1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143 |
- //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // These classes wrap the information about a call or function
- // definition used to handle ABI compliancy.
- //
- //===----------------------------------------------------------------------===//
- #include "CGCall.h"
- #include "CGCXXABI.h"
- #include "ABIInfo.h"
- #include "CodeGenFunction.h"
- #include "CodeGenModule.h"
- #include "TargetInfo.h"
- #include "clang/Basic/TargetInfo.h"
- #include "clang/AST/Decl.h"
- #include "clang/AST/DeclCXX.h"
- #include "clang/AST/DeclObjC.h"
- #include "clang/Frontend/CodeGenOptions.h"
- #include "llvm/Attributes.h"
- #include "llvm/Support/CallSite.h"
- #include "llvm/Target/TargetData.h"
- #include "llvm/InlineAsm.h"
- #include "llvm/Transforms/Utils/Local.h"
- using namespace clang;
- using namespace CodeGen;
- /***/
- static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
- switch (CC) {
- default: return llvm::CallingConv::C;
- case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
- case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
- case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
- case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
- case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
- // TODO: add support for CC_X86Pascal to llvm
- }
- }
- /// Derives the 'this' type for codegen purposes, i.e. ignoring method
- /// qualification.
- /// FIXME: address space qualification?
- static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
- QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
- return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
- }
- /// Returns the canonical formal type of the given C++ method.
- static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
- return MD->getType()->getCanonicalTypeUnqualified()
- .getAs<FunctionProtoType>();
- }
- /// Returns the "extra-canonicalized" return type, which discards
- /// qualifiers on the return type. Codegen doesn't care about them,
- /// and it makes ABI code a little easier to be able to assume that
- /// all parameter and return types are top-level unqualified.
- static CanQualType GetReturnType(QualType RetTy) {
- return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
- }
- /// Arrange the argument and result information for a value of the
- /// given unprototyped function type.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
- // When translating an unprototyped function type, always use a
- // variadic type.
- return arrangeFunctionType(FTNP->getResultType().getUnqualifiedType(),
- ArrayRef<CanQualType>(),
- FTNP->getExtInfo(),
- RequiredArgs(0));
- }
- /// Arrange the argument and result information for a value of the
- /// given function type, on top of any implicit parameters already
- /// stored.
- static const CGFunctionInfo &arrangeFunctionType(CodeGenTypes &CGT,
- SmallVectorImpl<CanQualType> &argTypes,
- CanQual<FunctionProtoType> FTP) {
- RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
- // FIXME: Kill copy.
- for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
- argTypes.push_back(FTP->getArgType(i));
- CanQualType resultType = FTP->getResultType().getUnqualifiedType();
- return CGT.arrangeFunctionType(resultType, argTypes,
- FTP->getExtInfo(), required);
- }
- /// Arrange the argument and result information for a value of the
- /// given function type.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFunctionType(CanQual<FunctionProtoType> FTP) {
- SmallVector<CanQualType, 16> argTypes;
- return ::arrangeFunctionType(*this, argTypes, FTP);
- }
- static CallingConv getCallingConventionForDecl(const Decl *D) {
- // Set the appropriate calling convention for the Function.
- if (D->hasAttr<StdCallAttr>())
- return CC_X86StdCall;
- if (D->hasAttr<FastCallAttr>())
- return CC_X86FastCall;
- if (D->hasAttr<ThisCallAttr>())
- return CC_X86ThisCall;
- if (D->hasAttr<PascalAttr>())
- return CC_X86Pascal;
- if (PcsAttr *PCS = D->getAttr<PcsAttr>())
- return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
- return CC_C;
- }
- /// Arrange the argument and result information for a call to an
- /// unknown C++ non-static member function of the given abstract type.
- /// The member function must be an ordinary function, i.e. not a
- /// constructor or destructor.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
- const FunctionProtoType *FTP) {
- SmallVector<CanQualType, 16> argTypes;
- // Add the 'this' pointer.
- argTypes.push_back(GetThisType(Context, RD));
- return ::arrangeFunctionType(*this, argTypes,
- FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
- }
- /// Arrange the argument and result information for a declaration or
- /// definition of the given C++ non-static member function. The
- /// member function must be an ordinary function, i.e. not a
- /// constructor or destructor.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
- assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
- assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
- CanQual<FunctionProtoType> prototype = GetFormalType(MD);
- if (MD->isInstance()) {
- // The abstract case is perfectly fine.
- return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
- }
- return arrangeFunctionType(prototype);
- }
- /// Arrange the argument and result information for a declaration
- /// or definition to the given constructor variant.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
- CXXCtorType ctorKind) {
- SmallVector<CanQualType, 16> argTypes;
- argTypes.push_back(GetThisType(Context, D->getParent()));
- CanQualType resultType = Context.VoidTy;
- TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
- CanQual<FunctionProtoType> FTP = GetFormalType(D);
- RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
- // Add the formal parameters.
- for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
- argTypes.push_back(FTP->getArgType(i));
- return arrangeFunctionType(resultType, argTypes, FTP->getExtInfo(), required);
- }
- /// Arrange the argument and result information for a declaration,
- /// definition, or call to the given destructor variant. It so
- /// happens that all three cases produce the same information.
- const CGFunctionInfo &
- CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
- CXXDtorType dtorKind) {
- SmallVector<CanQualType, 2> argTypes;
- argTypes.push_back(GetThisType(Context, D->getParent()));
- CanQualType resultType = Context.VoidTy;
- TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
- CanQual<FunctionProtoType> FTP = GetFormalType(D);
- assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
- return arrangeFunctionType(resultType, argTypes, FTP->getExtInfo(),
- RequiredArgs::All);
- }
- /// Arrange the argument and result information for the declaration or
- /// definition of the given function.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
- if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
- if (MD->isInstance())
- return arrangeCXXMethodDeclaration(MD);
- CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
- assert(isa<FunctionType>(FTy));
- // When declaring a function without a prototype, always use a
- // non-variadic type.
- if (isa<FunctionNoProtoType>(FTy)) {
- CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
- return arrangeFunctionType(noProto->getResultType(),
- ArrayRef<CanQualType>(),
- noProto->getExtInfo(),
- RequiredArgs::All);
- }
- assert(isa<FunctionProtoType>(FTy));
- return arrangeFunctionType(FTy.getAs<FunctionProtoType>());
- }
- /// Arrange the argument and result information for the declaration or
- /// definition of an Objective-C method.
- const CGFunctionInfo &
- CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
- // It happens that this is the same as a call with no optional
- // arguments, except also using the formal 'self' type.
- return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
- }
- /// Arrange the argument and result information for the function type
- /// through which to perform a send to the given Objective-C method,
- /// using the given receiver type. The receiver type is not always
- /// the 'self' type of the method or even an Objective-C pointer type.
- /// This is *not* the right method for actually performing such a
- /// message send, due to the possibility of optional arguments.
- const CGFunctionInfo &
- CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
- QualType receiverType) {
- SmallVector<CanQualType, 16> argTys;
- argTys.push_back(Context.getCanonicalParamType(receiverType));
- argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
- // FIXME: Kill copy?
- for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
- e = MD->param_end(); i != e; ++i) {
- argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
- }
- FunctionType::ExtInfo einfo;
- einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
- if (getContext().getLangOpts().ObjCAutoRefCount &&
- MD->hasAttr<NSReturnsRetainedAttr>())
- einfo = einfo.withProducesResult(true);
- RequiredArgs required =
- (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
- return arrangeFunctionType(GetReturnType(MD->getResultType()), argTys,
- einfo, required);
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
- // FIXME: Do we need to handle ObjCMethodDecl?
