryPreIncDec(const UnaryOperator *UO);
- bool VisitDeclRefExpr(const DeclRefExpr *E);
- bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
- bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
- bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
- bool VisitMemberExpr(const MemberExpr *E);
- bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
- bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
- bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
- bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
- bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
- bool VisitUnaryDeref(const UnaryOperator *E);
- bool VisitUnaryReal(const UnaryOperator *E);
- bool VisitUnaryImag(const UnaryOperator *E);
- bool VisitUnaryPreInc(const UnaryOperator *UO) {
- return VisitUnaryPreIncDec(UO);
- }
- bool VisitUnaryPreDec(const UnaryOperator *UO) {
- return VisitUnaryPreIncDec(UO);
- }
- bool VisitBinAssign(const BinaryOperator *BO);
- bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_LValueBitCast:
- this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
- if (!Visit(E->getSubExpr()))
- return false;
- Result.Designator.setInvalid();
- return true;
- case CK_BaseToDerived:
- if (!Visit(E->getSubExpr()))
- return false;
- return HandleBaseToDerivedCast(Info, E, Result);
- }
- }
- };
- } // end anonymous namespace
- /// Evaluate an expression as an lvalue. This can be legitimately called on
- /// expressions which are not glvalues, in three cases:
- /// * function designators in C, and
- /// * "extern void" objects
- /// * @selector() expressions in Objective-C
- static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
- assert(E->isGLValue() || E->getType()->isFunctionType() ||
- E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
- return LValueExprEvaluator(Info, Result).Visit(E);
- }
- bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
- if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
- return Success(FD);
- if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
- return VisitVarDecl(E, VD);
- if (const BindingDecl *BD = dyn_cast<BindingDecl>(E->getDecl()))
- return Visit(BD->getBinding());
- return Error(E);
- }
- bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
- CallStackFrame *Frame = nullptr;
- if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1) {
- // Only if a local variable was declared in the function currently being
- // evaluated, do we expect to be able to find its value in the current
- // frame. (Otherwise it was likely declared in an enclosing context and
- // could either have a valid evaluatable value (for e.g. a constexpr
- // variable) or be ill-formed (and trigger an appropriate evaluation
- // diagnostic)).
- if (Info.CurrentCall->Callee &&
- Info.CurrentCall->Callee->Equals(VD->getDeclContext())) {
- Frame = Info.CurrentCall;
- }
- }
- if (!VD->getType()->isReferenceType()) {
- if (Frame) {
- Result.set(VD, Frame->Index);
- return true;
- }
- return Success(VD);
- }
- APValue *V;
- if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
- return false;
- if (V->isUninit()) {
- if (!Info.checkingPotentialConstantExpression())
- Info.FFDiag(E, diag::note_constexpr_use_uninit_reference);
- return false;
- }
- return Success(*V, E);
- }
- bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
- const MaterializeTemporaryExpr *E) {
- // Walk through the expression to find the materialized temporary itself.
- SmallVector<const Expr *, 2> CommaLHSs;
- SmallVector<SubobjectAdjustment, 2> Adjustments;
- const Expr *Inner = E->GetTemporaryExpr()->
- skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
- // If we passed any comma operators, evaluate their LHSs.
- for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
- if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
- return false;
- // A materialized temporary with static storage duration can appear within the
- // result of a constant expression evaluation, so we need to preserve its
- // value for use outside this evaluation.
- APValue *Value;
- if (E->getStorageDuration() == SD_Static) {
- Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
- *Value = APValue();
- Result.set(E);
- } else {
- Value = &Info.CurrentCall->
- createTemporary(E, E->getStorageDuration() == SD_Automatic);
- Result.set(E, Info.CurrentCall->Index);
- }
- QualType Type = Inner->getType();
- // Materialize the temporary itself.
- if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
- (E->getStorageDuration() == SD_Static &&
- !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
- *Value = APValue();
- return false;
- }
- // Adjust our lvalue to refer to the desired subobject.
- for (unsigned I = Adjustments.size(); I != 0; /**/) {
- --I;
- switch (Adjustments[I].Kind) {
- case SubobjectAdjustment::DerivedToBaseAdjustment:
- if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
- Type, Result))
- return false;
- Type = Adjustments[I].DerivedToBase.BasePath->getType();
- break;
- case SubobjectAdjustment::FieldAdjustment:
- if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
- return false;
- Type = Adjustments[I].Field->getType();
- break;
- case SubobjectAdjustment::MemberPointerAdjustment:
- if (!HandleMemberPointerAccess(this->Info, Type, Result,
- Adjustments[I].Ptr.RHS))
- return false;
- Type = Adjustments[I].Ptr.MPT->getPointeeType();
- break;
- }
- }
- return true;
- }
- bool
- LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
- assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) &&
- "lvalue compound literal in c++?");
- // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
- // only see this when folding in C, so there's no standard to follow here.
- return Success(E);
- }
- bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
- if (!E->isPotentiallyEvaluated())
- return Success(E);
- Info.FFDiag(E, diag::note_constexpr_typeid_polymorphic)
- << E->getExprOperand()->getType()
- << E->getExprOperand()->getSourceRange();
- return false;
- }
- bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
- return Success(E);
- }
- bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
- // Handle static data members.
- if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
- VisitIgnoredBaseExpression(E->getBase());
- return VisitVarDecl(E, VD);
- }
- // Handle static member functions.
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
- if (MD->isStatic()) {
- VisitIgnoredBaseExpression(E->getBase());
- return Success(MD);
- }
- }
- // Handle non-static data members.
- return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
- }
- bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
- // FIXME: Deal with vectors as array subscript bases.
- if (E->getBase()->getType()->isVectorType())
- return Error(E);
- if (!EvaluatePointer(E->getBase(), Result, Info))
- return false;
- APSInt Index;
- if (!EvaluateInteger(E->getIdx(), Index, Info))
- return false;
- return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
- getExtValue(Index));
- }
- bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
- return EvaluatePointer(E->getSubExpr(), Result, Info);
- }
- bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
- if (!Visit(E->getSubExpr()))
- return false;
- // __real is a no-op on scalar lvalues.
- if (E->getSubExpr()->getType()->isAnyComplexType())
- HandleLValueComplexElement(Info, E, Result, E->getType(), false);
- return true;
- }
- bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
- assert(E->getSubExpr()->getType()->isAnyComplexType() &&
- "lvalue __imag__ on scalar?");
- if (!Visit(E->getSubExpr()))
- return false;
- HandleLValueComplexElement(Info, E, Result, E->getType(), true);
- return true;
- }
- bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
- if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
- return Error(UO);
- if (!this->Visit(UO->getSubExpr()))
- return false;
- return handleIncDec(
- this->Info, UO, Result, UO->getSubExpr()->getType(),
- UO->isIncrementOp(), nullptr);
- }
- bool LValueExprEvaluator::VisitCompoundAssignOperator(
- const CompoundAssignOperator *CAO) {
- if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
- return Error(CAO);
- APValue RHS;
- // The overall lvalue result is the result of evaluating the LHS.
- if (!this->Visit(CAO->getLHS())) {
- if (Info.noteFailure())
- Evaluate(RHS, this->Info, CAO->getRHS());
- return false;
- }
- if (!Evaluate(RHS, this->Info, CAO->getRHS()))
- return false;
- return handleCompoundAssignment(
- this->Info, CAO,
- Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
- CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
- }
- bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
- if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
- return Error(E);
- APValue NewVal;
- if (!this->Visit(E->getLHS())) {
- if (Info.noteFailure())
- Evaluate(NewVal, this->Info, E->getRHS());
- return false;
- }
- if (!Evaluate(NewVal, this->Info, E->getRHS()))
- return false;
- return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
- NewVal);
- }
- //===----------------------------------------------------------------------===//
- // Pointer Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class PointerExprEvaluator
- : public ExprEvaluatorBase<PointerExprEvaluator> {
- LValue &Result;
- bool Success(const Expr *E) {
- Result.set(E);
- return true;
- }
- public:
- PointerExprEvaluator(EvalInfo &info, LValue &Result)
- : ExprEvaluatorBaseTy(info), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- Result.setFrom(Info.Ctx, V);
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- auto Offset = Info.Ctx.getTargetNullPointerValue(E->getType());
- Result.set((Expr*)nullptr, 0, false, true, Offset);
- return true;
- }
- bool VisitBinaryOperator(const BinaryOperator *E);
- bool VisitCastExpr(const CastExpr* E);
- bool VisitUnaryAddrOf(const UnaryOperator *E);
- bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
- { return Success(E); }
- bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
- { return Success(E); }
- bool VisitAddrLabelExpr(const AddrLabelExpr *E)
- { return Success(E); }
- bool VisitCallExpr(const CallExpr *E);
- bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
- bool VisitBlockExpr(const BlockExpr *E) {
- if (!E->getBlockDecl()->hasCaptures())
- return Success(E);
- return Error(E);
- }
- bool VisitCXXThisExpr(const CXXThisExpr *E) {
- // Can't look at 'this' when checking a potential constant expression.
- if (Info.checkingPotentialConstantExpression())
- return false;
- if (!Info.CurrentCall->This) {
- if (Info.getLangOpts().CPlusPlus11)
- Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit();
- else
- Info.FFDiag(E);
- return false;
- }
- Result = *Info.CurrentCall->This;
- return true;
- }
- // FIXME: Missing: @protocol, @selector
- };
- } // end anonymous namespace
- static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->hasPointerRepresentation());
- return PointerExprEvaluator(Info, Result).Visit(E);
- }
- bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
- if (E->getOpcode() != BO_Add &&
- E->getOpcode() != BO_Sub)
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- const Expr *PExp = E->getLHS();
- const Expr *IExp = E->getRHS();
- if (IExp->getType()->isPointerType())
- std::swap(PExp, IExp);
- bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
- if (!EvalPtrOK && !Info.noteFailure())
- return false;
- llvm::APSInt Offset;
- if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
- return false;
- int64_t AdditionalOffset = getExtValue(Offset);
- if (E->getOpcode() == BO_Sub)
- AdditionalOffset = -AdditionalOffset;
- QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
- return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
- AdditionalOffset);
- }
- bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
- return EvaluateLValue(E->getSubExpr(), Result, Info);
- }
- bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
- const Expr* SubExpr = E->getSubExpr();
- switch (E->getCastKind()) {
- default:
- break;
- case CK_BitCast:
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_AnyPointerToBlockPointerCast:
- case CK_AddressSpaceConversion:
- if (!Visit(SubExpr))
- return false;
- // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
- // permitted in constant expressions in C++11. Bitcasts from cv void* are
- // also static_casts, but we disallow them as a resolution to DR1312.
- if (!E->getType()->isVoidPointerType()) {
- Result.Designator.setInvalid();
- if (SubExpr->getType()->isVoidPointerType())
- CCEDiag(E, diag::note_constexpr_invalid_cast)
- << 3 << SubExpr->getType();
- else
- CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
- }
- if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr)
- ZeroInitialization(E);
- return true;
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase:
- if (!EvaluatePointer(E->getSubExpr(), Result, Info))
- return false;
- if (!Result.Base && Result.Offset.isZero())
- return true;
- // Now figure out the necessary offset to add to the base LV to get from
- // the derived class to the base class.
- return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
- castAs<PointerType>()->getPointeeType(),
- Result);
- case CK_BaseToDerived:
- if (!Visit(E->getSubExpr()))
- return false;
- if (!Result.Base && Result.Offset.isZero())
- return true;
- return HandleBaseToDerivedCast(Info, E, Result);
- case CK_NullToPointer:
- VisitIgnoredValue(E->getSubExpr());
- return ZeroInitialization(E);
- case CK_IntegralToPointer: {
- CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
- APValue Value;
- if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
- break;
- if (Value.isInt()) {
- unsigned Size = Info.Ctx.getTypeSize(E->getType());
- uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
- Result.Base = (Expr*)nullptr;
- Result.InvalidBase = false;
- Result.Offset = CharUnits::fromQuantity(N);
- Result.CallIndex = 0;
- Result.Designator.setInvalid();
- Result.IsNullPtr = false;
- return true;
- } else {
- // Cast is of an lvalue, no need to change value.
- Result.setFrom(Info.Ctx, Value);
- return true;
- }
- }
- case CK_ArrayToPointerDecay:
- if (SubExpr->isGLValue()) {
- if (!EvaluateLValue(SubExpr, Result, Info))
- return false;
- } else {
- Result.set(SubExpr, Info.CurrentCall->Index);
- if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
- Info, Result, SubExpr))
- return false;
- }
- // The result is a pointer to the first element of the array.
- if (const ConstantArrayType *CAT
- = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
- Result.addArray(Info, E, CAT);
- else
- Result.Designator.setInvalid();
- return true;
- case CK_FunctionToPointerDecay:
- return EvaluateLValue(SubExpr, Result, Info);
- }
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- }
- static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) {
- // C++ [expr.alignof]p3:
- // When alignof is applied to a reference type, the result is the
- // alignment of the referenced type.
- if (const ReferenceType *Ref = T->getAs<ReferenceType>())
- T = Ref->getPointeeType();
- // __alignof is defined to return the preferred alignment.
- return Info.Ctx.toCharUnitsFromBits(
- Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
- }
- static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) {
- E = E->IgnoreParens();
- // The kinds of expressions that we have special-case logic here for
- // should be kept up to date with the special checks for those
- // expressions in Sema.
- // alignof decl is always accepted, even if it doesn't make sense: we default
- // to 1 in those cases.
- if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
- return Info.Ctx.getDeclAlign(DRE->getDecl(),
- /*RefAsPointee*/true);
- if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
- return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
- /*RefAsPointee*/true);
- return GetAlignOfType(Info, E->getType());
- }
- bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
- if (IsStringLiteralCall(E))
- return Success(E);
- if (unsigned BuiltinOp = E->getBuiltinCallee())
- return VisitBuiltinCallExpr(E, BuiltinOp);
- return ExprEvaluatorBaseTy::VisitCallExpr(E);
- }
- bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
- unsigned BuiltinOp) {
- switch (BuiltinOp) {
- case Builtin::BI__builtin_addressof:
- return EvaluateLValue(E->getArg(0), Result, Info);
- case Builtin::BI__builtin_assume_aligned: {
- // We need to be very careful here because: if the pointer does not have the
- // asserted alignment, then the behavior is undefined, and undefined
- // behavior is non-constant.
- if (!EvaluatePointer(E->getArg(0), Result, Info))
- return false;
- LValue OffsetResult(Result);
- APSInt Alignment;
- if (!EvaluateInteger(E->getArg(1), Alignment, Info))
- return false;
- CharUnits Align = CharUnits::fromQuantity(getExtValue(Alignment));
- if (E->getNumArgs() > 2) {
- APSInt Offset;
- if (!EvaluateInteger(E->getArg(2), Offset, Info))
- return false;
- int64_t AdditionalOffset = -getExtValue(Offset);
- OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
- }
- // If there is a base object, then it must have the correct alignment.
- if (OffsetResult.Base) {
- CharUnits BaseAlignment;
- if (const ValueDecl *VD =
- OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
- BaseAlignment = Info.Ctx.getDeclAlign(VD);
- } else {
- BaseAlignment =
- GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>());
- }
- if (BaseAlignment < Align) {
- Result.Designator.setInvalid();
- // FIXME: Quantities here cast to integers because the plural modifier
- // does not work on APSInts yet.
- CCEDiag(E->getArg(0),
- diag::note_constexpr_baa_insufficient_alignment) << 0
- << (int) BaseAlignment.getQuantity()
- << (unsigned) getExtValue(Alignment);
- return false;
- }
- }
- // The offset must also have the correct alignment.
- if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) {
- Result.Designator.setInvalid();
- APSInt Offset(64, false);
- Offset = OffsetResult.Offset.getQuantity();
- if (OffsetResult.Base)
- CCEDiag(E->getArg(0),
- diag::note_constexpr_baa_insufficient_alignment) << 1
- << (int) getExtValue(Offset) << (unsigned) getExtValue(Alignment);
- else
- CCEDiag(E->getArg(0),
- diag::note_constexpr_baa_value_insufficient_alignment)
- << Offset << (unsigned) getExtValue(Alignment);
- return false;
- }
- return true;
- }
- case Builtin::BIstrchr:
- case Builtin::BIwcschr:
- case Builtin::BImemchr:
- case Builtin::BIwmemchr:
- if (Info.getLangOpts().CPlusPlus11)
- Info.CCEDiag(E, diag::note_constexpr_invalid_function)
- << /*isConstexpr*/0 << /*isConstructor*/0
- << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
- else
- Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
- // Fall through.
- case Builtin::BI__builtin_strchr:
- case Builtin::BI__builtin_wcschr:
- case Builtin::BI__builtin_memchr:
- case Builtin::BI__builtin_wmemchr: {
- if (!Visit(E->getArg(0)))
- return false;
- APSInt Desired;
- if (!EvaluateInteger(E->getArg(1), Desired, Info))
- return false;
- uint64_t MaxLength = uint64_t(-1);
- if (BuiltinOp != Builtin::BIstrchr &&
- BuiltinOp != Builtin::BIwcschr &&
- BuiltinOp != Builtin::BI__builtin_strchr &&
- BuiltinOp != Builtin::BI__builtin_wcschr) {
- APSInt N;
- if (!EvaluateInteger(E->getArg(2), N, Info))
- return false;
- MaxLength = N.getExtValue();
- }
- QualType CharTy = E->getArg(0)->getType()->getPointeeType();
- // Figure out what value we're actually looking for (after converting to
- // the corresponding unsigned type if necessary).
- uint64_t DesiredVal;
- bool StopAtNull = false;
- switch (BuiltinOp) {
- case Builtin::BIstrchr:
- case Builtin::BI__builtin_strchr:
- // strchr compares directly to the passed integer, and therefore
- // always fails if given an int that is not a char.
- if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy,
- E->getArg(1)->getType(),
- Desired),
- Desired))
- return ZeroInitialization(E);
- StopAtNull = true;
- // Fall through.
- case Builtin::BImemchr:
- case Builtin::BI__builtin_memchr:
- // memchr compares by converting both sides to unsigned char. That's also
- // correct for strchr if we get this far (to cope with plain char being
- // unsigned in the strchr case).
- DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue();
- break;
- case Builtin::BIwcschr:
- case Builtin::BI__builtin_wcschr:
- StopAtNull = true;
- // Fall through.
- case Builtin::BIwmemchr:
- case Builtin::BI__builtin_wmemchr:
- // wcschr and wmemchr are given a wchar_t to look for. Just use it.
- DesiredVal = Desired.getZExtValue();
- break;
- }
- for (; MaxLength; --MaxLength) {
- APValue Char;
- if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) ||
- !Char.isInt())
- return false;
- if (Char.getInt().getZExtValue() == DesiredVal)
- return true;
- if (StopAtNull && !Char.getInt())
- break;
- if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1))
- return false;
- }
- // Not found: return nullptr.
