123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751 |
- //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file defines RangeConstraintManager, a class that tracks simple
- // equality and inequality constraints on symbolic values of ProgramState.
- //
- //===----------------------------------------------------------------------===//
- #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
- #include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
- #include "llvm/ADT/FoldingSet.h"
- #include "llvm/ADT/ImmutableSet.h"
- #include "llvm/Support/raw_ostream.h"
- using namespace clang;
- using namespace ento;
- void RangeSet::IntersectInRange(BasicValueFactory &BV, Factory &F,
- const llvm::APSInt &Lower, const llvm::APSInt &Upper,
- PrimRangeSet &newRanges, PrimRangeSet::iterator &i,
- PrimRangeSet::iterator &e) const {
- // There are six cases for each range R in the set:
- // 1. R is entirely before the intersection range.
- // 2. R is entirely after the intersection range.
- // 3. R contains the entire intersection range.
- // 4. R starts before the intersection range and ends in the middle.
- // 5. R starts in the middle of the intersection range and ends after it.
- // 6. R is entirely contained in the intersection range.
- // These correspond to each of the conditions below.
- for (/* i = begin(), e = end() */; i != e; ++i) {
- if (i->To() < Lower) {
- continue;
- }
- if (i->From() > Upper) {
- break;
- }
- if (i->Includes(Lower)) {
- if (i->Includes(Upper)) {
- newRanges =
- F.add(newRanges, Range(BV.getValue(Lower), BV.getValue(Upper)));
- break;
- } else
- newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
- } else {
- if (i->Includes(Upper)) {
- newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
- break;
- } else
- newRanges = F.add(newRanges, *i);
- }
- }
- }
- const llvm::APSInt &RangeSet::getMinValue() const {
- assert(!isEmpty());
- return ranges.begin()->From();
- }
- bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
- // This function has nine cases, the cartesian product of range-testing
- // both the upper and lower bounds against the symbol's type.
- // Each case requires a different pinning operation.
- // The function returns false if the described range is entirely outside
- // the range of values for the associated symbol.
- APSIntType Type(getMinValue());
- APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
- APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
- switch (LowerTest) {
- case APSIntType::RTR_Below:
- switch (UpperTest) {
- case APSIntType::RTR_Below:
- // The entire range is outside the symbol's set of possible values.
- // If this is a conventionally-ordered range, the state is infeasible.
- if (Lower <= Upper)
- return false;
- // However, if the range wraps around, it spans all possible values.
- Lower = Type.getMinValue();
- Upper = Type.getMaxValue();
- break;
- case APSIntType::RTR_Within:
- // The range starts below what's possible but ends within it. Pin.
- Lower = Type.getMinValue();
- Type.apply(Upper);
- break;
- case APSIntType::RTR_Above:
- // The range spans all possible values for the symbol. Pin.
- Lower = Type.getMinValue();
- Upper = Type.getMaxValue();
- break;
- }
- break;
- case APSIntType::RTR_Within:
- switch (UpperTest) {
- case APSIntType::RTR_Below:
- // The range wraps around, but all lower values are not possible.
- Type.apply(Lower);
- Upper = Type.getMaxValue();
- break;
- case APSIntType::RTR_Within:
- // The range may or may not wrap around, but both limits are valid.
- Type.apply(Lower);
- Type.apply(Upper);
- break;
- case APSIntType::RTR_Above:
- // The range starts within what's possible but ends above it. Pin.
- Type.apply(Lower);
- Upper = Type.getMaxValue();
- break;
- }
- break;
- case APSIntType::RTR_Above:
- switch (UpperTest) {
- case APSIntType::RTR_Below:
- // The range wraps but is outside the symbol's set of possible values.
- return false;
- case APSIntType::RTR_Within:
- // The range starts above what's possible but ends within it (wrap).
- Lower = Type.getMinValue();
- Type.apply(Upper);
- break;
- case APSIntType::RTR_Above:
- // The entire range is outside the symbol's set of possible values.
- // If this is a conventionally-ordered range, the state is infeasible.
- if (Lower <= Upper)
- return false;
- // However, if the range wraps around, it spans all possible values.