- const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
- if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
- return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
- if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
- return arrangeCXXDestructor(DD, GD.getDtorType());
- return arrangeFunctionDeclaration(FD);
- }
- /// Figure out the rules for calling a function with the given formal
- /// type using the given arguments. The arguments are necessary
- /// because the function might be unprototyped, in which case it's
- /// target-dependent in crazy ways.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFunctionCall(const CallArgList &args,
- const FunctionType *fnType) {
- RequiredArgs required = RequiredArgs::All;
- if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
- if (proto->isVariadic())
- required = RequiredArgs(proto->getNumArgs());
- } else if (CGM.getTargetCodeGenInfo()
- .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
- required = RequiredArgs(0);
- }
- return arrangeFunctionCall(fnType->getResultType(), args,
- fnType->getExtInfo(), required);
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeFunctionCall(QualType resultType,
- const CallArgList &args,
- const FunctionType::ExtInfo &info,
- RequiredArgs required) {
- // FIXME: Kill copy.
- SmallVector<CanQualType, 16> argTypes;
- for (CallArgList::const_iterator i = args.begin(), e = args.end();
- i != e; ++i)
- argTypes.push_back(Context.getCanonicalParamType(i->Ty));
- return arrangeFunctionType(GetReturnType(resultType), argTypes, info,
- required);
- }
- const CGFunctionInfo &
- CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
- const FunctionArgList &args,
- const FunctionType::ExtInfo &info,
- bool isVariadic) {
- // FIXME: Kill copy.
- SmallVector<CanQualType, 16> argTypes;
- for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
- i != e; ++i)
- argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
- RequiredArgs required =
- (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
- return arrangeFunctionType(GetReturnType(resultType), argTypes, info,
- required);
- }
- const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
- return arrangeFunctionType(getContext().VoidTy, ArrayRef<CanQualType>(),
- FunctionType::ExtInfo(), RequiredArgs::All);
- }
- /// Arrange the argument and result information for an abstract value
- /// of a given function type. This is the method which all of the
- /// above functions ultimately defer to.
- const CGFunctionInfo &
- CodeGenTypes::arrangeFunctionType(CanQualType resultType,
- ArrayRef<CanQualType> argTypes,
- const FunctionType::ExtInfo &info,
- RequiredArgs required) {
- #ifndef NDEBUG
- for (ArrayRef<CanQualType>::const_iterator
- I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
- assert(I->isCanonicalAsParam());
- #endif
- unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
- // Lookup or create unique function info.
- llvm::FoldingSetNodeID ID;
- CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
- void *insertPos = 0;
- CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
- if (FI)
- return *FI;
- // Construct the function info. We co-allocate the ArgInfos.
- FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
- FunctionInfos.InsertNode(FI, insertPos);
- bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
- assert(inserted && "Recursively being processed?");
-
- // Compute ABI information.
- getABIInfo().computeInfo(*FI);
- // Loop over all of the computed argument and return value info. If any of
- // them are direct or extend without a specified coerce type, specify the
- // default now.
- ABIArgInfo &retInfo = FI->getReturnInfo();
- if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
- retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
- for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
- I != E; ++I)
- if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
- I->info.setCoerceToType(ConvertType(I->type));
- bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
- assert(erased && "Not in set?");
-
- return *FI;
- }
- CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
- const FunctionType::ExtInfo &info,
- CanQualType resultType,
- ArrayRef<CanQualType> argTypes,
- RequiredArgs required) {
- void *buffer = operator new(sizeof(CGFunctionInfo) +
- sizeof(ArgInfo) * (argTypes.size() + 1));
- CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
- FI->CallingConvention = llvmCC;
- FI->EffectiveCallingConvention = llvmCC;
- FI->ASTCallingConvention = info.getCC();
- FI->NoReturn = info.getNoReturn();
- FI->ReturnsRetained = info.getProducesResult();
- FI->Required = required;
- FI->HasRegParm = info.getHasRegParm();
- FI->RegParm = info.getRegParm();
- FI->NumArgs = argTypes.size();
- FI->getArgsBuffer()[0].type = resultType;
- for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
- FI->getArgsBuffer()[i + 1].type = argTypes[i];
- return FI;
- }
- /***/
- void CodeGenTypes::GetExpandedTypes(QualType type,
- SmallVectorImpl<llvm::Type*> &expandedTypes) {
- if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
- uint64_t NumElts = AT->getSize().getZExtValue();
- for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
- GetExpandedTypes(AT->getElementType(), expandedTypes);
- } else if (const RecordType *RT = type->getAsStructureType()) {
- const RecordDecl *RD = RT->getDecl();
- assert(!RD->hasFlexibleArrayMember() &&
- "Cannot expand structure with flexible array.");
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- const FieldDecl *FD = *i;
- assert(!FD->isBitField() &&
- "Cannot expand structure with bit-field members.");
- GetExpandedTypes(FD->getType(), expandedTypes);
- }
- } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
- llvm::Type *EltTy = ConvertType(CT->getElementType());
- expandedTypes.push_back(EltTy);
- expandedTypes.push_back(EltTy);
- } else
- expandedTypes.push_back(ConvertType(type));
- }
- llvm::Function::arg_iterator
- CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
- llvm::Function::arg_iterator AI) {
- assert(LV.isSimple() &&
- "Unexpected non-simple lvalue during struct expansion.");
- llvm::Value *Addr = LV.getAddress();
- if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
- unsigned NumElts = AT->getSize().getZExtValue();
- QualType EltTy = AT->getElementType();
- for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
- llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
- LValue LV = MakeAddrLValue(EltAddr, EltTy);
- AI = ExpandTypeFromArgs(EltTy, LV, AI);
- }
- } else if (const RecordType *RT = Ty->getAsStructureType()) {
- RecordDecl *RD = RT->getDecl();
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- FieldDecl *FD = *i;
- QualType FT = FD->getType();
- // FIXME: What are the right qualifiers here?
- LValue LV = EmitLValueForField(Addr, FD, 0);
- AI = ExpandTypeFromArgs(FT, LV, AI);
- }
- } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
- QualType EltTy = CT->getElementType();
- llvm::Value *RealAddr = Builder.CreateStructGEP(Addr, 0, "real");
- EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
- llvm::Value *ImagAddr = Builder.CreateStructGEP(Addr, 1, "imag");
- EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
- } else {
- EmitStoreThroughLValue(RValue::get(AI), LV);
- ++AI;
- }
- return AI;
- }
- /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
- /// accessing some number of bytes out of it, try to gep into the struct to get
- /// at its inner goodness. Dive as deep as possible without entering an element
- /// with an in-memory size smaller than DstSize.
- static llvm::Value *
- EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
- llvm::StructType *SrcSTy,
- uint64_t DstSize, CodeGenFunction &CGF) {
- // We can't dive into a zero-element struct.
- if (SrcSTy->getNumElements() == 0) return SrcPtr;
- llvm::Type *FirstElt = SrcSTy->getElementType(0);
- // If the first elt is at least as large as what we're looking for, or if the
- // first element is the same size as the whole struct, we can enter it.
- uint64_t FirstEltSize =
- CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
- if (FirstEltSize < DstSize &&
- FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
- return SrcPtr;
- // GEP into the first element.
- SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
- // If the first element is a struct, recurse.
- llvm::Type *SrcTy =
- cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
- if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
- return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
- return SrcPtr;
- }
- /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
- /// are either integers or pointers. This does a truncation of the value if it
- /// is too large or a zero extension if it is too small.
- static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
- llvm::Type *Ty,
- CodeGenFunction &CGF) {
- if (Val->getType() == Ty)
- return Val;
- if (isa<llvm::PointerType>(Val->getType())) {
- // If this is Pointer->Pointer avoid conversion to and from int.
- if (isa<llvm::PointerType>(Ty))
- return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
- // Convert the pointer to an integer so we can play with its width.
- Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
- }
- llvm::Type *DestIntTy = Ty;
- if (isa<llvm::PointerType>(DestIntTy))
- DestIntTy = CGF.IntPtrTy;
- if (Val->getType() != DestIntTy)
- Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
- if (isa<llvm::PointerType>(Ty))
- Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
- return Val;
- }
- /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
- /// a pointer to an object of type \arg Ty.
- ///
- /// This safely handles the case when the src type is smaller than the
- /// destination type; in this situation the values of bits which not
- /// present in the src are undefined.
- static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
- llvm::Type *Ty,
- CodeGenFunction &CGF) {
- llvm::Type *SrcTy =
- cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
- // If SrcTy and Ty are the same, just do a load.
- if (SrcTy == Ty)
- return CGF.Builder.CreateLoad(SrcPtr);
- uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
- if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
- SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
- SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
- }
- uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
- // If the source and destination are integer or pointer types, just do an
- // extension or truncation to the desired type.
- if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
- (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
- llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
- return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
- }
- // If load is legal, just bitcast the src pointer.
- if (SrcSize >= DstSize) {
- // Generally SrcSize is never greater than DstSize, since this means we are
- // losing bits. However, this can happen in cases where the structure has
- // additional padding, for example due to a user specified alignment.
- //
- // FIXME: Assert that we aren't truncating non-padding bits when have access
- // to that information.
- llvm::Value *Casted =
- CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
- llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
- // FIXME: Use better alignment / avoid requiring aligned load.
- Load->setAlignment(1);
- return Load;
- }
- // Otherwise do coercion through memory. This is stupid, but
- // simple.
- llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
- llvm::Value *Casted =
- CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
- llvm::StoreInst *Store =
- CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
- // FIXME: Use better alignment / avoid requiring aligned store.
- Store->setAlignment(1);
- return CGF.Builder.CreateLoad(Tmp);
- }
- // Function to store a first-class aggregate into memory. We prefer to
- // store the elements rather than the aggregate to be more friendly to
- // fast-isel.
- // FIXME: Do we need to recurse here?
- static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
- llvm::Value *DestPtr, bool DestIsVolatile,
- bool LowAlignment) {
- // Prefer scalar stores to first-class aggregate stores.
- if (llvm::StructType *STy =
- dyn_cast<llvm::StructType>(Val->getType())) {
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
- llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
- llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
- DestIsVolatile);
- if (LowAlignment)
- SI->setAlignment(1);
- }
- } else {
- CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
- }
- }
- /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
- /// where the source and destination may have different types.
- ///
- /// This safely handles the case when the src type is larger than the
- /// destination type; the upper bits of the src will be lost.
- static void CreateCoercedStore(llvm::Value *Src,
- llvm::Value *DstPtr,
- bool DstIsVolatile,
- CodeGenFunction &CGF) {
- llvm::Type *SrcTy = Src->getType();
- llvm::Type *DstTy =
- cast<llvm::PointerType>(DstPtr->getType())->getElementType();
- if (SrcTy == DstTy) {
- CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
- return;
- }
- uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
- if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
- DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
- DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
- }
- // If the source and destination are integer or pointer types, just do an
- // extension or truncation to the desired type.
- if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
- (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
- Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
- CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
- return;
- }
- uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
- // If store is legal, just bitcast the src pointer.
- if (SrcSize <= DstSize) {
- llvm::Value *Casted =
- CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
- // FIXME: Use better alignment / avoid requiring aligned store.
- BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
- } else {
- // Otherwise do coercion through memory. This is stupid, but
- // simple.
- // Generally SrcSize is never greater than DstSize, since this means we are
- // losing bits. However, this can happen in cases where the structure has
- // additional padding, for example due to a user specified alignment.
- //
- // FIXME: Assert that we aren't truncating non-padding bits when have access
- // to that information.
- llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
- CGF.Builder.CreateStore(Src, Tmp);
- llvm::Value *Casted =
- CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
- llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
- // FIXME: Use better alignment / avoid requiring aligned load.
- Load->setAlignment(1);
- CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
- }
- }
- /***/
- bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
- return FI.getReturnInfo().isIndirect();
- }
- bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
- if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
- switch (BT->getKind()) {
- default:
- return false;
- case BuiltinType::Float:
- return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
- case BuiltinType::Double:
- return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
- case BuiltinType::LongDouble:
- return getContext().getTargetInfo().useObjCFPRetForRealType(
- TargetInfo::LongDouble);
- }
- }
- return false;
- }
- bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
- if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
- if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
- if (BT->getKind() == BuiltinType::LongDouble)
- return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble();
- }
- }
- return false;
- }
- llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
- const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
- return GetFunctionType(FI);
- }
- llvm::FunctionType *
- CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
-
- bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
- assert(Inserted && "Recursively being processed?");
-
- SmallVector<llvm::Type*, 8> argTypes;
- llvm::Type *resultType = 0;
- const ABIArgInfo &retAI = FI.getReturnInfo();
- switch (retAI.getKind()) {
- case ABIArgInfo::Expand:
- llvm_unreachable("Invalid ABI kind for return argument");
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct:
- resultType = retAI.getCoerceToType();
- break;
- case ABIArgInfo::Indirect: {
- assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
- resultType = llvm::Type::getVoidTy(getLLVMContext());
- QualType ret = FI.getReturnType();
- llvm::Type *ty = ConvertType(ret);
- unsigned addressSpace = Context.getTargetAddressSpace(ret);
- argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
- break;
- }
- case ABIArgInfo::Ignore:
- resultType = llvm::Type::getVoidTy(getLLVMContext());
- break;
- }
- for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
- ie = FI.arg_end(); it != ie; ++it) {
- const ABIArgInfo &argAI = it->info;
- switch (argAI.getKind()) {
- case ABIArgInfo::Ignore:
- break;
- case ABIArgInfo::Indirect: {
- // indirect arguments are always on the stack, which is addr space #0.
- llvm::Type *LTy = ConvertTypeForMem(it->type);
- argTypes.push_back(LTy->getPointerTo());
- break;
- }
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- // Insert a padding type to ensure proper alignment.
- if (llvm::Type *PaddingType = argAI.getPaddingType())
- argTypes.push_back(PaddingType);
- // If the coerce-to type is a first class aggregate, flatten it. Either
- // way is semantically identical, but fast-isel and the optimizer
- // generally likes scalar values better than FCAs.
- llvm::Type *argType = argAI.getCoerceToType();
- if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
- for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
- argTypes.push_back(st->getElementType(i));
- } else {
- argTypes.push_back(argType);
- }
- break;
- }
- case ABIArgInfo::Expand:
- GetExpandedTypes(it->type, argTypes);
- break;
- }
- }
- bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
- assert(Erased && "Not in set?");
-
- return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
- }
- llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
- const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
- const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
- if (!isFuncTypeConvertible(FPT))
- return llvm::StructType::get(getLLVMContext());
-
- const CGFunctionInfo *Info;
- if (isa<CXXDestructorDecl>(MD))
- Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
- else
- Info = &arrangeCXXMethodDeclaration(MD);
- return GetFunctionType(*Info);
- }
- void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
- const Decl *TargetDecl,
- AttributeListType &PAL,
- unsigned &CallingConv) {
- llvm::Attributes FuncAttrs;
- llvm::Attributes RetAttrs;
- CallingConv = FI.getEffectiveCallingConvention();
- if (FI.isNoReturn())
- FuncAttrs |= llvm::Attribute::NoReturn;
- // FIXME: handle sseregparm someday...
- if (TargetDecl) {
- if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
- FuncAttrs |= llvm::Attribute::ReturnsTwice;
- if (TargetDecl->hasAttr<NoThrowAttr>())
- FuncAttrs |= llvm::Attribute::NoUnwind;
- else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
- const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
- if (FPT && FPT->isNothrow(getContext()))
- FuncAttrs |= llvm::Attribute::NoUnwind;
- }
- if (TargetDecl->hasAttr<NoReturnAttr>())
- FuncAttrs |= llvm::Attribute::NoReturn;
- if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
- FuncAttrs |= llvm::Attribute::ReturnsTwice;
- // 'const' and 'pure' attribute functions are also nounwind.