- return ZeroInitialization(E);
- }
- default:
- return ExprEvaluatorBaseTy::VisitCallExpr(E);
- }
- }
- //===----------------------------------------------------------------------===//
- // Member Pointer Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class MemberPointerExprEvaluator
- : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
- MemberPtr &Result;
- bool Success(const ValueDecl *D) {
- Result = MemberPtr(D);
- return true;
- }
- public:
- MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
- : ExprEvaluatorBaseTy(Info), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- Result.setFrom(V);
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- return Success((const ValueDecl*)nullptr);
- }
- bool VisitCastExpr(const CastExpr *E);
- bool VisitUnaryAddrOf(const UnaryOperator *E);
- };
- } // end anonymous namespace
- static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
- EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isMemberPointerType());
- return MemberPointerExprEvaluator(Info, Result).Visit(E);
- }
- bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_NullToMemberPointer:
- VisitIgnoredValue(E->getSubExpr());
- return ZeroInitialization(E);
- case CK_BaseToDerivedMemberPointer: {
- if (!Visit(E->getSubExpr()))
- return false;
- if (E->path_empty())
- return true;
- // Base-to-derived member pointer casts store the path in derived-to-base
- // order, so iterate backwards. The CXXBaseSpecifier also provides us with
- // the wrong end of the derived->base arc, so stagger the path by one class.
- typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
- for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
- PathI != PathE; ++PathI) {
- assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
- const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
- if (!Result.castToDerived(Derived))
- return Error(E);
- }
- const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
- if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
- return Error(E);
- return true;
- }
- case CK_DerivedToBaseMemberPointer:
- if (!Visit(E->getSubExpr()))
- return false;
- for (CastExpr::path_const_iterator PathI = E->path_begin(),
- PathE = E->path_end(); PathI != PathE; ++PathI) {
- assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
- const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
- if (!Result.castToBase(Base))
- return Error(E);
- }
- return true;
- }
- }
- bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
- // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
- // member can be formed.
- return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
- }
- //===----------------------------------------------------------------------===//
- // Record Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class RecordExprEvaluator
- : public ExprEvaluatorBase<RecordExprEvaluator> {
- const LValue &This;
- APValue &Result;
- public:
- RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
- : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- Result = V;
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- return ZeroInitialization(E, E->getType());
- }
- bool ZeroInitialization(const Expr *E, QualType T);
- bool VisitCallExpr(const CallExpr *E) {
- return handleCallExpr(E, Result, &This);
- }
- bool VisitCastExpr(const CastExpr *E);
- bool VisitInitListExpr(const InitListExpr *E);
- bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
- return VisitCXXConstructExpr(E, E->getType());
- }
- bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
- bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T);
- bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
- };
- }
- /// Perform zero-initialization on an object of non-union class type.
- /// C++11 [dcl.init]p5:
- /// To zero-initialize an object or reference of type T means:
- /// [...]
- /// -- if T is a (possibly cv-qualified) non-union class type,
- /// each non-static data member and each base-class subobject is
- /// zero-initialized
- static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
- const RecordDecl *RD,
- const LValue &This, APValue &Result) {
- assert(!RD->isUnion() && "Expected non-union class type");
- const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
- Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
- std::distance(RD->field_begin(), RD->field_end()));
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
- if (CD) {
- unsigned Index = 0;
- for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
- End = CD->bases_end(); I != End; ++I, ++Index) {
- const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
- LValue Subobject = This;
- if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
- return false;
- if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
- Result.getStructBase(Index)))
- return false;
- }
- }
- for (const auto *I : RD->fields()) {
- // -- if T is a reference type, no initialization is performed.
- if (I->getType()->isReferenceType())
- continue;
- LValue Subobject = This;
- if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
- return false;
- ImplicitValueInitExpr VIE(I->getType());
- if (!EvaluateInPlace(
- Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
- return false;
- }
- return true;
- }
- bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) {
- const RecordDecl *RD = T->castAs<RecordType>()->getDecl();
- if (RD->isInvalidDecl()) return false;
- if (RD->isUnion()) {
- // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
- // object's first non-static named data member is zero-initialized
- RecordDecl::field_iterator I = RD->field_begin();
- if (I == RD->field_end()) {
- Result = APValue((const FieldDecl*)nullptr);
- return true;
- }
- LValue Subobject = This;
- if (!HandleLValueMember(Info, E, Subobject, *I))
- return false;
- Result = APValue(*I);
- ImplicitValueInitExpr VIE(I->getType());
- return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
- }
- if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
- Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD;
- return false;
- }
- return HandleClassZeroInitialization(Info, E, RD, This, Result);
- }
- bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_ConstructorConversion:
- return Visit(E->getSubExpr());
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase: {
- APValue DerivedObject;
- if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
- return false;
- if (!DerivedObject.isStruct())
- return Error(E->getSubExpr());
- // Derived-to-base rvalue conversion: just slice off the derived part.
- APValue *Value = &DerivedObject;
- const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
- for (CastExpr::path_const_iterator PathI = E->path_begin(),
- PathE = E->path_end(); PathI != PathE; ++PathI) {
- assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
- const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
- Value = &Value->getStructBase(getBaseIndex(RD, Base));
- RD = Base;
- }
- Result = *Value;
- return true;
- }
- }
- }
- bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
- if (E->isTransparent())
- return Visit(E->getInit(0));
- const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
- if (RD->isUnion()) {
- const FieldDecl *Field = E->getInitializedFieldInUnion();
- Result = APValue(Field);
- if (!Field)
- return true;
- // If the initializer list for a union does not contain any elements, the
- // first element of the union is value-initialized.
- // FIXME: The element should be initialized from an initializer list.
- // Is this difference ever observable for initializer lists which
- // we don't build?
- ImplicitValueInitExpr VIE(Field->getType());
- const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
- LValue Subobject = This;
- if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
- return false;
- // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
- ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
- isa<CXXDefaultInitExpr>(InitExpr));
- return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
- }
- auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
- if (Result.isUninit())
- Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0,
- std::distance(RD->field_begin(), RD->field_end()));
- unsigned ElementNo = 0;
- bool Success = true;
- // Initialize base classes.
- if (CXXRD) {
- for (const auto &Base : CXXRD->bases()) {
- assert(ElementNo < E->getNumInits() && "missing init for base class");
- const Expr *Init = E->getInit(ElementNo);
- LValue Subobject = This;
- if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base))
- return false;
- APValue &FieldVal = Result.getStructBase(ElementNo);
- if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) {
- if (!Info.noteFailure())
- return false;
- Success = false;
- }
- ++ElementNo;
- }
- }
- // Initialize members.
- for (const auto *Field : RD->fields()) {
- // Anonymous bit-fields are not considered members of the class for
- // purposes of aggregate initialization.
- if (Field->isUnnamedBitfield())
- continue;
- LValue Subobject = This;
- bool HaveInit = ElementNo < E->getNumInits();
- // FIXME: Diagnostics here should point to the end of the initializer
- // list, not the start.
- if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
- Subobject, Field, &Layout))
- return false;
- // Perform an implicit value-initialization for members beyond the end of
- // the initializer list.
- ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
- const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
- // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
- ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
- isa<CXXDefaultInitExpr>(Init));
- APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
- if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
- (Field->isBitField() && !truncateBitfieldValue(Info, Init,
- FieldVal, Field))) {
- if (!Info.noteFailure())
- return false;
- Success = false;
- }
- }
- return Success;
- }
- bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
- QualType T) {
- // Note that E's type is not necessarily the type of our class here; we might
- // be initializing an array element instead.
- const CXXConstructorDecl *FD = E->getConstructor();
- if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
- bool ZeroInit = E->requiresZeroInitialization();
- if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
- // If we've already performed zero-initialization, we're already done.
- if (!Result.isUninit())
- return true;
- // We can get here in two different ways:
- // 1) We're performing value-initialization, and should zero-initialize
- // the object, or
- // 2) We're performing default-initialization of an object with a trivial
- // constexpr default constructor, in which case we should start the
- // lifetimes of all the base subobjects (there can be no data member
- // subobjects in this case) per [basic.life]p1.
- // Either way, ZeroInitialization is appropriate.
- return ZeroInitialization(E, T);
- }
- const FunctionDecl *Definition = nullptr;
- auto Body = FD->getBody(Definition);
- if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
- return false;
- // Avoid materializing a temporary for an elidable copy/move constructor.
- if (E->isElidable() && !ZeroInit)
- if (const MaterializeTemporaryExpr *ME
- = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
- return Visit(ME->GetTemporaryExpr());
- if (ZeroInit && !ZeroInitialization(E, T))
- return false;
- auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
- return HandleConstructorCall(E, This, Args,
- cast<CXXConstructorDecl>(Definition), Info,
- Result);
- }
- bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr(
- const CXXInheritedCtorInitExpr *E) {
- if (!Info.CurrentCall) {
- assert(Info.checkingPotentialConstantExpression());
- return false;
- }
- const CXXConstructorDecl *FD = E->getConstructor();
- if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl())
- return false;
- const FunctionDecl *Definition = nullptr;
- auto Body = FD->getBody(Definition);
- if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body))
- return false;
- return HandleConstructorCall(E, This, Info.CurrentCall->Arguments,
- cast<CXXConstructorDecl>(Definition), Info,
- Result);
- }
- bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
- const CXXStdInitializerListExpr *E) {
- const ConstantArrayType *ArrayType =
- Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
- LValue Array;
- if (!EvaluateLValue(E->getSubExpr(), Array, Info))
- return false;
- // Get a pointer to the first element of the array.
- Array.addArray(Info, E, ArrayType);
- // FIXME: Perform the checks on the field types in SemaInit.
- RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
- RecordDecl::field_iterator Field = Record->field_begin();
- if (Field == Record->field_end())
- return Error(E);
- // Start pointer.
- if (!Field->getType()->isPointerType() ||
- !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
- ArrayType->getElementType()))
- return Error(E);
- // FIXME: What if the initializer_list type has base classes, etc?
- Result = APValue(APValue::UninitStruct(), 0, 2);
- Array.moveInto(Result.getStructField(0));
- if (++Field == Record->field_end())
- return Error(E);
- if (Field->getType()->isPointerType() &&
- Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
- ArrayType->getElementType())) {
- // End pointer.
- if (!HandleLValueArrayAdjustment(Info, E, Array,
- ArrayType->getElementType(),
- ArrayType->getSize().getZExtValue()))
- return false;
- Array.moveInto(Result.getStructField(1));
- } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
- // Length.
- Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
- else
- return Error(E);
- if (++Field != Record->field_end())
- return Error(E);
- return true;
- }
- static bool EvaluateRecord(const Expr *E, const LValue &This,
- APValue &Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isRecordType() &&
- "can't evaluate expression as a record rvalue");
- return RecordExprEvaluator(Info, This, Result).Visit(E);
- }
- //===----------------------------------------------------------------------===//
- // Temporary Evaluation
- //
- // Temporaries are represented in the AST as rvalues, but generally behave like
- // lvalues. The full-object of which the temporary is a subobject is implicitly
- // materialized so that a reference can bind to it.
- //===----------------------------------------------------------------------===//
- namespace {
- class TemporaryExprEvaluator
- : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
- public:
- TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
- LValueExprEvaluatorBaseTy(Info, Result) {}
- /// Visit an expression which constructs the value of this temporary.
- bool VisitConstructExpr(const Expr *E) {
- Result.set(E, Info.CurrentCall->Index);
- return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
- Info, Result, E);
- }
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_ConstructorConversion:
- return VisitConstructExpr(E->getSubExpr());
- }
- }
- bool VisitInitListExpr(const InitListExpr *E) {
- return VisitConstructExpr(E);
- }
- bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
- return VisitConstructExpr(E);
- }
- bool VisitCallExpr(const CallExpr *E) {
- return VisitConstructExpr(E);
- }
- bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
- return VisitConstructExpr(E);
- }
- };
- } // end anonymous namespace
- /// Evaluate an expression of record type as a temporary.
- static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isRecordType());
- return TemporaryExprEvaluator(Info, Result).Visit(E);
- }
- //===----------------------------------------------------------------------===//
- // Vector Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class VectorExprEvaluator
- : public ExprEvaluatorBase<VectorExprEvaluator> {
- APValue &Result;
- public:
- VectorExprEvaluator(EvalInfo &info, APValue &Result)
- : ExprEvaluatorBaseTy(info), Result(Result) {}
- bool Success(ArrayRef<APValue> V, const Expr *E) {
- assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
- // FIXME: remove this APValue copy.
- Result = APValue(V.data(), V.size());
- return true;
- }
- bool Success(const APValue &V, const Expr *E) {
- assert(V.isVector());
- Result = V;
- return true;
- }
- bool ZeroInitialization(const Expr *E);
- bool VisitUnaryReal(const UnaryOperator *E)
- { return Visit(E->getSubExpr()); }
- bool VisitCastExpr(const CastExpr* E);
- bool VisitInitListExpr(const InitListExpr *E);
- bool VisitUnaryImag(const UnaryOperator *E);
- // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
- // binary comparisons, binary and/or/xor,
- // shufflevector, ExtVectorElementExpr
- };
- } // end anonymous namespace
- static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
- return VectorExprEvaluator(Info, Result).Visit(E);
- }
- bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
- const VectorType *VTy = E->getType()->castAs<VectorType>();
- unsigned NElts = VTy->getNumElements();
- const Expr *SE = E->getSubExpr();
- QualType SETy = SE->getType();
- switch (E->getCastKind()) {
- case CK_VectorSplat: {
- APValue Val = APValue();
- if (SETy->isIntegerType()) {
- APSInt IntResult;
- if (!EvaluateInteger(SE, IntResult, Info))
- return false;
- Val = APValue(std::move(IntResult));
- } else if (SETy->isRealFloatingType()) {
- APFloat FloatResult(0.0);
- if (!EvaluateFloat(SE, FloatResult, Info))
- return false;
- Val = APValue(std::move(FloatResult));
- } else {
- return Error(E);
- }
- // Splat and create vector APValue.
- SmallVector<APValue, 4> Elts(NElts, Val);
- return Success(Elts, E);
- }
- case CK_BitCast: {
- // Evaluate the operand into an APInt we can extract from.
- llvm::APInt SValInt;
- if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
- return false;
- // Extract the elements
- QualType EltTy = VTy->getElementType();
- unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
- bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
- SmallVector<APValue, 4> Elts;
- if (EltTy->isRealFloatingType()) {
- const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
- unsigned FloatEltSize = EltSize;
- if (&Sem == &APFloat::x87DoubleExtended())
- FloatEltSize = 80;
- for (unsigned i = 0; i < NElts; i++) {
- llvm::APInt Elt;
- if (BigEndian)
- Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
- else
- Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
- Elts.push_back(APValue(APFloat(Sem, Elt)));
- }
- } else if (EltTy->isIntegerType()) {
- for (unsigned i = 0; i < NElts; i++) {
- llvm::APInt Elt;
- if (BigEndian)
- Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
- else
- Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
- Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
- }
- } else {
- return Error(E);
- }
- return Success(Elts, E);
- }
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- }
- }
- bool
- VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
- const VectorType *VT = E->getType()->castAs<VectorType>();
- unsigned NumInits = E->getNumInits();
- unsigned NumElements = VT->getNumElements();
- QualType EltTy = VT->getElementType();
- SmallVector<APValue, 4> Elements;
- // The number of initializers can be less than the number of
- // vector elements. For OpenCL, this can be due to nested vector
- // initialization. For GCC compatibility, missing trailing elements
- // should be initialized with zeroes.
- unsigned CountInits = 0, CountElts = 0;
- while (CountElts < NumElements) {
- // Handle nested vector initialization.
- if (CountInits < NumInits
- && E->getInit(CountInits)->getType()->isVectorType()) {
- APValue v;
- if (!EvaluateVector(E->getInit(CountInits), v, Info))
- return Error(E);
- unsigned vlen = v.getVectorLength();
- for (unsigned j = 0; j < vlen; j++)
- Elements.push_back(v.getVectorElt(j));
- CountElts += vlen;
- } else if (EltTy->isIntegerType()) {
- llvm::APSInt sInt(32);
- if (CountInits < NumInits) {
- if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
- return false;
- } else // trailing integer zero.
- sInt = Info.Ctx.MakeIntValue(0, EltTy);
- Elements.push_back(APValue(sInt));
- CountElts++;
- } else {
- llvm::APFloat f(0.0);
- if (CountInits < NumInits) {
- if (!EvaluateFloat(E->getInit(CountInits), f, Info))
- return false;
- } else // trailing float zero.
- f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
- Elements.push_back(APValue(f));
- CountElts++;
- }
- CountInits++;
- }
- return Success(Elements, E);
- }
- bool
- VectorExprEvaluator::ZeroInitialization(const Expr *E) {
- const VectorType *VT = E->getType()->getAs<VectorType>();
- QualType EltTy = VT->getElementType();
- APValue ZeroElement;
- if (EltTy->isIntegerType())
- ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
- else
- ZeroElement =
- APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
- SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
- return Success(Elements, E);
- }
- bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
- VisitIgnoredValue(E->getSubExpr());
- return ZeroInitialization(E);
- }
- //===----------------------------------------------------------------------===//
- // Array Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class ArrayExprEvaluator
- : public ExprEvaluatorBase<ArrayExprEvaluator> {
- const LValue &This;
- APValue &Result;
- public:
- ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
- : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- assert((V.isArray() || V.isLValue()) &&
- "expected array or string literal");
- Result = V;
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- const ConstantArrayType *CAT =
- Info.Ctx.getAsConstantArrayType(E->getType());
- if (!CAT)
- return Error(E);
- Result = APValue(APValue::UninitArray(), 0,
- CAT->getSize().getZExtValue());
- if (!Result.hasArrayFiller()) return true;
- // Zero-initialize all elements.
- LValue Subobject = This;
- Subobject.addArray(Info, E, CAT);
- ImplicitValueInitExpr VIE(CAT->getElementType());
- return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
- }
- bool VisitCallExpr(const CallExpr *E) {
- return handleCallExpr(E, Result, &This);
- }
- bool VisitInitListExpr(const InitListExpr *E);
- bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E);
- bool VisitCXXConstructExpr(const CXXConstructExpr *E);
- bool VisitCXXConstructExpr(const CXXConstructExpr *E,
- const LValue &Subobject,
- APValue *Value, QualType Type);
- };
- } // end anonymous namespace
- static bool EvaluateArray(const Expr *E, const LValue &This,
- APValue &Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
- return ArrayExprEvaluator(Info, This, Result).Visit(E);
- }
- bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
- const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
- if (!CAT)
- return Error(E);
- // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
- // an appropriately-typed string literal enclosed in braces.
- if (E->isStringLiteralInit()) {
- LValue LV;
- if (!EvaluateLValue(E->getInit(0), LV, Info))
- return false;
- APValue Val;
- LV.moveInto(Val);
- return Success(Val, E);
- }
- bool Success = true;
- assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
- "zero-initialized array shouldn't have any initialized elts");
- APValue Filler;
- if (Result.isArray() && Result.hasArrayFiller())
- Filler = Result.getArrayFiller();
- unsigned NumEltsToInit = E->getNumInits();
- unsigned NumElts = CAT->getSize().getZExtValue();
- const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
- // If the initializer might depend on the array index, run it for each
- // array element. For now, just whitelist non-class value-initialization.
- if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
- NumEltsToInit = NumElts;
- Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
- // If the array was previously zero-initialized, preserve the
- // zero-initialized values.