- Lower = Type.getMinValue();
- Upper = Type.getMaxValue();
- break;
- }
- break;
- }
- return true;
- }
- // Returns a set containing the values in the receiving set, intersected with
- // the closed range [Lower, Upper]. Unlike the Range type, this range uses
- // modular arithmetic, corresponding to the common treatment of C integer
- // overflow. Thus, if the Lower bound is greater than the Upper bound, the
- // range is taken to wrap around. This is equivalent to taking the
- // intersection with the two ranges [Min, Upper] and [Lower, Max],
- // or, alternatively, /removing/ all integers between Upper and Lower.
- RangeSet RangeSet::Intersect(BasicValueFactory &BV, Factory &F,
- llvm::APSInt Lower, llvm::APSInt Upper) const {
- if (!pin(Lower, Upper))
- return F.getEmptySet();
- PrimRangeSet newRanges = F.getEmptySet();
- PrimRangeSet::iterator i = begin(), e = end();
- if (Lower <= Upper)
- IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
- else {
- // The order of the next two statements is important!
- // IntersectInRange() does not reset the iteration state for i and e.
- // Therefore, the lower range most be handled first.
- IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
- IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
- }
- return newRanges;
- }
- // Turn all [A, B] ranges to [-B, -A]. Ranges [MIN, B] are turned to range set
- // [MIN, MIN] U [-B, MAX], when MIN and MAX are the minimal and the maximal
- // signed values of the type.
- RangeSet RangeSet::Negate(BasicValueFactory &BV, Factory &F) const {
- PrimRangeSet newRanges = F.getEmptySet();
- for (iterator i = begin(), e = end(); i != e; ++i) {
- const llvm::APSInt &from = i->From(), &to = i->To();
- const llvm::APSInt &newTo = (from.isMinSignedValue() ?
- BV.getMaxValue(from) :
- BV.getValue(- from));
- if (to.isMaxSignedValue() && !newRanges.isEmpty() &&
- newRanges.begin()->From().isMinSignedValue()) {
- assert(newRanges.begin()->To().isMinSignedValue() &&
- "Ranges should not overlap");
- assert(!from.isMinSignedValue() && "Ranges should not overlap");
- const llvm::APSInt &newFrom = newRanges.begin()->From();
- newRanges =
- F.add(F.remove(newRanges, *newRanges.begin()), Range(newFrom, newTo));
- } else if (!to.isMinSignedValue()) {
- const llvm::APSInt &newFrom = BV.getValue(- to);
- newRanges = F.add(newRanges, Range(newFrom, newTo));
- }
- if (from.isMinSignedValue()) {
- newRanges = F.add(newRanges, Range(BV.getMinValue(from),
- BV.getMinValue(from)));
- }
- }
- return newRanges;
- }
- void RangeSet::print(raw_ostream &os) const {
- bool isFirst = true;
- os << "{ ";
- for (iterator i = begin(), e = end(); i != e; ++i) {
- if (isFirst)
- isFirst = false;
- else
- os << ", ";
- os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
- << ']';
- }
- os << " }";
- }
- namespace {
- class RangeConstraintManager : public RangedConstraintManager {
- public:
- RangeConstraintManager(SubEngine *SE, SValBuilder &SVB)
- : RangedConstraintManager(SE, SVB) {}
- //===------------------------------------------------------------------===//
- // Implementation for interface from ConstraintManager.
- //===------------------------------------------------------------------===//
- bool canReasonAbout(SVal X) const override;
- ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
- const llvm::APSInt *getSymVal(ProgramStateRef State,
- SymbolRef Sym) const override;
- ProgramStateRef removeDeadBindings(ProgramStateRef State,
- SymbolReaper &SymReaper) override;
- void print(ProgramStateRef State, raw_ostream &Out, const char *nl,
- const char *sep) override;
- //===------------------------------------------------------------------===//
- // Implementation for interface from RangedConstraintManager.
