123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787 |
- //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
- //
- // The LLVM Compiler Infrastructure
- //
- // This file is distributed under the University of Illinois Open Source
- // License. See LICENSE.TXT for details.
- //
- //===----------------------------------------------------------------------===//
- //
- // This file implements semantic analysis for expressions.
- //
- //===----------------------------------------------------------------------===//
- #include "clang/Sema/SemaInternal.h"
- #include "clang/Sema/DelayedDiagnostic.h"
- #include "clang/Sema/Initialization.h"
- #include "clang/Sema/Lookup.h"
- #include "clang/Sema/ScopeInfo.h"
- #include "clang/Sema/AnalysisBasedWarnings.h"
- #include "clang/AST/ASTContext.h"
- #include "clang/AST/ASTConsumer.h"
- #include "clang/AST/ASTMutationListener.h"
- #include "clang/AST/CXXInheritance.h"
- #include "clang/AST/DeclObjC.h"
- #include "clang/AST/DeclTemplate.h"
- #include "clang/AST/EvaluatedExprVisitor.h"
- #include "clang/AST/Expr.h"
- #include "clang/AST/ExprCXX.h"
- #include "clang/AST/ExprObjC.h"
- #include "clang/AST/RecursiveASTVisitor.h"
- #include "clang/AST/TypeLoc.h"
- #include "clang/Basic/PartialDiagnostic.h"
- #include "clang/Basic/SourceManager.h"
- #include "clang/Basic/TargetInfo.h"
- #include "clang/Lex/LiteralSupport.h"
- #include "clang/Lex/Preprocessor.h"
- #include "clang/Sema/DeclSpec.h"
- #include "clang/Sema/Designator.h"
- #include "clang/Sema/Scope.h"
- #include "clang/Sema/ScopeInfo.h"
- #include "clang/Sema/ParsedTemplate.h"
- #include "clang/Sema/SemaFixItUtils.h"
- #include "clang/Sema/Template.h"
- #include "TreeTransform.h"
- using namespace clang;
- using namespace sema;
- /// \brief Determine whether the use of this declaration is valid, without
- /// emitting diagnostics.
- bool Sema::CanUseDecl(NamedDecl *D) {
- // See if this is an auto-typed variable whose initializer we are parsing.
- if (ParsingInitForAutoVars.count(D))
- return false;
- // See if this is a deleted function.
- if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
- if (FD->isDeleted())
- return false;
- }
- // See if this function is unavailable.
- if (D->getAvailability() == AR_Unavailable &&
- cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
- return false;
- return true;
- }
- static AvailabilityResult DiagnoseAvailabilityOfDecl(Sema &S,
- NamedDecl *D, SourceLocation Loc,
- const ObjCInterfaceDecl *UnknownObjCClass) {
- // See if this declaration is unavailable or deprecated.
- std::string Message;
- AvailabilityResult Result = D->getAvailability(&Message);
- if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
- if (Result == AR_Available) {
- const DeclContext *DC = ECD->getDeclContext();
- if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
- Result = TheEnumDecl->getAvailability(&Message);
- }
-
- switch (Result) {
- case AR_Available:
- case AR_NotYetIntroduced:
- break;
-
- case AR_Deprecated:
- S.EmitDeprecationWarning(D, Message, Loc, UnknownObjCClass);
- break;
-
- case AR_Unavailable:
- if (S.getCurContextAvailability() != AR_Unavailable) {
- if (Message.empty()) {
- if (!UnknownObjCClass)
- S.Diag(Loc, diag::err_unavailable) << D->getDeclName();
- else
- S.Diag(Loc, diag::warn_unavailable_fwdclass_message)
- << D->getDeclName();
- }
- else
- S.Diag(Loc, diag::err_unavailable_message)
- << D->getDeclName() << Message;
- S.Diag(D->getLocation(), diag::note_unavailable_here)
- << isa<FunctionDecl>(D) << false;
- }
- break;
- }
- return Result;
- }
- /// \brief Emit a note explaining that this function is deleted or unavailable.
- void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
- CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
- if (Method && Method->isDeleted() && !Method->isDeletedAsWritten()) {
- // If the method was explicitly defaulted, point at that declaration.
- if (!Method->isImplicit())
- Diag(Decl->getLocation(), diag::note_implicitly_deleted);
- // Try to diagnose why this special member function was implicitly
- // deleted. This might fail, if that reason no longer applies.
- CXXSpecialMember CSM = getSpecialMember(Method);
- if (CSM != CXXInvalid)
- ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
- return;
- }
- Diag(Decl->getLocation(), diag::note_unavailable_here)
- << 1 << Decl->isDeleted();
- }
- /// \brief Determine whether a FunctionDecl was ever declared with an
- /// explicit storage class.
- static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
- for (FunctionDecl::redecl_iterator I = D->redecls_begin(),
- E = D->redecls_end();
- I != E; ++I) {
- if (I->getStorageClassAsWritten() != SC_None)
- return true;
- }
- return false;
- }
- /// \brief Check whether we're in an extern inline function and referring to a
- /// variable or function with internal linkage (C11 6.7.4p3).
- ///
- /// This is only a warning because we used to silently accept this code, but
- /// in many cases it will not behave correctly. This is not enabled in C++ mode
- /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
- /// and so while there may still be user mistakes, most of the time we can't
- /// prove that there are errors.
- static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
- const NamedDecl *D,
- SourceLocation Loc) {
- // This is disabled under C++; there are too many ways for this to fire in
- // contexts where the warning is a false positive, or where it is technically
- // correct but benign.
- if (S.getLangOpts().CPlusPlus)
- return;
- // Check if this is an inlined function or method.
- FunctionDecl *Current = S.getCurFunctionDecl();
- if (!Current)
- return;
- if (!Current->isInlined())
- return;
- if (Current->getLinkage() != ExternalLinkage)
- return;
-
- // Check if the decl has internal linkage.
- if (D->getLinkage() != InternalLinkage)
- return;
- // Downgrade from ExtWarn to Extension if
- // (1) the supposedly external inline function is in the main file,
- // and probably won't be included anywhere else.
- // (2) the thing we're referencing is a pure function.
- // (3) the thing we're referencing is another inline function.
- // This last can give us false negatives, but it's better than warning on
- // wrappers for simple C library functions.
- const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
- bool DowngradeWarning = S.getSourceManager().isFromMainFile(Loc);
- if (!DowngradeWarning && UsedFn)
- DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
- S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline
- : diag::warn_internal_in_extern_inline)
- << /*IsVar=*/!UsedFn << D;
- // Suggest "static" on the inline function, if possible.
- if (!hasAnyExplicitStorageClass(Current)) {
- const FunctionDecl *FirstDecl = Current->getCanonicalDecl();
- SourceLocation DeclBegin = FirstDecl->getSourceRange().getBegin();
- S.Diag(DeclBegin, diag::note_convert_inline_to_static)
- << Current << FixItHint::CreateInsertion(DeclBegin, "static ");
- }
- S.Diag(D->getCanonicalDecl()->getLocation(),
- diag::note_internal_decl_declared_here)
- << D;
- }
- /// \brief Determine whether the use of this declaration is valid, and
- /// emit any corresponding diagnostics.
- ///
- /// This routine diagnoses various problems with referencing
- /// declarations that can occur when using a declaration. For example,
- /// it might warn if a deprecated or unavailable declaration is being
- /// used, or produce an error (and return true) if a C++0x deleted
- /// function is being used.
- ///
- /// \returns true if there was an error (this declaration cannot be
- /// referenced), false otherwise.
- ///
- bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
- const ObjCInterfaceDecl *UnknownObjCClass) {
- if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
- // If there were any diagnostics suppressed by template argument deduction,
- // emit them now.
- llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >::iterator
- Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
- if (Pos != SuppressedDiagnostics.end()) {
- SmallVectorImpl<PartialDiagnosticAt> &Suppressed = Pos->second;
- for (unsigned I = 0, N = Suppressed.size(); I != N; ++I)
- Diag(Suppressed[I].first, Suppressed[I].second);
-
- // Clear out the list of suppressed diagnostics, so that we don't emit
- // them again for this specialization. However, we don't obsolete this
- // entry from the table, because we want to avoid ever emitting these
- // diagnostics again.
- Suppressed.clear();
- }
- }
- // See if this is an auto-typed variable whose initializer we are parsing.
- if (ParsingInitForAutoVars.count(D)) {
- Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
- << D->getDeclName();
- return true;
- }
- // See if this is a deleted function.
- if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
- if (FD->isDeleted()) {
- Diag(Loc, diag::err_deleted_function_use);
- NoteDeletedFunction(FD);
- return true;
- }
- }
- DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass);
- // Warn if this is used but marked unused.
- if (D->hasAttr<UnusedAttr>())
- Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
- diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
- return false;
- }
- /// \brief Retrieve the message suffix that should be added to a
- /// diagnostic complaining about the given function being deleted or
- /// unavailable.
- std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
- // FIXME: C++0x implicitly-deleted special member functions could be
- // detected here so that we could improve diagnostics to say, e.g.,
- // "base class 'A' had a deleted copy constructor".
- if (FD->isDeleted())
- return std::string();
- std::string Message;
- if (FD->getAvailability(&Message))
- return ": " + Message;
- return std::string();
- }
- /// DiagnoseSentinelCalls - This routine checks whether a call or
- /// message-send is to a declaration with the sentinel attribute, and
- /// if so, it checks that the requirements of the sentinel are
- /// satisfied.
- void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
- Expr **args, unsigned numArgs) {
- const SentinelAttr *attr = D->getAttr<SentinelAttr>();
- if (!attr)
- return;
- // The number of formal parameters of the declaration.
- unsigned numFormalParams;
- // The kind of declaration. This is also an index into a %select in
- // the diagnostic.
- enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
- if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
- numFormalParams = MD->param_size();
- calleeType = CT_Method;
- } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
- numFormalParams = FD->param_size();
- calleeType = CT_Function;
- } else if (isa<VarDecl>(D)) {
- QualType type = cast<ValueDecl>(D)->getType();
- const FunctionType *fn = 0;
- if (const PointerType *ptr = type->getAs<PointerType>()) {
- fn = ptr->getPointeeType()->getAs<FunctionType>();
- if (!fn) return;
- calleeType = CT_Function;
- } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
- fn = ptr->getPointeeType()->castAs<FunctionType>();
- calleeType = CT_Block;
- } else {
- return;
- }
- if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
- numFormalParams = proto->getNumArgs();
- } else {
- numFormalParams = 0;
- }
- } else {
- return;
- }
- // "nullPos" is the number of formal parameters at the end which
- // effectively count as part of the variadic arguments. This is
- // useful if you would prefer to not have *any* formal parameters,
- // but the language forces you to have at least one.
- unsigned nullPos = attr->getNullPos();
- assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
- numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
- // The number of arguments which should follow the sentinel.
- unsigned numArgsAfterSentinel = attr->getSentinel();
- // If there aren't enough arguments for all the formal parameters,
- // the sentinel, and the args after the sentinel, complain.
- if (numArgs < numFormalParams + numArgsAfterSentinel + 1) {
- Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
- Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
- return;
- }
- // Otherwise, find the sentinel expression.
- Expr *sentinelExpr = args[numArgs - numArgsAfterSentinel - 1];
- if (!sentinelExpr) return;
- if (sentinelExpr->isValueDependent()) return;
- if (Context.isSentinelNullExpr(sentinelExpr)) return;
- // Pick a reasonable string to insert. Optimistically use 'nil' or
- // 'NULL' if those are actually defined in the context. Only use
- // 'nil' for ObjC methods, where it's much more likely that the
- // variadic arguments form a list of object pointers.
- SourceLocation MissingNilLoc
- = PP.getLocForEndOfToken(sentinelExpr->getLocEnd());
- std::string NullValue;
- if (calleeType == CT_Method &&
- PP.getIdentifierInfo("nil")->hasMacroDefinition())
- NullValue = "nil";
- else if (PP.getIdentifierInfo("NULL")->hasMacroDefinition())
- NullValue = "NULL";
- else
- NullValue = "(void*) 0";
- if (MissingNilLoc.isInvalid())
- Diag(Loc, diag::warn_missing_sentinel) << calleeType;
- else
- Diag(MissingNilLoc, diag::warn_missing_sentinel)
- << calleeType
- << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
- Diag(D->getLocation(), diag::note_sentinel_here) << calleeType;
- }
- SourceRange Sema::getExprRange(Expr *E) const {
- return E ? E->getSourceRange() : SourceRange();
- }
- //===----------------------------------------------------------------------===//
- // Standard Promotions and Conversions
- //===----------------------------------------------------------------------===//
- /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
- ExprResult Sema::DefaultFunctionArrayConversion(Expr *E) {
- // Handle any placeholder expressions which made it here.
- if (E->getType()->isPlaceholderType()) {
- ExprResult result = CheckPlaceholderExpr(E);
- if (result.isInvalid()) return ExprError();
- E = result.take();
- }
-
- QualType Ty = E->getType();
- assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
- if (Ty->isFunctionType())
- E = ImpCastExprToType(E, Context.getPointerType(Ty),
- CK_FunctionToPointerDecay).take();
- else if (Ty->isArrayType()) {
- // In C90 mode, arrays only promote to pointers if the array expression is
- // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
- // type 'array of type' is converted to an expression that has type 'pointer
- // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
- // that has type 'array of type' ...". The relevant change is "an lvalue"
- // (C90) to "an expression" (C99).
- //
- // C++ 4.2p1:
- // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
- // T" can be converted to an rvalue of type "pointer to T".
- //
- if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
- E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
- CK_ArrayToPointerDecay).take();
- }
- return Owned(E);
- }
- static void CheckForNullPointerDereference(Sema &S, Expr *E) {
- // Check to see if we are dereferencing a null pointer. If so,
- // and if not volatile-qualified, this is undefined behavior that the
- // optimizer will delete, so warn about it. People sometimes try to use this
- // to get a deterministic trap and are surprised by clang's behavior. This
- // only handles the pattern "*null", which is a very syntactic check.
- if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
- if (UO->getOpcode() == UO_Deref &&
- UO->getSubExpr()->IgnoreParenCasts()->
- isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
- !UO->getType().isVolatileQualified()) {
- S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
- S.PDiag(diag::warn_indirection_through_null)
- << UO->getSubExpr()->getSourceRange());
- S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
- S.PDiag(diag::note_indirection_through_null));
- }
- }
- ExprResult Sema::DefaultLvalueConversion(Expr *E) {
- // Handle any placeholder expressions which made it here.
- if (E->getType()->isPlaceholderType()) {
- ExprResult result = CheckPlaceholderExpr(E);
- if (result.isInvalid()) return ExprError();
- E = result.take();
- }
-
- // C++ [conv.lval]p1:
- // A glvalue of a non-function, non-array type T can be
- // converted to a prvalue.
- if (!E->isGLValue()) return Owned(E);
- QualType T = E->getType();
- assert(!T.isNull() && "r-value conversion on typeless expression?");
- // We don't want to throw lvalue-to-rvalue casts on top of
- // expressions of certain types in C++.
- if (getLangOpts().CPlusPlus &&
- (E->getType() == Context.OverloadTy ||
- T->isDependentType() ||
- T->isRecordType()))
- return Owned(E);
- // The C standard is actually really unclear on this point, and
- // DR106 tells us what the result should be but not why. It's
- // generally best to say that void types just doesn't undergo
- // lvalue-to-rvalue at all. Note that expressions of unqualified
- // 'void' type are never l-values, but qualified void can be.
- if (T->isVoidType())
- return Owned(E);
- CheckForNullPointerDereference(*this, E);
- // C++ [conv.lval]p1:
- // [...] If T is a non-class type, the type of the prvalue is the
- // cv-unqualified version of T. Otherwise, the type of the
- // rvalue is T.
- //
- // C99 6.3.2.1p2:
- // If the lvalue has qualified type, the value has the unqualified
- // version of the type of the lvalue; otherwise, the value has the
- // type of the lvalue.
- if (T.hasQualifiers())
- T = T.getUnqualifiedType();
- UpdateMarkingForLValueToRValue(E);
- ExprResult Res = Owned(ImplicitCastExpr::Create(Context, T, CK_LValueToRValue,
- E, 0, VK_RValue));
- // C11 6.3.2.1p2:
- // ... if the lvalue has atomic type, the value has the non-atomic version
- // of the type of the lvalue ...
- if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
- T = Atomic->getValueType().getUnqualifiedType();
- Res = Owned(ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic,
- Res.get(), 0, VK_RValue));
- }
-
- return Res;
- }
- ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E) {
- ExprResult Res = DefaultFunctionArrayConversion(E);
- if (Res.isInvalid())
- return ExprError();
- Res = DefaultLvalueConversion(Res.take());
- if (Res.isInvalid())
- return ExprError();
- return Res;
- }
- /// UsualUnaryConversions - Performs various conversions that are common to most
- /// operators (C99 6.3). The conversions of array and function types are
- /// sometimes suppressed. For example, the array->pointer conversion doesn't
- /// apply if the array is an argument to the sizeof or address (&) operators.
- /// In these instances, this routine should *not* be called.
- ExprResult Sema::UsualUnaryConversions(Expr *E) {
- // First, convert to an r-value.
- ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
- if (Res.isInvalid())
- return Owned(E);
- E = Res.take();
- QualType Ty = E->getType();
- assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
- // Half FP is a bit different: it's a storage-only type, meaning that any
- // "use" of it should be promoted to float.
- if (Ty->isHalfType())
- return ImpCastExprToType(Res.take(), Context.FloatTy, CK_FloatingCast);
- // Try to perform integral promotions if the object has a theoretically
- // promotable type.
- if (Ty->isIntegralOrUnscopedEnumerationType()) {
- // C99 6.3.1.1p2:
- //
- // The following may be used in an expression wherever an int or
- // unsigned int may be used:
- // - an object or expression with an integer type whose integer
- // conversion rank is less than or equal to the rank of int
- // and unsigned int.
- // - A bit-field of type _Bool, int, signed int, or unsigned int.
- //
- // If an int can represent all values of the original type, the
- // value is converted to an int; otherwise, it is converted to an
- // unsigned int. These are called the integer promotions. All
- // other types are unchanged by the integer promotions.
- QualType PTy = Context.isPromotableBitField(E);
- if (!PTy.isNull()) {
- E = ImpCastExprToType(E, PTy, CK_IntegralCast).take();
- return Owned(E);
- }
- if (Ty->isPromotableIntegerType()) {
- QualType PT = Context.getPromotedIntegerType(Ty);
- E = ImpCastExprToType(E, PT, CK_IntegralCast).take();
- return Owned(E);
- }
- }
- return Owned(E);
- }
- /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
- /// do not have a prototype. Arguments that have type float are promoted to
- /// double. All other argument types are converted by UsualUnaryConversions().
- ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
- QualType Ty = E->getType();
- assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
- ExprResult Res = UsualUnaryConversions(E);
- if (Res.isInvalid())
- return Owned(E);
- E = Res.take();
- // If this is a 'float' (CVR qualified or typedef) promote to double.
- if (Ty->isSpecificBuiltinType(BuiltinType::Float))
- E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).take();
- // C++ performs lvalue-to-rvalue conversion as a default argument
- // promotion, even on class types, but note:
- // C++11 [conv.lval]p2:
- // When an lvalue-to-rvalue conversion occurs in an unevaluated
- // operand or a subexpression thereof the value contained in the
- // referenced object is not accessed. Otherwise, if the glvalue
- // has a class type, the conversion copy-initializes a temporary
- // of type T from the glvalue and the result of the conversion
- // is a prvalue for the temporary.
- // FIXME: add some way to gate this entire thing for correctness in
- // potentially potentially evaluated contexts.
- if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
- ExprResult Temp = PerformCopyInitialization(
- InitializedEntity::InitializeTemporary(E->getType()),
- E->getExprLoc(),
- Owned(E));
- if (Temp.isInvalid())
- return ExprError();
- E = Temp.get();
- }
- return Owned(E);
- }
- /// Determine the degree of POD-ness for an expression.
- /// Incomplete types are considered POD, since this check can be performed
- /// when we're in an unevaluated context.
- Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
- if (Ty->isIncompleteType()) {
- if (Ty->isObjCObjectType())
- return VAK_Invalid;
- return VAK_Valid;
- }
- if (Ty.isCXX98PODType(Context))
- return VAK_Valid;
- // C++0x [expr.call]p7:
- // Passing a potentially-evaluated argument of class type (Clause 9)
- // having a non-trivial copy constructor, a non-trivial move constructor,
- // or a non-trivial destructor, with no corresponding parameter,
- // is conditionally-supported with implementation-defined semantics.
- if (getLangOpts().CPlusPlus0x && !Ty->isDependentType())
- if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
- if (Record->hasTrivialCopyConstructor() &&
- Record->hasTrivialMoveConstructor() &&
- Record->hasTrivialDestructor())
- return VAK_ValidInCXX11;
- if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
- return VAK_Valid;
- return VAK_Invalid;
- }
- bool Sema::variadicArgumentPODCheck(const Expr *E, VariadicCallType CT) {
- // Don't allow one to pass an Objective-C interface to a vararg.
- const QualType & Ty = E->getType();
- // Complain about passing non-POD types through varargs.
- switch (isValidVarArgType(Ty)) {
- case VAK_Valid:
- break;
- case VAK_ValidInCXX11:
- DiagRuntimeBehavior(E->getLocStart(), 0,
- PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
- << E->getType() << CT);
- break;
- case VAK_Invalid: {
- if (Ty->isObjCObjectType())
- return DiagRuntimeBehavior(E->getLocStart(), 0,
- PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
- << Ty << CT);
- return DiagRuntimeBehavior(E->getLocStart(), 0,
- PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
- << getLangOpts().CPlusPlus0x << Ty << CT);
- }
- }
- // c++ rules are enforced elsewhere.
- return false;
- }
- /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
- /// will create a trap if the resulting type is not a POD type.
- ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
- FunctionDecl *FDecl) {
- if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
- // Strip the unbridged-cast placeholder expression off, if applicable.
- if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
- (CT == VariadicMethod ||
- (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
- E = stripARCUnbridgedCast(E);
- // Otherwise, do normal placeholder checking.
- } else {
- ExprResult ExprRes = CheckPlaceholderExpr(E);
- if (ExprRes.isInvalid())
- return ExprError();
- E = ExprRes.take();
- }
- }
-
- ExprResult ExprRes = DefaultArgumentPromotion(E);
- if (ExprRes.isInvalid())
- return ExprError();
- E = ExprRes.take();
- // Diagnostics regarding non-POD argument types are
- // emitted along with format string checking in Sema::CheckFunctionCall().
- if (isValidVarArgType(E->getType()) == VAK_Invalid) {
- // Turn this into a trap.
- CXXScopeSpec SS;
- SourceLocation TemplateKWLoc;
- UnqualifiedId Name;
- Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
- E->getLocStart());
- ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
- Name, true, false);
- if (TrapFn.isInvalid())
- return ExprError();
- ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
- E->getLocStart(), MultiExprArg(),
- E->getLocEnd());
- if (Call.isInvalid())
- return ExprError();
- ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
- Call.get(), E);
- if (Comma.isInvalid())
- return ExprError();
- return Comma.get();
- }
- if (!getLangOpts().CPlusPlus &&
- RequireCompleteType(E->getExprLoc(), E->getType(),
- diag::err_call_incomplete_argument))
- return ExprError();
- return Owned(E);
- }
- /// \brief Converts an integer to complex float type. Helper function of
- /// UsualArithmeticConversions()
- ///
- /// \return false if the integer expression is an integer type and is
- /// successfully converted to the complex type.
- static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
- ExprResult &ComplexExpr,
- QualType IntTy,
- QualType ComplexTy,
- bool SkipCast) {
- if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
- if (SkipCast) return false;
- if (IntTy->isIntegerType()) {
- QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
- IntExpr = S.ImpCastExprToType(IntExpr.take(), fpTy, CK_IntegralToFloating);
- IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
- CK_FloatingRealToComplex);
- } else {
- assert(IntTy->isComplexIntegerType());
- IntExpr = S.ImpCastExprToType(IntExpr.take(), ComplexTy,
- CK_IntegralComplexToFloatingComplex);
- }
- return false;
- }
- /// \brief Takes two complex float types and converts them to the same type.
- /// Helper function of UsualArithmeticConversions()
- static QualType
- handleComplexFloatToComplexFloatConverstion(Sema &S, ExprResult &LHS,
- ExprResult &RHS, QualType LHSType,
- QualType RHSType,
- bool IsCompAssign) {
- int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
- if (order < 0) {
- // _Complex float -> _Complex double
- if (!IsCompAssign)
- LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingComplexCast);
- return RHSType;
- }
- if (order > 0)
- // _Complex float -> _Complex double
- RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingComplexCast);
- return LHSType;
- }
- /// \brief Converts otherExpr to complex float and promotes complexExpr if
- /// necessary. Helper function of UsualArithmeticConversions()
- static QualType handleOtherComplexFloatConversion(Sema &S,
- ExprResult &ComplexExpr,
- ExprResult &OtherExpr,
- QualType ComplexTy,
- QualType OtherTy,
- bool ConvertComplexExpr,
- bool ConvertOtherExpr) {
- int order = S.Context.getFloatingTypeOrder(ComplexTy, OtherTy);
- // If just the complexExpr is complex, the otherExpr needs to be converted,
- // and the complexExpr might need to be promoted.
- if (order > 0) { // complexExpr is wider
- // float -> _Complex double
- if (ConvertOtherExpr) {
- QualType fp = cast<ComplexType>(ComplexTy)->getElementType();
- OtherExpr = S.ImpCastExprToType(OtherExpr.take(), fp, CK_FloatingCast);
- OtherExpr = S.ImpCastExprToType(OtherExpr.take(), ComplexTy,
- CK_FloatingRealToComplex);
- }
- return ComplexTy;
- }
- // otherTy is at least as wide. Find its corresponding complex type.
- QualType result = (order == 0 ? ComplexTy :
- S.Context.getComplexType(OtherTy));
- // double -> _Complex double
- if (ConvertOtherExpr)
- OtherExpr = S.ImpCastExprToType(OtherExpr.take(), result,
- CK_FloatingRealToComplex);
- // _Complex float -> _Complex double
- if (ConvertComplexExpr && order < 0)
- ComplexExpr = S.ImpCastExprToType(ComplexExpr.take(), result,
- CK_FloatingComplexCast);
- return result;
- }
- /// \brief Handle arithmetic conversion with complex types. Helper function of
- /// UsualArithmeticConversions()
- static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
- ExprResult &RHS, QualType LHSType,
- QualType RHSType,
- bool IsCompAssign) {
- // if we have an integer operand, the result is the complex type.
- if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
- /*skipCast*/false))
- return LHSType;
- if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
- /*skipCast*/IsCompAssign))
- return RHSType;
- // This handles complex/complex, complex/float, or float/complex.
- // When both operands are complex, the shorter operand is converted to the
- // type of the longer, and that is the type of the result. This corresponds
- // to what is done when combining two real floating-point operands.
- // The fun begins when size promotion occur across type domains.
- // From H&S 6.3.4: When one operand is complex and the other is a real
- // floating-point type, the less precise type is converted, within it's
- // real or complex domain, to the precision of the other type. For example,
- // when combining a "long double" with a "double _Complex", the
- // "double _Complex" is promoted to "long double _Complex".
- bool LHSComplexFloat = LHSType->isComplexType();
- bool RHSComplexFloat = RHSType->isComplexType();
- // If both are complex, just cast to the more precise type.
- if (LHSComplexFloat && RHSComplexFloat)
- return handleComplexFloatToComplexFloatConverstion(S, LHS, RHS,
- LHSType, RHSType,
- IsCompAssign);
- // If only one operand is complex, promote it if necessary and convert the
- // other operand to complex.
- if (LHSComplexFloat)
- return handleOtherComplexFloatConversion(
- S, LHS, RHS, LHSType, RHSType, /*convertComplexExpr*/!IsCompAssign,
- /*convertOtherExpr*/ true);
- assert(RHSComplexFloat);
- return handleOtherComplexFloatConversion(
- S, RHS, LHS, RHSType, LHSType, /*convertComplexExpr*/true,
- /*convertOtherExpr*/ !IsCompAssign);
- }
- /// \brief Hande arithmetic conversion from integer to float. Helper function
- /// of UsualArithmeticConversions()
- static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
- ExprResult &IntExpr,
- QualType FloatTy, QualType IntTy,
- bool ConvertFloat, bool ConvertInt) {
- if (IntTy->isIntegerType()) {
- if (ConvertInt)
- // Convert intExpr to the lhs floating point type.
- IntExpr = S.ImpCastExprToType(IntExpr.take(), FloatTy,
- CK_IntegralToFloating);
- return FloatTy;
- }
-
- // Convert both sides to the appropriate complex float.
- assert(IntTy->isComplexIntegerType());
- QualType result = S.Context.getComplexType(FloatTy);
- // _Complex int -> _Complex float
- if (ConvertInt)
- IntExpr = S.ImpCastExprToType(IntExpr.take(), result,
- CK_IntegralComplexToFloatingComplex);
- // float -> _Complex float
- if (ConvertFloat)
- FloatExpr = S.ImpCastExprToType(FloatExpr.take(), result,
- CK_FloatingRealToComplex);
- return result;
- }
- /// \brief Handle arithmethic conversion with floating point types. Helper
- /// function of UsualArithmeticConversions()
- static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
- ExprResult &RHS, QualType LHSType,
- QualType RHSType, bool IsCompAssign) {
- bool LHSFloat = LHSType->isRealFloatingType();
- bool RHSFloat = RHSType->isRealFloatingType();
- // If we have two real floating types, convert the smaller operand
- // to the bigger result.
- if (LHSFloat && RHSFloat) {
- int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
- if (order > 0) {
- RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_FloatingCast);
- return LHSType;
- }
- assert(order < 0 && "illegal float comparison");
- if (!IsCompAssign)
- LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_FloatingCast);
- return RHSType;
- }
- if (LHSFloat)
- return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
- /*convertFloat=*/!IsCompAssign,
- /*convertInt=*/ true);
- assert(RHSFloat);
- return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
- /*convertInt=*/ true,
- /*convertFloat=*/!IsCompAssign);
- }
- /// \brief Handle conversions with GCC complex int extension. Helper function
- /// of UsualArithmeticConversions()
- // FIXME: if the operands are (int, _Complex long), we currently
- // don't promote the complex. Also, signedness?
- static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
- ExprResult &RHS, QualType LHSType,
- QualType RHSType,
- bool IsCompAssign) {
- const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
- const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
- if (LHSComplexInt && RHSComplexInt) {
- int order = S.Context.getIntegerTypeOrder(LHSComplexInt->getElementType(),
- RHSComplexInt->getElementType());
- assert(order && "inequal types with equal element ordering");
- if (order > 0) {
- // _Complex int -> _Complex long
- RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralComplexCast);
- return LHSType;
- }
- if (!IsCompAssign)
- LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralComplexCast);
- return RHSType;
- }
- if (LHSComplexInt) {
- // int -> _Complex int
- // FIXME: This needs to take integer ranks into account
- RHS = S.ImpCastExprToType(RHS.take(), LHSComplexInt->getElementType(),
- CK_IntegralCast);
- RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralRealToComplex);
- return LHSType;
- }
- assert(RHSComplexInt);
- // int -> _Complex int
- // FIXME: This needs to take integer ranks into account
- if (!IsCompAssign) {
- LHS = S.ImpCastExprToType(LHS.take(), RHSComplexInt->getElementType(),
- CK_IntegralCast);
- LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralRealToComplex);
- }
- return RHSType;
- }
- /// \brief Handle integer arithmetic conversions. Helper function of
- /// UsualArithmeticConversions()
- static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
- ExprResult &RHS, QualType LHSType,
- QualType RHSType, bool IsCompAssign) {
- // The rules for this case are in C99 6.3.1.8
- int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
- bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
- bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
- if (LHSSigned == RHSSigned) {
- // Same signedness; use the higher-ranked type
- if (order >= 0) {
- RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
- return LHSType;
- } else if (!IsCompAssign)
- LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
- return RHSType;
- } else if (order != (LHSSigned ? 1 : -1)) {
- // The unsigned type has greater than or equal rank to the
- // signed type, so use the unsigned type
- if (RHSSigned) {
- RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
- return LHSType;
- } else if (!IsCompAssign)
- LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
- return RHSType;
- } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
- // The two types are different widths; if we are here, that
- // means the signed type is larger than the unsigned type, so
- // use the signed type.
- if (LHSSigned) {
- RHS = S.ImpCastExprToType(RHS.take(), LHSType, CK_IntegralCast);
- return LHSType;
- } else if (!IsCompAssign)
- LHS = S.ImpCastExprToType(LHS.take(), RHSType, CK_IntegralCast);
- return RHSType;
- } else {
- // The signed type is higher-ranked than the unsigned type,
- // but isn't actually any bigger (like unsigned int and long
- // on most 32-bit systems). Use the unsigned type corresponding
- // to the signed type.
- QualType result =
- S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
- RHS = S.ImpCastExprToType(RHS.take(), result, CK_IntegralCast);
- if (!IsCompAssign)
- LHS = S.ImpCastExprToType(LHS.take(), result, CK_IntegralCast);
- return result;
- }
- }
- /// UsualArithmeticConversions - Performs various conversions that are common to
- /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
- /// routine returns the first non-arithmetic type found. The client is
- /// responsible for emitting appropriate error diagnostics.
- /// FIXME: verify the conversion rules for "complex int" are consistent with
- /// GCC.
- QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
- bool IsCompAssign) {
- if (!IsCompAssign) {
- LHS = UsualUnaryConversions(LHS.take());
- if (LHS.isInvalid())
- return QualType();
- }
- RHS = UsualUnaryConversions(RHS.take());
- if (RHS.isInvalid())
- return QualType();
- // For conversion purposes, we ignore any qualifiers.
- // For example, "const float" and "float" are equivalent.
- QualType LHSType =
- Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
- QualType RHSType =
- Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
- // For conversion purposes, we ignore any atomic qualifier on the LHS.
- if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
- LHSType = AtomicLHS->getValueType();
- // If both types are identical, no conversion is needed.
- if (LHSType == RHSType)
- return LHSType;
- // If either side is a non-arithmetic type (e.g. a pointer), we are done.
- // The caller can deal with this (e.g. pointer + int).
- if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
- return QualType();
- // Apply unary and bitfield promotions to the LHS's type.
- QualType LHSUnpromotedType = LHSType;
- if (LHSType->isPromotableIntegerType())
- LHSType = Context.getPromotedIntegerType(LHSType);
- QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
- if (!LHSBitfieldPromoteTy.isNull())
- LHSType = LHSBitfieldPromoteTy;
- if (LHSType != LHSUnpromotedType && !IsCompAssign)
- LHS = ImpCastExprToType(LHS.take(), LHSType, CK_IntegralCast);
- // If both types are identical, no conversion is needed.
- if (LHSType == RHSType)
- return LHSType;
- // At this point, we have two different arithmetic types.
- // Handle complex types first (C99 6.3.1.8p1).
- if (LHSType->isComplexType() || RHSType->isComplexType())
- return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
- IsCompAssign);
- // Now handle "real" floating types (i.e. float, double, long double).
- if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
- return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
- IsCompAssign);
- // Handle GCC complex int extension.
- if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
- return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
- IsCompAssign);
- // Finally, we have two differing integer types.
- return handleIntegerConversion(*this, LHS, RHS, LHSType, RHSType,
- IsCompAssign);
- }
- //===----------------------------------------------------------------------===//
- // Semantic Analysis for various Expression Types
- //===----------------------------------------------------------------------===//
- ExprResult
- Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
- SourceLocation DefaultLoc,
- SourceLocation RParenLoc,
- Expr *ControllingExpr,
- MultiTypeArg ArgTypes,
- MultiExprArg ArgExprs) {
- unsigned NumAssocs = ArgTypes.size();
- assert(NumAssocs == ArgExprs.size());
- ParsedType *ParsedTypes = ArgTypes.get();
- Expr **Exprs = ArgExprs.get();
- TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
- for (unsigned i = 0; i < NumAssocs; ++i) {
- if (ParsedTypes[i])
- (void) GetTypeFromParser(ParsedTypes[i], &Types[i]);
- else
- Types[i] = 0;
- }
- ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
- ControllingExpr, Types, Exprs,
- NumAssocs);
- delete [] Types;
- return ER;
- }
- ExprResult
- Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
- SourceLocation DefaultLoc,
- SourceLocation RParenLoc,
- Expr *ControllingExpr,
- TypeSourceInfo **Types,
- Expr **Exprs,
- unsigned NumAssocs) {
- bool TypeErrorFound = false,
- IsResultDependent = ControllingExpr->isTypeDependent(),
- ContainsUnexpandedParameterPack
- = ControllingExpr->containsUnexpandedParameterPack();
- for (unsigned i = 0; i < NumAssocs; ++i) {
- if (Exprs[i]->containsUnexpandedParameterPack())
- ContainsUnexpandedParameterPack = true;
- if (Types[i]) {
- if (Types[i]->getType()->containsUnexpandedParameterPack())
- ContainsUnexpandedParameterPack = true;
- if (Types[i]->getType()->isDependentType()) {
- IsResultDependent = true;
- } else {
- // C11 6.5.1.1p2 "The type name in a generic association shall specify a
- // complete object type other than a variably modified type."
- unsigned D = 0;
- if (Types[i]->getType()->isIncompleteType())
- D = diag::err_assoc_type_incomplete;
- else if (!Types[i]->getType()->isObjectType())
- D = diag::err_assoc_type_nonobject;
- else if (Types[i]->getType()->isVariablyModifiedType())
- D = diag::err_assoc_type_variably_modified;
- if (D != 0) {
- Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
- << Types[i]->getTypeLoc().getSourceRange()
- << Types[i]->getType();
- TypeErrorFound = true;
- }
- // C11 6.5.1.1p2 "No two generic associations in the same generic
- // selection shall specify compatible types."
- for (unsigned j = i+1; j < NumAssocs; ++j)
- if (Types[j] && !Types[j]->getType()->isDependentType() &&
- Context.typesAreCompatible(Types[i]->getType(),
- Types[j]->getType())) {
- Diag(Types[j]->getTypeLoc().getBeginLoc(),
- diag::err_assoc_compatible_types)
- << Types[j]->getTypeLoc().getSourceRange()
- << Types[j]->getType()
- << Types[i]->getType();
- Diag(Types[i]->getTypeLoc().getBeginLoc(),
- diag::note_compat_assoc)
- << Types[i]->getTypeLoc().getSourceRange()
- << Types[i]->getType();
- TypeErrorFound = true;
- }
- }
- }
- }
- if (TypeErrorFound)
- return ExprError();
- // If we determined that the generic selection is result-dependent, don't
- // try to compute the result expression.
- if (IsResultDependent)
- return Owned(new (Context) GenericSelectionExpr(
- Context, KeyLoc, ControllingExpr,
- Types, Exprs, NumAssocs, DefaultLoc,
- RParenLoc, ContainsUnexpandedParameterPack));
- SmallVector<unsigned, 1> CompatIndices;
- unsigned DefaultIndex = -1U;
- for (unsigned i = 0; i < NumAssocs; ++i) {
- if (!Types[i])
- DefaultIndex = i;
- else if (Context.typesAreCompatible(ControllingExpr->getType(),
- Types[i]->getType()))
- CompatIndices.push_back(i);
- }
- // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
- // type compatible with at most one of the types named in its generic
- // association list."
- if (CompatIndices.size() > 1) {
- // We strip parens here because the controlling expression is typically
- // parenthesized in macro definitions.
- ControllingExpr = ControllingExpr->IgnoreParens();
- Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
- << ControllingExpr->getSourceRange() << ControllingExpr->getType()
- << (unsigned) CompatIndices.size();
- for (SmallVector<unsigned, 1>::iterator I = CompatIndices.begin(),
- E = CompatIndices.end(); I != E; ++I) {
- Diag(Types[*I]->getTypeLoc().getBeginLoc(),
- diag::note_compat_assoc)
- << Types[*I]->getTypeLoc().getSourceRange()
- << Types[*I]->getType();
- }
- return ExprError();
- }
- // C11 6.5.1.1p2 "If a generic selection has no default generic association,
- // its controlling expression shall have type compatible with exactly one of
- // the types named in its generic association list."
- if (DefaultIndex == -1U && CompatIndices.size() == 0) {
- // We strip parens here because the controlling expression is typically
- // parenthesized in macro definitions.
- ControllingExpr = ControllingExpr->IgnoreParens();
- Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
- << ControllingExpr->getSourceRange() << ControllingExpr->getType();
- return ExprError();
- }
- // C11 6.5.1.1p3 "If a generic selection has a generic association with a
- // type name that is compatible with the type of the controlling expression,
- // then the result expression of the generic selection is the expression
- // in that generic association. Otherwise, the result expression of the
- // generic selection is the expression in the default generic association."
- unsigned ResultIndex =
- CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
- return Owned(new (Context) GenericSelectionExpr(
- Context, KeyLoc, ControllingExpr,
- Types, Exprs, NumAssocs, DefaultLoc,
- RParenLoc, ContainsUnexpandedParameterPack,
- ResultIndex));
- }
- /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
- /// location of the token and the offset of the ud-suffix within it.
- static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
- unsigned Offset) {
- return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
- S.getLangOpts());
- }
- /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
- /// the corresponding cooked (non-raw) literal operator, and build a call to it.
- static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
- IdentifierInfo *UDSuffix,
- SourceLocation UDSuffixLoc,
- ArrayRef<Expr*> Args,
- SourceLocation LitEndLoc) {
- assert(Args.size() <= 2 && "too many arguments for literal operator");
- QualType ArgTy[2];
- for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
- ArgTy[ArgIdx] = Args[ArgIdx]->getType();
- if (ArgTy[ArgIdx]->isArrayType())
- ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
- }
- DeclarationName OpName =
- S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
- DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
- OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
- LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
- if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
- /*AllowRawAndTemplate*/false) == Sema::LOLR_Error)
- return ExprError();
- return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
- }
- /// ActOnStringLiteral - The specified tokens were lexed as pasted string
- /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
- /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
- /// multiple tokens. However, the common case is that StringToks points to one
- /// string.
- ///
- ExprResult
- Sema::ActOnStringLiteral(const Token *StringToks, unsigned NumStringToks,
- Scope *UDLScope) {
- assert(NumStringToks && "Must have at least one string!");
- StringLiteralParser Literal(StringToks, NumStringToks, PP);
- if (Literal.hadError)
- return ExprError();
- SmallVector<SourceLocation, 4> StringTokLocs;
- for (unsigned i = 0; i != NumStringToks; ++i)
- StringTokLocs.push_back(StringToks[i].getLocation());
- QualType StrTy = Context.CharTy;
- if (Literal.isWide())
- StrTy = Context.getWCharType();
- else if (Literal.isUTF16())
- StrTy = Context.Char16Ty;
- else if (Literal.isUTF32())
- StrTy = Context.Char32Ty;
- else if (Literal.isPascal())
- StrTy = Context.UnsignedCharTy;
- StringLiteral::StringKind Kind = StringLiteral::Ascii;
- if (Literal.isWide())
- Kind = StringLiteral::Wide;
- else if (Literal.isUTF8())
- Kind = StringLiteral::UTF8;
- else if (Literal.isUTF16())
- Kind = StringLiteral::UTF16;
- else if (Literal.isUTF32())
- Kind = StringLiteral::UTF32;
- // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
- if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
- StrTy.addConst();
- // Get an array type for the string, according to C99 6.4.5. This includes
- // the nul terminator character as well as the string length for pascal
- // strings.
- StrTy = Context.getConstantArrayType(StrTy,
- llvm::APInt(32, Literal.GetNumStringChars()+1),
- ArrayType::Normal, 0);
- // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
- StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
- Kind, Literal.Pascal, StrTy,
- &StringTokLocs[0],
- StringTokLocs.size());
- if (Literal.getUDSuffix().empty())
- return Owned(Lit);
- // We're building a user-defined literal.
- IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
- SourceLocation UDSuffixLoc =
- getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
- Literal.getUDSuffixOffset());
- // Make sure we're allowed user-defined literals here.
- if (!UDLScope)
- return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
- // C++11 [lex.ext]p5: The literal L is treated as a call of the form
- // operator "" X (str, len)
- QualType SizeType = Context.getSizeType();
- llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
- IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
- StringTokLocs[0]);
- Expr *Args[] = { Lit, LenArg };
- return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
- Args, StringTokLocs.back());
- }
- ExprResult
- Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
- SourceLocation Loc,
- const CXXScopeSpec *SS) {
- DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
- return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
- }
- /// BuildDeclRefExpr - Build an expression that references a
- /// declaration that does not require a closure capture.
- ExprResult
- Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
- const DeclarationNameInfo &NameInfo,
- const CXXScopeSpec *SS) {
- if (getLangOpts().CUDA)
- if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
- if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
- CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller),
- CalleeTarget = IdentifyCUDATarget(Callee);
- if (CheckCUDATarget(CallerTarget, CalleeTarget)) {
- Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
- << CalleeTarget << D->getIdentifier() << CallerTarget;
- Diag(D->getLocation(), diag::note_previous_decl)
- << D->getIdentifier();
- return ExprError();
- }
- }
- bool refersToEnclosingScope =
- (CurContext != D->getDeclContext() &&
- D->getDeclContext()->isFunctionOrMethod());
- DeclRefExpr *E = DeclRefExpr::Create(Context,
- SS ? SS->getWithLocInContext(Context)
- : NestedNameSpecifierLoc(),
- SourceLocation(),
- D, refersToEnclosingScope,
- NameInfo, Ty, VK);
- MarkDeclRefReferenced(E);
- // Just in case we're building an illegal pointer-to-member.