- if (!Filler.isUninit()) {
- for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
- Result.getArrayInitializedElt(I) = Filler;
- if (Result.hasArrayFiller())
- Result.getArrayFiller() = Filler;
- }
- LValue Subobject = This;
- Subobject.addArray(Info, E, CAT);
- for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
- const Expr *Init =
- Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
- if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
- Info, Subobject, Init) ||
- !HandleLValueArrayAdjustment(Info, Init, Subobject,
- CAT->getElementType(), 1)) {
- if (!Info.noteFailure())
- return false;
- Success = false;
- }
- }
- if (!Result.hasArrayFiller())
- return Success;
- // If we get here, we have a trivial filler, which we can just evaluate
- // once and splat over the rest of the array elements.
- assert(FillerExpr && "no array filler for incomplete init list");
- return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
- FillerExpr) && Success;
- }
- bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
- if (E->getCommonExpr() &&
- !Evaluate(Info.CurrentCall->createTemporary(E->getCommonExpr(), false),
- Info, E->getCommonExpr()->getSourceExpr()))
- return false;
- auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe());
- uint64_t Elements = CAT->getSize().getZExtValue();
- Result = APValue(APValue::UninitArray(), Elements, Elements);
- LValue Subobject = This;
- Subobject.addArray(Info, E, CAT);
- bool Success = true;
- for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) {
- if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
- Info, Subobject, E->getSubExpr()) ||
- !HandleLValueArrayAdjustment(Info, E, Subobject,
- CAT->getElementType(), 1)) {
- if (!Info.noteFailure())
- return false;
- Success = false;
- }
- }
- return Success;
- }
- bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
- return VisitCXXConstructExpr(E, This, &Result, E->getType());
- }
- bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
- const LValue &Subobject,
- APValue *Value,
- QualType Type) {
- bool HadZeroInit = !Value->isUninit();
- if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
- unsigned N = CAT->getSize().getZExtValue();
- // Preserve the array filler if we had prior zero-initialization.
- APValue Filler =
- HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
- : APValue();
- *Value = APValue(APValue::UninitArray(), N, N);
- if (HadZeroInit)
- for (unsigned I = 0; I != N; ++I)
- Value->getArrayInitializedElt(I) = Filler;
- // Initialize the elements.
- LValue ArrayElt = Subobject;
- ArrayElt.addArray(Info, E, CAT);
- for (unsigned I = 0; I != N; ++I)
- if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
- CAT->getElementType()) ||
- !HandleLValueArrayAdjustment(Info, E, ArrayElt,
- CAT->getElementType(), 1))
- return false;
- return true;
- }
- if (!Type->isRecordType())
- return Error(E);
- return RecordExprEvaluator(Info, Subobject, *Value)
- .VisitCXXConstructExpr(E, Type);
- }
- //===----------------------------------------------------------------------===//
- // Integer Evaluation
- //
- // As a GNU extension, we support casting pointers to sufficiently-wide integer
- // types and back in constant folding. Integer values are thus represented
- // either as an integer-valued APValue, or as an lvalue-valued APValue.
- //===----------------------------------------------------------------------===//
- namespace {
- class IntExprEvaluator
- : public ExprEvaluatorBase<IntExprEvaluator> {
- APValue &Result;
- public:
- IntExprEvaluator(EvalInfo &info, APValue &result)
- : ExprEvaluatorBaseTy(info), Result(result) {}
- bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
- assert(E->getType()->isIntegralOrEnumerationType() &&
- "Invalid evaluation result.");
- assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
- "Invalid evaluation result.");
- assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
- "Invalid evaluation result.");
- Result = APValue(SI);
- return true;
- }
- bool Success(const llvm::APSInt &SI, const Expr *E) {
- return Success(SI, E, Result);
- }
- bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
- assert(E->getType()->isIntegralOrEnumerationType() &&
- "Invalid evaluation result.");
- assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
- "Invalid evaluation result.");
- Result = APValue(APSInt(I));
- Result.getInt().setIsUnsigned(
- E->getType()->isUnsignedIntegerOrEnumerationType());
- return true;
- }
- bool Success(const llvm::APInt &I, const Expr *E) {
- return Success(I, E, Result);
- }
- bool Success(uint64_t Value, const Expr *E, APValue &Result) {
- assert(E->getType()->isIntegralOrEnumerationType() &&
- "Invalid evaluation result.");
- Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
- return true;
- }
- bool Success(uint64_t Value, const Expr *E) {
- return Success(Value, E, Result);
- }
- bool Success(CharUnits Size, const Expr *E) {
- return Success(Size.getQuantity(), E);
- }
- bool Success(const APValue &V, const Expr *E) {
- if (V.isLValue() || V.isAddrLabelDiff()) {
- Result = V;
- return true;
- }
- return Success(V.getInt(), E);
- }
- bool ZeroInitialization(const Expr *E) { return Success(0, E); }
- //===--------------------------------------------------------------------===//
- // Visitor Methods
- //===--------------------------------------------------------------------===//
- bool VisitIntegerLiteral(const IntegerLiteral *E) {
- return Success(E->getValue(), E);
- }
- bool VisitCharacterLiteral(const CharacterLiteral *E) {
- return Success(E->getValue(), E);
- }
- bool CheckReferencedDecl(const Expr *E, const Decl *D);
- bool VisitDeclRefExpr(const DeclRefExpr *E) {
- if (CheckReferencedDecl(E, E->getDecl()))
- return true;
- return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
- }
- bool VisitMemberExpr(const MemberExpr *E) {
- if (CheckReferencedDecl(E, E->getMemberDecl())) {
- VisitIgnoredBaseExpression(E->getBase());
- return true;
- }
- return ExprEvaluatorBaseTy::VisitMemberExpr(E);
- }
- bool VisitCallExpr(const CallExpr *E);
- bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp);
- bool VisitBinaryOperator(const BinaryOperator *E);
- bool VisitOffsetOfExpr(const OffsetOfExpr *E);
- bool VisitUnaryOperator(const UnaryOperator *E);
- bool VisitCastExpr(const CastExpr* E);
- bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
- bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
- return Success(E->getValue(), E);
- }
- bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
- return Success(E->getValue(), E);
- }
- bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
- if (Info.ArrayInitIndex == uint64_t(-1)) {
- // We were asked to evaluate this subexpression independent of the
- // enclosing ArrayInitLoopExpr. We can't do that.
- Info.FFDiag(E);
- return false;
- }
- return Success(Info.ArrayInitIndex, E);
- }
-
- // Note, GNU defines __null as an integer, not a pointer.
- bool VisitGNUNullExpr(const GNUNullExpr *E) {
- return ZeroInitialization(E);
- }
- bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
- return Success(E->getValue(), E);
- }
- bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
- return Success(E->getValue(), E);
- }
- bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
- return Success(E->getValue(), E);
- }
- bool VisitUnaryReal(const UnaryOperator *E);
- bool VisitUnaryImag(const UnaryOperator *E);
- bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
- bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
- private:
- bool TryEvaluateBuiltinObjectSize(const CallExpr *E, unsigned Type);
- // FIXME: Missing: array subscript of vector, member of vector
- };
- } // end anonymous namespace
- /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
- /// produce either the integer value or a pointer.
- ///
- /// GCC has a heinous extension which folds casts between pointer types and
- /// pointer-sized integral types. We support this by allowing the evaluation of
- /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
- /// Some simple arithmetic on such values is supported (they are treated much
- /// like char*).
- static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
- EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
- return IntExprEvaluator(Info, Result).Visit(E);
- }
- static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
- APValue Val;
- if (!EvaluateIntegerOrLValue(E, Val, Info))
- return false;
- if (!Val.isInt()) {
- // FIXME: It would be better to produce the diagnostic for casting
- // a pointer to an integer.
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- Result = Val.getInt();
- return true;
- }
- /// Check whether the given declaration can be directly converted to an integral
- /// rvalue. If not, no diagnostic is produced; there are other things we can
- /// try.
- bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
- // Enums are integer constant exprs.
- if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
- // Check for signedness/width mismatches between E type and ECD value.
- bool SameSign = (ECD->getInitVal().isSigned()
- == E->getType()->isSignedIntegerOrEnumerationType());
- bool SameWidth = (ECD->getInitVal().getBitWidth()
- == Info.Ctx.getIntWidth(E->getType()));
- if (SameSign && SameWidth)
- return Success(ECD->getInitVal(), E);
- else {
- // Get rid of mismatch (otherwise Success assertions will fail)
- // by computing a new value matching the type of E.
- llvm::APSInt Val = ECD->getInitVal();
- if (!SameSign)
- Val.setIsSigned(!ECD->getInitVal().isSigned());
- if (!SameWidth)
- Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
- return Success(Val, E);
- }
- }
- return false;
- }
- /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
- /// as GCC.
- static int EvaluateBuiltinClassifyType(const CallExpr *E,
- const LangOptions &LangOpts) {
- // The following enum mimics the values returned by GCC.
- // FIXME: Does GCC differ between lvalue and rvalue references here?
- enum gcc_type_class {
- no_type_class = -1,
- void_type_class, integer_type_class, char_type_class,
- enumeral_type_class, boolean_type_class,
- pointer_type_class, reference_type_class, offset_type_class,
- real_type_class, complex_type_class,
- function_type_class, method_type_class,
- record_type_class, union_type_class,
- array_type_class, string_type_class,
- lang_type_class
- };
- // If no argument was supplied, default to "no_type_class". This isn't
- // ideal, however it is what gcc does.
- if (E->getNumArgs() == 0)
- return no_type_class;
- QualType CanTy = E->getArg(0)->getType().getCanonicalType();
- const BuiltinType *BT = dyn_cast<BuiltinType>(CanTy);
- switch (CanTy->getTypeClass()) {
- #define TYPE(ID, BASE)
- #define DEPENDENT_TYPE(ID, BASE) case Type::ID:
- #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID:
- #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID:
- #include "clang/AST/TypeNodes.def"
- llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
- case Type::Builtin:
- switch (BT->getKind()) {
- #define BUILTIN_TYPE(ID, SINGLETON_ID)
- #define SIGNED_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: return integer_type_class;
- #define FLOATING_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: return real_type_class;
- #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: break;
- #include "clang/AST/BuiltinTypes.def"
- case BuiltinType::Void:
- return void_type_class;
- case BuiltinType::Bool:
- return boolean_type_class;
- case BuiltinType::Char_U: // gcc doesn't appear to use char_type_class
- case BuiltinType::UChar:
- case BuiltinType::UShort:
- case BuiltinType::UInt:
- case BuiltinType::ULong:
- case BuiltinType::ULongLong:
- case BuiltinType::UInt128:
- return integer_type_class;
- case BuiltinType::NullPtr:
- return pointer_type_class;
- case BuiltinType::WChar_U:
- case BuiltinType::Char16:
- case BuiltinType::Char32:
- case BuiltinType::ObjCId:
- case BuiltinType::ObjCClass:
- case BuiltinType::ObjCSel:
- #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
- case BuiltinType::Id:
- #include "clang/Basic/OpenCLImageTypes.def"
- case BuiltinType::OCLSampler:
- case BuiltinType::OCLEvent:
- case BuiltinType::OCLClkEvent:
- case BuiltinType::OCLQueue:
- case BuiltinType::OCLNDRange:
- case BuiltinType::OCLReserveID:
- case BuiltinType::Dependent:
- llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
- };
- case Type::Enum:
- return LangOpts.CPlusPlus ? enumeral_type_class : integer_type_class;
- break;
- case Type::Pointer:
- return pointer_type_class;
- break;
- case Type::MemberPointer:
- if (CanTy->isMemberDataPointerType())
- return offset_type_class;
- else {
- // We expect member pointers to be either data or function pointers,
- // nothing else.
- assert(CanTy->isMemberFunctionPointerType());
- return method_type_class;
- }
- case Type::Complex:
- return complex_type_class;
- case Type::FunctionNoProto:
- case Type::FunctionProto:
- return LangOpts.CPlusPlus ? function_type_class : pointer_type_class;
- case Type::Record:
- if (const RecordType *RT = CanTy->getAs<RecordType>()) {
- switch (RT->getDecl()->getTagKind()) {
- case TagTypeKind::TTK_Struct:
- case TagTypeKind::TTK_Class:
- case TagTypeKind::TTK_Interface:
- return record_type_class;
- case TagTypeKind::TTK_Enum:
- return LangOpts.CPlusPlus ? enumeral_type_class : integer_type_class;
- case TagTypeKind::TTK_Union:
- return union_type_class;
- }
- }
- llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
- case Type::ConstantArray:
- case Type::VariableArray:
- case Type::IncompleteArray:
- return LangOpts.CPlusPlus ? array_type_class : pointer_type_class;
- case Type::BlockPointer:
- case Type::LValueReference:
- case Type::RValueReference:
- case Type::Vector:
- case Type::ExtVector:
- case Type::Auto:
- case Type::ObjCObject:
- case Type::ObjCInterface:
- case Type::ObjCObjectPointer:
- case Type::Pipe:
- case Type::Atomic:
- llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
- }
- llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
- }
- /// EvaluateBuiltinConstantPForLValue - Determine the result of
- /// __builtin_constant_p when applied to the given lvalue.
- ///
- /// An lvalue is only "constant" if it is a pointer or reference to the first
- /// character of a string literal.
- template<typename LValue>
- static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
- const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
- return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
- }
- /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
- /// GCC as we can manage.
- static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
- QualType ArgType = Arg->getType();
- // __builtin_constant_p always has one operand. The rules which gcc follows
- // are not precisely documented, but are as follows:
- //
- // - If the operand is of integral, floating, complex or enumeration type,
- // and can be folded to a known value of that type, it returns 1.
- // - If the operand and can be folded to a pointer to the first character
- // of a string literal (or such a pointer cast to an integral type), it
- // returns 1.
- //
- // Otherwise, it returns 0.
- //
- // FIXME: GCC also intends to return 1 for literals of aggregate types, but
- // its support for this does not currently work.
- if (ArgType->isIntegralOrEnumerationType()) {
- Expr::EvalResult Result;
- if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
- return false;
- APValue &V = Result.Val;
- if (V.getKind() == APValue::Int)
- return true;
- if (V.getKind() == APValue::LValue)
- return EvaluateBuiltinConstantPForLValue(V);
- } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
- return Arg->isEvaluatable(Ctx);
- } else if (ArgType->isPointerType() || Arg->isGLValue()) {
- LValue LV;
- Expr::EvalStatus Status;
- EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
- if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
- : EvaluatePointer(Arg, LV, Info)) &&
- !Status.HasSideEffects)
- return EvaluateBuiltinConstantPForLValue(LV);
- }
- // Anything else isn't considered to be sufficiently constant.
- return false;
- }
- /// Retrieves the "underlying object type" of the given expression,
- /// as used by __builtin_object_size.
- static QualType getObjectType(APValue::LValueBase B) {
- if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
- if (const VarDecl *VD = dyn_cast<VarDecl>(D))
- return VD->getType();
- } else if (const Expr *E = B.get<const Expr*>()) {
- if (isa<CompoundLiteralExpr>(E))
- return E->getType();
- }
- return QualType();
- }
- /// A more selective version of E->IgnoreParenCasts for
- /// TryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
- /// to change the type of E.
- /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
- ///
- /// Always returns an RValue with a pointer representation.
- static const Expr *ignorePointerCastsAndParens(const Expr *E) {
- assert(E->isRValue() && E->getType()->hasPointerRepresentation());
- auto *NoParens = E->IgnoreParens();
- auto *Cast = dyn_cast<CastExpr>(NoParens);
- if (Cast == nullptr)
- return NoParens;
- // We only conservatively allow a few kinds of casts, because this code is
- // inherently a simple solution that seeks to support the common case.
- auto CastKind = Cast->getCastKind();
- if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
- CastKind != CK_AddressSpaceConversion)
- return NoParens;
- auto *SubExpr = Cast->getSubExpr();
- if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
- return NoParens;
- return ignorePointerCastsAndParens(SubExpr);
- }
- /// Checks to see if the given LValue's Designator is at the end of the LValue's
- /// record layout. e.g.
- /// struct { struct { int a, b; } fst, snd; } obj;
- /// obj.fst // no
- /// obj.snd // yes
- /// obj.fst.a // no
- /// obj.fst.b // no
- /// obj.snd.a // no
- /// obj.snd.b // yes
- ///
- /// Please note: this function is specialized for how __builtin_object_size
- /// views "objects".
- ///
- /// If this encounters an invalid RecordDecl, it will always return true.
- static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
- assert(!LVal.Designator.Invalid);
- auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) {
- const RecordDecl *Parent = FD->getParent();
- Invalid = Parent->isInvalidDecl();
- if (Invalid || Parent->isUnion())
- return true;
- const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent);
- return FD->getFieldIndex() + 1 == Layout.getFieldCount();
- };
- auto &Base = LVal.getLValueBase();
- if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
- if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
- bool Invalid;
- if (!IsLastOrInvalidFieldDecl(FD, Invalid))
- return Invalid;
- } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
- for (auto *FD : IFD->chain()) {
- bool Invalid;
- if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid))
- return Invalid;
- }
- }
- }
- QualType BaseType = getType(Base);
- for (int I = 0, E = LVal.Designator.Entries.size(); I != E; ++I) {
- if (BaseType->isArrayType()) {
- // Because __builtin_object_size treats arrays as objects, we can ignore
- // the index iff this is the last array in the Designator.
- if (I + 1 == E)
- return true;
- auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
- uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
- if (Index + 1 != CAT->getSize())
- return false;
- BaseType = CAT->getElementType();
- } else if (BaseType->isAnyComplexType()) {
- auto *CT = BaseType->castAs<ComplexType>();
- uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
- if (Index != 1)
- return false;
- BaseType = CT->getElementType();
- } else if (auto *FD = getAsField(LVal.Designator.Entries[I])) {
- bool Invalid;
- if (!IsLastOrInvalidFieldDecl(FD, Invalid))
- return Invalid;
- BaseType = FD->getType();
- } else {
- assert(getAsBaseClass(LVal.Designator.Entries[I]) != nullptr &&
- "Expecting cast to a base class");
- return false;
- }
- }
- return true;
- }
- /// Tests to see if the LValue has a designator (that isn't necessarily valid).
- static bool refersToCompleteObject(const LValue &LVal) {
- if (LVal.Designator.Invalid || !LVal.Designator.Entries.empty())
- return false;
- if (!LVal.InvalidBase)
- return true;
- auto *E = LVal.Base.dyn_cast<const Expr *>();
- (void)E;
- assert(E != nullptr && isa<MemberExpr>(E));
- return false;
- }
- /// Tries to evaluate the __builtin_object_size for @p E. If successful, returns
- /// true and stores the result in @p Size.
- ///
- /// If @p WasError is non-null, this will report whether the failure to evaluate
- /// is to be treated as an Error in IntExprEvaluator.
- static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
- EvalInfo &Info, uint64_t &Size,
- bool *WasError = nullptr) {
- if (WasError != nullptr)
- *WasError = false;
- auto Error = [&](const Expr *E) {
- if (WasError != nullptr)
- *WasError = true;
- return false;
- };
- auto Success = [&](uint64_t S, const Expr *E) {
- Size = S;
- return true;
- };
- // Determine the denoted object.
- LValue Base;
- {
- // The operand of __builtin_object_size is never evaluated for side-effects.
- // If there are any, but we can determine the pointed-to object anyway, then
- // ignore the side-effects.