- if (TargetDecl->hasAttr<ConstAttr>()) {
- FuncAttrs |= llvm::Attribute::ReadNone;
- FuncAttrs |= llvm::Attribute::NoUnwind;
- } else if (TargetDecl->hasAttr<PureAttr>()) {
- FuncAttrs |= llvm::Attribute::ReadOnly;
- FuncAttrs |= llvm::Attribute::NoUnwind;
- }
- if (TargetDecl->hasAttr<MallocAttr>())
- RetAttrs |= llvm::Attribute::NoAlias;
- }
- if (CodeGenOpts.OptimizeSize)
- FuncAttrs |= llvm::Attribute::OptimizeForSize;
- if (CodeGenOpts.DisableRedZone)
- FuncAttrs |= llvm::Attribute::NoRedZone;
- if (CodeGenOpts.NoImplicitFloat)
- FuncAttrs |= llvm::Attribute::NoImplicitFloat;
- QualType RetTy = FI.getReturnType();
- unsigned Index = 1;
- const ABIArgInfo &RetAI = FI.getReturnInfo();
- switch (RetAI.getKind()) {
- case ABIArgInfo::Extend:
- if (RetTy->hasSignedIntegerRepresentation())
- RetAttrs |= llvm::Attribute::SExt;
- else if (RetTy->hasUnsignedIntegerRepresentation())
- RetAttrs |= llvm::Attribute::ZExt;
- break;
- case ABIArgInfo::Direct:
- case ABIArgInfo::Ignore:
- break;
- case ABIArgInfo::Indirect:
- PAL.push_back(llvm::AttributeWithIndex::get(Index,
- llvm::Attribute::StructRet));
- ++Index;
- // sret disables readnone and readonly
- FuncAttrs &= ~(llvm::Attribute::ReadOnly |
- llvm::Attribute::ReadNone);
- break;
- case ABIArgInfo::Expand:
- llvm_unreachable("Invalid ABI kind for return argument");
- }
- if (RetAttrs)
- PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
- // FIXME: RegParm should be reduced in case of global register variable.
- signed RegParm;
- if (FI.getHasRegParm())
- RegParm = FI.getRegParm();
- else
- RegParm = CodeGenOpts.NumRegisterParameters;
- unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0);
- for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
- ie = FI.arg_end(); it != ie; ++it) {
- QualType ParamType = it->type;
- const ABIArgInfo &AI = it->info;
- llvm::Attributes Attrs;
- // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
- // have the corresponding parameter variable. It doesn't make
- // sense to do it here because parameters are so messed up.
- switch (AI.getKind()) {
- case ABIArgInfo::Extend:
- if (ParamType->isSignedIntegerOrEnumerationType())
- Attrs |= llvm::Attribute::SExt;
- else if (ParamType->isUnsignedIntegerOrEnumerationType())
- Attrs |= llvm::Attribute::ZExt;
- // FALL THROUGH
- case ABIArgInfo::Direct:
- if (RegParm > 0 &&
- (ParamType->isIntegerType() || ParamType->isPointerType() ||
- ParamType->isReferenceType())) {
- RegParm -=
- (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
- if (RegParm >= 0)
- Attrs |= llvm::Attribute::InReg;
- }
- // FIXME: handle sseregparm someday...
- // Increment Index if there is padding.
- Index += (AI.getPaddingType() != 0);
- if (llvm::StructType *STy =
- dyn_cast<llvm::StructType>(AI.getCoerceToType()))
- Index += STy->getNumElements()-1; // 1 will be added below.
- break;
- case ABIArgInfo::Indirect:
- if (AI.getIndirectByVal())
- Attrs |= llvm::Attribute::ByVal;
- Attrs |=
- llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
- // byval disables readnone and readonly.
- FuncAttrs &= ~(llvm::Attribute::ReadOnly |
- llvm::Attribute::ReadNone);
- break;
- case ABIArgInfo::Ignore:
- // Skip increment, no matching LLVM parameter.
- continue;
- case ABIArgInfo::Expand: {
- SmallVector<llvm::Type*, 8> types;
- // FIXME: This is rather inefficient. Do we ever actually need to do
- // anything here? The result should be just reconstructed on the other
- // side, so extension should be a non-issue.
- getTypes().GetExpandedTypes(ParamType, types);
- Index += types.size();
- continue;
- }
- }
- if (Attrs)
- PAL.push_back(llvm::AttributeWithIndex::get(Index, Attrs));
- ++Index;
- }
- if (FuncAttrs)
- PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
- }
- /// An argument came in as a promoted argument; demote it back to its
- /// declared type.
- static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
- const VarDecl *var,
- llvm::Value *value) {
- llvm::Type *varType = CGF.ConvertType(var->getType());
- // This can happen with promotions that actually don't change the
- // underlying type, like the enum promotions.
- if (value->getType() == varType) return value;
- assert((varType->isIntegerTy() || varType->isFloatingPointTy())
- && "unexpected promotion type");
- if (isa<llvm::IntegerType>(varType))
- return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
- return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
- }
- void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
- llvm::Function *Fn,
- const FunctionArgList &Args) {
- // If this is an implicit-return-zero function, go ahead and
- // initialize the return value. TODO: it might be nice to have
- // a more general mechanism for this that didn't require synthesized
- // return statements.
- if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
- if (FD->hasImplicitReturnZero()) {
- QualType RetTy = FD->getResultType().getUnqualifiedType();
- llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
- llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
- Builder.CreateStore(Zero, ReturnValue);
- }
- }
- // FIXME: We no longer need the types from FunctionArgList; lift up and
- // simplify.
- // Emit allocs for param decls. Give the LLVM Argument nodes names.
- llvm::Function::arg_iterator AI = Fn->arg_begin();
- // Name the struct return argument.
- if (CGM.ReturnTypeUsesSRet(FI)) {
- AI->setName("agg.result");
- AI->addAttr(llvm::Attribute::NoAlias);
- ++AI;
- }
- assert(FI.arg_size() == Args.size() &&
- "Mismatch between function signature & arguments.");
- unsigned ArgNo = 1;
- CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
- for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
- i != e; ++i, ++info_it, ++ArgNo) {
- const VarDecl *Arg = *i;
- QualType Ty = info_it->type;
- const ABIArgInfo &ArgI = info_it->info;
- bool isPromoted =
- isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
- switch (ArgI.getKind()) {
- case ABIArgInfo::Indirect: {
- llvm::Value *V = AI;
- if (hasAggregateLLVMType(Ty)) {
- // Aggregates and complex variables are accessed by reference. All we
- // need to do is realign the value, if requested
- if (ArgI.getIndirectRealign()) {
- llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
- // Copy from the incoming argument pointer to the temporary with the
- // appropriate alignment.
- //
- // FIXME: We should have a common utility for generating an aggregate
- // copy.
- llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
- CharUnits Size = getContext().getTypeSizeInChars(Ty);
- llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
- llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
- Builder.CreateMemCpy(Dst,
- Src,
- llvm::ConstantInt::get(IntPtrTy,
- Size.getQuantity()),
- ArgI.getIndirectAlign(),
- false);
- V = AlignedTemp;
- }
- } else {
- // Load scalar value from indirect argument.
- CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
- V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
- if (isPromoted)
- V = emitArgumentDemotion(*this, Arg, V);
- }
- EmitParmDecl(*Arg, V, ArgNo);
- break;
- }
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- // Skip the dummy padding argument.
- if (ArgI.getPaddingType())
- ++AI;
- // If we have the trivial case, handle it with no muss and fuss.