- FieldDecl *FD = dyn_cast<FieldDecl>(D);
- if (FD && FD->isBitField())
- E->setObjectKind(OK_BitField);
- return Owned(E);
- }
- /// Decomposes the given name into a DeclarationNameInfo, its location, and
- /// possibly a list of template arguments.
- ///
- /// If this produces template arguments, it is permitted to call
- /// DecomposeTemplateName.
- ///
- /// This actually loses a lot of source location information for
- /// non-standard name kinds; we should consider preserving that in
- /// some way.
- void
- Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
- TemplateArgumentListInfo &Buffer,
- DeclarationNameInfo &NameInfo,
- const TemplateArgumentListInfo *&TemplateArgs) {
- if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
- Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
- Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
- ASTTemplateArgsPtr TemplateArgsPtr(*this,
- Id.TemplateId->getTemplateArgs(),
- Id.TemplateId->NumArgs);
- translateTemplateArguments(TemplateArgsPtr, Buffer);
- TemplateName TName = Id.TemplateId->Template.get();
- SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
- NameInfo = Context.getNameForTemplate(TName, TNameLoc);
- TemplateArgs = &Buffer;
- } else {
- NameInfo = GetNameFromUnqualifiedId(Id);
- TemplateArgs = 0;
- }
- }
- /// Diagnose an empty lookup.
- ///
- /// \return false if new lookup candidates were found
- bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
- CorrectionCandidateCallback &CCC,
- TemplateArgumentListInfo *ExplicitTemplateArgs,
- llvm::ArrayRef<Expr *> Args) {
- DeclarationName Name = R.getLookupName();
- unsigned diagnostic = diag::err_undeclared_var_use;
- unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
- if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
- Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
- Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
- diagnostic = diag::err_undeclared_use;
- diagnostic_suggest = diag::err_undeclared_use_suggest;
- }
- // If the original lookup was an unqualified lookup, fake an
- // unqualified lookup. This is useful when (for example) the
- // original lookup would not have found something because it was a
- // dependent name.
- DeclContext *DC = (SS.isEmpty() && !CallsUndergoingInstantiation.empty())
- ? CurContext : 0;
- while (DC) {
- if (isa<CXXRecordDecl>(DC)) {
- LookupQualifiedName(R, DC);
- if (!R.empty()) {
- // Don't give errors about ambiguities in this lookup.
- R.suppressDiagnostics();
- // During a default argument instantiation the CurContext points
- // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
- // function parameter list, hence add an explicit check.
- bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
- ActiveTemplateInstantiations.back().Kind ==
- ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
- CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
- bool isInstance = CurMethod &&
- CurMethod->isInstance() &&
- DC == CurMethod->getParent() && !isDefaultArgument;
-
- // Give a code modification hint to insert 'this->'.
- // TODO: fixit for inserting 'Base<T>::' in the other cases.
- // Actually quite difficult!
- if (getLangOpts().MicrosoftMode)
- diagnostic = diag::warn_found_via_dependent_bases_lookup;
- if (isInstance) {
- Diag(R.getNameLoc(), diagnostic) << Name
- << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
- UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(
- CallsUndergoingInstantiation.back()->getCallee());
-
- CXXMethodDecl *DepMethod;
- if (CurMethod->getTemplatedKind() ==
- FunctionDecl::TK_FunctionTemplateSpecialization)
- DepMethod = cast<CXXMethodDecl>(CurMethod->getPrimaryTemplate()->
- getInstantiatedFromMemberTemplate()->getTemplatedDecl());
- else
- DepMethod = cast<CXXMethodDecl>(
- CurMethod->getInstantiatedFromMemberFunction());
- assert(DepMethod && "No template pattern found");
- QualType DepThisType = DepMethod->getThisType(Context);
- CheckCXXThisCapture(R.getNameLoc());
- CXXThisExpr *DepThis = new (Context) CXXThisExpr(
- R.getNameLoc(), DepThisType, false);
- TemplateArgumentListInfo TList;
- if (ULE->hasExplicitTemplateArgs())
- ULE->copyTemplateArgumentsInto(TList);
-
- CXXScopeSpec SS;
- SS.Adopt(ULE->getQualifierLoc());
- CXXDependentScopeMemberExpr *DepExpr =
- CXXDependentScopeMemberExpr::Create(
- Context, DepThis, DepThisType, true, SourceLocation(),
- SS.getWithLocInContext(Context),
- ULE->getTemplateKeywordLoc(), 0,
- R.getLookupNameInfo(),
- ULE->hasExplicitTemplateArgs() ? &TList : 0);
- CallsUndergoingInstantiation.back()->setCallee(DepExpr);
- } else {
- Diag(R.getNameLoc(), diagnostic) << Name;
- }
- // Do we really want to note all of these?
- for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
- Diag((*I)->getLocation(), diag::note_dependent_var_use);
- // Return true if we are inside a default argument instantiation
- // and the found name refers to an instance member function, otherwise
- // the function calling DiagnoseEmptyLookup will try to create an
- // implicit member call and this is wrong for default argument.
- if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
- Diag(R.getNameLoc(), diag::err_member_call_without_object);
- return true;
- }
- // Tell the callee to try to recover.
- return false;
- }
- R.clear();
- }
- // In Microsoft mode, if we are performing lookup from within a friend
- // function definition declared at class scope then we must set
- // DC to the lexical parent to be able to search into the parent
- // class.
- if (getLangOpts().MicrosoftMode && isa<FunctionDecl>(DC) &&
- cast<FunctionDecl>(DC)->getFriendObjectKind() &&
- DC->getLexicalParent()->isRecord())
- DC = DC->getLexicalParent();
- else
- DC = DC->getParent();
- }
- // We didn't find anything, so try to correct for a typo.
- TypoCorrection Corrected;
- if (S && (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
- S, &SS, CCC))) {
- std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
- std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
- R.setLookupName(Corrected.getCorrection());
- if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
- if (Corrected.isOverloaded()) {
- OverloadCandidateSet OCS(R.getNameLoc());
- OverloadCandidateSet::iterator Best;
- for (TypoCorrection::decl_iterator CD = Corrected.begin(),
- CDEnd = Corrected.end();
- CD != CDEnd; ++CD) {
- if (FunctionTemplateDecl *FTD =
- dyn_cast<FunctionTemplateDecl>(*CD))
- AddTemplateOverloadCandidate(
- FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
- Args, OCS);
- else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*CD))
- if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
- AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
- Args, OCS);
- }
- switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
- case OR_Success:
- ND = Best->Function;
- break;
- default:
- break;
- }
- }
- R.addDecl(ND);
- if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
- if (SS.isEmpty())
- Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr
- << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
- else
- Diag(R.getNameLoc(), diag::err_no_member_suggest)
- << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
- << SS.getRange()
- << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
- if (ND)
- Diag(ND->getLocation(), diag::note_previous_decl)
- << CorrectedQuotedStr;
- // Tell the callee to try to recover.
- return false;
- }
- if (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) {
- // FIXME: If we ended up with a typo for a type name or
- // Objective-C class name, we're in trouble because the parser
- // is in the wrong place to recover. Suggest the typo
- // correction, but don't make it a fix-it since we're not going
- // to recover well anyway.
- if (SS.isEmpty())
- Diag(R.getNameLoc(), diagnostic_suggest)
- << Name << CorrectedQuotedStr;
- else
- Diag(R.getNameLoc(), diag::err_no_member_suggest)
- << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
- << SS.getRange();
- // Don't try to recover; it won't work.
- return true;
- }
- } else {
- // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
- // because we aren't able to recover.
- if (SS.isEmpty())
- Diag(R.getNameLoc(), diagnostic_suggest) << Name << CorrectedQuotedStr;
- else
- Diag(R.getNameLoc(), diag::err_no_member_suggest)
- << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
- << SS.getRange();
- return true;
- }
- }
- R.clear();
- // Emit a special diagnostic for failed member lookups.
- // FIXME: computing the declaration context might fail here (?)
- if (!SS.isEmpty()) {
- Diag(R.getNameLoc(), diag::err_no_member)
- << Name << computeDeclContext(SS, false)
- << SS.getRange();
- return true;
- }
- // Give up, we can't recover.
- Diag(R.getNameLoc(), diagnostic) << Name;
- return true;
- }
- ExprResult Sema::ActOnIdExpression(Scope *S,
- CXXScopeSpec &SS,
- SourceLocation TemplateKWLoc,
- UnqualifiedId &Id,
- bool HasTrailingLParen,
- bool IsAddressOfOperand,
- CorrectionCandidateCallback *CCC) {
- assert(!(IsAddressOfOperand && HasTrailingLParen) &&
- "cannot be direct & operand and have a trailing lparen");
- if (SS.isInvalid())
- return ExprError();
- TemplateArgumentListInfo TemplateArgsBuffer;
- // Decompose the UnqualifiedId into the following data.
- DeclarationNameInfo NameInfo;
- const TemplateArgumentListInfo *TemplateArgs;
- DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
- DeclarationName Name = NameInfo.getName();
- IdentifierInfo *II = Name.getAsIdentifierInfo();
- SourceLocation NameLoc = NameInfo.getLoc();
- // C++ [temp.dep.expr]p3:
- // An id-expression is type-dependent if it contains:
- // -- an identifier that was declared with a dependent type,
- // (note: handled after lookup)
- // -- a template-id that is dependent,
- // (note: handled in BuildTemplateIdExpr)
- // -- a conversion-function-id that specifies a dependent type,
- // -- a nested-name-specifier that contains a class-name that
- // names a dependent type.
- // Determine whether this is a member of an unknown specialization;
- // we need to handle these differently.
- bool DependentID = false;
- if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
- Name.getCXXNameType()->isDependentType()) {
- DependentID = true;
- } else if (SS.isSet()) {
- if (DeclContext *DC = computeDeclContext(SS, false)) {
- if (RequireCompleteDeclContext(SS, DC))
- return ExprError();
- } else {
- DependentID = true;
- }
- }
- if (DependentID)
- return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
- IsAddressOfOperand, TemplateArgs);
- // Perform the required lookup.
- LookupResult R(*this, NameInfo,
- (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
- ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
- if (TemplateArgs) {
- // Lookup the template name again to correctly establish the context in
- // which it was found. This is really unfortunate as we already did the
- // lookup to determine that it was a template name in the first place. If
- // this becomes a performance hit, we can work harder to preserve those
- // results until we get here but it's likely not worth it.
- bool MemberOfUnknownSpecialization;
- LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
- MemberOfUnknownSpecialization);
-
- if (MemberOfUnknownSpecialization ||
- (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
- return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
- IsAddressOfOperand, TemplateArgs);
- } else {
- bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
- LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
- // If the result might be in a dependent base class, this is a dependent
- // id-expression.
- if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
- return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
- IsAddressOfOperand, TemplateArgs);
- // If this reference is in an Objective-C method, then we need to do
- // some special Objective-C lookup, too.
- if (IvarLookupFollowUp) {
- ExprResult E(LookupInObjCMethod(R, S, II, true));
- if (E.isInvalid())
- return ExprError();
- if (Expr *Ex = E.takeAs<Expr>())
- return Owned(Ex);
- }
- }
- if (R.isAmbiguous())
- return ExprError();
- // Determine whether this name might be a candidate for
- // argument-dependent lookup.
- bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
- if (R.empty() && !ADL) {
- // Otherwise, this could be an implicitly declared function reference (legal
- // in C90, extension in C99, forbidden in C++).
- if (HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
- NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
- if (D) R.addDecl(D);
- }
- // If this name wasn't predeclared and if this is not a function
- // call, diagnose the problem.
- if (R.empty()) {
- // In Microsoft mode, if we are inside a template class member function
- // and we can't resolve an identifier then assume the identifier is type
- // dependent. The goal is to postpone name lookup to instantiation time
- // to be able to search into type dependent base classes.
- if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
- isa<CXXMethodDecl>(CurContext))
- return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
- IsAddressOfOperand, TemplateArgs);
- CorrectionCandidateCallback DefaultValidator;
- if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator))
- return ExprError();
- assert(!R.empty() &&
- "DiagnoseEmptyLookup returned false but added no results");
- // If we found an Objective-C instance variable, let
- // LookupInObjCMethod build the appropriate expression to
- // reference the ivar.
- if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
- R.clear();
- ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
- // In a hopelessly buggy code, Objective-C instance variable
- // lookup fails and no expression will be built to reference it.
- if (!E.isInvalid() && !E.get())
- return ExprError();
- return E;
- }
- }
- }
- // This is guaranteed from this point on.
- assert(!R.empty() || ADL);
- // Check whether this might be a C++ implicit instance member access.
- // C++ [class.mfct.non-static]p3:
- // When an id-expression that is not part of a class member access
- // syntax and not used to form a pointer to member is used in the
- // body of a non-static member function of class X, if name lookup
- // resolves the name in the id-expression to a non-static non-type
- // member of some class C, the id-expression is transformed into a
- // class member access expression using (*this) as the
- // postfix-expression to the left of the . operator.
- //
- // But we don't actually need to do this for '&' operands if R
- // resolved to a function or overloaded function set, because the
- // expression is ill-formed if it actually works out to be a
- // non-static member function:
- //
- // C++ [expr.ref]p4:
- // Otherwise, if E1.E2 refers to a non-static member function. . .
- // [t]he expression can be used only as the left-hand operand of a
- // member function call.
- //
- // There are other safeguards against such uses, but it's important
- // to get this right here so that we don't end up making a
- // spuriously dependent expression if we're inside a dependent
- // instance method.
- if (!R.empty() && (*R.begin())->isCXXClassMember()) {
- bool MightBeImplicitMember;
- if (!IsAddressOfOperand)
- MightBeImplicitMember = true;
- else if (!SS.isEmpty())
- MightBeImplicitMember = false;
- else if (R.isOverloadedResult())
- MightBeImplicitMember = false;
- else if (R.isUnresolvableResult())
- MightBeImplicitMember = true;
- else
- MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
- isa<IndirectFieldDecl>(R.getFoundDecl());
- if (MightBeImplicitMember)
- return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
- R, TemplateArgs);
- }
- if (TemplateArgs || TemplateKWLoc.isValid())
- return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
- return BuildDeclarationNameExpr(SS, R, ADL);
- }
- /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
- /// declaration name, generally during template instantiation.
- /// There's a large number of things which don't need to be done along
- /// this path.
- ExprResult
- Sema::BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
- const DeclarationNameInfo &NameInfo) {
- DeclContext *DC;
- if (!(DC = computeDeclContext(SS, false)) || DC->isDependentContext())
- return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
- NameInfo, /*TemplateArgs=*/0);
- if (RequireCompleteDeclContext(SS, DC))
- return ExprError();
- LookupResult R(*this, NameInfo, LookupOrdinaryName);
- LookupQualifiedName(R, DC);
- if (R.isAmbiguous())
- return ExprError();
- if (R.empty()) {
- Diag(NameInfo.getLoc(), diag::err_no_member)
- << NameInfo.getName() << DC << SS.getRange();
- return ExprError();
- }
- return BuildDeclarationNameExpr(SS, R, /*ADL*/ false);
- }
- /// LookupInObjCMethod - The parser has read a name in, and Sema has
- /// detected that we're currently inside an ObjC method. Perform some
- /// additional lookup.
- ///
- /// Ideally, most of this would be done by lookup, but there's
- /// actually quite a lot of extra work involved.
- ///
- /// Returns a null sentinel to indicate trivial success.
- ExprResult
- Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
- IdentifierInfo *II, bool AllowBuiltinCreation) {
- SourceLocation Loc = Lookup.getNameLoc();
- ObjCMethodDecl *CurMethod = getCurMethodDecl();
- // There are two cases to handle here. 1) scoped lookup could have failed,
- // in which case we should look for an ivar. 2) scoped lookup could have
- // found a decl, but that decl is outside the current instance method (i.e.
- // a global variable). In these two cases, we do a lookup for an ivar with
- // this name, if the lookup sucedes, we replace it our current decl.
- // If we're in a class method, we don't normally want to look for
- // ivars. But if we don't find anything else, and there's an
- // ivar, that's an error.
- bool IsClassMethod = CurMethod->isClassMethod();
- bool LookForIvars;
- if (Lookup.empty())
- LookForIvars = true;
- else if (IsClassMethod)
- LookForIvars = false;
- else
- LookForIvars = (Lookup.isSingleResult() &&
- Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
- ObjCInterfaceDecl *IFace = 0;
- if (LookForIvars) {
- IFace = CurMethod->getClassInterface();
- ObjCInterfaceDecl *ClassDeclared;
- ObjCIvarDecl *IV = 0;
- if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
- // Diagnose using an ivar in a class method.
- if (IsClassMethod)
- return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
- << IV->getDeclName());
- // If we're referencing an invalid decl, just return this as a silent
- // error node. The error diagnostic was already emitted on the decl.
- if (IV->isInvalidDecl())
- return ExprError();
- // Check if referencing a field with __attribute__((deprecated)).
- if (DiagnoseUseOfDecl(IV, Loc))
- return ExprError();
- // Diagnose the use of an ivar outside of the declaring class.
- if (IV->getAccessControl() == ObjCIvarDecl::Private &&
- !declaresSameEntity(ClassDeclared, IFace) &&
- !getLangOpts().DebuggerSupport)
- Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
- // FIXME: This should use a new expr for a direct reference, don't
- // turn this into Self->ivar, just return a BareIVarExpr or something.
- IdentifierInfo &II = Context.Idents.get("self");
- UnqualifiedId SelfName;
- SelfName.setIdentifier(&II, SourceLocation());
- SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
- CXXScopeSpec SelfScopeSpec;
- SourceLocation TemplateKWLoc;
- ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
- SelfName, false, false);
- if (SelfExpr.isInvalid())
- return ExprError();
- SelfExpr = DefaultLvalueConversion(SelfExpr.take());
- if (SelfExpr.isInvalid())
- return ExprError();
- MarkAnyDeclReferenced(Loc, IV);
-
- ObjCMethodFamily MF = CurMethod->getMethodFamily();
- if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize)
- Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
- return Owned(new (Context)
- ObjCIvarRefExpr(IV, IV->getType(), Loc,
- SelfExpr.take(), true, true));
- }
- } else if (CurMethod->isInstanceMethod()) {
- // We should warn if a local variable hides an ivar.
- if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
- ObjCInterfaceDecl *ClassDeclared;
- if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
- if (IV->getAccessControl() != ObjCIvarDecl::Private ||
- declaresSameEntity(IFace, ClassDeclared))
- Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
- }
- }
- } else if (Lookup.isSingleResult() &&
- Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
- // If accessing a stand-alone ivar in a class method, this is an error.
- if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
- return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
- << IV->getDeclName());
- }
- if (Lookup.empty() && II && AllowBuiltinCreation) {
- // FIXME. Consolidate this with similar code in LookupName.
- if (unsigned BuiltinID = II->getBuiltinID()) {
- if (!(getLangOpts().CPlusPlus &&
- Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
- NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
- S, Lookup.isForRedeclaration(),
- Lookup.getNameLoc());
- if (D) Lookup.addDecl(D);
- }
- }
- }
- // Sentinel value saying that we didn't do anything special.
- return Owned((Expr*) 0);
- }
- /// \brief Cast a base object to a member's actual type.
- ///
- /// Logically this happens in three phases:
- ///
- /// * First we cast from the base type to the naming class.
- /// The naming class is the class into which we were looking
- /// when we found the member; it's the qualifier type if a
- /// qualifier was provided, and otherwise it's the base type.
- ///
- /// * Next we cast from the naming class to the declaring class.
- /// If the member we found was brought into a class's scope by
- /// a using declaration, this is that class; otherwise it's
- /// the class declaring the member.
- ///
- /// * Finally we cast from the declaring class to the "true"
- /// declaring class of the member. This conversion does not
- /// obey access control.
- ExprResult
- Sema::PerformObjectMemberConversion(Expr *From,
- NestedNameSpecifier *Qualifier,
- NamedDecl *FoundDecl,
- NamedDecl *Member) {
- CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
- if (!RD)
- return Owned(From);
- QualType DestRecordType;
- QualType DestType;
- QualType FromRecordType;
- QualType FromType = From->getType();
- bool PointerConversions = false;
- if (isa<FieldDecl>(Member)) {
- DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
- if (FromType->getAs<PointerType>()) {
- DestType = Context.getPointerType(DestRecordType);
- FromRecordType = FromType->getPointeeType();
- PointerConversions = true;
- } else {
- DestType = DestRecordType;
- FromRecordType = FromType;
- }
- } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
- if (Method->isStatic())
- return Owned(From);
- DestType = Method->getThisType(Context);
- DestRecordType = DestType->getPointeeType();
- if (FromType->getAs<PointerType>()) {
- FromRecordType = FromType->getPointeeType();
- PointerConversions = true;
- } else {
- FromRecordType = FromType;
- DestType = DestRecordType;
- }
- } else {
- // No conversion necessary.
- return Owned(From);
- }
- if (DestType->isDependentType() || FromType->isDependentType())
- return Owned(From);
- // If the unqualified types are the same, no conversion is necessary.
- if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
- return Owned(From);
- SourceRange FromRange = From->getSourceRange();
- SourceLocation FromLoc = FromRange.getBegin();
- ExprValueKind VK = From->getValueKind();
- // C++ [class.member.lookup]p8:
- // [...] Ambiguities can often be resolved by qualifying a name with its
- // class name.
- //
- // If the member was a qualified name and the qualified referred to a
- // specific base subobject type, we'll cast to that intermediate type
- // first and then to the object in which the member is declared. That allows
- // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
- //
- // class Base { public: int x; };
- // class Derived1 : public Base { };
- // class Derived2 : public Base { };
- // class VeryDerived : public Derived1, public Derived2 { void f(); };
- //
- // void VeryDerived::f() {
- // x = 17; // error: ambiguous base subobjects
- // Derived1::x = 17; // okay, pick the Base subobject of Derived1
- // }
- if (Qualifier) {
- QualType QType = QualType(Qualifier->getAsType(), 0);
- assert(!QType.isNull() && "lookup done with dependent qualifier?");
- assert(QType->isRecordType() && "lookup done with non-record type");
- QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
- // In C++98, the qualifier type doesn't actually have to be a base
- // type of the object type, in which case we just ignore it.
- // Otherwise build the appropriate casts.
- if (IsDerivedFrom(FromRecordType, QRecordType)) {
- CXXCastPath BasePath;
- if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
- FromLoc, FromRange, &BasePath))
- return ExprError();
- if (PointerConversions)
- QType = Context.getPointerType(QType);
- From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
- VK, &BasePath).take();
- FromType = QType;
- FromRecordType = QRecordType;
- // If the qualifier type was the same as the destination type,
- // we're done.
- if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
- return Owned(From);
- }
- }
- bool IgnoreAccess = false;
- // If we actually found the member through a using declaration, cast
- // down to the using declaration's type.
- //
- // Pointer equality is fine here because only one declaration of a
- // class ever has member declarations.
- if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
- assert(isa<UsingShadowDecl>(FoundDecl));
- QualType URecordType = Context.getTypeDeclType(
- cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
- // We only need to do this if the naming-class to declaring-class
- // conversion is non-trivial.
- if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
- assert(IsDerivedFrom(FromRecordType, URecordType));
- CXXCastPath BasePath;
- if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
- FromLoc, FromRange, &BasePath))
- return ExprError();
- QualType UType = URecordType;
- if (PointerConversions)
- UType = Context.getPointerType(UType);
- From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
- VK, &BasePath).take();
- FromType = UType;
- FromRecordType = URecordType;
- }
- // We don't do access control for the conversion from the
- // declaring class to the true declaring class.
- IgnoreAccess = true;
- }
- CXXCastPath BasePath;
- if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
- FromLoc, FromRange, &BasePath,
- IgnoreAccess))
- return ExprError();
- return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
- VK, &BasePath);
- }
- bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
- const LookupResult &R,
- bool HasTrailingLParen) {
- // Only when used directly as the postfix-expression of a call.
- if (!HasTrailingLParen)
- return false;
- // Never if a scope specifier was provided.
- if (SS.isSet())
- return false;
- // Only in C++ or ObjC++.
- if (!getLangOpts().CPlusPlus)
- return false;
- // Turn off ADL when we find certain kinds of declarations during
- // normal lookup:
- for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
- NamedDecl *D = *I;
- // C++0x [basic.lookup.argdep]p3:
- // -- a declaration of a class member
- // Since using decls preserve this property, we check this on the
- // original decl.
- if (D->isCXXClassMember())
- return false;
- // C++0x [basic.lookup.argdep]p3:
- // -- a block-scope function declaration that is not a
- // using-declaration
- // NOTE: we also trigger this for function templates (in fact, we
- // don't check the decl type at all, since all other decl types
- // turn off ADL anyway).
- if (isa<UsingShadowDecl>(D))
- D = cast<UsingShadowDecl>(D)->getTargetDecl();
- else if (D->getDeclContext()->isFunctionOrMethod())
- return false;
- // C++0x [basic.lookup.argdep]p3:
- // -- a declaration that is neither a function or a function
- // template
- // And also for builtin functions.
- if (isa<FunctionDecl>(D)) {
- FunctionDecl *FDecl = cast<FunctionDecl>(D);
- // But also builtin functions.
- if (FDecl->getBuiltinID() && FDecl->isImplicit())
- return false;
- } else if (!isa<FunctionTemplateDecl>(D))
- return false;
- }
- return true;
- }
- /// Diagnoses obvious problems with the use of the given declaration
- /// as an expression. This is only actually called for lookups that
- /// were not overloaded, and it doesn't promise that the declaration
- /// will in fact be used.
- static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
- if (isa<TypedefNameDecl>(D)) {
- S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
- return true;
- }
- if (isa<ObjCInterfaceDecl>(D)) {
- S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
- return true;
- }
- if (isa<NamespaceDecl>(D)) {
- S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
- return true;
- }
- return false;
- }
- ExprResult
- Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
- LookupResult &R,
- bool NeedsADL) {
- // If this is a single, fully-resolved result and we don't need ADL,
- // just build an ordinary singleton decl ref.
- if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
- return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(),
- R.getFoundDecl());
- // We only need to check the declaration if there's exactly one
- // result, because in the overloaded case the results can only be
- // functions and function templates.
- if (R.isSingleResult() &&
- CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
- return ExprError();
- // Otherwise, just build an unresolved lookup expression. Suppress
- // any lookup-related diagnostics; we'll hash these out later, when
- // we've picked a target.
- R.suppressDiagnostics();
- UnresolvedLookupExpr *ULE
- = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
- SS.getWithLocInContext(Context),
- R.getLookupNameInfo(),
- NeedsADL, R.isOverloadedResult(),
- R.begin(), R.end());
- return Owned(ULE);
- }
- /// \brief Complete semantic analysis for a reference to the given declaration.
- ExprResult
- Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
- const DeclarationNameInfo &NameInfo,
- NamedDecl *D) {
- assert(D && "Cannot refer to a NULL declaration");
- assert(!isa<FunctionTemplateDecl>(D) &&
- "Cannot refer unambiguously to a function template");
- SourceLocation Loc = NameInfo.getLoc();
- if (CheckDeclInExpr(*this, Loc, D))
- return ExprError();
- if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
- // Specifically diagnose references to class templates that are missing
- // a template argument list.
- Diag(Loc, diag::err_template_decl_ref)
- << Template << SS.getRange();
- Diag(Template->getLocation(), diag::note_template_decl_here);
- return ExprError();
- }
- // Make sure that we're referring to a value.
- ValueDecl *VD = dyn_cast<ValueDecl>(D);
- if (!VD) {
- Diag(Loc, diag::err_ref_non_value)
- << D << SS.getRange();
- Diag(D->getLocation(), diag::note_declared_at);
- return ExprError();
- }
- // Check whether this declaration can be used. Note that we suppress
- // this check when we're going to perform argument-dependent lookup
- // on this function name, because this might not be the function
- // that overload resolution actually selects.
- if (DiagnoseUseOfDecl(VD, Loc))
- return ExprError();
- // Only create DeclRefExpr's for valid Decl's.
- if (VD->isInvalidDecl())
- return ExprError();
- // Handle members of anonymous structs and unions. If we got here,
- // and the reference is to a class member indirect field, then this
- // must be the subject of a pointer-to-member expression.
- if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
- if (!indirectField->isCXXClassMember())
- return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
- indirectField);
- {
- QualType type = VD->getType();
- ExprValueKind valueKind = VK_RValue;
- switch (D->getKind()) {
- // Ignore all the non-ValueDecl kinds.
- #define ABSTRACT_DECL(kind)
- #define VALUE(type, base)
- #define DECL(type, base) \
- case Decl::type:
- #include "clang/AST/DeclNodes.inc"
- llvm_unreachable("invalid value decl kind");
- // These shouldn't make it here.
- case Decl::ObjCAtDefsField:
- case Decl::ObjCIvar:
- llvm_unreachable("forming non-member reference to ivar?");
- // Enum constants are always r-values and never references.
- // Unresolved using declarations are dependent.
- case Decl::EnumConstant:
- case Decl::UnresolvedUsingValue:
- valueKind = VK_RValue;
- break;
- // Fields and indirect fields that got here must be for
- // pointer-to-member expressions; we just call them l-values for
- // internal consistency, because this subexpression doesn't really
- // exist in the high-level semantics.
- case Decl::Field:
- case Decl::IndirectField:
- assert(getLangOpts().CPlusPlus &&
- "building reference to field in C?");
- // These can't have reference type in well-formed programs, but
- // for internal consistency we do this anyway.
- type = type.getNonReferenceType();
- valueKind = VK_LValue;
- break;
- // Non-type template parameters are either l-values or r-values
- // depending on the type.
- case Decl::NonTypeTemplateParm: {
- if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
- type = reftype->getPointeeType();
- valueKind = VK_LValue; // even if the parameter is an r-value reference
- break;
- }
- // For non-references, we need to strip qualifiers just in case
- // the template parameter was declared as 'const int' or whatever.
- valueKind = VK_RValue;
- type = type.getUnqualifiedType();
- break;
- }
- case Decl::Var:
- // In C, "extern void blah;" is valid and is an r-value.
- if (!getLangOpts().CPlusPlus &&
- !type.hasQualifiers() &&
- type->isVoidType()) {
- valueKind = VK_RValue;
- break;
- }
- // fallthrough
- case Decl::ImplicitParam:
- case Decl::ParmVar: {
- // These are always l-values.
- valueKind = VK_LValue;
- type = type.getNonReferenceType();
- // FIXME: Does the addition of const really only apply in
- // potentially-evaluated contexts? Since the variable isn't actually
- // captured in an unevaluated context, it seems that the answer is no.
- if (!isUnevaluatedContext()) {
- QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
- if (!CapturedType.isNull())
- type = CapturedType;
- }
-
- break;
- }
-
- case Decl::Function: {
- const FunctionType *fty = type->castAs<FunctionType>();
- // If we're referring to a function with an __unknown_anytype
- // result type, make the entire expression __unknown_anytype.
- if (fty->getResultType() == Context.UnknownAnyTy) {
- type = Context.UnknownAnyTy;
- valueKind = VK_RValue;
- break;
- }
- // Functions are l-values in C++.
- if (getLangOpts().CPlusPlus) {
- valueKind = VK_LValue;
- break;
- }
-
- // C99 DR 316 says that, if a function type comes from a
- // function definition (without a prototype), that type is only
- // used for checking compatibility. Therefore, when referencing
- // the function, we pretend that we don't have the full function
- // type.
- if (!cast<FunctionDecl>(VD)->hasPrototype() &&
- isa<FunctionProtoType>(fty))
- type = Context.getFunctionNoProtoType(fty->getResultType(),
- fty->getExtInfo());
- // Functions are r-values in C.
- valueKind = VK_RValue;
- break;
- }
- case Decl::CXXMethod:
- // If we're referring to a method with an __unknown_anytype
- // result type, make the entire expression __unknown_anytype.
- // This should only be possible with a type written directly.
- if (const FunctionProtoType *proto
- = dyn_cast<FunctionProtoType>(VD->getType()))
- if (proto->getResultType() == Context.UnknownAnyTy) {
- type = Context.UnknownAnyTy;
- valueKind = VK_RValue;
- break;
- }
- // C++ methods are l-values if static, r-values if non-static.
- if (cast<CXXMethodDecl>(VD)->isStatic()) {
- valueKind = VK_LValue;
- break;
- }
- // fallthrough
- case Decl::CXXConversion:
- case Decl::CXXDestructor:
- case Decl::CXXConstructor:
- valueKind = VK_RValue;
- break;
- }
- return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS);
- }
- }
- ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
- PredefinedExpr::IdentType IT;
- switch (Kind) {
- default: llvm_unreachable("Unknown simple primary expr!");
- case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
- case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
- case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
- case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
- }
- // Pre-defined identifiers are of type char[x], where x is the length of the
- // string.
- Decl *currentDecl = getCurFunctionOrMethodDecl();
- if (!currentDecl && getCurBlock())
- currentDecl = getCurBlock()->TheDecl;
- if (!currentDecl) {
- Diag(Loc, diag::ext_predef_outside_function);
- currentDecl = Context.getTranslationUnitDecl();
- }
- QualType ResTy;
- if (cast<DeclContext>(currentDecl)->isDependentContext()) {
- ResTy = Context.DependentTy;
- } else {
- unsigned Length = PredefinedExpr::ComputeName(IT, currentDecl).length();
- llvm::APInt LengthI(32, Length + 1);
- if (IT == PredefinedExpr::LFunction)
- ResTy = Context.WCharTy.withConst();
- else
- ResTy = Context.CharTy.withConst();
- ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal, 0);
- }
- return Owned(new (Context) PredefinedExpr(Loc, ResTy, IT));
- }
- ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
- SmallString<16> CharBuffer;
- bool Invalid = false;
- StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
- if (Invalid)
- return ExprError();
- CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
- PP, Tok.getKind());
- if (Literal.hadError())
- return ExprError();
- QualType Ty;
- if (Literal.isWide())
- Ty = Context.WCharTy; // L'x' -> wchar_t in C and C++.
- else if (Literal.isUTF16())
- Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
- else if (Literal.isUTF32())
- Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
- else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
- Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
- else
- Ty = Context.CharTy; // 'x' -> char in C++
- CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
- if (Literal.isWide())
- Kind = CharacterLiteral::Wide;
- else if (Literal.isUTF16())
- Kind = CharacterLiteral::UTF16;
- else if (Literal.isUTF32())
- Kind = CharacterLiteral::UTF32;
- Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
- Tok.getLocation());
- if (Literal.getUDSuffix().empty())
- return Owned(Lit);
- // We're building a user-defined literal.
- IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
- SourceLocation UDSuffixLoc =
- getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
- // Make sure we're allowed user-defined literals here.
- if (!UDLScope)
- return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
- // C++11 [lex.ext]p6: The literal L is treated as a call of the form
- // operator "" X (ch)
- return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
- llvm::makeArrayRef(&Lit, 1),
- Tok.getLocation());
- }
- ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
- unsigned IntSize = Context.getTargetInfo().getIntWidth();
- return Owned(IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
- Context.IntTy, Loc));
- }
- static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
- QualType Ty, SourceLocation Loc) {
- const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
- using llvm::APFloat;
- APFloat Val(Format);
- APFloat::opStatus result = Literal.GetFloatValue(Val);
- // Overflow is always an error, but underflow is only an error if
- // we underflowed to zero (APFloat reports denormals as underflow).
- if ((result & APFloat::opOverflow) ||
- ((result & APFloat::opUnderflow) && Val.isZero())) {
- unsigned diagnostic;
- SmallString<20> buffer;
- if (result & APFloat::opOverflow) {
- diagnostic = diag::warn_float_overflow;
- APFloat::getLargest(Format).toString(buffer);
- } else {
- diagnostic = diag::warn_float_underflow;
- APFloat::getSmallest(Format).toString(buffer);
- }
- S.Diag(Loc, diagnostic)
- << Ty
- << StringRef(buffer.data(), buffer.size());
- }
- bool isExact = (result == APFloat::opOK);
- return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
- }
- ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
- // Fast path for a single digit (which is quite common). A single digit
- // cannot have a trigraph, escaped newline, radix prefix, or suffix.
- if (Tok.getLength() == 1) {
- const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
- return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
- }
- SmallString<512> IntegerBuffer;
- // Add padding so that NumericLiteralParser can overread by one character.
- IntegerBuffer.resize(Tok.getLength()+1);
- const char *ThisTokBegin = &IntegerBuffer[0];
- // Get the spelling of the token, which eliminates trigraphs, etc.
- bool Invalid = false;
- unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
- if (Invalid)
- return ExprError();
- NumericLiteralParser Literal(ThisTokBegin, ThisTokBegin+ActualLength,
- Tok.getLocation(), PP);
- if (Literal.hadError)
- return ExprError();
- if (Literal.hasUDSuffix()) {
- // We're building a user-defined literal.
- IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
- SourceLocation UDSuffixLoc =
- getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
- // Make sure we're allowed user-defined literals here.
- if (!UDLScope)
- return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
- QualType CookedTy;
- if (Literal.isFloatingLiteral()) {
- // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
- // long double, the literal is treated as a call of the form
- // operator "" X (f L)
- CookedTy = Context.LongDoubleTy;
- } else {
- // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
- // unsigned long long, the literal is treated as a call of the form
- // operator "" X (n ULL)
- CookedTy = Context.UnsignedLongLongTy;
- }
- DeclarationName OpName =
- Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
- DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
- OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
- // Perform literal operator lookup to determine if we're building a raw
- // literal or a cooked one.
- LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
- switch (LookupLiteralOperator(UDLScope, R, llvm::makeArrayRef(&CookedTy, 1),
- /*AllowRawAndTemplate*/true)) {
- case LOLR_Error:
- return ExprError();
- case LOLR_Cooked: {
- Expr *Lit;
- if (Literal.isFloatingLiteral()) {
- Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
- } else {
- llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
- if (Literal.GetIntegerValue(ResultVal))
- Diag(Tok.getLocation(), diag::warn_integer_too_large);
- Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
- Tok.getLocation());
- }
- return BuildLiteralOperatorCall(R, OpNameInfo,
- llvm::makeArrayRef(&Lit, 1),
- Tok.getLocation());
- }
- case LOLR_Raw: {
- // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
- // literal is treated as a call of the form
- // operator "" X ("n")
- SourceLocation TokLoc = Tok.getLocation();
- unsigned Length = Literal.getUDSuffixOffset();
- QualType StrTy = Context.getConstantArrayType(
- Context.CharTy, llvm::APInt(32, Length + 1),
- ArrayType::Normal, 0);
- Expr *Lit = StringLiteral::Create(
- Context, StringRef(ThisTokBegin, Length), StringLiteral::Ascii,
- /*Pascal*/false, StrTy, &TokLoc, 1);
- return BuildLiteralOperatorCall(R, OpNameInfo,
- llvm::makeArrayRef(&Lit, 1), TokLoc);
- }
- case LOLR_Template:
- // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
- // template), L is treated as a call fo the form
- // operator "" X <'c1', 'c2', ... 'ck'>()
- // where n is the source character sequence c1 c2 ... ck.
- TemplateArgumentListInfo ExplicitArgs;
- unsigned CharBits = Context.getIntWidth(Context.CharTy);
- bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
- llvm::APSInt Value(CharBits, CharIsUnsigned);
- for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
- Value = ThisTokBegin[I];
- TemplateArgument Arg(Context, Value, Context.CharTy);
- TemplateArgumentLocInfo ArgInfo;
- ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
- }
- return BuildLiteralOperatorCall(R, OpNameInfo, ArrayRef<Expr*>(),
- Tok.getLocation(), &ExplicitArgs);
- }
- llvm_unreachable("unexpected literal operator lookup result");
- }
- Expr *Res;
- if (Literal.isFloatingLiteral()) {
- QualType Ty;
- if (Literal.isFloat)
- Ty = Context.FloatTy;
- else if (!Literal.isLong)
- Ty = Context.DoubleTy;
- else
- Ty = Context.LongDoubleTy;
- Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
- if (Ty == Context.DoubleTy) {
- if (getLangOpts().SinglePrecisionConstants) {
- Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
- } else if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp64) {
- Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
- Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).take();
- }
- }
- } else if (!Literal.isIntegerLiteral()) {
- return ExprError();
- } else {
- QualType Ty;
- // long long is a C99 feature.
- if (!getLangOpts().C99 && Literal.isLongLong)
- Diag(Tok.getLocation(),
- getLangOpts().CPlusPlus0x ?
- diag::warn_cxx98_compat_longlong : diag::ext_longlong);
- // Get the value in the widest-possible width.
- unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
- // The microsoft literal suffix extensions support 128-bit literals, which
- // may be wider than [u]intmax_t.
- if (Literal.isMicrosoftInteger && MaxWidth < 128)
- MaxWidth = 128;
- llvm::APInt ResultVal(MaxWidth, 0);
- if (Literal.GetIntegerValue(ResultVal)) {
- // If this value didn't fit into uintmax_t, warn and force to ull.
- Diag(Tok.getLocation(), diag::warn_integer_too_large);
- Ty = Context.UnsignedLongLongTy;
- assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
- "long long is not intmax_t?");
- } else {
- // If this value fits into a ULL, try to figure out what else it fits into
- // according to the rules of C99 6.4.4.1p5.
- // Octal, Hexadecimal, and integers with a U suffix are allowed to
- // be an unsigned int.
- bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
- // Check from smallest to largest, picking the smallest type we can.
- unsigned Width = 0;
- if (!Literal.isLong && !Literal.isLongLong) {
- // Are int/unsigned possibilities?
- unsigned IntSize = Context.getTargetInfo().getIntWidth();
- // Does it fit in a unsigned int?
- if (ResultVal.isIntN(IntSize)) {
- // Does it fit in a signed int?
- if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
- Ty = Context.IntTy;
- else if (AllowUnsigned)
- Ty = Context.UnsignedIntTy;
- Width = IntSize;
- }
- }
- // Are long/unsigned long possibilities?
- if (Ty.isNull() && !Literal.isLongLong) {
- unsigned LongSize = Context.getTargetInfo().getLongWidth();
- // Does it fit in a unsigned long?
- if (ResultVal.isIntN(LongSize)) {
- // Does it fit in a signed long?
- if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
- Ty = Context.LongTy;
- else if (AllowUnsigned)
- Ty = Context.UnsignedLongTy;
- Width = LongSize;
- }
- }
- // Check long long if needed.
- if (Ty.isNull()) {
- unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
- // Does it fit in a unsigned long long?
- if (ResultVal.isIntN(LongLongSize)) {
- // Does it fit in a signed long long?
- // To be compatible with MSVC, hex integer literals ending with the
- // LL or i64 suffix are always signed in Microsoft mode.
- if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
- (getLangOpts().MicrosoftExt && Literal.isLongLong)))
- Ty = Context.LongLongTy;
- else if (AllowUnsigned)
- Ty = Context.UnsignedLongLongTy;
- Width = LongLongSize;
- }
- }
-
- // If it doesn't fit in unsigned long long, and we're using Microsoft
- // extensions, then its a 128-bit integer literal.
- if (Ty.isNull() && Literal.isMicrosoftInteger) {
- if (Literal.isUnsigned)
- Ty = Context.UnsignedInt128Ty;
- else
- Ty = Context.Int128Ty;
- Width = 128;
- }
- // If we still couldn't decide a type, we probably have something that
- // does not fit in a signed long long, but has no U suffix.
- if (Ty.isNull()) {
- Diag(Tok.getLocation(), diag::warn_integer_too_large_for_signed);
- Ty = Context.UnsignedLongLongTy;
- Width = Context.getTargetInfo().getLongLongWidth();
- }
- if (ResultVal.getBitWidth() != Width)
- ResultVal = ResultVal.trunc(Width);
- }
- Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
- }
- // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
- if (Literal.isImaginary)
- Res = new (Context) ImaginaryLiteral(Res,
- Context.getComplexType(Res->getType()));
- return Owned(Res);
- }
- ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
- assert((E != 0) && "ActOnParenExpr() missing expr");
- return Owned(new (Context) ParenExpr(L, R, E));
- }
- static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
- SourceLocation Loc,
- SourceRange ArgRange) {
- // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
- // scalar or vector data type argument..."
- // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
- // type (C99 6.2.5p18) or void.
- if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
- S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
- << T << ArgRange;
- return true;
- }
- assert((T->isVoidType() || !T->isIncompleteType()) &&
- "Scalar types should always be complete");
- return false;
- }
- static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
- SourceLocation Loc,
- SourceRange ArgRange,
- UnaryExprOrTypeTrait TraitKind) {
- // C99 6.5.3.4p1:
- if (T->isFunctionType()) {
- // alignof(function) is allowed as an extension.
- if (TraitKind == UETT_SizeOf)
- S.Diag(Loc, diag::ext_sizeof_function_type) << ArgRange;
- return false;
- }
- // Allow sizeof(void)/alignof(void) as an extension.
- if (T->isVoidType()) {
- S.Diag(Loc, diag::ext_sizeof_void_type) << TraitKind << ArgRange;
- return false;
- }
- return true;
- }
- static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
- SourceLocation Loc,
- SourceRange ArgRange,
- UnaryExprOrTypeTrait TraitKind) {
- // Reject sizeof(interface) and sizeof(interface<proto>) if the
- // runtime doesn't allow it.
- if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
- S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
- << T << (TraitKind == UETT_SizeOf)
- << ArgRange;
- return true;
- }
- return false;
- }
- /// \brief Check the constrains on expression operands to unary type expression
- /// and type traits.
- ///
- /// Completes any types necessary and validates the constraints on the operand
- /// expression. The logic mostly mirrors the type-based overload, but may modify
- /// the expression as it completes the type for that expression through template
- /// instantiation, etc.
- bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
- UnaryExprOrTypeTrait ExprKind) {
- QualType ExprTy = E->getType();
- // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
- // the result is the size of the referenced type."
- // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
- // result shall be the alignment of the referenced type."
- if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
- ExprTy = Ref->getPointeeType();
- if (ExprKind == UETT_VecStep)
- return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
- E->getSourceRange());
- // Whitelist some types as extensions
- if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
- E->getSourceRange(), ExprKind))
- return false;
- if (RequireCompleteExprType(E,
- diag::err_sizeof_alignof_incomplete_type,
- ExprKind, E->getSourceRange()))
- return true;
- // Completeing the expression's type may have changed it.
- ExprTy = E->getType();
- if (const ReferenceType *Ref = ExprTy->getAs<ReferenceType>())
- ExprTy = Ref->getPointeeType();
- if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
- E->getSourceRange(), ExprKind))
- return true;
- if (ExprKind == UETT_SizeOf) {
- if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
- if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
- QualType OType = PVD->getOriginalType();
- QualType Type = PVD->getType();
- if (Type->isPointerType() && OType->isArrayType()) {
- Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
- << Type << OType;
- Diag(PVD->getLocation(), diag::note_declared_at);
- }
- }
- }
- }
- return false;
- }
- /// \brief Check the constraints on operands to unary expression and type
- /// traits.
- ///
- /// This will complete any types necessary, and validate the various constraints
- /// on those operands.
- ///
- /// The UsualUnaryConversions() function is *not* called by this routine.
- /// C99 6.3.2.1p[2-4] all state:
- /// Except when it is the operand of the sizeof operator ...
- ///
- /// C++ [expr.sizeof]p4
- /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
- /// standard conversions are not applied to the operand of sizeof.
- ///
- /// This policy is followed for all of the unary trait expressions.
- bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
- SourceLocation OpLoc,
- SourceRange ExprRange,
- UnaryExprOrTypeTrait ExprKind) {
- if (ExprType->isDependentType())
- return false;
- // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
- // the result is the size of the referenced type."
- // C++ [expr.alignof]p3: "When alignof is applied to a reference type, the
- // result shall be the alignment of the referenced type."
- if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
- ExprType = Ref->getPointeeType();
- if (ExprKind == UETT_VecStep)
- return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
- // Whitelist some types as extensions
- if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
- ExprKind))
- return false;
- if (RequireCompleteType(OpLoc, ExprType,
- diag::err_sizeof_alignof_incomplete_type,
- ExprKind, ExprRange))
- return true;
- if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
- ExprKind))
- return true;
- return false;
- }
- static bool CheckAlignOfExpr(Sema &S, Expr *E) {
- E = E->IgnoreParens();
- // alignof decl is always ok.
- if (isa<DeclRefExpr>(E))
- return false;
- // Cannot know anything else if the expression is dependent.
- if (E->isTypeDependent())
- return false;
- if (E->getBitField()) {
- S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield)
- << 1 << E->getSourceRange();
- return true;
- }
- // Alignment of a field access is always okay, so long as it isn't a
- // bit-field.
- if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
- if (isa<FieldDecl>(ME->getMemberDecl()))
- return false;
- return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
- }
- bool Sema::CheckVecStepExpr(Expr *E) {
- E = E->IgnoreParens();
- // Cannot know anything else if the expression is dependent.
- if (E->isTypeDependent())
- return false;
- return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
- }
- /// \brief Build a sizeof or alignof expression given a type operand.
- ExprResult
- Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
- SourceLocation OpLoc,
- UnaryExprOrTypeTrait ExprKind,
- SourceRange R) {
- if (!TInfo)
- return ExprError();
- QualType T = TInfo->getType();
- if (!T->isDependentType() &&
- CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
- return ExprError();
- // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
- return Owned(new (Context) UnaryExprOrTypeTraitExpr(ExprKind, TInfo,
- Context.getSizeType(),
- OpLoc, R.getEnd()));
- }
- /// \brief Build a sizeof or alignof expression given an expression
- /// operand.
- ExprResult
- Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
- UnaryExprOrTypeTrait ExprKind) {
- ExprResult PE = CheckPlaceholderExpr(E);
- if (PE.isInvalid())
- return ExprError();
- E = PE.get();
-
- // Verify that the operand is valid.
- bool isInvalid = false;
- if (E->isTypeDependent()) {
- // Delay type-checking for type-dependent expressions.
- } else if (ExprKind == UETT_AlignOf) {
- isInvalid = CheckAlignOfExpr(*this, E);
- } else if (ExprKind == UETT_VecStep) {
- isInvalid = CheckVecStepExpr(E);
- } else if (E->getBitField()) { // C99 6.5.3.4p1.
- Diag(E->getExprLoc(), diag::err_sizeof_alignof_bitfield) << 0;
- isInvalid = true;
- } else {
- isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
- }
- if (isInvalid)
- return ExprError();
- if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
- PE = TranformToPotentiallyEvaluated(E);
- if (PE.isInvalid()) return ExprError();
- E = PE.take();
- }
- // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
- return Owned(new (Context) UnaryExprOrTypeTraitExpr(
- ExprKind, E, Context.getSizeType(), OpLoc,
- E->getSourceRange().getEnd()));
- }
- /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
- /// expr and the same for @c alignof and @c __alignof
- /// Note that the ArgRange is invalid if isType is false.
- ExprResult
- Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
- UnaryExprOrTypeTrait ExprKind, bool IsType,
- void *TyOrEx, const SourceRange &ArgRange) {
- // If error parsing type, ignore.
- if (TyOrEx == 0) return ExprError();
- if (IsType) {
- TypeSourceInfo *TInfo;
- (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
- return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
- }
- Expr *ArgEx = (Expr *)TyOrEx;
- ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
- return Result;
- }
- static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
- bool IsReal) {
- if (V.get()->isTypeDependent())
- return S.Context.DependentTy;
- // _Real and _Imag are only l-values for normal l-values.
- if (V.get()->getObjectKind() != OK_Ordinary) {
- V = S.DefaultLvalueConversion(V.take());
- if (V.isInvalid())
- return QualType();
- }
- // These operators return the element type of a complex type.
- if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
- return CT->getElementType();
- // Otherwise they pass through real integer and floating point types here.
- if (V.get()->getType()->isArithmeticType())
- return V.get()->getType();
- // Test for placeholders.
- ExprResult PR = S.CheckPlaceholderExpr(V.get());
- if (PR.isInvalid()) return QualType();
- if (PR.get() != V.get()) {
- V = PR;
- return CheckRealImagOperand(S, V, Loc, IsReal);
- }
- // Reject anything else.
- S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
- << (IsReal ? "__real" : "__imag");
- return QualType();
- }
- ExprResult
- Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
- tok::TokenKind Kind, Expr *Input) {
- UnaryOperatorKind Opc;
- switch (Kind) {
- default: llvm_unreachable("Unknown unary op!");
- case tok::plusplus: Opc = UO_PostInc; break;
- case tok::minusminus: Opc = UO_PostDec; break;
- }
- // Since this might is a postfix expression, get rid of ParenListExprs.
- ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
- if (Result.isInvalid()) return ExprError();
- Input = Result.take();
- return BuildUnaryOp(S, OpLoc, Opc, Input);
- }
- /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
- ///
- /// \return true on error
- static bool checkArithmeticOnObjCPointer(Sema &S,
- SourceLocation opLoc,
- Expr *op) {
- assert(op->getType()->isObjCObjectPointerType());
- if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic())
- return false;
- S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
- << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
- << op->getSourceRange();
- return true;
- }
- ExprResult
- Sema::ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
- Expr *Idx, SourceLocation RLoc) {
- // Since this might be a postfix expression, get rid of ParenListExprs.
- ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
- if (Result.isInvalid()) return ExprError();
- Base = Result.take();
- Expr *LHSExp = Base, *RHSExp = Idx;
- if (getLangOpts().CPlusPlus &&
- (LHSExp->isTypeDependent() || RHSExp->isTypeDependent())) {
- return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
- Context.DependentTy,
- VK_LValue, OK_Ordinary,
- RLoc));
- }
- if (getLangOpts().CPlusPlus &&
- (LHSExp->getType()->isRecordType() ||
- LHSExp->getType()->isEnumeralType() ||
- RHSExp->getType()->isRecordType() ||
- RHSExp->getType()->isEnumeralType()) &&
- !LHSExp->getType()->isObjCObjectPointerType()) {
- return CreateOverloadedArraySubscriptExpr(LLoc, RLoc, Base, Idx);
- }
- return CreateBuiltinArraySubscriptExpr(Base, LLoc, Idx, RLoc);
- }
- ExprResult
- Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
- Expr *Idx, SourceLocation RLoc) {
- Expr *LHSExp = Base;
- Expr *RHSExp = Idx;
- // Perform default conversions.
- if (!LHSExp->getType()->getAs<VectorType>()) {
- ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
- if (Result.isInvalid())
- return ExprError();
- LHSExp = Result.take();
- }
- ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
- if (Result.isInvalid())
- return ExprError();
- RHSExp = Result.take();
- QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
- ExprValueKind VK = VK_LValue;
- ExprObjectKind OK = OK_Ordinary;
- // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
- // to the expression *((e1)+(e2)). This means the array "Base" may actually be
- // in the subscript position. As a result, we need to derive the array base
- // and index from the expression types.
- Expr *BaseExpr, *IndexExpr;
- QualType ResultType;
- if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
- BaseExpr = LHSExp;
- IndexExpr = RHSExp;
- ResultType = Context.DependentTy;
- } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
- BaseExpr = LHSExp;
- IndexExpr = RHSExp;
- ResultType = PTy->getPointeeType();
- } else if (const ObjCObjectPointerType *PTy =
- LHSTy->getAs<ObjCObjectPointerType>()) {
- BaseExpr = LHSExp;
- IndexExpr = RHSExp;
- // Use custom logic if this should be the pseudo-object subscript
- // expression.
- if (!LangOpts.ObjCRuntime.isSubscriptPointerArithmetic())
- return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, 0, 0);
- ResultType = PTy->getPointeeType();
- if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
- Diag(LLoc, diag::err_subscript_nonfragile_interface)
- << ResultType << BaseExpr->getSourceRange();
- return ExprError();
- }
- } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
- // Handle the uncommon case of "123[Ptr]".
- BaseExpr = RHSExp;
- IndexExpr = LHSExp;
- ResultType = PTy->getPointeeType();
- } else if (const ObjCObjectPointerType *PTy =
- RHSTy->getAs<ObjCObjectPointerType>()) {
- // Handle the uncommon case of "123[Ptr]".
- BaseExpr = RHSExp;
- IndexExpr = LHSExp;
- ResultType = PTy->getPointeeType();
- if (!LangOpts.ObjCRuntime.allowsPointerArithmetic()) {
- Diag(LLoc, diag::err_subscript_nonfragile_interface)
- << ResultType << BaseExpr->getSourceRange();
- return ExprError();
- }
- } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
- BaseExpr = LHSExp; // vectors: V[123]
- IndexExpr = RHSExp;
- VK = LHSExp->getValueKind();
- if (VK != VK_RValue)
- OK = OK_VectorComponent;
- // FIXME: need to deal with const...
- ResultType = VTy->getElementType();
- } else if (LHSTy->isArrayType()) {
- // If we see an array that wasn't promoted by
- // DefaultFunctionArrayLvalueConversion, it must be an array that
- // wasn't promoted because of the C90 rule that doesn't
- // allow promoting non-lvalue arrays. Warn, then
- // force the promotion here.
- Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
- LHSExp->getSourceRange();
- LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
- CK_ArrayToPointerDecay).take();
- LHSTy = LHSExp->getType();
- BaseExpr = LHSExp;
- IndexExpr = RHSExp;
- ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
- } else if (RHSTy->isArrayType()) {
- // Same as previous, except for 123[f().a] case
- Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
- RHSExp->getSourceRange();
- RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
- CK_ArrayToPointerDecay).take();
- RHSTy = RHSExp->getType();
- BaseExpr = RHSExp;
- IndexExpr = LHSExp;
- ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
- } else {
- return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
- << LHSExp->getSourceRange() << RHSExp->getSourceRange());
- }
- // C99 6.5.2.1p1
- if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
- return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
- << IndexExpr->getSourceRange());
- if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
- IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
- && !IndexExpr->isTypeDependent())
- Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
- // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
- // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
- // type. Note that Functions are not objects, and that (in C99 parlance)
- // incomplete types are not object types.
- if (ResultType->isFunctionType()) {
- Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
- << ResultType << BaseExpr->getSourceRange();
- return ExprError();
- }
- if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
- // GNU extension: subscripting on pointer to void
- Diag(LLoc, diag::ext_gnu_subscript_void_type)
- << BaseExpr->getSourceRange();
- // C forbids expressions of unqualified void type from being l-values.
- // See IsCForbiddenLValueType.
- if (!ResultType.hasQualifiers()) VK = VK_RValue;
- } else if (!ResultType->isDependentType() &&
- RequireCompleteType(LLoc, ResultType,
- diag::err_subscript_incomplete_type, BaseExpr))
- return ExprError();
- assert(VK == VK_RValue || LangOpts.CPlusPlus ||
- !ResultType.isCForbiddenLValueType());
- return Owned(new (Context) ArraySubscriptExpr(LHSExp, RHSExp,
- ResultType, VK, OK, RLoc));
- }
- ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
- FunctionDecl *FD,
- ParmVarDecl *Param) {
- if (Param->hasUnparsedDefaultArg()) {
- Diag(CallLoc,
- diag::err_use_of_default_argument_to_function_declared_later) <<
- FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
- Diag(UnparsedDefaultArgLocs[Param],
- diag::note_default_argument_declared_here);
- return ExprError();
- }
-
- if (Param->hasUninstantiatedDefaultArg()) {
- Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
- EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
- Param);
- // Instantiate the expression.
- MultiLevelTemplateArgumentList ArgList
- = getTemplateInstantiationArgs(FD, 0, /*RelativeToPrimary=*/true);
- std::pair<const TemplateArgument *, unsigned> Innermost
- = ArgList.getInnermost();
- InstantiatingTemplate Inst(*this, CallLoc, Param,
- ArrayRef<TemplateArgument>(Innermost.first,
- Innermost.second));
- if (Inst)
- return ExprError();
- ExprResult Result;
- {
- // C++ [dcl.fct.default]p5:
- // The names in the [default argument] expression are bound, and
- // the semantic constraints are checked, at the point where the
- // default argument expression appears.
- ContextRAII SavedContext(*this, FD);
- LocalInstantiationScope Local(*this);
- Result = SubstExpr(UninstExpr, ArgList);
- }
- if (Result.isInvalid())
- return ExprError();
- // Check the expression as an initializer for the parameter.
- InitializedEntity Entity
- = InitializedEntity::InitializeParameter(Context, Param);
- InitializationKind Kind
- = InitializationKind::CreateCopy(Param->getLocation(),
- /*FIXME:EqualLoc*/UninstExpr->getLocStart());
- Expr *ResultE = Result.takeAs<Expr>();
- InitializationSequence InitSeq(*this, Entity, Kind, &ResultE, 1);
- Result = InitSeq.Perform(*this, Entity, Kind,
- MultiExprArg(*this, &ResultE, 1));
- if (Result.isInvalid())
- return ExprError();
- Expr *Arg = Result.takeAs<Expr>();
- CheckImplicitConversions(Arg, Param->getOuterLocStart());
- // Build the default argument expression.
- return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg));
- }
- // If the default expression creates temporaries, we need to
- // push them to the current stack of expression temporaries so they'll
- // be properly destroyed.
- // FIXME: We should really be rebuilding the default argument with new
- // bound temporaries; see the comment in PR5810.
- // We don't need to do that with block decls, though, because
- // blocks in default argument expression can never capture anything.
- if (isa<ExprWithCleanups>(Param->getInit())) {
- // Set the "needs cleanups" bit regardless of whether there are
- // any explicit objects.
- ExprNeedsCleanups = true;
- // Append all the objects to the cleanup list. Right now, this
- // should always be a no-op, because blocks in default argument
- // expressions should never be able to capture anything.
- assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
- "default argument expression has capturing blocks?");
- }
- // We already type-checked the argument, so we know it works.
- // Just mark all of the declarations in this potentially-evaluated expression
- // as being "referenced".
- MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
- /*SkipLocalVariables=*/true);
- return Owned(CXXDefaultArgExpr::Create(Context, CallLoc, Param));
- }
- Sema::VariadicCallType
- Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
- Expr *Fn) {
- if (Proto && Proto->isVariadic()) {
- if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
- return VariadicConstructor;
- else if (Fn && Fn->getType()->isBlockPointerType())
- return VariadicBlock;
- else if (FDecl) {
- if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
- if (Method->isInstance())
- return VariadicMethod;
- }
- return VariadicFunction;
- }
- return VariadicDoesNotApply;
- }
- /// ConvertArgumentsForCall - Converts the arguments specified in
- /// Args/NumArgs to the parameter types of the function FDecl with
- /// function prototype Proto. Call is the call expression itself, and
- /// Fn is the function expression. For a C++ member function, this
- /// routine does not attempt to convert the object argument. Returns
- /// true if the call is ill-formed.
- bool
- Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
- FunctionDecl *FDecl,
- const FunctionProtoType *Proto,
- Expr **Args, unsigned NumArgs,
- SourceLocation RParenLoc,
- bool IsExecConfig) {
- // Bail out early if calling a builtin with custom typechecking.
- // We don't need to do this in the
- if (FDecl)
- if (unsigned ID = FDecl->getBuiltinID())
- if (Context.BuiltinInfo.hasCustomTypechecking(ID))
- return false;
- // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
- // assignment, to the types of the corresponding parameter, ...
- unsigned NumArgsInProto = Proto->getNumArgs();
- bool Invalid = false;
- unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumArgsInProto;
- unsigned FnKind = Fn->getType()->isBlockPointerType()
- ? 1 /* block */
- : (IsExecConfig ? 3 /* kernel function (exec config) */
- : 0 /* function */);
- // If too few arguments are available (and we don't have default
- // arguments for the remaining parameters), don't make the call.
- if (NumArgs < NumArgsInProto) {
- if (NumArgs < MinArgs) {
- if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
- Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
- ? diag::err_typecheck_call_too_few_args_one
- : diag::err_typecheck_call_too_few_args_at_least_one)
- << FnKind
- << FDecl->getParamDecl(0) << Fn->getSourceRange();
- else
- Diag(RParenLoc, MinArgs == NumArgsInProto && !Proto->isVariadic()
- ? diag::err_typecheck_call_too_few_args
- : diag::err_typecheck_call_too_few_args_at_least)
- << FnKind
- << MinArgs << NumArgs << Fn->getSourceRange();
- // Emit the location of the prototype.
- if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
- Diag(FDecl->getLocStart(), diag::note_callee_decl)
- << FDecl;
- return true;
- }
- Call->setNumArgs(Context, NumArgsInProto);
- }
- // If too many are passed and not variadic, error on the extras and drop
- // them.
- if (NumArgs > NumArgsInProto) {
- if (!Proto->isVariadic()) {
- if (NumArgsInProto == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
- Diag(Args[NumArgsInProto]->getLocStart(),
- MinArgs == NumArgsInProto
- ? diag::err_typecheck_call_too_many_args_one
- : diag::err_typecheck_call_too_many_args_at_most_one)
- << FnKind
- << FDecl->getParamDecl(0) << NumArgs << Fn->getSourceRange()
- << SourceRange(Args[NumArgsInProto]->getLocStart(),
- Args[NumArgs-1]->getLocEnd());
- else
- Diag(Args[NumArgsInProto]->getLocStart(),
- MinArgs == NumArgsInProto
- ? diag::err_typecheck_call_too_many_args
- : diag::err_typecheck_call_too_many_args_at_most)
- << FnKind
- << NumArgsInProto << NumArgs << Fn->getSourceRange()
- << SourceRange(Args[NumArgsInProto]->getLocStart(),
- Args[NumArgs-1]->getLocEnd());
- // Emit the location of the prototype.
- if (FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
- Diag(FDecl->getLocStart(), diag::note_callee_decl)
- << FDecl;
-
- // This deletes the extra arguments.
- Call->setNumArgs(Context, NumArgsInProto);
- return true;
- }
- }
- SmallVector<Expr *, 8> AllArgs;
- VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
-
- Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
- Proto, 0, Args, NumArgs, AllArgs, CallType);
- if (Invalid)
- return true;
- unsigned TotalNumArgs = AllArgs.size();
- for (unsigned i = 0; i < TotalNumArgs; ++i)
- Call->setArg(i, AllArgs[i]);
- return false;
- }
- bool Sema::GatherArgumentsForCall(SourceLocation CallLoc,
- FunctionDecl *FDecl,
- const FunctionProtoType *Proto,
- unsigned FirstProtoArg,
- Expr **Args, unsigned NumArgs,
- SmallVector<Expr *, 8> &AllArgs,
- VariadicCallType CallType,
- bool AllowExplicit) {
- unsigned NumArgsInProto = Proto->getNumArgs();
- unsigned NumArgsToCheck = NumArgs;
- bool Invalid = false;
- if (NumArgs != NumArgsInProto)
- // Use default arguments for missing arguments
- NumArgsToCheck = NumArgsInProto;
- unsigned ArgIx = 0;
- // Continue to check argument types (even if we have too few/many args).
- for (unsigned i = FirstProtoArg; i != NumArgsToCheck; i++) {
- QualType ProtoArgType = Proto->getArgType(i);
- Expr *Arg;
- ParmVarDecl *Param;
- if (ArgIx < NumArgs) {
- Arg = Args[ArgIx++];
- if (RequireCompleteType(Arg->getLocStart(),
- ProtoArgType,
- diag::err_call_incomplete_argument, Arg))
- return true;
- // Pass the argument
- Param = 0;
- if (FDecl && i < FDecl->getNumParams())
- Param = FDecl->getParamDecl(i);
- // Strip the unbridged-cast placeholder expression off, if applicable.
- if (Arg->getType() == Context.ARCUnbridgedCastTy &&
- FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
- (!Param || !Param->hasAttr<CFConsumedAttr>()))
- Arg = stripARCUnbridgedCast(Arg);
- InitializedEntity Entity =
- Param? InitializedEntity::InitializeParameter(Context, Param)
- : InitializedEntity::InitializeParameter(Context, ProtoArgType,
- Proto->isArgConsumed(i));
- ExprResult ArgE = PerformCopyInitialization(Entity,
- SourceLocation(),
- Owned(Arg),
- /*TopLevelOfInitList=*/false,
- AllowExplicit);
- if (ArgE.isInvalid())
- return true;
- Arg = ArgE.takeAs<Expr>();
- } else {
- Param = FDecl->getParamDecl(i);
- ExprResult ArgExpr =
- BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
- if (ArgExpr.isInvalid())
- return true;
- Arg = ArgExpr.takeAs<Expr>();
- }
- // Check for array bounds violations for each argument to the call. This
- // check only triggers warnings when the argument isn't a more complex Expr
- // with its own checking, such as a BinaryOperator.
- CheckArrayAccess(Arg);
- // Check for violations of C99 static array rules (C99 6.7.5.3p7).
- CheckStaticArrayArgument(CallLoc, Param, Arg);
- AllArgs.push_back(Arg);
- }
- // If this is a variadic call, handle args passed through "...".
- if (CallType != VariadicDoesNotApply) {
- // Assume that extern "C" functions with variadic arguments that
- // return __unknown_anytype aren't *really* variadic.
- if (Proto->getResultType() == Context.UnknownAnyTy &&
- FDecl && FDecl->isExternC()) {
- for (unsigned i = ArgIx; i != NumArgs; ++i) {
- ExprResult arg;
- if (isa<ExplicitCastExpr>(Args[i]->IgnoreParens()))
- arg = DefaultFunctionArrayLvalueConversion(Args[i]);
- else
- arg = DefaultVariadicArgumentPromotion(Args[i], CallType, FDecl);
- Invalid |= arg.isInvalid();
- AllArgs.push_back(arg.take());
- }
- // Otherwise do argument promotion, (C99 6.5.2.2p7).
- } else {
- for (unsigned i = ArgIx; i != NumArgs; ++i) {
- ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], CallType,
- FDecl);
- Invalid |= Arg.isInvalid();
- AllArgs.push_back(Arg.take());
- }
- }
- // Check for array bounds violations.
- for (unsigned i = ArgIx; i != NumArgs; ++i)
- CheckArrayAccess(Args[i]);
- }
- return Invalid;
- }
- static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
- TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
- if (ArrayTypeLoc *ATL = dyn_cast<ArrayTypeLoc>(&TL))
- S.Diag(PVD->getLocation(), diag::note_callee_static_array)
- << ATL->getLocalSourceRange();
- }
- /// CheckStaticArrayArgument - If the given argument corresponds to a static
- /// array parameter, check that it is non-null, and that if it is formed by
- /// array-to-pointer decay, the underlying array is sufficiently large.
- ///
- /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
- /// array type derivation, then for each call to the function, the value of the
- /// corresponding actual argument shall provide access to the first element of
- /// an array with at least as many elements as specified by the size expression.
- void
- Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
- ParmVarDecl *Param,
- const Expr *ArgExpr) {
- // Static array parameters are not supported in C++.
- if (!Param || getLangOpts().CPlusPlus)
- return;
- QualType OrigTy = Param->getOriginalType();
- const ArrayType *AT = Context.getAsArrayType(OrigTy);
- if (!AT || AT->getSizeModifier() != ArrayType::Static)
- return;
- if (ArgExpr->isNullPointerConstant(Context,
- Expr::NPC_NeverValueDependent)) {
- Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
- DiagnoseCalleeStaticArrayParam(*this, Param);
- return;
- }
- const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
- if (!CAT)
- return;
- const ConstantArrayType *ArgCAT =
- Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
- if (!ArgCAT)
- return;
- if (ArgCAT->getSize().ult(CAT->getSize())) {
- Diag(CallLoc, diag::warn_static_array_too_small)
- << ArgExpr->getSourceRange()
- << (unsigned) ArgCAT->getSize().getZExtValue()
- << (unsigned) CAT->getSize().getZExtValue();
- DiagnoseCalleeStaticArrayParam(*this, Param);
- }
- }
- /// Given a function expression of unknown-any type, try to rebuild it
- /// to have a function type.
- static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
- /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
- /// This provides the location of the left/right parens and a list of comma
- /// locations.
- ExprResult
- Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
- MultiExprArg ArgExprs, SourceLocation RParenLoc,
- Expr *ExecConfig, bool IsExecConfig) {
- unsigned NumArgs = ArgExprs.size();
- // Since this might be a postfix expression, get rid of ParenListExprs.
- ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
- if (Result.isInvalid()) return ExprError();
- Fn = Result.take();
- Expr **Args = ArgExprs.get();
- if (getLangOpts().CPlusPlus) {
- // If this is a pseudo-destructor expression, build the call immediately.
- if (isa<CXXPseudoDestructorExpr>(Fn)) {
- if (NumArgs > 0) {
- // Pseudo-destructor calls should not have any arguments.
- Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
- << FixItHint::CreateRemoval(
- SourceRange(Args[0]->getLocStart(),
- Args[NumArgs-1]->getLocEnd()));
- }
- return Owned(new (Context) CallExpr(Context, Fn, 0, 0, Context.VoidTy,
- VK_RValue, RParenLoc));
- }
- // Determine whether this is a dependent call inside a C++ template,
- // in which case we won't do any semantic analysis now.
- // FIXME: Will need to cache the results of name lookup (including ADL) in
- // Fn.
- bool Dependent = false;
- if (Fn->isTypeDependent())
- Dependent = true;
- else if (Expr::hasAnyTypeDependentArguments(
- llvm::makeArrayRef(Args, NumArgs)))
- Dependent = true;
- if (Dependent) {
- if (ExecConfig) {
- return Owned(new (Context) CUDAKernelCallExpr(
- Context, Fn, cast<CallExpr>(ExecConfig), Args, NumArgs,
- Context.DependentTy, VK_RValue, RParenLoc));
- } else {
- return Owned(new (Context) CallExpr(Context, Fn, Args, NumArgs,
- Context.DependentTy, VK_RValue,
- RParenLoc));
- }
- }
- // Determine whether this is a call to an object (C++ [over.call.object]).
- if (Fn->getType()->isRecordType())
- return Owned(BuildCallToObjectOfClassType(S, Fn, LParenLoc, Args, NumArgs,
- RParenLoc));
- if (Fn->getType() == Context.UnknownAnyTy) {
- ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
- if (result.isInvalid()) return ExprError();
- Fn = result.take();
- }
- if (Fn->getType() == Context.BoundMemberTy) {
- return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
- RParenLoc);
- }
- }
- // Check for overloaded calls. This can happen even in C due to extensions.
- if (Fn->getType() == Context.OverloadTy) {
- OverloadExpr::FindResult find = OverloadExpr::find(Fn);
- // We aren't supposed to apply this logic for if there's an '&' involved.
- if (!find.HasFormOfMemberPointer) {
- OverloadExpr *ovl = find.Expression;
- if (isa<UnresolvedLookupExpr>(ovl)) {
- UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
- return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, Args, NumArgs,
- RParenLoc, ExecConfig);
- } else {
- return BuildCallToMemberFunction(S, Fn, LParenLoc, Args, NumArgs,
- RParenLoc);
- }
- }
- }
- // If we're directly calling a function, get the appropriate declaration.
- if (Fn->getType() == Context.UnknownAnyTy) {
- ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
- if (result.isInvalid()) return ExprError();
- Fn = result.take();
- }
- Expr *NakedFn = Fn->IgnoreParens();
- NamedDecl *NDecl = 0;
- if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
- if (UnOp->getOpcode() == UO_AddrOf)
- NakedFn = UnOp->getSubExpr()->IgnoreParens();
-
- if (isa<DeclRefExpr>(NakedFn))
- NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
- else if (isa<MemberExpr>(NakedFn))
- NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
- return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Args, NumArgs, RParenLoc,
- ExecConfig, IsExecConfig);
- }
- ExprResult
- Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
- MultiExprArg ExecConfig, SourceLocation GGGLoc) {
- FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
- if (!ConfigDecl)
- return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
- << "cudaConfigureCall");
- QualType ConfigQTy = ConfigDecl->getType();
- DeclRefExpr *ConfigDR = new (Context) DeclRefExpr(
- ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
- MarkFunctionReferenced(LLLLoc, ConfigDecl);
- return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, 0,
- /*IsExecConfig=*/true);
- }
- /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
- ///
- /// __builtin_astype( value, dst type )
- ///
- ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
- SourceLocation BuiltinLoc,
- SourceLocation RParenLoc) {
- ExprValueKind VK = VK_RValue;
- ExprObjectKind OK = OK_Ordinary;
- QualType DstTy = GetTypeFromParser(ParsedDestTy);
- QualType SrcTy = E->getType();
- if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
- return ExprError(Diag(BuiltinLoc,
- diag::err_invalid_astype_of_different_size)
- << DstTy
- << SrcTy
- << E->getSourceRange());
- return Owned(new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc,
- RParenLoc));
- }
- /// BuildResolvedCallExpr - Build a call to a resolved expression,
- /// i.e. an expression not of \p OverloadTy. The expression should
- /// unary-convert to an expression of function-pointer or
- /// block-pointer type.
- ///
- /// \param NDecl the declaration being called, if available
- ExprResult
- Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
- SourceLocation LParenLoc,
- Expr **Args, unsigned NumArgs,
- SourceLocation RParenLoc,
- Expr *Config, bool IsExecConfig) {
- FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
- // Promote the function operand.
- ExprResult Result = UsualUnaryConversions(Fn);
- if (Result.isInvalid())
- return ExprError();
- Fn = Result.take();
- // Make the call expr early, before semantic checks. This guarantees cleanup
- // of arguments and function on error.
- CallExpr *TheCall;
- if (Config)
- TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
- cast<CallExpr>(Config),
- Args, NumArgs,
- Context.BoolTy,
- VK_RValue,
- RParenLoc);
- else
- TheCall = new (Context) CallExpr(Context, Fn,
- Args, NumArgs,
- Context.BoolTy,
- VK_RValue,
- RParenLoc);
- unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
- // Bail out early if calling a builtin with custom typechecking.
- if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
- return CheckBuiltinFunctionCall(BuiltinID, TheCall);
- retry:
- const FunctionType *FuncT;
- if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
- // C99 6.5.2.2p1 - "The expression that denotes the called function shall
- // have type pointer to function".
- FuncT = PT->getPointeeType()->getAs<FunctionType>();
- if (FuncT == 0)
- return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
- << Fn->getType() << Fn->getSourceRange());
- } else if (const BlockPointerType *BPT =
- Fn->getType()->getAs<BlockPointerType>()) {
- FuncT = BPT->getPointeeType()->castAs<FunctionType>();
- } else {
- // Handle calls to expressions of unknown-any type.
- if (Fn->getType() == Context.UnknownAnyTy) {
- ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
- if (rewrite.isInvalid()) return ExprError();
- Fn = rewrite.take();
- TheCall->setCallee(Fn);
- goto retry;
- }
- return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
- << Fn->getType() << Fn->getSourceRange());
- }
- if (getLangOpts().CUDA) {
- if (Config) {
- // CUDA: Kernel calls must be to global functions
- if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
- return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
- << FDecl->getName() << Fn->getSourceRange());
- // CUDA: Kernel function must have 'void' return type
- if (!FuncT->getResultType()->isVoidType())
- return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
- << Fn->getType() << Fn->getSourceRange());
- } else {
- // CUDA: Calls to global functions must be configured
- if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
- return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
- << FDecl->getName() << Fn->getSourceRange());
- }
- }
- // Check for a valid return type
- if (CheckCallReturnType(FuncT->getResultType(),
- Fn->getLocStart(), TheCall,
- FDecl))
- return ExprError();
- // We know the result type of the call, set it.
- TheCall->setType(FuncT->getCallResultType(Context));
- TheCall->setValueKind(Expr::getValueKindForType(FuncT->getResultType()));
- const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
- if (Proto) {
- if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, NumArgs,
- RParenLoc, IsExecConfig))
- return ExprError();
- } else {
- assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
- if (FDecl) {
- // Check if we have too few/too many template arguments, based
- // on our knowledge of the function definition.
- const FunctionDecl *Def = 0;
- if (FDecl->hasBody(Def) && NumArgs != Def->param_size()) {
- Proto = Def->getType()->getAs<FunctionProtoType>();
- if (!Proto || !(Proto->isVariadic() && NumArgs >= Def->param_size()))
- Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
- << (NumArgs > Def->param_size()) << FDecl << Fn->getSourceRange();
- }
-
- // If the function we're calling isn't a function prototype, but we have
- // a function prototype from a prior declaratiom, use that prototype.
- if (!FDecl->hasPrototype())
- Proto = FDecl->getType()->getAs<FunctionProtoType>();
- }
- // Promote the arguments (C99 6.5.2.2p6).
- for (unsigned i = 0; i != NumArgs; i++) {
- Expr *Arg = Args[i];
- if (Proto && i < Proto->getNumArgs()) {
- InitializedEntity Entity
- = InitializedEntity::InitializeParameter(Context,
- Proto->getArgType(i),
- Proto->isArgConsumed(i));
- ExprResult ArgE = PerformCopyInitialization(Entity,
- SourceLocation(),
- Owned(Arg));
- if (ArgE.isInvalid())
- return true;
-
- Arg = ArgE.takeAs<Expr>();
- } else {
- ExprResult ArgE = DefaultArgumentPromotion(Arg);
- if (ArgE.isInvalid())
- return true;
- Arg = ArgE.takeAs<Expr>();
- }
-
- if (RequireCompleteType(Arg->getLocStart(),
- Arg->getType(),
- diag::err_call_incomplete_argument, Arg))
- return ExprError();
- TheCall->setArg(i, Arg);
- }
- }
- if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
- if (!Method->isStatic())
- return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
- << Fn->getSourceRange());
- // Check for sentinels
- if (NDecl)
- DiagnoseSentinelCalls(NDecl, LParenLoc, Args, NumArgs);
- // Do special checking on direct calls to functions.
- if (FDecl) {
- if (CheckFunctionCall(FDecl, TheCall, Proto))
- return ExprError();
- if (BuiltinID)
- return CheckBuiltinFunctionCall(BuiltinID, TheCall);
- } else if (NDecl) {
- if (CheckBlockCall(NDecl, TheCall, Proto))
- return ExprError();
- }
- return MaybeBindToTemporary(TheCall);
- }
- ExprResult
- Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
- SourceLocation RParenLoc, Expr *InitExpr) {
- assert((Ty != 0) && "ActOnCompoundLiteral(): missing type");
- // FIXME: put back this assert when initializers are worked out.
- //assert((InitExpr != 0) && "ActOnCompoundLiteral(): missing expression");
- TypeSourceInfo *TInfo;
- QualType literalType = GetTypeFromParser(Ty, &TInfo);
- if (!TInfo)
- TInfo = Context.getTrivialTypeSourceInfo(literalType);
- return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
- }
- ExprResult
- Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
- SourceLocation RParenLoc, Expr *LiteralExpr) {
- QualType literalType = TInfo->getType();
- if (literalType->isArrayType()) {
- if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
- diag::err_illegal_decl_array_incomplete_type,
- SourceRange(LParenLoc,
- LiteralExpr->getSourceRange().getEnd())))
- return ExprError();
- if (literalType->isVariableArrayType())
- return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
- << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
- } else if (!literalType->isDependentType() &&
- RequireCompleteType(LParenLoc, literalType,
- diag::err_typecheck_decl_incomplete_type,
- SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
- return ExprError();
- InitializedEntity Entity
- = InitializedEntity::InitializeTemporary(literalType);
- InitializationKind Kind
- = InitializationKind::CreateCStyleCast(LParenLoc,
- SourceRange(LParenLoc, RParenLoc),
- /*InitList=*/true);
- InitializationSequence InitSeq(*this, Entity, Kind, &LiteralExpr, 1);
- ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
- MultiExprArg(*this, &LiteralExpr, 1),
- &literalType);
- if (Result.isInvalid())
- return ExprError();
- LiteralExpr = Result.get();
- bool isFileScope = getCurFunctionOrMethodDecl() == 0;
- if (isFileScope) { // 6.5.2.5p3
- if (CheckForConstantInitializer(LiteralExpr, literalType))
- return ExprError();
- }
- // In C, compound literals are l-values for some reason.
- ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
- return MaybeBindToTemporary(
- new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
- VK, LiteralExpr, isFileScope));
- }
- ExprResult
- Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
- SourceLocation RBraceLoc) {
- unsigned NumInit = InitArgList.size();
- Expr **InitList = InitArgList.get();
- // Immediately handle non-overload placeholders. Overloads can be
- // resolved contextually, but everything else here can't.
- for (unsigned I = 0; I != NumInit; ++I) {
- if (InitList[I]->getType()->isNonOverloadPlaceholderType()) {
- ExprResult result = CheckPlaceholderExpr(InitList[I]);
- // Ignore failures; dropping the entire initializer list because
- // of one failure would be terrible for indexing/etc.
- if (result.isInvalid()) continue;
- InitList[I] = result.take();
- }
- }
- // Semantic analysis for initializers is done by ActOnDeclarator() and
- // CheckInitializer() - it requires knowledge of the object being intialized.
- InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitList,
- NumInit, RBraceLoc);
- E->setType(Context.VoidTy); // FIXME: just a place holder for now.
- return Owned(E);
- }
- /// Do an explicit extend of the given block pointer if we're in ARC.
- static void maybeExtendBlockObject(Sema &S, ExprResult &E) {
- assert(E.get()->getType()->isBlockPointerType());
- assert(E.get()->isRValue());
- // Only do this in an r-value context.
- if (!S.getLangOpts().ObjCAutoRefCount) return;
- E = ImplicitCastExpr::Create(S.Context, E.get()->getType(),
- CK_ARCExtendBlockObject, E.get(),
- /*base path*/ 0, VK_RValue);
- S.ExprNeedsCleanups = true;
- }
- /// Prepare a conversion of the given expression to an ObjC object
- /// pointer type.
- CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
- QualType type = E.get()->getType();
- if (type->isObjCObjectPointerType()) {
- return CK_BitCast;
- } else if (type->isBlockPointerType()) {
- maybeExtendBlockObject(*this, E);
- return CK_BlockPointerToObjCPointerCast;
- } else {
- assert(type->isPointerType());
- return CK_CPointerToObjCPointerCast;
- }
- }
- /// Prepares for a scalar cast, performing all the necessary stages
- /// except the final cast and returning the kind required.
- CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
- // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
- // Also, callers should have filtered out the invalid cases with
- // pointers. Everything else should be possible.
- QualType SrcTy = Src.get()->getType();
- if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
- return CK_NoOp;
- switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
- case Type::STK_MemberPointer:
- llvm_unreachable("member pointer type in C");
- case Type::STK_CPointer:
- case Type::STK_BlockPointer:
- case Type::STK_ObjCObjectPointer:
- switch (DestTy->getScalarTypeKind()) {
- case Type::STK_CPointer:
- return CK_BitCast;
- case Type::STK_BlockPointer:
- return (SrcKind == Type::STK_BlockPointer
- ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
- case Type::STK_ObjCObjectPointer:
- if (SrcKind == Type::STK_ObjCObjectPointer)
- return CK_BitCast;
- if (SrcKind == Type::STK_CPointer)
- return CK_CPointerToObjCPointerCast;
- maybeExtendBlockObject(*this, Src);
- return CK_BlockPointerToObjCPointerCast;
- case Type::STK_Bool:
- return CK_PointerToBoolean;
- case Type::STK_Integral:
- return CK_PointerToIntegral;
- case Type::STK_Floating:
- case Type::STK_FloatingComplex:
- case Type::STK_IntegralComplex:
- case Type::STK_MemberPointer:
- llvm_unreachable("illegal cast from pointer");
- }
- llvm_unreachable("Should have returned before this");
- case Type::STK_Bool: // casting from bool is like casting from an integer
- case Type::STK_Integral:
- switch (DestTy->getScalarTypeKind()) {
- case Type::STK_CPointer:
- case Type::STK_ObjCObjectPointer:
- case Type::STK_BlockPointer:
- if (Src.get()->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull))
- return CK_NullToPointer;
- return CK_IntegralToPointer;
- case Type::STK_Bool:
- return CK_IntegralToBoolean;
- case Type::STK_Integral:
- return CK_IntegralCast;
- case Type::STK_Floating:
- return CK_IntegralToFloating;
- case Type::STK_IntegralComplex:
- Src = ImpCastExprToType(Src.take(),
- DestTy->castAs<ComplexType>()->getElementType(),
- CK_IntegralCast);
- return CK_IntegralRealToComplex;
- case Type::STK_FloatingComplex:
- Src = ImpCastExprToType(Src.take(),
- DestTy->castAs<ComplexType>()->getElementType(),
- CK_IntegralToFloating);
- return CK_FloatingRealToComplex;
- case Type::STK_MemberPointer:
- llvm_unreachable("member pointer type in C");
- }
- llvm_unreachable("Should have returned before this");
- case Type::STK_Floating:
- switch (DestTy->getScalarTypeKind()) {
- case Type::STK_Floating:
- return CK_FloatingCast;
- case Type::STK_Bool:
- return CK_FloatingToBoolean;
- case Type::STK_Integral:
- return CK_FloatingToIntegral;
- case Type::STK_FloatingComplex:
- Src = ImpCastExprToType(Src.take(),
- DestTy->castAs<ComplexType>()->getElementType(),
- CK_FloatingCast);
- return CK_FloatingRealToComplex;
- case Type::STK_IntegralComplex:
- Src = ImpCastExprToType(Src.take(),
- DestTy->castAs<ComplexType>()->getElementType(),
- CK_FloatingToIntegral);
- return CK_IntegralRealToComplex;
- case Type::STK_CPointer:
- case Type::STK_ObjCObjectPointer:
- case Type::STK_BlockPointer:
- llvm_unreachable("valid float->pointer cast?");
- case Type::STK_MemberPointer:
- llvm_unreachable("member pointer type in C");
- }
- llvm_unreachable("Should have returned before this");
- case Type::STK_FloatingComplex:
- switch (DestTy->getScalarTypeKind()) {
- case Type::STK_FloatingComplex:
- return CK_FloatingComplexCast;
- case Type::STK_IntegralComplex:
- return CK_FloatingComplexToIntegralComplex;
- case Type::STK_Floating: {
- QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
- if (Context.hasSameType(ET, DestTy))
- return CK_FloatingComplexToReal;
- Src = ImpCastExprToType(Src.take(), ET, CK_FloatingComplexToReal);
- return CK_FloatingCast;
- }
- case Type::STK_Bool:
- return CK_FloatingComplexToBoolean;
- case Type::STK_Integral:
- Src = ImpCastExprToType(Src.take(),
- SrcTy->castAs<ComplexType>()->getElementType(),
- CK_FloatingComplexToReal);
- return CK_FloatingToIntegral;
- case Type::STK_CPointer:
- case Type::STK_ObjCObjectPointer:
- case Type::STK_BlockPointer:
- llvm_unreachable("valid complex float->pointer cast?");
- case Type::STK_MemberPointer:
- llvm_unreachable("member pointer type in C");
- }
- llvm_unreachable("Should have returned before this");
- case Type::STK_IntegralComplex:
- switch (DestTy->getScalarTypeKind()) {
- case Type::STK_FloatingComplex:
- return CK_IntegralComplexToFloatingComplex;
- case Type::STK_IntegralComplex:
- return CK_IntegralComplexCast;
- case Type::STK_Integral: {
- QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
- if (Context.hasSameType(ET, DestTy))
- return CK_IntegralComplexToReal;
- Src = ImpCastExprToType(Src.take(), ET, CK_IntegralComplexToReal);
- return CK_IntegralCast;
- }
- case Type::STK_Bool:
- return CK_IntegralComplexToBoolean;
- case Type::STK_Floating:
- Src = ImpCastExprToType(Src.take(),
- SrcTy->castAs<ComplexType>()->getElementType(),
- CK_IntegralComplexToReal);
- return CK_IntegralToFloating;
- case Type::STK_CPointer:
- case Type::STK_ObjCObjectPointer:
- case Type::STK_BlockPointer:
- llvm_unreachable("valid complex int->pointer cast?");
- case Type::STK_MemberPointer:
- llvm_unreachable("member pointer type in C");
- }
- llvm_unreachable("Should have returned before this");
- }
- llvm_unreachable("Unhandled scalar cast");
- }
- bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
- CastKind &Kind) {
- assert(VectorTy->isVectorType() && "Not a vector type!");
- if (Ty->isVectorType() || Ty->isIntegerType()) {
- if (Context.getTypeSize(VectorTy) != Context.getTypeSize(Ty))
- return Diag(R.getBegin(),
- Ty->isVectorType() ?