- SpeculativeEvaluationRAII SpeculativeEval(Info);
- FoldOffsetRAII Fold(Info, Type & 1);
- if (E->isGLValue()) {
- // It's possible for us to be given GLValues if we're called via
- // Expr::tryEvaluateObjectSize.
- APValue RVal;
- if (!EvaluateAsRValue(Info, E, RVal))
- return false;
- Base.setFrom(Info.Ctx, RVal);
- } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), Base, Info))
- return false;
- }
- CharUnits BaseOffset = Base.getLValueOffset();
- // If we point to before the start of the object, there are no accessible
- // bytes.
- if (BaseOffset.isNegative())
- return Success(0, E);
- // In the case where we're not dealing with a subobject, we discard the
- // subobject bit.
- bool SubobjectOnly = (Type & 1) != 0 && !refersToCompleteObject(Base);
- // If Type & 1 is 0, we need to be able to statically guarantee that the bytes
- // exist. If we can't verify the base, then we can't do that.
- //
- // As a special case, we produce a valid object size for an unknown object
- // with a known designator if Type & 1 is 1. For instance:
- //
- // extern struct X { char buff[32]; int a, b, c; } *p;
- // int a = __builtin_object_size(p->buff + 4, 3); // returns 28
- // int b = __builtin_object_size(p->buff + 4, 2); // returns 0, not 40
- //
- // This matches GCC's behavior.
- if (Base.InvalidBase && !SubobjectOnly)
- return Error(E);
- // If we're not examining only the subobject, then we reset to a complete
- // object designator
- //
- // If Type is 1 and we've lost track of the subobject, just find the complete
- // object instead. (If Type is 3, that's not correct behavior and we should
- // return 0 instead.)
- LValue End = Base;
- if (!SubobjectOnly || (End.Designator.Invalid && Type == 1)) {
- QualType T = getObjectType(End.getLValueBase());
- if (T.isNull())
- End.Designator.setInvalid();
- else {
- End.Designator = SubobjectDesignator(T);
- End.Offset = CharUnits::Zero();
- }
- }
- // If it is not possible to determine which objects ptr points to at compile
- // time, __builtin_object_size should return (size_t) -1 for type 0 or 1
- // and (size_t) 0 for type 2 or 3.
- if (End.Designator.Invalid)
- return false;
- // According to the GCC documentation, we want the size of the subobject
- // denoted by the pointer. But that's not quite right -- what we actually
- // want is the size of the immediately-enclosing array, if there is one.
- int64_t AmountToAdd = 1;
- if (End.Designator.MostDerivedIsArrayElement &&
- End.Designator.Entries.size() == End.Designator.MostDerivedPathLength) {
- // We got a pointer to an array. Step to its end.
- AmountToAdd = End.Designator.MostDerivedArraySize -
- End.Designator.Entries.back().ArrayIndex;
- } else if (End.Designator.isOnePastTheEnd()) {
- // We're already pointing at the end of the object.
- AmountToAdd = 0;
- }
- QualType PointeeType = End.Designator.MostDerivedType;
- assert(!PointeeType.isNull());
- if (PointeeType->isIncompleteType() || PointeeType->isFunctionType())
- return Error(E);
- if (!HandleLValueArrayAdjustment(Info, E, End, End.Designator.MostDerivedType,
- AmountToAdd))
- return false;
- auto EndOffset = End.getLValueOffset();
- // The following is a moderately common idiom in C:
- //
- // struct Foo { int a; char c[1]; };
- // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
- // strcpy(&F->c[0], Bar);
- //
- // So, if we see that we're examining an array at the end of a struct with an
- // unknown base, we give up instead of breaking code that behaves this way.
- // Note that we only do this when Type=1, because Type=3 is a lower bound, so
- // answering conservatively is fine.
- //
- // We used to be a bit more aggressive here; we'd only be conservative if the
- // array at the end was flexible, or if it had 0 or 1 elements. This broke
- // some common standard library extensions (PR30346), but was otherwise
- // seemingly fine. It may be useful to reintroduce this behavior with some
- // sort of whitelist. OTOH, it seems that GCC is always conservative with the
- // last element in structs (if it's an array), so our current behavior is more
- // compatible than a whitelisting approach would be.
- if (End.InvalidBase && SubobjectOnly && Type == 1 &&
- End.Designator.Entries.size() == End.Designator.MostDerivedPathLength &&
- End.Designator.MostDerivedIsArrayElement &&
- isDesignatorAtObjectEnd(Info.Ctx, End))
- return false;
- if (BaseOffset > EndOffset)
- return Success(0, E);
- return Success((EndOffset - BaseOffset).getQuantity(), E);
- }
- bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E,
- unsigned Type) {
- uint64_t Size;
- bool WasError;
- if (::tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size, &WasError))
- return Success(Size, E);
- if (WasError)
- return Error(E);
- return false;
- }
- bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
- if (unsigned BuiltinOp = E->getBuiltinCallee())
- return VisitBuiltinCallExpr(E, BuiltinOp);
- return ExprEvaluatorBaseTy::VisitCallExpr(E);
- }
- bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E,
- unsigned BuiltinOp) {
- switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
- default:
- return ExprEvaluatorBaseTy::VisitCallExpr(E);
- case Builtin::BI__builtin_object_size: {
- // The type was checked when we built the expression.
- unsigned Type =
- E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
- assert(Type <= 3 && "unexpected type");
- if (TryEvaluateBuiltinObjectSize(E, Type))
- return true;
- if (E->getArg(0)->HasSideEffects(Info.Ctx))
- return Success((Type & 2) ? 0 : -1, E);
- // Expression had no side effects, but we couldn't statically determine the
- // size of the referenced object.
- switch (Info.EvalMode) {
- case EvalInfo::EM_ConstantExpression:
- case EvalInfo::EM_PotentialConstantExpression:
- case EvalInfo::EM_ConstantFold:
- case EvalInfo::EM_EvaluateForOverflow:
- case EvalInfo::EM_IgnoreSideEffects:
- case EvalInfo::EM_DesignatorFold:
- // Leave it to IR generation.
- return Error(E);
- case EvalInfo::EM_ConstantExpressionUnevaluated:
- case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
- // Reduce it to a constant now.
- return Success((Type & 2) ? 0 : -1, E);
- }
- llvm_unreachable("unexpected EvalMode");
- }
- case Builtin::BI__builtin_bswap16:
- case Builtin::BI__builtin_bswap32:
- case Builtin::BI__builtin_bswap64: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- return Success(Val.byteSwap(), E);
- }
- case Builtin::BI__builtin_classify_type:
- return Success(EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E);
- // FIXME: BI__builtin_clrsb
- // FIXME: BI__builtin_clrsbl
- // FIXME: BI__builtin_clrsbll
- case Builtin::BI__builtin_clz:
- case Builtin::BI__builtin_clzl:
- case Builtin::BI__builtin_clzll:
- case Builtin::BI__builtin_clzs: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- if (!Val)
- return Error(E);
- return Success(Val.countLeadingZeros(), E);
- }
- case Builtin::BI__builtin_constant_p:
- return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
- case Builtin::BI__builtin_ctz:
- case Builtin::BI__builtin_ctzl:
- case Builtin::BI__builtin_ctzll:
- case Builtin::BI__builtin_ctzs: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- if (!Val)
- return Error(E);
- return Success(Val.countTrailingZeros(), E);
- }
- case Builtin::BI__builtin_eh_return_data_regno: {
- int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
- Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
- return Success(Operand, E);
- }
- case Builtin::BI__builtin_expect:
- return Visit(E->getArg(0));
- case Builtin::BI__builtin_ffs:
- case Builtin::BI__builtin_ffsl:
- case Builtin::BI__builtin_ffsll: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- unsigned N = Val.countTrailingZeros();
- return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
- }
- case Builtin::BI__builtin_fpclassify: {
- APFloat Val(0.0);
- if (!EvaluateFloat(E->getArg(5), Val, Info))
- return false;
- unsigned Arg;
- switch (Val.getCategory()) {
- case APFloat::fcNaN: Arg = 0; break;
- case APFloat::fcInfinity: Arg = 1; break;
- case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
- case APFloat::fcZero: Arg = 4; break;
- }
- return Visit(E->getArg(Arg));
- }
- case Builtin::BI__builtin_isinf_sign: {
- APFloat Val(0.0);
- return EvaluateFloat(E->getArg(0), Val, Info) &&
- Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
- }
- case Builtin::BI__builtin_isinf: {
- APFloat Val(0.0);
- return EvaluateFloat(E->getArg(0), Val, Info) &&
- Success(Val.isInfinity() ? 1 : 0, E);
- }
- case Builtin::BI__builtin_isfinite: {
- APFloat Val(0.0);
- return EvaluateFloat(E->getArg(0), Val, Info) &&
- Success(Val.isFinite() ? 1 : 0, E);
- }
- case Builtin::BI__builtin_isnan: {
- APFloat Val(0.0);
- return EvaluateFloat(E->getArg(0), Val, Info) &&
- Success(Val.isNaN() ? 1 : 0, E);
- }
- case Builtin::BI__builtin_isnormal: {
- APFloat Val(0.0);
- return EvaluateFloat(E->getArg(0), Val, Info) &&
- Success(Val.isNormal() ? 1 : 0, E);
- }
- case Builtin::BI__builtin_parity:
- case Builtin::BI__builtin_parityl:
- case Builtin::BI__builtin_parityll: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- return Success(Val.countPopulation() % 2, E);
- }
- case Builtin::BI__builtin_popcount:
- case Builtin::BI__builtin_popcountl:
- case Builtin::BI__builtin_popcountll: {
- APSInt Val;
- if (!EvaluateInteger(E->getArg(0), Val, Info))
- return false;
- return Success(Val.countPopulation(), E);
- }
- case Builtin::BIstrlen:
- case Builtin::BIwcslen:
- // A call to strlen is not a constant expression.
- if (Info.getLangOpts().CPlusPlus11)
- Info.CCEDiag(E, diag::note_constexpr_invalid_function)
- << /*isConstexpr*/0 << /*isConstructor*/0
- << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
- else
- Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
- // Fall through.
- case Builtin::BI__builtin_strlen:
- case Builtin::BI__builtin_wcslen: {
- // As an extension, we support __builtin_strlen() as a constant expression,
- // and support folding strlen() to a constant.
- LValue String;
- if (!EvaluatePointer(E->getArg(0), String, Info))
- return false;
- QualType CharTy = E->getArg(0)->getType()->getPointeeType();
- // Fast path: if it's a string literal, search the string value.
- if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
- String.getLValueBase().dyn_cast<const Expr *>())) {
- // The string literal may have embedded null characters. Find the first
- // one and truncate there.
- StringRef Str = S->getBytes();
- int64_t Off = String.Offset.getQuantity();
- if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
- S->getCharByteWidth() == 1 &&
- // FIXME: Add fast-path for wchar_t too.
- Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) {
- Str = Str.substr(Off);
- StringRef::size_type Pos = Str.find(0);
- if (Pos != StringRef::npos)
- Str = Str.substr(0, Pos);
- return Success(Str.size(), E);
- }
- // Fall through to slow path to issue appropriate diagnostic.
- }
- // Slow path: scan the bytes of the string looking for the terminating 0.
- for (uint64_t Strlen = 0; /**/; ++Strlen) {
- APValue Char;
- if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
- !Char.isInt())
- return false;
- if (!Char.getInt())
- return Success(Strlen, E);
- if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
- return false;
- }
- }
- case Builtin::BIstrcmp:
- case Builtin::BIwcscmp:
- case Builtin::BIstrncmp:
- case Builtin::BIwcsncmp:
- case Builtin::BImemcmp:
- case Builtin::BIwmemcmp:
- // A call to strlen is not a constant expression.
- if (Info.getLangOpts().CPlusPlus11)
- Info.CCEDiag(E, diag::note_constexpr_invalid_function)
- << /*isConstexpr*/0 << /*isConstructor*/0
- << (std::string("'") + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'");
- else
- Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
- // Fall through.
- case Builtin::BI__builtin_strcmp:
- case Builtin::BI__builtin_wcscmp:
- case Builtin::BI__builtin_strncmp:
- case Builtin::BI__builtin_wcsncmp:
- case Builtin::BI__builtin_memcmp:
- case Builtin::BI__builtin_wmemcmp: {
- LValue String1, String2;
- if (!EvaluatePointer(E->getArg(0), String1, Info) ||
- !EvaluatePointer(E->getArg(1), String2, Info))
- return false;
- QualType CharTy = E->getArg(0)->getType()->getPointeeType();
- uint64_t MaxLength = uint64_t(-1);
- if (BuiltinOp != Builtin::BIstrcmp &&
- BuiltinOp != Builtin::BIwcscmp &&
- BuiltinOp != Builtin::BI__builtin_strcmp &&
- BuiltinOp != Builtin::BI__builtin_wcscmp) {
- APSInt N;
- if (!EvaluateInteger(E->getArg(2), N, Info))
- return false;
- MaxLength = N.getExtValue();
- }
- bool StopAtNull = (BuiltinOp != Builtin::BImemcmp &&
- BuiltinOp != Builtin::BIwmemcmp &&
- BuiltinOp != Builtin::BI__builtin_memcmp &&
- BuiltinOp != Builtin::BI__builtin_wmemcmp);
- for (; MaxLength; --MaxLength) {
- APValue Char1, Char2;
- if (!handleLValueToRValueConversion(Info, E, CharTy, String1, Char1) ||
- !handleLValueToRValueConversion(Info, E, CharTy, String2, Char2) ||
- !Char1.isInt() || !Char2.isInt())
- return false;
- if (Char1.getInt() != Char2.getInt())
- return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E);
- if (StopAtNull && !Char1.getInt())
- return Success(0, E);
- assert(!(StopAtNull && !Char2.getInt()));
- if (!HandleLValueArrayAdjustment(Info, E, String1, CharTy, 1) ||
- !HandleLValueArrayAdjustment(Info, E, String2, CharTy, 1))
- return false;
- }
- // We hit the strncmp / memcmp limit.
- return Success(0, E);
- }
- case Builtin::BI__atomic_always_lock_free:
- case Builtin::BI__atomic_is_lock_free:
- case Builtin::BI__c11_atomic_is_lock_free: {
- APSInt SizeVal;
- if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
- return false;
- // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
- // of two less than the maximum inline atomic width, we know it is
- // lock-free. If the size isn't a power of two, or greater than the
- // maximum alignment where we promote atomics, we know it is not lock-free
- // (at least not in the sense of atomic_is_lock_free). Otherwise,
- // the answer can only be determined at runtime; for example, 16-byte
- // atomics have lock-free implementations on some, but not all,
- // x86-64 processors.
- // Check power-of-two.
- CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
- if (Size.isPowerOfTwo()) {
- // Check against inlining width.
- unsigned InlineWidthBits =
- Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
- if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
- if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
- Size == CharUnits::One() ||
- E->getArg(1)->isNullPointerConstant(Info.Ctx,
- Expr::NPC_NeverValueDependent))
- // OK, we will inline appropriately-aligned operations of this size,
- // and _Atomic(T) is appropriately-aligned.
- return Success(1, E);
- QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
- castAs<PointerType>()->getPointeeType();
- if (!PointeeType->isIncompleteType() &&
- Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
- // OK, we will inline operations on this object.
- return Success(1, E);
- }
- }
- }
- return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
- Success(0, E) : Error(E);
- }
- }
- }
- static bool HasSameBase(const LValue &A, const LValue &B) {
- if (!A.getLValueBase())
- return !B.getLValueBase();
- if (!B.getLValueBase())
- return false;
- if (A.getLValueBase().getOpaqueValue() !=
- B.getLValueBase().getOpaqueValue()) {
- const Decl *ADecl = GetLValueBaseDecl(A);
- if (!ADecl)
- return false;
- const Decl *BDecl = GetLValueBaseDecl(B);
- if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
- return false;
- }
- return IsGlobalLValue(A.getLValueBase()) ||
- A.getLValueCallIndex() == B.getLValueCallIndex();
- }
- /// \brief Determine whether this is a pointer past the end of the complete
- /// object referred to by the lvalue.
- static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
- const LValue &LV) {
- // A null pointer can be viewed as being "past the end" but we don't
- // choose to look at it that way here.
- if (!LV.getLValueBase())
- return false;
- // If the designator is valid and refers to a subobject, we're not pointing
- // past the end.
- if (!LV.getLValueDesignator().Invalid &&
- !LV.getLValueDesignator().isOnePastTheEnd())
- return false;
- // A pointer to an incomplete type might be past-the-end if the type's size is
- // zero. We cannot tell because the type is incomplete.
- QualType Ty = getType(LV.getLValueBase());
- if (Ty->isIncompleteType())
- return true;
- // We're a past-the-end pointer if we point to the byte after the object,
- // no matter what our type or path is.
- auto Size = Ctx.getTypeSizeInChars(Ty);
- return LV.getLValueOffset() == Size;
- }
- namespace {
- /// \brief Data recursive integer evaluator of certain binary operators.
- ///
- /// We use a data recursive algorithm for binary operators so that we are able
- /// to handle extreme cases of chained binary operators without causing stack
- /// overflow.
- class DataRecursiveIntBinOpEvaluator {
- struct EvalResult {
- APValue Val;
- bool Failed;
- EvalResult() : Failed(false) { }
- void swap(EvalResult &RHS) {
- Val.swap(RHS.Val);
- Failed = RHS.Failed;
- RHS.Failed = false;
- }
- };
- struct Job {
- const Expr *E;
- EvalResult LHSResult; // meaningful only for binary operator expression.
- enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
- Job() = default;
- Job(Job &&) = default;
- void startSpeculativeEval(EvalInfo &Info) {
- SpecEvalRAII = SpeculativeEvaluationRAII(Info);
- }
- private:
- SpeculativeEvaluationRAII SpecEvalRAII;
- };
- SmallVector<Job, 16> Queue;
- IntExprEvaluator &IntEval;
- EvalInfo &Info;
- APValue &FinalResult;
- public:
- DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
- : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
- /// \brief True if \param E is a binary operator that we are going to handle
- /// data recursively.
- /// We handle binary operators that are comma, logical, or that have operands
- /// with integral or enumeration type.
- static bool shouldEnqueue(const BinaryOperator *E) {
- return E->getOpcode() == BO_Comma ||
- E->isLogicalOp() ||
- (E->isRValue() &&
- E->getType()->isIntegralOrEnumerationType() &&
- E->getLHS()->getType()->isIntegralOrEnumerationType() &&
- E->getRHS()->getType()->isIntegralOrEnumerationType());
- }
- bool Traverse(const BinaryOperator *E) {
- enqueue(E);
- EvalResult PrevResult;
- while (!Queue.empty())
- process(PrevResult);
- if (PrevResult.Failed) return false;
- FinalResult.swap(PrevResult.Val);
- return true;
- }
- private:
- bool Success(uint64_t Value, const Expr *E, APValue &Result) {
- return IntEval.Success(Value, E, Result);
- }
- bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
- return IntEval.Success(Value, E, Result);
- }
- bool Error(const Expr *E) {
- return IntEval.Error(E);
- }
- bool Error(const Expr *E, diag::kind D) {
- return IntEval.Error(E, D);
- }
- OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
- return Info.CCEDiag(E, D);
- }
- // \brief Returns true if visiting the RHS is necessary, false otherwise.
- bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
- bool &SuppressRHSDiags);
- bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
- const BinaryOperator *E, APValue &Result);
- void EvaluateExpr(const Expr *E, EvalResult &Result) {
- Result.Failed = !Evaluate(Result.Val, Info, E);
- if (Result.Failed)
- Result.Val = APValue();
- }
- void process(EvalResult &Result);
- void enqueue(const Expr *E) {
- E = E->IgnoreParens();
- Queue.resize(Queue.size()+1);
- Queue.back().E = E;
- Queue.back().Kind = Job::AnyExprKind;
- }
- };
- }
- bool DataRecursiveIntBinOpEvaluator::
- VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
- bool &SuppressRHSDiags) {
- if (E->getOpcode() == BO_Comma) {
- // Ignore LHS but note if we could not evaluate it.
- if (LHSResult.Failed)
- return Info.noteSideEffect();
- return true;
- }
- if (E->isLogicalOp()) {
- bool LHSAsBool;
- if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
- // We were able to evaluate the LHS, see if we can get away with not
- // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
- if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
- Success(LHSAsBool, E, LHSResult.Val);
- return false; // Ignore RHS
- }
- } else {
- LHSResult.Failed = true;
- // Since we weren't able to evaluate the left hand side, it
- // might have had side effects.
- if (!Info.noteSideEffect())
- return false;
- // We can't evaluate the LHS; however, sometimes the result
- // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
- // Don't ignore RHS and suppress diagnostics from this arm.
- SuppressRHSDiags = true;
- }
- return true;
- }
- assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
- E->getRHS()->getType()->isIntegralOrEnumerationType());
- if (LHSResult.Failed && !Info.noteFailure())
- return false; // Ignore RHS;
- return true;
- }
- bool DataRecursiveIntBinOpEvaluator::
- VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
- const BinaryOperator *E, APValue &Result) {
- if (E->getOpcode() == BO_Comma) {
- if (RHSResult.Failed)
- return false;
- Result = RHSResult.Val;
- return true;
- }
-
- if (E->isLogicalOp()) {
- bool lhsResult, rhsResult;
- bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
- bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
-
- if (LHSIsOK) {
- if (RHSIsOK) {
- if (E->getOpcode() == BO_LOr)
- return Success(lhsResult || rhsResult, E, Result);
- else
- return Success(lhsResult && rhsResult, E, Result);
- }
- } else {
- if (RHSIsOK) {
- // We can't evaluate the LHS; however, sometimes the result
- // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
- if (rhsResult == (E->getOpcode() == BO_LOr))
- return Success(rhsResult, E, Result);
- }
- }
-
- return false;
- }
-
- assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
- E->getRHS()->getType()->isIntegralOrEnumerationType());
-
- if (LHSResult.Failed || RHSResult.Failed)
- return false;
-
- const APValue &LHSVal = LHSResult.Val;
- const APValue &RHSVal = RHSResult.Val;
-
- // Handle cases like (unsigned long)&a + 4.
- if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
- Result = LHSVal;
- CharUnits AdditionalOffset =
- CharUnits::fromQuantity(RHSVal.getInt().getZExtValue());
- if (E->getOpcode() == BO_Add)
- Result.getLValueOffset() += AdditionalOffset;
- else
- Result.getLValueOffset() -= AdditionalOffset;
- return true;
- }
-
- // Handle cases like 4 + (unsigned long)&a
- if (E->getOpcode() == BO_Add &&
- RHSVal.isLValue() && LHSVal.isInt()) {
- Result = RHSVal;
- Result.getLValueOffset() +=
- CharUnits::fromQuantity(LHSVal.getInt().getZExtValue());
- return true;
- }
-
- if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
- // Handle (intptr_t)&&A - (intptr_t)&&B.
- if (!LHSVal.getLValueOffset().isZero() ||
- !RHSVal.getLValueOffset().isZero())
- return false;
- const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
- const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
- if (!LHSExpr || !RHSExpr)
- return false;
- const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
- const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
- if (!LHSAddrExpr || !RHSAddrExpr)
- return false;
- // Make sure both labels come from the same function.
- if (LHSAddrExpr->getLabel()->getDeclContext() !=
- RHSAddrExpr->getLabel()->getDeclContext())
- return false;
- Result = APValue(LHSAddrExpr, RHSAddrExpr);
- return true;
- }
- // All the remaining cases expect both operands to be an integer
- if (!LHSVal.isInt() || !RHSVal.isInt())
- return Error(E);
- // Set up the width and signedness manually, in case it can't be deduced
- // from the operation we're performing.
- // FIXME: Don't do this in the cases where we can deduce it.
- APSInt Value(Info.Ctx.getIntWidth(E->getType()),
- E->getType()->isUnsignedIntegerOrEnumerationType());
- if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
- RHSVal.getInt(), Value))
- return false;
- return Success(Value, E, Result);
- }
- void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
- Job &job = Queue.back();
-
- switch (job.Kind) {
- case Job::AnyExprKind: {
- if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
- if (shouldEnqueue(Bop)) {
- job.Kind = Job::BinOpKind;
- enqueue(Bop->getLHS());
- return;
- }
- }
-
- EvaluateExpr(job.E, Result);
- Queue.pop_back();
- return;
- }
-
- case Job::BinOpKind: {
- const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
- bool SuppressRHSDiags = false;
- if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
- Queue.pop_back();
- return;
- }
- if (SuppressRHSDiags)
- job.startSpeculativeEval(Info);
- job.LHSResult.swap(Result);
- job.Kind = Job::BinOpVisitedLHSKind;
- enqueue(Bop->getRHS());
- return;
- }
-
- case Job::BinOpVisitedLHSKind: {
- const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
- EvalResult RHS;
- RHS.swap(Result);
- Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
- Queue.pop_back();
- return;
- }
- }
-
- llvm_unreachable("Invalid Job::Kind!");
- }
- namespace {
- /// Used when we determine that we should fail, but can keep evaluating prior to
- /// noting that we had a failure.
- class DelayedNoteFailureRAII {
- EvalInfo &Info;
- bool NoteFailure;
- public:
- DelayedNoteFailureRAII(EvalInfo &Info, bool NoteFailure = true)
- : Info(Info), NoteFailure(NoteFailure) {}
- ~DelayedNoteFailureRAII() {
- if (NoteFailure) {
- bool ContinueAfterFailure = Info.noteFailure();
- (void)ContinueAfterFailure;
- assert(ContinueAfterFailure &&
- "Shouldn't have kept evaluating on failure.");
- }
- }
- };
- }
- bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
- // We don't call noteFailure immediately because the assignment happens after
- // we evaluate LHS and RHS.
- if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
- return Error(E);
- DelayedNoteFailureRAII MaybeNoteFailureLater(Info, E->isAssignmentOp());
- if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
- return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
- QualType LHSTy = E->getLHS()->getType();
- QualType RHSTy = E->getRHS()->getType();
- if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
- ComplexValue LHS, RHS;
- bool LHSOK;
- if (E->isAssignmentOp()) {
- LValue LV;
- EvaluateLValue(E->getLHS(), LV, Info);
- LHSOK = false;
- } else if (LHSTy->isRealFloatingType()) {
- LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
- if (LHSOK) {
- LHS.makeComplexFloat();
- LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
- }
- } else {
- LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
- }
- if (!LHSOK && !Info.noteFailure())
- return false;
- if (E->getRHS()->getType()->isRealFloatingType()) {
- if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
- return false;
- RHS.makeComplexFloat();
- RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
- } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
- return false;
- if (LHS.isComplexFloat()) {
- APFloat::cmpResult CR_r =
- LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
- APFloat::cmpResult CR_i =
- LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
- if (E->getOpcode() == BO_EQ)
- return Success((CR_r == APFloat::cmpEqual &&
- CR_i == APFloat::cmpEqual), E);
- else {
- assert(E->getOpcode() == BO_NE &&
- "Invalid complex comparison.");
- return Success(((CR_r == APFloat::cmpGreaterThan ||
- CR_r == APFloat::cmpLessThan ||
- CR_r == APFloat::cmpUnordered) ||
- (CR_i == APFloat::cmpGreaterThan ||
- CR_i == APFloat::cmpLessThan ||
- CR_i == APFloat::cmpUnordered)), E);
- }
- } else {
- if (E->getOpcode() == BO_EQ)
- return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
- LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
- else {
- assert(E->getOpcode() == BO_NE &&
- "Invalid compex comparison.");
- return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
- LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
- }
- }
- }
- if (LHSTy->isRealFloatingType() &&
- RHSTy->isRealFloatingType()) {
- APFloat RHS(0.0), LHS(0.0);
- bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
- if (!LHSOK && !Info.noteFailure())
- return false;
- if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
- return false;
- APFloat::cmpResult CR = LHS.compare(RHS);
- switch (E->getOpcode()) {
- default:
- llvm_unreachable("Invalid binary operator!");
- case BO_LT:
- return Success(CR == APFloat::cmpLessThan, E);
- case BO_GT:
- return Success(CR == APFloat::cmpGreaterThan, E);
- case BO_LE:
- return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
- case BO_GE:
- return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
- E);
- case BO_EQ:
- return Success(CR == APFloat::cmpEqual, E);
- case BO_NE:
- return Success(CR == APFloat::cmpGreaterThan
- || CR == APFloat::cmpLessThan
- || CR == APFloat::cmpUnordered, E);
- }
- }
- if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
- if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
- LValue LHSValue, RHSValue;
- bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
- if (!LHSOK && !Info.noteFailure())
- return false;
- if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
- return false;
- // Reject differing bases from the normal codepath; we special-case
- // comparisons to null.
- if (!HasSameBase(LHSValue, RHSValue)) {
- if (E->getOpcode() == BO_Sub) {
- // Handle &&A - &&B.
- if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
- return Error(E);
- const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
- const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
- if (!LHSExpr || !RHSExpr)
- return Error(E);
- const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
- const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
- if (!LHSAddrExpr || !RHSAddrExpr)
- return Error(E);
- // Make sure both labels come from the same function.
- if (LHSAddrExpr->getLabel()->getDeclContext() !=
- RHSAddrExpr->getLabel()->getDeclContext())
- return Error(E);
- return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
- }
- // Inequalities and subtractions between unrelated pointers have
- // unspecified or undefined behavior.
- if (!E->isEqualityOp())
- return Error(E);
- // A constant address may compare equal to the address of a symbol.
- // The one exception is that address of an object cannot compare equal
- // to a null pointer constant.
- if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
- (!RHSValue.Base && !RHSValue.Offset.isZero()))
- return Error(E);
- // It's implementation-defined whether distinct literals will have
- // distinct addresses. In clang, the result of such a comparison is
- // unspecified, so it is not a constant expression. However, we do know
- // that the address of a literal will be non-null.
- if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
- LHSValue.Base && RHSValue.Base)
- return Error(E);
- // We can't tell whether weak symbols will end up pointing to the same
- // object.
- if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
- return Error(E);
- // We can't compare the address of the start of one object with the
- // past-the-end address of another object, per C++ DR1652.
- if ((LHSValue.Base && LHSValue.Offset.isZero() &&
- isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
- (RHSValue.Base && RHSValue.Offset.isZero() &&
- isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
- return Error(E);
- // We can't tell whether an object is at the same address as another
- // zero sized object.
- if ((RHSValue.Base && isZeroSized(LHSValue)) ||
- (LHSValue.Base && isZeroSized(RHSValue)))
- return Error(E);
- // Pointers with different bases cannot represent the same object.
- // (Note that clang defaults to -fmerge-all-constants, which can
- // lead to inconsistent results for comparisons involving the address
- // of a constant; this generally doesn't matter in practice.)
- return Success(E->getOpcode() == BO_NE, E);
- }
- const CharUnits &LHSOffset = LHSValue.getLValueOffset();
- const CharUnits &RHSOffset = RHSValue.getLValueOffset();
- SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
- SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
- if (E->getOpcode() == BO_Sub) {
- // C++11 [expr.add]p6:
- // Unless both pointers point to elements of the same array object, or
- // one past the last element of the array object, the behavior is
- // undefined.
- if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
- !AreElementsOfSameArray(getType(LHSValue.Base),
- LHSDesignator, RHSDesignator))
- CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
- QualType Type = E->getLHS()->getType();
- QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
- CharUnits ElementSize;
- if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
- return false;
- // As an extension, a type may have zero size (empty struct or union in
- // C, array of zero length). Pointer subtraction in such cases has
- // undefined behavior, so is not constant.
- if (ElementSize.isZero()) {
- Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size)
- << ElementType;
- return false;
- }
- // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
- // and produce incorrect results when it overflows. Such behavior
- // appears to be non-conforming, but is common, so perhaps we should
- // assume the standard intended for such cases to be undefined behavior
- // and check for them.
- // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
- // overflow in the final conversion to ptrdiff_t.
- APSInt LHS(
- llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
- APSInt RHS(
- llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
- APSInt ElemSize(
- llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
- APSInt TrueResult = (LHS - RHS) / ElemSize;
- APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
- if (Result.extend(65) != TrueResult &&
- !HandleOverflow(Info, E, TrueResult, E->getType()))
- return false;
- return Success(Result, E);
- }
- // C++11 [expr.rel]p3:
- // Pointers to void (after pointer conversions) can be compared, with a
- // result defined as follows: If both pointers represent the same
- // address or are both the null pointer value, the result is true if the
- // operator is <= or >= and false otherwise; otherwise the result is
- // unspecified.
- // We interpret this as applying to pointers to *cv* void.
- if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
- E->isRelationalOp())
- CCEDiag(E, diag::note_constexpr_void_comparison);
- // C++11 [expr.rel]p2:
- // - If two pointers point to non-static data members of the same object,
- // or to subobjects or array elements fo such members, recursively, the
- // pointer to the later declared member compares greater provided the
- // two members have the same access control and provided their class is
- // not a union.
- // [...]
- // - Otherwise pointer comparisons are unspecified.
- if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
- E->isRelationalOp()) {
- bool WasArrayIndex;
- unsigned Mismatch =
- FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
- RHSDesignator, WasArrayIndex);
- // At the point where the designators diverge, the comparison has a
- // specified value if:
- // - we are comparing array indices
- // - we are comparing fields of a union, or fields with the same access
- // Otherwise, the result is unspecified and thus the comparison is not a
- // constant expression.
- if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
- Mismatch < RHSDesignator.Entries.size()) {
- const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
- const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
- if (!LF && !RF)
- CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
- else if (!LF)
- CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
- << getAsBaseClass(LHSDesignator.Entries[Mismatch])
- << RF->getParent() << RF;
- else if (!RF)
- CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
- << getAsBaseClass(RHSDesignator.Entries[Mismatch])
- << LF->getParent() << LF;
- else if (!LF->getParent()->isUnion() &&
- LF->getAccess() != RF->getAccess())
- CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
- << LF << LF->getAccess() << RF << RF->getAccess()
- << LF->getParent();
- }
- }
- // The comparison here must be unsigned, and performed with the same
- // width as the pointer.
- unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
- uint64_t CompareLHS = LHSOffset.getQuantity();
- uint64_t CompareRHS = RHSOffset.getQuantity();
- assert(PtrSize <= 64 && "Unexpected pointer width");
- uint64_t Mask = ~0ULL >> (64 - PtrSize);
- CompareLHS &= Mask;
- CompareRHS &= Mask;
- // If there is a base and this is a relational operator, we can only
- // compare pointers within the object in question; otherwise, the result
- // depends on where the object is located in memory.
- if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
- QualType BaseTy = getType(LHSValue.Base);
- if (BaseTy->isIncompleteType())
- return Error(E);
- CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
- uint64_t OffsetLimit = Size.getQuantity();
- if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
- return Error(E);
- }
- switch (E->getOpcode()) {
- default: llvm_unreachable("missing comparison operator");
- case BO_LT: return Success(CompareLHS < CompareRHS, E);
- case BO_GT: return Success(CompareLHS > CompareRHS, E);
- case BO_LE: return Success(CompareLHS <= CompareRHS, E);
- case BO_GE: return Success(CompareLHS >= CompareRHS, E);
- case BO_EQ: return Success(CompareLHS == CompareRHS, E);
- case BO_NE: return Success(CompareLHS != CompareRHS, E);
- }
- }
- }
- if (LHSTy->isMemberPointerType()) {
- assert(E->isEqualityOp() && "unexpected member pointer operation");
- assert(RHSTy->isMemberPointerType() && "invalid comparison");
- MemberPtr LHSValue, RHSValue;
- bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
- if (!LHSOK && !Info.noteFailure())
- return false;
- if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
- return false;
- // C++11 [expr.eq]p2:
- // If both operands are null, they compare equal. Otherwise if only one is
- // null, they compare unequal.
- if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
- bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
- return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
- }
- // Otherwise if either is a pointer to a virtual member function, the
- // result is unspecified.
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
- if (MD->isVirtual())
- CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
- if (MD->isVirtual())
- CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
- // Otherwise they compare equal if and only if they would refer to the
- // same member of the same most derived object or the same subobject if
- // they were dereferenced with a hypothetical object of the associated
- // class type.
- bool Equal = LHSValue == RHSValue;
- return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
- }
- if (LHSTy->isNullPtrType()) {
- assert(E->isComparisonOp() && "unexpected nullptr operation");
- assert(RHSTy->isNullPtrType() && "missing pointer conversion");
- // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
- // are compared, the result is true of the operator is <=, >= or ==, and
- // false otherwise.
- BinaryOperator::Opcode Opcode = E->getOpcode();
- return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
- }
- assert((!LHSTy->isIntegralOrEnumerationType() ||
- !RHSTy->isIntegralOrEnumerationType()) &&
- "DataRecursiveIntBinOpEvaluator should have handled integral types");
- // We can't continue from here for non-integral types.
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- }
- /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
- /// a result as the expression's type.
- bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
- const UnaryExprOrTypeTraitExpr *E) {
- switch(E->getKind()) {
- case UETT_AlignOf: {
- if (E->isArgumentType())
- return Success(GetAlignOfType(Info, E->getArgumentType()), E);
- else
- return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E);
- }
- case UETT_VecStep: {
- QualType Ty = E->getTypeOfArgument();
- if (Ty->isVectorType()) {
- unsigned n = Ty->castAs<VectorType>()->getNumElements();
- // The vec_step built-in functions that take a 3-component
- // vector return 4. (OpenCL 1.1 spec 6.11.12)
- if (n == 3)
- n = 4;
- return Success(n, E);
- } else
- return Success(1, E);
- }
- case UETT_SizeOf: {
- QualType SrcTy = E->getTypeOfArgument();
- // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
- // the result is the size of the referenced type."