- if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
- ArgI.getCoerceToType() == ConvertType(Ty) &&
- ArgI.getDirectOffset() == 0) {
- assert(AI != Fn->arg_end() && "Argument mismatch!");
- llvm::Value *V = AI;
- if (Arg->getType().isRestrictQualified())
- AI->addAttr(llvm::Attribute::NoAlias);
- // Ensure the argument is the correct type.
- if (V->getType() != ArgI.getCoerceToType())
- V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
- if (isPromoted)
- V = emitArgumentDemotion(*this, Arg, V);
-
- EmitParmDecl(*Arg, V, ArgNo);
- break;
- }
- llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
- // The alignment we need to use is the max of the requested alignment for
- // the argument plus the alignment required by our access code below.
- unsigned AlignmentToUse =
- CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
- AlignmentToUse = std::max(AlignmentToUse,
- (unsigned)getContext().getDeclAlign(Arg).getQuantity());
- Alloca->setAlignment(AlignmentToUse);
- llvm::Value *V = Alloca;
- llvm::Value *Ptr = V; // Pointer to store into.
- // If the value is offset in memory, apply the offset now.
- if (unsigned Offs = ArgI.getDirectOffset()) {
- Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
- Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
- Ptr = Builder.CreateBitCast(Ptr,
- llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
- }
- // If the coerce-to type is a first class aggregate, we flatten it and
- // pass the elements. Either way is semantically identical, but fast-isel
- // and the optimizer generally likes scalar values better than FCAs.
- llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
- if (STy && STy->getNumElements() > 1) {
- uint64_t SrcSize = CGM.getTargetData().getTypeAllocSize(STy);
- llvm::Type *DstTy =
- cast<llvm::PointerType>(Ptr->getType())->getElementType();
- uint64_t DstSize = CGM.getTargetData().getTypeAllocSize(DstTy);
- if (SrcSize <= DstSize) {
- Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- assert(AI != Fn->arg_end() && "Argument mismatch!");
- AI->setName(Arg->getName() + ".coerce" + Twine(i));
- llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
- Builder.CreateStore(AI++, EltPtr);
- }
- } else {
- llvm::AllocaInst *TempAlloca =
- CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
- TempAlloca->setAlignment(AlignmentToUse);
- llvm::Value *TempV = TempAlloca;
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- assert(AI != Fn->arg_end() && "Argument mismatch!");
- AI->setName(Arg->getName() + ".coerce" + Twine(i));
- llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
- Builder.CreateStore(AI++, EltPtr);
- }
- Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
- }
- } else {
- // Simple case, just do a coerced store of the argument into the alloca.
- assert(AI != Fn->arg_end() && "Argument mismatch!");
- AI->setName(Arg->getName() + ".coerce");
- CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
- }
- // Match to what EmitParmDecl is expecting for this type.
- if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
- V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
- if (isPromoted)
- V = emitArgumentDemotion(*this, Arg, V);
- }
- EmitParmDecl(*Arg, V, ArgNo);
- continue; // Skip ++AI increment, already done.
- }
- case ABIArgInfo::Expand: {
- // If this structure was expanded into multiple arguments then
- // we need to create a temporary and reconstruct it from the
- // arguments.
- llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
- CharUnits Align = getContext().getDeclAlign(Arg);
- Alloca->setAlignment(Align.getQuantity());
- LValue LV = MakeAddrLValue(Alloca, Ty, Align);
- llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
- EmitParmDecl(*Arg, Alloca, ArgNo);
- // Name the arguments used in expansion and increment AI.
- unsigned Index = 0;
- for (; AI != End; ++AI, ++Index)
- AI->setName(Arg->getName() + "." + Twine(Index));
- continue;
- }
- case ABIArgInfo::Ignore:
- // Initialize the local variable appropriately.
- if (hasAggregateLLVMType(Ty))
- EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
- else
- EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
- ArgNo);
- // Skip increment, no matching LLVM parameter.
- continue;
- }
- ++AI;
- }
- assert(AI == Fn->arg_end() && "Argument mismatch!");
- }
- static void eraseUnusedBitCasts(llvm::Instruction *insn) {
- while (insn->use_empty()) {
- llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
- if (!bitcast) return;
- // This is "safe" because we would have used a ConstantExpr otherwise.
- insn = cast<llvm::Instruction>(bitcast->getOperand(0));
- bitcast->eraseFromParent();
- }
- }
- /// Try to emit a fused autorelease of a return result.
- static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
- llvm::Value *result) {
- // We must be immediately followed the cast.
- llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
- if (BB->empty()) return 0;
- if (&BB->back() != result) return 0;
- llvm::Type *resultType = result->getType();
- // result is in a BasicBlock and is therefore an Instruction.
- llvm::Instruction *generator = cast<llvm::Instruction>(result);
- SmallVector<llvm::Instruction*,4> insnsToKill;
- // Look for:
- // %generator = bitcast %type1* %generator2 to %type2*
- while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
- // We would have emitted this as a constant if the operand weren't
- // an Instruction.
- generator = cast<llvm::Instruction>(bitcast->getOperand(0));
- // Require the generator to be immediately followed by the cast.
- if (generator->getNextNode() != bitcast)
- return 0;
- insnsToKill.push_back(bitcast);
- }
- // Look for:
- // %generator = call i8* @objc_retain(i8* %originalResult)
- // or
- // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
- llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
- if (!call) return 0;
- bool doRetainAutorelease;
- if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
- doRetainAutorelease = true;
- } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
- .objc_retainAutoreleasedReturnValue) {
- doRetainAutorelease = false;
- // Look for an inline asm immediately preceding the call and kill it, too.
- llvm::Instruction *prev = call->getPrevNode();
- if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev))
- if (asmCall->getCalledValue()
- == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker)
- insnsToKill.push_back(prev);
- } else {
- return 0;
- }
- result = call->getArgOperand(0);
- insnsToKill.push_back(call);
- // Keep killing bitcasts, for sanity. Note that we no longer care
- // about precise ordering as long as there's exactly one use.
- while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
- if (!bitcast->hasOneUse()) break;
- insnsToKill.push_back(bitcast);
- result = bitcast->getOperand(0);
- }
- // Delete all the unnecessary instructions, from latest to earliest.
- for (SmallVectorImpl<llvm::Instruction*>::iterator
- i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
- (*i)->eraseFromParent();
- // Do the fused retain/autorelease if we were asked to.
- if (doRetainAutorelease)
- result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
- // Cast back to the result type.
- return CGF.Builder.CreateBitCast(result, resultType);
- }
- /// If this is a +1 of the value of an immutable 'self', remove it.
- static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
- llvm::Value *result) {
- // This is only applicable to a method with an immutable 'self'.
- const ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CGF.CurCodeDecl);
- if (!method) return 0;
- const VarDecl *self = method->getSelfDecl();
- if (!self->getType().isConstQualified()) return 0;
- // Look for a retain call.
- llvm::CallInst *retainCall =
- dyn_cast<llvm::CallInst>(result->stripPointerCasts());
- if (!retainCall ||
- retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
- return 0;
- // Look for an ordinary load of 'self'.
- llvm::Value *retainedValue = retainCall->getArgOperand(0);
- llvm::LoadInst *load =
- dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
- if (!load || load->isAtomic() || load->isVolatile() ||
- load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
- return 0;
- // Okay! Burn it all down. This relies for correctness on the
- // assumption that the retain is emitted as part of the return and
- // that thereafter everything is used "linearly".
- llvm::Type *resultType = result->getType();
- eraseUnusedBitCasts(cast<llvm::Instruction>(result));
- assert(retainCall->use_empty());
- retainCall->eraseFromParent();
- eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
- return CGF.Builder.CreateBitCast(load, resultType);
- }
- /// Emit an ARC autorelease of the result of a function.