- diag::err_invalid_conversion_between_vectors :
- diag::err_invalid_conversion_between_vector_and_integer)
- << VectorTy << Ty << R;
- } else
- return Diag(R.getBegin(),
- diag::err_invalid_conversion_between_vector_and_scalar)
- << VectorTy << Ty << R;
- Kind = CK_BitCast;
- return false;
- }
- ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
- Expr *CastExpr, CastKind &Kind) {
- assert(DestTy->isExtVectorType() && "Not an extended vector type!");
- QualType SrcTy = CastExpr->getType();
- // If SrcTy is a VectorType, the total size must match to explicitly cast to
- // an ExtVectorType.
- // In OpenCL, casts between vectors of different types are not allowed.
- // (See OpenCL 6.2).
- if (SrcTy->isVectorType()) {
- if (Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)
- || (getLangOpts().OpenCL &&
- (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
- Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
- << DestTy << SrcTy << R;
- return ExprError();
- }
- Kind = CK_BitCast;
- return Owned(CastExpr);
- }
- // All non-pointer scalars can be cast to ExtVector type. The appropriate
- // conversion will take place first from scalar to elt type, and then
- // splat from elt type to vector.
- if (SrcTy->isPointerType())
- return Diag(R.getBegin(),
- diag::err_invalid_conversion_between_vector_and_scalar)
- << DestTy << SrcTy << R;
- QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
- ExprResult CastExprRes = Owned(CastExpr);
- CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
- if (CastExprRes.isInvalid())
- return ExprError();
- CastExpr = ImpCastExprToType(CastExprRes.take(), DestElemTy, CK).take();
- Kind = CK_VectorSplat;
- return Owned(CastExpr);
- }
- ExprResult
- Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
- Declarator &D, ParsedType &Ty,
- SourceLocation RParenLoc, Expr *CastExpr) {
- assert(!D.isInvalidType() && (CastExpr != 0) &&
- "ActOnCastExpr(): missing type or expr");
- TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
- if (D.isInvalidType())
- return ExprError();
- if (getLangOpts().CPlusPlus) {
- // Check that there are no default arguments (C++ only).
- CheckExtraCXXDefaultArguments(D);
- }
- checkUnusedDeclAttributes(D);
- QualType castType = castTInfo->getType();
- Ty = CreateParsedType(castType, castTInfo);
- bool isVectorLiteral = false;
- // Check for an altivec or OpenCL literal,
- // i.e. all the elements are integer constants.
- ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
- ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
- if ((getLangOpts().AltiVec || getLangOpts().OpenCL)
- && castType->isVectorType() && (PE || PLE)) {
- if (PLE && PLE->getNumExprs() == 0) {
- Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
- return ExprError();
- }
- if (PE || PLE->getNumExprs() == 1) {
- Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
- if (!E->getType()->isVectorType())
- isVectorLiteral = true;
- }
- else
- isVectorLiteral = true;
- }
- // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
- // then handle it as such.
- if (isVectorLiteral)
- return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
- // If the Expr being casted is a ParenListExpr, handle it specially.
- // This is not an AltiVec-style cast, so turn the ParenListExpr into a
- // sequence of BinOp comma operators.
- if (isa<ParenListExpr>(CastExpr)) {
- ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
- if (Result.isInvalid()) return ExprError();
- CastExpr = Result.take();
- }
- return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
- }
- ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
- SourceLocation RParenLoc, Expr *E,
- TypeSourceInfo *TInfo) {
- assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
- "Expected paren or paren list expression");
- Expr **exprs;
- unsigned numExprs;
- Expr *subExpr;
- if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
- exprs = PE->getExprs();
- numExprs = PE->getNumExprs();
- } else {
- subExpr = cast<ParenExpr>(E)->getSubExpr();
- exprs = &subExpr;
- numExprs = 1;
- }
- QualType Ty = TInfo->getType();
- assert(Ty->isVectorType() && "Expected vector type");
- SmallVector<Expr *, 8> initExprs;
- const VectorType *VTy = Ty->getAs<VectorType>();
- unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
-
- // '(...)' form of vector initialization in AltiVec: the number of
- // initializers must be one or must match the size of the vector.
- // If a single value is specified in the initializer then it will be
- // replicated to all the components of the vector
- if (VTy->getVectorKind() == VectorType::AltiVecVector) {
- // The number of initializers must be one or must match the size of the
- // vector. If a single value is specified in the initializer then it will
- // be replicated to all the components of the vector
- if (numExprs == 1) {
- QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
- ExprResult Literal = DefaultLvalueConversion(exprs[0]);
- if (Literal.isInvalid())
- return ExprError();
- Literal = ImpCastExprToType(Literal.take(), ElemTy,
- PrepareScalarCast(Literal, ElemTy));
- return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
- }
- else if (numExprs < numElems) {
- Diag(E->getExprLoc(),
- diag::err_incorrect_number_of_vector_initializers);
- return ExprError();
- }
- else
- initExprs.append(exprs, exprs + numExprs);
- }
- else {
- // For OpenCL, when the number of initializers is a single value,
- // it will be replicated to all components of the vector.
- if (getLangOpts().OpenCL &&
- VTy->getVectorKind() == VectorType::GenericVector &&
- numExprs == 1) {
- QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
- ExprResult Literal = DefaultLvalueConversion(exprs[0]);
- if (Literal.isInvalid())
- return ExprError();
- Literal = ImpCastExprToType(Literal.take(), ElemTy,
- PrepareScalarCast(Literal, ElemTy));
- return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.take());
- }
-
- initExprs.append(exprs, exprs + numExprs);
- }
- // FIXME: This means that pretty-printing the final AST will produce curly
- // braces instead of the original commas.
- InitListExpr *initE = new (Context) InitListExpr(Context, LParenLoc,
- &initExprs[0],
- initExprs.size(), RParenLoc);
- initE->setType(Ty);
- return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
- }
- /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
- /// the ParenListExpr into a sequence of comma binary operators.
- ExprResult
- Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
- ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
- if (!E)
- return Owned(OrigExpr);
- ExprResult Result(E->getExpr(0));
- for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
- Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
- E->getExpr(i));
- if (Result.isInvalid()) return ExprError();
- return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
- }
- ExprResult Sema::ActOnParenListExpr(SourceLocation L,
- SourceLocation R,
- MultiExprArg Val) {
- unsigned nexprs = Val.size();
- Expr **exprs = Val.get();
- assert((exprs != 0) && "ActOnParenOrParenListExpr() missing expr list");
- Expr *expr = new (Context) ParenListExpr(Context, L, exprs, nexprs, R);
- return Owned(expr);
- }
- /// \brief Emit a specialized diagnostic when one expression is a null pointer
- /// constant and the other is not a pointer. Returns true if a diagnostic is
- /// emitted.
- bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
- SourceLocation QuestionLoc) {
- Expr *NullExpr = LHSExpr;
- Expr *NonPointerExpr = RHSExpr;
- Expr::NullPointerConstantKind NullKind =
- NullExpr->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNotNull);
- if (NullKind == Expr::NPCK_NotNull) {
- NullExpr = RHSExpr;
- NonPointerExpr = LHSExpr;
- NullKind =
- NullExpr->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNotNull);
- }
- if (NullKind == Expr::NPCK_NotNull)
- return false;
- if (NullKind == Expr::NPCK_ZeroExpression)
- return false;
- if (NullKind == Expr::NPCK_ZeroLiteral) {
- // In this case, check to make sure that we got here from a "NULL"
- // string in the source code.
- NullExpr = NullExpr->IgnoreParenImpCasts();
- SourceLocation loc = NullExpr->getExprLoc();
- if (!findMacroSpelling(loc, "NULL"))
- return false;
- }
- int DiagType = (NullKind == Expr::NPCK_CXX0X_nullptr);
- Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
- << NonPointerExpr->getType() << DiagType
- << NonPointerExpr->getSourceRange();
- return true;
- }
- /// \brief Return false if the condition expression is valid, true otherwise.
- static bool checkCondition(Sema &S, Expr *Cond) {
- QualType CondTy = Cond->getType();
- // C99 6.5.15p2
- if (CondTy->isScalarType()) return false;
- // OpenCL: Sec 6.3.i says the condition is allowed to be a vector or scalar.
- if (S.getLangOpts().OpenCL && CondTy->isVectorType())
- return false;
- // Emit the proper error message.
- S.Diag(Cond->getLocStart(), S.getLangOpts().OpenCL ?
- diag::err_typecheck_cond_expect_scalar :
- diag::err_typecheck_cond_expect_scalar_or_vector)
- << CondTy;
- return true;
- }
- /// \brief Return false if the two expressions can be converted to a vector,
- /// true otherwise
- static bool checkConditionalConvertScalarsToVectors(Sema &S, ExprResult &LHS,
- ExprResult &RHS,
- QualType CondTy) {
- // Both operands should be of scalar type.
- if (!LHS.get()->getType()->isScalarType()) {
- S.Diag(LHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
- << CondTy;
- return true;
- }
- if (!RHS.get()->getType()->isScalarType()) {
- S.Diag(RHS.get()->getLocStart(), diag::err_typecheck_cond_expect_scalar)
- << CondTy;
- return true;
- }
- // Implicity convert these scalars to the type of the condition.
- LHS = S.ImpCastExprToType(LHS.take(), CondTy, CK_IntegralCast);
- RHS = S.ImpCastExprToType(RHS.take(), CondTy, CK_IntegralCast);
- return false;
- }
- /// \brief Handle when one or both operands are void type.
- static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
- ExprResult &RHS) {
- Expr *LHSExpr = LHS.get();
- Expr *RHSExpr = RHS.get();
- if (!LHSExpr->getType()->isVoidType())
- S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
- << RHSExpr->getSourceRange();
- if (!RHSExpr->getType()->isVoidType())
- S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
- << LHSExpr->getSourceRange();
- LHS = S.ImpCastExprToType(LHS.take(), S.Context.VoidTy, CK_ToVoid);
- RHS = S.ImpCastExprToType(RHS.take(), S.Context.VoidTy, CK_ToVoid);
- return S.Context.VoidTy;
- }
- /// \brief Return false if the NullExpr can be promoted to PointerTy,
- /// true otherwise.
- static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
- QualType PointerTy) {
- if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
- !NullExpr.get()->isNullPointerConstant(S.Context,
- Expr::NPC_ValueDependentIsNull))
- return true;
- NullExpr = S.ImpCastExprToType(NullExpr.take(), PointerTy, CK_NullToPointer);
- return false;
- }
- /// \brief Checks compatibility between two pointers and return the resulting
- /// type.
- static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
- ExprResult &RHS,
- SourceLocation Loc) {
- QualType LHSTy = LHS.get()->getType();
- QualType RHSTy = RHS.get()->getType();
- if (S.Context.hasSameType(LHSTy, RHSTy)) {
- // Two identical pointers types are always compatible.
- return LHSTy;
- }
- QualType lhptee, rhptee;
- // Get the pointee types.
- if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
- lhptee = LHSBTy->getPointeeType();
- rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
- } else {
- lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
- rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
- }
- // C99 6.5.15p6: If both operands are pointers to compatible types or to
- // differently qualified versions of compatible types, the result type is
- // a pointer to an appropriately qualified version of the composite
- // type.
- // Only CVR-qualifiers exist in the standard, and the differently-qualified
- // clause doesn't make sense for our extensions. E.g. address space 2 should
- // be incompatible with address space 3: they may live on different devices or
- // anything.
- Qualifiers lhQual = lhptee.getQualifiers();
- Qualifiers rhQual = rhptee.getQualifiers();
- unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
- lhQual.removeCVRQualifiers();
- rhQual.removeCVRQualifiers();
- lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
- rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
- QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
- if (CompositeTy.isNull()) {
- S.Diag(Loc, diag::warn_typecheck_cond_incompatible_pointers)
- << LHSTy << RHSTy << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- // In this situation, we assume void* type. No especially good
- // reason, but this is what gcc does, and we do have to pick
- // to get a consistent AST.
- QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
- LHS = S.ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
- RHS = S.ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
- return incompatTy;
- }
- // The pointer types are compatible.
- QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
- ResultTy = S.Context.getPointerType(ResultTy);
- LHS = S.ImpCastExprToType(LHS.take(), ResultTy, CK_BitCast);
- RHS = S.ImpCastExprToType(RHS.take(), ResultTy, CK_BitCast);
- return ResultTy;
- }
- /// \brief Return the resulting type when the operands are both block pointers.
- static QualType checkConditionalBlockPointerCompatibility(Sema &S,
- ExprResult &LHS,
- ExprResult &RHS,
- SourceLocation Loc) {
- QualType LHSTy = LHS.get()->getType();
- QualType RHSTy = RHS.get()->getType();
- if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
- if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
- QualType destType = S.Context.getPointerType(S.Context.VoidTy);
- LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
- RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
- return destType;
- }
- S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
- << LHSTy << RHSTy << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- return QualType();
- }
- // We have 2 block pointer types.
- return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
- }
- /// \brief Return the resulting type when the operands are both pointers.
- static QualType
- checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
- ExprResult &RHS,
- SourceLocation Loc) {
- // get the pointer types
- QualType LHSTy = LHS.get()->getType();
- QualType RHSTy = RHS.get()->getType();
- // get the "pointed to" types
- QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
- QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
- // ignore qualifiers on void (C99 6.5.15p3, clause 6)
- if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
- // Figure out necessary qualifiers (C99 6.5.15p6)
- QualType destPointee
- = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
- QualType destType = S.Context.getPointerType(destPointee);
- // Add qualifiers if necessary.
- LHS = S.ImpCastExprToType(LHS.take(), destType, CK_NoOp);
- // Promote to void*.
- RHS = S.ImpCastExprToType(RHS.take(), destType, CK_BitCast);
- return destType;
- }
- if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
- QualType destPointee
- = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
- QualType destType = S.Context.getPointerType(destPointee);
- // Add qualifiers if necessary.
- RHS = S.ImpCastExprToType(RHS.take(), destType, CK_NoOp);
- // Promote to void*.
- LHS = S.ImpCastExprToType(LHS.take(), destType, CK_BitCast);
- return destType;
- }
- return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
- }
- /// \brief Return false if the first expression is not an integer and the second
- /// expression is not a pointer, true otherwise.
- static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
- Expr* PointerExpr, SourceLocation Loc,
- bool IsIntFirstExpr) {
- if (!PointerExpr->getType()->isPointerType() ||
- !Int.get()->getType()->isIntegerType())
- return false;
- Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
- Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
- S.Diag(Loc, diag::warn_typecheck_cond_pointer_integer_mismatch)
- << Expr1->getType() << Expr2->getType()
- << Expr1->getSourceRange() << Expr2->getSourceRange();
- Int = S.ImpCastExprToType(Int.take(), PointerExpr->getType(),
- CK_IntegralToPointer);
- return true;
- }
- /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
- /// In that case, LHS = cond.
- /// C99 6.5.15
- QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
- ExprResult &RHS, ExprValueKind &VK,
- ExprObjectKind &OK,
- SourceLocation QuestionLoc) {
- ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
- if (!LHSResult.isUsable()) return QualType();
- LHS = LHSResult;
- ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
- if (!RHSResult.isUsable()) return QualType();
- RHS = RHSResult;
- // C++ is sufficiently different to merit its own checker.
- if (getLangOpts().CPlusPlus)
- return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
- VK = VK_RValue;
- OK = OK_Ordinary;
- Cond = UsualUnaryConversions(Cond.take());
- if (Cond.isInvalid())
- return QualType();
- LHS = UsualUnaryConversions(LHS.take());
- if (LHS.isInvalid())
- return QualType();
- RHS = UsualUnaryConversions(RHS.take());
- if (RHS.isInvalid())
- return QualType();
- QualType CondTy = Cond.get()->getType();
- QualType LHSTy = LHS.get()->getType();
- QualType RHSTy = RHS.get()->getType();
- // first, check the condition.
- if (checkCondition(*this, Cond.get()))
- return QualType();
- // Now check the two expressions.
- if (LHSTy->isVectorType() || RHSTy->isVectorType())
- return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
- // OpenCL: If the condition is a vector, and both operands are scalar,
- // attempt to implicity convert them to the vector type to act like the
- // built in select.
- if (getLangOpts().OpenCL && CondTy->isVectorType())
- if (checkConditionalConvertScalarsToVectors(*this, LHS, RHS, CondTy))
- return QualType();
-
- // If both operands have arithmetic type, do the usual arithmetic conversions
- // to find a common type: C99 6.5.15p3,5.
- if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
- UsualArithmeticConversions(LHS, RHS);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- return LHS.get()->getType();
- }
- // If both operands are the same structure or union type, the result is that
- // type.
- if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
- if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
- if (LHSRT->getDecl() == RHSRT->getDecl())
- // "If both the operands have structure or union type, the result has
- // that type." This implies that CV qualifiers are dropped.
- return LHSTy.getUnqualifiedType();
- // FIXME: Type of conditional expression must be complete in C mode.
- }
- // C99 6.5.15p5: "If both operands have void type, the result has void type."
- // The following || allows only one side to be void (a GCC-ism).
- if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
- return checkConditionalVoidType(*this, LHS, RHS);
- }
- // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
- // the type of the other operand."
- if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
- if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
- // All objective-c pointer type analysis is done here.
- QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
- QuestionLoc);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- if (!compositeType.isNull())
- return compositeType;
- // Handle block pointer types.
- if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
- return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
- QuestionLoc);
- // Check constraints for C object pointers types (C99 6.5.15p3,6).
- if (LHSTy->isPointerType() && RHSTy->isPointerType())
- return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
- QuestionLoc);
- // GCC compatibility: soften pointer/integer mismatch. Note that
- // null pointers have been filtered out by this point.
- if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
- /*isIntFirstExpr=*/true))
- return RHSTy;
- if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
- /*isIntFirstExpr=*/false))
- return LHSTy;
- // Emit a better diagnostic if one of the expressions is a null pointer
- // constant and the other is not a pointer type. In this case, the user most
- // likely forgot to take the address of the other expression.
- if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
- return QualType();
- // Otherwise, the operands are not compatible.
- Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
- << LHSTy << RHSTy << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- return QualType();
- }
- /// FindCompositeObjCPointerType - Helper method to find composite type of
- /// two objective-c pointer types of the two input expressions.
- QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
- SourceLocation QuestionLoc) {
- QualType LHSTy = LHS.get()->getType();
- QualType RHSTy = RHS.get()->getType();
- // Handle things like Class and struct objc_class*. Here we case the result
- // to the pseudo-builtin, because that will be implicitly cast back to the
- // redefinition type if an attempt is made to access its fields.
- if (LHSTy->isObjCClassType() &&
- (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
- RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
- return LHSTy;
- }
- if (RHSTy->isObjCClassType() &&
- (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
- LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
- return RHSTy;
- }
- // And the same for struct objc_object* / id
- if (LHSTy->isObjCIdType() &&
- (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
- RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_CPointerToObjCPointerCast);
- return LHSTy;
- }
- if (RHSTy->isObjCIdType() &&
- (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
- LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_CPointerToObjCPointerCast);
- return RHSTy;
- }
- // And the same for struct objc_selector* / SEL
- if (Context.isObjCSelType(LHSTy) &&
- (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
- RHS = ImpCastExprToType(RHS.take(), LHSTy, CK_BitCast);
- return LHSTy;
- }
- if (Context.isObjCSelType(RHSTy) &&
- (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
- LHS = ImpCastExprToType(LHS.take(), RHSTy, CK_BitCast);
- return RHSTy;
- }
- // Check constraints for Objective-C object pointers types.
- if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
- if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
- // Two identical object pointer types are always compatible.
- return LHSTy;
- }
- const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
- const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
- QualType compositeType = LHSTy;
- // If both operands are interfaces and either operand can be
- // assigned to the other, use that type as the composite
- // type. This allows
- // xxx ? (A*) a : (B*) b
- // where B is a subclass of A.
- //
- // Additionally, as for assignment, if either type is 'id'
- // allow silent coercion. Finally, if the types are
- // incompatible then make sure to use 'id' as the composite
- // type so the result is acceptable for sending messages to.
- // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
- // It could return the composite type.
- if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
- compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
- } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
- compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
- } else if ((LHSTy->isObjCQualifiedIdType() ||
- RHSTy->isObjCQualifiedIdType()) &&
- Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
- // Need to handle "id<xx>" explicitly.
- // GCC allows qualified id and any Objective-C type to devolve to
- // id. Currently localizing to here until clear this should be
- // part of ObjCQualifiedIdTypesAreCompatible.
- compositeType = Context.getObjCIdType();
- } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
- compositeType = Context.getObjCIdType();
- } else if (!(compositeType =
- Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull())
- ;
- else {
- Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
- << LHSTy << RHSTy
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- QualType incompatTy = Context.getObjCIdType();
- LHS = ImpCastExprToType(LHS.take(), incompatTy, CK_BitCast);
- RHS = ImpCastExprToType(RHS.take(), incompatTy, CK_BitCast);
- return incompatTy;
- }
- // The object pointer types are compatible.
- LHS = ImpCastExprToType(LHS.take(), compositeType, CK_BitCast);
- RHS = ImpCastExprToType(RHS.take(), compositeType, CK_BitCast);
- return compositeType;
- }
- // Check Objective-C object pointer types and 'void *'
- if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
- if (getLangOpts().ObjCAutoRefCount) {
- // ARC forbids the implicit conversion of object pointers to 'void *',
- // so these types are not compatible.
- Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- LHS = RHS = true;
- return QualType();
- }
- QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
- QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
- QualType destPointee
- = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
- QualType destType = Context.getPointerType(destPointee);
- // Add qualifiers if necessary.
- LHS = ImpCastExprToType(LHS.take(), destType, CK_NoOp);
- // Promote to void*.
- RHS = ImpCastExprToType(RHS.take(), destType, CK_BitCast);
- return destType;
- }
- if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
- if (getLangOpts().ObjCAutoRefCount) {
- // ARC forbids the implicit conversion of object pointers to 'void *',
- // so these types are not compatible.
- Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- LHS = RHS = true;
- return QualType();
- }
- QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
- QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
- QualType destPointee
- = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
- QualType destType = Context.getPointerType(destPointee);
- // Add qualifiers if necessary.
- RHS = ImpCastExprToType(RHS.take(), destType, CK_NoOp);
- // Promote to void*.
- LHS = ImpCastExprToType(LHS.take(), destType, CK_BitCast);
- return destType;
- }
- return QualType();
- }
- /// SuggestParentheses - Emit a note with a fixit hint that wraps
- /// ParenRange in parentheses.
- static void SuggestParentheses(Sema &Self, SourceLocation Loc,
- const PartialDiagnostic &Note,
- SourceRange ParenRange) {
- SourceLocation EndLoc = Self.PP.getLocForEndOfToken(ParenRange.getEnd());
- if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
- EndLoc.isValid()) {
- Self.Diag(Loc, Note)
- << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
- << FixItHint::CreateInsertion(EndLoc, ")");
- } else {
- // We can't display the parentheses, so just show the bare note.
- Self.Diag(Loc, Note) << ParenRange;
- }
- }
- static bool IsArithmeticOp(BinaryOperatorKind Opc) {
- return Opc >= BO_Mul && Opc <= BO_Shr;
- }
- /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
- /// expression, either using a built-in or overloaded operator,
- /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
- /// expression.
- static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
- Expr **RHSExprs) {
- // Don't strip parenthesis: we should not warn if E is in parenthesis.
- E = E->IgnoreImpCasts();
- E = E->IgnoreConversionOperator();
- E = E->IgnoreImpCasts();
- // Built-in binary operator.
- if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
- if (IsArithmeticOp(OP->getOpcode())) {
- *Opcode = OP->getOpcode();
- *RHSExprs = OP->getRHS();
- return true;
- }
- }
- // Overloaded operator.
- if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
- if (Call->getNumArgs() != 2)
- return false;
- // Make sure this is really a binary operator that is safe to pass into
- // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
- OverloadedOperatorKind OO = Call->getOperator();
- if (OO < OO_Plus || OO > OO_Arrow)
- return false;
- BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
- if (IsArithmeticOp(OpKind)) {
- *Opcode = OpKind;
- *RHSExprs = Call->getArg(1);
- return true;
- }
- }
- return false;
- }
- static bool IsLogicOp(BinaryOperatorKind Opc) {
- return (Opc >= BO_LT && Opc <= BO_NE) || (Opc >= BO_LAnd && Opc <= BO_LOr);
- }
- /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
- /// or is a logical expression such as (x==y) which has int type, but is
- /// commonly interpreted as boolean.
- static bool ExprLooksBoolean(Expr *E) {
- E = E->IgnoreParenImpCasts();
- if (E->getType()->isBooleanType())
- return true;
- if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
- return IsLogicOp(OP->getOpcode());
- if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
- return OP->getOpcode() == UO_LNot;
- return false;
- }
- /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
- /// and binary operator are mixed in a way that suggests the programmer assumed
- /// the conditional operator has higher precedence, for example:
- /// "int x = a + someBinaryCondition ? 1 : 2".
- static void DiagnoseConditionalPrecedence(Sema &Self,
- SourceLocation OpLoc,
- Expr *Condition,
- Expr *LHSExpr,
- Expr *RHSExpr) {
- BinaryOperatorKind CondOpcode;
- Expr *CondRHS;
- if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
- return;
- if (!ExprLooksBoolean(CondRHS))
- return;
- // The condition is an arithmetic binary expression, with a right-
- // hand side that looks boolean, so warn.
- Self.Diag(OpLoc, diag::warn_precedence_conditional)
- << Condition->getSourceRange()
- << BinaryOperator::getOpcodeStr(CondOpcode);
- SuggestParentheses(Self, OpLoc,
- Self.PDiag(diag::note_precedence_conditional_silence)
- << BinaryOperator::getOpcodeStr(CondOpcode),
- SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
- SuggestParentheses(Self, OpLoc,
- Self.PDiag(diag::note_precedence_conditional_first),
- SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
- }
- /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
- /// in the case of a the GNU conditional expr extension.
- ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
- SourceLocation ColonLoc,
- Expr *CondExpr, Expr *LHSExpr,
- Expr *RHSExpr) {
- // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
- // was the condition.
- OpaqueValueExpr *opaqueValue = 0;
- Expr *commonExpr = 0;
- if (LHSExpr == 0) {
- commonExpr = CondExpr;
- // We usually want to apply unary conversions *before* saving, except
- // in the special case of a C++ l-value conditional.
- if (!(getLangOpts().CPlusPlus
- && !commonExpr->isTypeDependent()
- && commonExpr->getValueKind() == RHSExpr->getValueKind()
- && commonExpr->isGLValue()
- && commonExpr->isOrdinaryOrBitFieldObject()
- && RHSExpr->isOrdinaryOrBitFieldObject()
- && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
- ExprResult commonRes = UsualUnaryConversions(commonExpr);
- if (commonRes.isInvalid())
- return ExprError();
- commonExpr = commonRes.take();
- }
- opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
- commonExpr->getType(),
- commonExpr->getValueKind(),
- commonExpr->getObjectKind(),
- commonExpr);
- LHSExpr = CondExpr = opaqueValue;
- }
- ExprValueKind VK = VK_RValue;
- ExprObjectKind OK = OK_Ordinary;
- ExprResult Cond = Owned(CondExpr), LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
- QualType result = CheckConditionalOperands(Cond, LHS, RHS,
- VK, OK, QuestionLoc);
- if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
- RHS.isInvalid())
- return ExprError();
- DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
- RHS.get());
- if (!commonExpr)
- return Owned(new (Context) ConditionalOperator(Cond.take(), QuestionLoc,
- LHS.take(), ColonLoc,
- RHS.take(), result, VK, OK));
- return Owned(new (Context)
- BinaryConditionalOperator(commonExpr, opaqueValue, Cond.take(), LHS.take(),
- RHS.take(), QuestionLoc, ColonLoc, result, VK,
- OK));
- }
- // checkPointerTypesForAssignment - This is a very tricky routine (despite
- // being closely modeled after the C99 spec:-). The odd characteristic of this
- // routine is it effectively iqnores the qualifiers on the top level pointee.
- // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
- // FIXME: add a couple examples in this comment.
- static Sema::AssignConvertType
- checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
- assert(LHSType.isCanonical() && "LHS not canonicalized!");
- assert(RHSType.isCanonical() && "RHS not canonicalized!");
- // get the "pointed to" type (ignoring qualifiers at the top level)
- const Type *lhptee, *rhptee;
- Qualifiers lhq, rhq;
- llvm::tie(lhptee, lhq) = cast<PointerType>(LHSType)->getPointeeType().split();
- llvm::tie(rhptee, rhq) = cast<PointerType>(RHSType)->getPointeeType().split();
- Sema::AssignConvertType ConvTy = Sema::Compatible;
- // C99 6.5.16.1p1: This following citation is common to constraints
- // 3 & 4 (below). ...and the type *pointed to* by the left has all the
- // qualifiers of the type *pointed to* by the right;
- Qualifiers lq;
- // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
- if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
- lhq.compatiblyIncludesObjCLifetime(rhq)) {
- // Ignore lifetime for further calculation.
- lhq.removeObjCLifetime();
- rhq.removeObjCLifetime();
- }
- if (!lhq.compatiblyIncludes(rhq)) {
- // Treat address-space mismatches as fatal. TODO: address subspaces
- if (lhq.getAddressSpace() != rhq.getAddressSpace())
- ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
- // It's okay to add or remove GC or lifetime qualifiers when converting to
- // and from void*.
- else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
- .compatiblyIncludes(
- rhq.withoutObjCGCAttr().withoutObjCLifetime())
- && (lhptee->isVoidType() || rhptee->isVoidType()))
- ; // keep old
- // Treat lifetime mismatches as fatal.
- else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
- ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
-
- // For GCC compatibility, other qualifier mismatches are treated
- // as still compatible in C.
- else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
- }
- // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
- // incomplete type and the other is a pointer to a qualified or unqualified
- // version of void...
- if (lhptee->isVoidType()) {
- if (rhptee->isIncompleteOrObjectType())
- return ConvTy;
- // As an extension, we allow cast to/from void* to function pointer.
- assert(rhptee->isFunctionType());
- return Sema::FunctionVoidPointer;
- }
- if (rhptee->isVoidType()) {
- if (lhptee->isIncompleteOrObjectType())
- return ConvTy;
- // As an extension, we allow cast to/from void* to function pointer.
- assert(lhptee->isFunctionType());
- return Sema::FunctionVoidPointer;
- }
- // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
- // unqualified versions of compatible types, ...
- QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
- if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
- // Check if the pointee types are compatible ignoring the sign.
- // We explicitly check for char so that we catch "char" vs
- // "unsigned char" on systems where "char" is unsigned.
- if (lhptee->isCharType())
- ltrans = S.Context.UnsignedCharTy;
- else if (lhptee->hasSignedIntegerRepresentation())
- ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
- if (rhptee->isCharType())
- rtrans = S.Context.UnsignedCharTy;
- else if (rhptee->hasSignedIntegerRepresentation())
- rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
- if (ltrans == rtrans) {
- // Types are compatible ignoring the sign. Qualifier incompatibility
- // takes priority over sign incompatibility because the sign
- // warning can be disabled.
- if (ConvTy != Sema::Compatible)
- return ConvTy;
- return Sema::IncompatiblePointerSign;
- }
- // If we are a multi-level pointer, it's possible that our issue is simply
- // one of qualification - e.g. char ** -> const char ** is not allowed. If
- // the eventual target type is the same and the pointers have the same
- // level of indirection, this must be the issue.
- if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
- do {
- lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
- rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
- } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
- if (lhptee == rhptee)
- return Sema::IncompatibleNestedPointerQualifiers;
- }
- // General pointer incompatibility takes priority over qualifiers.
- return Sema::IncompatiblePointer;
- }
- if (!S.getLangOpts().CPlusPlus &&
- S.IsNoReturnConversion(ltrans, rtrans, ltrans))
- return Sema::IncompatiblePointer;
- return ConvTy;
- }
- /// checkBlockPointerTypesForAssignment - This routine determines whether two
- /// block pointer types are compatible or whether a block and normal pointer
- /// are compatible. It is more restrict than comparing two function pointer
- // types.
- static Sema::AssignConvertType
- checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
- QualType RHSType) {
- assert(LHSType.isCanonical() && "LHS not canonicalized!");
- assert(RHSType.isCanonical() && "RHS not canonicalized!");
- QualType lhptee, rhptee;
- // get the "pointed to" type (ignoring qualifiers at the top level)
- lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
- rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
- // In C++, the types have to match exactly.
- if (S.getLangOpts().CPlusPlus)
- return Sema::IncompatibleBlockPointer;
- Sema::AssignConvertType ConvTy = Sema::Compatible;
- // For blocks we enforce that qualifiers are identical.
- if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
- ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
- if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
- return Sema::IncompatibleBlockPointer;
- return ConvTy;
- }
- /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
- /// for assignment compatibility.
- static Sema::AssignConvertType
- checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
- QualType RHSType) {
- assert(LHSType.isCanonical() && "LHS was not canonicalized!");
- assert(RHSType.isCanonical() && "RHS was not canonicalized!");
- if (LHSType->isObjCBuiltinType()) {
- // Class is not compatible with ObjC object pointers.
- if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
- !RHSType->isObjCQualifiedClassType())
- return Sema::IncompatiblePointer;
- return Sema::Compatible;
- }
- if (RHSType->isObjCBuiltinType()) {
- if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
- !LHSType->isObjCQualifiedClassType())
- return Sema::IncompatiblePointer;
- return Sema::Compatible;
- }
- QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
- QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
- if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
- // make an exception for id<P>
- !LHSType->isObjCQualifiedIdType())
- return Sema::CompatiblePointerDiscardsQualifiers;
- if (S.Context.typesAreCompatible(LHSType, RHSType))
- return Sema::Compatible;
- if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
- return Sema::IncompatibleObjCQualifiedId;
- return Sema::IncompatiblePointer;
- }
- Sema::AssignConvertType
- Sema::CheckAssignmentConstraints(SourceLocation Loc,
- QualType LHSType, QualType RHSType) {
- // Fake up an opaque expression. We don't actually care about what
- // cast operations are required, so if CheckAssignmentConstraints
- // adds casts to this they'll be wasted, but fortunately that doesn't
- // usually happen on valid code.
- OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
- ExprResult RHSPtr = &RHSExpr;
- CastKind K = CK_Invalid;
- return CheckAssignmentConstraints(LHSType, RHSPtr, K);
- }
- /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
- /// has code to accommodate several GCC extensions when type checking
- /// pointers. Here are some objectionable examples that GCC considers warnings:
- ///
- /// int a, *pint;
- /// short *pshort;
- /// struct foo *pfoo;
- ///
- /// pint = pshort; // warning: assignment from incompatible pointer type
- /// a = pint; // warning: assignment makes integer from pointer without a cast
- /// pint = a; // warning: assignment makes pointer from integer without a cast
- /// pint = pfoo; // warning: assignment from incompatible pointer type
- ///
- /// As a result, the code for dealing with pointers is more complex than the
- /// C99 spec dictates.
- ///
- /// Sets 'Kind' for any result kind except Incompatible.
- Sema::AssignConvertType
- Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
- CastKind &Kind) {
- QualType RHSType = RHS.get()->getType();
- QualType OrigLHSType = LHSType;
- // Get canonical types. We're not formatting these types, just comparing
- // them.
- LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
- RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
- // Common case: no conversion required.
- if (LHSType == RHSType) {
- Kind = CK_NoOp;
- return Compatible;
- }
- // If we have an atomic type, try a non-atomic assignment, then just add an
- // atomic qualification step.
- if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
- Sema::AssignConvertType result =
- CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
- if (result != Compatible)
- return result;
- if (Kind != CK_NoOp)
- RHS = ImpCastExprToType(RHS.take(), AtomicTy->getValueType(), Kind);
- Kind = CK_NonAtomicToAtomic;
- return Compatible;
- }
- // If the left-hand side is a reference type, then we are in a
- // (rare!) case where we've allowed the use of references in C,
- // e.g., as a parameter type in a built-in function. In this case,
- // just make sure that the type referenced is compatible with the
- // right-hand side type. The caller is responsible for adjusting
- // LHSType so that the resulting expression does not have reference
- // type.
- if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
- if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
- Kind = CK_LValueBitCast;
- return Compatible;
- }
- return Incompatible;
- }
- // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
- // to the same ExtVector type.
- if (LHSType->isExtVectorType()) {
- if (RHSType->isExtVectorType())
- return Incompatible;
- if (RHSType->isArithmeticType()) {
- // CK_VectorSplat does T -> vector T, so first cast to the
- // element type.
- QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
- if (elType != RHSType) {
- Kind = PrepareScalarCast(RHS, elType);
- RHS = ImpCastExprToType(RHS.take(), elType, Kind);
- }
- Kind = CK_VectorSplat;
- return Compatible;
- }
- }
- // Conversions to or from vector type.
- if (LHSType->isVectorType() || RHSType->isVectorType()) {
- if (LHSType->isVectorType() && RHSType->isVectorType()) {
- // Allow assignments of an AltiVec vector type to an equivalent GCC
- // vector type and vice versa
- if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
- Kind = CK_BitCast;
- return Compatible;
- }
- // If we are allowing lax vector conversions, and LHS and RHS are both
- // vectors, the total size only needs to be the same. This is a bitcast;
- // no bits are changed but the result type is different.
- if (getLangOpts().LaxVectorConversions &&
- (Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType))) {
- Kind = CK_BitCast;
- return IncompatibleVectors;
- }
- }
- return Incompatible;
- }
- // Arithmetic conversions.
- if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
- !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
- Kind = PrepareScalarCast(RHS, LHSType);
- return Compatible;
- }
- // Conversions to normal pointers.
- if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
- // U* -> T*
- if (isa<PointerType>(RHSType)) {
- Kind = CK_BitCast;
- return checkPointerTypesForAssignment(*this, LHSType, RHSType);
- }
- // int -> T*
- if (RHSType->isIntegerType()) {
- Kind = CK_IntegralToPointer; // FIXME: null?
- return IntToPointer;
- }
- // C pointers are not compatible with ObjC object pointers,
- // with two exceptions:
- if (isa<ObjCObjectPointerType>(RHSType)) {
- // - conversions to void*
- if (LHSPointer->getPointeeType()->isVoidType()) {
- Kind = CK_BitCast;
- return Compatible;
- }
- // - conversions from 'Class' to the redefinition type
- if (RHSType->isObjCClassType() &&
- Context.hasSameType(LHSType,
- Context.getObjCClassRedefinitionType())) {
- Kind = CK_BitCast;
- return Compatible;
- }
- Kind = CK_BitCast;
- return IncompatiblePointer;
- }
- // U^ -> void*
- if (RHSType->getAs<BlockPointerType>()) {
- if (LHSPointer->getPointeeType()->isVoidType()) {
- Kind = CK_BitCast;
- return Compatible;
- }
- }
- return Incompatible;
- }
- // Conversions to block pointers.
- if (isa<BlockPointerType>(LHSType)) {
- // U^ -> T^
- if (RHSType->isBlockPointerType()) {
- Kind = CK_BitCast;
- return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
- }
- // int or null -> T^
- if (RHSType->isIntegerType()) {
- Kind = CK_IntegralToPointer; // FIXME: null
- return IntToBlockPointer;
- }
- // id -> T^
- if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
- Kind = CK_AnyPointerToBlockPointerCast;
- return Compatible;
- }
- // void* -> T^
- if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
- if (RHSPT->getPointeeType()->isVoidType()) {
- Kind = CK_AnyPointerToBlockPointerCast;
- return Compatible;
- }
- return Incompatible;
- }
- // Conversions to Objective-C pointers.
- if (isa<ObjCObjectPointerType>(LHSType)) {
- // A* -> B*
- if (RHSType->isObjCObjectPointerType()) {
- Kind = CK_BitCast;
- Sema::AssignConvertType result =
- checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
- if (getLangOpts().ObjCAutoRefCount &&
- result == Compatible &&
- !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
- result = IncompatibleObjCWeakRef;
- return result;
- }
- // int or null -> A*
- if (RHSType->isIntegerType()) {
- Kind = CK_IntegralToPointer; // FIXME: null
- return IntToPointer;
- }
- // In general, C pointers are not compatible with ObjC object pointers,
- // with two exceptions:
- if (isa<PointerType>(RHSType)) {
- Kind = CK_CPointerToObjCPointerCast;
- // - conversions from 'void*'
- if (RHSType->isVoidPointerType()) {
- return Compatible;
- }
- // - conversions to 'Class' from its redefinition type
- if (LHSType->isObjCClassType() &&
- Context.hasSameType(RHSType,
- Context.getObjCClassRedefinitionType())) {
- return Compatible;
- }
- return IncompatiblePointer;
- }
- // T^ -> A*
- if (RHSType->isBlockPointerType()) {
- maybeExtendBlockObject(*this, RHS);
- Kind = CK_BlockPointerToObjCPointerCast;
- return Compatible;
- }
- return Incompatible;
- }
- // Conversions from pointers that are not covered by the above.
- if (isa<PointerType>(RHSType)) {
- // T* -> _Bool
- if (LHSType == Context.BoolTy) {
- Kind = CK_PointerToBoolean;
- return Compatible;
- }
- // T* -> int
- if (LHSType->isIntegerType()) {
- Kind = CK_PointerToIntegral;
- return PointerToInt;
- }
- return Incompatible;
- }
- // Conversions from Objective-C pointers that are not covered by the above.
- if (isa<ObjCObjectPointerType>(RHSType)) {
- // T* -> _Bool
- if (LHSType == Context.BoolTy) {
- Kind = CK_PointerToBoolean;
- return Compatible;
- }
- // T* -> int
- if (LHSType->isIntegerType()) {
- Kind = CK_PointerToIntegral;
- return PointerToInt;
- }
- return Incompatible;
- }
- // struct A -> struct B
- if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
- if (Context.typesAreCompatible(LHSType, RHSType)) {
- Kind = CK_NoOp;
- return Compatible;
- }
- }
- return Incompatible;
- }
- /// \brief Constructs a transparent union from an expression that is
- /// used to initialize the transparent union.
- static void ConstructTransparentUnion(Sema &S, ASTContext &C,
- ExprResult &EResult, QualType UnionType,
- FieldDecl *Field) {
- // Build an initializer list that designates the appropriate member
- // of the transparent union.
- Expr *E = EResult.take();
- InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
- &E, 1,
- SourceLocation());
- Initializer->setType(UnionType);
- Initializer->setInitializedFieldInUnion(Field);
- // Build a compound literal constructing a value of the transparent
- // union type from this initializer list.
- TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
- EResult = S.Owned(
- new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
- VK_RValue, Initializer, false));
- }
- Sema::AssignConvertType
- Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
- ExprResult &RHS) {
- QualType RHSType = RHS.get()->getType();
- // If the ArgType is a Union type, we want to handle a potential
- // transparent_union GCC extension.
- const RecordType *UT = ArgType->getAsUnionType();
- if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
- return Incompatible;
- // The field to initialize within the transparent union.
- RecordDecl *UD = UT->getDecl();
- FieldDecl *InitField = 0;
- // It's compatible if the expression matches any of the fields.
- for (RecordDecl::field_iterator it = UD->field_begin(),
- itend = UD->field_end();
- it != itend; ++it) {
- if (it->getType()->isPointerType()) {
- // If the transparent union contains a pointer type, we allow:
- // 1) void pointer
- // 2) null pointer constant
- if (RHSType->isPointerType())
- if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
- RHS = ImpCastExprToType(RHS.take(), it->getType(), CK_BitCast);
- InitField = *it;
- break;
- }
- if (RHS.get()->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull)) {
- RHS = ImpCastExprToType(RHS.take(), it->getType(),
- CK_NullToPointer);
- InitField = *it;
- break;
- }
- }
- CastKind Kind = CK_Invalid;
- if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
- == Compatible) {
- RHS = ImpCastExprToType(RHS.take(), it->getType(), Kind);
- InitField = *it;
- break;
- }
- }
- if (!InitField)
- return Incompatible;
- ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
- return Compatible;
- }
- Sema::AssignConvertType
- Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &RHS,
- bool Diagnose) {
- if (getLangOpts().CPlusPlus) {
- if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
- // C++ 5.17p3: If the left operand is not of class type, the
- // expression is implicitly converted (C++ 4) to the
- // cv-unqualified type of the left operand.