- if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
- SrcTy = Ref->getPointeeType();
- CharUnits Sizeof;
- if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
- return false;
- return Success(Sizeof, E);
- }
- case UETT_OpenMPRequiredSimdAlign:
- assert(E->isArgumentType());
- return Success(
- Info.Ctx.toCharUnitsFromBits(
- Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
- .getQuantity(),
- E);
- }
- llvm_unreachable("unknown expr/type trait");
- }
- bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
- CharUnits Result;
- unsigned n = OOE->getNumComponents();
- if (n == 0)
- return Error(OOE);
- QualType CurrentType = OOE->getTypeSourceInfo()->getType();
- for (unsigned i = 0; i != n; ++i) {
- OffsetOfNode ON = OOE->getComponent(i);
- switch (ON.getKind()) {
- case OffsetOfNode::Array: {
- const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
- APSInt IdxResult;
- if (!EvaluateInteger(Idx, IdxResult, Info))
- return false;
- const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
- if (!AT)
- return Error(OOE);
- CurrentType = AT->getElementType();
- CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
- Result += IdxResult.getSExtValue() * ElementSize;
- break;
- }
- case OffsetOfNode::Field: {
- FieldDecl *MemberDecl = ON.getField();
- const RecordType *RT = CurrentType->getAs<RecordType>();
- if (!RT)
- return Error(OOE);
- RecordDecl *RD = RT->getDecl();
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
- unsigned i = MemberDecl->getFieldIndex();
- assert(i < RL.getFieldCount() && "offsetof field in wrong type");
- Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
- CurrentType = MemberDecl->getType().getNonReferenceType();
- break;
- }
- case OffsetOfNode::Identifier:
- llvm_unreachable("dependent __builtin_offsetof");
- case OffsetOfNode::Base: {
- CXXBaseSpecifier *BaseSpec = ON.getBase();
- if (BaseSpec->isVirtual())
- return Error(OOE);
- // Find the layout of the class whose base we are looking into.
- const RecordType *RT = CurrentType->getAs<RecordType>();
- if (!RT)
- return Error(OOE);
- RecordDecl *RD = RT->getDecl();
- if (RD->isInvalidDecl()) return false;
- const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
- // Find the base class itself.
- CurrentType = BaseSpec->getType();
- const RecordType *BaseRT = CurrentType->getAs<RecordType>();
- if (!BaseRT)
- return Error(OOE);
-
- // Add the offset to the base.
- Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
- break;
- }
- }
- }
- return Success(Result, OOE);
- }
- bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
- switch (E->getOpcode()) {
- default:
- // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
- // See C99 6.6p3.
- return Error(E);
- case UO_Extension:
- // FIXME: Should extension allow i-c-e extension expressions in its scope?
- // If so, we could clear the diagnostic ID.
- return Visit(E->getSubExpr());
- case UO_Plus:
- // The result is just the value.
- return Visit(E->getSubExpr());
- case UO_Minus: {
- if (!Visit(E->getSubExpr()))
- return false;
- if (!Result.isInt()) return Error(E);
- const APSInt &Value = Result.getInt();
- if (Value.isSigned() && Value.isMinSignedValue() &&
- !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
- E->getType()))
- return false;
- return Success(-Value, E);
- }
- case UO_Not: {
- if (!Visit(E->getSubExpr()))
- return false;
- if (!Result.isInt()) return Error(E);
- return Success(~Result.getInt(), E);
- }
- case UO_LNot: {
- bool bres;
- if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
- return false;
- return Success(!bres, E);
- }
- }
- }
- /// HandleCast - This is used to evaluate implicit or explicit casts where the
- /// result type is integer.
- bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
- const Expr *SubExpr = E->getSubExpr();
- QualType DestType = E->getType();
- QualType SrcType = SubExpr->getType();
- switch (E->getCastKind()) {
- case CK_BaseToDerived:
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase:
- case CK_Dynamic:
- case CK_ToUnion:
- case CK_ArrayToPointerDecay:
- case CK_FunctionToPointerDecay:
- case CK_NullToPointer:
- case CK_NullToMemberPointer:
- case CK_BaseToDerivedMemberPointer:
- case CK_DerivedToBaseMemberPointer:
- case CK_ReinterpretMemberPointer:
- case CK_ConstructorConversion:
- case CK_IntegralToPointer:
- case CK_ToVoid:
- case CK_VectorSplat:
- case CK_IntegralToFloating:
- case CK_FloatingCast:
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_AnyPointerToBlockPointerCast:
- case CK_ObjCObjectLValueCast:
- case CK_FloatingRealToComplex:
- case CK_FloatingComplexToReal:
- case CK_FloatingComplexCast:
- case CK_FloatingComplexToIntegralComplex:
- case CK_IntegralRealToComplex:
- case CK_IntegralComplexCast:
- case CK_IntegralComplexToFloatingComplex:
- case CK_BuiltinFnToFnPtr:
- case CK_ZeroToOCLEvent:
- case CK_NonAtomicToAtomic:
- case CK_AddressSpaceConversion:
- case CK_IntToOCLSampler:
- llvm_unreachable("invalid cast kind for integral value");
- case CK_BitCast:
- case CK_Dependent:
- case CK_LValueBitCast:
- case CK_ARCProduceObject:
- case CK_ARCConsumeObject:
- case CK_ARCReclaimReturnedObject:
- case CK_ARCExtendBlockObject:
- case CK_CopyAndAutoreleaseBlockObject:
- return Error(E);
- case CK_UserDefinedConversion:
- case CK_LValueToRValue:
- case CK_AtomicToNonAtomic:
- case CK_NoOp:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_MemberPointerToBoolean:
- case CK_PointerToBoolean:
- case CK_IntegralToBoolean:
- case CK_FloatingToBoolean:
- case CK_BooleanToSignedIntegral:
- case CK_FloatingComplexToBoolean:
- case CK_IntegralComplexToBoolean: {
- bool BoolResult;
- if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
- return false;
- uint64_t IntResult = BoolResult;
- if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral)
- IntResult = (uint64_t)-1;
- return Success(IntResult, E);
- }
- case CK_IntegralCast: {
- if (!Visit(SubExpr))
- return false;
- if (!Result.isInt()) {
- // Allow casts of address-of-label differences if they are no-ops
- // or narrowing. (The narrowing case isn't actually guaranteed to
- // be constant-evaluatable except in some narrow cases which are hard
- // to detect here. We let it through on the assumption the user knows
- // what they are doing.)
- if (Result.isAddrLabelDiff())
- return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
- // Only allow casts of lvalues if they are lossless.
- return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
- }
- return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
- Result.getInt()), E);
- }
- case CK_PointerToIntegral: {
- CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
- LValue LV;
- if (!EvaluatePointer(SubExpr, LV, Info))
- return false;
- if (LV.getLValueBase()) {
- // Only allow based lvalue casts if they are lossless.
- // FIXME: Allow a larger integer size than the pointer size, and allow
- // narrowing back down to pointer width in subsequent integral casts.
- // FIXME: Check integer type's active bits, not its type size.
- if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
- return Error(E);
- LV.Designator.setInvalid();
- LV.moveInto(Result);
- return true;
- }
- uint64_t V;
- if (LV.isNullPointer())
- V = Info.Ctx.getTargetNullPointerValue(SrcType);
- else
- V = LV.getLValueOffset().getQuantity();
- APSInt AsInt = Info.Ctx.MakeIntValue(V, SrcType);
- return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
- }
- case CK_IntegralComplexToReal: {
- ComplexValue C;
- if (!EvaluateComplex(SubExpr, C, Info))
- return false;
- return Success(C.getComplexIntReal(), E);
- }
- case CK_FloatingToIntegral: {
- APFloat F(0.0);
- if (!EvaluateFloat(SubExpr, F, Info))
- return false;
- APSInt Value;
- if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
- return false;
- return Success(Value, E);
- }
- }
- llvm_unreachable("unknown cast resulting in integral value");
- }
- bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
- if (E->getSubExpr()->getType()->isAnyComplexType()) {
- ComplexValue LV;
- if (!EvaluateComplex(E->getSubExpr(), LV, Info))
- return false;
- if (!LV.isComplexInt())
- return Error(E);
- return Success(LV.getComplexIntReal(), E);
- }
- return Visit(E->getSubExpr());
- }
- bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
- if (E->getSubExpr()->getType()->isComplexIntegerType()) {
- ComplexValue LV;
- if (!EvaluateComplex(E->getSubExpr(), LV, Info))
- return false;
- if (!LV.isComplexInt())
- return Error(E);
- return Success(LV.getComplexIntImag(), E);
- }
- VisitIgnoredValue(E->getSubExpr());
- return Success(0, E);
- }
- bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
- return Success(E->getPackLength(), E);
- }
- bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
- return Success(E->getValue(), E);
- }
- //===----------------------------------------------------------------------===//
- // Float Evaluation
- //===----------------------------------------------------------------------===//
- namespace {
- class FloatExprEvaluator
- : public ExprEvaluatorBase<FloatExprEvaluator> {
- APFloat &Result;
- public:
- FloatExprEvaluator(EvalInfo &info, APFloat &result)
- : ExprEvaluatorBaseTy(info), Result(result) {}
- bool Success(const APValue &V, const Expr *e) {
- Result = V.getFloat();
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
- return true;
- }
- bool VisitCallExpr(const CallExpr *E);
- bool VisitUnaryOperator(const UnaryOperator *E);
- bool VisitBinaryOperator(const BinaryOperator *E);
- bool VisitFloatingLiteral(const FloatingLiteral *E);
- bool VisitCastExpr(const CastExpr *E);
- bool VisitUnaryReal(const UnaryOperator *E);
- bool VisitUnaryImag(const UnaryOperator *E);
- // FIXME: Missing: array subscript of vector, member of vector
- };
- } // end anonymous namespace
- static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isRealFloatingType());
- return FloatExprEvaluator(Info, Result).Visit(E);
- }
- static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
- QualType ResultTy,
- const Expr *Arg,
- bool SNaN,
- llvm::APFloat &Result) {
- const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
- if (!S) return false;
- const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
- llvm::APInt fill;
- // Treat empty strings as if they were zero.
- if (S->getString().empty())
- fill = llvm::APInt(32, 0);
- else if (S->getString().getAsInteger(0, fill))
- return false;
- if (Context.getTargetInfo().isNan2008()) {
- if (SNaN)
- Result = llvm::APFloat::getSNaN(Sem, false, &fill);
- else
- Result = llvm::APFloat::getQNaN(Sem, false, &fill);
- } else {
- // Prior to IEEE 754-2008, architectures were allowed to choose whether
- // the first bit of their significand was set for qNaN or sNaN. MIPS chose
- // a different encoding to what became a standard in 2008, and for pre-
- // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
- // sNaN. This is now known as "legacy NaN" encoding.
- if (SNaN)
- Result = llvm::APFloat::getQNaN(Sem, false, &fill);
- else
- Result = llvm::APFloat::getSNaN(Sem, false, &fill);
- }
- return true;
- }
- bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
- switch (E->getBuiltinCallee()) {
- default:
- return ExprEvaluatorBaseTy::VisitCallExpr(E);
- case Builtin::BI__builtin_huge_val:
- case Builtin::BI__builtin_huge_valf:
- case Builtin::BI__builtin_huge_vall:
- case Builtin::BI__builtin_inf:
- case Builtin::BI__builtin_inff:
- case Builtin::BI__builtin_infl: {
- const llvm::fltSemantics &Sem =
- Info.Ctx.getFloatTypeSemantics(E->getType());
- Result = llvm::APFloat::getInf(Sem);
- return true;
- }
- case Builtin::BI__builtin_nans:
- case Builtin::BI__builtin_nansf:
- case Builtin::BI__builtin_nansl:
- if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
- true, Result))
- return Error(E);
- return true;
- case Builtin::BI__builtin_nan:
- case Builtin::BI__builtin_nanf:
- case Builtin::BI__builtin_nanl:
- // If this is __builtin_nan() turn this into a nan, otherwise we
- // can't constant fold it.
- if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
- false, Result))
- return Error(E);
- return true;
- case Builtin::BI__builtin_fabs:
- case Builtin::BI__builtin_fabsf:
- case Builtin::BI__builtin_fabsl:
- if (!EvaluateFloat(E->getArg(0), Result, Info))
- return false;
- if (Result.isNegative())
- Result.changeSign();
- return true;
- // FIXME: Builtin::BI__builtin_powi
- // FIXME: Builtin::BI__builtin_powif
- // FIXME: Builtin::BI__builtin_powil
- case Builtin::BI__builtin_copysign:
- case Builtin::BI__builtin_copysignf:
- case Builtin::BI__builtin_copysignl: {
- APFloat RHS(0.);
- if (!EvaluateFloat(E->getArg(0), Result, Info) ||
- !EvaluateFloat(E->getArg(1), RHS, Info))
- return false;
- Result.copySign(RHS);
- return true;
- }
- }
- }
- bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
- if (E->getSubExpr()->getType()->isAnyComplexType()) {
- ComplexValue CV;
- if (!EvaluateComplex(E->getSubExpr(), CV, Info))
- return false;
- Result = CV.FloatReal;
- return true;
- }
- return Visit(E->getSubExpr());
- }
- bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
- if (E->getSubExpr()->getType()->isAnyComplexType()) {
- ComplexValue CV;
- if (!EvaluateComplex(E->getSubExpr(), CV, Info))
- return false;
- Result = CV.FloatImag;
- return true;
- }
- VisitIgnoredValue(E->getSubExpr());
- const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
- Result = llvm::APFloat::getZero(Sem);
- return true;
- }
- bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
- switch (E->getOpcode()) {
- default: return Error(E);
- case UO_Plus:
- return EvaluateFloat(E->getSubExpr(), Result, Info);
- case UO_Minus:
- if (!EvaluateFloat(E->getSubExpr(), Result, Info))
- return false;
- Result.changeSign();
- return true;
- }
- }
- bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
- if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- APFloat RHS(0.0);
- bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
- if (!LHSOK && !Info.noteFailure())
- return false;
- return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
- handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
- }
- bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
- Result = E->getValue();
- return true;
- }
- bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
- const Expr* SubExpr = E->getSubExpr();
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_IntegralToFloating: {
- APSInt IntResult;
- return EvaluateInteger(SubExpr, IntResult, Info) &&
- HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
- E->getType(), Result);
- }
- case CK_FloatingCast: {
- if (!Visit(SubExpr))
- return false;
- return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
- Result);
- }
- case CK_FloatingComplexToReal: {
- ComplexValue V;
- if (!EvaluateComplex(SubExpr, V, Info))
- return false;
- Result = V.getComplexFloatReal();
- return true;
- }
- }
- }
- //===----------------------------------------------------------------------===//
- // Complex Evaluation (for float and integer)
- //===----------------------------------------------------------------------===//
- namespace {
- class ComplexExprEvaluator
- : public ExprEvaluatorBase<ComplexExprEvaluator> {
- ComplexValue &Result;
- public:
- ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
- : ExprEvaluatorBaseTy(info), Result(Result) {}
- bool Success(const APValue &V, const Expr *e) {
- Result.setFrom(V);
- return true;
- }
- bool ZeroInitialization(const Expr *E);
- //===--------------------------------------------------------------------===//
- // Visitor Methods
- //===--------------------------------------------------------------------===//
- bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
- bool VisitCastExpr(const CastExpr *E);
- bool VisitBinaryOperator(const BinaryOperator *E);
- bool VisitUnaryOperator(const UnaryOperator *E);
- bool VisitInitListExpr(const InitListExpr *E);
- };
- } // end anonymous namespace
- static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
- EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isAnyComplexType());
- return ComplexExprEvaluator(Info, Result).Visit(E);
- }
- bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
- QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
- if (ElemTy->isRealFloatingType()) {
- Result.makeComplexFloat();
- APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
- Result.FloatReal = Zero;
- Result.FloatImag = Zero;
- } else {
- Result.makeComplexInt();
- APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
- Result.IntReal = Zero;
- Result.IntImag = Zero;
- }
- return true;
- }
- bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
- const Expr* SubExpr = E->getSubExpr();
- if (SubExpr->getType()->isRealFloatingType()) {
- Result.makeComplexFloat();
- APFloat &Imag = Result.FloatImag;
- if (!EvaluateFloat(SubExpr, Imag, Info))
- return false;
- Result.FloatReal = APFloat(Imag.getSemantics());
- return true;
- } else {
- assert(SubExpr->getType()->isIntegerType() &&
- "Unexpected imaginary literal.");
- Result.makeComplexInt();
- APSInt &Imag = Result.IntImag;
- if (!EvaluateInteger(SubExpr, Imag, Info))
- return false;
- Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
- return true;
- }
- }
- bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- case CK_BitCast:
- case CK_BaseToDerived:
- case CK_DerivedToBase:
- case CK_UncheckedDerivedToBase:
- case CK_Dynamic:
- case CK_ToUnion:
- case CK_ArrayToPointerDecay:
- case CK_FunctionToPointerDecay:
- case CK_NullToPointer:
- case CK_NullToMemberPointer:
- case CK_BaseToDerivedMemberPointer:
- case CK_DerivedToBaseMemberPointer:
- case CK_MemberPointerToBoolean:
- case CK_ReinterpretMemberPointer:
- case CK_ConstructorConversion:
- case CK_IntegralToPointer:
- case CK_PointerToIntegral:
- case CK_PointerToBoolean:
- case CK_ToVoid:
- case CK_VectorSplat:
- case CK_IntegralCast:
- case CK_BooleanToSignedIntegral:
- case CK_IntegralToBoolean:
- case CK_IntegralToFloating:
- case CK_FloatingToIntegral:
- case CK_FloatingToBoolean:
- case CK_FloatingCast:
- case CK_CPointerToObjCPointerCast:
- case CK_BlockPointerToObjCPointerCast:
- case CK_AnyPointerToBlockPointerCast:
- case CK_ObjCObjectLValueCast:
- case CK_FloatingComplexToReal:
- case CK_FloatingComplexToBoolean:
- case CK_IntegralComplexToReal:
- case CK_IntegralComplexToBoolean:
- case CK_ARCProduceObject:
- case CK_ARCConsumeObject:
- case CK_ARCReclaimReturnedObject:
- case CK_ARCExtendBlockObject:
- case CK_CopyAndAutoreleaseBlockObject:
- case CK_BuiltinFnToFnPtr:
- case CK_ZeroToOCLEvent:
- case CK_NonAtomicToAtomic:
- case CK_AddressSpaceConversion:
- case CK_IntToOCLSampler:
- llvm_unreachable("invalid cast kind for complex value");
- case CK_LValueToRValue:
- case CK_AtomicToNonAtomic:
- case CK_NoOp:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_Dependent:
- case CK_LValueBitCast:
- case CK_UserDefinedConversion:
- return Error(E);
- case CK_FloatingRealToComplex: {
- APFloat &Real = Result.FloatReal;
- if (!EvaluateFloat(E->getSubExpr(), Real, Info))
- return false;
- Result.makeComplexFloat();
- Result.FloatImag = APFloat(Real.getSemantics());
- return true;
- }
- case CK_FloatingComplexCast: {
- if (!Visit(E->getSubExpr()))
- return false;
- QualType To = E->getType()->getAs<ComplexType>()->getElementType();
- QualType From
- = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
- return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
- HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
- }
- case CK_FloatingComplexToIntegralComplex: {
- if (!Visit(E->getSubExpr()))
- return false;
- QualType To = E->getType()->getAs<ComplexType>()->getElementType();
- QualType From
- = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
- Result.makeComplexInt();
- return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
- To, Result.IntReal) &&
- HandleFloatToIntCast(Info, E, From, Result.FloatImag,
- To, Result.IntImag);
- }
- case CK_IntegralRealToComplex: {
- APSInt &Real = Result.IntReal;
- if (!EvaluateInteger(E->getSubExpr(), Real, Info))
- return false;
- Result.makeComplexInt();
- Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
- return true;
- }
- case CK_IntegralComplexCast: {
- if (!Visit(E->getSubExpr()))
- return false;
- QualType To = E->getType()->getAs<ComplexType>()->getElementType();
- QualType From
- = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
- Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
- Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
- return true;
- }
- case CK_IntegralComplexToFloatingComplex: {
- if (!Visit(E->getSubExpr()))
- return false;
- QualType To = E->getType()->castAs<ComplexType>()->getElementType();
- QualType From
- = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
- Result.makeComplexFloat();
- return HandleIntToFloatCast(Info, E, From, Result.IntReal,
- To, Result.FloatReal) &&
- HandleIntToFloatCast(Info, E, From, Result.IntImag,
- To, Result.FloatImag);
- }
- }
- llvm_unreachable("unknown cast resulting in complex value");
- }
- bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
- if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
- return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
- // Track whether the LHS or RHS is real at the type system level. When this is
- // the case we can simplify our evaluation strategy.