- ///
- /// \return the value to actually return from the function
- static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
- llvm::Value *result) {
- // If we're returning 'self', kill the initial retain. This is a
- // heuristic attempt to "encourage correctness" in the really unfortunate
- // case where we have a return of self during a dealloc and we desperately
- // need to avoid the possible autorelease.
- if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
- return self;
- // At -O0, try to emit a fused retain/autorelease.
- if (CGF.shouldUseFusedARCCalls())
- if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
- return fused;
- return CGF.EmitARCAutoreleaseReturnValue(result);
- }
- /// Heuristically search for a dominating store to the return-value slot.
- static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
- // If there are multiple uses of the return-value slot, just check
- // for something immediately preceding the IP. Sometimes this can
- // happen with how we generate implicit-returns; it can also happen
- // with noreturn cleanups.
- if (!CGF.ReturnValue->hasOneUse()) {
- llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
- if (IP->empty()) return 0;
- llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
- if (!store) return 0;
- if (store->getPointerOperand() != CGF.ReturnValue) return 0;
- assert(!store->isAtomic() && !store->isVolatile()); // see below
- return store;
- }
- llvm::StoreInst *store =
- dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
- if (!store) return 0;
- // These aren't actually possible for non-coerced returns, and we
- // only care about non-coerced returns on this code path.
- assert(!store->isAtomic() && !store->isVolatile());
- // Now do a first-and-dirty dominance check: just walk up the
- // single-predecessors chain from the current insertion point.
- llvm::BasicBlock *StoreBB = store->getParent();
- llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
- while (IP != StoreBB) {
- if (!(IP = IP->getSinglePredecessor()))
- return 0;
- }
- // Okay, the store's basic block dominates the insertion point; we
- // can do our thing.
- return store;
- }
- void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
- // Functions with no result always return void.
- if (ReturnValue == 0) {
- Builder.CreateRetVoid();
- return;
- }
- llvm::DebugLoc RetDbgLoc;
- llvm::Value *RV = 0;
- QualType RetTy = FI.getReturnType();
- const ABIArgInfo &RetAI = FI.getReturnInfo();
- switch (RetAI.getKind()) {
- case ABIArgInfo::Indirect: {
- unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
- if (RetTy->isAnyComplexType()) {
- ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
- StoreComplexToAddr(RT, CurFn->arg_begin(), false);
- } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
- // Do nothing; aggregrates get evaluated directly into the destination.
- } else {
- EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
- false, Alignment, RetTy);
- }
- break;
- }
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct:
- if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
- RetAI.getDirectOffset() == 0) {
- // The internal return value temp always will have pointer-to-return-type
- // type, just do a load.
- // If there is a dominating store to ReturnValue, we can elide
- // the load, zap the store, and usually zap the alloca.
- if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
- // Get the stored value and nuke the now-dead store.
- RetDbgLoc = SI->getDebugLoc();
- RV = SI->getValueOperand();
- SI->eraseFromParent();
- // If that was the only use of the return value, nuke it as well now.
- if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
- cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
- ReturnValue = 0;
- }
- // Otherwise, we have to do a simple load.
- } else {
- RV = Builder.CreateLoad(ReturnValue);
- }
- } else {
- llvm::Value *V = ReturnValue;
- // If the value is offset in memory, apply the offset now.
- if (unsigned Offs = RetAI.getDirectOffset()) {
- V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
- V = Builder.CreateConstGEP1_32(V, Offs);
- V = Builder.CreateBitCast(V,
- llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
- }
- RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
- }
- // In ARC, end functions that return a retainable type with a call
- // to objc_autoreleaseReturnValue.
- if (AutoreleaseResult) {
- assert(getLangOpts().ObjCAutoRefCount &&
- !FI.isReturnsRetained() &&
- RetTy->isObjCRetainableType());
- RV = emitAutoreleaseOfResult(*this, RV);
- }
- break;
- case ABIArgInfo::Ignore:
- break;
- case ABIArgInfo::Expand:
- llvm_unreachable("Invalid ABI kind for return argument");
- }
- llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
- if (!RetDbgLoc.isUnknown())
- Ret->setDebugLoc(RetDbgLoc);
- }
- void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
- const VarDecl *param) {
- // StartFunction converted the ABI-lowered parameter(s) into a
- // local alloca. We need to turn that into an r-value suitable
- // for EmitCall.
- llvm::Value *local = GetAddrOfLocalVar(param);
- QualType type = param->getType();
- // For the most part, we just need to load the alloca, except:
- // 1) aggregate r-values are actually pointers to temporaries, and
- // 2) references to aggregates are pointers directly to the aggregate.
- // I don't know why references to non-aggregates are different here.
- if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
- if (hasAggregateLLVMType(ref->getPointeeType()))
- return args.add(RValue::getAggregate(local), type);
- // Locals which are references to scalars are represented
- // with allocas holding the pointer.
- return args.add(RValue::get(Builder.CreateLoad(local)), type);
- }
- if (type->isAnyComplexType()) {
- ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
- return args.add(RValue::getComplex(complex), type);
- }
- if (hasAggregateLLVMType(type))
- return args.add(RValue::getAggregate(local), type);
- unsigned alignment = getContext().getDeclAlign(param).getQuantity();
- llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
- return args.add(RValue::get(value), type);
- }
- static bool isProvablyNull(llvm::Value *addr) {
- return isa<llvm::ConstantPointerNull>(addr);
- }
- static bool isProvablyNonNull(llvm::Value *addr) {
- return isa<llvm::AllocaInst>(addr);
- }
- /// Emit the actual writing-back of a writeback.
- static void emitWriteback(CodeGenFunction &CGF,
- const CallArgList::Writeback &writeback) {
- llvm::Value *srcAddr = writeback.Address;
- assert(!isProvablyNull(srcAddr) &&
- "shouldn't have writeback for provably null argument");
- llvm::BasicBlock *contBB = 0;
- // If the argument wasn't provably non-null, we need to null check
- // before doing the store.
- bool provablyNonNull = isProvablyNonNull(srcAddr);
- if (!provablyNonNull) {
- llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
- contBB = CGF.createBasicBlock("icr.done");
- llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
- CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
- CGF.EmitBlock(writebackBB);
- }
- // Load the value to writeback.
- llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
- // Cast it back, in case we're writing an id to a Foo* or something.
- value = CGF.Builder.CreateBitCast(value,
- cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
- "icr.writeback-cast");
-
- // Perform the writeback.
- QualType srcAddrType = writeback.AddressType;
- CGF.EmitStoreThroughLValue(RValue::get(value),
- CGF.MakeAddrLValue(srcAddr, srcAddrType));
- // Jump to the continuation block.
- if (!provablyNonNull)
- CGF.EmitBlock(contBB);
- }
- static void emitWritebacks(CodeGenFunction &CGF,
- const CallArgList &args) {
- for (CallArgList::writeback_iterator
- i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
- emitWriteback(CGF, *i);
- }
- /// Emit an argument that's being passed call-by-writeback. That is,
- /// we are passing the address of
- static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
- const ObjCIndirectCopyRestoreExpr *CRE) {
- llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
- // The dest and src types don't necessarily match in LLVM terms
- // because of the crazy ObjC compatibility rules.
- llvm::PointerType *destType =
- cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
- // If the address is a constant null, just pass the appropriate null.
- if (isProvablyNull(srcAddr)) {
- args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
- CRE->getType());
- return;
- }
- QualType srcAddrType =
- CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
- // Create the temporary.
- llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
- "icr.temp");
- // Zero-initialize it if we're not doing a copy-initialization.
- bool shouldCopy = CRE->shouldCopy();
- if (!shouldCopy) {
- llvm::Value *null =
- llvm::ConstantPointerNull::get(
- cast<llvm::PointerType>(destType->getElementType()));
- CGF.Builder.CreateStore(null, temp);
- }
- llvm::BasicBlock *contBB = 0;
- // If the address is *not* known to be non-null, we need to switch.