- ExprResult Res;
- if (Diagnose) {
- Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
- AA_Assigning);
- } else {
- ImplicitConversionSequence ICS =
- TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
- /*SuppressUserConversions=*/false,
- /*AllowExplicit=*/false,
- /*InOverloadResolution=*/false,
- /*CStyle=*/false,
- /*AllowObjCWritebackConversion=*/false);
- if (ICS.isFailure())
- return Incompatible;
- Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
- ICS, AA_Assigning);
- }
- if (Res.isInvalid())
- return Incompatible;
- Sema::AssignConvertType result = Compatible;
- if (getLangOpts().ObjCAutoRefCount &&
- !CheckObjCARCUnavailableWeakConversion(LHSType,
- RHS.get()->getType()))
- result = IncompatibleObjCWeakRef;
- RHS = Res;
- return result;
- }
- // FIXME: Currently, we fall through and treat C++ classes like C
- // structures.
- // FIXME: We also fall through for atomics; not sure what should
- // happen there, though.
- }
- // C99 6.5.16.1p1: the left operand is a pointer and the right is
- // a null pointer constant.
- if ((LHSType->isPointerType() ||
- LHSType->isObjCObjectPointerType() ||
- LHSType->isBlockPointerType())
- && RHS.get()->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull)) {
- RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
- return Compatible;
- }
- // This check seems unnatural, however it is necessary to ensure the proper
- // conversion of functions/arrays. If the conversion were done for all
- // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
- // expressions that suppress this implicit conversion (&, sizeof).
- //
- // Suppress this for references: C++ 8.5.3p5.
- if (!LHSType->isReferenceType()) {
- RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
- if (RHS.isInvalid())
- return Incompatible;
- }
- CastKind Kind = CK_Invalid;
- Sema::AssignConvertType result =
- CheckAssignmentConstraints(LHSType, RHS, Kind);
- // C99 6.5.16.1p2: The value of the right operand is converted to the
- // type of the assignment expression.
- // CheckAssignmentConstraints allows the left-hand side to be a reference,
- // so that we can use references in built-in functions even in C.
- // The getNonReferenceType() call makes sure that the resulting expression
- // does not have reference type.
- if (result != Incompatible && RHS.get()->getType() != LHSType)
- RHS = ImpCastExprToType(RHS.take(),
- LHSType.getNonLValueExprType(Context), Kind);
- return result;
- }
- QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
- ExprResult &RHS) {
- Diag(Loc, diag::err_typecheck_invalid_operands)
- << LHS.get()->getType() << RHS.get()->getType()
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- return QualType();
- }
- QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc, bool IsCompAssign) {
- if (!IsCompAssign) {
- LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
- if (LHS.isInvalid())
- return QualType();
- }
- RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
- if (RHS.isInvalid())
- return QualType();
- // For conversion purposes, we ignore any qualifiers.
- // For example, "const float" and "float" are equivalent.
- QualType LHSType =
- Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
- QualType RHSType =
- Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
- // If the vector types are identical, return.
- if (LHSType == RHSType)
- return LHSType;
- // Handle the case of equivalent AltiVec and GCC vector types
- if (LHSType->isVectorType() && RHSType->isVectorType() &&
- Context.areCompatibleVectorTypes(LHSType, RHSType)) {
- if (LHSType->isExtVectorType()) {
- RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
- return LHSType;
- }
- if (!IsCompAssign)
- LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
- return RHSType;
- }
- if (getLangOpts().LaxVectorConversions &&
- Context.getTypeSize(LHSType) == Context.getTypeSize(RHSType)) {
- // If we are allowing lax vector conversions, and LHS and RHS are both
- // vectors, the total size only needs to be the same. This is a
- // bitcast; no bits are changed but the result type is different.
- // FIXME: Should we really be allowing this?
- RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
- return LHSType;
- }
- // Canonicalize the ExtVector to the LHS, remember if we swapped so we can
- // swap back (so that we don't reverse the inputs to a subtract, for instance.
- bool swapped = false;
- if (RHSType->isExtVectorType() && !IsCompAssign) {
- swapped = true;
- std::swap(RHS, LHS);
- std::swap(RHSType, LHSType);
- }
- // Handle the case of an ext vector and scalar.
- if (const ExtVectorType *LV = LHSType->getAs<ExtVectorType>()) {
- QualType EltTy = LV->getElementType();
- if (EltTy->isIntegralType(Context) && RHSType->isIntegralType(Context)) {
- int order = Context.getIntegerTypeOrder(EltTy, RHSType);
- if (order > 0)
- RHS = ImpCastExprToType(RHS.take(), EltTy, CK_IntegralCast);
- if (order >= 0) {
- RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
- if (swapped) std::swap(RHS, LHS);
- return LHSType;
- }
- }
- if (EltTy->isRealFloatingType() && RHSType->isScalarType() &&
- RHSType->isRealFloatingType()) {
- int order = Context.getFloatingTypeOrder(EltTy, RHSType);
- if (order > 0)
- RHS = ImpCastExprToType(RHS.take(), EltTy, CK_FloatingCast);
- if (order >= 0) {
- RHS = ImpCastExprToType(RHS.take(), LHSType, CK_VectorSplat);
- if (swapped) std::swap(RHS, LHS);
- return LHSType;
- }
- }
- }
- // Vectors of different size or scalar and non-ext-vector are errors.
- if (swapped) std::swap(RHS, LHS);
- Diag(Loc, diag::err_typecheck_vector_not_convertable)
- << LHS.get()->getType() << RHS.get()->getType()
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- return QualType();
- }
- // checkArithmeticNull - Detect when a NULL constant is used improperly in an
- // expression. These are mainly cases where the null pointer is used as an
- // integer instead of a pointer.
- static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc, bool IsCompare) {
- // The canonical way to check for a GNU null is with isNullPointerConstant,
- // but we use a bit of a hack here for speed; this is a relatively
- // hot path, and isNullPointerConstant is slow.
- bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
- bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
- QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
- // Avoid analyzing cases where the result will either be invalid (and
- // diagnosed as such) or entirely valid and not something to warn about.
- if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
- NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
- return;
- // Comparison operations would not make sense with a null pointer no matter
- // what the other expression is.
- if (!IsCompare) {
- S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
- << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
- << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
- return;
- }
- // The rest of the operations only make sense with a null pointer
- // if the other expression is a pointer.
- if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
- NonNullType->canDecayToPointerType())
- return;
- S.Diag(Loc, diag::warn_null_in_comparison_operation)
- << LHSNull /* LHS is NULL */ << NonNullType
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- }
- QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc,
- bool IsCompAssign, bool IsDiv) {
- checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType())
- return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
- QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- if (compType.isNull() || !compType->isArithmeticType())
- return InvalidOperands(Loc, LHS, RHS);
- // Check for division by zero.
- if (IsDiv &&
- RHS.get()->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNotNull))
- DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_division_by_zero)
- << RHS.get()->getSourceRange());
- return compType;
- }
- QualType Sema::CheckRemainderOperands(
- ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
- checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType()) {
- if (LHS.get()->getType()->hasIntegerRepresentation() &&
- RHS.get()->getType()->hasIntegerRepresentation())
- return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
- return InvalidOperands(Loc, LHS, RHS);
- }
- QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- if (compType.isNull() || !compType->isIntegerType())
- return InvalidOperands(Loc, LHS, RHS);
- // Check for remainder by zero.
- if (RHS.get()->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNotNull))
- DiagRuntimeBehavior(Loc, RHS.get(), PDiag(diag::warn_remainder_by_zero)
- << RHS.get()->getSourceRange());
- return compType;
- }
- /// \brief Diagnose invalid arithmetic on two void pointers.
- static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
- Expr *LHSExpr, Expr *RHSExpr) {
- S.Diag(Loc, S.getLangOpts().CPlusPlus
- ? diag::err_typecheck_pointer_arith_void_type
- : diag::ext_gnu_void_ptr)
- << 1 /* two pointers */ << LHSExpr->getSourceRange()
- << RHSExpr->getSourceRange();
- }
- /// \brief Diagnose invalid arithmetic on a void pointer.
- static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
- Expr *Pointer) {
- S.Diag(Loc, S.getLangOpts().CPlusPlus
- ? diag::err_typecheck_pointer_arith_void_type
- : diag::ext_gnu_void_ptr)
- << 0 /* one pointer */ << Pointer->getSourceRange();
- }
- /// \brief Diagnose invalid arithmetic on two function pointers.
- static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
- Expr *LHS, Expr *RHS) {
- assert(LHS->getType()->isAnyPointerType());
- assert(RHS->getType()->isAnyPointerType());
- S.Diag(Loc, S.getLangOpts().CPlusPlus
- ? diag::err_typecheck_pointer_arith_function_type
- : diag::ext_gnu_ptr_func_arith)
- << 1 /* two pointers */ << LHS->getType()->getPointeeType()
- // We only show the second type if it differs from the first.
- << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
- RHS->getType())
- << RHS->getType()->getPointeeType()
- << LHS->getSourceRange() << RHS->getSourceRange();
- }
- /// \brief Diagnose invalid arithmetic on a function pointer.
- static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
- Expr *Pointer) {
- assert(Pointer->getType()->isAnyPointerType());
- S.Diag(Loc, S.getLangOpts().CPlusPlus
- ? diag::err_typecheck_pointer_arith_function_type
- : diag::ext_gnu_ptr_func_arith)
- << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
- << 0 /* one pointer, so only one type */
- << Pointer->getSourceRange();
- }
- /// \brief Emit error if Operand is incomplete pointer type
- ///
- /// \returns True if pointer has incomplete type
- static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
- Expr *Operand) {
- assert(Operand->getType()->isAnyPointerType() &&
- !Operand->getType()->isDependentType());
- QualType PointeeTy = Operand->getType()->getPointeeType();
- return S.RequireCompleteType(Loc, PointeeTy,
- diag::err_typecheck_arithmetic_incomplete_type,
- PointeeTy, Operand->getSourceRange());
- }
- /// \brief Check the validity of an arithmetic pointer operand.
- ///
- /// If the operand has pointer type, this code will check for pointer types
- /// which are invalid in arithmetic operations. These will be diagnosed
- /// appropriately, including whether or not the use is supported as an
- /// extension.
- ///
- /// \returns True when the operand is valid to use (even if as an extension).
- static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
- Expr *Operand) {
- if (!Operand->getType()->isAnyPointerType()) return true;
- QualType PointeeTy = Operand->getType()->getPointeeType();
- if (PointeeTy->isVoidType()) {
- diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
- return !S.getLangOpts().CPlusPlus;
- }
- if (PointeeTy->isFunctionType()) {
- diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
- return !S.getLangOpts().CPlusPlus;
- }
- if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
- return true;
- }
- /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
- /// operands.
- ///
- /// This routine will diagnose any invalid arithmetic on pointer operands much
- /// like \see checkArithmeticOpPointerOperand. However, it has special logic
- /// for emitting a single diagnostic even for operations where both LHS and RHS
- /// are (potentially problematic) pointers.
- ///
- /// \returns True when the operand is valid to use (even if as an extension).
- static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
- Expr *LHSExpr, Expr *RHSExpr) {
- bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
- bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
- if (!isLHSPointer && !isRHSPointer) return true;
- QualType LHSPointeeTy, RHSPointeeTy;
- if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
- if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
- // Check for arithmetic on pointers to incomplete types.
- bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
- bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
- if (isLHSVoidPtr || isRHSVoidPtr) {
- if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
- else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
- else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
- return !S.getLangOpts().CPlusPlus;
- }
- bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
- bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
- if (isLHSFuncPtr || isRHSFuncPtr) {
- if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
- else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
- RHSExpr);
- else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
- return !S.getLangOpts().CPlusPlus;
- }
- if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
- return false;
- if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
- return false;
- return true;
- }
- /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
- /// literal.
- static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
- Expr *LHSExpr, Expr *RHSExpr) {
- StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
- Expr* IndexExpr = RHSExpr;
- if (!StrExpr) {
- StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
- IndexExpr = LHSExpr;
- }
- bool IsStringPlusInt = StrExpr &&
- IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
- if (!IsStringPlusInt)
- return;
- llvm::APSInt index;
- if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
- unsigned StrLenWithNull = StrExpr->getLength() + 1;
- if (index.isNonNegative() &&
- index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
- index.isUnsigned()))
- return;
- }
- SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
- Self.Diag(OpLoc, diag::warn_string_plus_int)
- << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
- // Only print a fixit for "str" + int, not for int + "str".
- if (IndexExpr == RHSExpr) {
- SourceLocation EndLoc = Self.PP.getLocForEndOfToken(RHSExpr->getLocEnd());
- Self.Diag(OpLoc, diag::note_string_plus_int_silence)
- << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
- << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
- << FixItHint::CreateInsertion(EndLoc, "]");
- } else
- Self.Diag(OpLoc, diag::note_string_plus_int_silence);
- }
- /// \brief Emit error when two pointers are incompatible.
- static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
- Expr *LHSExpr, Expr *RHSExpr) {
- assert(LHSExpr->getType()->isAnyPointerType());
- assert(RHSExpr->getType()->isAnyPointerType());
- S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
- << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
- << RHSExpr->getSourceRange();
- }
- QualType Sema::CheckAdditionOperands( // C99 6.5.6
- ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc,
- QualType* CompLHSTy) {
- checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType()) {
- QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
- if (CompLHSTy) *CompLHSTy = compType;
- return compType;
- }
- QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- // Diagnose "string literal" '+' int.
- if (Opc == BO_Add)
- diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
- // handle the common case first (both operands are arithmetic).
- if (!compType.isNull() && compType->isArithmeticType()) {
- if (CompLHSTy) *CompLHSTy = compType;
- return compType;
- }
- // Type-checking. Ultimately the pointer's going to be in PExp;
- // note that we bias towards the LHS being the pointer.
- Expr *PExp = LHS.get(), *IExp = RHS.get();
- bool isObjCPointer;
- if (PExp->getType()->isPointerType()) {
- isObjCPointer = false;
- } else if (PExp->getType()->isObjCObjectPointerType()) {
- isObjCPointer = true;
- } else {
- std::swap(PExp, IExp);
- if (PExp->getType()->isPointerType()) {
- isObjCPointer = false;
- } else if (PExp->getType()->isObjCObjectPointerType()) {
- isObjCPointer = true;
- } else {
- return InvalidOperands(Loc, LHS, RHS);
- }
- }
- assert(PExp->getType()->isAnyPointerType());
- if (!IExp->getType()->isIntegerType())
- return InvalidOperands(Loc, LHS, RHS);
- if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
- return QualType();
- if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
- return QualType();
- // Check array bounds for pointer arithemtic
- CheckArrayAccess(PExp, IExp);
- if (CompLHSTy) {
- QualType LHSTy = Context.isPromotableBitField(LHS.get());
- if (LHSTy.isNull()) {
- LHSTy = LHS.get()->getType();
- if (LHSTy->isPromotableIntegerType())
- LHSTy = Context.getPromotedIntegerType(LHSTy);
- }
- *CompLHSTy = LHSTy;
- }
- return PExp->getType();
- }
- // C99 6.5.6
- QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc,
- QualType* CompLHSTy) {
- checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType()) {
- QualType compType = CheckVectorOperands(LHS, RHS, Loc, CompLHSTy);
- if (CompLHSTy) *CompLHSTy = compType;
- return compType;
- }
- QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- // Enforce type constraints: C99 6.5.6p3.
- // Handle the common case first (both operands are arithmetic).
- if (!compType.isNull() && compType->isArithmeticType()) {
- if (CompLHSTy) *CompLHSTy = compType;
- return compType;
- }
- // Either ptr - int or ptr - ptr.
- if (LHS.get()->getType()->isAnyPointerType()) {
- QualType lpointee = LHS.get()->getType()->getPointeeType();
- // Diagnose bad cases where we step over interface counts.
- if (LHS.get()->getType()->isObjCObjectPointerType() &&
- checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
- return QualType();
- // The result type of a pointer-int computation is the pointer type.
- if (RHS.get()->getType()->isIntegerType()) {
- if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
- return QualType();
- // Check array bounds for pointer arithemtic
- CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/0,
- /*AllowOnePastEnd*/true, /*IndexNegated*/true);
- if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
- return LHS.get()->getType();
- }
- // Handle pointer-pointer subtractions.
- if (const PointerType *RHSPTy
- = RHS.get()->getType()->getAs<PointerType>()) {
- QualType rpointee = RHSPTy->getPointeeType();
- if (getLangOpts().CPlusPlus) {
- // Pointee types must be the same: C++ [expr.add]
- if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
- diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
- }
- } else {
- // Pointee types must be compatible C99 6.5.6p3
- if (!Context.typesAreCompatible(
- Context.getCanonicalType(lpointee).getUnqualifiedType(),
- Context.getCanonicalType(rpointee).getUnqualifiedType())) {
- diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
- return QualType();
- }
- }
- if (!checkArithmeticBinOpPointerOperands(*this, Loc,
- LHS.get(), RHS.get()))
- return QualType();
- if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
- return Context.getPointerDiffType();
- }
- }
- return InvalidOperands(Loc, LHS, RHS);
- }
- static bool isScopedEnumerationType(QualType T) {
- if (const EnumType *ET = dyn_cast<EnumType>(T))
- return ET->getDecl()->isScoped();
- return false;
- }
- static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc, unsigned Opc,
- QualType LHSType) {
- llvm::APSInt Right;
- // Check right/shifter operand
- if (RHS.get()->isValueDependent() ||
- !RHS.get()->isIntegerConstantExpr(Right, S.Context))
- return;
- if (Right.isNegative()) {
- S.DiagRuntimeBehavior(Loc, RHS.get(),
- S.PDiag(diag::warn_shift_negative)
- << RHS.get()->getSourceRange());
- return;
- }
- llvm::APInt LeftBits(Right.getBitWidth(),
- S.Context.getTypeSize(LHS.get()->getType()));
- if (Right.uge(LeftBits)) {
- S.DiagRuntimeBehavior(Loc, RHS.get(),
- S.PDiag(diag::warn_shift_gt_typewidth)
- << RHS.get()->getSourceRange());
- return;
- }
- if (Opc != BO_Shl)
- return;
- // When left shifting an ICE which is signed, we can check for overflow which
- // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
- // integers have defined behavior modulo one more than the maximum value
- // representable in the result type, so never warn for those.
- llvm::APSInt Left;
- if (LHS.get()->isValueDependent() ||
- !LHS.get()->isIntegerConstantExpr(Left, S.Context) ||
- LHSType->hasUnsignedIntegerRepresentation())
- return;
- llvm::APInt ResultBits =
- static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
- if (LeftBits.uge(ResultBits))
- return;
- llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
- Result = Result.shl(Right);
- // Print the bit representation of the signed integer as an unsigned
- // hexadecimal number.
- SmallString<40> HexResult;
- Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
- // If we are only missing a sign bit, this is less likely to result in actual
- // bugs -- if the result is cast back to an unsigned type, it will have the
- // expected value. Thus we place this behind a different warning that can be
- // turned off separately if needed.
- if (LeftBits == ResultBits - 1) {
- S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
- << HexResult.str() << LHSType
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- return;
- }
- S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
- << HexResult.str() << Result.getMinSignedBits() << LHSType
- << Left.getBitWidth() << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- }
- // C99 6.5.7
- QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc, unsigned Opc,
- bool IsCompAssign) {
- checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
- // C99 6.5.7p2: Each of the operands shall have integer type.
- if (!LHS.get()->getType()->hasIntegerRepresentation() ||
- !RHS.get()->getType()->hasIntegerRepresentation())
- return InvalidOperands(Loc, LHS, RHS);
- // C++0x: Don't allow scoped enums. FIXME: Use something better than
- // hasIntegerRepresentation() above instead of this.
- if (isScopedEnumerationType(LHS.get()->getType()) ||
- isScopedEnumerationType(RHS.get()->getType())) {
- return InvalidOperands(Loc, LHS, RHS);
- }
- // Vector shifts promote their scalar inputs to vector type.
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType())
- return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
- // Shifts don't perform usual arithmetic conversions, they just do integer
- // promotions on each operand. C99 6.5.7p3
- // For the LHS, do usual unary conversions, but then reset them away
- // if this is a compound assignment.
- ExprResult OldLHS = LHS;
- LHS = UsualUnaryConversions(LHS.take());
- if (LHS.isInvalid())
- return QualType();
- QualType LHSType = LHS.get()->getType();
- if (IsCompAssign) LHS = OldLHS;
- // The RHS is simpler.
- RHS = UsualUnaryConversions(RHS.take());
- if (RHS.isInvalid())
- return QualType();
- // Sanity-check shift operands
- DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
- // "The type of the result is that of the promoted left operand."
- return LHSType;
- }
- static bool IsWithinTemplateSpecialization(Decl *D) {
- if (DeclContext *DC = D->getDeclContext()) {
- if (isa<ClassTemplateSpecializationDecl>(DC))
- return true;
- if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
- return FD->isFunctionTemplateSpecialization();
- }
- return false;
- }
- /// If two different enums are compared, raise a warning.
- static void checkEnumComparison(Sema &S, SourceLocation Loc, ExprResult &LHS,
- ExprResult &RHS) {
- QualType LHSStrippedType = LHS.get()->IgnoreParenImpCasts()->getType();
- QualType RHSStrippedType = RHS.get()->IgnoreParenImpCasts()->getType();
- const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
- if (!LHSEnumType)
- return;
- const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
- if (!RHSEnumType)
- return;
- // Ignore anonymous enums.
- if (!LHSEnumType->getDecl()->getIdentifier())
- return;
- if (!RHSEnumType->getDecl()->getIdentifier())
- return;
- if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
- return;
- S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
- << LHSStrippedType << RHSStrippedType
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- }
- /// \brief Diagnose bad pointer comparisons.
- static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
- ExprResult &LHS, ExprResult &RHS,
- bool IsError) {
- S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
- : diag::ext_typecheck_comparison_of_distinct_pointers)
- << LHS.get()->getType() << RHS.get()->getType()
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- }
- /// \brief Returns false if the pointers are converted to a composite type,
- /// true otherwise.
- static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
- ExprResult &LHS, ExprResult &RHS) {
- // C++ [expr.rel]p2:
- // [...] Pointer conversions (4.10) and qualification
- // conversions (4.4) are performed on pointer operands (or on
- // a pointer operand and a null pointer constant) to bring
- // them to their composite pointer type. [...]
- //
- // C++ [expr.eq]p1 uses the same notion for (in)equality
- // comparisons of pointers.
- // C++ [expr.eq]p2:
- // In addition, pointers to members can be compared, or a pointer to
- // member and a null pointer constant. Pointer to member conversions
- // (4.11) and qualification conversions (4.4) are performed to bring
- // them to a common type. If one operand is a null pointer constant,
- // the common type is the type of the other operand. Otherwise, the
- // common type is a pointer to member type similar (4.4) to the type
- // of one of the operands, with a cv-qualification signature (4.4)
- // that is the union of the cv-qualification signatures of the operand
- // types.
- QualType LHSType = LHS.get()->getType();
- QualType RHSType = RHS.get()->getType();
- assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
- (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
- bool NonStandardCompositeType = false;
- bool *BoolPtr = S.isSFINAEContext() ? 0 : &NonStandardCompositeType;
- QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
- if (T.isNull()) {
- diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
- return true;
- }
- if (NonStandardCompositeType)
- S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
- << LHSType << RHSType << T << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- LHS = S.ImpCastExprToType(LHS.take(), T, CK_BitCast);
- RHS = S.ImpCastExprToType(RHS.take(), T, CK_BitCast);
- return false;
- }
- static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
- ExprResult &LHS,
- ExprResult &RHS,
- bool IsError) {
- S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
- : diag::ext_typecheck_comparison_of_fptr_to_void)
- << LHS.get()->getType() << RHS.get()->getType()
- << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
- }
- static bool isObjCObjectLiteral(ExprResult &E) {
- switch (E.get()->getStmtClass()) {
- case Stmt::ObjCArrayLiteralClass:
- case Stmt::ObjCDictionaryLiteralClass:
- case Stmt::ObjCStringLiteralClass:
- case Stmt::ObjCBoxedExprClass:
- return true;
- default:
- // Note that ObjCBoolLiteral is NOT an object literal!
- return false;
- }
- }
- static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
- // Get the LHS object's interface type.
- QualType Type = LHS->getType();
- QualType InterfaceType;
- if (const ObjCObjectPointerType *PTy = Type->getAs<ObjCObjectPointerType>()) {
- InterfaceType = PTy->getPointeeType();
- if (const ObjCObjectType *iQFaceTy =
- InterfaceType->getAsObjCQualifiedInterfaceType())
- InterfaceType = iQFaceTy->getBaseType();
- } else {
- // If this is not actually an Objective-C object, bail out.
- return false;
- }
- // If the RHS isn't an Objective-C object, bail out.
- if (!RHS->getType()->isObjCObjectPointerType())
- return false;
- // Try to find the -isEqual: method.
- Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
- ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
- InterfaceType,
- /*instance=*/true);
- if (!Method) {
- if (Type->isObjCIdType()) {
- // For 'id', just check the global pool.
- Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
- /*receiverId=*/true,
- /*warn=*/false);
- } else {
- // Check protocols.
- Method = S.LookupMethodInQualifiedType(IsEqualSel,
- cast<ObjCObjectPointerType>(Type),
- /*instance=*/true);
- }
- }
- if (!Method)
- return false;
- QualType T = Method->param_begin()[0]->getType();
- if (!T->isObjCObjectPointerType())
- return false;
-
- QualType R = Method->getResultType();
- if (!R->isScalarType())
- return false;
- return true;
- }
- static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
- ExprResult &LHS, ExprResult &RHS,
- BinaryOperator::Opcode Opc){
- Expr *Literal;
- Expr *Other;
- if (isObjCObjectLiteral(LHS)) {
- Literal = LHS.get();
- Other = RHS.get();
- } else {
- Literal = RHS.get();
- Other = LHS.get();
- }
- // Don't warn on comparisons against nil.
- Other = Other->IgnoreParenCasts();
- if (Other->isNullPointerConstant(S.getASTContext(),
- Expr::NPC_ValueDependentIsNotNull))
- return;
- // This should be kept in sync with warn_objc_literal_comparison.
- // LK_String should always be last, since it has its own warning flag.
- enum {
- LK_Array,
- LK_Dictionary,
- LK_Numeric,
- LK_Boxed,
- LK_String
- } LiteralKind;
- switch (Literal->getStmtClass()) {
- case Stmt::ObjCStringLiteralClass:
- // "string literal"
- LiteralKind = LK_String;
- break;
- case Stmt::ObjCArrayLiteralClass:
- // "array literal"
- LiteralKind = LK_Array;
- break;
- case Stmt::ObjCDictionaryLiteralClass:
- // "dictionary literal"
- LiteralKind = LK_Dictionary;
- break;
- case Stmt::ObjCBoxedExprClass: {
- Expr *Inner = cast<ObjCBoxedExpr>(Literal)->getSubExpr();
- switch (Inner->getStmtClass()) {
- case Stmt::IntegerLiteralClass:
- case Stmt::FloatingLiteralClass:
- case Stmt::CharacterLiteralClass:
- case Stmt::ObjCBoolLiteralExprClass:
- case Stmt::CXXBoolLiteralExprClass:
- // "numeric literal"
- LiteralKind = LK_Numeric;
- break;
- case Stmt::ImplicitCastExprClass: {
- CastKind CK = cast<CastExpr>(Inner)->getCastKind();
- // Boolean literals can be represented by implicit casts.
- if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast) {
- LiteralKind = LK_Numeric;
- break;
- }
- // FALLTHROUGH
- }
- default:
- // "boxed expression"
- LiteralKind = LK_Boxed;
- break;
- }
- break;
- }
- default:
- llvm_unreachable("Unknown Objective-C object literal kind");
- }
- if (LiteralKind == LK_String)
- S.Diag(Loc, diag::warn_objc_string_literal_comparison)
- << Literal->getSourceRange();
- else
- S.Diag(Loc, diag::warn_objc_literal_comparison)
- << LiteralKind << Literal->getSourceRange();
- if (BinaryOperator::isEqualityOp(Opc) &&
- hasIsEqualMethod(S, LHS.get(), RHS.get())) {
- SourceLocation Start = LHS.get()->getLocStart();
- SourceLocation End = S.PP.getLocForEndOfToken(RHS.get()->getLocEnd());
- SourceRange OpRange(Loc, S.PP.getLocForEndOfToken(Loc));
- S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
- << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
- << FixItHint::CreateReplacement(OpRange, "isEqual:")
- << FixItHint::CreateInsertion(End, "]");
- }
- }
- // C99 6.5.8, C++ [expr.rel]
- QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc, unsigned OpaqueOpc,
- bool IsRelational) {
- checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
- BinaryOperatorKind Opc = (BinaryOperatorKind) OpaqueOpc;
- // Handle vector comparisons separately.
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType())
- return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
- QualType LHSType = LHS.get()->getType();
- QualType RHSType = RHS.get()->getType();
- Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
- Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
- checkEnumComparison(*this, Loc, LHS, RHS);
- if (!LHSType->hasFloatingRepresentation() &&
- !(LHSType->isBlockPointerType() && IsRelational) &&
- !LHS.get()->getLocStart().isMacroID() &&
- !RHS.get()->getLocStart().isMacroID()) {
- // For non-floating point types, check for self-comparisons of the form
- // x == x, x != x, x < x, etc. These always evaluate to a constant, and
- // often indicate logic errors in the program.
- //
- // NOTE: Don't warn about comparison expressions resulting from macro
- // expansion. Also don't warn about comparisons which are only self
- // comparisons within a template specialization. The warnings should catch
- // obvious cases in the definition of the template anyways. The idea is to
- // warn when the typed comparison operator will always evaluate to the same
- // result.
- if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LHSStripped)) {
- if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RHSStripped)) {
- if (DRL->getDecl() == DRR->getDecl() &&
- !IsWithinTemplateSpecialization(DRL->getDecl())) {
- DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
- << 0 // self-
- << (Opc == BO_EQ
- || Opc == BO_LE
- || Opc == BO_GE));
- } else if (LHSType->isArrayType() && RHSType->isArrayType() &&
- !DRL->getDecl()->getType()->isReferenceType() &&
- !DRR->getDecl()->getType()->isReferenceType()) {
- // what is it always going to eval to?
- char always_evals_to;
- switch(Opc) {
- case BO_EQ: // e.g. array1 == array2
- always_evals_to = 0; // false
- break;
- case BO_NE: // e.g. array1 != array2
- always_evals_to = 1; // true
- break;
- default:
- // best we can say is 'a constant'
- always_evals_to = 2; // e.g. array1 <= array2
- break;
- }
- DiagRuntimeBehavior(Loc, 0, PDiag(diag::warn_comparison_always)
- << 1 // array
- << always_evals_to);
- }
- }
- }
- if (isa<CastExpr>(LHSStripped))
- LHSStripped = LHSStripped->IgnoreParenCasts();
- if (isa<CastExpr>(RHSStripped))
- RHSStripped = RHSStripped->IgnoreParenCasts();
- // Warn about comparisons against a string constant (unless the other
- // operand is null), the user probably wants strcmp.
- Expr *literalString = 0;
- Expr *literalStringStripped = 0;
- if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
- !RHSStripped->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull)) {
- literalString = LHS.get();
- literalStringStripped = LHSStripped;
- } else if ((isa<StringLiteral>(RHSStripped) ||
- isa<ObjCEncodeExpr>(RHSStripped)) &&
- !LHSStripped->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull)) {
- literalString = RHS.get();
- literalStringStripped = RHSStripped;
- }
- if (literalString) {
- std::string resultComparison;
- switch (Opc) {
- case BO_LT: resultComparison = ") < 0"; break;
- case BO_GT: resultComparison = ") > 0"; break;
- case BO_LE: resultComparison = ") <= 0"; break;
- case BO_GE: resultComparison = ") >= 0"; break;
- case BO_EQ: resultComparison = ") == 0"; break;
- case BO_NE: resultComparison = ") != 0"; break;
- default: llvm_unreachable("Invalid comparison operator");
- }
- DiagRuntimeBehavior(Loc, 0,
- PDiag(diag::warn_stringcompare)
- << isa<ObjCEncodeExpr>(literalStringStripped)
- << literalString->getSourceRange());
- }
- }
- // C99 6.5.8p3 / C99 6.5.9p4
- if (LHS.get()->getType()->isArithmeticType() &&
- RHS.get()->getType()->isArithmeticType()) {
- UsualArithmeticConversions(LHS, RHS);
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- }
- else {
- LHS = UsualUnaryConversions(LHS.take());
- if (LHS.isInvalid())
- return QualType();
- RHS = UsualUnaryConversions(RHS.take());
- if (RHS.isInvalid())
- return QualType();
- }
- LHSType = LHS.get()->getType();
- RHSType = RHS.get()->getType();
- // The result of comparisons is 'bool' in C++, 'int' in C.
- QualType ResultTy = Context.getLogicalOperationType();
- if (IsRelational) {
- if (LHSType->isRealType() && RHSType->isRealType())
- return ResultTy;
- } else {
- // Check for comparisons of floating point operands using != and ==.
- if (LHSType->hasFloatingRepresentation())
- CheckFloatComparison(Loc, LHS.get(), RHS.get());
- if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
- return ResultTy;
- }
- bool LHSIsNull = LHS.get()->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull);
- bool RHSIsNull = RHS.get()->isNullPointerConstant(Context,
- Expr::NPC_ValueDependentIsNull);
- // All of the following pointer-related warnings are GCC extensions, except
- // when handling null pointer constants.
- if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
- QualType LCanPointeeTy =
- LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
- QualType RCanPointeeTy =
- RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
- if (getLangOpts().CPlusPlus) {
- if (LCanPointeeTy == RCanPointeeTy)
- return ResultTy;
- if (!IsRelational &&
- (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
- // Valid unless comparison between non-null pointer and function pointer
- // This is a gcc extension compatibility comparison.
- // In a SFINAE context, we treat this as a hard error to maintain
- // conformance with the C++ standard.
- if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
- && !LHSIsNull && !RHSIsNull) {
- diagnoseFunctionPointerToVoidComparison(
- *this, Loc, LHS, RHS, /*isError*/ isSFINAEContext());
-
- if (isSFINAEContext())
- return QualType();
-
- RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
- return ResultTy;
- }
- }
- if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
- return QualType();
- else
- return ResultTy;
- }
- // C99 6.5.9p2 and C99 6.5.8p2
- if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
- RCanPointeeTy.getUnqualifiedType())) {
- // Valid unless a relational comparison of function pointers
- if (IsRelational && LCanPointeeTy->isFunctionType()) {
- Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
- << LHSType << RHSType << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- }
- } else if (!IsRelational &&
- (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
- // Valid unless comparison between non-null pointer and function pointer
- if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
- && !LHSIsNull && !RHSIsNull)
- diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
- /*isError*/false);
- } else {
- // Invalid
- diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
- }
- if (LCanPointeeTy != RCanPointeeTy) {
- if (LHSIsNull && !RHSIsNull)
- LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
- else
- RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
- }
- return ResultTy;
- }
- if (getLangOpts().CPlusPlus) {
- // Comparison of nullptr_t with itself.
- if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
- return ResultTy;
-
- // Comparison of pointers with null pointer constants and equality
- // comparisons of member pointers to null pointer constants.
- if (RHSIsNull &&
- ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
- (!IsRelational &&
- (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
- RHS = ImpCastExprToType(RHS.take(), LHSType,
- LHSType->isMemberPointerType()
- ? CK_NullToMemberPointer
- : CK_NullToPointer);
- return ResultTy;
- }
- if (LHSIsNull &&
- ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
- (!IsRelational &&
- (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
- LHS = ImpCastExprToType(LHS.take(), RHSType,
- RHSType->isMemberPointerType()
- ? CK_NullToMemberPointer
- : CK_NullToPointer);
- return ResultTy;
- }
- // Comparison of member pointers.
- if (!IsRelational &&
- LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
- if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
- return QualType();
- else
- return ResultTy;
- }
- // Handle scoped enumeration types specifically, since they don't promote
- // to integers.
- if (LHS.get()->getType()->isEnumeralType() &&
- Context.hasSameUnqualifiedType(LHS.get()->getType(),
- RHS.get()->getType()))
- return ResultTy;
- }
- // Handle block pointer types.
- if (!IsRelational && LHSType->isBlockPointerType() &&
- RHSType->isBlockPointerType()) {
- QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
- QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
- if (!LHSIsNull && !RHSIsNull &&
- !Context.typesAreCompatible(lpointee, rpointee)) {
- Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
- << LHSType << RHSType << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- }
- RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
- return ResultTy;
- }
- // Allow block pointers to be compared with null pointer constants.
- if (!IsRelational
- && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
- || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
- if (!LHSIsNull && !RHSIsNull) {
- if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
- ->getPointeeType()->isVoidType())
- || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
- ->getPointeeType()->isVoidType())))
- Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
- << LHSType << RHSType << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- }
- if (LHSIsNull && !RHSIsNull)
- LHS = ImpCastExprToType(LHS.take(), RHSType,
- RHSType->isPointerType() ? CK_BitCast
- : CK_AnyPointerToBlockPointerCast);
- else
- RHS = ImpCastExprToType(RHS.take(), LHSType,
- LHSType->isPointerType() ? CK_BitCast
- : CK_AnyPointerToBlockPointerCast);
- return ResultTy;
- }
- if (LHSType->isObjCObjectPointerType() ||
- RHSType->isObjCObjectPointerType()) {
- const PointerType *LPT = LHSType->getAs<PointerType>();
- const PointerType *RPT = RHSType->getAs<PointerType>();
- if (LPT || RPT) {
- bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
- bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
- if (!LPtrToVoid && !RPtrToVoid &&
- !Context.typesAreCompatible(LHSType, RHSType)) {
- diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
- /*isError*/false);
- }
- if (LHSIsNull && !RHSIsNull)
- LHS = ImpCastExprToType(LHS.take(), RHSType,
- RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
- else
- RHS = ImpCastExprToType(RHS.take(), LHSType,
- LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
- return ResultTy;
- }
- if (LHSType->isObjCObjectPointerType() &&
- RHSType->isObjCObjectPointerType()) {
- if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
- diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
- /*isError*/false);
- if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
- diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
- if (LHSIsNull && !RHSIsNull)
- LHS = ImpCastExprToType(LHS.take(), RHSType, CK_BitCast);
- else
- RHS = ImpCastExprToType(RHS.take(), LHSType, CK_BitCast);
- return ResultTy;
- }
- }
- if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
- (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
- unsigned DiagID = 0;
- bool isError = false;
- if ((LHSIsNull && LHSType->isIntegerType()) ||
- (RHSIsNull && RHSType->isIntegerType())) {
- if (IsRelational && !getLangOpts().CPlusPlus)
- DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
- } else if (IsRelational && !getLangOpts().CPlusPlus)
- DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
- else if (getLangOpts().CPlusPlus) {
- DiagID = diag::err_typecheck_comparison_of_pointer_integer;
- isError = true;
- } else
- DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
- if (DiagID) {
- Diag(Loc, DiagID)
- << LHSType << RHSType << LHS.get()->getSourceRange()
- << RHS.get()->getSourceRange();
- if (isError)
- return QualType();
- }
-
- if (LHSType->isIntegerType())
- LHS = ImpCastExprToType(LHS.take(), RHSType,
- LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
- else
- RHS = ImpCastExprToType(RHS.take(), LHSType,
- RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
- return ResultTy;
- }
-
- // Handle block pointers.
- if (!IsRelational && RHSIsNull
- && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
- RHS = ImpCastExprToType(RHS.take(), LHSType, CK_NullToPointer);
- return ResultTy;
- }
- if (!IsRelational && LHSIsNull
- && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
- LHS = ImpCastExprToType(LHS.take(), RHSType, CK_NullToPointer);
- return ResultTy;
- }
- return InvalidOperands(Loc, LHS, RHS);
- }
- // Return a signed type that is of identical size and number of elements.
- // For floating point vectors, return an integer type of identical size
- // and number of elements.
- QualType Sema::GetSignedVectorType(QualType V) {
- const VectorType *VTy = V->getAs<VectorType>();
- unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
- if (TypeSize == Context.getTypeSize(Context.CharTy))
- return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
- else if (TypeSize == Context.getTypeSize(Context.ShortTy))
- return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
- else if (TypeSize == Context.getTypeSize(Context.IntTy))
- return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
- else if (TypeSize == Context.getTypeSize(Context.LongTy))
- return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
- assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
- "Unhandled vector element size in vector compare");
- return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
- }
- /// CheckVectorCompareOperands - vector comparisons are a clang extension that
- /// operates on extended vector types. Instead of producing an IntTy result,
- /// like a scalar comparison, a vector comparison produces a vector of integer
- /// types.
- QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc,
- bool IsRelational) {
- // Check to make sure we're operating on vectors of the same type and width,
- // Allowing one side to be a scalar of element type.
- QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false);
- if (vType.isNull())
- return vType;
- QualType LHSType = LHS.get()->getType();
- // If AltiVec, the comparison results in a numeric type, i.e.
- // bool for C++, int for C
- if (vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
- return Context.getLogicalOperationType();
- // For non-floating point types, check for self-comparisons of the form
- // x == x, x != x, x < x, etc. These always evaluate to a constant, and
- // often indicate logic errors in the program.
- if (!LHSType->hasFloatingRepresentation()) {
- if (DeclRefExpr* DRL
- = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
- if (DeclRefExpr* DRR
- = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
- if (DRL->getDecl() == DRR->getDecl())
- DiagRuntimeBehavior(Loc, 0,
- PDiag(diag::warn_comparison_always)
- << 0 // self-
- << 2 // "a constant"
- );
- }
- // Check for comparisons of floating point operands using != and ==.
- if (!IsRelational && LHSType->hasFloatingRepresentation()) {
- assert (RHS.get()->getType()->hasFloatingRepresentation());
- CheckFloatComparison(Loc, LHS.get(), RHS.get());
- }
-
- // Return a signed type for the vector.
- return GetSignedVectorType(LHSType);
- }
- QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc) {
- // Ensure that either both operands are of the same vector type, or
- // one operand is of a vector type and the other is of its element type.
- QualType vType = CheckVectorOperands(LHS, RHS, Loc, false);
- if (vType.isNull() || vType->isFloatingType())
- return InvalidOperands(Loc, LHS, RHS);
-
- return GetSignedVectorType(LHS.get()->getType());
- }
- inline QualType Sema::CheckBitwiseOperands(
- ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
- checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
- if (LHS.get()->getType()->isVectorType() ||
- RHS.get()->getType()->isVectorType()) {
- if (LHS.get()->getType()->hasIntegerRepresentation() &&
- RHS.get()->getType()->hasIntegerRepresentation())
- return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign);
-
- return InvalidOperands(Loc, LHS, RHS);
- }
- ExprResult LHSResult = Owned(LHS), RHSResult = Owned(RHS);
- QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
- IsCompAssign);
- if (LHSResult.isInvalid() || RHSResult.isInvalid())
- return QualType();
- LHS = LHSResult.take();
- RHS = RHSResult.take();
- if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
- return compType;
- return InvalidOperands(Loc, LHS, RHS);
- }
- inline QualType Sema::CheckLogicalOperands( // C99 6.5.[13,14]
- ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, unsigned Opc) {
-
- // Check vector operands differently.
- if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
- return CheckVectorLogicalOperands(LHS, RHS, Loc);
-
- // Diagnose cases where the user write a logical and/or but probably meant a
- // bitwise one. We do this when the LHS is a non-bool integer and the RHS
- // is a constant.
- if (LHS.get()->getType()->isIntegerType() &&
- !LHS.get()->getType()->isBooleanType() &&
- RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
- // Don't warn in macros or template instantiations.
- !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
- // If the RHS can be constant folded, and if it constant folds to something
- // that isn't 0 or 1 (which indicate a potential logical operation that
- // happened to fold to true/false) then warn.
- // Parens on the RHS are ignored.
- llvm::APSInt Result;
- if (RHS.get()->EvaluateAsInt(Result, Context))
- if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType()) ||
- (Result != 0 && Result != 1)) {
- Diag(Loc, diag::warn_logical_instead_of_bitwise)
- << RHS.get()->getSourceRange()
- << (Opc == BO_LAnd ? "&&" : "||");
- // Suggest replacing the logical operator with the bitwise version
- Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
- << (Opc == BO_LAnd ? "&" : "|")
- << FixItHint::CreateReplacement(SourceRange(
- Loc, Lexer::getLocForEndOfToken(Loc, 0, getSourceManager(),
- getLangOpts())),
- Opc == BO_LAnd ? "&" : "|");
- if (Opc == BO_LAnd)
- // Suggest replacing "Foo() && kNonZero" with "Foo()"
- Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
- << FixItHint::CreateRemoval(
- SourceRange(
- Lexer::getLocForEndOfToken(LHS.get()->getLocEnd(),
- 0, getSourceManager(),
- getLangOpts()),
- RHS.get()->getLocEnd()));
- }
- }
-
- if (!Context.getLangOpts().CPlusPlus) {
- LHS = UsualUnaryConversions(LHS.take());
- if (LHS.isInvalid())
- return QualType();
- RHS = UsualUnaryConversions(RHS.take());
- if (RHS.isInvalid())
- return QualType();
- if (!LHS.get()->getType()->isScalarType() ||
- !RHS.get()->getType()->isScalarType())
- return InvalidOperands(Loc, LHS, RHS);
- return Context.IntTy;
- }
- // The following is safe because we only use this method for
- // non-overloadable operands.
- // C++ [expr.log.and]p1
- // C++ [expr.log.or]p1
- // The operands are both contextually converted to type bool.
- ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
- if (LHSRes.isInvalid())
- return InvalidOperands(Loc, LHS, RHS);
- LHS = LHSRes;
- ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
- if (RHSRes.isInvalid())
- return InvalidOperands(Loc, LHS, RHS);
- RHS = RHSRes;
- // C++ [expr.log.and]p2
- // C++ [expr.log.or]p2
- // The result is a bool.