- //===------------------------------------------------------------------===//
- ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) override;
- ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) override;
- ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) override;
- ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) override;
- ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) override;
- ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym,
- const llvm::APSInt &V,
- const llvm::APSInt &Adjustment) override;
- ProgramStateRef assumeSymWithinInclusiveRange(
- ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
- const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
- ProgramStateRef assumeSymOutsideInclusiveRange(
- ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
- const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
- private:
- RangeSet::Factory F;
- RangeSet getRange(ProgramStateRef State, SymbolRef Sym);
- const RangeSet* getRangeForMinusSymbol(ProgramStateRef State,
- SymbolRef Sym);
- RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment);
- RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment);
- RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment);
- RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment);
- RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment);
- };
- } // end anonymous namespace
- std::unique_ptr<ConstraintManager>
- ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, SubEngine *Eng) {
- return llvm::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
- }
- bool RangeConstraintManager::canReasonAbout(SVal X) const {
- Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
- if (SymVal && SymVal->isExpression()) {
- const SymExpr *SE = SymVal->getSymbol();
- if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
- switch (SIE->getOpcode()) {
- // We don't reason yet about bitwise-constraints on symbolic values.
- case BO_And:
- case BO_Or:
- case BO_Xor:
- return false;
- // We don't reason yet about these arithmetic constraints on
- // symbolic values.
- case BO_Mul:
- case BO_Div:
- case BO_Rem:
- case BO_Shl:
- case BO_Shr:
- return false;
- // All other cases.
- default:
- return true;
- }
- }
- if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
- // FIXME: Handle <=> here.
- if (BinaryOperator::isEqualityOp(SSE->getOpcode()) ||
- BinaryOperator::isRelationalOp(SSE->getOpcode())) {
- // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
- // We've recently started producing Loc <> NonLoc comparisons (that
- // result from casts of one of the operands between eg. intptr_t and
- // void *), but we can't reason about them yet.
- if (Loc::isLocType(SSE->getLHS()->getType())) {
- return Loc::isLocType(SSE->getRHS()->getType());
- }
- }
- }
- return false;
- }
- return true;
- }
- ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
- SymbolRef Sym) {
- const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
- // If we don't have any information about this symbol, it's underconstrained.
- if (!Ranges)
- return ConditionTruthVal();
- // If we have a concrete value, see if it's zero.
- if (const llvm::APSInt *Value = Ranges->getConcreteValue())
- return *Value == 0;
- BasicValueFactory &BV = getBasicVals();
- APSIntType IntType = BV.getAPSIntType(Sym->getType());
- llvm::APSInt Zero = IntType.getZeroValue();
- // Check if zero is in the set of possible values.
- if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
- return false;
- // Zero is a possible value, but it is not the /only/ possible value.
- return ConditionTruthVal();
- }
- const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
- SymbolRef Sym) const {
- const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(Sym);
- return T ? T->getConcreteValue() : nullptr;
- }
- /// Scan all symbols referenced by the constraints. If the symbol is not alive
- /// as marked in LSymbols, mark it as dead in DSymbols.
- ProgramStateRef
- RangeConstraintManager::removeDeadBindings(ProgramStateRef State,
- SymbolReaper &SymReaper) {
- bool Changed = false;
- ConstraintRangeTy CR = State->get<ConstraintRange>();
- ConstraintRangeTy::Factory &CRFactory = State->get_context<ConstraintRange>();
- for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
- SymbolRef Sym = I.getKey();
- if (SymReaper.isDead(Sym)) {
- Changed = true;
- CR = CRFactory.remove(CR, Sym);
- }
- }
- return Changed ? State->set<ConstraintRange>(CR) : State;
- }
- /// Return a range set subtracting zero from \p Domain.
- static RangeSet assumeNonZero(
- BasicValueFactory &BV,
- RangeSet::Factory &F,
- SymbolRef Sym,
- RangeSet Domain) {
- APSIntType IntType = BV.getAPSIntType(Sym->getType());
- return Domain.Intersect(BV, F, ++IntType.getZeroValue(),
- --IntType.getZeroValue());
- }
- /// Apply implicit constraints for bitwise OR- and AND-.
- /// For unsigned types, bitwise OR with a constant always returns
- /// a value greater-or-equal than the constant, and bitwise AND
- /// returns a value less-or-equal then the constant.
- ///
- /// Pattern matches the expression \p Sym against those rule,
- /// and applies the required constraints.