- llvm::Value *finalArgument;
- bool provablyNonNull = isProvablyNonNull(srcAddr);
- if (provablyNonNull) {
- finalArgument = temp;
- } else {
- llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
- finalArgument = CGF.Builder.CreateSelect(isNull,
- llvm::ConstantPointerNull::get(destType),
- temp, "icr.argument");
- // If we need to copy, then the load has to be conditional, which
- // means we need control flow.
- if (shouldCopy) {
- contBB = CGF.createBasicBlock("icr.cont");
- llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
- CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
- CGF.EmitBlock(copyBB);
- }
- }
- // Perform a copy if necessary.
- if (shouldCopy) {
- LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
- RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
- assert(srcRV.isScalar());
- llvm::Value *src = srcRV.getScalarVal();
- src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
- "icr.cast");
- // Use an ordinary store, not a store-to-lvalue.
- CGF.Builder.CreateStore(src, temp);
- }
- // Finish the control flow if we needed it.
- if (shouldCopy && !provablyNonNull)
- CGF.EmitBlock(contBB);
- args.addWriteback(srcAddr, srcAddrType, temp);
- args.add(RValue::get(finalArgument), CRE->getType());
- }
- void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
- QualType type) {
- if (const ObjCIndirectCopyRestoreExpr *CRE
- = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
- assert(getContext().getLangOpts().ObjCAutoRefCount);
- assert(getContext().hasSameType(E->getType(), type));
- return emitWritebackArg(*this, args, CRE);
- }
- assert(type->isReferenceType() == E->isGLValue() &&
- "reference binding to unmaterialized r-value!");
- if (E->isGLValue()) {
- assert(E->getObjectKind() == OK_Ordinary);
- return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
- type);
- }
- if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
- isa<ImplicitCastExpr>(E) &&
- cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
- LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
- assert(L.isSimple());
- args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
- return;
- }
- args.add(EmitAnyExprToTemp(E), type);
- }
- // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
- // optimizer it can aggressively ignore unwind edges.
- void
- CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
- if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
- !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
- Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
- CGM.getNoObjCARCExceptionsMetadata());
- }
- /// Emits a call or invoke instruction to the given function, depending
- /// on the current state of the EH stack.
- llvm::CallSite
- CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
- ArrayRef<llvm::Value *> Args,
- const Twine &Name) {
- llvm::BasicBlock *InvokeDest = getInvokeDest();
- llvm::Instruction *Inst;
- if (!InvokeDest)
- Inst = Builder.CreateCall(Callee, Args, Name);
- else {
- llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
- Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
- EmitBlock(ContBB);
- }
- // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
- // optimizer it can aggressively ignore unwind edges.
- if (CGM.getLangOpts().ObjCAutoRefCount)
- AddObjCARCExceptionMetadata(Inst);
- return Inst;
- }
- llvm::CallSite
- CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
- const Twine &Name) {
- return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
- }
- static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
- llvm::FunctionType *FTy) {
- if (ArgNo < FTy->getNumParams())
- assert(Elt->getType() == FTy->getParamType(ArgNo));
- else
- assert(FTy->isVarArg());
- ++ArgNo;
- }
- void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
- SmallVector<llvm::Value*,16> &Args,
- llvm::FunctionType *IRFuncTy) {
- if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
- unsigned NumElts = AT->getSize().getZExtValue();
- QualType EltTy = AT->getElementType();
- llvm::Value *Addr = RV.getAggregateAddr();
- for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
- llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
- LValue LV = MakeAddrLValue(EltAddr, EltTy);
- RValue EltRV;
- if (EltTy->isAnyComplexType())
- // FIXME: Volatile?
- EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
- else if (CodeGenFunction::hasAggregateLLVMType(EltTy))
- EltRV = LV.asAggregateRValue();
- else
- EltRV = EmitLoadOfLValue(LV);
- ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
- }
- } else if (const RecordType *RT = Ty->getAsStructureType()) {
- RecordDecl *RD = RT->getDecl();
- assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
- llvm::Value *Addr = RV.getAggregateAddr();
- for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
- i != e; ++i) {
- FieldDecl *FD = *i;
- QualType FT = FD->getType();
-
- // FIXME: What are the right qualifiers here?
- LValue LV = EmitLValueForField(Addr, FD, 0);
- RValue FldRV;
- if (FT->isAnyComplexType())
- // FIXME: Volatile?
- FldRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
- else if (CodeGenFunction::hasAggregateLLVMType(FT))
- FldRV = LV.asAggregateRValue();
- else
- FldRV = EmitLoadOfLValue(LV);
- ExpandTypeToArgs(FT, FldRV, Args, IRFuncTy);
- }
- } else if (Ty->isAnyComplexType()) {
- ComplexPairTy CV = RV.getComplexVal();
- Args.push_back(CV.first);
- Args.push_back(CV.second);
- } else {
- assert(RV.isScalar() &&
- "Unexpected non-scalar rvalue during struct expansion.");
- // Insert a bitcast as needed.
- llvm::Value *V = RV.getScalarVal();
- if (Args.size() < IRFuncTy->getNumParams() &&
- V->getType() != IRFuncTy->getParamType(Args.size()))
- V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
- Args.push_back(V);
- }
- }
- RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
- llvm::Value *Callee,
- ReturnValueSlot ReturnValue,
- const CallArgList &CallArgs,
- const Decl *TargetDecl,
- llvm::Instruction **callOrInvoke) {
- // FIXME: We no longer need the types from CallArgs; lift up and simplify.
- SmallVector<llvm::Value*, 16> Args;
- // Handle struct-return functions by passing a pointer to the
- // location that we would like to return into.
- QualType RetTy = CallInfo.getReturnType();
- const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
- // IRArgNo - Keep track of the argument number in the callee we're looking at.
- unsigned IRArgNo = 0;
- llvm::FunctionType *IRFuncTy =
- cast<llvm::FunctionType>(
- cast<llvm::PointerType>(Callee->getType())->getElementType());
- // If the call returns a temporary with struct return, create a temporary
- // alloca to hold the result, unless one is given to us.
- if (CGM.ReturnTypeUsesSRet(CallInfo)) {
- llvm::Value *Value = ReturnValue.getValue();
- if (!Value)
- Value = CreateMemTemp(RetTy);
- Args.push_back(Value);
- checkArgMatches(Value, IRArgNo, IRFuncTy);
- }
- assert(CallInfo.arg_size() == CallArgs.size() &&
- "Mismatch between function signature & arguments.");
- CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
- for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
- I != E; ++I, ++info_it) {
- const ABIArgInfo &ArgInfo = info_it->info;
- RValue RV = I->RV;
- unsigned TypeAlign =
- getContext().getTypeAlignInChars(I->Ty).getQuantity();
- switch (ArgInfo.getKind()) {
- case ABIArgInfo::Indirect: {
- if (RV.isScalar() || RV.isComplex()) {
- // Make a temporary alloca to pass the argument.
- llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
- if (ArgInfo.getIndirectAlign() > AI->getAlignment())
- AI->setAlignment(ArgInfo.getIndirectAlign());
- Args.push_back(AI);
-
- if (RV.isScalar())
- EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
- TypeAlign, I->Ty);
- else
- StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
-
- // Validate argument match.
- checkArgMatches(AI, IRArgNo, IRFuncTy);
- } else {
- // We want to avoid creating an unnecessary temporary+copy here;
- // however, we need one in two cases:
- // 1. If the argument is not byval, and we are required to copy the
- // source. (This case doesn't occur on any common architecture.)
- // 2. If the argument is byval, RV is not sufficiently aligned, and
- // we cannot force it to be sufficiently aligned.