- return Context.BoolTy;
- }
- /// IsReadonlyProperty - Verify that otherwise a valid l-value expression
- /// is a read-only property; return true if so. A readonly property expression
- /// depends on various declarations and thus must be treated specially.
- ///
- static bool IsReadonlyProperty(Expr *E, Sema &S) {
- const ObjCPropertyRefExpr *PropExpr = dyn_cast<ObjCPropertyRefExpr>(E);
- if (!PropExpr) return false;
- if (PropExpr->isImplicitProperty()) return false;
- ObjCPropertyDecl *PDecl = PropExpr->getExplicitProperty();
- QualType BaseType = PropExpr->isSuperReceiver() ?
- PropExpr->getSuperReceiverType() :
- PropExpr->getBase()->getType();
-
- if (const ObjCObjectPointerType *OPT =
- BaseType->getAsObjCInterfacePointerType())
- if (ObjCInterfaceDecl *IFace = OPT->getInterfaceDecl())
- if (S.isPropertyReadonly(PDecl, IFace))
- return true;
- return false;
- }
- static bool IsReadonlyMessage(Expr *E, Sema &S) {
- const MemberExpr *ME = dyn_cast<MemberExpr>(E);
- if (!ME) return false;
- if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
- ObjCMessageExpr *Base =
- dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
- if (!Base) return false;
- return Base->getMethodDecl() != 0;
- }
- /// Is the given expression (which must be 'const') a reference to a
- /// variable which was originally non-const, but which has become
- /// 'const' due to being captured within a block?
- enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
- static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
- assert(E->isLValue() && E->getType().isConstQualified());
- E = E->IgnoreParens();
- // Must be a reference to a declaration from an enclosing scope.
- DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
- if (!DRE) return NCCK_None;
- if (!DRE->refersToEnclosingLocal()) return NCCK_None;
- // The declaration must be a variable which is not declared 'const'.
- VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
- if (!var) return NCCK_None;
- if (var->getType().isConstQualified()) return NCCK_None;
- assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
- // Decide whether the first capture was for a block or a lambda.
- DeclContext *DC = S.CurContext;
- while (DC->getParent() != var->getDeclContext())
- DC = DC->getParent();
- return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
- }
- /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
- /// emit an error and return true. If so, return false.
- static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
- assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
- SourceLocation OrigLoc = Loc;
- Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
- &Loc);
- if (IsLV == Expr::MLV_Valid && IsReadonlyProperty(E, S))
- IsLV = Expr::MLV_ReadonlyProperty;
- else if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
- IsLV = Expr::MLV_InvalidMessageExpression;
- if (IsLV == Expr::MLV_Valid)
- return false;
- unsigned Diag = 0;
- bool NeedType = false;
- switch (IsLV) { // C99 6.5.16p2
- case Expr::MLV_ConstQualified:
- Diag = diag::err_typecheck_assign_const;
- // Use a specialized diagnostic when we're assigning to an object
- // from an enclosing function or block.
- if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
- if (NCCK == NCCK_Block)
- Diag = diag::err_block_decl_ref_not_modifiable_lvalue;
- else
- Diag = diag::err_lambda_decl_ref_not_modifiable_lvalue;
- break;
- }
- // In ARC, use some specialized diagnostics for occasions where we
- // infer 'const'. These are always pseudo-strong variables.
- if (S.getLangOpts().ObjCAutoRefCount) {
- DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
- if (declRef && isa<VarDecl>(declRef->getDecl())) {
- VarDecl *var = cast<VarDecl>(declRef->getDecl());
- // Use the normal diagnostic if it's pseudo-__strong but the
- // user actually wrote 'const'.
- if (var->isARCPseudoStrong() &&
- (!var->getTypeSourceInfo() ||
- !var->getTypeSourceInfo()->getType().isConstQualified())) {
- // There are two pseudo-strong cases:
- // - self
- ObjCMethodDecl *method = S.getCurMethodDecl();
- if (method && var == method->getSelfDecl())
- Diag = method->isClassMethod()
- ? diag::err_typecheck_arc_assign_self_class_method
- : diag::err_typecheck_arc_assign_self;
- // - fast enumeration variables
- else
- Diag = diag::err_typecheck_arr_assign_enumeration;
- SourceRange Assign;
- if (Loc != OrigLoc)
- Assign = SourceRange(OrigLoc, OrigLoc);
- S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
- // We need to preserve the AST regardless, so migration tool
- // can do its job.
- return false;
- }
- }
- }
- break;
- case Expr::MLV_ArrayType:
- case Expr::MLV_ArrayTemporary:
- Diag = diag::err_typecheck_array_not_modifiable_lvalue;
- NeedType = true;
- break;
- case Expr::MLV_NotObjectType:
- Diag = diag::err_typecheck_non_object_not_modifiable_lvalue;
- NeedType = true;
- break;
- case Expr::MLV_LValueCast:
- Diag = diag::err_typecheck_lvalue_casts_not_supported;
- break;
- case Expr::MLV_Valid:
- llvm_unreachable("did not take early return for MLV_Valid");
- case Expr::MLV_InvalidExpression:
- case Expr::MLV_MemberFunction:
- case Expr::MLV_ClassTemporary:
- Diag = diag::err_typecheck_expression_not_modifiable_lvalue;
- break;
- case Expr::MLV_IncompleteType:
- case Expr::MLV_IncompleteVoidType:
- return S.RequireCompleteType(Loc, E->getType(),
- diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
- case Expr::MLV_DuplicateVectorComponents:
- Diag = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
- break;
- case Expr::MLV_ReadonlyProperty:
- case Expr::MLV_NoSetterProperty:
- llvm_unreachable("readonly properties should be processed differently");
- case Expr::MLV_InvalidMessageExpression:
- Diag = diag::error_readonly_message_assignment;
- break;
- case Expr::MLV_SubObjCPropertySetting:
- Diag = diag::error_no_subobject_property_setting;
- break;
- }
- SourceRange Assign;
- if (Loc != OrigLoc)
- Assign = SourceRange(OrigLoc, OrigLoc);
- if (NeedType)
- S.Diag(Loc, Diag) << E->getType() << E->getSourceRange() << Assign;
- else
- S.Diag(Loc, Diag) << E->getSourceRange() << Assign;
- return true;
- }
- static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
- SourceLocation Loc,
- Sema &Sema) {
- // C / C++ fields
- MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
- MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
- if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
- if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
- Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
- }
- // Objective-C instance variables
- ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
- ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
- if (OL && OR && OL->getDecl() == OR->getDecl()) {
- DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
- DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
- if (RL && RR && RL->getDecl() == RR->getDecl())
- Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
- }
- }
- // C99 6.5.16.1
- QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
- SourceLocation Loc,
- QualType CompoundType) {
- assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
- // Verify that LHS is a modifiable lvalue, and emit error if not.
- if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
- return QualType();
- QualType LHSType = LHSExpr->getType();
- QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
- CompoundType;
- AssignConvertType ConvTy;
- if (CompoundType.isNull()) {
- Expr *RHSCheck = RHS.get();
- CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
- QualType LHSTy(LHSType);
- ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
- if (RHS.isInvalid())
- return QualType();
- // Special case of NSObject attributes on c-style pointer types.
- if (ConvTy == IncompatiblePointer &&
- ((Context.isObjCNSObjectType(LHSType) &&
- RHSType->isObjCObjectPointerType()) ||
- (Context.isObjCNSObjectType(RHSType) &&
- LHSType->isObjCObjectPointerType())))
- ConvTy = Compatible;
- if (ConvTy == Compatible &&
- LHSType->isObjCObjectType())
- Diag(Loc, diag::err_objc_object_assignment)
- << LHSType;
- // If the RHS is a unary plus or minus, check to see if they = and + are
- // right next to each other. If so, the user may have typo'd "x =+ 4"
- // instead of "x += 4".
- if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
- RHSCheck = ICE->getSubExpr();
- if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
- if ((UO->getOpcode() == UO_Plus ||
- UO->getOpcode() == UO_Minus) &&
- Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
- // Only if the two operators are exactly adjacent.
- Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
- // And there is a space or other character before the subexpr of the
- // unary +/-. We don't want to warn on "x=-1".
- Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
- UO->getSubExpr()->getLocStart().isFileID()) {
- Diag(Loc, diag::warn_not_compound_assign)
- << (UO->getOpcode() == UO_Plus ? "+" : "-")
- << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
- }
- }
- if (ConvTy == Compatible) {
- if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong)
- checkRetainCycles(LHSExpr, RHS.get());
- else if (getLangOpts().ObjCAutoRefCount)
- checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
- }
- } else {
- // Compound assignment "x += y"
- ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
- }
- if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
- RHS.get(), AA_Assigning))
- return QualType();
- CheckForNullPointerDereference(*this, LHSExpr);
- // C99 6.5.16p3: The type of an assignment expression is the type of the
- // left operand unless the left operand has qualified type, in which case
- // it is the unqualified version of the type of the left operand.
- // C99 6.5.16.1p2: In simple assignment, the value of the right operand
- // is converted to the type of the assignment expression (above).
- // C++ 5.17p1: the type of the assignment expression is that of its left
- // operand.
- return (getLangOpts().CPlusPlus
- ? LHSType : LHSType.getUnqualifiedType());
- }
- // C99 6.5.17
- static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
- SourceLocation Loc) {
- LHS = S.CheckPlaceholderExpr(LHS.take());
- RHS = S.CheckPlaceholderExpr(RHS.take());
- if (LHS.isInvalid() || RHS.isInvalid())
- return QualType();
- // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
- // operands, but not unary promotions.
- // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
- // So we treat the LHS as a ignored value, and in C++ we allow the
- // containing site to determine what should be done with the RHS.
- LHS = S.IgnoredValueConversions(LHS.take());
- if (LHS.isInvalid())
- return QualType();
- S.DiagnoseUnusedExprResult(LHS.get());
- if (!S.getLangOpts().CPlusPlus) {
- RHS = S.DefaultFunctionArrayLvalueConversion(RHS.take());
- if (RHS.isInvalid())
- return QualType();
- if (!RHS.get()->getType()->isVoidType())
- S.RequireCompleteType(Loc, RHS.get()->getType(),
- diag::err_incomplete_type);
- }
- return RHS.get()->getType();
- }
- /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
- /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
- static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
- ExprValueKind &VK,
- SourceLocation OpLoc,
- bool IsInc, bool IsPrefix) {
- if (Op->isTypeDependent())
- return S.Context.DependentTy;
- QualType ResType = Op->getType();
- // Atomic types can be used for increment / decrement where the non-atomic
- // versions can, so ignore the _Atomic() specifier for the purpose of
- // checking.
- if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
- ResType = ResAtomicType->getValueType();
- assert(!ResType.isNull() && "no type for increment/decrement expression");
- if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
- // Decrement of bool is not allowed.
- if (!IsInc) {
- S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
- return QualType();
- }
- // Increment of bool sets it to true, but is deprecated.
- S.Diag(OpLoc, diag::warn_increment_bool) << Op->getSourceRange();
- } else if (ResType->isRealType()) {
- // OK!
- } else if (ResType->isPointerType()) {
- // C99 6.5.2.4p2, 6.5.6p2
- if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
- return QualType();
- } else if (ResType->isObjCObjectPointerType()) {
- // On modern runtimes, ObjC pointer arithmetic is forbidden.
- // Otherwise, we just need a complete type.
- if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
- checkArithmeticOnObjCPointer(S, OpLoc, Op))
- return QualType();
- } else if (ResType->isAnyComplexType()) {
- // C99 does not support ++/-- on complex types, we allow as an extension.
- S.Diag(OpLoc, diag::ext_integer_increment_complex)
- << ResType << Op->getSourceRange();
- } else if (ResType->isPlaceholderType()) {
- ExprResult PR = S.CheckPlaceholderExpr(Op);
- if (PR.isInvalid()) return QualType();
- return CheckIncrementDecrementOperand(S, PR.take(), VK, OpLoc,
- IsInc, IsPrefix);
- } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
- // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
- } else {
- S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
- << ResType << int(IsInc) << Op->getSourceRange();
- return QualType();
- }
- // At this point, we know we have a real, complex or pointer type.
- // Now make sure the operand is a modifiable lvalue.
- if (CheckForModifiableLvalue(Op, OpLoc, S))
- return QualType();
- // In C++, a prefix increment is the same type as the operand. Otherwise
- // (in C or with postfix), the increment is the unqualified type of the
- // operand.
- if (IsPrefix && S.getLangOpts().CPlusPlus) {
- VK = VK_LValue;
- return ResType;
- } else {
- VK = VK_RValue;
- return ResType.getUnqualifiedType();
- }
- }
-
- /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
- /// This routine allows us to typecheck complex/recursive expressions
- /// where the declaration is needed for type checking. We only need to
- /// handle cases when the expression references a function designator
- /// or is an lvalue. Here are some examples:
- /// - &(x) => x
- /// - &*****f => f for f a function designator.
- /// - &s.xx => s
- /// - &s.zz[1].yy -> s, if zz is an array
- /// - *(x + 1) -> x, if x is an array
- /// - &"123"[2] -> 0
- /// - & __real__ x -> x
- static ValueDecl *getPrimaryDecl(Expr *E) {
- switch (E->getStmtClass()) {
- case Stmt::DeclRefExprClass:
- return cast<DeclRefExpr>(E)->getDecl();
- case Stmt::MemberExprClass:
- // If this is an arrow operator, the address is an offset from
- // the base's value, so the object the base refers to is
- // irrelevant.
- if (cast<MemberExpr>(E)->isArrow())
- return 0;
- // Otherwise, the expression refers to a part of the base
- return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
- case Stmt::ArraySubscriptExprClass: {
- // FIXME: This code shouldn't be necessary! We should catch the implicit
- // promotion of register arrays earlier.
- Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
- if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
- if (ICE->getSubExpr()->getType()->isArrayType())
- return getPrimaryDecl(ICE->getSubExpr());
- }
- return 0;
- }
- case Stmt::UnaryOperatorClass: {
- UnaryOperator *UO = cast<UnaryOperator>(E);
- switch(UO->getOpcode()) {
- case UO_Real:
- case UO_Imag:
- case UO_Extension:
- return getPrimaryDecl(UO->getSubExpr());
- default:
- return 0;
- }
- }
- case Stmt::ParenExprClass:
- return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
- case Stmt::ImplicitCastExprClass:
- // If the result of an implicit cast is an l-value, we care about
- // the sub-expression; otherwise, the result here doesn't matter.
- return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
- default:
- return 0;
- }
- }
- namespace {
- enum {
- AO_Bit_Field = 0,
- AO_Vector_Element = 1,
- AO_Property_Expansion = 2,
- AO_Register_Variable = 3,
- AO_No_Error = 4
- };
- }
- /// \brief Diagnose invalid operand for address of operations.
- ///
- /// \param Type The type of operand which cannot have its address taken.
- static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
- Expr *E, unsigned Type) {
- S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
- }
- /// CheckAddressOfOperand - The operand of & must be either a function
- /// designator or an lvalue designating an object. If it is an lvalue, the
- /// object cannot be declared with storage class register or be a bit field.
- /// Note: The usual conversions are *not* applied to the operand of the &
- /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
- /// In C++, the operand might be an overloaded function name, in which case
- /// we allow the '&' but retain the overloaded-function type.
- static QualType CheckAddressOfOperand(Sema &S, ExprResult &OrigOp,
- SourceLocation OpLoc) {
- if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
- if (PTy->getKind() == BuiltinType::Overload) {
- if (!isa<OverloadExpr>(OrigOp.get()->IgnoreParens())) {
- S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
- << OrigOp.get()->getSourceRange();
- return QualType();
- }
-
- return S.Context.OverloadTy;
- }
- if (PTy->getKind() == BuiltinType::UnknownAny)
- return S.Context.UnknownAnyTy;
- if (PTy->getKind() == BuiltinType::BoundMember) {
- S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
- << OrigOp.get()->getSourceRange();
- return QualType();
- }
- OrigOp = S.CheckPlaceholderExpr(OrigOp.take());
- if (OrigOp.isInvalid()) return QualType();
- }
- if (OrigOp.get()->isTypeDependent())
- return S.Context.DependentTy;
- assert(!OrigOp.get()->getType()->isPlaceholderType());
- // Make sure to ignore parentheses in subsequent checks
- Expr *op = OrigOp.get()->IgnoreParens();
- if (S.getLangOpts().C99) {
- // Implement C99-only parts of addressof rules.
- if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
- if (uOp->getOpcode() == UO_Deref)
- // Per C99 6.5.3.2, the address of a deref always returns a valid result
- // (assuming the deref expression is valid).
- return uOp->getSubExpr()->getType();
- }
- // Technically, there should be a check for array subscript
- // expressions here, but the result of one is always an lvalue anyway.
- }
- ValueDecl *dcl = getPrimaryDecl(op);
- Expr::LValueClassification lval = op->ClassifyLValue(S.Context);
- unsigned AddressOfError = AO_No_Error;
- if (lval == Expr::LV_ClassTemporary) {
- bool sfinae = S.isSFINAEContext();
- S.Diag(OpLoc, sfinae ? diag::err_typecheck_addrof_class_temporary
- : diag::ext_typecheck_addrof_class_temporary)
- << op->getType() << op->getSourceRange();
- if (sfinae)
- return QualType();
- } else if (isa<ObjCSelectorExpr>(op)) {
- return S.Context.getPointerType(op->getType());
- } else if (lval == Expr::LV_MemberFunction) {
- // If it's an instance method, make a member pointer.
- // The expression must have exactly the form &A::foo.
- // If the underlying expression isn't a decl ref, give up.
- if (!isa<DeclRefExpr>(op)) {
- S.Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
- << OrigOp.get()->getSourceRange();
- return QualType();
- }
- DeclRefExpr *DRE = cast<DeclRefExpr>(op);
- CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
- // The id-expression was parenthesized.
- if (OrigOp.get() != DRE) {
- S.Diag(OpLoc, diag::err_parens_pointer_member_function)
- << OrigOp.get()->getSourceRange();
- // The method was named without a qualifier.
- } else if (!DRE->getQualifier()) {
- S.Diag(OpLoc, diag::err_unqualified_pointer_member_function)
- << op->getSourceRange();
- }
- return S.Context.getMemberPointerType(op->getType(),
- S.Context.getTypeDeclType(MD->getParent()).getTypePtr());
- } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
- // C99 6.5.3.2p1
- // The operand must be either an l-value or a function designator
- if (!op->getType()->isFunctionType()) {
- // Use a special diagnostic for loads from property references.
- if (isa<PseudoObjectExpr>(op)) {
- AddressOfError = AO_Property_Expansion;
- } else {
- // FIXME: emit more specific diag...
- S.Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
- << op->getSourceRange();
- return QualType();
- }
- }
- } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
- // The operand cannot be a bit-field
- AddressOfError = AO_Bit_Field;
- } else if (op->getObjectKind() == OK_VectorComponent) {
- // The operand cannot be an element of a vector
- AddressOfError = AO_Vector_Element;
- } else if (dcl) { // C99 6.5.3.2p1
- // We have an lvalue with a decl. Make sure the decl is not declared
- // with the register storage-class specifier.
- if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
- // in C++ it is not error to take address of a register
- // variable (c++03 7.1.1P3)
- if (vd->getStorageClass() == SC_Register &&
- !S.getLangOpts().CPlusPlus) {
- AddressOfError = AO_Register_Variable;
- }
- } else if (isa<FunctionTemplateDecl>(dcl)) {
- return S.Context.OverloadTy;
- } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
- // Okay: we can take the address of a field.
- // Could be a pointer to member, though, if there is an explicit
- // scope qualifier for the class.
- if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
- DeclContext *Ctx = dcl->getDeclContext();
- if (Ctx && Ctx->isRecord()) {
- if (dcl->getType()->isReferenceType()) {
- S.Diag(OpLoc,
- diag::err_cannot_form_pointer_to_member_of_reference_type)
- << dcl->getDeclName() << dcl->getType();
- return QualType();
- }
- while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
- Ctx = Ctx->getParent();
- return S.Context.getMemberPointerType(op->getType(),
- S.Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
- }
- }
- } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
- llvm_unreachable("Unknown/unexpected decl type");
- }
- if (AddressOfError != AO_No_Error) {
- diagnoseAddressOfInvalidType(S, OpLoc, op, AddressOfError);
- return QualType();
- }
- if (lval == Expr::LV_IncompleteVoidType) {
- // Taking the address of a void variable is technically illegal, but we
- // allow it in cases which are otherwise valid.
- // Example: "extern void x; void* y = &x;".
- S.Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
- }
- // If the operand has type "type", the result has type "pointer to type".
- if (op->getType()->isObjCObjectType())
- return S.Context.getObjCObjectPointerType(op->getType());
- return S.Context.getPointerType(op->getType());
- }
- /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
- static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
- SourceLocation OpLoc) {
- if (Op->isTypeDependent())
- return S.Context.DependentTy;
- ExprResult ConvResult = S.UsualUnaryConversions(Op);
- if (ConvResult.isInvalid())
- return QualType();
- Op = ConvResult.take();
- QualType OpTy = Op->getType();
- QualType Result;
- if (isa<CXXReinterpretCastExpr>(Op)) {
- QualType OpOrigType = Op->IgnoreParenCasts()->getType();
- S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
- Op->getSourceRange());
- }
- // Note that per both C89 and C99, indirection is always legal, even if OpTy
- // is an incomplete type or void. It would be possible to warn about
- // dereferencing a void pointer, but it's completely well-defined, and such a
- // warning is unlikely to catch any mistakes.
- if (const PointerType *PT = OpTy->getAs<PointerType>())
- Result = PT->getPointeeType();
- else if (const ObjCObjectPointerType *OPT =
- OpTy->getAs<ObjCObjectPointerType>())
- Result = OPT->getPointeeType();
- else {
- ExprResult PR = S.CheckPlaceholderExpr(Op);
- if (PR.isInvalid()) return QualType();
- if (PR.take() != Op)
- return CheckIndirectionOperand(S, PR.take(), VK, OpLoc);
- }
- if (Result.isNull()) {
- S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
- << OpTy << Op->getSourceRange();
- return QualType();
- }
- // Dereferences are usually l-values...
- VK = VK_LValue;
- // ...except that certain expressions are never l-values in C.
- if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
- VK = VK_RValue;
-
- return Result;
- }
- static inline BinaryOperatorKind ConvertTokenKindToBinaryOpcode(
- tok::TokenKind Kind) {
- BinaryOperatorKind Opc;
- switch (Kind) {
- default: llvm_unreachable("Unknown binop!");
- case tok::periodstar: Opc = BO_PtrMemD; break;
- case tok::arrowstar: Opc = BO_PtrMemI; break;
- case tok::star: Opc = BO_Mul; break;
- case tok::slash: Opc = BO_Div; break;
- case tok::percent: Opc = BO_Rem; break;
- case tok::plus: Opc = BO_Add; break;
- case tok::minus: Opc = BO_Sub; break;
- case tok::lessless: Opc = BO_Shl; break;
- case tok::greatergreater: Opc = BO_Shr; break;
- case tok::lessequal: Opc = BO_LE; break;
- case tok::less: Opc = BO_LT; break;
- case tok::greaterequal: Opc = BO_GE; break;
- case tok::greater: Opc = BO_GT; break;
- case tok::exclaimequal: Opc = BO_NE; break;
- case tok::equalequal: Opc = BO_EQ; break;
- case tok::amp: Opc = BO_And; break;
- case tok::caret: Opc = BO_Xor; break;
- case tok::pipe: Opc = BO_Or; break;
- case tok::ampamp: Opc = BO_LAnd; break;
- case tok::pipepipe: Opc = BO_LOr; break;
- case tok::equal: Opc = BO_Assign; break;
- case tok::starequal: Opc = BO_MulAssign; break;
- case tok::slashequal: Opc = BO_DivAssign; break;
- case tok::percentequal: Opc = BO_RemAssign; break;
- case tok::plusequal: Opc = BO_AddAssign; break;
- case tok::minusequal: Opc = BO_SubAssign; break;
- case tok::lesslessequal: Opc = BO_ShlAssign; break;
- case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
- case tok::ampequal: Opc = BO_AndAssign; break;
- case tok::caretequal: Opc = BO_XorAssign; break;
- case tok::pipeequal: Opc = BO_OrAssign; break;
- case tok::comma: Opc = BO_Comma; break;
- }
- return Opc;
- }
- static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
- tok::TokenKind Kind) {
- UnaryOperatorKind Opc;
- switch (Kind) {
- default: llvm_unreachable("Unknown unary op!");
- case tok::plusplus: Opc = UO_PreInc; break;
- case tok::minusminus: Opc = UO_PreDec; break;
- case tok::amp: Opc = UO_AddrOf; break;
- case tok::star: Opc = UO_Deref; break;
- case tok::plus: Opc = UO_Plus; break;
- case tok::minus: Opc = UO_Minus; break;
- case tok::tilde: Opc = UO_Not; break;
- case tok::exclaim: Opc = UO_LNot; break;
- case tok::kw___real: Opc = UO_Real; break;
- case tok::kw___imag: Opc = UO_Imag; break;
- case tok::kw___extension__: Opc = UO_Extension; break;
- }
- return Opc;
- }
- /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
- /// This warning is only emitted for builtin assignment operations. It is also
- /// suppressed in the event of macro expansions.
- static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
- SourceLocation OpLoc) {
- if (!S.ActiveTemplateInstantiations.empty())
- return;
- if (OpLoc.isInvalid() || OpLoc.isMacroID())
- return;
- LHSExpr = LHSExpr->IgnoreParenImpCasts();
- RHSExpr = RHSExpr->IgnoreParenImpCasts();
- const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
- const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
- if (!LHSDeclRef || !RHSDeclRef ||
- LHSDeclRef->getLocation().isMacroID() ||
- RHSDeclRef->getLocation().isMacroID())
- return;
- const ValueDecl *LHSDecl =
- cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
- const ValueDecl *RHSDecl =
- cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
- if (LHSDecl != RHSDecl)
- return;
- if (LHSDecl->getType().isVolatileQualified())
- return;
- if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
- if (RefTy->getPointeeType().isVolatileQualified())
- return;
- S.Diag(OpLoc, diag::warn_self_assignment)
- << LHSDeclRef->getType()
- << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
- }
- /// CreateBuiltinBinOp - Creates a new built-in binary operation with
- /// operator @p Opc at location @c TokLoc. This routine only supports
- /// built-in operations; ActOnBinOp handles overloaded operators.
- ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
- BinaryOperatorKind Opc,
- Expr *LHSExpr, Expr *RHSExpr) {
- if (getLangOpts().CPlusPlus0x && isa<InitListExpr>(RHSExpr)) {
- // The syntax only allows initializer lists on the RHS of assignment,
- // so we don't need to worry about accepting invalid code for
- // non-assignment operators.
- // C++11 5.17p9:
- // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
- // of x = {} is x = T().
- InitializationKind Kind =
- InitializationKind::CreateDirectList(RHSExpr->getLocStart());
- InitializedEntity Entity =
- InitializedEntity::InitializeTemporary(LHSExpr->getType());
- InitializationSequence InitSeq(*this, Entity, Kind, &RHSExpr, 1);
- ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
- MultiExprArg(&RHSExpr, 1));
- if (Init.isInvalid())
- return Init;
- RHSExpr = Init.take();
- }
- ExprResult LHS = Owned(LHSExpr), RHS = Owned(RHSExpr);
- QualType ResultTy; // Result type of the binary operator.
- // The following two variables are used for compound assignment operators
- QualType CompLHSTy; // Type of LHS after promotions for computation
- QualType CompResultTy; // Type of computation result
- ExprValueKind VK = VK_RValue;
- ExprObjectKind OK = OK_Ordinary;
- switch (Opc) {
- case BO_Assign:
- ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
- if (getLangOpts().CPlusPlus &&
- LHS.get()->getObjectKind() != OK_ObjCProperty) {
- VK = LHS.get()->getValueKind();
- OK = LHS.get()->getObjectKind();
- }
- if (!ResultTy.isNull())
- DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
- break;
- case BO_PtrMemD:
- case BO_PtrMemI:
- ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
- Opc == BO_PtrMemI);
- break;
- case BO_Mul:
- case BO_Div:
- ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
- Opc == BO_Div);
- break;
- case BO_Rem:
- ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
- break;
- case BO_Add:
- ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
- break;
- case BO_Sub:
- ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
- break;
- case BO_Shl:
- case BO_Shr:
- ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
- break;
- case BO_LE:
- case BO_LT:
- case BO_GE:
- case BO_GT:
- ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
- break;
- case BO_EQ:
- case BO_NE:
- ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
- break;
- case BO_And:
- case BO_Xor:
- case BO_Or:
- ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
- break;
- case BO_LAnd:
- case BO_LOr:
- ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
- break;
- case BO_MulAssign:
- case BO_DivAssign:
- CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
- Opc == BO_DivAssign);
- CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
- ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
- break;
- case BO_RemAssign:
- CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
- CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
- ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
- break;
- case BO_AddAssign:
- CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
- if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
- ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
- break;
- case BO_SubAssign:
- CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
- if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
- ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
- break;
- case BO_ShlAssign:
- case BO_ShrAssign:
- CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
- CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
- ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
- break;
- case BO_AndAssign:
- case BO_XorAssign:
- case BO_OrAssign:
- CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
- CompLHSTy = CompResultTy;
- if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
- ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
- break;
- case BO_Comma:
- ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
- if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
- VK = RHS.get()->getValueKind();
- OK = RHS.get()->getObjectKind();
- }
- break;
- }
- if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
- return ExprError();
- // Check for array bounds violations for both sides of the BinaryOperator
- CheckArrayAccess(LHS.get());
- CheckArrayAccess(RHS.get());
- if (CompResultTy.isNull())
- return Owned(new (Context) BinaryOperator(LHS.take(), RHS.take(), Opc,
- ResultTy, VK, OK, OpLoc));
- if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
- OK_ObjCProperty) {
- VK = VK_LValue;
- OK = LHS.get()->getObjectKind();
- }
- return Owned(new (Context) CompoundAssignOperator(LHS.take(), RHS.take(), Opc,
- ResultTy, VK, OK, CompLHSTy,
- CompResultTy, OpLoc));
- }
- /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
- /// operators are mixed in a way that suggests that the programmer forgot that
- /// comparison operators have higher precedence. The most typical example of
- /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
- static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
- SourceLocation OpLoc, Expr *LHSExpr,
- Expr *RHSExpr) {
- typedef BinaryOperator BinOp;
- BinOp::Opcode LHSopc = static_cast<BinOp::Opcode>(-1),
- RHSopc = static_cast<BinOp::Opcode>(-1);
- if (BinOp *BO = dyn_cast<BinOp>(LHSExpr))
- LHSopc = BO->getOpcode();
- if (BinOp *BO = dyn_cast<BinOp>(RHSExpr))
- RHSopc = BO->getOpcode();
- // Subs are not binary operators.
- if (LHSopc == -1 && RHSopc == -1)
- return;
- // Bitwise operations are sometimes used as eager logical ops.
- // Don't diagnose this.
- if ((BinOp::isComparisonOp(LHSopc) || BinOp::isBitwiseOp(LHSopc)) &&
- (BinOp::isComparisonOp(RHSopc) || BinOp::isBitwiseOp(RHSopc)))
- return;
- bool isLeftComp = BinOp::isComparisonOp(LHSopc);
- bool isRightComp = BinOp::isComparisonOp(RHSopc);
- if (!isLeftComp && !isRightComp) return;
- SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
- OpLoc)
- : SourceRange(OpLoc, RHSExpr->getLocEnd());
- std::string OpStr = isLeftComp ? BinOp::getOpcodeStr(LHSopc)
- : BinOp::getOpcodeStr(RHSopc);
- SourceRange ParensRange = isLeftComp ?
- SourceRange(cast<BinOp>(LHSExpr)->getRHS()->getLocStart(),
- RHSExpr->getLocEnd())
- : SourceRange(LHSExpr->getLocStart(),
- cast<BinOp>(RHSExpr)->getLHS()->getLocStart());
- Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
- << DiagRange << BinOp::getOpcodeStr(Opc) << OpStr;
- SuggestParentheses(Self, OpLoc,
- Self.PDiag(diag::note_precedence_bitwise_silence) << OpStr,
- (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
- SuggestParentheses(Self, OpLoc,
- Self.PDiag(diag::note_precedence_bitwise_first) << BinOp::getOpcodeStr(Opc),
- ParensRange);
- }
- /// \brief It accepts a '&' expr that is inside a '|' one.
- /// Emit a diagnostic together with a fixit hint that wraps the '&' expression
- /// in parentheses.
- static void
- EmitDiagnosticForBitwiseAndInBitwiseOr(Sema &Self, SourceLocation OpLoc,
- BinaryOperator *Bop) {
- assert(Bop->getOpcode() == BO_And);
- Self.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_and_in_bitwise_or)
- << Bop->getSourceRange() << OpLoc;
- SuggestParentheses(Self, Bop->getOperatorLoc(),
- Self.PDiag(diag::note_bitwise_and_in_bitwise_or_silence),
- Bop->getSourceRange());
- }
- /// \brief It accepts a '&&' expr that is inside a '||' one.
- /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
- /// in parentheses.
- static void
- EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
- BinaryOperator *Bop) {
- assert(Bop->getOpcode() == BO_LAnd);
- Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
- << Bop->getSourceRange() << OpLoc;
- SuggestParentheses(Self, Bop->getOperatorLoc(),
- Self.PDiag(diag::note_logical_and_in_logical_or_silence),
- Bop->getSourceRange());
- }
- /// \brief Returns true if the given expression can be evaluated as a constant
- /// 'true'.
- static bool EvaluatesAsTrue(Sema &S, Expr *E) {
- bool Res;
- return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
- }
- /// \brief Returns true if the given expression can be evaluated as a constant
- /// 'false'.
- static bool EvaluatesAsFalse(Sema &S, Expr *E) {
- bool Res;
- return E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
- }
- /// \brief Look for '&&' in the left hand of a '||' expr.
- static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
- Expr *LHSExpr, Expr *RHSExpr) {
- if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
- if (Bop->getOpcode() == BO_LAnd) {
- // If it's "a && b || 0" don't warn since the precedence doesn't matter.
- if (EvaluatesAsFalse(S, RHSExpr))
- return;
- // If it's "1 && a || b" don't warn since the precedence doesn't matter.
- if (!EvaluatesAsTrue(S, Bop->getLHS()))
- return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
- } else if (Bop->getOpcode() == BO_LOr) {
- if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
- // If it's "a || b && 1 || c" we didn't warn earlier for
- // "a || b && 1", but warn now.
- if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
- return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
- }
- }
- }
- }
- /// \brief Look for '&&' in the right hand of a '||' expr.
- static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
- Expr *LHSExpr, Expr *RHSExpr) {
- if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
- if (Bop->getOpcode() == BO_LAnd) {
- // If it's "0 || a && b" don't warn since the precedence doesn't matter.
- if (EvaluatesAsFalse(S, LHSExpr))
- return;
- // If it's "a || b && 1" don't warn since the precedence doesn't matter.
- if (!EvaluatesAsTrue(S, Bop->getRHS()))
- return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
- }
- }
- }
- /// \brief Look for '&' in the left or right hand of a '|' expr.
- static void DiagnoseBitwiseAndInBitwiseOr(Sema &S, SourceLocation OpLoc,
- Expr *OrArg) {
- if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(OrArg)) {
- if (Bop->getOpcode() == BO_And)
- return EmitDiagnosticForBitwiseAndInBitwiseOr(S, OpLoc, Bop);
- }
- }
- /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
- /// precedence.
- static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
- SourceLocation OpLoc, Expr *LHSExpr,
- Expr *RHSExpr){
- // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
- if (BinaryOperator::isBitwiseOp(Opc))
- DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
- // Diagnose "arg1 & arg2 | arg3"
- if (Opc == BO_Or && !OpLoc.isMacroID()/* Don't warn in macros. */) {
- DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, LHSExpr);
- DiagnoseBitwiseAndInBitwiseOr(Self, OpLoc, RHSExpr);
- }
- // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
- // We don't warn for 'assert(a || b && "bad")' since this is safe.
- if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
- DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
- DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
- }
- }
- // Binary Operators. 'Tok' is the token for the operator.
- ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
- tok::TokenKind Kind,
- Expr *LHSExpr, Expr *RHSExpr) {
- BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
- assert((LHSExpr != 0) && "ActOnBinOp(): missing left expression");
- assert((RHSExpr != 0) && "ActOnBinOp(): missing right expression");
- // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
- DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
- return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
- }
- /// Build an overloaded binary operator expression in the given scope.
- static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
- BinaryOperatorKind Opc,
- Expr *LHS, Expr *RHS) {
- // Find all of the overloaded operators visible from this
- // point. We perform both an operator-name lookup from the local
- // scope and an argument-dependent lookup based on the types of
- // the arguments.
- UnresolvedSet<16> Functions;
- OverloadedOperatorKind OverOp
- = BinaryOperator::getOverloadedOperator(Opc);
- if (Sc && OverOp != OO_None)
- S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
- RHS->getType(), Functions);
- // Build the (potentially-overloaded, potentially-dependent)
- // binary operation.
- return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
- }
- ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
- BinaryOperatorKind Opc,
- Expr *LHSExpr, Expr *RHSExpr) {
- // We want to end up calling one of checkPseudoObjectAssignment
- // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
- // both expressions are overloadable or either is type-dependent),
- // or CreateBuiltinBinOp (in any other case). We also want to get
- // any placeholder types out of the way.
- // Handle pseudo-objects in the LHS.
- if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
- // Assignments with a pseudo-object l-value need special analysis.
- if (pty->getKind() == BuiltinType::PseudoObject &&
- BinaryOperator::isAssignmentOp(Opc))
- return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
- // Don't resolve overloads if the other type is overloadable.
- if (pty->getKind() == BuiltinType::Overload) {
- // We can't actually test that if we still have a placeholder,
- // though. Fortunately, none of the exceptions we see in that
- // code below are valid when the LHS is an overload set. Note
- // that an overload set can be dependently-typed, but it never
- // instantiates to having an overloadable type.
- ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
- if (resolvedRHS.isInvalid()) return ExprError();
- RHSExpr = resolvedRHS.take();
- if (RHSExpr->isTypeDependent() ||
- RHSExpr->getType()->isOverloadableType())
- return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
- }
-
- ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
- if (LHS.isInvalid()) return ExprError();
- LHSExpr = LHS.take();
- }
- // Handle pseudo-objects in the RHS.
- if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
- // An overload in the RHS can potentially be resolved by the type
- // being assigned to.
- if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
- if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
- return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
- if (LHSExpr->getType()->isOverloadableType())
- return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
- return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
- }
- // Don't resolve overloads if the other type is overloadable.
- if (pty->getKind() == BuiltinType::Overload &&
- LHSExpr->getType()->isOverloadableType())
- return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
- ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
- if (!resolvedRHS.isUsable()) return ExprError();
- RHSExpr = resolvedRHS.take();
- }
- if (getLangOpts().CPlusPlus) {
- // If either expression is type-dependent, always build an
- // overloaded op.
- if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
- return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
- // Otherwise, build an overloaded op if either expression has an
- // overloadable type.
- if (LHSExpr->getType()->isOverloadableType() ||
- RHSExpr->getType()->isOverloadableType())
- return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
- }
- // Build a built-in binary operation.
- return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
- }
- ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
- UnaryOperatorKind Opc,
- Expr *InputExpr) {
- ExprResult Input = Owned(InputExpr);
- ExprValueKind VK = VK_RValue;
- ExprObjectKind OK = OK_Ordinary;
- QualType resultType;
- switch (Opc) {
- case UO_PreInc:
- case UO_PreDec:
- case UO_PostInc:
- case UO_PostDec:
- resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OpLoc,
- Opc == UO_PreInc ||
- Opc == UO_PostInc,
- Opc == UO_PreInc ||
- Opc == UO_PreDec);
- break;
- case UO_AddrOf:
- resultType = CheckAddressOfOperand(*this, Input, OpLoc);
- break;
- case UO_Deref: {
- Input = DefaultFunctionArrayLvalueConversion(Input.take());
- resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
- break;
- }
- case UO_Plus:
- case UO_Minus:
- Input = UsualUnaryConversions(Input.take());
- if (Input.isInvalid()) return ExprError();
- resultType = Input.get()->getType();
- if (resultType->isDependentType())
- break;
- if (resultType->isArithmeticType() || // C99 6.5.3.3p1
- resultType->isVectorType())
- break;
- else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6-7
- resultType->isEnumeralType())
- break;
- else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
- Opc == UO_Plus &&
- resultType->isPointerType())
- break;
- return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
- << resultType << Input.get()->getSourceRange());
- case UO_Not: // bitwise complement
- Input = UsualUnaryConversions(Input.take());
- if (Input.isInvalid()) return ExprError();
- resultType = Input.get()->getType();
- if (resultType->isDependentType())
- break;
- // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
- if (resultType->isComplexType() || resultType->isComplexIntegerType())
- // C99 does not support '~' for complex conjugation.
- Diag(OpLoc, diag::ext_integer_complement_complex)
- << resultType << Input.get()->getSourceRange();
- else if (resultType->hasIntegerRepresentation())
- break;
- else {
- return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
- << resultType << Input.get()->getSourceRange());
- }
- break;
- case UO_LNot: // logical negation
- // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
- Input = DefaultFunctionArrayLvalueConversion(Input.take());
- if (Input.isInvalid()) return ExprError();
- resultType = Input.get()->getType();
- // Though we still have to promote half FP to float...
- if (resultType->isHalfType()) {
- Input = ImpCastExprToType(Input.take(), Context.FloatTy, CK_FloatingCast).take();
- resultType = Context.FloatTy;
- }
- if (resultType->isDependentType())
- break;
- if (resultType->isScalarType()) {
- // C99 6.5.3.3p1: ok, fallthrough;
- if (Context.getLangOpts().CPlusPlus) {
- // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
- // operand contextually converted to bool.
- Input = ImpCastExprToType(Input.take(), Context.BoolTy,
- ScalarTypeToBooleanCastKind(resultType));
- }
- } else if (resultType->isExtVectorType()) {
- // Vector logical not returns the signed variant of the operand type.
- resultType = GetSignedVectorType(resultType);
- break;
- } else {
- return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
- << resultType << Input.get()->getSourceRange());
- }
-
- // LNot always has type int. C99 6.5.3.3p5.
- // In C++, it's bool. C++ 5.3.1p8
- resultType = Context.getLogicalOperationType();
- break;
- case UO_Real:
- case UO_Imag:
- resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
- // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
- // complex l-values to ordinary l-values and all other values to r-values.
- if (Input.isInvalid()) return ExprError();
- if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
- if (Input.get()->getValueKind() != VK_RValue &&
- Input.get()->getObjectKind() == OK_Ordinary)
- VK = Input.get()->getValueKind();
- } else if (!getLangOpts().CPlusPlus) {
- // In C, a volatile scalar is read by __imag. In C++, it is not.
- Input = DefaultLvalueConversion(Input.take());
- }
- break;
- case UO_Extension:
- resultType = Input.get()->getType();
- VK = Input.get()->getValueKind();
- OK = Input.get()->getObjectKind();
- break;
- }
- if (resultType.isNull() || Input.isInvalid())
- return ExprError();
- // Check for array bounds violations in the operand of the UnaryOperator,
- // except for the '*' and '&' operators that have to be handled specially
- // by CheckArrayAccess (as there are special cases like &array[arraysize]
- // that are explicitly defined as valid by the standard).
- if (Opc != UO_AddrOf && Opc != UO_Deref)
- CheckArrayAccess(Input.get());
- return Owned(new (Context) UnaryOperator(Input.take(), Opc, resultType,
- VK, OK, OpLoc));
- }
- /// \brief Determine whether the given expression is a qualified member
- /// access expression, of a form that could be turned into a pointer to member
- /// with the address-of operator.
- static bool isQualifiedMemberAccess(Expr *E) {
- if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
- if (!DRE->getQualifier())
- return false;
-
- ValueDecl *VD = DRE->getDecl();
- if (!VD->isCXXClassMember())
- return false;
-
- if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
- return true;
- if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
- return Method->isInstance();
-
- return false;
- }
-
- if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
- if (!ULE->getQualifier())
- return false;
-
- for (UnresolvedLookupExpr::decls_iterator D = ULE->decls_begin(),
- DEnd = ULE->decls_end();
- D != DEnd; ++D) {
- if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(*D)) {
- if (Method->isInstance())
- return true;
- } else {
- // Overload set does not contain methods.
- break;
- }
- }
-
- return false;
- }
-
- return false;
- }
- ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
- UnaryOperatorKind Opc, Expr *Input) {
- // First things first: handle placeholders so that the
- // overloaded-operator check considers the right type.
- if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
- // Increment and decrement of pseudo-object references.
- if (pty->getKind() == BuiltinType::PseudoObject &&
- UnaryOperator::isIncrementDecrementOp(Opc))
- return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
- // extension is always a builtin operator.
- if (Opc == UO_Extension)
- return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
- // & gets special logic for several kinds of placeholder.
- // The builtin code knows what to do.
- if (Opc == UO_AddrOf &&
- (pty->getKind() == BuiltinType::Overload ||
- pty->getKind() == BuiltinType::UnknownAny ||
- pty->getKind() == BuiltinType::BoundMember))
- return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
- // Anything else needs to be handled now.
- ExprResult Result = CheckPlaceholderExpr(Input);
- if (Result.isInvalid()) return ExprError();
- Input = Result.take();
- }
- if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
- UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
- !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
- // Find all of the overloaded operators visible from this
- // point. We perform both an operator-name lookup from the local
- // scope and an argument-dependent lookup based on the types of
- // the arguments.