- bool LHSReal = false, RHSReal = false;
- bool LHSOK;
- if (E->getLHS()->getType()->isRealFloatingType()) {
- LHSReal = true;
- APFloat &Real = Result.FloatReal;
- LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
- if (LHSOK) {
- Result.makeComplexFloat();
- Result.FloatImag = APFloat(Real.getSemantics());
- }
- } else {
- LHSOK = Visit(E->getLHS());
- }
- if (!LHSOK && !Info.noteFailure())
- return false;
- ComplexValue RHS;
- if (E->getRHS()->getType()->isRealFloatingType()) {
- RHSReal = true;
- APFloat &Real = RHS.FloatReal;
- if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
- return false;
- RHS.makeComplexFloat();
- RHS.FloatImag = APFloat(Real.getSemantics());
- } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
- return false;
- assert(!(LHSReal && RHSReal) &&
- "Cannot have both operands of a complex operation be real.");
- switch (E->getOpcode()) {
- default: return Error(E);
- case BO_Add:
- if (Result.isComplexFloat()) {
- Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
- APFloat::rmNearestTiesToEven);
- if (LHSReal)
- Result.getComplexFloatImag() = RHS.getComplexFloatImag();
- else if (!RHSReal)
- Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
- APFloat::rmNearestTiesToEven);
- } else {
- Result.getComplexIntReal() += RHS.getComplexIntReal();
- Result.getComplexIntImag() += RHS.getComplexIntImag();
- }
- break;
- case BO_Sub:
- if (Result.isComplexFloat()) {
- Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
- APFloat::rmNearestTiesToEven);
- if (LHSReal) {
- Result.getComplexFloatImag() = RHS.getComplexFloatImag();
- Result.getComplexFloatImag().changeSign();
- } else if (!RHSReal) {
- Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
- APFloat::rmNearestTiesToEven);
- }
- } else {
- Result.getComplexIntReal() -= RHS.getComplexIntReal();
- Result.getComplexIntImag() -= RHS.getComplexIntImag();
- }
- break;
- case BO_Mul:
- if (Result.isComplexFloat()) {
- // This is an implementation of complex multiplication according to the
- // constraints laid out in C11 Annex G. The implemantion uses the
- // following naming scheme:
- // (a + ib) * (c + id)
- ComplexValue LHS = Result;
- APFloat &A = LHS.getComplexFloatReal();
- APFloat &B = LHS.getComplexFloatImag();
- APFloat &C = RHS.getComplexFloatReal();
- APFloat &D = RHS.getComplexFloatImag();
- APFloat &ResR = Result.getComplexFloatReal();
- APFloat &ResI = Result.getComplexFloatImag();
- if (LHSReal) {
- assert(!RHSReal && "Cannot have two real operands for a complex op!");
- ResR = A * C;
- ResI = A * D;
- } else if (RHSReal) {
- ResR = C * A;
- ResI = C * B;
- } else {
- // In the fully general case, we need to handle NaNs and infinities
- // robustly.
- APFloat AC = A * C;
- APFloat BD = B * D;
- APFloat AD = A * D;
- APFloat BC = B * C;
- ResR = AC - BD;
- ResI = AD + BC;
- if (ResR.isNaN() && ResI.isNaN()) {
- bool Recalc = false;
- if (A.isInfinity() || B.isInfinity()) {
- A = APFloat::copySign(
- APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
- B = APFloat::copySign(
- APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
- if (C.isNaN())
- C = APFloat::copySign(APFloat(C.getSemantics()), C);
- if (D.isNaN())
- D = APFloat::copySign(APFloat(D.getSemantics()), D);
- Recalc = true;
- }
- if (C.isInfinity() || D.isInfinity()) {
- C = APFloat::copySign(
- APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
- D = APFloat::copySign(
- APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
- if (A.isNaN())
- A = APFloat::copySign(APFloat(A.getSemantics()), A);
- if (B.isNaN())
- B = APFloat::copySign(APFloat(B.getSemantics()), B);
- Recalc = true;
- }
- if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
- AD.isInfinity() || BC.isInfinity())) {
- if (A.isNaN())
- A = APFloat::copySign(APFloat(A.getSemantics()), A);
- if (B.isNaN())
- B = APFloat::copySign(APFloat(B.getSemantics()), B);
- if (C.isNaN())
- C = APFloat::copySign(APFloat(C.getSemantics()), C);
- if (D.isNaN())
- D = APFloat::copySign(APFloat(D.getSemantics()), D);
- Recalc = true;
- }
- if (Recalc) {
- ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
- ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
- }
- }
- }
- } else {
- ComplexValue LHS = Result;
- Result.getComplexIntReal() =
- (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
- LHS.getComplexIntImag() * RHS.getComplexIntImag());
- Result.getComplexIntImag() =
- (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
- LHS.getComplexIntImag() * RHS.getComplexIntReal());
- }
- break;
- case BO_Div:
- if (Result.isComplexFloat()) {
- // This is an implementation of complex division according to the
- // constraints laid out in C11 Annex G. The implemantion uses the
- // following naming scheme:
- // (a + ib) / (c + id)
- ComplexValue LHS = Result;
- APFloat &A = LHS.getComplexFloatReal();
- APFloat &B = LHS.getComplexFloatImag();
- APFloat &C = RHS.getComplexFloatReal();
- APFloat &D = RHS.getComplexFloatImag();
- APFloat &ResR = Result.getComplexFloatReal();
- APFloat &ResI = Result.getComplexFloatImag();
- if (RHSReal) {
- ResR = A / C;
- ResI = B / C;
- } else {
- if (LHSReal) {
- // No real optimizations we can do here, stub out with zero.
- B = APFloat::getZero(A.getSemantics());
- }
- int DenomLogB = 0;
- APFloat MaxCD = maxnum(abs(C), abs(D));
- if (MaxCD.isFinite()) {
- DenomLogB = ilogb(MaxCD);
- C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven);
- D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven);
- }
- APFloat Denom = C * C + D * D;
- ResR = scalbn((A * C + B * D) / Denom, -DenomLogB,
- APFloat::rmNearestTiesToEven);
- ResI = scalbn((B * C - A * D) / Denom, -DenomLogB,
- APFloat::rmNearestTiesToEven);
- if (ResR.isNaN() && ResI.isNaN()) {
- if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
- ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
- ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
- } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
- D.isFinite()) {
- A = APFloat::copySign(
- APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
- B = APFloat::copySign(
- APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
- ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
- ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
- } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
- C = APFloat::copySign(
- APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
- D = APFloat::copySign(
- APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
- ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
- ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
- }
- }
- }
- } else {
- if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
- return Error(E, diag::note_expr_divide_by_zero);
- ComplexValue LHS = Result;
- APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
- RHS.getComplexIntImag() * RHS.getComplexIntImag();
- Result.getComplexIntReal() =
- (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
- LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
- Result.getComplexIntImag() =
- (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
- LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
- }
- break;
- }
- return true;
- }
- bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
- // Get the operand value into 'Result'.
- if (!Visit(E->getSubExpr()))
- return false;
- switch (E->getOpcode()) {
- default:
- return Error(E);
- case UO_Extension:
- return true;
- case UO_Plus:
- // The result is always just the subexpr.
- return true;
- case UO_Minus:
- if (Result.isComplexFloat()) {
- Result.getComplexFloatReal().changeSign();
- Result.getComplexFloatImag().changeSign();
- }
- else {
- Result.getComplexIntReal() = -Result.getComplexIntReal();
- Result.getComplexIntImag() = -Result.getComplexIntImag();
- }
- return true;
- case UO_Not:
- if (Result.isComplexFloat())
- Result.getComplexFloatImag().changeSign();
- else
- Result.getComplexIntImag() = -Result.getComplexIntImag();
- return true;
- }
- }
- bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
- if (E->getNumInits() == 2) {
- if (E->getType()->isComplexType()) {
- Result.makeComplexFloat();
- if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
- return false;
- if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
- return false;
- } else {
- Result.makeComplexInt();
- if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
- return false;
- if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
- return false;
- }
- return true;
- }
- return ExprEvaluatorBaseTy::VisitInitListExpr(E);
- }
- //===----------------------------------------------------------------------===//
- // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
- // implicit conversion.
- //===----------------------------------------------------------------------===//
- namespace {
- class AtomicExprEvaluator :
- public ExprEvaluatorBase<AtomicExprEvaluator> {
- APValue &Result;
- public:
- AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
- : ExprEvaluatorBaseTy(Info), Result(Result) {}
- bool Success(const APValue &V, const Expr *E) {
- Result = V;
- return true;
- }
- bool ZeroInitialization(const Expr *E) {
- ImplicitValueInitExpr VIE(
- E->getType()->castAs<AtomicType>()->getValueType());
- return Evaluate(Result, Info, &VIE);
- }
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_NonAtomicToAtomic:
- return Evaluate(Result, Info, E->getSubExpr());
- }
- }
- };
- } // end anonymous namespace
- static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isAtomicType());
- return AtomicExprEvaluator(Info, Result).Visit(E);
- }
- //===----------------------------------------------------------------------===//
- // Void expression evaluation, primarily for a cast to void on the LHS of a
- // comma operator
- //===----------------------------------------------------------------------===//
- namespace {
- class VoidExprEvaluator
- : public ExprEvaluatorBase<VoidExprEvaluator> {
- public:
- VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
- bool Success(const APValue &V, const Expr *e) { return true; }
- bool VisitCastExpr(const CastExpr *E) {
- switch (E->getCastKind()) {
- default:
- return ExprEvaluatorBaseTy::VisitCastExpr(E);
- case CK_ToVoid:
- VisitIgnoredValue(E->getSubExpr());
- return true;
- }
- }
- bool VisitCallExpr(const CallExpr *E) {
- switch (E->getBuiltinCallee()) {
- default:
- return ExprEvaluatorBaseTy::VisitCallExpr(E);
- case Builtin::BI__assume:
- case Builtin::BI__builtin_assume:
- // The argument is not evaluated!
- return true;
- }
- }
- };
- } // end anonymous namespace
- static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
- assert(E->isRValue() && E->getType()->isVoidType());
- return VoidExprEvaluator(Info).Visit(E);
- }
- //===----------------------------------------------------------------------===//
- // Top level Expr::EvaluateAsRValue method.
- //===----------------------------------------------------------------------===//
- static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
- // In C, function designators are not lvalues, but we evaluate them as if they
- // are.
- QualType T = E->getType();
- if (E->isGLValue() || T->isFunctionType()) {
- LValue LV;
- if (!EvaluateLValue(E, LV, Info))
- return false;
- LV.moveInto(Result);
- } else if (T->isVectorType()) {
- if (!EvaluateVector(E, Result, Info))
- return false;
- } else if (T->isIntegralOrEnumerationType()) {
- if (!IntExprEvaluator(Info, Result).Visit(E))
- return false;
- } else if (T->hasPointerRepresentation()) {
- LValue LV;
- if (!EvaluatePointer(E, LV, Info))
- return false;
- LV.moveInto(Result);
- } else if (T->isRealFloatingType()) {
- llvm::APFloat F(0.0);
- if (!EvaluateFloat(E, F, Info))
- return false;
- Result = APValue(F);
- } else if (T->isAnyComplexType()) {
- ComplexValue C;
- if (!EvaluateComplex(E, C, Info))
- return false;
- C.moveInto(Result);
- } else if (T->isMemberPointerType()) {
- MemberPtr P;
- if (!EvaluateMemberPointer(E, P, Info))
- return false;
- P.moveInto(Result);
- return true;
- } else if (T->isArrayType()) {
- LValue LV;
- LV.set(E, Info.CurrentCall->Index);
- APValue &Value = Info.CurrentCall->createTemporary(E, false);
- if (!EvaluateArray(E, LV, Value, Info))
- return false;
- Result = Value;
- } else if (T->isRecordType()) {
- LValue LV;
- LV.set(E, Info.CurrentCall->Index);
- APValue &Value = Info.CurrentCall->createTemporary(E, false);
- if (!EvaluateRecord(E, LV, Value, Info))
- return false;
- Result = Value;
- } else if (T->isVoidType()) {
- if (!Info.getLangOpts().CPlusPlus11)
- Info.CCEDiag(E, diag::note_constexpr_nonliteral)
- << E->getType();
- if (!EvaluateVoid(E, Info))
- return false;
- } else if (T->isAtomicType()) {
- if (!EvaluateAtomic(E, Result, Info))
- return false;
- } else if (Info.getLangOpts().CPlusPlus11) {
- Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
- return false;
- } else {
- Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
- return false;
- }
- return true;
- }
- /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
- /// cases, the in-place evaluation is essential, since later initializers for
- /// an object can indirectly refer to subobjects which were initialized earlier.
- static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
- const Expr *E, bool AllowNonLiteralTypes) {
- assert(!E->isValueDependent());
- if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
- return false;
- if (E->isRValue()) {
- // Evaluate arrays and record types in-place, so that later initializers can
- // refer to earlier-initialized members of the object.
- if (E->getType()->isArrayType())
- return EvaluateArray(E, This, Result, Info);
- else if (E->getType()->isRecordType())
- return EvaluateRecord(E, This, Result, Info);
- }
- // For any other type, in-place evaluation is unimportant.
- return Evaluate(Result, Info, E);
- }
- /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
- /// lvalue-to-rvalue cast if it is an lvalue.
- static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
- if (E->getType().isNull())
- return false;
- if (!CheckLiteralType(Info, E))
- return false;
- if (!::Evaluate(Result, Info, E))
- return false;
- if (E->isGLValue()) {
- LValue LV;
- LV.setFrom(Info.Ctx, Result);
- if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
- return false;
- }
- // Check this core constant expression is a constant expression.
- return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
- }
- static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
- const ASTContext &Ctx, bool &IsConst) {
- // Fast-path evaluations of integer literals, since we sometimes see files
- // containing vast quantities of these.
- if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
- Result.Val = APValue(APSInt(L->getValue(),
- L->getType()->isUnsignedIntegerType()));
- IsConst = true;
- return true;
- }
- // This case should be rare, but we need to check it before we check on
- // the type below.
- if (Exp->getType().isNull()) {
- IsConst = false;
- return true;
- }
-
- // FIXME: Evaluating values of large array and record types can cause
- // performance problems. Only do so in C++11 for now.
- if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
- Exp->getType()->isRecordType()) &&
- !Ctx.getLangOpts().CPlusPlus11) {
- IsConst = false;
- return true;
- }
- return false;
- }
- /// EvaluateAsRValue - Return true if this is a constant which we can fold using
- /// any crazy technique (that has nothing to do with language standards) that
- /// we want to. If this function returns true, it returns the folded constant
- /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
- /// will be applied to the result.
- bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
- bool IsConst;
- if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
- return IsConst;
-
- EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
- return ::EvaluateAsRValue(Info, this, Result.Val);
- }
- bool Expr::EvaluateAsBooleanCondition(bool &Result,
- const ASTContext &Ctx) const {
- EvalResult Scratch;
- return EvaluateAsRValue(Scratch, Ctx) &&
- HandleConversionToBool(Scratch.Val, Result);
- }
- static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
- Expr::SideEffectsKind SEK) {
- return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
- (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
- }
- bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
- SideEffectsKind AllowSideEffects) const {
- if (!getType()->isIntegralOrEnumerationType())
- return false;
- EvalResult ExprResult;
- if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
- hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
- return false;
- Result = ExprResult.Val.getInt();
- return true;
- }
- bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx,
- SideEffectsKind AllowSideEffects) const {
- if (!getType()->isRealFloatingType())
- return false;
- EvalResult ExprResult;
- if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isFloat() ||
- hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
- return false;
- Result = ExprResult.Val.getFloat();
- return true;
- }
- bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
- EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
- LValue LV;
- if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
- !CheckLValueConstantExpression(Info, getExprLoc(),
- Ctx.getLValueReferenceType(getType()), LV))
- return false;
- LV.moveInto(Result.Val);
- return true;
- }
- bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
- const VarDecl *VD,
- SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
- // FIXME: Evaluating initializers for large array and record types can cause
- // performance problems. Only do so in C++11 for now.
- if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
- !Ctx.getLangOpts().CPlusPlus11)
- return false;
- Expr::EvalStatus EStatus;
- EStatus.Diag = &Notes;
- EvalInfo InitInfo(Ctx, EStatus, VD->isConstexpr()
- ? EvalInfo::EM_ConstantExpression
- : EvalInfo::EM_ConstantFold);
- InitInfo.setEvaluatingDecl(VD, Value);
- LValue LVal;
- LVal.set(VD);
- // C++11 [basic.start.init]p2:
- // Variables with static storage duration or thread storage duration shall be
- // zero-initialized before any other initialization takes place.
- // This behavior is not present in C.
- if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
- !VD->getType()->isReferenceType()) {
- ImplicitValueInitExpr VIE(VD->getType());
- if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
- /*AllowNonLiteralTypes=*/true))
- return false;
- }
- if (!EvaluateInPlace(Value, InitInfo, LVal, this,
- /*AllowNonLiteralTypes=*/true) ||
- EStatus.HasSideEffects)
- return false;
- return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
- Value);
- }
- /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
- /// constant folded, but discard the result.
- bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
- EvalResult Result;
- return EvaluateAsRValue(Result, Ctx) &&
- !hasUnacceptableSideEffect(Result, SEK);
- }
- APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
- SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
- EvalResult EvalResult;
- EvalResult.Diag = Diag;
- bool Result = EvaluateAsRValue(EvalResult, Ctx);
- (void)Result;
- assert(Result && "Could not evaluate expression");
- assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
- return EvalResult.Val.getInt();
- }
- void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
- bool IsConst;
- EvalResult EvalResult;
- if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
- EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
- (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
- }
- }
- bool Expr::EvalResult::isGlobalLValue() const {
- assert(Val.isLValue());
- return IsGlobalLValue(Val.getLValueBase());
- }
- /// isIntegerConstantExpr - this recursive routine will test if an expression is
- /// an integer constant expression.
- /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
- /// comma, etc
- // CheckICE - This function does the fundamental ICE checking: the returned
- // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
- // and a (possibly null) SourceLocation indicating the location of the problem.
- //
- // Note that to reduce code duplication, this helper does no evaluation
- // itself; the caller checks whether the expression is evaluatable, and
- // in the rare cases where CheckICE actually cares about the evaluated
- // value, it calls into Evalute.