- llvm::Value *Addr = RV.getAggregateAddr();
- unsigned Align = ArgInfo.getIndirectAlign();
- const llvm::TargetData *TD = &CGM.getTargetData();
- if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
- (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
- llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
- // Create an aligned temporary, and copy to it.
- llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
- if (Align > AI->getAlignment())
- AI->setAlignment(Align);
- Args.push_back(AI);
- EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
-
- // Validate argument match.
- checkArgMatches(AI, IRArgNo, IRFuncTy);
- } else {
- // Skip the extra memcpy call.
- Args.push_back(Addr);
-
- // Validate argument match.
- checkArgMatches(Addr, IRArgNo, IRFuncTy);
- }
- }
- break;
- }
- case ABIArgInfo::Ignore:
- break;
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- // Insert a padding argument to ensure proper alignment.
- if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
- Args.push_back(llvm::UndefValue::get(PaddingType));
- ++IRArgNo;
- }
- if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
- ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
- ArgInfo.getDirectOffset() == 0) {
- llvm::Value *V;
- if (RV.isScalar())
- V = RV.getScalarVal();
- else
- V = Builder.CreateLoad(RV.getAggregateAddr());
-
- // If the argument doesn't match, perform a bitcast to coerce it. This
- // can happen due to trivial type mismatches.
- if (IRArgNo < IRFuncTy->getNumParams() &&
- V->getType() != IRFuncTy->getParamType(IRArgNo))
- V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
- Args.push_back(V);
-
- checkArgMatches(V, IRArgNo, IRFuncTy);
- break;
- }
- // FIXME: Avoid the conversion through memory if possible.
- llvm::Value *SrcPtr;
- if (RV.isScalar()) {
- SrcPtr = CreateMemTemp(I->Ty, "coerce");
- EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
- } else if (RV.isComplex()) {
- SrcPtr = CreateMemTemp(I->Ty, "coerce");
- StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
- } else
- SrcPtr = RV.getAggregateAddr();
- // If the value is offset in memory, apply the offset now.
- if (unsigned Offs = ArgInfo.getDirectOffset()) {
- SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
- SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
- SrcPtr = Builder.CreateBitCast(SrcPtr,
- llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
- }
- // If the coerce-to type is a first class aggregate, we flatten it and
- // pass the elements. Either way is semantically identical, but fast-isel
- // and the optimizer generally likes scalar values better than FCAs.
- if (llvm::StructType *STy =
- dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
- SrcPtr = Builder.CreateBitCast(SrcPtr,
- llvm::PointerType::getUnqual(STy));
- for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
- llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
- llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
- // We don't know what we're loading from.
- LI->setAlignment(1);
- Args.push_back(LI);
-
- // Validate argument match.
- checkArgMatches(LI, IRArgNo, IRFuncTy);
- }
- } else {
- // In the simple case, just pass the coerced loaded value.
- Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
- *this));
-
- // Validate argument match.
- checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
- }
- break;
- }
- case ABIArgInfo::Expand:
- ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
- IRArgNo = Args.size();
- break;
- }
- }
- // If the callee is a bitcast of a function to a varargs pointer to function
- // type, check to see if we can remove the bitcast. This handles some cases
- // with unprototyped functions.
- if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
- if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
- llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
- llvm::FunctionType *CurFT =
- cast<llvm::FunctionType>(CurPT->getElementType());
- llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
- if (CE->getOpcode() == llvm::Instruction::BitCast &&
- ActualFT->getReturnType() == CurFT->getReturnType() &&
- ActualFT->getNumParams() == CurFT->getNumParams() &&
- ActualFT->getNumParams() == Args.size() &&
- (CurFT->isVarArg() || !ActualFT->isVarArg())) {
- bool ArgsMatch = true;
- for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
- if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
- ArgsMatch = false;
- break;
- }
- // Strip the cast if we can get away with it. This is a nice cleanup,
- // but also allows us to inline the function at -O0 if it is marked
- // always_inline.
- if (ArgsMatch)
- Callee = CalleeF;
- }
- }
- unsigned CallingConv;
- CodeGen::AttributeListType AttributeList;
- CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
- llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
- AttributeList.end());
- llvm::BasicBlock *InvokeDest = 0;
- if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
- InvokeDest = getInvokeDest();
- llvm::CallSite CS;
- if (!InvokeDest) {
- CS = Builder.CreateCall(Callee, Args);
- } else {
- llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
- CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
- EmitBlock(Cont);
- }
- if (callOrInvoke)
- *callOrInvoke = CS.getInstruction();
- CS.setAttributes(Attrs);
- CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
- // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
- // optimizer it can aggressively ignore unwind edges.
- if (CGM.getLangOpts().ObjCAutoRefCount)
- AddObjCARCExceptionMetadata(CS.getInstruction());
- // If the call doesn't return, finish the basic block and clear the
- // insertion point; this allows the rest of IRgen to discard
- // unreachable code.
- if (CS.doesNotReturn()) {
- Builder.CreateUnreachable();
- Builder.ClearInsertionPoint();
- // FIXME: For now, emit a dummy basic block because expr emitters in
- // generally are not ready to handle emitting expressions at unreachable
- // points.
- EnsureInsertPoint();
- // Return a reasonable RValue.
- return GetUndefRValue(RetTy);
- }
- llvm::Instruction *CI = CS.getInstruction();
- if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
- CI->setName("call");
- // Emit any writebacks immediately. Arguably this should happen
- // after any return-value munging.
- if (CallArgs.hasWritebacks())
- emitWritebacks(*this, CallArgs);
- switch (RetAI.getKind()) {
- case ABIArgInfo::Indirect: {
- unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
- if (RetTy->isAnyComplexType())
- return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
- if (CodeGenFunction::hasAggregateLLVMType(RetTy))
- return RValue::getAggregate(Args[0]);
- return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
- }
- case ABIArgInfo::Ignore:
- // If we are ignoring an argument that had a result, make sure to
- // construct the appropriate return value for our caller.
- return GetUndefRValue(RetTy);
- case ABIArgInfo::Extend:
- case ABIArgInfo::Direct: {
- llvm::Type *RetIRTy = ConvertType(RetTy);
- if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
- if (RetTy->isAnyComplexType()) {
- llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
- llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
- return RValue::getComplex(std::make_pair(Real, Imag));
- }
- if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
- llvm::Value *DestPtr = ReturnValue.getValue();
- bool DestIsVolatile = ReturnValue.isVolatile();
- if (!DestPtr) {
- DestPtr = CreateMemTemp(RetTy, "agg.tmp");
- DestIsVolatile = false;
- }
- BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
- return RValue::getAggregate(DestPtr);
- }
-
- // If the argument doesn't match, perform a bitcast to coerce it. This
- // can happen due to trivial type mismatches.
- llvm::Value *V = CI;
- if (V->getType() != RetIRTy)
- V = Builder.CreateBitCast(V, RetIRTy);
- return RValue::get(V);
- }
- llvm::Value *DestPtr = ReturnValue.getValue();
- bool DestIsVolatile = ReturnValue.isVolatile();
- if (!DestPtr) {
- DestPtr = CreateMemTemp(RetTy, "coerce");
- DestIsVolatile = false;
- }
- // If the value is offset in memory, apply the offset now.
- llvm::Value *StorePtr = DestPtr;
- if (unsigned Offs = RetAI.getDirectOffset()) {
- StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
- StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
- StorePtr = Builder.CreateBitCast(StorePtr,
- llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
- }
- CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
- unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
- if (RetTy->isAnyComplexType())
- return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
- if (CodeGenFunction::hasAggregateLLVMType(RetTy))
- return RValue::getAggregate(DestPtr);
- return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
- }
- case ABIArgInfo::Expand:
- llvm_unreachable("Invalid ABI kind for return argument");
- }
- llvm_unreachable("Unhandled ABIArgInfo::Kind");
- }
- /* VarArg handling */
- llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
- return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
- }
|