- UnresolvedSet<16> Functions;
- OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
- if (S && OverOp != OO_None)
- LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
- Functions);
- return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
- }
- return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
- }
- // Unary Operators. 'Tok' is the token for the operator.
- ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
- tok::TokenKind Op, Expr *Input) {
- return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
- }
- /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
- ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
- LabelDecl *TheDecl) {
- TheDecl->setUsed();
- // Create the AST node. The address of a label always has type 'void*'.
- return Owned(new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
- Context.getPointerType(Context.VoidTy)));
- }
- /// Given the last statement in a statement-expression, check whether
- /// the result is a producing expression (like a call to an
- /// ns_returns_retained function) and, if so, rebuild it to hoist the
- /// release out of the full-expression. Otherwise, return null.
- /// Cannot fail.
- static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
- // Should always be wrapped with one of these.
- ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
- if (!cleanups) return 0;
- ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
- if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
- return 0;
- // Splice out the cast. This shouldn't modify any interesting
- // features of the statement.
- Expr *producer = cast->getSubExpr();
- assert(producer->getType() == cast->getType());
- assert(producer->getValueKind() == cast->getValueKind());
- cleanups->setSubExpr(producer);
- return cleanups;
- }
- void Sema::ActOnStartStmtExpr() {
- PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
- }
- void Sema::ActOnStmtExprError() {
- // Note that function is also called by TreeTransform when leaving a
- // StmtExpr scope without rebuilding anything.
- DiscardCleanupsInEvaluationContext();
- PopExpressionEvaluationContext();
- }
- ExprResult
- Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
- SourceLocation RPLoc) { // "({..})"
- assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
- CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
- if (hasAnyUnrecoverableErrorsInThisFunction())
- DiscardCleanupsInEvaluationContext();
- assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
- PopExpressionEvaluationContext();
- bool isFileScope
- = (getCurFunctionOrMethodDecl() == 0) && (getCurBlock() == 0);
- if (isFileScope)
- return ExprError(Diag(LPLoc, diag::err_stmtexpr_file_scope));
- // FIXME: there are a variety of strange constraints to enforce here, for
- // example, it is not possible to goto into a stmt expression apparently.
- // More semantic analysis is needed.
- // If there are sub stmts in the compound stmt, take the type of the last one
- // as the type of the stmtexpr.
- QualType Ty = Context.VoidTy;
- bool StmtExprMayBindToTemp = false;
- if (!Compound->body_empty()) {
- Stmt *LastStmt = Compound->body_back();
- LabelStmt *LastLabelStmt = 0;
- // If LastStmt is a label, skip down through into the body.
- while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
- LastLabelStmt = Label;
- LastStmt = Label->getSubStmt();
- }
- if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
- // Do function/array conversion on the last expression, but not
- // lvalue-to-rvalue. However, initialize an unqualified type.
- ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
- if (LastExpr.isInvalid())
- return ExprError();
- Ty = LastExpr.get()->getType().getUnqualifiedType();
- if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
- // In ARC, if the final expression ends in a consume, splice
- // the consume out and bind it later. In the alternate case
- // (when dealing with a retainable type), the result
- // initialization will create a produce. In both cases the
- // result will be +1, and we'll need to balance that out with
- // a bind.
- if (Expr *rebuiltLastStmt
- = maybeRebuildARCConsumingStmt(LastExpr.get())) {
- LastExpr = rebuiltLastStmt;
- } else {
- LastExpr = PerformCopyInitialization(
- InitializedEntity::InitializeResult(LPLoc,
- Ty,
- false),
- SourceLocation(),
- LastExpr);
- }
- if (LastExpr.isInvalid())
- return ExprError();
- if (LastExpr.get() != 0) {
- if (!LastLabelStmt)
- Compound->setLastStmt(LastExpr.take());
- else
- LastLabelStmt->setSubStmt(LastExpr.take());
- StmtExprMayBindToTemp = true;
- }
- }
- }
- }
- // FIXME: Check that expression type is complete/non-abstract; statement
- // expressions are not lvalues.
- Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
- if (StmtExprMayBindToTemp)
- return MaybeBindToTemporary(ResStmtExpr);
- return Owned(ResStmtExpr);
- }
- ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
- TypeSourceInfo *TInfo,
- OffsetOfComponent *CompPtr,
- unsigned NumComponents,
- SourceLocation RParenLoc) {
- QualType ArgTy = TInfo->getType();
- bool Dependent = ArgTy->isDependentType();
- SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
-
- // We must have at least one component that refers to the type, and the first
- // one is known to be a field designator. Verify that the ArgTy represents
- // a struct/union/class.
- if (!Dependent && !ArgTy->isRecordType())
- return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
- << ArgTy << TypeRange);
-
- // Type must be complete per C99 7.17p3 because a declaring a variable
- // with an incomplete type would be ill-formed.
- if (!Dependent
- && RequireCompleteType(BuiltinLoc, ArgTy,
- diag::err_offsetof_incomplete_type, TypeRange))
- return ExprError();
-
- // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
- // GCC extension, diagnose them.
- // FIXME: This diagnostic isn't actually visible because the location is in
- // a system header!
- if (NumComponents != 1)
- Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
- << SourceRange(CompPtr[1].LocStart, CompPtr[NumComponents-1].LocEnd);
-
- bool DidWarnAboutNonPOD = false;
- QualType CurrentType = ArgTy;
- typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
- SmallVector<OffsetOfNode, 4> Comps;
- SmallVector<Expr*, 4> Exprs;
- for (unsigned i = 0; i != NumComponents; ++i) {
- const OffsetOfComponent &OC = CompPtr[i];
- if (OC.isBrackets) {
- // Offset of an array sub-field. TODO: Should we allow vector elements?
- if (!CurrentType->isDependentType()) {
- const ArrayType *AT = Context.getAsArrayType(CurrentType);
- if(!AT)
- return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
- << CurrentType);
- CurrentType = AT->getElementType();
- } else
- CurrentType = Context.DependentTy;
-
- ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
- if (IdxRval.isInvalid())
- return ExprError();
- Expr *Idx = IdxRval.take();
- // The expression must be an integral expression.
- // FIXME: An integral constant expression?
- if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
- !Idx->getType()->isIntegerType())
- return ExprError(Diag(Idx->getLocStart(),
- diag::err_typecheck_subscript_not_integer)
- << Idx->getSourceRange());
- // Record this array index.
- Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
- Exprs.push_back(Idx);
- continue;
- }
-
- // Offset of a field.
- if (CurrentType->isDependentType()) {
- // We have the offset of a field, but we can't look into the dependent
- // type. Just record the identifier of the field.
- Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
- CurrentType = Context.DependentTy;
- continue;
- }
-
- // We need to have a complete type to look into.
- if (RequireCompleteType(OC.LocStart, CurrentType,
- diag::err_offsetof_incomplete_type))
- return ExprError();
-
- // Look for the designated field.
- const RecordType *RC = CurrentType->getAs<RecordType>();
- if (!RC)
- return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
- << CurrentType);
- RecordDecl *RD = RC->getDecl();
-
- // C++ [lib.support.types]p5:
- // The macro offsetof accepts a restricted set of type arguments in this
- // International Standard. type shall be a POD structure or a POD union
- // (clause 9).
- // C++11 [support.types]p4:
- // If type is not a standard-layout class (Clause 9), the results are
- // undefined.
- if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
- bool IsSafe = LangOpts.CPlusPlus0x? CRD->isStandardLayout() : CRD->isPOD();
- unsigned DiagID =
- LangOpts.CPlusPlus0x? diag::warn_offsetof_non_standardlayout_type
- : diag::warn_offsetof_non_pod_type;
- if (!IsSafe && !DidWarnAboutNonPOD &&
- DiagRuntimeBehavior(BuiltinLoc, 0,
- PDiag(DiagID)
- << SourceRange(CompPtr[0].LocStart, OC.LocEnd)
- << CurrentType))
- DidWarnAboutNonPOD = true;
- }
-
- // Look for the field.
- LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
- LookupQualifiedName(R, RD);
- FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
- IndirectFieldDecl *IndirectMemberDecl = 0;
- if (!MemberDecl) {
- if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
- MemberDecl = IndirectMemberDecl->getAnonField();
- }
- if (!MemberDecl)
- return ExprError(Diag(BuiltinLoc, diag::err_no_member)
- << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
- OC.LocEnd));
-
- // C99 7.17p3:
- // (If the specified member is a bit-field, the behavior is undefined.)
- //
- // We diagnose this as an error.
- if (MemberDecl->isBitField()) {
- Diag(OC.LocEnd, diag::err_offsetof_bitfield)
- << MemberDecl->getDeclName()
- << SourceRange(BuiltinLoc, RParenLoc);
- Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
- return ExprError();
- }
- RecordDecl *Parent = MemberDecl->getParent();
- if (IndirectMemberDecl)
- Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
- // If the member was found in a base class, introduce OffsetOfNodes for
- // the base class indirections.
- CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
- /*DetectVirtual=*/false);
- if (IsDerivedFrom(CurrentType, Context.getTypeDeclType(Parent), Paths)) {
- CXXBasePath &Path = Paths.front();
- for (CXXBasePath::iterator B = Path.begin(), BEnd = Path.end();
- B != BEnd; ++B)
- Comps.push_back(OffsetOfNode(B->Base));
- }
- if (IndirectMemberDecl) {
- for (IndirectFieldDecl::chain_iterator FI =
- IndirectMemberDecl->chain_begin(),
- FEnd = IndirectMemberDecl->chain_end(); FI != FEnd; FI++) {
- assert(isa<FieldDecl>(*FI));
- Comps.push_back(OffsetOfNode(OC.LocStart,
- cast<FieldDecl>(*FI), OC.LocEnd));
- }
- } else
- Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
- CurrentType = MemberDecl->getType().getNonReferenceType();
- }
-
- return Owned(OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc,
- TInfo, Comps.data(), Comps.size(),
- Exprs.data(), Exprs.size(), RParenLoc));
- }
- ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
- SourceLocation BuiltinLoc,
- SourceLocation TypeLoc,
- ParsedType ParsedArgTy,
- OffsetOfComponent *CompPtr,
- unsigned NumComponents,
- SourceLocation RParenLoc) {
-
- TypeSourceInfo *ArgTInfo;
- QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
- if (ArgTy.isNull())
- return ExprError();
- if (!ArgTInfo)
- ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
- return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, CompPtr, NumComponents,
- RParenLoc);
- }
- ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
- Expr *CondExpr,
- Expr *LHSExpr, Expr *RHSExpr,
- SourceLocation RPLoc) {
- assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
- ExprValueKind VK = VK_RValue;
- ExprObjectKind OK = OK_Ordinary;
- QualType resType;
- bool ValueDependent = false;
- if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
- resType = Context.DependentTy;
- ValueDependent = true;
- } else {
- // The conditional expression is required to be a constant expression.
- llvm::APSInt condEval(32);
- ExprResult CondICE
- = VerifyIntegerConstantExpression(CondExpr, &condEval,
- diag::err_typecheck_choose_expr_requires_constant, false);
- if (CondICE.isInvalid())
- return ExprError();
- CondExpr = CondICE.take();
- // If the condition is > zero, then the AST type is the same as the LSHExpr.
- Expr *ActiveExpr = condEval.getZExtValue() ? LHSExpr : RHSExpr;
- resType = ActiveExpr->getType();
- ValueDependent = ActiveExpr->isValueDependent();
- VK = ActiveExpr->getValueKind();
- OK = ActiveExpr->getObjectKind();
- }
- return Owned(new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
- resType, VK, OK, RPLoc,
- resType->isDependentType(),
- ValueDependent));
- }
- //===----------------------------------------------------------------------===//
- // Clang Extensions.
- //===----------------------------------------------------------------------===//
- /// ActOnBlockStart - This callback is invoked when a block literal is started.
- void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
- BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
- PushBlockScope(CurScope, Block);
- CurContext->addDecl(Block);
- if (CurScope)
- PushDeclContext(CurScope, Block);
- else
- CurContext = Block;
- getCurBlock()->HasImplicitReturnType = true;
- // Enter a new evaluation context to insulate the block from any
- // cleanups from the enclosing full-expression.
- PushExpressionEvaluationContext(PotentiallyEvaluated);
- }
- void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
- Scope *CurScope) {
- assert(ParamInfo.getIdentifier()==0 && "block-id should have no identifier!");
- assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
- BlockScopeInfo *CurBlock = getCurBlock();
- TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
- QualType T = Sig->getType();
- // FIXME: We should allow unexpanded parameter packs here, but that would,
- // in turn, make the block expression contain unexpanded parameter packs.
- if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
- // Drop the parameters.
- FunctionProtoType::ExtProtoInfo EPI;
- EPI.HasTrailingReturn = false;
- EPI.TypeQuals |= DeclSpec::TQ_const;
- T = Context.getFunctionType(Context.DependentTy, /*Args=*/0, /*NumArgs=*/0,
- EPI);
- Sig = Context.getTrivialTypeSourceInfo(T);
- }
-
- // GetTypeForDeclarator always produces a function type for a block
- // literal signature. Furthermore, it is always a FunctionProtoType
- // unless the function was written with a typedef.
- assert(T->isFunctionType() &&
- "GetTypeForDeclarator made a non-function block signature");
- // Look for an explicit signature in that function type.
- FunctionProtoTypeLoc ExplicitSignature;
- TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
- if (isa<FunctionProtoTypeLoc>(tmp)) {
- ExplicitSignature = cast<FunctionProtoTypeLoc>(tmp);
- // Check whether that explicit signature was synthesized by
- // GetTypeForDeclarator. If so, don't save that as part of the
- // written signature.
- if (ExplicitSignature.getLocalRangeBegin() ==
- ExplicitSignature.getLocalRangeEnd()) {
- // This would be much cheaper if we stored TypeLocs instead of
- // TypeSourceInfos.
- TypeLoc Result = ExplicitSignature.getResultLoc();
- unsigned Size = Result.getFullDataSize();
- Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
- Sig->getTypeLoc().initializeFullCopy(Result, Size);
- ExplicitSignature = FunctionProtoTypeLoc();
- }
- }
- CurBlock->TheDecl->setSignatureAsWritten(Sig);
- CurBlock->FunctionType = T;
- const FunctionType *Fn = T->getAs<FunctionType>();
- QualType RetTy = Fn->getResultType();
- bool isVariadic =
- (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
- CurBlock->TheDecl->setIsVariadic(isVariadic);
- // Don't allow returning a objc interface by value.
- if (RetTy->isObjCObjectType()) {
- Diag(ParamInfo.getLocStart(),
- diag::err_object_cannot_be_passed_returned_by_value) << 0 << RetTy;
- return;
- }
- // Context.DependentTy is used as a placeholder for a missing block
- // return type. TODO: what should we do with declarators like:
- // ^ * { ... }
- // If the answer is "apply template argument deduction"....
- if (RetTy != Context.DependentTy) {
- CurBlock->ReturnType = RetTy;
- CurBlock->TheDecl->setBlockMissingReturnType(false);
- CurBlock->HasImplicitReturnType = false;
- }
- // Push block parameters from the declarator if we had them.
- SmallVector<ParmVarDecl*, 8> Params;
- if (ExplicitSignature) {
- for (unsigned I = 0, E = ExplicitSignature.getNumArgs(); I != E; ++I) {
- ParmVarDecl *Param = ExplicitSignature.getArg(I);
- if (Param->getIdentifier() == 0 &&
- !Param->isImplicit() &&
- !Param->isInvalidDecl() &&
- !getLangOpts().CPlusPlus)
- Diag(Param->getLocation(), diag::err_parameter_name_omitted);
- Params.push_back(Param);
- }
- // Fake up parameter variables if we have a typedef, like
- // ^ fntype { ... }
- } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
- for (FunctionProtoType::arg_type_iterator
- I = Fn->arg_type_begin(), E = Fn->arg_type_end(); I != E; ++I) {
- ParmVarDecl *Param =
- BuildParmVarDeclForTypedef(CurBlock->TheDecl,
- ParamInfo.getLocStart(),
- *I);
- Params.push_back(Param);
- }
- }
- // Set the parameters on the block decl.
- if (!Params.empty()) {
- CurBlock->TheDecl->setParams(Params);
- CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
- CurBlock->TheDecl->param_end(),
- /*CheckParameterNames=*/false);
- }
-
- // Finally we can process decl attributes.
- ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
- // Put the parameter variables in scope. We can bail out immediately
- // if we don't have any.
- if (Params.empty())
- return;
- for (BlockDecl::param_iterator AI = CurBlock->TheDecl->param_begin(),
- E = CurBlock->TheDecl->param_end(); AI != E; ++AI) {
- (*AI)->setOwningFunction(CurBlock->TheDecl);
- // If this has an identifier, add it to the scope stack.
- if ((*AI)->getIdentifier()) {
- CheckShadow(CurBlock->TheScope, *AI);
- PushOnScopeChains(*AI, CurBlock->TheScope);
- }
- }
- }
- /// ActOnBlockError - If there is an error parsing a block, this callback
- /// is invoked to pop the information about the block from the action impl.
- void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
- // Leave the expression-evaluation context.
- DiscardCleanupsInEvaluationContext();
- PopExpressionEvaluationContext();
- // Pop off CurBlock, handle nested blocks.
- PopDeclContext();
- PopFunctionScopeInfo();
- }
- /// ActOnBlockStmtExpr - This is called when the body of a block statement
- /// literal was successfully completed. ^(int x){...}
- ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
- Stmt *Body, Scope *CurScope) {
- // If blocks are disabled, emit an error.
- if (!LangOpts.Blocks)
- Diag(CaretLoc, diag::err_blocks_disable);
- // Leave the expression-evaluation context.
- if (hasAnyUnrecoverableErrorsInThisFunction())
- DiscardCleanupsInEvaluationContext();
- assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
- PopExpressionEvaluationContext();
- BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
- if (BSI->HasImplicitReturnType)
- deduceClosureReturnType(*BSI);
- PopDeclContext();
- QualType RetTy = Context.VoidTy;
- if (!BSI->ReturnType.isNull())
- RetTy = BSI->ReturnType;
- bool NoReturn = BSI->TheDecl->getAttr<NoReturnAttr>();
- QualType BlockTy;
- // Set the captured variables on the block.
- // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
- SmallVector<BlockDecl::Capture, 4> Captures;
- for (unsigned i = 0, e = BSI->Captures.size(); i != e; i++) {
- CapturingScopeInfo::Capture &Cap = BSI->Captures[i];
- if (Cap.isThisCapture())
- continue;
- BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
- Cap.isNested(), Cap.getCopyExpr());
- Captures.push_back(NewCap);
- }
- BSI->TheDecl->setCaptures(Context, Captures.begin(), Captures.end(),
- BSI->CXXThisCaptureIndex != 0);
- // If the user wrote a function type in some form, try to use that.
- if (!BSI->FunctionType.isNull()) {
- const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
- FunctionType::ExtInfo Ext = FTy->getExtInfo();
- if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
-
- // Turn protoless block types into nullary block types.
- if (isa<FunctionNoProtoType>(FTy)) {
- FunctionProtoType::ExtProtoInfo EPI;
- EPI.ExtInfo = Ext;
- BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
- // Otherwise, if we don't need to change anything about the function type,
- // preserve its sugar structure.
- } else if (FTy->getResultType() == RetTy &&
- (!NoReturn || FTy->getNoReturnAttr())) {
- BlockTy = BSI->FunctionType;
- // Otherwise, make the minimal modifications to the function type.
- } else {
- const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
- FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
- EPI.TypeQuals = 0; // FIXME: silently?
- EPI.ExtInfo = Ext;
- BlockTy = Context.getFunctionType(RetTy,
- FPT->arg_type_begin(),
- FPT->getNumArgs(),
- EPI);
- }
- // If we don't have a function type, just build one from nothing.
- } else {
- FunctionProtoType::ExtProtoInfo EPI;
- EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
- BlockTy = Context.getFunctionType(RetTy, 0, 0, EPI);
- }
- DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
- BSI->TheDecl->param_end());
- BlockTy = Context.getBlockPointerType(BlockTy);
- // If needed, diagnose invalid gotos and switches in the block.
- if (getCurFunction()->NeedsScopeChecking() &&
- !hasAnyUnrecoverableErrorsInThisFunction() &&
- !PP.isCodeCompletionEnabled())
- DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
- BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
- // Try to apply the named return value optimization. We have to check again
- // if we can do this, though, because blocks keep return statements around
- // to deduce an implicit return type.
- if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
- !BSI->TheDecl->isDependentContext())
- computeNRVO(Body, getCurBlock());
-
- BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
- const AnalysisBasedWarnings::Policy &WP = AnalysisWarnings.getDefaultPolicy();
- PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
- // If the block isn't obviously global, i.e. it captures anything at
- // all, then we need to do a few things in the surrounding context:
- if (Result->getBlockDecl()->hasCaptures()) {
- // First, this expression has a new cleanup object.
- ExprCleanupObjects.push_back(Result->getBlockDecl());
- ExprNeedsCleanups = true;
- // It also gets a branch-protected scope if any of the captured
- // variables needs destruction.
- for (BlockDecl::capture_const_iterator
- ci = Result->getBlockDecl()->capture_begin(),
- ce = Result->getBlockDecl()->capture_end(); ci != ce; ++ci) {
- const VarDecl *var = ci->getVariable();
- if (var->getType().isDestructedType() != QualType::DK_none) {
- getCurFunction()->setHasBranchProtectedScope();
- break;
- }
- }
- }
- return Owned(Result);
- }
- ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
- Expr *E, ParsedType Ty,
- SourceLocation RPLoc) {
- TypeSourceInfo *TInfo;
- GetTypeFromParser(Ty, &TInfo);
- return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
- }
- ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
- Expr *E, TypeSourceInfo *TInfo,
- SourceLocation RPLoc) {
- Expr *OrigExpr = E;
- // Get the va_list type
- QualType VaListType = Context.getBuiltinVaListType();
- if (VaListType->isArrayType()) {
- // Deal with implicit array decay; for example, on x86-64,
- // va_list is an array, but it's supposed to decay to
- // a pointer for va_arg.
- VaListType = Context.getArrayDecayedType(VaListType);
- // Make sure the input expression also decays appropriately.
- ExprResult Result = UsualUnaryConversions(E);
- if (Result.isInvalid())
- return ExprError();
- E = Result.take();
- } else {
- // Otherwise, the va_list argument must be an l-value because
- // it is modified by va_arg.
- if (!E->isTypeDependent() &&
- CheckForModifiableLvalue(E, BuiltinLoc, *this))
- return ExprError();
- }
- if (!E->isTypeDependent() &&
- !Context.hasSameType(VaListType, E->getType())) {
- return ExprError(Diag(E->getLocStart(),
- diag::err_first_argument_to_va_arg_not_of_type_va_list)
- << OrigExpr->getType() << E->getSourceRange());
- }
- if (!TInfo->getType()->isDependentType()) {
- if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
- diag::err_second_parameter_to_va_arg_incomplete,
- TInfo->getTypeLoc()))
- return ExprError();
- if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
- TInfo->getType(),
- diag::err_second_parameter_to_va_arg_abstract,
- TInfo->getTypeLoc()))
- return ExprError();
- if (!TInfo->getType().isPODType(Context)) {
- Diag(TInfo->getTypeLoc().getBeginLoc(),
- TInfo->getType()->isObjCLifetimeType()
- ? diag::warn_second_parameter_to_va_arg_ownership_qualified
- : diag::warn_second_parameter_to_va_arg_not_pod)
- << TInfo->getType()
- << TInfo->getTypeLoc().getSourceRange();
- }
- // Check for va_arg where arguments of the given type will be promoted
- // (i.e. this va_arg is guaranteed to have undefined behavior).
- QualType PromoteType;
- if (TInfo->getType()->isPromotableIntegerType()) {
- PromoteType = Context.getPromotedIntegerType(TInfo->getType());
- if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
- PromoteType = QualType();
- }
- if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
- PromoteType = Context.DoubleTy;
- if (!PromoteType.isNull())
- Diag(TInfo->getTypeLoc().getBeginLoc(),
- diag::warn_second_parameter_to_va_arg_never_compatible)
- << TInfo->getType()
- << PromoteType
- << TInfo->getTypeLoc().getSourceRange();
- }
- QualType T = TInfo->getType().getNonLValueExprType(Context);
- return Owned(new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T));
- }
- ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
- // The type of __null will be int or long, depending on the size of
- // pointers on the target.
- QualType Ty;
- unsigned pw = Context.getTargetInfo().getPointerWidth(0);
- if (pw == Context.getTargetInfo().getIntWidth())
- Ty = Context.IntTy;
- else if (pw == Context.getTargetInfo().getLongWidth())
- Ty = Context.LongTy;
- else if (pw == Context.getTargetInfo().getLongLongWidth())
- Ty = Context.LongLongTy;
- else {
- llvm_unreachable("I don't know size of pointer!");
- }
- return Owned(new (Context) GNUNullExpr(Ty, TokenLoc));
- }
- static void MakeObjCStringLiteralFixItHint(Sema& SemaRef, QualType DstType,
- Expr *SrcExpr, FixItHint &Hint) {
- if (!SemaRef.getLangOpts().ObjC1)
- return;
- const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
- if (!PT)
- return;
- // Check if the destination is of type 'id'.
- if (!PT->isObjCIdType()) {
- // Check if the destination is the 'NSString' interface.
- const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
- if (!ID || !ID->getIdentifier()->isStr("NSString"))
- return;
- }
- // Ignore any parens, implicit casts (should only be
- // array-to-pointer decays), and not-so-opaque values. The last is
- // important for making this trigger for property assignments.
- SrcExpr = SrcExpr->IgnoreParenImpCasts();
- if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
- if (OV->getSourceExpr())
- SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
- StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
- if (!SL || !SL->isAscii())
- return;
- Hint = FixItHint::CreateInsertion(SL->getLocStart(), "@");
- }
- bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
- SourceLocation Loc,
- QualType DstType, QualType SrcType,
- Expr *SrcExpr, AssignmentAction Action,
- bool *Complained) {
- if (Complained)
- *Complained = false;
- // Decode the result (notice that AST's are still created for extensions).
- bool CheckInferredResultType = false;
- bool isInvalid = false;
- unsigned DiagKind = 0;
- FixItHint Hint;
- ConversionFixItGenerator ConvHints;
- bool MayHaveConvFixit = false;
- bool MayHaveFunctionDiff = false;
- switch (ConvTy) {
- case Compatible:
- DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
- return false;
- case PointerToInt:
- DiagKind = diag::ext_typecheck_convert_pointer_int;
- ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
- MayHaveConvFixit = true;
- break;
- case IntToPointer:
- DiagKind = diag::ext_typecheck_convert_int_pointer;
- ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
- MayHaveConvFixit = true;
- break;
- case IncompatiblePointer:
- MakeObjCStringLiteralFixItHint(*this, DstType, SrcExpr, Hint);
- DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
- CheckInferredResultType = DstType->isObjCObjectPointerType() &&
- SrcType->isObjCObjectPointerType();
- if (Hint.isNull() && !CheckInferredResultType) {
- ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
- }
- MayHaveConvFixit = true;
- break;
- case IncompatiblePointerSign:
- DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
- break;
- case FunctionVoidPointer:
- DiagKind = diag::ext_typecheck_convert_pointer_void_func;
- break;
- case IncompatiblePointerDiscardsQualifiers: {
- // Perform array-to-pointer decay if necessary.
- if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
- Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
- Qualifiers rhq = DstType->getPointeeType().getQualifiers();
- if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
- DiagKind = diag::err_typecheck_incompatible_address_space;
- break;
- } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
- DiagKind = diag::err_typecheck_incompatible_ownership;
- break;
- }
- llvm_unreachable("unknown error case for discarding qualifiers!");
- // fallthrough
- }
- case CompatiblePointerDiscardsQualifiers:
- // If the qualifiers lost were because we were applying the
- // (deprecated) C++ conversion from a string literal to a char*
- // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
- // Ideally, this check would be performed in
- // checkPointerTypesForAssignment. However, that would require a
- // bit of refactoring (so that the second argument is an
- // expression, rather than a type), which should be done as part
- // of a larger effort to fix checkPointerTypesForAssignment for
- // C++ semantics.
- if (getLangOpts().CPlusPlus &&
- IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
- return false;
- DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
- break;
- case IncompatibleNestedPointerQualifiers:
- DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
- break;
- case IntToBlockPointer:
- DiagKind = diag::err_int_to_block_pointer;
- break;
- case IncompatibleBlockPointer:
- DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
- break;
- case IncompatibleObjCQualifiedId:
- // FIXME: Diagnose the problem in ObjCQualifiedIdTypesAreCompatible, since
- // it can give a more specific diagnostic.
- DiagKind = diag::warn_incompatible_qualified_id;
- break;
- case IncompatibleVectors:
- DiagKind = diag::warn_incompatible_vectors;
- break;
- case IncompatibleObjCWeakRef:
- DiagKind = diag::err_arc_weak_unavailable_assign;
- break;
- case Incompatible:
- DiagKind = diag::err_typecheck_convert_incompatible;
- ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
- MayHaveConvFixit = true;
- isInvalid = true;
- MayHaveFunctionDiff = true;
- break;
- }
- QualType FirstType, SecondType;
- switch (Action) {
- case AA_Assigning:
- case AA_Initializing:
- // The destination type comes first.
- FirstType = DstType;
- SecondType = SrcType;
- break;
- case AA_Returning:
- case AA_Passing:
- case AA_Converting:
- case AA_Sending:
- case AA_Casting:
- // The source type comes first.
- FirstType = SrcType;
- SecondType = DstType;
- break;
- }
- PartialDiagnostic FDiag = PDiag(DiagKind);
- FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
- // If we can fix the conversion, suggest the FixIts.
- assert(ConvHints.isNull() || Hint.isNull());
- if (!ConvHints.isNull()) {
- for (std::vector<FixItHint>::iterator HI = ConvHints.Hints.begin(),
- HE = ConvHints.Hints.end(); HI != HE; ++HI)
- FDiag << *HI;
- } else {
- FDiag << Hint;
- }
- if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
- if (MayHaveFunctionDiff)
- HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
- Diag(Loc, FDiag);
- if (SecondType == Context.OverloadTy)
- NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
- FirstType);
- if (CheckInferredResultType)
- EmitRelatedResultTypeNote(SrcExpr);
-
- if (Complained)
- *Complained = true;
- return isInvalid;
- }
- ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
- llvm::APSInt *Result) {
- class SimpleICEDiagnoser : public VerifyICEDiagnoser {
- public:
- virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
- S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
- }
- } Diagnoser;
-
- return VerifyIntegerConstantExpression(E, Result, Diagnoser);
- }
- ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
- llvm::APSInt *Result,
- unsigned DiagID,
- bool AllowFold) {
- class IDDiagnoser : public VerifyICEDiagnoser {
- unsigned DiagID;
-
- public:
- IDDiagnoser(unsigned DiagID)
- : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
-
- virtual void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
- S.Diag(Loc, DiagID) << SR;
- }
- } Diagnoser(DiagID);
-
- return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
- }
- void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
- SourceRange SR) {
- S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
- }
- ExprResult
- Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
- VerifyICEDiagnoser &Diagnoser,
- bool AllowFold) {
- SourceLocation DiagLoc = E->getLocStart();
- if (getLangOpts().CPlusPlus0x) {
- // C++11 [expr.const]p5:
- // If an expression of literal class type is used in a context where an
- // integral constant expression is required, then that class type shall
- // have a single non-explicit conversion function to an integral or
- // unscoped enumeration type
- ExprResult Converted;
- if (!Diagnoser.Suppress) {
- class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
- public:
- CXX11ConvertDiagnoser() : ICEConvertDiagnoser(false, true) { }
-
- virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
- QualType T) {
- return S.Diag(Loc, diag::err_ice_not_integral) << T;
- }
-
- virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
- SourceLocation Loc,
- QualType T) {
- return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
- }
-
- virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
- SourceLocation Loc,
- QualType T,
- QualType ConvTy) {
- return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
- }
-
- virtual DiagnosticBuilder noteExplicitConv(Sema &S,
- CXXConversionDecl *Conv,
- QualType ConvTy) {
- return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
- << ConvTy->isEnumeralType() << ConvTy;
- }
-
- virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
- QualType T) {
- return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
- }
-
- virtual DiagnosticBuilder noteAmbiguous(Sema &S,
- CXXConversionDecl *Conv,
- QualType ConvTy) {
- return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
- << ConvTy->isEnumeralType() << ConvTy;
- }
-
- virtual DiagnosticBuilder diagnoseConversion(Sema &S,
- SourceLocation Loc,
- QualType T,
- QualType ConvTy) {
- return DiagnosticBuilder::getEmpty();
- }
- } ConvertDiagnoser;
- Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
- ConvertDiagnoser,
- /*AllowScopedEnumerations*/ false);
- } else {
- // The caller wants to silently enquire whether this is an ICE. Don't
- // produce any diagnostics if it isn't.
- class SilentICEConvertDiagnoser : public ICEConvertDiagnoser {
- public:
- SilentICEConvertDiagnoser() : ICEConvertDiagnoser(true, true) { }
-
- virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
- QualType T) {
- return DiagnosticBuilder::getEmpty();
- }
-
- virtual DiagnosticBuilder diagnoseIncomplete(Sema &S,
- SourceLocation Loc,
- QualType T) {
- return DiagnosticBuilder::getEmpty();
- }
-
- virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
- SourceLocation Loc,
- QualType T,
- QualType ConvTy) {
- return DiagnosticBuilder::getEmpty();
- }
-
- virtual DiagnosticBuilder noteExplicitConv(Sema &S,
- CXXConversionDecl *Conv,
- QualType ConvTy) {
- return DiagnosticBuilder::getEmpty();
- }
-
- virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
- QualType T) {
- return DiagnosticBuilder::getEmpty();
- }
-
- virtual DiagnosticBuilder noteAmbiguous(Sema &S,
- CXXConversionDecl *Conv,
- QualType ConvTy) {
- return DiagnosticBuilder::getEmpty();
- }
-
- virtual DiagnosticBuilder diagnoseConversion(Sema &S,
- SourceLocation Loc,
- QualType T,
- QualType ConvTy) {
- return DiagnosticBuilder::getEmpty();
- }
- } ConvertDiagnoser;
-
- Converted = ConvertToIntegralOrEnumerationType(DiagLoc, E,
- ConvertDiagnoser, false);
- }
- if (Converted.isInvalid())
- return Converted;
- E = Converted.take();
- if (!E->getType()->isIntegralOrUnscopedEnumerationType())
- return ExprError();
- } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
- // An ICE must be of integral or unscoped enumeration type.
- if (!Diagnoser.Suppress)
- Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
- return ExprError();
- }
- // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
- // in the non-ICE case.
- if (!getLangOpts().CPlusPlus0x && E->isIntegerConstantExpr(Context)) {
- if (Result)
- *Result = E->EvaluateKnownConstInt(Context);
- return Owned(E);
- }
- Expr::EvalResult EvalResult;
- llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
- EvalResult.Diag = &Notes;
- // Try to evaluate the expression, and produce diagnostics explaining why it's
- // not a constant expression as a side-effect.
- bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
- EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
- // In C++11, we can rely on diagnostics being produced for any expression
- // which is not a constant expression. If no diagnostics were produced, then
- // this is a constant expression.
- if (Folded && getLangOpts().CPlusPlus0x && Notes.empty()) {
- if (Result)
- *Result = EvalResult.Val.getInt();
- return Owned(E);
- }
- // If our only note is the usual "invalid subexpression" note, just point
- // the caret at its location rather than producing an essentially
- // redundant note.
- if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
- diag::note_invalid_subexpr_in_const_expr) {
- DiagLoc = Notes[0].first;
- Notes.clear();
- }
- if (!Folded || !AllowFold) {
- if (!Diagnoser.Suppress) {
- Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
- for (unsigned I = 0, N = Notes.size(); I != N; ++I)
- Diag(Notes[I].first, Notes[I].second);
- }
- return ExprError();
- }
- Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
- for (unsigned I = 0, N = Notes.size(); I != N; ++I)
- Diag(Notes[I].first, Notes[I].second);
- if (Result)
- *Result = EvalResult.Val.getInt();
- return Owned(E);
- }
- namespace {
- // Handle the case where we conclude a expression which we speculatively
- // considered to be unevaluated is actually evaluated.
- class TransformToPE : public TreeTransform<TransformToPE> {
- typedef TreeTransform<TransformToPE> BaseTransform;
- public:
- TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
- // Make sure we redo semantic analysis
- bool AlwaysRebuild() { return true; }
- // Make sure we handle LabelStmts correctly.
- // FIXME: This does the right thing, but maybe we need a more general
- // fix to TreeTransform?
- StmtResult TransformLabelStmt(LabelStmt *S) {
- S->getDecl()->setStmt(0);
- return BaseTransform::TransformLabelStmt(S);
- }
- // We need to special-case DeclRefExprs referring to FieldDecls which
- // are not part of a member pointer formation; normal TreeTransforming
- // doesn't catch this case because of the way we represent them in the AST.
- // FIXME: This is a bit ugly; is it really the best way to handle this
- // case?
- //
- // Error on DeclRefExprs referring to FieldDecls.
- ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
- if (isa<FieldDecl>(E->getDecl()) &&
- !SemaRef.isUnevaluatedContext())
- return SemaRef.Diag(E->getLocation(),
- diag::err_invalid_non_static_member_use)
- << E->getDecl() << E->getSourceRange();
- return BaseTransform::TransformDeclRefExpr(E);
- }
- // Exception: filter out member pointer formation
- ExprResult TransformUnaryOperator(UnaryOperator *E) {
- if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
- return E;
- return BaseTransform::TransformUnaryOperator(E);
- }
- ExprResult TransformLambdaExpr(LambdaExpr *E) {
- // Lambdas never need to be transformed.
- return E;
- }
- };
- }
- ExprResult Sema::TranformToPotentiallyEvaluated(Expr *E) {
- assert(ExprEvalContexts.back().Context == Unevaluated &&
- "Should only transform unevaluated expressions");
- ExprEvalContexts.back().Context =
- ExprEvalContexts[ExprEvalContexts.size()-2].Context;
- if (ExprEvalContexts.back().Context == Unevaluated)
- return E;
- return TransformToPE(*this).TransformExpr(E);
- }
- void
- Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
- Decl *LambdaContextDecl,
- bool IsDecltype) {
- ExprEvalContexts.push_back(
- ExpressionEvaluationContextRecord(NewContext,
- ExprCleanupObjects.size(),
- ExprNeedsCleanups,
- LambdaContextDecl,
- IsDecltype));
- ExprNeedsCleanups = false;
- if (!MaybeODRUseExprs.empty())
- std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
- }
- void Sema::PopExpressionEvaluationContext() {
- ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
- if (!Rec.Lambdas.empty()) {
- if (Rec.Context == Unevaluated) {
- // C++11 [expr.prim.lambda]p2:
- // A lambda-expression shall not appear in an unevaluated operand
- // (Clause 5).
- for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I)
- Diag(Rec.Lambdas[I]->getLocStart(),
- diag::err_lambda_unevaluated_operand);
- } else {
- // Mark the capture expressions odr-used. This was deferred
- // during lambda expression creation.
- for (unsigned I = 0, N = Rec.Lambdas.size(); I != N; ++I) {
- LambdaExpr *Lambda = Rec.Lambdas[I];
- for (LambdaExpr::capture_init_iterator
- C = Lambda->capture_init_begin(),
- CEnd = Lambda->capture_init_end();
- C != CEnd; ++C) {
- MarkDeclarationsReferencedInExpr(*C);
- }
- }
- }
- }
- // When are coming out of an unevaluated context, clear out any
- // temporaries that we may have created as part of the evaluation of
- // the expression in that context: they aren't relevant because they
- // will never be constructed.
- if (Rec.Context == Unevaluated || Rec.Context == ConstantEvaluated) {
- ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
- ExprCleanupObjects.end());
- ExprNeedsCleanups = Rec.ParentNeedsCleanups;
- CleanupVarDeclMarking();
- std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
- // Otherwise, merge the contexts together.
- } else {
- ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
- MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
- Rec.SavedMaybeODRUseExprs.end());
- }
- // Pop the current expression evaluation context off the stack.
- ExprEvalContexts.pop_back();
- }
- void Sema::DiscardCleanupsInEvaluationContext() {
- ExprCleanupObjects.erase(
- ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
- ExprCleanupObjects.end());
- ExprNeedsCleanups = false;
- MaybeODRUseExprs.clear();
- }
- ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
- if (!E->getType()->isVariablyModifiedType())
- return E;
- return TranformToPotentiallyEvaluated(E);
- }
- static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
- // Do not mark anything as "used" within a dependent context; wait for
- // an instantiation.
- if (SemaRef.CurContext->isDependentContext())
- return false;
- switch (SemaRef.ExprEvalContexts.back().Context) {
- case Sema::Unevaluated:
- // We are in an expression that is not potentially evaluated; do nothing.
- // (Depending on how you read the standard, we actually do need to do
- // something here for null pointer constants, but the standard's
- // definition of a null pointer constant is completely crazy.)
- return false;
- case Sema::ConstantEvaluated:
- case Sema::PotentiallyEvaluated:
- // We are in a potentially evaluated expression (or a constant-expression
- // in C++03); we need to do implicit template instantiation, implicitly
- // define class members, and mark most declarations as used.
- return true;
- case Sema::PotentiallyEvaluatedIfUsed:
- // Referenced declarations will only be used if the construct in the
- // containing expression is used.
- return false;
- }
- llvm_unreachable("Invalid context");
- }
- /// \brief Mark a function referenced, and check whether it is odr-used
- /// (C++ [basic.def.odr]p2, C99 6.9p3)
- void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func) {
- assert(Func && "No function?");
- Func->setReferenced();
- // Don't mark this function as used multiple times, unless it's a constexpr
- // function which we need to instantiate.
- if (Func->isUsed(false) &&
- !(Func->isConstexpr() && !Func->getBody() &&
- Func->isImplicitlyInstantiable()))
- return;
- if (!IsPotentiallyEvaluatedContext(*this))
- return;
- // Note that this declaration has been used.
- if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
- if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
- if (Constructor->isDefaultConstructor()) {
- if (Constructor->isTrivial())
- return;
- if (!Constructor->isUsed(false))
- DefineImplicitDefaultConstructor(Loc, Constructor);
- } else if (Constructor->isCopyConstructor()) {
- if (!Constructor->isUsed(false))
- DefineImplicitCopyConstructor(Loc, Constructor);
- } else if (Constructor->isMoveConstructor()) {
- if (!Constructor->isUsed(false))
- DefineImplicitMoveConstructor(Loc, Constructor);
- }
- }
- MarkVTableUsed(Loc, Constructor->getParent());
- } else if (CXXDestructorDecl *Destructor =
- dyn_cast<CXXDestructorDecl>(Func)) {
- if (Destructor->isDefaulted() && !Destructor->isDeleted() &&
- !Destructor->isUsed(false))
- DefineImplicitDestructor(Loc, Destructor);
- if (Destructor->isVirtual())
- MarkVTableUsed(Loc, Destructor->getParent());
- } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
- if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted() &&
- MethodDecl->isOverloadedOperator() &&
- MethodDecl->getOverloadedOperator() == OO_Equal) {
- if (!MethodDecl->isUsed(false)) {
- if (MethodDecl->isCopyAssignmentOperator())
- DefineImplicitCopyAssignment(Loc, MethodDecl);
- else
- DefineImplicitMoveAssignment(Loc, MethodDecl);
- }
- } else if (isa<CXXConversionDecl>(MethodDecl) &&
- MethodDecl->getParent()->isLambda()) {
- CXXConversionDecl *Conversion = cast<CXXConversionDecl>(MethodDecl);
- if (Conversion->isLambdaToBlockPointerConversion())
- DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
- else
- DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
- } else if (MethodDecl->isVirtual())
- MarkVTableUsed(Loc, MethodDecl->getParent());
- }
- // Recursive functions should be marked when used from another function.
- // FIXME: Is this really right?
- if (CurContext == Func) return;
- // Resolve the exception specification for any function which is
- // used: CodeGen will need it.
- const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
- if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
- ResolveExceptionSpec(Loc, FPT);
- // Implicit instantiation of function templates and member functions of
- // class templates.
- if (Func->isImplicitlyInstantiable()) {
- bool AlreadyInstantiated = false;
- SourceLocation PointOfInstantiation = Loc;
- if (FunctionTemplateSpecializationInfo *SpecInfo
- = Func->getTemplateSpecializationInfo()) {
- if (SpecInfo->getPointOfInstantiation().isInvalid())
- SpecInfo->setPointOfInstantiation(Loc);
- else if (SpecInfo->getTemplateSpecializationKind()
- == TSK_ImplicitInstantiation) {
- AlreadyInstantiated = true;
- PointOfInstantiation = SpecInfo->getPointOfInstantiation();
- }
- } else if (MemberSpecializationInfo *MSInfo
- = Func->getMemberSpecializationInfo()) {
- if (MSInfo->getPointOfInstantiation().isInvalid())
- MSInfo->setPointOfInstantiation(Loc);
- else if (MSInfo->getTemplateSpecializationKind()
- == TSK_ImplicitInstantiation) {
- AlreadyInstantiated = true;
- PointOfInstantiation = MSInfo->getPointOfInstantiation();
- }
- }
- if (!AlreadyInstantiated || Func->isConstexpr()) {
- if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
- cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass())
- PendingLocalImplicitInstantiations.push_back(
- std::make_pair(Func, PointOfInstantiation));
- else if (Func->isConstexpr())
- // Do not defer instantiations of constexpr functions, to avoid the
- // expression evaluator needing to call back into Sema if it sees a
- // call to such a function.