- namespace {
- enum ICEKind {
- /// This expression is an ICE.
- IK_ICE,
- /// This expression is not an ICE, but if it isn't evaluated, it's
- /// a legal subexpression for an ICE. This return value is used to handle
- /// the comma operator in C99 mode, and non-constant subexpressions.
- IK_ICEIfUnevaluated,
- /// This expression is not an ICE, and is not a legal subexpression for one.
- IK_NotICE
- };
- struct ICEDiag {
- ICEKind Kind;
- SourceLocation Loc;
- ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
- };
- }
- static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
- static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
- static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
- Expr::EvalResult EVResult;
- if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
- !EVResult.Val.isInt())
- return ICEDiag(IK_NotICE, E->getLocStart());
- return NoDiag();
- }
- static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
- assert(!E->isValueDependent() && "Should not see value dependent exprs!");
- if (!E->getType()->isIntegralOrEnumerationType())
- return ICEDiag(IK_NotICE, E->getLocStart());
- switch (E->getStmtClass()) {
- #define ABSTRACT_STMT(Node)
- #define STMT(Node, Base) case Expr::Node##Class:
- #define EXPR(Node, Base)
- #include "clang/AST/StmtNodes.inc"
- case Expr::PredefinedExprClass:
- case Expr::FloatingLiteralClass:
- case Expr::ImaginaryLiteralClass:
- case Expr::StringLiteralClass:
- case Expr::ArraySubscriptExprClass:
- case Expr::OMPArraySectionExprClass:
- case Expr::MemberExprClass:
- case Expr::CompoundAssignOperatorClass:
- case Expr::CompoundLiteralExprClass:
- case Expr::ExtVectorElementExprClass:
- case Expr::DesignatedInitExprClass:
- case Expr::ArrayInitLoopExprClass:
- case Expr::ArrayInitIndexExprClass:
- case Expr::NoInitExprClass:
- case Expr::DesignatedInitUpdateExprClass:
- case Expr::ImplicitValueInitExprClass:
- case Expr::ParenListExprClass:
- case Expr::VAArgExprClass:
- case Expr::AddrLabelExprClass:
- case Expr::StmtExprClass:
- case Expr::CXXMemberCallExprClass:
- case Expr::CUDAKernelCallExprClass:
- case Expr::CXXDynamicCastExprClass:
- case Expr::CXXTypeidExprClass:
- case Expr::CXXUuidofExprClass:
- case Expr::MSPropertyRefExprClass:
- case Expr::MSPropertySubscriptExprClass:
- case Expr::CXXNullPtrLiteralExprClass:
- case Expr::UserDefinedLiteralClass:
- case Expr::CXXThisExprClass:
- case Expr::CXXThrowExprClass:
- case Expr::CXXNewExprClass:
- case Expr::CXXDeleteExprClass:
- case Expr::CXXPseudoDestructorExprClass:
- case Expr::UnresolvedLookupExprClass:
- case Expr::TypoExprClass:
- case Expr::DependentScopeDeclRefExprClass:
- case Expr::CXXConstructExprClass:
- case Expr::CXXInheritedCtorInitExprClass:
- case Expr::CXXStdInitializerListExprClass:
- case Expr::CXXBindTemporaryExprClass:
- case Expr::ExprWithCleanupsClass:
- case Expr::CXXTemporaryObjectExprClass:
- case Expr::CXXUnresolvedConstructExprClass:
- case Expr::CXXDependentScopeMemberExprClass:
- case Expr::UnresolvedMemberExprClass:
- case Expr::ObjCStringLiteralClass:
- case Expr::ObjCBoxedExprClass:
- case Expr::ObjCArrayLiteralClass:
- case Expr::ObjCDictionaryLiteralClass:
- case Expr::ObjCEncodeExprClass:
- case Expr::ObjCMessageExprClass:
- case Expr::ObjCSelectorExprClass:
- case Expr::ObjCProtocolExprClass:
- case Expr::ObjCIvarRefExprClass:
- case Expr::ObjCPropertyRefExprClass:
- case Expr::ObjCSubscriptRefExprClass:
- case Expr::ObjCIsaExprClass:
- case Expr::ObjCAvailabilityCheckExprClass:
- case Expr::ShuffleVectorExprClass:
- case Expr::ConvertVectorExprClass:
- case Expr::BlockExprClass:
- case Expr::NoStmtClass:
- case Expr::OpaqueValueExprClass:
- case Expr::PackExpansionExprClass:
- case Expr::SubstNonTypeTemplateParmPackExprClass:
- case Expr::FunctionParmPackExprClass:
- case Expr::AsTypeExprClass:
- case Expr::ObjCIndirectCopyRestoreExprClass:
- case Expr::MaterializeTemporaryExprClass:
- case Expr::PseudoObjectExprClass:
- case Expr::AtomicExprClass:
- case Expr::LambdaExprClass:
- case Expr::CXXFoldExprClass:
- case Expr::CoawaitExprClass:
- case Expr::CoyieldExprClass:
- return ICEDiag(IK_NotICE, E->getLocStart());
- case Expr::InitListExprClass: {
- // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
- // form "T x = { a };" is equivalent to "T x = a;".
- // Unless we're initializing a reference, T is a scalar as it is known to be
- // of integral or enumeration type.
- if (E->isRValue())
- if (cast<InitListExpr>(E)->getNumInits() == 1)
- return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
- return ICEDiag(IK_NotICE, E->getLocStart());
- }
- case Expr::SizeOfPackExprClass:
- case Expr::GNUNullExprClass:
- // GCC considers the GNU __null value to be an integral constant expression.
- return NoDiag();
- case Expr::SubstNonTypeTemplateParmExprClass:
- return
- CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
- case Expr::ParenExprClass:
- return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
- case Expr::GenericSelectionExprClass:
- return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
- case Expr::IntegerLiteralClass:
- case Expr::CharacterLiteralClass:
- case Expr::ObjCBoolLiteralExprClass:
- case Expr::CXXBoolLiteralExprClass:
- case Expr::CXXScalarValueInitExprClass:
- case Expr::TypeTraitExprClass:
- case Expr::ArrayTypeTraitExprClass:
- case Expr::ExpressionTraitExprClass:
- case Expr::CXXNoexceptExprClass:
- return NoDiag();
- case Expr::CallExprClass:
- case Expr::CXXOperatorCallExprClass: {
- // C99 6.6/3 allows function calls within unevaluated subexpressions of
- // constant expressions, but they can never be ICEs because an ICE cannot
- // contain an operand of (pointer to) function type.
- const CallExpr *CE = cast<CallExpr>(E);
- if (CE->getBuiltinCallee())
- return CheckEvalInICE(E, Ctx);
- return ICEDiag(IK_NotICE, E->getLocStart());
- }
- case Expr::DeclRefExprClass: {
- if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
- return NoDiag();
- const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
- if (Ctx.getLangOpts().CPlusPlus &&
- D && IsConstNonVolatile(D->getType())) {
- // Parameter variables are never constants. Without this check,
- // getAnyInitializer() can find a default argument, which leads
- // to chaos.
- if (isa<ParmVarDecl>(D))
- return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
- // C++ 7.1.5.1p2
- // A variable of non-volatile const-qualified integral or enumeration
- // type initialized by an ICE can be used in ICEs.
- if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
- if (!Dcl->getType()->isIntegralOrEnumerationType())
- return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
- const VarDecl *VD;
- // Look for a declaration of this variable that has an initializer, and
- // check whether it is an ICE.
- if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
- return NoDiag();
- else
- return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
- }
- }
- return ICEDiag(IK_NotICE, E->getLocStart());
- }
- case Expr::UnaryOperatorClass: {
- const UnaryOperator *Exp = cast<UnaryOperator>(E);
- switch (Exp->getOpcode()) {
- case UO_PostInc:
- case UO_PostDec:
- case UO_PreInc:
- case UO_PreDec:
- case UO_AddrOf:
- case UO_Deref:
- case UO_Coawait:
- // C99 6.6/3 allows increment and decrement within unevaluated
- // subexpressions of constant expressions, but they can never be ICEs
- // because an ICE cannot contain an lvalue operand.
- return ICEDiag(IK_NotICE, E->getLocStart());
- case UO_Extension:
- case UO_LNot:
- case UO_Plus:
- case UO_Minus:
- case UO_Not:
- case UO_Real:
- case UO_Imag:
- return CheckICE(Exp->getSubExpr(), Ctx);
- }
- // OffsetOf falls through here.
- }
- case Expr::OffsetOfExprClass: {
- // Note that per C99, offsetof must be an ICE. And AFAIK, using
- // EvaluateAsRValue matches the proposed gcc behavior for cases like
- // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect
- // compliance: we should warn earlier for offsetof expressions with
- // array subscripts that aren't ICEs, and if the array subscripts
- // are ICEs, the value of the offsetof must be an integer constant.
- return CheckEvalInICE(E, Ctx);
- }
- case Expr::UnaryExprOrTypeTraitExprClass: {
- const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
- if ((Exp->getKind() == UETT_SizeOf) &&
- Exp->getTypeOfArgument()->isVariableArrayType())
- return ICEDiag(IK_NotICE, E->getLocStart());
- return NoDiag();
- }
- case Expr::BinaryOperatorClass: {
- const BinaryOperator *Exp = cast<BinaryOperator>(E);
- switch (Exp->getOpcode()) {
- case BO_PtrMemD:
- case BO_PtrMemI:
- case BO_Assign:
- case BO_MulAssign:
- case BO_DivAssign:
- case BO_RemAssign:
- case BO_AddAssign:
- case BO_SubAssign:
- case BO_ShlAssign:
- case BO_ShrAssign:
- case BO_AndAssign:
- case BO_XorAssign:
- case BO_OrAssign:
- // C99 6.6/3 allows assignments within unevaluated subexpressions of
- // constant expressions, but they can never be ICEs because an ICE cannot
- // contain an lvalue operand.
- return ICEDiag(IK_NotICE, E->getLocStart());
- case BO_Mul:
- case BO_Div:
- case BO_Rem:
- case BO_Add:
- case BO_Sub:
- case BO_Shl:
- case BO_Shr:
- case BO_LT:
- case BO_GT:
- case BO_LE:
- case BO_GE:
- case BO_EQ:
- case BO_NE:
- case BO_And:
- case BO_Xor:
- case BO_Or:
- case BO_Comma: {
- ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
- ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
- if (Exp->getOpcode() == BO_Div ||
- Exp->getOpcode() == BO_Rem) {
- // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
- // we don't evaluate one.
- if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
- llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
- if (REval == 0)
- return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
- if (REval.isSigned() && REval.isAllOnesValue()) {
- llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
- if (LEval.isMinSignedValue())
- return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
- }
- }
- }
- if (Exp->getOpcode() == BO_Comma) {
- if (Ctx.getLangOpts().C99) {
- // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
- // if it isn't evaluated.
- if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
- return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
- } else {
- // In both C89 and C++, commas in ICEs are illegal.
- return ICEDiag(IK_NotICE, E->getLocStart());
- }
- }
- return Worst(LHSResult, RHSResult);
- }
- case BO_LAnd:
- case BO_LOr: {
- ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
- ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
- if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
- // Rare case where the RHS has a comma "side-effect"; we need
- // to actually check the condition to see whether the side
- // with the comma is evaluated.
- if ((Exp->getOpcode() == BO_LAnd) !=
- (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
- return RHSResult;
- return NoDiag();
- }
- return Worst(LHSResult, RHSResult);
- }
- }
- }
- case Expr::ImplicitCastExprClass:
- case Expr::CStyleCastExprClass:
- case Expr::CXXFunctionalCastExprClass:
- case Expr::CXXStaticCastExprClass:
- case Expr::CXXReinterpretCastExprClass:
- case Expr::CXXConstCastExprClass:
- case Expr::ObjCBridgedCastExprClass: {
- const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
- if (isa<ExplicitCastExpr>(E)) {
- if (const FloatingLiteral *FL
- = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
- unsigned DestWidth = Ctx.getIntWidth(E->getType());
- bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
- APSInt IgnoredVal(DestWidth, !DestSigned);
- bool Ignored;
- // If the value does not fit in the destination type, the behavior is
- // undefined, so we are not required to treat it as a constant
- // expression.
- if (FL->getValue().convertToInteger(IgnoredVal,
- llvm::APFloat::rmTowardZero,
- &Ignored) & APFloat::opInvalidOp)
- return ICEDiag(IK_NotICE, E->getLocStart());
- return NoDiag();
- }
- }
- switch (cast<CastExpr>(E)->getCastKind()) {
- case CK_LValueToRValue:
- case CK_AtomicToNonAtomic:
- case CK_NonAtomicToAtomic:
- case CK_NoOp:
- case CK_IntegralToBoolean:
- case CK_IntegralCast:
- return CheckICE(SubExpr, Ctx);
- default:
- return ICEDiag(IK_NotICE, E->getLocStart());
- }
- }
- case Expr::BinaryConditionalOperatorClass: {
- const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
- ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
- if (CommonResult.Kind == IK_NotICE) return CommonResult;
- ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
- if (FalseResult.Kind == IK_NotICE) return FalseResult;
- if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
- if (FalseResult.Kind == IK_ICEIfUnevaluated &&
- Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
- return FalseResult;
- }
- case Expr::ConditionalOperatorClass: {
- const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
- // If the condition (ignoring parens) is a __builtin_constant_p call,
- // then only the true side is actually considered in an integer constant
- // expression, and it is fully evaluated. This is an important GNU
- // extension. See GCC PR38377 for discussion.
- if (const CallExpr *CallCE
- = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
- if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
- return CheckEvalInICE(E, Ctx);
- ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
- if (CondResult.Kind == IK_NotICE)
- return CondResult;
- ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
- ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
- if (TrueResult.Kind == IK_NotICE)
- return TrueResult;
- if (FalseResult.Kind == IK_NotICE)
- return FalseResult;
- if (CondResult.Kind == IK_ICEIfUnevaluated)
- return CondResult;
- if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
- return NoDiag();
- // Rare case where the diagnostics depend on which side is evaluated
- // Note that if we get here, CondResult is 0, and at least one of
- // TrueResult and FalseResult is non-zero.
- if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
- return FalseResult;
- return TrueResult;
- }
- case Expr::CXXDefaultArgExprClass:
- return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
- case Expr::CXXDefaultInitExprClass:
- return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
- case Expr::ChooseExprClass: {
- return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
- }
- }
- llvm_unreachable("Invalid StmtClass!");
- }
- /// Evaluate an expression as a C++11 integral constant expression.
- static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
- const Expr *E,
- llvm::APSInt *Value,
- SourceLocation *Loc) {
- if (!E->getType()->isIntegralOrEnumerationType()) {
- if (Loc) *Loc = E->getExprLoc();
- return false;
- }
- APValue Result;
- if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
- return false;
- if (!Result.isInt()) {
- if (Loc) *Loc = E->getExprLoc();
- return false;
- }
- if (Value) *Value = Result.getInt();
- return true;
- }
- bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
- SourceLocation *Loc) const {
- if (Ctx.getLangOpts().CPlusPlus11)
- return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
- ICEDiag D = CheckICE(this, Ctx);
- if (D.Kind != IK_ICE) {
- if (Loc) *Loc = D.Loc;
- return false;
- }
- return true;
- }
- bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
- SourceLocation *Loc, bool isEvaluated) const {
- if (Ctx.getLangOpts().CPlusPlus11)
- return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
- if (!isIntegerConstantExpr(Ctx, Loc))
- return false;
- // The only possible side-effects here are due to UB discovered in the
- // evaluation (for instance, INT_MAX + 1). In such a case, we are still
- // required to treat the expression as an ICE, so we produce the folded
- // value.
- if (!EvaluateAsInt(Value, Ctx, SE_AllowSideEffects))
- llvm_unreachable("ICE cannot be evaluated!");
- return true;
- }
- bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
- return CheckICE(this, Ctx).Kind == IK_ICE;
- }
- bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
- SourceLocation *Loc) const {
- // We support this checking in C++98 mode in order to diagnose compatibility
- // issues.
- assert(Ctx.getLangOpts().CPlusPlus);
- // Build evaluation settings.
- Expr::EvalStatus Status;
- SmallVector<PartialDiagnosticAt, 8> Diags;
- Status.Diag = &Diags;
- EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
- APValue Scratch;
- bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
- if (!Diags.empty()) {
- IsConstExpr = false;
- if (Loc) *Loc = Diags[0].first;
- } else if (!IsConstExpr) {
- // FIXME: This shouldn't happen.
- if (Loc) *Loc = getExprLoc();
- }
- return IsConstExpr;
- }
- bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
- const FunctionDecl *Callee,
- ArrayRef<const Expr*> Args) const {
- Expr::EvalStatus Status;
- EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
- ArgVector ArgValues(Args.size());
- for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
- I != E; ++I) {
- if ((*I)->isValueDependent() ||
- !Evaluate(ArgValues[I - Args.begin()], Info, *I))
- // If evaluation fails, throw away the argument entirely.
- ArgValues[I - Args.begin()] = APValue();
- if (Info.EvalStatus.HasSideEffects)
- return false;
- }
- // Build fake call to Callee.
- CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr,
- ArgValues.data());
- return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
- }
- bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
- SmallVectorImpl<
- PartialDiagnosticAt> &Diags) {
- // FIXME: It would be useful to check constexpr function templates, but at the
- // moment the constant expression evaluator cannot cope with the non-rigorous
- // ASTs which we build for dependent expressions.
- if (FD->isDependentContext())
- return true;
- Expr::EvalStatus Status;
- Status.Diag = &Diags;
- EvalInfo Info(FD->getASTContext(), Status,
- EvalInfo::EM_PotentialConstantExpression);
- const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
- const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
- // Fabricate an arbitrary expression on the stack and pretend that it
- // is a temporary being used as the 'this' pointer.
- LValue This;
- ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
- This.set(&VIE, Info.CurrentCall->Index);
- ArrayRef<const Expr*> Args;
- APValue Scratch;
- if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
- // Evaluate the call as a constant initializer, to allow the construction
- // of objects of non-literal types.
- Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
- HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch);
- } else {
- SourceLocation Loc = FD->getLocation();
- HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
- Args, FD->getBody(), Info, Scratch, nullptr);
- }
- return Diags.empty();
- }
- bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
- const FunctionDecl *FD,
- SmallVectorImpl<
- PartialDiagnosticAt> &Diags) {
- Expr::EvalStatus Status;
- Status.Diag = &Diags;
- EvalInfo Info(FD->getASTContext(), Status,
- EvalInfo::EM_PotentialConstantExpressionUnevaluated);
- // Fabricate a call stack frame to give the arguments a plausible cover story.
- ArrayRef<const Expr*> Args;
- ArgVector ArgValues(0);
- bool Success = EvaluateArgs(Args, ArgValues, Info);
- (void)Success;
- assert(Success &&
- "Failed to set up arguments for potential constant evaluation");
- CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
- APValue ResultScratch;
- Evaluate(ResultScratch, Info, E);
- return Diags.empty();
- }
- bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
- unsigned Type) const {
- if (!getType()->isPointerType())
- return false;
- Expr::EvalStatus Status;
- EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
- return ::tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
- }
|