- /// \p Input Previously established expression range set
- static RangeSet applyBitwiseConstraints(
- BasicValueFactory &BV,
- RangeSet::Factory &F,
- RangeSet Input,
- const SymIntExpr* SIE) {
- QualType T = SIE->getType();
- bool IsUnsigned = T->isUnsignedIntegerType();
- const llvm::APSInt &RHS = SIE->getRHS();
- const llvm::APSInt &Zero = BV.getAPSIntType(T).getZeroValue();
- BinaryOperator::Opcode Operator = SIE->getOpcode();
- // For unsigned types, the output of bitwise-or is bigger-or-equal than RHS.
- if (Operator == BO_Or && IsUnsigned)
- return Input.Intersect(BV, F, RHS, BV.getMaxValue(T));
- // Bitwise-or with a non-zero constant is always non-zero.
- if (Operator == BO_Or && RHS != Zero)
- return assumeNonZero(BV, F, SIE, Input);
- // For unsigned types, or positive RHS,
- // bitwise-and output is always smaller-or-equal than RHS (assuming two's
- // complement representation of signed types).
- if (Operator == BO_And && (IsUnsigned || RHS >= Zero))
- return Input.Intersect(BV, F, BV.getMinValue(T), RHS);
- return Input;
- }
- RangeSet RangeConstraintManager::getRange(ProgramStateRef State,
- SymbolRef Sym) {
- if (ConstraintRangeTy::data_type *V = State->get<ConstraintRange>(Sym))
- return *V;
- BasicValueFactory &BV = getBasicVals();
- // If Sym is a difference of symbols A - B, then maybe we have range set
- // stored for B - A.
- if (const RangeSet *R = getRangeForMinusSymbol(State, Sym))
- return R->Negate(BV, F);
- // Lazily generate a new RangeSet representing all possible values for the
- // given symbol type.
- QualType T = Sym->getType();
- RangeSet Result(F, BV.getMinValue(T), BV.getMaxValue(T));
- // References are known to be non-zero.
- if (T->isReferenceType())
- return assumeNonZero(BV, F, Sym, Result);
- // Known constraints on ranges of bitwise expressions.
- if (const SymIntExpr* SIE = dyn_cast<SymIntExpr>(Sym))
- return applyBitwiseConstraints(BV, F, Result, SIE);
- return Result;
- }
- // FIXME: Once SValBuilder supports unary minus, we should use SValBuilder to
- // obtain the negated symbolic expression instead of constructing the
- // symbol manually. This will allow us to support finding ranges of not
- // only negated SymSymExpr-type expressions, but also of other, simpler
- // expressions which we currently do not know how to negate.
- const RangeSet*
- RangeConstraintManager::getRangeForMinusSymbol(ProgramStateRef State,
- SymbolRef Sym) {
- if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
- if (SSE->getOpcode() == BO_Sub) {
- QualType T = Sym->getType();
- SymbolManager &SymMgr = State->getSymbolManager();
- SymbolRef negSym = SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub,
- SSE->getLHS(), T);
- if (const RangeSet *negV = State->get<ConstraintRange>(negSym)) {
- // Unsigned range set cannot be negated, unless it is [0, 0].
- if ((negV->getConcreteValue() &&
- (*negV->getConcreteValue() == 0)) ||
- T->isSignedIntegerOrEnumerationType())
- return negV;
- }
- }
- }
- return nullptr;
- }
- //===------------------------------------------------------------------------===
- // assumeSymX methods: protected interface for RangeConstraintManager.
- //===------------------------------------------------------------------------===/
- // The syntax for ranges below is mathematical, using [x, y] for closed ranges
- // and (x, y) for open ranges. These ranges are modular, corresponding with
- // a common treatment of C integer overflow. This means that these methods
- // do not have to worry about overflow; RangeSet::Intersect can handle such a
- // "wraparound" range.
- // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
- // UINT_MAX, 0, 1, and 2.
- ProgramStateRef
- RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
- return St;
- llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
- llvm::APSInt Upper = Lower;
- --Lower;
- ++Upper;
- // [Int-Adjustment+1, Int-Adjustment-1]
- // Notice that the lower bound is greater than the upper bound.
- RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
- return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
- }
- ProgramStateRef
- RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
- return nullptr;
- // [Int-Adjustment, Int-Adjustment]
- llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
- RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
- return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
- }
- RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
- SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- switch (AdjustmentType.testInRange(Int, true)) {
- case APSIntType::RTR_Below:
- return F.getEmptySet();
- case APSIntType::RTR_Within:
- break;
- case APSIntType::RTR_Above:
- return getRange(St, Sym);
- }
- // Special case for Int == Min. This is always false.
- llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
- llvm::APSInt Min = AdjustmentType.getMinValue();
- if (ComparisonVal == Min)
- return F.getEmptySet();
- llvm::APSInt Lower = Min - Adjustment;
- llvm::APSInt Upper = ComparisonVal - Adjustment;
- --Upper;
- return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
- }
- ProgramStateRef
- RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
- return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
- }
- RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St,
- SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- switch (AdjustmentType.testInRange(Int, true)) {
- case APSIntType::RTR_Below:
- return getRange(St, Sym);
- case APSIntType::RTR_Within:
- break;
- case APSIntType::RTR_Above:
- return F.getEmptySet();
- }
- // Special case for Int == Max. This is always false.
- llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
- llvm::APSInt Max = AdjustmentType.getMaxValue();
- if (ComparisonVal == Max)
- return F.getEmptySet();
- llvm::APSInt Lower = ComparisonVal - Adjustment;
- llvm::APSInt Upper = Max - Adjustment;
- ++Lower;
- return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
- }
- ProgramStateRef
- RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
- return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
- }
- RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St,
- SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- switch (AdjustmentType.testInRange(Int, true)) {
- case APSIntType::RTR_Below:
- return getRange(St, Sym);
- case APSIntType::RTR_Within:
- break;
- case APSIntType::RTR_Above:
- return F.getEmptySet();
- }
- // Special case for Int == Min. This is always feasible.
- llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
- llvm::APSInt Min = AdjustmentType.getMinValue();
- if (ComparisonVal == Min)
- return getRange(St, Sym);
- llvm::APSInt Max = AdjustmentType.getMaxValue();
- llvm::APSInt Lower = ComparisonVal - Adjustment;
- llvm::APSInt Upper = Max - Adjustment;
- return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
- }
- ProgramStateRef
- RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
- return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
- }
- RangeSet RangeConstraintManager::getSymLERange(
- llvm::function_ref<RangeSet()> RS,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- // Before we do any real work, see if the value can even show up.
- APSIntType AdjustmentType(Adjustment);
- switch (AdjustmentType.testInRange(Int, true)) {
- case APSIntType::RTR_Below:
- return F.getEmptySet();
- case APSIntType::RTR_Within:
- break;
- case APSIntType::RTR_Above:
- return RS();
- }
- // Special case for Int == Max. This is always feasible.
- llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
- llvm::APSInt Max = AdjustmentType.getMaxValue();
- if (ComparisonVal == Max)
- return RS();
- llvm::APSInt Min = AdjustmentType.getMinValue();
- llvm::APSInt Lower = Min - Adjustment;
- llvm::APSInt Upper = ComparisonVal - Adjustment;
- return RS().Intersect(getBasicVals(), F, Lower, Upper);
- }
- RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St,
- SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment);
- }
- ProgramStateRef
- RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
- const llvm::APSInt &Int,
- const llvm::APSInt &Adjustment) {
- RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
- return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
- }
- ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange(
- ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
- const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
- RangeSet New = getSymGERange(State, Sym, From, Adjustment);
- if (New.isEmpty())
- return nullptr;
- RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment);
- return Out.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, Out);
- }
- ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange(
- ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
- const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
- RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
- RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
- RangeSet New(RangeLT.addRange(F, RangeGT));
- return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
- }
- //===------------------------------------------------------------------------===
- // Pretty-printing.
- //===------------------------------------------------------------------------===/
- void RangeConstraintManager::print(ProgramStateRef St, raw_ostream &Out,
- const char *nl, const char *sep) {
- ConstraintRangeTy Ranges = St->get<ConstraintRange>();
- if (Ranges.isEmpty()) {
- Out << nl << sep << "Ranges are empty." << nl;
- return;
- }
- Out << nl << sep << "Ranges of symbol values:";
- for (ConstraintRangeTy::iterator I = Ranges.begin(), E = Ranges.end(); I != E;
- ++I) {
- Out << nl << ' ' << I.getKey() << " : ";
- I.getData().print(Out);
- }
- Out << nl;
- }
|