- InstantiateFunctionDefinition(PointOfInstantiation, Func);
- else {
- PendingInstantiations.push_back(std::make_pair(Func,
- PointOfInstantiation));
- // Notify the consumer that a function was implicitly instantiated.
- Consumer.HandleCXXImplicitFunctionInstantiation(Func);
- }
- }
- } else {
- // Walk redefinitions, as some of them may be instantiable.
- for (FunctionDecl::redecl_iterator i(Func->redecls_begin()),
- e(Func->redecls_end()); i != e; ++i) {
- if (!i->isUsed(false) && i->isImplicitlyInstantiable())
- MarkFunctionReferenced(Loc, *i);
- }
- }
- // Keep track of used but undefined functions.
- if (!Func->isPure() && !Func->hasBody() &&
- Func->getLinkage() != ExternalLinkage) {
- SourceLocation &old = UndefinedInternals[Func->getCanonicalDecl()];
- if (old.isInvalid()) old = Loc;
- }
- Func->setUsed(true);
- }
- static void
- diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
- VarDecl *var, DeclContext *DC) {
- DeclContext *VarDC = var->getDeclContext();
- // If the parameter still belongs to the translation unit, then
- // we're actually just using one parameter in the declaration of
- // the next.
- if (isa<ParmVarDecl>(var) &&
- isa<TranslationUnitDecl>(VarDC))
- return;
- // For C code, don't diagnose about capture if we're not actually in code
- // right now; it's impossible to write a non-constant expression outside of
- // function context, so we'll get other (more useful) diagnostics later.
- //
- // For C++, things get a bit more nasty... it would be nice to suppress this
- // diagnostic for certain cases like using a local variable in an array bound
- // for a member of a local class, but the correct predicate is not obvious.
- if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
- return;
- if (isa<CXXMethodDecl>(VarDC) &&
- cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
- S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
- << var->getIdentifier();
- } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
- S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
- << var->getIdentifier() << fn->getDeclName();
- } else if (isa<BlockDecl>(VarDC)) {
- S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
- << var->getIdentifier();
- } else {
- // FIXME: Is there any other context where a local variable can be
- // declared?
- S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
- << var->getIdentifier();
- }
- S.Diag(var->getLocation(), diag::note_local_variable_declared_here)
- << var->getIdentifier();
- // FIXME: Add additional diagnostic info about class etc. which prevents
- // capture.
- }
- /// \brief Capture the given variable in the given lambda expression.
- static ExprResult captureInLambda(Sema &S, LambdaScopeInfo *LSI,
- VarDecl *Var, QualType FieldType,
- QualType DeclRefType,
- SourceLocation Loc,
- bool RefersToEnclosingLocal) {
- CXXRecordDecl *Lambda = LSI->Lambda;
- // Build the non-static data member.
- FieldDecl *Field
- = FieldDecl::Create(S.Context, Lambda, Loc, Loc, 0, FieldType,
- S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
- 0, false, ICIS_NoInit);
- Field->setImplicit(true);
- Field->setAccess(AS_private);
- Lambda->addDecl(Field);
- // C++11 [expr.prim.lambda]p21:
- // When the lambda-expression is evaluated, the entities that
- // are captured by copy are used to direct-initialize each
- // corresponding non-static data member of the resulting closure
- // object. (For array members, the array elements are
- // direct-initialized in increasing subscript order.) These
- // initializations are performed in the (unspecified) order in
- // which the non-static data members are declared.
-
- // Introduce a new evaluation context for the initialization, so
- // that temporaries introduced as part of the capture are retained
- // to be re-"exported" from the lambda expression itself.
- S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
- // C++ [expr.prim.labda]p12:
- // An entity captured by a lambda-expression is odr-used (3.2) in
- // the scope containing the lambda-expression.
- Expr *Ref = new (S.Context) DeclRefExpr(Var, RefersToEnclosingLocal,
- DeclRefType, VK_LValue, Loc);
- Var->setReferenced(true);
- Var->setUsed(true);
- // When the field has array type, create index variables for each
- // dimension of the array. We use these index variables to subscript
- // the source array, and other clients (e.g., CodeGen) will perform
- // the necessary iteration with these index variables.
- SmallVector<VarDecl *, 4> IndexVariables;
- QualType BaseType = FieldType;
- QualType SizeType = S.Context.getSizeType();
- LSI->ArrayIndexStarts.push_back(LSI->ArrayIndexVars.size());
- while (const ConstantArrayType *Array
- = S.Context.getAsConstantArrayType(BaseType)) {
- // Create the iteration variable for this array index.
- IdentifierInfo *IterationVarName = 0;
- {
- SmallString<8> Str;
- llvm::raw_svector_ostream OS(Str);
- OS << "__i" << IndexVariables.size();
- IterationVarName = &S.Context.Idents.get(OS.str());
- }
- VarDecl *IterationVar
- = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
- IterationVarName, SizeType,
- S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
- SC_None, SC_None);
- IndexVariables.push_back(IterationVar);
- LSI->ArrayIndexVars.push_back(IterationVar);
-
- // Create a reference to the iteration variable.
- ExprResult IterationVarRef
- = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
- assert(!IterationVarRef.isInvalid() &&
- "Reference to invented variable cannot fail!");
- IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.take());
- assert(!IterationVarRef.isInvalid() &&
- "Conversion of invented variable cannot fail!");
-
- // Subscript the array with this iteration variable.
- ExprResult Subscript = S.CreateBuiltinArraySubscriptExpr(
- Ref, Loc, IterationVarRef.take(), Loc);
- if (Subscript.isInvalid()) {
- S.CleanupVarDeclMarking();
- S.DiscardCleanupsInEvaluationContext();
- S.PopExpressionEvaluationContext();
- return ExprError();
- }
- Ref = Subscript.take();
- BaseType = Array->getElementType();
- }
- // Construct the entity that we will be initializing. For an array, this
- // will be first element in the array, which may require several levels
- // of array-subscript entities.
- SmallVector<InitializedEntity, 4> Entities;
- Entities.reserve(1 + IndexVariables.size());
- Entities.push_back(
- InitializedEntity::InitializeLambdaCapture(Var, Field, Loc));
- for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
- Entities.push_back(InitializedEntity::InitializeElement(S.Context,
- 0,
- Entities.back()));
- InitializationKind InitKind
- = InitializationKind::CreateDirect(Loc, Loc, Loc);
- InitializationSequence Init(S, Entities.back(), InitKind, &Ref, 1);
- ExprResult Result(true);
- if (!Init.Diagnose(S, Entities.back(), InitKind, &Ref, 1))
- Result = Init.Perform(S, Entities.back(), InitKind,
- MultiExprArg(S, &Ref, 1));
- // If this initialization requires any cleanups (e.g., due to a
- // default argument to a copy constructor), note that for the
- // lambda.
- if (S.ExprNeedsCleanups)
- LSI->ExprNeedsCleanups = true;
- // Exit the expression evaluation context used for the capture.
- S.CleanupVarDeclMarking();
- S.DiscardCleanupsInEvaluationContext();
- S.PopExpressionEvaluationContext();
- return Result;
- }
- bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
- TryCaptureKind Kind, SourceLocation EllipsisLoc,
- bool BuildAndDiagnose,
- QualType &CaptureType,
- QualType &DeclRefType) {
- bool Nested = false;
-
- DeclContext *DC = CurContext;
- if (Var->getDeclContext() == DC) return true;
- if (!Var->hasLocalStorage()) return true;
- bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
- // Walk up the stack to determine whether we can capture the variable,
- // performing the "simple" checks that don't depend on type. We stop when
- // we've either hit the declared scope of the variable or find an existing
- // capture of that variable.
- CaptureType = Var->getType();
- DeclRefType = CaptureType.getNonReferenceType();
- bool Explicit = (Kind != TryCapture_Implicit);
- unsigned FunctionScopesIndex = FunctionScopes.size() - 1;
- do {
- // Only block literals and lambda expressions can capture; other
- // scopes don't work.
- DeclContext *ParentDC;
- if (isa<BlockDecl>(DC))
- ParentDC = DC->getParent();
- else if (isa<CXXMethodDecl>(DC) &&
- cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call &&
- cast<CXXRecordDecl>(DC->getParent())->isLambda())
- ParentDC = DC->getParent()->getParent();
- else {
- if (BuildAndDiagnose)
- diagnoseUncapturableValueReference(*this, Loc, Var, DC);
- return true;
- }
- CapturingScopeInfo *CSI =
- cast<CapturingScopeInfo>(FunctionScopes[FunctionScopesIndex]);
- // Check whether we've already captured it.
- if (CSI->CaptureMap.count(Var)) {
- // If we found a capture, any subcaptures are nested.
- Nested = true;
-
- // Retrieve the capture type for this variable.
- CaptureType = CSI->getCapture(Var).getCaptureType();
-
- // Compute the type of an expression that refers to this variable.
- DeclRefType = CaptureType.getNonReferenceType();
-
- const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
- if (Cap.isCopyCapture() &&
- !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable))
- DeclRefType.addConst();
- break;
- }
- bool IsBlock = isa<BlockScopeInfo>(CSI);
- bool IsLambda = !IsBlock;
- // Lambdas are not allowed to capture unnamed variables
- // (e.g. anonymous unions).
- // FIXME: The C++11 rule don't actually state this explicitly, but I'm
- // assuming that's the intent.
- if (IsLambda && !Var->getDeclName()) {
- if (BuildAndDiagnose) {
- Diag(Loc, diag::err_lambda_capture_anonymous_var);
- Diag(Var->getLocation(), diag::note_declared_at);
- }
- return true;
- }
- // Prohibit variably-modified types; they're difficult to deal with.
- if (Var->getType()->isVariablyModifiedType()) {
- if (BuildAndDiagnose) {
- if (IsBlock)
- Diag(Loc, diag::err_ref_vm_type);
- else
- Diag(Loc, diag::err_lambda_capture_vm_type) << Var->getDeclName();
- Diag(Var->getLocation(), diag::note_previous_decl)
- << Var->getDeclName();
- }
- return true;
- }
- // Lambdas are not allowed to capture __block variables; they don't
- // support the expected semantics.
- if (IsLambda && HasBlocksAttr) {
- if (BuildAndDiagnose) {
- Diag(Loc, diag::err_lambda_capture_block)
- << Var->getDeclName();
- Diag(Var->getLocation(), diag::note_previous_decl)
- << Var->getDeclName();
- }
- return true;
- }
- if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
- // No capture-default
- if (BuildAndDiagnose) {
- Diag(Loc, diag::err_lambda_impcap) << Var->getDeclName();
- Diag(Var->getLocation(), diag::note_previous_decl)
- << Var->getDeclName();
- Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
- diag::note_lambda_decl);
- }
- return true;
- }
- FunctionScopesIndex--;
- DC = ParentDC;
- Explicit = false;
- } while (!Var->getDeclContext()->Equals(DC));
- // Walk back down the scope stack, computing the type of the capture at
- // each step, checking type-specific requirements, and adding captures if
- // requested.
- for (unsigned I = ++FunctionScopesIndex, N = FunctionScopes.size(); I != N;
- ++I) {
- CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
-
- // Compute the type of the capture and of a reference to the capture within
- // this scope.
- if (isa<BlockScopeInfo>(CSI)) {
- Expr *CopyExpr = 0;
- bool ByRef = false;
-
- // Blocks are not allowed to capture arrays.
- if (CaptureType->isArrayType()) {
- if (BuildAndDiagnose) {
- Diag(Loc, diag::err_ref_array_type);
- Diag(Var->getLocation(), diag::note_previous_decl)
- << Var->getDeclName();
- }
- return true;
- }
- // Forbid the block-capture of autoreleasing variables.
- if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
- if (BuildAndDiagnose) {
- Diag(Loc, diag::err_arc_autoreleasing_capture)
- << /*block*/ 0;
- Diag(Var->getLocation(), diag::note_previous_decl)
- << Var->getDeclName();
- }
- return true;
- }
- if (HasBlocksAttr || CaptureType->isReferenceType()) {
- // Block capture by reference does not change the capture or
- // declaration reference types.
- ByRef = true;
- } else {
- // Block capture by copy introduces 'const'.
- CaptureType = CaptureType.getNonReferenceType().withConst();
- DeclRefType = CaptureType;
-
- if (getLangOpts().CPlusPlus && BuildAndDiagnose) {
- if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
- // The capture logic needs the destructor, so make sure we mark it.
- // Usually this is unnecessary because most local variables have
- // their destructors marked at declaration time, but parameters are
- // an exception because it's technically only the call site that
- // actually requires the destructor.
- if (isa<ParmVarDecl>(Var))
- FinalizeVarWithDestructor(Var, Record);
-
- // According to the blocks spec, the capture of a variable from
- // the stack requires a const copy constructor. This is not true
- // of the copy/move done to move a __block variable to the heap.
- Expr *DeclRef = new (Context) DeclRefExpr(Var, false,
- DeclRefType.withConst(),
- VK_LValue, Loc);
- ExprResult Result
- = PerformCopyInitialization(
- InitializedEntity::InitializeBlock(Var->getLocation(),
- CaptureType, false),
- Loc, Owned(DeclRef));
-
- // Build a full-expression copy expression if initialization
- // succeeded and used a non-trivial constructor. Recover from
- // errors by pretending that the copy isn't necessary.
- if (!Result.isInvalid() &&
- !cast<CXXConstructExpr>(Result.get())->getConstructor()
- ->isTrivial()) {
- Result = MaybeCreateExprWithCleanups(Result);
- CopyExpr = Result.take();
- }
- }
- }
- }
- // Actually capture the variable.
- if (BuildAndDiagnose)
- CSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
- SourceLocation(), CaptureType, CopyExpr);
- Nested = true;
- continue;
- }
-
- LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
-
- // Determine whether we are capturing by reference or by value.
- bool ByRef = false;
- if (I == N - 1 && Kind != TryCapture_Implicit) {
- ByRef = (Kind == TryCapture_ExplicitByRef);
- } else {
- ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
- }
-
- // Compute the type of the field that will capture this variable.
- if (ByRef) {
- // C++11 [expr.prim.lambda]p15:
- // An entity is captured by reference if it is implicitly or
- // explicitly captured but not captured by copy. It is
- // unspecified whether additional unnamed non-static data
- // members are declared in the closure type for entities
- // captured by reference.
- //
- // FIXME: It is not clear whether we want to build an lvalue reference
- // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
- // to do the former, while EDG does the latter. Core issue 1249 will
- // clarify, but for now we follow GCC because it's a more permissive and
- // easily defensible position.
- CaptureType = Context.getLValueReferenceType(DeclRefType);
- } else {
- // C++11 [expr.prim.lambda]p14:
- // For each entity captured by copy, an unnamed non-static
- // data member is declared in the closure type. The
- // declaration order of these members is unspecified. The type
- // of such a data member is the type of the corresponding
- // captured entity if the entity is not a reference to an
- // object, or the referenced type otherwise. [Note: If the
- // captured entity is a reference to a function, the
- // corresponding data member is also a reference to a
- // function. - end note ]
- if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
- if (!RefType->getPointeeType()->isFunctionType())
- CaptureType = RefType->getPointeeType();
- }
- // Forbid the lambda copy-capture of autoreleasing variables.
- if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
- if (BuildAndDiagnose) {
- Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
- Diag(Var->getLocation(), diag::note_previous_decl)
- << Var->getDeclName();
- }
- return true;
- }
- }
- // Capture this variable in the lambda.
- Expr *CopyExpr = 0;
- if (BuildAndDiagnose) {
- ExprResult Result = captureInLambda(*this, LSI, Var, CaptureType,
- DeclRefType, Loc,
- I == N-1);
- if (!Result.isInvalid())
- CopyExpr = Result.take();
- }
-
- // Compute the type of a reference to this captured variable.
- if (ByRef)
- DeclRefType = CaptureType.getNonReferenceType();
- else {
- // C++ [expr.prim.lambda]p5:
- // The closure type for a lambda-expression has a public inline
- // function call operator [...]. This function call operator is
- // declared const (9.3.1) if and only if the lambda-expression’s
- // parameter-declaration-clause is not followed by mutable.
- DeclRefType = CaptureType.getNonReferenceType();
- if (!LSI->Mutable && !CaptureType->isReferenceType())
- DeclRefType.addConst();
- }
-
- // Add the capture.
- if (BuildAndDiagnose)
- CSI->addCapture(Var, /*IsBlock=*/false, ByRef, Nested, Loc,
- EllipsisLoc, CaptureType, CopyExpr);
- Nested = true;
- }
- return false;
- }
- bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
- TryCaptureKind Kind, SourceLocation EllipsisLoc) {
- QualType CaptureType;
- QualType DeclRefType;
- return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
- /*BuildAndDiagnose=*/true, CaptureType,
- DeclRefType);
- }
- QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
- QualType CaptureType;
- QualType DeclRefType;
-
- // Determine whether we can capture this variable.
- if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
- /*BuildAndDiagnose=*/false, CaptureType, DeclRefType))
- return QualType();
- return DeclRefType;
- }
- static void MarkVarDeclODRUsed(Sema &SemaRef, VarDecl *Var,
- SourceLocation Loc) {
- // Keep track of used but undefined variables.
- // FIXME: We shouldn't suppress this warning for static data members.
- if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
- Var->getLinkage() != ExternalLinkage &&
- !(Var->isStaticDataMember() && Var->hasInit())) {
- SourceLocation &old = SemaRef.UndefinedInternals[Var->getCanonicalDecl()];
- if (old.isInvalid()) old = Loc;
- }
- SemaRef.tryCaptureVariable(Var, Loc);
- Var->setUsed(true);
- }
- void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
- // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
- // an object that satisfies the requirements for appearing in a
- // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
- // is immediately applied." This function handles the lvalue-to-rvalue
- // conversion part.
- MaybeODRUseExprs.erase(E->IgnoreParens());
- }
- ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
- if (!Res.isUsable())
- return Res;
- // If a constant-expression is a reference to a variable where we delay
- // deciding whether it is an odr-use, just assume we will apply the
- // lvalue-to-rvalue conversion. In the one case where this doesn't happen
- // (a non-type template argument), we have special handling anyway.
- UpdateMarkingForLValueToRValue(Res.get());
- return Res;
- }
- void Sema::CleanupVarDeclMarking() {
- for (llvm::SmallPtrSetIterator<Expr*> i = MaybeODRUseExprs.begin(),
- e = MaybeODRUseExprs.end();
- i != e; ++i) {
- VarDecl *Var;
- SourceLocation Loc;
- if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(*i)) {
- Var = cast<VarDecl>(DRE->getDecl());
- Loc = DRE->getLocation();
- } else if (MemberExpr *ME = dyn_cast<MemberExpr>(*i)) {
- Var = cast<VarDecl>(ME->getMemberDecl());
- Loc = ME->getMemberLoc();
- } else {
- llvm_unreachable("Unexpcted expression");
- }
- MarkVarDeclODRUsed(*this, Var, Loc);
- }
- MaybeODRUseExprs.clear();
- }
- // Mark a VarDecl referenced, and perform the necessary handling to compute
- // odr-uses.
- static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
- VarDecl *Var, Expr *E) {
- Var->setReferenced();
- if (!IsPotentiallyEvaluatedContext(SemaRef))
- return;
- // Implicit instantiation of static data members of class templates.
- if (Var->isStaticDataMember() && Var->getInstantiatedFromStaticDataMember()) {
- MemberSpecializationInfo *MSInfo = Var->getMemberSpecializationInfo();
- assert(MSInfo && "Missing member specialization information?");
- bool AlreadyInstantiated = !MSInfo->getPointOfInstantiation().isInvalid();
- if (MSInfo->getTemplateSpecializationKind() == TSK_ImplicitInstantiation &&
- (!AlreadyInstantiated ||
- Var->isUsableInConstantExpressions(SemaRef.Context))) {
- if (!AlreadyInstantiated) {
- // This is a modification of an existing AST node. Notify listeners.
- if (ASTMutationListener *L = SemaRef.getASTMutationListener())
- L->StaticDataMemberInstantiated(Var);
- MSInfo->setPointOfInstantiation(Loc);
- }
- SourceLocation PointOfInstantiation = MSInfo->getPointOfInstantiation();
- if (Var->isUsableInConstantExpressions(SemaRef.Context))
- // Do not defer instantiations of variables which could be used in a
- // constant expression.
- SemaRef.InstantiateStaticDataMemberDefinition(PointOfInstantiation,Var);
- else
- SemaRef.PendingInstantiations.push_back(
- std::make_pair(Var, PointOfInstantiation));
- }
- }
- // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
- // an object that satisfies the requirements for appearing in a
- // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
- // is immediately applied." We check the first part here, and
- // Sema::UpdateMarkingForLValueToRValue deals with the second part.
- // Note that we use the C++11 definition everywhere because nothing in
- // C++03 depends on whether we get the C++03 version correct. This does not
- // apply to references, since they are not objects.
- const VarDecl *DefVD;
- if (E && !isa<ParmVarDecl>(Var) && !Var->getType()->isReferenceType() &&
- Var->isUsableInConstantExpressions(SemaRef.Context) &&
- Var->getAnyInitializer(DefVD) && DefVD->checkInitIsICE())
- SemaRef.MaybeODRUseExprs.insert(E);
- else
- MarkVarDeclODRUsed(SemaRef, Var, Loc);
- }
- /// \brief Mark a variable referenced, and check whether it is odr-used
- /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
- /// used directly for normal expressions referring to VarDecl.
- void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
- DoMarkVarDeclReferenced(*this, Loc, Var, 0);
- }
- static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
- Decl *D, Expr *E) {
- if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
- DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
- return;
- }
- SemaRef.MarkAnyDeclReferenced(Loc, D);
- // If this is a call to a method via a cast, also mark the method in the
- // derived class used in case codegen can devirtualize the call.
- const MemberExpr *ME = dyn_cast<MemberExpr>(E);
- if (!ME)
- return;
- CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
- if (!MD)
- return;
- const Expr *Base = ME->getBase();
- const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
- if (!MostDerivedClassDecl)
- return;
- CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
- if (!DM)
- return;
- SemaRef.MarkAnyDeclReferenced(Loc, DM);
- }
- /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
- void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
- MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E);
- }
- /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
- void Sema::MarkMemberReferenced(MemberExpr *E) {
- MarkExprReferenced(*this, E->getMemberLoc(), E->getMemberDecl(), E);
- }
- /// \brief Perform marking for a reference to an arbitrary declaration. It
- /// marks the declaration referenced, and performs odr-use checking for functions
- /// and variables. This method should not be used when building an normal
- /// expression which refers to a variable.
- void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D) {
- if (VarDecl *VD = dyn_cast<VarDecl>(D))
- MarkVariableReferenced(Loc, VD);
- else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
- MarkFunctionReferenced(Loc, FD);
- else
- D->setReferenced();
- }
- namespace {
- // Mark all of the declarations referenced
- // FIXME: Not fully implemented yet! We need to have a better understanding
- // of when we're entering
- class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
- Sema &S;
- SourceLocation Loc;
- public:
- typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
- MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
- bool TraverseTemplateArgument(const TemplateArgument &Arg);
- bool TraverseRecordType(RecordType *T);
- };
- }
- bool MarkReferencedDecls::TraverseTemplateArgument(
- const TemplateArgument &Arg) {
- if (Arg.getKind() == TemplateArgument::Declaration) {
- if (Decl *D = Arg.getAsDecl())
- S.MarkAnyDeclReferenced(Loc, D);
- }
- return Inherited::TraverseTemplateArgument(Arg);
- }
- bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
- if (ClassTemplateSpecializationDecl *Spec
- = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
- const TemplateArgumentList &Args = Spec->getTemplateArgs();
- return TraverseTemplateArguments(Args.data(), Args.size());
- }
- return true;
- }
- void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
- MarkReferencedDecls Marker(*this, Loc);
- Marker.TraverseType(Context.getCanonicalType(T));
- }
- namespace {
- /// \brief Helper class that marks all of the declarations referenced by
- /// potentially-evaluated subexpressions as "referenced".
- class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
- Sema &S;
- bool SkipLocalVariables;
-
- public:
- typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
-
- EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
- : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
-
- void VisitDeclRefExpr(DeclRefExpr *E) {
- // If we were asked not to visit local variables, don't.
- if (SkipLocalVariables) {
- if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
- if (VD->hasLocalStorage())
- return;
- }
-
- S.MarkDeclRefReferenced(E);
- }
-
- void VisitMemberExpr(MemberExpr *E) {
- S.MarkMemberReferenced(E);
- Inherited::VisitMemberExpr(E);
- }
-
- void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
- S.MarkFunctionReferenced(E->getLocStart(),
- const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
- Visit(E->getSubExpr());
- }
-
- void VisitCXXNewExpr(CXXNewExpr *E) {
- if (E->getOperatorNew())
- S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
- if (E->getOperatorDelete())
- S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
- Inherited::VisitCXXNewExpr(E);
- }
- void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
- if (E->getOperatorDelete())
- S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
- QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
- if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
- CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
- S.MarkFunctionReferenced(E->getLocStart(),
- S.LookupDestructor(Record));
- }
-
- Inherited::VisitCXXDeleteExpr(E);
- }
-
- void VisitCXXConstructExpr(CXXConstructExpr *E) {
- S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
- Inherited::VisitCXXConstructExpr(E);
- }
-
- void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
- Visit(E->getExpr());
- }
- void VisitImplicitCastExpr(ImplicitCastExpr *E) {
- Inherited::VisitImplicitCastExpr(E);
- if (E->getCastKind() == CK_LValueToRValue)
- S.UpdateMarkingForLValueToRValue(E->getSubExpr());
- }
- };
- }
- /// \brief Mark any declarations that appear within this expression or any
- /// potentially-evaluated subexpressions as "referenced".
- ///
- /// \param SkipLocalVariables If true, don't mark local variables as
- /// 'referenced'.
- void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
- bool SkipLocalVariables) {
- EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
- }
- /// \brief Emit a diagnostic that describes an effect on the run-time behavior
- /// of the program being compiled.
- ///
- /// This routine emits the given diagnostic when the code currently being
- /// type-checked is "potentially evaluated", meaning that there is a
- /// possibility that the code will actually be executable. Code in sizeof()
- /// expressions, code used only during overload resolution, etc., are not
- /// potentially evaluated. This routine will suppress such diagnostics or,
- /// in the absolutely nutty case of potentially potentially evaluated
- /// expressions (C++ typeid), queue the diagnostic to potentially emit it
- /// later.
- ///
- /// This routine should be used for all diagnostics that describe the run-time
- /// behavior of a program, such as passing a non-POD value through an ellipsis.
- /// Failure to do so will likely result in spurious diagnostics or failures
- /// during overload resolution or within sizeof/alignof/typeof/typeid.
- bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
- const PartialDiagnostic &PD) {
- switch (ExprEvalContexts.back().Context) {
- case Unevaluated:
- // The argument will never be evaluated, so don't complain.
- break;
- case ConstantEvaluated:
- // Relevant diagnostics should be produced by constant evaluation.
- break;
- case PotentiallyEvaluated:
- case PotentiallyEvaluatedIfUsed:
- if (Statement && getCurFunctionOrMethodDecl()) {
- FunctionScopes.back()->PossiblyUnreachableDiags.
- push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
- }
- else
- Diag(Loc, PD);
-
- return true;
- }
- return false;
- }
- bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
- CallExpr *CE, FunctionDecl *FD) {
- if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
- return false;
- // If we're inside a decltype's expression, don't check for a valid return
- // type or construct temporaries until we know whether this is the last call.
- if (ExprEvalContexts.back().IsDecltype) {
- ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
- return false;
- }
- class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
- FunctionDecl *FD;
- CallExpr *CE;
-
- public:
- CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
- : FD(FD), CE(CE) { }
-
- virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
- if (!FD) {
- S.Diag(Loc, diag::err_call_incomplete_return)
- << T << CE->getSourceRange();
- return;
- }
-
- S.Diag(Loc, diag::err_call_function_incomplete_return)
- << CE->getSourceRange() << FD->getDeclName() << T;
- S.Diag(FD->getLocation(),
- diag::note_function_with_incomplete_return_type_declared_here)
- << FD->getDeclName();
- }
- } Diagnoser(FD, CE);
-
- if (RequireCompleteType(Loc, ReturnType, Diagnoser))
- return true;
- return false;
- }
- // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
- // will prevent this condition from triggering, which is what we want.
- void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
- SourceLocation Loc;
- unsigned diagnostic = diag::warn_condition_is_assignment;
- bool IsOrAssign = false;
- if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
- if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
- return;
- IsOrAssign = Op->getOpcode() == BO_OrAssign;
- // Greylist some idioms by putting them into a warning subcategory.
- if (ObjCMessageExpr *ME
- = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
- Selector Sel = ME->getSelector();
- // self = [<foo> init...]
- if (isSelfExpr(Op->getLHS()) && Sel.getNameForSlot(0).startswith("init"))
- diagnostic = diag::warn_condition_is_idiomatic_assignment;
- // <foo> = [<bar> nextObject]
- else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
- diagnostic = diag::warn_condition_is_idiomatic_assignment;
- }
- Loc = Op->getOperatorLoc();
- } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
- if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
- return;
- IsOrAssign = Op->getOperator() == OO_PipeEqual;
- Loc = Op->getOperatorLoc();
- } else {
- // Not an assignment.
- return;
- }
- Diag(Loc, diagnostic) << E->getSourceRange();
- SourceLocation Open = E->getLocStart();
- SourceLocation Close = PP.getLocForEndOfToken(E->getSourceRange().getEnd());
- Diag(Loc, diag::note_condition_assign_silence)
- << FixItHint::CreateInsertion(Open, "(")
- << FixItHint::CreateInsertion(Close, ")");
- if (IsOrAssign)
- Diag(Loc, diag::note_condition_or_assign_to_comparison)
- << FixItHint::CreateReplacement(Loc, "!=");
- else
- Diag(Loc, diag::note_condition_assign_to_comparison)
- << FixItHint::CreateReplacement(Loc, "==");
- }
- /// \brief Redundant parentheses over an equality comparison can indicate
- /// that the user intended an assignment used as condition.
- void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
- // Don't warn if the parens came from a macro.
- SourceLocation parenLoc = ParenE->getLocStart();
- if (parenLoc.isInvalid() || parenLoc.isMacroID())
- return;
- // Don't warn for dependent expressions.
- if (ParenE->isTypeDependent())
- return;
- Expr *E = ParenE->IgnoreParens();
- if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
- if (opE->getOpcode() == BO_EQ &&
- opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
- == Expr::MLV_Valid) {
- SourceLocation Loc = opE->getOperatorLoc();
-
- Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
- SourceRange ParenERange = ParenE->getSourceRange();
- Diag(Loc, diag::note_equality_comparison_silence)
- << FixItHint::CreateRemoval(ParenERange.getBegin())
- << FixItHint::CreateRemoval(ParenERange.getEnd());
- Diag(Loc, diag::note_equality_comparison_to_assign)
- << FixItHint::CreateReplacement(Loc, "=");
- }
- }
- ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
- DiagnoseAssignmentAsCondition(E);
- if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
- DiagnoseEqualityWithExtraParens(parenE);
- ExprResult result = CheckPlaceholderExpr(E);
- if (result.isInvalid()) return ExprError();
- E = result.take();
- if (!E->isTypeDependent()) {
- if (getLangOpts().CPlusPlus)
- return CheckCXXBooleanCondition(E); // C++ 6.4p4
- ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
- if (ERes.isInvalid())
- return ExprError();
- E = ERes.take();
- QualType T = E->getType();
- if (!T->isScalarType()) { // C99 6.8.4.1p1
- Diag(Loc, diag::err_typecheck_statement_requires_scalar)
- << T << E->getSourceRange();
- return ExprError();
- }
- }
- return Owned(E);
- }
- ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
- Expr *SubExpr) {
- if (!SubExpr)
- return ExprError();
- return CheckBooleanCondition(SubExpr, Loc);
- }
- namespace {
- /// A visitor for rebuilding a call to an __unknown_any expression
- /// to have an appropriate type.
- struct RebuildUnknownAnyFunction
- : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
- Sema &S;
- RebuildUnknownAnyFunction(Sema &S) : S(S) {}
- ExprResult VisitStmt(Stmt *S) {
- llvm_unreachable("unexpected statement!");
- }
- ExprResult VisitExpr(Expr *E) {
- S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
- << E->getSourceRange();
- return ExprError();
- }
- /// Rebuild an expression which simply semantically wraps another
- /// expression which it shares the type and value kind of.
- template <class T> ExprResult rebuildSugarExpr(T *E) {
- ExprResult SubResult = Visit(E->getSubExpr());
- if (SubResult.isInvalid()) return ExprError();
- Expr *SubExpr = SubResult.take();
- E->setSubExpr(SubExpr);
- E->setType(SubExpr->getType());
- E->setValueKind(SubExpr->getValueKind());
- assert(E->getObjectKind() == OK_Ordinary);
- return E;
- }
- ExprResult VisitParenExpr(ParenExpr *E) {
- return rebuildSugarExpr(E);
- }
- ExprResult VisitUnaryExtension(UnaryOperator *E) {
- return rebuildSugarExpr(E);
- }
- ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
- ExprResult SubResult = Visit(E->getSubExpr());
- if (SubResult.isInvalid()) return ExprError();
- Expr *SubExpr = SubResult.take();
- E->setSubExpr(SubExpr);
- E->setType(S.Context.getPointerType(SubExpr->getType()));
- assert(E->getValueKind() == VK_RValue);
- assert(E->getObjectKind() == OK_Ordinary);
- return E;
- }
- ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
- if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
- E->setType(VD->getType());
- assert(E->getValueKind() == VK_RValue);
- if (S.getLangOpts().CPlusPlus &&
- !(isa<CXXMethodDecl>(VD) &&
- cast<CXXMethodDecl>(VD)->isInstance()))
- E->setValueKind(VK_LValue);
- return E;
- }
- ExprResult VisitMemberExpr(MemberExpr *E) {
- return resolveDecl(E, E->getMemberDecl());
- }
- ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
- return resolveDecl(E, E->getDecl());
- }
- };
- }
- /// Given a function expression of unknown-any type, try to rebuild it
- /// to have a function type.
- static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
- ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
- if (Result.isInvalid()) return ExprError();
- return S.DefaultFunctionArrayConversion(Result.take());
- }
- namespace {
- /// A visitor for rebuilding an expression of type __unknown_anytype
- /// into one which resolves the type directly on the referring
- /// expression. Strict preservation of the original source
- /// structure is not a goal.
- struct RebuildUnknownAnyExpr
- : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
- Sema &S;
- /// The current destination type.
- QualType DestType;
- RebuildUnknownAnyExpr(Sema &S, QualType CastType)
- : S(S), DestType(CastType) {}
- ExprResult VisitStmt(Stmt *S) {
- llvm_unreachable("unexpected statement!");
- }
- ExprResult VisitExpr(Expr *E) {
- S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
- << E->getSourceRange();
- return ExprError();
- }
- ExprResult VisitCallExpr(CallExpr *E);
- ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
- /// Rebuild an expression which simply semantically wraps another
- /// expression which it shares the type and value kind of.
- template <class T> ExprResult rebuildSugarExpr(T *E) {
- ExprResult SubResult = Visit(E->getSubExpr());
- if (SubResult.isInvalid()) return ExprError();
- Expr *SubExpr = SubResult.take();
- E->setSubExpr(SubExpr);
- E->setType(SubExpr->getType());
- E->setValueKind(SubExpr->getValueKind());
- assert(E->getObjectKind() == OK_Ordinary);
- return E;
- }
- ExprResult VisitParenExpr(ParenExpr *E) {
- return rebuildSugarExpr(E);
- }
- ExprResult VisitUnaryExtension(UnaryOperator *E) {
- return rebuildSugarExpr(E);
- }
- ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
- const PointerType *Ptr = DestType->getAs<PointerType>();
- if (!Ptr) {
- S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
- << E->getSourceRange();
- return ExprError();
- }
- assert(E->getValueKind() == VK_RValue);
- assert(E->getObjectKind() == OK_Ordinary);
- E->setType(DestType);
- // Build the sub-expression as if it were an object of the pointee type.
- DestType = Ptr->getPointeeType();
- ExprResult SubResult = Visit(E->getSubExpr());
- if (SubResult.isInvalid()) return ExprError();
- E->setSubExpr(SubResult.take());
- return E;
- }
- ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
- ExprResult resolveDecl(Expr *E, ValueDecl *VD);
- ExprResult VisitMemberExpr(MemberExpr *E) {
- return resolveDecl(E, E->getMemberDecl());
- }
- ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
- return resolveDecl(E, E->getDecl());
- }
- };
- }
- /// Rebuilds a call expression which yielded __unknown_anytype.
- ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
- Expr *CalleeExpr = E->getCallee();
- enum FnKind {
- FK_MemberFunction,
- FK_FunctionPointer,
- FK_BlockPointer
- };
- FnKind Kind;
- QualType CalleeType = CalleeExpr->getType();
- if (CalleeType == S.Context.BoundMemberTy) {
- assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
- Kind = FK_MemberFunction;
- CalleeType = Expr::findBoundMemberType(CalleeExpr);
- } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
- CalleeType = Ptr->getPointeeType();
- Kind = FK_FunctionPointer;
- } else {
- CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
- Kind = FK_BlockPointer;
- }
- const FunctionType *FnType = CalleeType->castAs<FunctionType>();
- // Verify that this is a legal result type of a function.
- if (DestType->isArrayType() || DestType->isFunctionType()) {
- unsigned diagID = diag::err_func_returning_array_function;
- if (Kind == FK_BlockPointer)
- diagID = diag::err_block_returning_array_function;
- S.Diag(E->getExprLoc(), diagID)
- << DestType->isFunctionType() << DestType;
- return ExprError();
- }
- // Otherwise, go ahead and set DestType as the call's result.
- E->setType(DestType.getNonLValueExprType(S.Context));
- E->setValueKind(Expr::getValueKindForType(DestType));
- assert(E->getObjectKind() == OK_Ordinary);
- // Rebuild the function type, replacing the result type with DestType.
- if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType))
- DestType = S.Context.getFunctionType(DestType,
- Proto->arg_type_begin(),
- Proto->getNumArgs(),
- Proto->getExtProtoInfo());
- else
- DestType = S.Context.getFunctionNoProtoType(DestType,
- FnType->getExtInfo());
- // Rebuild the appropriate pointer-to-function type.
- switch (Kind) {
- case FK_MemberFunction:
- // Nothing to do.
- break;
- case FK_FunctionPointer:
- DestType = S.Context.getPointerType(DestType);
- break;
- case FK_BlockPointer:
- DestType = S.Context.getBlockPointerType(DestType);
- break;
- }
- // Finally, we can recurse.
- ExprResult CalleeResult = Visit(CalleeExpr);
- if (!CalleeResult.isUsable()) return ExprError();
- E->setCallee(CalleeResult.take());
- // Bind a temporary if necessary.
- return S.MaybeBindToTemporary(E);
- }
- ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
- // Verify that this is a legal result type of a call.
- if (DestType->isArrayType() || DestType->isFunctionType()) {
- S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
- << DestType->isFunctionType() << DestType;
- return ExprError();
- }
- // Rewrite the method result type if available.
- if (ObjCMethodDecl *Method = E->getMethodDecl()) {
- assert(Method->getResultType() == S.Context.UnknownAnyTy);
- Method->setResultType(DestType);
- }
- // Change the type of the message.
- E->setType(DestType.getNonReferenceType());
- E->setValueKind(Expr::getValueKindForType(DestType));
- return S.MaybeBindToTemporary(E);
- }
- ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
- // The only case we should ever see here is a function-to-pointer decay.
- if (E->getCastKind() == CK_FunctionToPointerDecay) {
- assert(E->getValueKind() == VK_RValue);
- assert(E->getObjectKind() == OK_Ordinary);
-
- E->setType(DestType);
-
- // Rebuild the sub-expression as the pointee (function) type.
- DestType = DestType->castAs<PointerType>()->getPointeeType();
-
- ExprResult Result = Visit(E->getSubExpr());
- if (!Result.isUsable()) return ExprError();
-
- E->setSubExpr(Result.take());
- return S.Owned(E);
- } else if (E->getCastKind() == CK_LValueToRValue) {
- assert(E->getValueKind() == VK_RValue);
- assert(E->getObjectKind() == OK_Ordinary);
- assert(isa<BlockPointerType>(E->getType()));
- E->setType(DestType);
- // The sub-expression has to be a lvalue reference, so rebuild it as such.
- DestType = S.Context.getLValueReferenceType(DestType);
- ExprResult Result = Visit(E->getSubExpr());
- if (!Result.isUsable()) return ExprError();
- E->setSubExpr(Result.take());
- return S.Owned(E);
- } else {
- llvm_unreachable("Unhandled cast type!");
- }
- }
- ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
- ExprValueKind ValueKind = VK_LValue;
- QualType Type = DestType;
- // We know how to make this work for certain kinds of decls:
- // - functions
- if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
- if (const PointerType *Ptr = Type->getAs<PointerType>()) {
- DestType = Ptr->getPointeeType();
- ExprResult Result = resolveDecl(E, VD);
- if (Result.isInvalid()) return ExprError();
- return S.ImpCastExprToType(Result.take(), Type,
- CK_FunctionToPointerDecay, VK_RValue);
- }
- if (!Type->isFunctionType()) {
- S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
- << VD << E->getSourceRange();
- return ExprError();
- }
- if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
- if (MD->isInstance()) {
- ValueKind = VK_RValue;
- Type = S.Context.BoundMemberTy;
- }
- // Function references aren't l-values in C.
- if (!S.getLangOpts().CPlusPlus)
- ValueKind = VK_RValue;
- // - variables
- } else if (isa<VarDecl>(VD)) {
- if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
- Type = RefTy->getPointeeType();
- } else if (Type->isFunctionType()) {
- S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
- << VD << E->getSourceRange();
- return ExprError();
- }
- // - nothing else
- } else {
- S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
- << VD << E->getSourceRange();
- return ExprError();
- }
- VD->setType(DestType);
- E->setType(Type);
- E->setValueKind(ValueKind);
- return S.Owned(E);
- }
- /// Check a cast of an unknown-any type. We intentionally only
- /// trigger this for C-style casts.
- ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
- Expr *CastExpr, CastKind &CastKind,
- ExprValueKind &VK, CXXCastPath &Path) {
- // Rewrite the casted expression from scratch.
- ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
- if (!result.isUsable()) return ExprError();
- CastExpr = result.take();
- VK = CastExpr->getValueKind();
- CastKind = CK_NoOp;
- return CastExpr;
- }
- ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
- return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
- }
- static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
- Expr *orig = E;
- unsigned diagID = diag::err_uncasted_use_of_unknown_any;
- while (true) {
- E = E->IgnoreParenImpCasts();
- if (CallExpr *call = dyn_cast<CallExpr>(E)) {
- E = call->getCallee();
- diagID = diag::err_uncasted_call_of_unknown_any;
- } else {
- break;
- }
- }
- SourceLocation loc;
- NamedDecl *d;
- if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
- loc = ref->getLocation();
- d = ref->getDecl();
- } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
- loc = mem->getMemberLoc();
- d = mem->getMemberDecl();
- } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
- diagID = diag::err_uncasted_call_of_unknown_any;
- loc = msg->getSelectorStartLoc();
- d = msg->getMethodDecl();
- if (!d) {
- S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
- << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
- << orig->getSourceRange();
- return ExprError();
- }
- } else {
- S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
- << E->getSourceRange();
- return ExprError();
- }
- S.Diag(loc, diagID) << d << orig->getSourceRange();
- // Never recoverable.
- return ExprError();
- }
- /// Check for operands with placeholder types and complain if found.
- /// Returns true if there was an error and no recovery was possible.
- ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
- const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
- if (!placeholderType) return Owned(E);
- switch (placeholderType->getKind()) {
- // Overloaded expressions.
- case BuiltinType::Overload: {
- // Try to resolve a single function template specialization.
- // This is obligatory.
- ExprResult result = Owned(E);
- if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
- return result;
- // If that failed, try to recover with a call.
- } else {
- tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
- /*complain*/ true);
- return result;
- }
- }
- // Bound member functions.
- case BuiltinType::BoundMember: {
- ExprResult result = Owned(E);
- tryToRecoverWithCall(result, PDiag(diag::err_bound_member_function),
- /*complain*/ true);
- return result;
- }
- // ARC unbridged casts.
- case BuiltinType::ARCUnbridgedCast: {
- Expr *realCast = stripARCUnbridgedCast(E);
- diagnoseARCUnbridgedCast(realCast);
- return Owned(realCast);
- }
- // Expressions of unknown type.
- case BuiltinType::UnknownAny:
- return diagnoseUnknownAnyExpr(*this, E);
- // Pseudo-objects.
- case BuiltinType::PseudoObject:
- return checkPseudoObjectRValue(E);
- // Everything else should be impossible.
- #define BUILTIN_TYPE(Id, SingletonId) \
- case BuiltinType::Id:
- #define PLACEHOLDER_TYPE(Id, SingletonId)
- #include "clang/AST/BuiltinTypes.def"
- break;
- }
- llvm_unreachable("invalid placeholder type!");
- }
- bool Sema::CheckCaseExpression(Expr *E) {
- if (E->isTypeDependent())
- return true;
- if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
- return E->getType()->isIntegralOrEnumerationType();
- return false;
- }
- /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
- ExprResult
- Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
- assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
- "Unknown Objective-C Boolean value!");
- return Owned(new (Context) ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes,
- Context.ObjCBuiltinBoolTy, OpLoc));
- }
|